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ABSTRACT 

Behavioral Responses of Willow Flycatchers, Empidonax traillii, to a Heterogeneous 

Environment 

 

by 

 

Amanda V. Bakian, Doctor of Philosophy 

Utah State University, 2011 

Major Professor: Dr. Kimberly A. Sullivan 

Department: Biology 

Spatial heterogeneity impacts population and community-level dynamics including 

species-level dispersal patterns, the use and availability of refugia, predator/prey dynamics, and 

reproductive fitness. Understanding how wild animal populations respond to environmental 

heterogeneity is essential for their proper management and conservation. In this study, I examine 

the responses of Willow Flycatchers to spatial heterogeneity in the distribution of their food and 

habitat resources.  Over the course of three breeding seasons, I radio- tracked Willow Flycatchers 

at Fish Creek in Manti-La Sal National Forest in Utah, recorded detailed behavior data at each 

radio location, and collected fecal, feather and insect samples.  I formulated individual and 

population-level Bayesian spatial resource selection functions to model Willow Flycatcher 

foraging and vocalization behavior on multiple scales.  These models indicate that vocalization 

and foraging behavior are spatially segregated within the home ranges of Willow Flycatchers.  

Further, Willow Flycatchers were found to use mature riparian habitat for vocalizing while they 

used a variety of habitat types for foraging.  The insect samples were used to identify distinct 

carbon and nitrogen stable isotope signatures for the aquatic and terrestrial insect communities at 
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Fish Creek. In conjunction with the fecal samples, I used the stable isotope signatures to 

determine the contribution of aquatic versus terrestrial insects to the Willow Flycatcher diet.  

Aquatic insects comprised a larger proportion of the diet of adult than nestling Willow 

Flycatchers.  This suggests that adult flycatchers consume a diet that is distinct from the one they 

feed to their nestlings. Finally, I compared space use characteristics in two populations of Willow 

Flycatchers: a population of the endangered Southwestern Willow Flycatcher at Roosevelt Lake, 

Arizona and another belonging to a non-endangered subspecies of Willow Flycatcher at Fish 

Creek, Utah. Differences in space use were found largely among breeding flycatchers while space 

use characteristics in non-breeding Willow Flycatchers did not differ across populations. This 

suggests that space use patterns in non-breeding Southwestern Willow Flycatchers may be 

generalizable to non-breeding flycatchers from non-endangered populations.  This study expands 

our understanding of how Willow Flycatchers respond to spatial heterogeneity while its key 

findings have management and conservation implications for the species.   

   

(137 pages) 
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1 
CHAPTER 1 

INTRODUCTION 

Spatial heterogeneity is a common feature of the natural world. Understanding the spatial 

context of ecological patterns and processes continues to be an important goal in ecology. 

Animals respond to spatial heterogeneity on multiple scales (Wiens 1989) and individual level 

responses impact population and community-level dynamics (Kareiva 1990). Perhaps most 

importantly, it is environmental heterogeneity over space and time that creates niche space, 

promotes species diversity (MacArthur and MacArthur 1961, MacArthur 1964) and community 

stability (Huffaker 1958, May 1974), and enables the coexistence of species (Holt 1984, Levin 

1992). Ecologists have assembled a considerable amount of empirical evidence establishing the 

link between spatial pattern and ecological process. For example, spatial heterogeneity has been 

found to impact species-level dispersal patterns (Morales and Ellner 2002, Bonte et al. 2006, 

Merckx and Van Dyck 2007), the use and availability of refugia (Gilinsky 1984, Kauffman et al. 

2007), predator/prey dynamics (Oksanen and Henttonen 1996, Thies et al. 2003, Bonoit-Bird and 

Au 2003), reproductive fitness (Palmer 1995, Nilsen et al. 2004), and animal space use (Kie et al. 

2002). 

  Although the ecological theory of spatial heterogeneity was well developed by the end 

of the 20
th
 century, experimental tests of the theory were implemented at a slower pace (Legendre 

and Fortin 1989, Doak et al. 1992). For years, the spatial variation of natural populations and 

communities and the resources on which they depend were typically assumed to follow a uniform 

distribution over space and time (Pickett and Cadenasso 1995). Starting in the 1980‘s, the 

incorporation of space into applied ecology resulted in a number of key papers (e.g. Legendre and 

Fortin 1989, Turner 1989, Wiens 1989, Kareiva 1990).  The ideas championed in these papers 

eventually lead to the development of landscape ecology as a sub-discipline of ecology (Turner 

1989, Wiens 1989, Turner et al. 2001). Landscape ecology emphasizes the ecological causes and 
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consequences of spatial heterogeneity and the influence of scale on population and community-

level interactions and dynamics (Forman 1983, Risser et al. 1984, Wiens et al. 1993, Turner et al. 

2001).  

At the same time that landscape ecologists were promoting the paradigm that spatial 

heterogeneity is a driver of ecological phenomenon, quantitative and statistical ecologists were 

making progress with incorporating spatial variation into statistical models. Legendre and Fortin 

(1989) was one of the first papers to address the general inferential problems that spatially 

autocorrelated data introduces to ecological analyses when it goes uncontrolled.  Statistical 

models formulated from spatially autocorrelated data in which the spatial dependency in the data 

is ignored typically suffer from residual spatial autocorrelation leading to deflated parameter 

standard errors, increased type I errors, and erroneous inference (Lennon 2000, Aarts et al. 2008). 

In recent years, numerous analytical techniques have been introduced and used by researchers to 

satisfy statistical assumptions of independence of errors in the presence of spatial autocorrelation 

including wavelet-revised generalized linear regression (Carl and Kuhn 2008), conditional and 

simultaneous autoregressive models (Lichstein et al. 2002), lagged-predictor models (Florax and 

Folmer 1992), autologistic models (Augustin et al. 1996), generalized estimating equations (Carl 

and Kühn 2007), and generalized linear mixed models with spatial random effects or spatially 

dependent error covariance (Diggle et al. 1998). In addition, the increasing use of Geographic 

Information Science by ecologists has further facilitated the incorporation of spatial structure into 

ecological analysis.  Despite progress in developing spatially-explicit statistical models, some 

debate remains over how vital consideration of spatial autocorrelation is in some statistical 

models (Diniz-Filho et al. 2003, Hawkins et al. 2007).   

These two concepts, understanding the impact of spatial heterogeneity on ecological 

processes and appropriately modeling spatial structure, are growing increasingly important as the 

natural world undergoes widespread human-induced change resulting in greater numbers of wild 
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populations requiring active management for conservation. The Willow Flycatcher, Empidonax 

traillii, is one such species whose long-term population viability is challenged by habitat 

alteration.  While spatial heterogeneity may impact many aspects of the Willow Flycatcher‘s 

ecology, I investigate the influence that spatial heterogeneity has on their individual and 

population-level dynamics.  More specifically, I focused on exploring Willow Flycatcher‘s space 

use, resource selection and food web responses to spatial heterogeneity. 

The Willow Flycatcher is a small, neo-tropical migrant that breeds in dense riparian 

habitat throughout the continental United States (Fig. 1.1).  In the western United States, the 

species has experienced population declines due largely to habitat modification and destruction 

and due to nest parasitism by the Brown-headed Cowbird (Sedgwick 2000). The Southwestern 

Willow Flycatcher, Empidonax trailli extimus, is a federally listed endangered species (US Fish 

and Wildlife 1995).  Other sub-species of Willow Flycatcher are facing similar declines in the 

western U.S.  Understanding resource selection and space use in the Willow Flycatcher is 

important for its active management and conservation. In addition, Willow Flycatchers are 

conspicuous throughout their range and are easy to identify through sight and song making them 

an ideal model species for hypothesis testing.   

In chapter 2 of my dissertation, I investigate Willow Flycatcher‘s foraging and 

vocalization resource selection using Bayesian spatial generalized linear models. Behavior is 

often overlooked in habitat selection studies (Lima and Zollner 1996) although the distribution of 

behavior on a landscape reflects the underlying spatial pattern of resources important to a species.  

I model foraging and vocalization behavior separately to test the hypothesis that behavior is 

spatially segregated in the home ranges of Willow Flycatchers.  By doing so, I produced separate 

probability maps of foraging and vocalization behavior in Willow Flycatcher home ranges which 

may be viewed as ―behavioral landscapes‖.  The modeling approach presented in chapter 2 is 

novel yet amenable to most resource selection analyses.  Another goal of chapter 2 is to 
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demonstrate the general utility of this modeling approach to analyzing behavioral animal resource 

selection.  

Fig.1.1. Breeding range of the four recognized Willow Flycatcher sub-species in the continental 
U.S.   
 

In chapter 3, I test hypotheses concerning the use of aquatic versus terrestrial insects by 

the Willow Flycatcher.  Food resources vary spatially and temporally over the course of the 

Willow Flycatcher‘s breeding season at Fish Creek.  In addition, habitats vary in their insect 

productivity and arthropods emerging from more productive habitats may move into adjacent, 

less productive habitats.  Willow Flycatchers inhabit the riparian zone that buffers open water and 

terrestrial environments.  Past studies of the flycatcher diet indicate that flycatchers may require 

prey resources produced outside of the riparian zone during the breeding season (Wiesenborn and 

Heydon 2007).  I measured the contribution of aquatic and terrestrial insects to the diet of Willow 

Flycatchers using carbon and nitrogen stable isotopes and fecal sample dissection. In addition, I 
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compared the diet of Willow Flycatchers at Fish Creek, Utah with the diet of Willow Flycatchers 

from previously published studies.  

In chapter 4, I compare and contrast space use metrics in two populations of Willow 

Flycatcher, E.t. extimus , commonly known as the Southwestern Willow Flycatcher (SWFL), and 

E.t. adastus , commonly known as the Willow Flycatcher (WIFL).  Although Willow Flycatchers 

appear to be in decline throughout much of their range in the western United States, the SWFL 

sub-species, a federally-listed endangered sub-species, has received most of the research attention 

and little is known about other populations of Willow Flycatchers.  Information collected on the 

Southwestern Willow Flycatcher may be used to manage non-SWFL populations yet the 

suitability of SWFL ecology to WIFL populations is largely unknown. I hypothesized that 

flycatchers at Roosevelt Lake, Arizona maintain smaller home ranges and core areas than 

flycatchers at Fish Creek, Utah due to differences in the structure and composition of habitat 

patches between these two sites.  In addition, I expected to find differences in space use metrics 

as a function of flycatcher breeding status and sex.   

In the final chapter of my dissertation, I summarize the studies‘ major findings and 

discuss the implications of these findings on the conservation and management of the Willow 

Flycatcher, and on landscape and spatial ecological theory.  In addition, I suggest future research 

needs based on this study‘s primary findings.  
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CHAPTER 2 

IDENTIFYING SPATIAL PATTERNS OF BEHAVIOR IN WILLOW FLYCATCHERS, 

EMPIDONAX TRAILLII, USING BAYESIAN RESOURCE SELECTION FUNCTIONS
1
 

 

ABSTRACT 

Animal resource selection is a complex, hierarchical decision-making process. Resource 

selection studies often focus on the presence and absence of an animal rather than the animal‘s 

behavior at resource use locations.  In this study, we investigate foraging and vocalization 

resource selection in a population of Willow Flycatchers, Empidonax traillii adastus, using 

individual and population-level Bayesian spatial generalized linear models. Radio telemetry 

locations were collected from 35 adult Willow Flycatchers (n = 14 males, n = 13 females, and n = 

8 unknown sex) over the 2003 and 2004 breeding seasons at Fish Creek, Utah.  Results from the 

2-stage modeling approach indicate that habitat type, perch position, and distance from the 

arithmetic mean of the home range (in males) or nest site (in females) were important factors 

influencing foraging and vocalization resource selection. Parameter estimates from the 

individual-level models indicated high intraspecific variation in the use of the various habitat 

types and perch heights for foraging and vocalization.  Foraging was found to have a larger 

effective range of spatial dependency than vocalization based on the average estimated value of 

the individual-level model‘s spatial decay parameter.  Male flycatchers were observed to have a 

larger effective range of spatial dependency than female flycatchers for foraging and vocalization.  

On the population level, Willow Flycatchers selected riparian habitat over other habitat types for 

vocalizing but used multiple habitat types for foraging including mountain shrub, young riparian 

and upland forest.  Mapping of observed and predicted foraging and vocalization resource 

selection indicates that the behavior often occur in disparate areas of the home range. This 

                                                 
1
 Coauthored by Bakian, A.V., K.A. Sullivan, and E.H. Paxton 
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suggests that multiple core areas may exist in the home ranges of individual flycatchers. We 

discuss the management implications of individual-level heterogeneity versus population-level 

inference on Willow Flycatcher conservation and management.  

 

1.  Introduction 

A paramount objective of ecology is to understand not only where organisms exist but 

also to understand why (Krebs, 1978).   Despite increasingly sophisticated technology available 

to study animal resource selection and use, we remain largely ignorant about the motivations of 

animals when selecting resources. Inference based on studies of resource selection would greatly 

improve if resource selection incorporated behavior rather than mere presence (Lima and Zollner, 

1996; Marzluff et al., 2001).   

 Closely aligned with animal resource selection is the field of animal space use. 

Identifying the home range, the area an organism uses to fulfill its breeding, foraging and survival 

needs (Burt, 1943), is often the focal point of animal space use studies. When an animal‘s daily 

activity is largely restricted to its home range, we may infer that the home range contains the 

majority of resources required by an animal for breeding and survival.  Hence, the home range 

serves as the natural spatial boundary within which to examine resource selection (Marzluff et al., 

2004).  

Within the home range, space use patterns rarely follow a uniform distribution and animals 

typically show a tendency to use certain parts of their home ranges more frequently than other 

parts (Hayne, 1949). The disparate use of parts of the home range reflects the spatially segregated 

nature of the resources important to an organism. Areas of intensive use within the home range 

are known as core areas.  Most space use studies focus on delineating a single core area within an 

individual‘s home range (Laver and Kelly, 2008) although multiple core areas may exist. If so, 

across these multiple core areas resource selection may vary as a function of behavior indicating 

that particular core areas are used for unique behavior. For example, Marzluff et al. (2001), 
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recommends constructing behavioral-specific kernel utilization distributions to look for 

differential space use for foraging, locomotion, perching and parental care behavior in the 

American Crow. Their analysis found that the most frequent behavior of crows‘ (ie, perching and 

foraging) was spatially segregated.   

Resource selection is a complex, hierarchical decision-making process.  Most studies of 

resource selection compare landscape and habitat attributes at used locations with attributes at 

either available or unused locations using popular resource selection function (RSF) modeling 

approaches such as categorical analysis (Neu et al., 1974), discrete choice models (Cooper and 

Millspaugh, 1999, 2001), compositional analysis (Aebischer et al., 1993), or logistic regression 

(Manly et al., 2002).  In this study, we show how resource selection can be analyzed as a 

hierarchical process by formulating behaviorally and spatially-explicit Bayesian resource 

selection functions with random effects to investigate and predict vocalization and foraging 

behavior in Willow Flycatchers at individual (home range level) and population-levels. We chose 

to set our multi-level RSFs in a Bayesian framework for a number of reasons.  First, hierarchical 

relationships are easily specified in Bayesian models and given the hierarchical nature of resource 

selection, the Bayesian framework naturally lends itself well to modeling RSFs.  Second, 

Bayesian procedures also provide a straightforward way to include random effects in generalized 

linear models. Third, Bayesian inference is based on interval estimation and not on large-sample 

theory, and Bayesian inference is less sensitive to the influence of sample sizes than are 

frequentist significance tests. 

The Willow Flycatcher, Empidonax traillii, is a small, neotropical migrant that selects 

riparian habitats for breeding throughout the continental United States.  They are territorial and 

central place foragers (Orians and Pearson, 1979; Stephens and Krebs, 1986). Male flycatchers 

sing and defend territories from tall perches (McCabe, 1991).  The majority of research on the 

Willow Flycatcher has focused on male flycatchers due to their easier detectability. Research 
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indicates however that male and female flycatchers show variation in their habitat preferences for 

breeding and nest site selection (Sedgwick and Knopf, 1992) suggesting that it is critical to 

incorporate both sexes into research studies aimed at deriving population-level inference.  Willow 

Flycatchers are a riparian-habitat obligated species (Sedgwick, 2000), yet circumstantial evidence 

exists to suggest that they may rely on a diversity of habitat types to meet their resource needs 

during the breeding season. The degree to which Willow Flycatchers use non-riparian habitats 

during the breeding season remains largely unknown. By measuring resource selection as a 

function of specific behavior, we hope to gain an understanding of when and why Willow 

Flycatchers use alternative habitats.  

Our study integrates statistical modeling and GIS to estimate home ranges, visualize 

flycatcher vocalization and foraging behavior, and produce images of spatial predictions of 

flycatcher resource selection. In addition, in response to the wide-spread use of arbitrary core area 

delineators such as the 50% kernel utilization distribution, we will demonstrate the utility of our 

modeling approach for delineating behaviorally specific core areas and for identifying spatially 

segregated behaviors within the home range.  Our study‘s primary objectives are: 1) demonstrate 

the utility of modeling animal resource selection in a spatially and behaviorally explicit Bayesian 

RSF framework, 2) investigate differences in Willow Flycatcher foraging and vocalization 

resource selection between male and female flycatchers at the individual and population scale, 3) 

examine the degree of spatial segregation in foraging and vocalization behavior in the home 

ranges of Willow Flycatchers, and 4) elucidate differences in the use of various habitat types for 

foraging and vocalization. 
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2.  Methods 

2.1  Study site 

This study was conducted along a three-mile stretch of the Fish Creek drainage in Manti-

La Sal National Forest, Carbon County, Utah (Fig. 1; 39°77‘ N, 111°20‘ W).  Fish Creek is a 

perennial high elevation (~2560 m) creek that drains the Wasatch Plateau from west to east into 

Scofield reservoir and contains the highest density of Willow Flycatchers in Utah (Frank Howe, 

personal communication).  Within the floodplain, Fish Creek is composed primarily of young and 

mature riparian vegetation that is dominated by willow shrubs (Salix spp.), growing in a series of 

patches along the stream corridor.  Herbaceous vegetation, open water (creek and beaver ponds) 

and upland habitat types border the riparian patches.  Upland habitats with north facing aspects 

are composed of forests dominated by Englemann‘s spruce (Picea engelmanni), White fir (Abies 

concolor), Douglas fir (Pseudotsuga menziesii), and Quaking aspen (Populus tremuloides) 

species. Upland habitats with south facing aspects are composed of a mixture of mountain shrub 

and desert shrub steppe vegetation dominated by big sagebrush (Artemisia tridentate sp.), Utah 

serviceberry (Amelanchier utahensis), chokecherry (Prunus virginiana), mountain snowberry 

(Symphoricarpos oreophilus) and various shrubsteppe grasses (Table 2.1). 

 

2.2  Field data collection  

Data was collected over the 2003 and 2004 breeding seasons during which the population 

size of flycatchers along the five mile stretch of Fish Creek studied was stable (n ~ 50; Bakian, 

unpublished data).  From the approximately 25 territories established per year, fifteen territories 

were selected annually from which to sample flycatchers. Willow Flycatchers were trapped using 

mist-nets, and birds were captured using both passive netting and target netting techniques (Sogge 

et al., 2001).  Captured Willow Flycatchers were banded with a red-color anodized Federal bird 

band on one leg, and a uniquely, colored metal band on the opposite leg.  Age was determined by 
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examining plumage, molt patterns, and skull ossification.  Sex was determined based on the 

presence of a cloacal protuberance in males or brood patch in females, and in some cases based 

on wing chord and tail length (Pyle, 1997).  Occasionally, sex was challenging to determine and 

for these individuals, their sex was recorded as unknown. After a flycatcher was banded and 

measured, the Holohil LB-2N radio-transmitter, was attached to the lower back of the animal 

using Skin-bond ®, a medical adhesive (Paxton et al., 2003).   

 
Table 2.1. Habitat type definitions at Fish Creek, Utah. 
 

Habitat type Definition 

Mature riparian 
Stands of mature willow (Salix spp.; > 1 m tall) dominated vegetation found 
adjacent to standing water. An understory of mixed grasses and forbes is 
typically present.  Breeding habitat for flycatchers. 

Young riparian 

Stands of shrubby, mixed vegetation found adjacent to standing water.  
Typically, comprised of immature willow (Salix spp.; < 1 m tall) that may grow 
as isolated clumps, or as individual plants.  Willows may be interspersed with 
other shrub species including black twin-berry (Lonicera involucrate), choke 
cherry (Prunus virginiana), serviceberry (Amelanchier alnifolia), and various 
forbes and grasses.  Vegetation may also be interspersed with areas of bare 
ground. 

Bare ground Areas void of vegetation and comprised of bare soil, rock or sand. 

Upland forest 
Continuous stands comprised of various tree species including White Fir 
(Abies concolor), Douglas Fir (Pseudotsuga menziesii), Englemann’s Spruce 
(Picea engelmanni, and Quaking Aspen (Populus tremuloides). 

Mountain shrub 
steppe 

Various shrubs including but not limited to big sagebrush (Artemisia 
tridentate), choke cherry, gooseberry (Ribes spp.), black twin-berry, service 
berry, and rabbitbrush (Chrysothamnus spp.).  Shrubs are interspersed with 
various forbes and grasses. 

Open water Areas of flowing or standing water of measurable depth. 

 

 

2.3  Radio tracking 

Radio-tracking was conducted at least four times daily for each Willow Flycatcher, 

within four established time periods: AM early (0600-0915), AM late (0916-1230), PM early 

(1231-1545) and PM late (1546-1900).  All tracking was randomly assigned within each time 
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interval, and for the most part, the tracking efforts were evenly distributed across all four intervals 

for each bird with a goal of collecting at least 30 radio locations per bird.  Equipment used in 

tracking included R-1000 Telemetry receivers manufactured by Communications Specialists, Inc. 

and standard hand-held 3-element yagi antennas.  

We used a homing-in method (Paxton et al., 2003) to pin-point the geographical position 

of radio-tagged flycatchers, and a radio-location was established as soon as the radio-tagged 

flycatcher became visible to the tracker.  Occasionally, the technician caused the bird to move 

from its original position prior to acquiring an observation.  In such cases, the tracker estimated 

the position of the bird before it was disturbed and used this estimate as the bird‘s location.  On 

other occasions, the radio-tagged flycatcher was heard nearby but a visual confirmation was not 

possible due to thick vegetation. When this occurred, both the homing-in method and an estimate 

of the vocalization position were used to determine the position of the bird.   

Following visual confirmation of a bird‘s location, the tracker recorded geographical and 

detailed behavioral information about the bird including the bird‘s perch substrate, the bird‘s 

position in the substrate, habitat type, and the flycatcher‘s behavior. Specific behavior recorded 

included vocalization, foraging, nest building, territorial defensive, feeding nestlings or 

fledglings, and thermoregulating.  Detailed vocalization and foraging behavior recorded included 

vocalization type (song or call) and foraging type (e.g. sally or glean). The bird‘s perch height 

position in the vegetation was measured on a scale of low, medium or high.  Six habitat types 

were considered at Fish Creek: mature riparian habitat (Willow Flycatcher nesting habitat), young 

or scrubby riparian habitat, mountain shrub, upland forest, bare ground and water (Table 2.1). 

The geographic location (in UTMs) and their associated accuracy measurements of each bird 

location were recorded using a global positioning system (GPS) device (Garmin Etrex Legend H 

GPS Navigator).  Tracking was continued daily until the transmitter failed due to battery failure, 
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or the flycatcher became undetectable.  All attempts were made to relocate a flycatcher when a 

signal was lost.  

 

2.4  Landscape and home range analyses 

 We used the fixed-kernel UD with least squares cross validation for estimating individual 

flycatcher home ranges.  Kernel UD home ranges were estimated in ArcView 3.3 using the 

ANIMAL MOVEMENT extension (Hooge and Eichenlaub, 1997). We limited our estimation of 

fixed-kernel UD home ranges to individuals for which at least 30 observations were collected to 

ensure accurate home range estimation (Seaman et al., 1999). 

 A population-level estimate of the total area used by the Willow Flycatchers over the 

2003 and 2004 breeding seasons was calculated by simultaneously displaying all flycatcher home 

ranges and creating a polygon encompassing all home ranges while minimizing the inclusion of 

non-home range areas. A land cover map of Fish Creek was constructed for the landscape area 

encompassed by the ‗total area used‘ polygon with habitat types delineated into six habitat types 

(listed in Table 2.1) based on a combination of field surveys and color aerial photographic 

images.  The habitat composition of individual home ranges was determined by intersecting the 

home range polygons with the land cover map.  

 

2.5  Statistical analyses  

 

 

2.5.1  Conceptual model 

Our analytical approach used a standard logistic regression model, with a spatial random 

effect added to the logistic regression model.  This model was then set in a Bayesian hierarchical 

framework. The presence or absence of a specific behavior (e.g. vocalization or foraging) at each 

radio-telemetry location was treated as the response variable.  The analysis was conducted at the 

individual and population-level in which the presence or absence of a behavior was grouped 

across individuals.  Many of the parameters in the logistic regression models such as the 
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explanatory variable coefficients and the spatial random effect parameters were treated as 

unknown variables and were represented by distributions with pre-specified means and variances.  

A Metropolis-Hastings Markov chain Monte Carlo algorithm is used to produce distributions of 

estimates of the unknown parameters, and individual and population-level inference such as the 

use of mountain shrub habitat for foraging by female Willow Flycatchers is based on these 

distributions.  

 

Fig. 2.1. Geographical location of the Fish Creek drainage in Carbon County, Utah. 

 

2.5.2  Exploratory data analysis 

Animal resource use locations are often autocorrelated in space and time.  In many 

selection studies, spatial autocorrelation is overlooked and invalidates assumptions of RSF model 

independence and identically distributed data. In our individual-level models that investigate 
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vocalization and foraging selection behavior throughout the home range, we included a Gaussian 

process to capture the spatial variance inherent in the response and explanatory data.   

 Spatial autocorrelation was confirmed visually by plotting a variogram to individual 

flycatcher data.  Variograms display the correlation in the deviations of the observations from the 

mean response as a function of distance between locations assuming a stationary process (an 

example is shown in Fig. 2.2). Variograms were fit to logistic regression models including 

complete sets of covariates. Individual and population-level variograms were fit separately for 

vocalization and foraging behaviors.  

Exponential and spherical parametric spatial models without a nugget parameter were fit 

to the variograms using weighted least squares.  The spatial models were used to find estimates of 

the partial sill (asymptotic point on the vertical axis) and range (asymptotic point on the 

horizontal axis) parameters to apply as starting points for the spatial process models in the 

Bayesian RSFs.  The better fit spatial model (either spherical or exponential) was determined via 

eye-balling and used in the spatial process component of the hierarchical model. 

 

2.5.3  Explanatory variables 

 Three attributes were measured at each flycatcher observation location for inclusion in 

the hierarchical models:  1) categorical habitat type, 2) distance of the radio-location from the 

nest site (females) or arithmetic mean of the home range (males), and 3) vertical position of the 

bird in the vegetation.  The categorical habitat type was coded as a dummy variable.  In the 

individual-level models, the choice of reference habitat varied among models depending on the 

habitat types selected by the individual; not all habitat types available were used.  In general, an 

effort was made to examine the use of mature riparian habitat (nesting habitat) for vocalization 

and foraging behavior versus ―alternative‖ habitat types including mountain shrub, forest or 

young riparian habitats. In the individual-level models, riparian or mountain shrub habitats were 
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used as the reference habitats while riparian habitat served as the reference habitat in the 

population-level models.  

  The Euclidean distance (in meters) was measured from the observation to the nest site 

location (in the case of female flycatchers) or arithmetic mean of the home range (in the case of 

male flycatchers) to explore what influence central place fidelity may have on flycatcher foraging 

and vocalization.  Finally, association between bird habitat perch position and behavioral activity 

were explored through the addition of habitat perch position as a model covariate.  Perch position 

was coded as a dummy variable with three levels: low, medium or high.  In the individual-level 

models, typically low or high served as the reference location while high served as the reference 

position in the population-level models.  

 

2.6  Hierarchical Bayesian spatial model 

Our hierarchical spatial model is composed of three conditional model components: a 

data or likelihood model                              , a process 

model                            , and a parameter 

model                             . The likelihood model is similar to the likelihood used 

in traditional maximum-likelihood estimation and specifies the distribution of the observed data 

conditioned on both the process of interest and the data model‘s parameters.  The process model 

specifies the process of interest conditioned on its parameters, and the parameter model describes 

the distribution of the parameters in the data and process models.  By applying Bayes‘ Theorem, 

the posterior or joint distribution of the hierarchical model is obtained: 

 

                          

                                                                                             (1)      

 

Alternatively, the joint posterior distribution can be represented as 
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                                                                                                                                   (2)                       

 

where,   represents the process model, and   represents the unknown parameter vector. The 

unknown parameters in   and the data, , are linked only through the process model,  . 

 

2.6.1  Data and process models 

 Separate hierarchical models were fit to each behavior (vocalization and foraging) for 

each individual resulting in two models per animal.  One population-level model was fit to each 

behavior for a total of 2 population-level models.  The logistic link regression model serves as the 

starting framework for both the individual and population-level hierarchical models. If we 

sampled          animals observing each animal at          locations and considering 

only one behavior at a time (either foraging or vocalization), then,       indicates the presence 

of behavior at location   by animal   and       indicates the absence of that behavior. Given a 

response that is conditional upon a set of covariates, such as xij for location  , we assume the    ‘s 

(the      model component) follow a Bernoulli distribution,                  with 

                     .  The relationship between the response data vector                  , 

and the       matrix of   predictor variables,         
        

  , where each    
 is the      

vector of covariates at the  -th location, the probability of use by animal   of location   (the 

        model component) is modeled as a logistic link regression, 

 

       
      

    

        
    

,                                                                                                                     (3)         

                                
where                 is the k-dimensional vector of parameters for animal  .   
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2.6.2  Modeling spatial variation 

There are a number of ways to treat spatial variability in linear models (see Littell et al., 

2006, chapter 11; Diggle and Ribeiro, 2007).  We start by considering the form of the general 

linear mixed model: 

 

         ,                                                                                                                                   (4)        

        

                
where,   is the vector of observations,   is the matrix of explanatory variables or covariates,   is 

the vector of fixed effect parameters,   is the matrix of covariates pertaining to the random factor, 

  is the vector of random effects, and   is the vector of independent and identically distributed 

Gaussian random errors.  In the case of a generalized linear mixed model, the Gaussian model in 

(4) is adjusted to 

 

                                                                            (5)                                               

 

where we now consider the expectation of   (assumed to be generated from a distribution 

belonging to the exponential family) to be related to the mean conditional on   through a known 

link function     . The variance of the model described in (5) is determined by the form of the 

conditional likelihood.  

In our spatial generalized linear model, spatial variation is incorporated as a random 

effect.  The radio-locations are regarded in a spatial context and each flycatcher observation is 

spatially referenced (a 2-dimensional Easting-Northing position in our case) as              .  

Our response, the presence or absence of a behavior,         or 0, now depends on spatially-

associated covariates,        at location    . Our spatial generalized linear mixed model now 

takes on the form, 

 

                                                                                                                               (6)                                                            
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where      is a random effect capturing the spatial variance in the ecological process. 

Combining the logistic regression model shown in (1) with the spatial generalized linear mixed 

model displayed in (6) produces,  

 

 

        
          

 
          

             
 
          

                                                                                        (7)                                                                                 

 

  
As mentioned above, the spatial variation in the process model is captured by      in (6) 

and in (7), we find that for a collection of radio-locations, in our case, , the realization of the 

spatial process becomes            
   

 
.  We used a Gaussian process to model spatial 

variation, a popular choice for linear models due to their flexibility in characterizing spatial 

correlation (see Cressie, 1993; Banerjee et al., 2004). We modeled    as a multivariate Gaussian 

distribution,                , where                         
 

is the     spatial 

correlation matrix, and the spatial dependence is modeled by           , a spatial correlation 

function belonging to the Matérn family of spatial functions. In our individual models, we choose 

between the spherical and exponential correlation functions. The exponential model takes the 

form,                            while the spherical model follows             

 
 

 
 
    

  
  

 

 
 
    

  
 
 

 .   The effective spatial range,   , of the modeled behavior process was 

calculated as         (Finley et al., 2008) in the models using the exponential covariance 

function, and           in the models using the spherical covariance function. Two 

parameters are required to model   , the spatial decay parameter   , and the spatial effect 

variance,    . Returning to equation (2), we have now fully specified the posterior distribution of 

our individual-level hierarchical model (Table 2.2).  
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Table 2.2. Individual-level and population level Hierarchical model conditional model 
components. 
 

Component Specification 

 Individual-level  

Data model                  

Process model        
          

 
          

             
 
          

  

Parameters         
         

 Population-level  

Data model                  

Process model 
       

      
          

        
           

 

Parameters          
    

          

 

2.6.3  Population-level model 

On a population-level, the occupancy of discrete patches by flycatchers on the landscape 

introduces spatial correlation that is challenging to capture statistically. Also, this form of spatial 

covariance dominates the finer grain spatial covariance captured in the individual level models.  

For these reasons, spatial covariance was not included in the population level models.  Instead, 

individual heterogeneity is captured by the population-level models with the addition of bird-level 

random-effects parameter to the process model.   

 The process model used for the population-level inference is equation (3).  In addition, a 

probability model for the individual random effects is added to (3) to represent the sub-

populations of flycatchers randomly selected in this study from the total population of flycatchers 

at Fish Creek.  The random bird-effects parameter takes the form            where G is a 

covariance matrix,             .  Residual error, ε, is assumed to follow a normal distribution 
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where            and                The predictor coefficients,     , are modeled as 

         
    

  , for             where individual covariate estimates are calculated across all 

animals using independent normal distributions with common coefficient   
 and variance   

 . 

 

2.6.4  Prior specification 

 Prior distributions must be specified for the parameters included in the models. In the 

individual-level models, these parameters include          
         with length m+2+k per 

animal i. The actual length of   , the k-dimensional vector of parameters for animal i, varies from 

individual to individual but falls within the range      6 when including the intercept. We 

specified independent, normal distributions to the k fixed effect parameters so that 

     β   ζβ 

  , where  β
  
         and ζβ 

                    (chosen such that the mean is 

1).  Our use of a large variance parameter in    indicates our vague knowledge regarding the 

value of the prior. In the population-level model, the parameters were modeled similarly where 

         
    

  ,   
         , ζ 

               ,           ,      
       ,            and 

           . The spatial parameter,   
   received an inverse-Gamma distribution, 

ζ 
      ζ  ζ , and we chose to fix  ζ    which gave the distribution an infinite variance with a 

mean of  ζ.  The spatial decay parameter was given a uniform distribution,      ζ  ζ  where 

 ζ=3/2000 and  ζ=1. The posterior distribution for the individual-level models, given the 

specification of the conditional model components, now takes on the form: 

 

                                                                                           (8)             

                                                                          

 
where          is the likelihood of the data given the parameter set. 
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2.6.5  Posterior sampling and convergence diagnostics 
 

 We used the ‗spBayes‘ (Finley et al., 2009; http://cran.r-project.org/) and the 

MCMCglmm (Hadfield, 2009; http://cran.r-project.org/) packages in R, for model specification, 

posterior sample generation and posterior prediction. Marginal posterior distributions were 

generated from a Metropolis-Hastings Markov chain Monte Carlo algorithm following model 

specification.  The coefficients calculated from a non-hierarchical fitted logistic regression model 

served as the candidate values for the   parameters in the hierarchical models. In the individual-

level models, candidate values for the mean ( ζ  of the spatial parameter,   
   and the spatial 

decay parameter were taken as the sill and the range on the vertical and horizontal axes of the 

empirical variogram, respectively. The parameter tuning values were adjusted to maintain healthy 

acceptance rates between 23%-50% (Gelman et al., 2004).  We generated multiple independent 

chains for each model with 75,000 iterations discarding the initial 25,000 samples as burn-in.  Of 

the remaining 50,000 iterations, we thinned every 25
th
 sample, and therefore posterior 

distributions, parameter estimates and prediction are based on 2,000 iterations. Density estimate 

and trace plots of the chains were produced by the Convergence Diagnostics and Output Analysis 

for MCMC (CODA) package in R (Plummer et al., 2009). Only chains in which healthy 

acceptance rates were maintained were used for inference.  

 

2.6.6  Model selection 

We used a multi-step approach for selecting individual-level behavior models as follows.  

First, the simplest model was fit for each individual and for each behavioral response. The 

Metropolis-Hastings algorithm was then used to generate the marginal posterior distributions for 

each parameter in the model.  Following successful model convergence, distributions of the 

simulated marginal posterior distributions were inspected to ensure that marginal posterior 

distributions were sensible and congruent with the prior distributions (Fig. 2.3).   
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Fig, 2.2. Process used to observe and estimate the spatial autocorrelation present among a 
flycatcher’s rad o telemetry locat ons.  F rst, rad o-locations are projected on to aerial 
photographs (pink points) and the home range is estimated as a two-dimensional 95% utilization 
distribution (UD, black outline) using a fixed-kernel estimator (a).  The distribution of 
vocalization and foraging behavior is clearly observed when viewing their locations separately; 
in this example, foraging behavior is represented by blue points, vocalization behavior is 
represented by red points, and the absence of either behavior is represented by transparent 
points (b). Spatial autocorrelation is observed by plotting behavioral response specific 
variograms for vocalization (c) and foraging (d) where the x-axis represents distance between 
radio locations and the y-axis represents semi-variance.  
 

Next, marginal parameter distributions were used to produce images of the fitted 

response to compare with images of the observed response to look for discrepancies between the 

observed and simulated data thereby validating the model thru graphical posterior predictive 

checks (Gelman et al., 2004, section 6.4).  After visually examining the fit of the simplest models, 

additional covariates were added to the model to try to improve the fit between the observed and 
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the posterior simulated data.  Marginal posterior samples were re-simulated via the Metropolis-

Hastings algorithm, and the distribution of the posterior samples and images of the fitted response 

versus the observed response were again examined.  This process was repeated until graphical 

posterior predictive checks were optimized. In other words, the models from which posterior 

samples of the fitted response most closely resembled the observed response were selected as the 

optimal individual models (see Fig. A.1 for example). The average individual selection parameter 

estimates and the average individual selection parameter estimate standard errors were computed 

and the average individual selection parameter estimate values standard errors were estimated by   

 

 

          
 
   

 
 
   

      
                                                         (9)                                                                              

 

where   is the number of animals.   

 

 

2.7  Prediction 

After satisfactory samples of the parameter‘s posterior distributions were acquired, 

         , the presence or absence of behavior,           was predicted throughout an 

individual‘s home range, where    represents locations with known covariate values and    

represents the unknown response. For prediction purposes, we pursue a posterior predictive 

distribution with the specification: 

 

                                                                               (10)                                                        

 

where       represents a known vector of covariates at locations   .  We created evenly spaced 

point grids throughout an individual‘s home range and derived a vector of covariates associated 

with each location in the grid.  A predictive sample of use probabilities was then computed at 



28 

each grid location by composition sampling by                        for          

(refer to Finley et al., 2008).  The posterior mean and standard deviation values from the 

predictive distribution at each grid location were used to create home range habitat use 

probability maps for each individual and each behavior (see Appendix, Fig. 1 for example).  

Posterior prediction distributions were not generated for the population-level models. 

 

 

Fig. 2.3.  Marginal posterior distributions of WIFL 1 vocalization behavior model parameters: 
 ntercept, r par an, d stance, h gh, σ2, and φ. 
 

 

3.  Results 
 

 

3.1  Radio telemetry 

For the 35 Willow Flycatchers (female  = 13, male   =14, and unknown sex   =8) radio-

tagged and tracked over the 2002 and 2003 breeding seasons at Fish Creek, the total number of 

radio telemetry locations per individual ranged from 5-95 with an average of 39.5 locations/bird.  



29 
Individual home ranges were found to encompass different combinations and varying proportions 

of all six habitats (Table 2.3), with riparian and mountain shrub habitat types composing the 

majority of the home ranges. Home range size varied among individuals and the combined area of 

home ranges over the 2 years covered 63.4 hectares (Table 2.3). Male flycatcher‘s home ranges 

(mean = 2.6 ha, SD = 1.8) were slightly larger on average than female home ranges (mean = 2.2 

ha, SD =2.6), however the differences are not statistically significant [t(25)=0.430, p = .67 (two-

tailed)]. 

 

3.2  Individual-level models 

 
Forty-seven individual-level Bayesian generalized linear spatial models were formulated 

for flycatchers with sample sizes     observations/individual: 24 vocalization and 23 foraging 

models. Parameter estimates from the individual-level vocalization models show variation across 

individuals in their sign and magnitude (Fig. 2.4).  This, along with the relatively large size of the 

standard errors of the average individual selection parameter estimates (column 7, Table 2.4) 

indicates intraspecific variation in the use of habitat types and perch positions by flycatchers for 

vocalization. The distributions of the mountain shrub and low perch position parameter estimates 

indicate that the majority of flycatchers do not select mountain shrub habitat or low perch 

position for vocalization. Overall, the average value of the individual selection parameter 

estimates (β 
  

) and the median value of the parameter estimates are in concordance (Fig. 2.4 and 

Table 2.4). The exception is the low perch position variable which has a negative median value 

but an average individual value just slightly above zero (β 
  

 = 0.016).  This discrepancy does not 

impact inference because both the median and average individual low perch position values are 

essentially zero.  The average values of the individual selection parameter estimates suggest that 

across the population flycatchers select riparian (β 
  

 = 3.544) and young riparian (β 
  

 = 0.506) 

habitats and mid (β 
  

 = 3.183) and high perch (β 
  

 = 0.630) positions for vocalization relative to 
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mountain shrub habitat (β 
  

 = -1.274) and low perch position (β 
  

 = 0.016). The average 

individual selection parameter for distance indicates that the probability of vocalizing decreases 

with increasing distance from center of the home range (males) or nest site location (females), 

(β 
  

 = -0.001). Finer scale patterns emerge when resource selection is broken down by flycatcher 

sex (Fig. 2.6).  Intraspecfic variation in the use of young riparian habitat for vocalization appears 

to be driven by male‘s, but not female flycatcher‘s, selection of young riparian habitat. Both 

males and females select riparian habitat for vocalization, and female flycatchers show more 

variation in their use of low perch positions for vocalizing than males.  The average individual 

selection distance parameter in the vocalization models is positive for females (β 
  

 = 0.035) but 

negative for males (β 
  

 = -0.037).  

 
Fig. 2.4. Boxplots of individual parameter estimates for each model covariate (intercept, 
mountain shrub, riparian, young riparian, distance, low, mid and high) by behavior: vocalization 
(top panel) and foraging (bottom panel). Boxes indicate first and third quartiles with median 
shown as a line in the box.  Dashed lines extend to ±1.5 times the interquartile range from first 
and third quartiles.  Individual points represent outliers.  
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Table 2.3. Willow Flycatcher home range habitat availability (proportion of home range) and 
home range size.  
 

Willow 
Flycatcher 

Bare 
ground Forest 

Mountain 
shrub Riparian 

Open 
water 

Young 
Riparian 

Home range    
size (ha) 

1 0 0 0.004 0.863 0 0.134 0.283 

2 - - - - - - - 

3 0.000 0.000 0.468 0.502 0 0.029 0.204 

5 - - - - - - - 

6 0.027 0.034 0.089 0.656 0.029 0.166 0.560 

7 0 0 0.293 0.366 0.042 0.299 1.202 

8 0.003 0.005 0.243 0.452 0.058 0.238 3.489 

9 - - - - - - - 

10 0.000 0.090 0.192 0.523 0.028 0.166 3.164 

11 0.032 0.036 0.148 0.597 0.095 0.091 0.471 

12 0 0 0 0.560 0.058 0.382 0.979 

13 0.000 0.035 0 0.651 0.029 0.285 1.372 

14 0.020 0.253 0.282 0.246 0.037 0.161 2.424 

15 - - - - - - - 

16 0.008 0 0.246 0.517 0.026 0.203 0.775 

17 0.044 0.268 0.398 0.220 0.033 0.038 7.109 

18 0.035 0.020 0.573 0.262 0.052 0.057 3.536 

19 0 0 0.438 0.390 0.063 0.108 1.344 

20 0 0 0.502 0.327 0.078 0.093 1.769 

21 0.031 0.119 0.191 0.309 0.134 0.216 0.194 

22 0.051 0.132 0.101 0.357 0.099 0.260 1.680 

23 0.070 0.062 0.521 0.342 0 0.004 0.738 

25 - - - - - - - 

26 - - - - - - - 

27 0.000 0.033 0.375 0.342 0.055 0.196 4.246 

28 0.000 0.065 0.256 0.394 0.059 0.225 3.855 

29 - - - - - - - 

30 0.005 0.162 0.364 0.253 0.053 0.162 9.429 

31 0.010 0.022 0.423 0.311 0.029 0.205 3.020 

32 0.042 0 0.521 0.373 0.053 0.011 4.352 

33 0.050 0 0.538 0.370 0.041 0.002 3.660 

34 - - - - - - - 

35 0.054 0.000 0.661 0.124 0.002 0.159 2.565 

37 0.104 0.000 0.485 0.247 0.006 0.158 1.004 

38 - - - - - - - 

Total 0.013 0.265 0.432 0.137 0.051 0.102 63.424 
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Table 2.4.  Population-selection parameter estimates and standard errors.

Covariate β
 
  SE 

95% HPD 
interval lower 

bound 

95% HPD 
interval 
upper 
bound 

Average value of 
individual 
selection 

parameter 
estimate 

SE of average 
individual 
selection 

parameter 
estimates 

 
 Vocalization   

Intercept 0.696 0.007 0.289 1.127 -1.562 1.161 

Forest -1.634 0.021 -2.893 -0.458 NA NA 

Mountain shrub -0.677 0.006 -1.137 -0.224 -1.274 1.584 

Riparian NA NA NA NA 3.544 0.799 

Young riparian -0.531 0.006 -0.917 -0.140 0.506 1.012 

Distance NA NA NA NA -0.001 0.020 

Low -0.894 0.006 -1.251 -0.524 0.016 1.397 

Mid -0.513 0.006 -0.867 -0.161 3.183 1.900 

High NA NA NA NA 0.630 1.048 

 
 Foraging   

Intercept -1.300 0.006 -1.678 -0.944 -4.160 1.257 

Forest 1.415 0.017 0.277 2.534 NA NA 

Mountain shrub 2.121 0.007 1.663 2.567 3.389 1.027 

Riparian NA NA NA NA -0.712 1.235 

Young riparian 1.408 0.006 1.002 1.817 1.939 0.665 

Distance NA NA NA NA 0.024 0.017 

Low -0.900 0.006 -1.308 -0.484 -0.088 1.524 

Mid -0.542 0.005 -0.911 -0.169 1.826 0.944 

High NA NA NA NA 4.819 1.354 

 
3

2
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Different patterns in resource selection are inferred from the individual-level foraging 

models compared to the individual-vocalization models.  The distributions of the individual-level 

parameter estimates indicate that many flycatchers select mountain shrub and high perch 

positions for foraging (Fig. 2.4). The distribution of riparian and young riparian habitat and low 

and mid perch position parameter estimates around zero as well as the relatively large magnitudes 

of the standard errors of the average individual selection parameter estimates (column 7, Table 

2.4) suggests intraspecific variation in the use of these variables for foraging.  The values of the 

median and average individual-selection parameters agree across variables (Fig. 2.4 and Table 

2.5). The average values of the individual selection parameter estimates suggest that across the 

population, flycatchers select mountain shrub (β 
  

 = 3.389) and young riparian habitat (β 
  

 = 

1.939) and mid (β 
  

 = 1.826) and high perch (β 
  

 = 4.819) positions for foraging relative to 

riparian habitat (β 
  

 = -0.712) and low perch position (β 
  

 = -0.088) variables. The average 

individual selection parameter for distance indicates that the probability of foraging increases 

with increasing distance from the center of the home range (males) or nest site (females), (β 
  

 = 

0.024).  Differences in selection patterns for foraging as a function of flycatcher sex also emerge.  

Both males and females show intraspecific variation in the selection of mid perch position for 

foraging while more females select low perch positions for foraging than males (Fig. 2.7).  

Females show greater intraspecific variation in selecting riparian habitat for foraging while males 

show greater intraspecific variation in selecting young riparian habitat for foraging. The average 

individual selection distance parameter for both males (β 
  

= 0.028) and females (β 
  

 = 0.021) is 

positive.  

Summaries of the spatial parameter estimates are displayed in Table 2.5 and Figure 2.5.  

The average individual parameter estimates for the spatial decay parameter,  , are similar for 

vocalization and foraging (0.371 and 0.319, respectively).  These estimates indicate that the 
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effective ranges of spatial dependency are 13.113m and 14.898m for vocalization and foraging, 

respectively.  There is individual-level variation in the spatial dependency parameter (Fig. 2.5) 

with maximum and minimum spatial dependency estimates of 45.43m and 4.63m for vocalization 

and 69.53m and 5.90m for foraging.  The average individual spatial dependency for vocalization 

and foraging by sex is 13.877m and 20.180m, respectively, for males and 12.349 and 10.056, 

respectively, for females. 

 

Fig. 2.5. Boxplots of individual parameter estimates for spatial model parameters (σ2, φ, 3/ φ) by 
behavior: vocalization (top panel) and foraging (bottom panel).  Boxes indicate first and third 
quartiles with median shown as a line in the box. Dashed lines extend to ±1.5 times the 
interquartile range from first and third quartiles.  Individual points represent outliers.  
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3.3  Population-level models 

  One global population-level model was selected and fit to both the vocalization and 

foraging data.  Riparian habitat and high vegetation perch height position were used as the 

reference types in the global models; the distance covariate was not included in the population-

level models due to a lack of a central location on a population-level (Table 2.5).   

The population-selection estimates (β
 
 
 column 2, Table 2.4) for the covariates in the 

vocalization model show that alternative habitat types including forest (β
 
  = -1.634), mountain 

shrub (β
 
  = -0.677) and young riparian (β

 
  = -0.531) habitats are selected less for vocalization by 

flycatchers relative to riparian habitat, and low (β
 
  = -0.900) and mid (β

 
  = -0.513) perch 

positions are selected less by flycatchers relative to the high perch position. The 95% credible 

intervals for the forest, mountain shrub, young riparian, low, mid and high covariates do not 

overlap 0 therefore we can infer that these covariates significantly contributed to the population-

level selection model fit.  

 
Table 2.5. Spatial covariate average individual-selection parameter estimates and standard 
errors. 
 

Spatial Parameter 
Average value of individual 

selection parameter estimate 

SE of average individual 
selection parameter 

estimates 

 
Vocalization  

σ2 7.384 1.681 

φ 0.371 0.040 

3/φ 13.113 2.469 

 
Foraging  

σ2 11.755 2.624 

φ 0.319 0.034 

3/φ 14.898 3.289 
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 The population-selection estimates (β

 
 
 column 2, Table 2.4) for the covariates in the 

foraging model show that multiple habitat types are selected by flycatchers for foraging and, 

more specifically, alternative habitat types including forest (β
 
  = 1.415), mountain shrub (β

 
  = 

2.121) and young riparian (β
 
  = 1.408 ) habitats are selected by flycatchers for foraging relative to 

riparian habitat. Also, low (β
 
  = -0.900) and mid (β

 
  = -0.542) perch positions are selected less by 

flycatchers than the high position for foraging. The 95% credible intervals for the forest, 

mountain shrub, young riparian, low, mid and high covariates do not overlap 0 therefore we infer 

that these covariates significantly contributed to the population model‘s fit.  

The population-selection covariate estimates (β
 
 
 column 2, Table 2.4) and the average 

individual selection covariate estimates (β 
  

 column 6, Table 2.4) show high accordance overall 

with some disagreement occurring in coefficient magnitude and sign. More specifically, in the 

vocalization and foraging model, the population-level coefficient estimate for selection of mid 

perch position is negative (β
 
 
 = -0.513 and -0.542, respectively) while the average individual 

selection coefficient is positive   β 
  

 = 3.183 and 1.826, respectively). Some discrepancy in 

magnitude and sign between  β 
  

 and β
 
 
 is not surprising given variation in the reference variables 

used in the individual-level models and differences in model formulations between the individual-

level models and the population-level models. 

Mean and standard deviation predicted vocalization values vary from 0.16-0.98 and 0.09-

0.5 respectively, and mean and standard deviation predicted foraging values vary from 0.02-0.98 

and 0.12-0.50 respectively (prediction image examples are presented in the Appendix, Fig. A.2).   

 
4.  Discussion 

The Bayesian modeling approach presented here is mechanistic based, and provides a 

powerful approach to analyzing spatially and behaviorally explicit animal resource selection data. 

In our investigation, we related ecological pattern with process and explored Willow Flycatcher 



37 
resource selection to examine not only where vocalization and foraging behavior occurs but why.  

In the process, we produced continuous two-dimensional GIS surfaces depicting a flycatcher‘s 

probability of using space for vocalization or foraging throughout its home range.  These 

selection surfaces can be interpreted as flycatcher behavioral landscapes. In addition, although 

Willow Flycatchers are a relatively well studied species, this is the first study to examine spatially 

and behaviorally explicit resource selection in the species.  

 

 
Fig. 2.6. Boxplots of individual parameter vocalization estimates (intercept, mountain shrub, 
riparian, young riparian, distance, low, mid, high, σ2, φ, 3/φ) for male and female Willow 
Flycatchers.  Boxes indicate first and third quartiles with median shown as a line in the box. 
Dashed lines extend to ±1.5 times the interquartile range from first and third quartiles.  
Individual points represent outliers. 
 

 

4.1  Individual and population-level inference 

 In this study, we observed considerable intraspecific variation in vocalization and 

foraging resource selection in Willow Flycatchers, and focused on differences in resource 
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selection between and among male and female Willow Flycatchers. Intrapopulation differences in 

habitat selection among male and female Willow Flycatchers were first identified by Sedgwick 

and Knopf (1992).  They found substantial differences between song perch sites used by males 

and nest sites used by females and speculated that the independent selection of habitats by male 

and female flycatchers during the breeding season were responsible for these differences.  Our 

study indicates that selection diversity between male and female flycatchers extend to the 

selection of resources for vocalization and foraging.  While both male and female flycatchers 

appeared to select nesting habitat for vocalizing over non-nesting habitats, male flycatchers 

experienced greater variation in their selection of habitat types for vocalizing than female 

flycatchers.  Conversely, female flycatchers showed more variation in their selection of habitat 

position for vocalization.  

The images of observed and predicted vocalization behaviors further elucidate 

differences between male and female flycatchers in their use of space for vocalizing. Male 

vocalization behavior commonly occurred in tight clusters in the central area of the home range.  

These spatial vocalization clusters correspond to the male flycatcher‘s territory or the area of its 

home range actively defended against conspecifics which likely contains the majority of the 

individual‘s song perches.  Images of female home range vocalization behavior do not show the 

same tendencies to vocalize in tight clusters in the center of their home ranges.  This pattern finds 

additional support in the average individual-level distance coefficient which is positive for female 

flycatchers and negative for male flycatchers.  This indicates that, in males, the probability of 

vocalizing decreases with increasing distance from the center of the home range.  The opposite 

relationship holds true for females in which the probability of vocalizing increases with 

increasing distance from the nest site.  
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Fig. 2.7. Boxplots of individual parameter foraging estimates (intercept, mountain shrub, 
riparian, young riparian, distance, low, mid, high, σ2, φ, 3/φ) for male and female Willow 
Flycatchers.  Boxes indicate first and third quartiles with median shown as a line in the box. 
Dashed lines extend to ±1.5 times the interquartile range from first and third quartiles.  
Individual points represent outliers.  

 

We posit that discrepancies in the role of vocalization in male and female flycatchers can 

explain the different patterns we observed. Male vocalization commonly occurs in the form of 

song and is used to establish territory boundaries and attract mates, and male flycatchers typically 

sing from tall, exposed perches (Sedgwick, 2000). Conversely, female vocalization commonly 

occurs in the form of a call and is used to maintain social contact with their male mates and as 

distress signals.  To avoid attracting the attention of potential predators during the breeding 

season, females vocalize from various vegetation positions and are more likely to call at distance 

away from their nest sites.   
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We also identified differences between male and females in their foraging behavior.  We 

found evidence that males select higher positions for foraging than females.  Akin to our 

explanation of their vocalization behavior, male‘s selection of higher habitat positions for 

foraging may be related to visibility and their requirement to be conspicuous during the breeding 

season. Alternatively, perch height foraging differences may be the outcome of a resource 

partitioning or reduced foraging competition mechanism (MacArthur, 1958). Both male and 

female flycatchers appear to use multiple habitat types for foraging with the models suggesting 

that they select non-nesting habitats such as mountain shrub and young riparian habitats for 

foraging. The probability of foraging increased with increasing distance away from either the 

center of the home range or the nest site in male and female flycatchers, respectively.  

The identification and quantification of intraspecific variation in wildlife species such as 

the Willow Flycatcher is critical for a number of reasons. First, there is growing empirical 

evidence that males and females of a species interact with and respond to the environment in 

distinct ways. However, in the majority of bird census and behavioral studies, males are the focal 

subject as they tend to be more conspicuous.  If males and females act independently of one 

another and have different habitat and resource requirements during the breeding season, then the 

inference derived from male-centric studies and applied to management and conservation plans 

that affect the entire species is done so erroneously. We are concerned that singing males have 

served as the focus of the majority of Willow Flycatcher breeding season habitat and 

vocalization-based census studies and that the resource needs of female flycatchers have been 

generally disregarded.  In addition, our study suggests that there is considerable variation in the 

use of habitats for foraging including the use of non-nesting habitats. Since male flycatchers 

primarily sing in riparian habitat, conservation plans derived from research focused on singing 

male flycatchers might mistakenly conclude that riparian habitat constitutes the only critical 

flycatcher habitat.  Critical habitats for flycatchers during the breeding season may also include 
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non-nesting habitats such as mountain shrub and young riparian habitats for foraging in addition 

to riparian habitat for nesting.  Next, the diversity in resource selection measured in this study 

suggests that researchers need to be careful in selecting appropriate sample sizes for future 

Willow Flycatcher studies.  Understanding the variation in resource selection among individuals 

is vital given the potential link between intraspecific variation, population-level genetic diversity 

(Smith et al., 2001) and the potential for animal populations to respond to current and future 

environmental change.  

We infer trends in resource selection at the population-level based on the coefficients 

derived from the population-level models and the average coefficient values of the individual-

level models. In general, inference based on the population-level and average individual-level 

coefficients are congruent. On a population-level, the flycatchers at Fish Creek showed a 

tendency to select riparian habitats over other habitat types for vocalization, but they were more 

diverse in their use of a variety of habitats for foraging.  More specifically, the population-level 

coefficients indicate that flycatchers select mountain shrub habitat relative to riparian and other 

habitats for foraging.  On a population-level, the probability of vocalizing decreased with 

increasing distance from the center of the home range/nest site and the probability of foraging 

increased with increasing distance from the center of the home range/nest site. 

The use of non-nesting habitats by Willow Flycatchers is evidence that flycatchers may 

depend upon a more diverse landscape to meet their foraging requirements during the breeding 

season. Similar patterns suggesting habitat complementation and/or supplementation (Dunning, et 

al., 1992) have been observed in other species (e.g. Mamo and Bolen, 1999; Tubelis et al., 2004).  

We posit three reasons why habitat complementation or supplementation may be important to 

flycatchers at Fish Creek: 1) the availability of food resources may differ in nesting versus non-

nesting habitats 2) ease of foraging by flycatchers may vary in nesting versus non-breeding 
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habitats, and 3) flycatchers may travel distances from their nest sites to forage to avoid attracting 

predators.   

 

4.2  Home range and core area implications 

 

The images of fitted and predicted vocalization and foraging resource selection provide 

insight into the spatial aspects of Willow Flycatcher behavior at Fish Creek.  Foraging and 

vocalizing appear as spatially segregated and clustered behavior in many of the images.  Fig. A.3 

in the Appendix provides an example of an image of fitted vocalization and foraging behavior 

and the spatial patterns observed in these images confirm the models‘ results that resource 

selection is not randomly distributed within the home range.  The spatially segregated pattern of 

space use depicted in the images suggests the existence of two distinct core areas in this 

individual‘s home range: one used for foraging and one used for vocalization. The parameters in 

the spatial process model indicate that foraging behavior has a larger effective spatial range than 

vocalization behavior which implies that foraging core areas are expected to be larger than 

vocalization core areas.   

We feel that these images can be used to inform our delineation of home range core areas 

while also providing a more detailed understanding of flycatcher space use behavior.  Many 

studies rely on an arbitrary designation of the core area such as the 50% kernel UD.  We argue 

that the delineation of core areas should not be arbitrary and that a more meaningful core area 

concept is possible.  This could be accomplished by creating images of the fitted probability of a 

behavior within the home range and identifying the area of the home range with the highest 

probability of that behavior. Once the core area has been determined, the environmental attributes 

associated with that region can be identified and compared with the environmental factors 

comprising the remainder of the home range surrounding the core areas.   
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4.3  Advantage of the Bayesian framework 

 The Bayesian approach provides a rigorous framework for modeling animal resource 

selection.  In this study, we formulated resource selection functions as defined by Manly et al. 

(2002) using hierarchical generalized linear mixed models. The Bayesian approach provides a 

number of advantages over traditional resource selection modeling approaches. First, the 

Bayesian framework is flexible and general enough to handle complex problems, and naturally 

lends itself well to modeling dependent and independent hierarchical relationships among 

parameters. In animal resource selection, causal relationships are hierarchical, and dependency 

between the data and the underlying ecological process is intrinsic.  Classical generalized linear 

mixed models can handle hierarchical relationships however model convergence grows 

increasingly challenging with increasing complexity. Samples of the posterior distribution are 

derived from conditional probability model statements which is fairly straightforward using 

random walk MCMC algorithms.   

 In classical modeling approaches, X is treated as a constant and β as fixed but unknown. 

In our Bayesian model, the covariates, parameters and sources of uncertainty are specified using 

probability statements; we argue that this is a more natural way to think about the factors that 

influence animal resource selection. For example, in the population-level model, intraspecific 

uncertainty in vocalization and foraging selection was modeled through the bird-level parameter, 

         
    

  .  Additional sources of uncertainty in our models include the effect of sex or age 

on resource selection. We did not formulate our models to include sex or age effects however the 

next generation of flycatcher resource selection population models could feasibly include these 

additional parameters using prior distributions informed by this and other flycatcher resource 

studies. 

In resource selection studies that compare resource use with availability, the estimate of 

resource availability is subjective (Erickson et al., 2001; Jones, 2001). In addition, availability is 
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often assumed to be constant and known although this is rarely the case (Johnson, 1980; Arthur et 

al., 1996), and researchers often measure availability at temporal and spatial scales congruent 

with the study and not at scales biologically relevant to the organism (Aebischer et al., 1993; 

Gates and Evans, 1998). Further, the method used to measure resource availability can have 

drastic impacts on the study‘s inference concerning resource selection (Johnson, 1980; Porter and 

Church, 1987).  In nature, resource availability undergoes constant fluctuations that may be better 

represented as a probabilistic function in a Bayesian framework than a constant and known 

quantity.  

 

4.4  Alternative modeling approaches 

A number of other modeling approaches provide alternative means of analyzing the 

relationship among behavior, resource selection and space use including discrete choice models 

(McCracken et al., 1998, Cooper and Millspaugh, 1999, 2001) and resource utilization functions 

(Marzluff et al., 2001, 2004).  Both approaches are easily implemented in a Bayesian framework 

(e.g. Thomas et al., 2006). Discrete choice models analyze resource selection by measuring the 

satisfaction acquired by selecting among resources. Their strength lies in their capacity to support 

fluctuations in resource availability and utility which may better reflect natural situations. 

Thomas et al. (2006) introduced a Bayesian random effects discrete-choice model for resource 

selection and applied it to the analysis of caribou resource selection.  Also, discrete-choice 

models can support non-continuous response data structures such as binary or count responses.  

Resource utilization functions use multiple regression techniques to associate a probabilistic 

measure of use, as defined by the utilization distribution, with a set of resource variables.  In the 

context of a behavioral analysis, a Bayesian behavioral RUF would require the calculation of 

behaviorally specific UDs which would then be overlaid on resource maps.  The RUF approach 

uses a continuous measure of probabilistic behavioral use as the response which fits naturally 

with the Bayesian way of thinking.  
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4.5  Model limitations and future directions 

Only ecologically relevant independent variables were included in the formulation of our 

Bayesian resource selection functions. However, other ecologically relevant variables exist that 

may influence flycatcher foraging and vocalizing behavior. Model performance is expected to 

improve with the inclusion of additional ecologically relevant covariates.  Further, the Bayesian 

framework enables the inclusion of information acquired from other Willow Flycatcher studies 

and our current models could be updated to include information from previous and future studies.  

As new models are formulated through the inclusion of new information and additional 

parameters, model comparison and selection can be conducted using deviance information 

criterion (DIC), the Bayesian equivalent of Akaike Information Criterion (AIC). The models we 

have currently formulated do not provide the final word in Willow Flycatcher vocalization and 

foraging behavior at Fish Creek and should be amended as more information becomes available.   

The use of the posterior distribution for producing a posterior predictive distribution has 

been introduced here.  The predictive power of the current set of models outside of Fish Creek is 

unknown, and due to the small sample sizes of our data, model validation was conducted by 

through visual inspection. In the future, the models should be validated using subsets of the 

current Fish Creek flycatcher dataset or using alternative Willow Flycatcher datasets.  
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CHAPTER 3 

THE CONTRIBUTION OF AQUATIC AND TERRESTRIAL INSECTS TO THE DIET OF 

THE WILLOW FLYCATCHER REVEALED BY CARBON AND NITROGEN STABLE 

ISOTOPES AND FECAL SAMPLE DISSECTION 

 

ABSTRACT 

 

Willow Flycatchers are an insectivorous, riparian obligated nesting species.  Aquatic 

insects may be an essential component of the Willow Flycatcher diet during the breeding season.  

We investigated the contribution of aquatic and terrestrial insects to the diet of adult and nestling 

Willow Flycatchers over the course of two breeding seasons at Fish Creek, Utah using 
13

C and 

15
N stable isotopes and fecal sample analysis.  Stable isotope analysis detected differences in δ

13
C 

but not δ
15

N signatures between aquatic and terrestrial insects at Fish Creek. The terrestrial insect 

isotope signature was more enriched in δ
13

C than the aquatic insect isotope signature. Aquatic 

insects were found to comprise approximately 1/3 of the diet of adult Willow Flycatchers and 

13% of the diet of hatch year birds. Significant differences were found in δ
13

C between adult and 

hatch year flycatcher feathers and hatch year flycatcher feathers were more depleted in 
13

C than 

adult feathers.  Hymenoptera and coleoptera were the most abundant and frequently occurring 

arthropod orders in the fecal samples.  Our study indicates that aquatic insects are an important 

component of the diet of the Willow Flycatcher at Fish Creek.  In addition, adult flycatchers were 

found to consume a different diet to that which they feed their nestlings at Fish Creek and we 

discuss potential reasons for this pattern.  

 

Prey subsidies (sensu Polis et al. 1997) move from more to less productive habitats, and 

can provide essential energy for animal consumers inhabiting areas of low productivity 

(Bustamante et al. 1995, Polis and Hurd 1996). Many such resource exchanges have been 
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identified in the zone where streams and terrestrial riparian habitats intersect.  One such example, 

the movement of terrestrial insects and leaf fall from the terrestrial to the aquatic environment, 

has long been recognized as an important source of energy to fish in aquatic environments 

(Cummins et al. 1973, Vannote et al. 1980, Mason and MacDonald 1982). Less focus has been 

directed on the opposite flow of energy from the aquatic to the terrestrial environment.  Yet, more 

and more evidence points to the importance of aquatic derived food resources to riparian 

consumers including spiders (Polis and Hurd, 1995, Sanzone et al. 2003, Kato et al. 2003), lizards 

(Sabo and Power 2002a,b), birds (Gray 1989, 1993; Nakano and Murakami 2001; Murakami and 

Nakano 2002), and mammals (Strapp and Polis 2003, Fukui et al. 2006). 

The flow of aquatic insect subsidies into adjacent upland habitats may be especially 

important in arid and semi-arid regions. For example, in Jackson and Fisher‗s (1986) seminal work, 

they observed that 97% of the insects originating in a Sonoran desert stream were exported to 

terrestrial predators within the riparian food web.   In the western United States, riparian habitats 

often support higher densities and greater diversities of animal consumers than adjacent upland 

habitats (Stamp 1978, Jackson and Fisher 1986, Sanzone et al. 2003). This trend may be partly due 

to the emergence of aquatic insects which compliment terrestrial arthropod production thereby 

expanding the food base available to terrestrial predators.   

Although most studies investigating the contribution of food subsidies to the diets of birds 

have relied on observation of foraging events and identification of individual insect prey items (e.g. 

Gray 1993, Nakano and Murakami 2001), stable isotopes have been used to measure energy flows 

from aquatic systems to consumers in riparian habitats such as spiders (Sanzone et al. 2003, 

Akamatsu et al. 2004, Paetzold et al. 2005), and beetles and ants (Paetzold et al. 2005).  The natural 

abundances of isotope ratios such as carbon (C) and nitrogen (N) have been used to trace the dietary 

origin of assimilated energy for various passerine bird species residing in tropical rain forests 

(Herrera et al. 2003), terrestrial deserts (Wolf and del Rio 2003), and marine (Sabat and Martinez 
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del Rio 2005, Sabat et al. 2006) systems but has yet to be used, to our knowledge, to track energy 

assimilation in birds in temperate riparian systems.  

In this study, we investigate the contribution of aquatic versus terrestrial insects to the diet 

of the Willow Flycatcher, Empidonax traillii adastus, using carbon (δ
13
C) and nitrogen (δ

15
N) 

stable isotope values of body feathers from adult and hatch year flycatchers.  The Willow 

Flycatcher is a neotropical migrant that breeds in riparian areas throughout the continental United 

States, and requires riparian habitats bordering open water for nest site selection.  In the 

intermountain west of the United States, riparian habitats used by Willow Flycatchers are found 

largely in arid or semi-arid regions. Insects immigrating into the riparian zone from adjacent aquatic 

habitats may therefore be an essential component of the Willow Flycatcher diet.   

Previous work has alluded to the reliance of Willow Flycatchers breeding in non-native, 

salt cedar dominated habitats on prey subsidies derived from native habitats. Nesting habitat of the 

Southwestern Willow Flycatcher (E. t. extimus), historically dominated by willow (Salix spp.) and 

cottonwood (Populus spp.), has largely been replaced by stands of the exotic salt cedar in the 

Southwestern U.S.  Studies have found that although salt cedar (Tamarix spp.) dominated riparian 

habitats are used successfully  for nesting,  insect prey production in exotic habitats may be 

insufficient to support breeding flycatchers (DeLoach et al. 2000, DeLay et al. 2002, Wiesenborn 

and Heydon 2007).  Other studies have identified few differences in the Willow Flycatcher diet as a 

function of native versus non-native habitat and hence concluded that Willow Flycatchers are 

generalist foragers (Durst et al. 2008). A common pattern across all previous Willow Flycatcher 

diet studies is that adult Willow Flycatchers consume a distinctive diet from the one they feed to 

their nestlings.  Conversely, some studies have identified differences in diet between male and 

female adult Willow Flycatchers (Drost et al. 2003) while others have not (Durst et al. 2008). 

Hence, some debate still remains as to much of a generalist versus specialist forager the Willow 
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Flycatcher actually is. In addition, it is unknown if diet patterns identified in E.t. extimus are 

common to other subspecies.   

In this paper, we investigate energy movement in the form of prey subsidies from the 

aquatic to the terrestrial environment by measuring Willow Flycatcher‘s use of aquatic versus 

terrestrial insects.  We use stable isotopes to establish distinct carbon (δ
13
C) and nitrogen (δ

15
N) 

signatures for the aquatic and terrestrial environments.  In addition, fecal samples were collected 

opportunistically from adult and nestling flycatchers. We conduct a fecal sample analysis to 

corroborate findings from our stable isotope analysis and to compare the diet of the Willow 

Flycatchers in this study with the diets of Willow Flycatchers from other studies. Our three primary 

objectives are to: 1) determine the ratio of aquatic versus terrestrial insects utilized by Willow 

Flycatchers, 2) investigate differences in flycatcher diet as a function of sex and age, and 3) 

compare and contrast the diet of Willow Flycatchers from Fish Creek with the diet of flycatchers 

from other locations to ascertain the use of aquatic insects by Willow Flycatchers across studies.  

 

Methods 

 

 

Field site.-This study was conducted along a three- mile stretch of Fish Creek located east 

of the inflow to Scofield Reservoir in the Manti-La Sal National Forest in north central, Utah 

(39°77‘ N, 111°20‘ W) during the 2003-2005 breeding season (late May-early August).  The Fish 

Creek drainage is composed of a variety of habitats including mature and young riparian habitat, 

mountain shrub steppe, upland forest, open water and bare ground. Mature and young riparian 

habitats are both composed primarily of willow (Salix spp.) differing in the ages and heights of the 

willow canopy.  We classified areas composed of willows < 50% canopy cover and <1 meter height 

as young riparian habitat. At Fish Creek, mature riparian habitat is comprised of willow dominated 

vegetation with ≥ 50% canopy cover and occurs in discrete patches typically separated by areas of 

open water, bare ground, or young riparian habitat.  Mountain shrub steppe habitat at Fish Creek is 
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found on south facing aspects and contains a diverse community of native and introduced grasses, 

forbes including yarrow and larkspur, and shrubs such as big sagebrush (Artemisia tridentate sp.), 

Utah serviceberry (Amelanchier utahensis), chokecherry (Prunus virginiana), and mountain 

snowberry (Symphoricarpos oreophilus). North facing aspects support mixed-conifer and aspen 

forests dominated by Englemann‘s spruce (Picea engelmanni), White fir (Abies concolor), Douglas 

fir (Pseudotsuga menziesii), and Quaking aspen (Populus tremuloides) species.    

Stable isotopes.-Feather samples were collected opportunistically from May 26-August 

15 during the banding process over the 2004 and 2005 breeding seasons. While the bird was in 

hand, we pulled approximately ten lower breast area body feathers.  Studies of molting patterns 

have found that Willow Flycatchers molt their flight feathers on their wintering grounds (Pyle 

1997) however there is considerable variation in the timing of their definitive basic body molt 

which can occur any time from August thru November. At Fish Creek, we observed body molt in 

territorial adults starting in late July/early August.  For this reason, we used adult body feathers 

for stable isotope analysis rather than tail feathers since the latter reflects flycatcher diet on their 

wintering grounds. We limited our sampling of feathers in 2004 from Willow Flycatchers known 

to breed at Fish Creek in 2003. Body feathers were sampled from nestlings starting at ten days of 

age to minimize the amount of feather sheath on feather samples. Feathers were selected over 

other body tissues such as blood or claw to minimize the stress of the sampling procedure on the 

birds, and because there is a wider breath of published material concerning feather than claw 

stable isotope analyses.  

Insect sampling was conducted in 2004 and 2005 at Fish Creek using Malaise traps.  Ten 

malaise traps were placed along Fish Creek in a variety of habitats to capture the diversity of 

insect species present.  Malaise traps were checked and emptied once per week, and samples were 

stored in 70% ethanol.  Arthropods for stable isotope analysis were randomly selected from 

malaise trap samples across the breeding season so that the entire breeding season was evenly 
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sampled.  We randomly selected approximately 1000 insects from Malaise samples and identified 

them to the lowest taxonomic level possible. In addition, insects were categorized as either 

aquatic or terrestrial based on life cycle.  This categorization was not perfect due to variation in 

the lifecycle of aquatic and semi-aquatic insects.  We made every attempt possible to only select 

those insects that could be considered terrestrial or aquatic obligates to use in stable isotope 

analysis for determining aquatic and terrestrial insect stable isotope signatures.  We obtained 

fewer obligate aquatic insects from our Malaise traps than obligate terrestrial insects and 

therefore included all sampled aquatic adult insects in the stable isotope analysis. We randomly 

selected terrestrial insects to include in our stable isotope analysis from the total number of 

terrestrial insects identified from our malaise samples.  

 Feathers and insects were cleaned of dirt and surface oils using repeated washings of a 

2:1 chloroform:methanol solution and then air-dried for 24 hours in a fume hood.  Previous 

studies have found that storing arthropod samples in ethanol has little impact on 
15

N and 
13

C 

values (Sarakinos et al. 2002, Syväranta et al. 2008). Nitrogen and carbon isotopes in feather and 

insect samples were analyzed via continuous-flow isotope ratio mass spectrometry by the Utah 

State University Isotope laboratory. A 0.1-0.2 mg sample of feather was encapsulated in tin and 

analyzed with a Europa Scientific SL-2020 system.   Analytical precision over all sample runs 

was better than 0.1‰ for both 
15

N and 
13
C. Our stable isotope results are presented in δ notation 

(δ
15
N and δ

13
C) as the deviation from parts per thousand (‰).  

 Within trophic group differences in δ
15
N and δ

13
C signatures (e.g. aquatic versus 

terrestrial insects, and adult male versus adult female versus nestling flycatchers) were examined 

using analysis of variance and Welch‘s t-tests assuming unequal variances.  All statistical tests 

were conducted in program R (R Development Core Team 2010). We used a two-source 

Bayesian mixing model (Parnell and Jackson 2010) to determine the relative contribution of 

aquatic and terrestrial insects to the flycatcher diet over the 2004 and 2005 breeding seasons.  In 
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contrast to traditional mixing models, Parnell and Jackson‘s (2010) model allows for variation in 

isotopic discrimination between prey items and consumer which more accurately reflects changes 

in stable isotope ratios across trophic levels. The prior distribution of the proportion of aquatic 

and terrestrial insects contributed to the flycatcher diet was assumed to follow a Dirichlet 

distribution.  Other sources of variation in the Bayesian mixing model include the isotopic value 

of prey items, the isotopic fractionation value between prey source and consumer and an overall 

residual error term received normal distributions as priors (see Parnell and Jackson 2010). The 

model also includes a measure of elemental concentration of carbon in prey sources that was 

acquired via mass spectrometry. 

Laboratory studies of isotopic discrimination between prey source and avian consumers 

have found that isotopic discrimination values are higher than traditionally assumed (Pearson et 

al. 2003, Hobson and Bairlein 2003). Negligible δ
13

C discrimination factors were historically 

assumed along the lines of 0‰ to 1‰.  In their study of carbon isotope fractionation in Yellow-

rumped Warblers, Pearson et al. (2003) observed δ
13

C changes of 1.9 to 4.3‰ ± 0.1 depending on 

tissue when Warblers were fed a diet comprised of 97% mealworms.  Hobson and Bairlein (2003) 

measured δ
13
C discrimination factors of +2.7‰ in Garden Warblers fed a diet of mealworms.   

We used a δ
13

C discrimination factor of 2.0 ± 0.1 between insect prey and flycatcher feathers in 

our Bayesian mixing-models based on these study‘s findings. This fractionation value is on the 

lower end of the ranges from the studies of Pearson et al. (2003) and Hobson and Bairlein (2003) 

because we assume the flycatcher diet is more heterogeneous than the mealworm diet fed to the 

study animals.  

Diet analysis.-Fecal samples were obtained opportunistically from flycatchers during 

mist-netting and banding throughout the 2003, 2004, and 2005 breeding seasons from 

approximately May 26-August 15.  Willow Flycatchers were randomly selected for capture and 

radio tracking following territory establishment (n ~ 50).  Birds were captured using target 
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(Sogge et al. 2001) and passive mist-netting techniques. Following capture, birds were sexed and 

weighed, and banded with a red anodized Federal bird band on one leg and an individualized 

color aluminum band on the other leg. Flycatchers would often deposit fecal samples either in 

bird banding bags or on the hand of the bander.  Nestling fecal samples were obtained from 

nestlings aged 7-10 days when nestlings were banded with a red anodized Federal bird band on 

their right leg.  

Fecal sample dissection has been used in Willow Flycatcher studies to reconstruct diet 

(Wiesenborn and Heydon 2007, Durst et al. 2008). The collection of fecal samples is a less 

invasive technique for sampling diet than using emetics for regurgitation of stomach contents. 

Studies have found strong taxonomic correlation between prey items identified through fecal 

sample dissection and stomach regurgitation. Some bias may be introduced in diet reconstruction 

with fecal samples due to the under-detection of soft bodied insects (Ralph et al. 1985, Jenni et al. 

1990).  In addition, stomach regurgitation samples have been found to contain a larger number of 

prey items on average per sample than fecal samples suggesting that a larger number of fecal 

samples than regurgitation samples must be acquired for accurate diet reconstruction (Poulin and 

Lefebvre 1995, Carlisle and Holberton 2006).   

 Fecal samples were stored individually in 70% ethanol in 10 ml vials.  We used a Leica 

MZ75 with the addition of a Lumina dual light source and a Jenoptik 3.3MP Cooled CCD 

Firewire Color digital camera with ProgRes Capture Pro 2.5 and Auto-Montage to create 3D 

photographs of arthropod fragments for analyzing and identifying sample components.  

References used to assist in identification included Burger et al. (1999) as well as professional 

entomologist expertise.  Insects were identified to as fine of a taxonomic scale as possible but 

given the variation in the scale of taxonomic identification among arthropod components, 

statistical and descriptive analysis was conducted at the order-level.  Individual insects per sample 

were identified by using distinct insect characteristics such as antennae, paired fangs, a set of 



57 
wings, mandibles, or head capsules.  All fecal sample sorting and identification was conducted by 

a single technician with unlabeled samples.   

 Fecal samples were separated into two categories: adult and nestlings, but combined 

across years and across sexes due to small samples sizes.  Flycatcher diet was reconstructed by 

calculating the abundance, frequency and occurrence of the nine major prey types by flycatcher 

age group. Prey type frequency was quantified as the total number of items of prey type   in 

sample   divided by the total number of prey items in sample  . Occurrence was defined as the 

proportion of all fecal samples containing prey type   (Rosenberg and Cooper 1990, Durst et al. 

2008).  Frequency measures proportional abundance of prey type   while occurrence is a 

measure of the incidence of prey type   across all fecal samples.  In combination, frequency and 

occurrence provides a balanced measure of the diet composition of the sampled population during 

the sampling period (Durst et al. 2008). 

 We compared breeding season diet overlap across eight Willow Flycatcher diet studies 

including: Beal (1912; n = 135), Prescott and Middleton (1988, n = 7+), DeLay et al. (2002, n = 

23), Drost et al. (2003, n = 50), Wiesenborn and Heydon (2007, n= 56), and Durst et al. (2008, n 

= 341). We quantified diet overlap among studies using Pianka‘s index (Krebs 1994): 

 

     
        
 
 

     
       

  
 

                         (1) 

 

where     is the frequency of prey item   at study site   and     is the frequency of prey item   at 

study site  . Pianka‘s index measures the percent overlap in diet between sites   and  at the 

taxonomic level of order.  Pianka‘s index ranges from 0 to 1 with higher values indicating greater 

degrees of dietary overlap.  We used the pgirmess package in program R (available at 

http://cran.r-project.org/) to estimate Pianka‘s index.  

 

http://cran.r-project.org/
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RESULTS 

Stable isotopes.-Over the 2003, 2004, and 2005 breeding seasons at Fish Creek, we 

collected feathers from 31 hatch year and 32 adult Willow Flycatchers. Carbon isotopes values 

varied more widely among feathers from male than female or hatch year flycatchers (Table 3.1, 

Fig. 3.1). δ
13

C feather values were not found to be influenced by the interaction of year and 

flycatcher age (F2,61 = 1.32, P =  .28).  After applying a Tukey‘s honest significant differences 

test, we identified significant differences in δ
13

C signatures between adult and hatch year feathers 

(P<.0001).  In contrast, δ
13

C signatures did not differ between male and female flycatchers (P = 

.60). Hatch year flycatcher feathers, on average, were more 
13

C depleted than adult flycatcher 

feathers.  

The feathers from hatch year flycatchers showed less variation in their δ
15

N signatures 

than the feathers from male and female flycatchers, and on average the hatch year feathers were 

more depleted in 
15

N than the adult flycatcher feathers (Table 3.1, Fig. 3.1). No interaction effect 

was found between year and age in δ
15

N signatures.  Tukey multiple comparison tests indicated 

differences between male and hatch year δ
15

N signatures (P < .001) but no differences in δ
15

N 

values were detected between female and hatch year flycatchers. 

δ
13

C values ranged wider in aquatic insects than in terrestrial insects (Table 3.1, Fig. 3.1). 

The opposite was true of δ
15

N values where greater variation was observed in terrestrial insects 

than aquatic insects.  An interaction effect between year and prey type was found for δ
13

C values 

(F2,135 = 3.91, P = .05) but not for δ
15

N values.  In further exploration, the interaction effect was 

due to a decrease in the aquatic insect‘s mean δ
13

C value from 2004 to 2005.  However, the 

difference in mean aquatic insect δ
13

C value between 2004 and 2005 was not found to be 

significant (t47 = -1.53, P = .14). A Tukey multiple comparison test found differences in δ
13

C but 

not δ
15

N values between aquatic and terrestrial insects (P = <.001 and P = .65, respectively).  The 
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mean δ

13
C value for aquatic insects was more depleted than the mean δ

13
C value for terrestrial 

insects. 

Mean δ
13

C enrichment, the difference between the average isotope value of potential prey 

and the isotope values of the individual feathers, from aquatic insects ranged from 3.5 in nestling 

feathers to 6.7 in feathers from male flycatchers while mean δ
13

C enrichment from terrestrial 

insects ranged from 1.9 in nestling feathers to  5.1 in feathers from male flycatchers (Table 3.1). 

Mean change in δ
15

N from aquatic insects to feathers ranged from 2.1 in nestling feathers to 4.0 

in male flycatchers while mean change in δ
15

N from terrestrial feathers ranged from 1.9 in 

nestling feathers to 3.8 in the feathers of male Willow flycatchers.  

 

 
 

Fig. 3.1.  Mean δ13C and δ15N values (±SD) for Willow Flycatcher feathers and potential prey 
items examined at Fish Creek, Utah, USA.  
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Table 3.1. Mean δ13C, δ15N values, Δ13C and Δ15N enrichment values (±SD) for Willow Flycatcher and potential prey items. 

    δ13C (‰) 
 

δ15N (‰) 
 

Δ13C Enr chment (‰) 
 
Δ15N Enr chment (‰) 

        
     Aquatic  Terrestrial  

 
Aquatic        Terrestrial 

Sample    n Mean ± SD        Range 
 

  Mean ± SD Range 
 

Mean ± SD 
 

Mean ± SD 

Willow Flycatchers 

Male   15 -20.0 ± 2.7 -23.5 to -15.2 
 

10.6 ± 2.0 7.5 to 14.4 
 

6.7 ± 0.7 5.1 ± 0.7 
 

4.0 ± 0.6 3.8 ± 0.60 

Female   17 -20.6 ± 2.1 -23.7 to -17.1 
 

9.6 ± 2.2 7.7 to 15.2 
 

6.0 ± 0.5 4.5 ± 0.5 
 

3.1 ± 0.6 2.9 ± 0.6 

Hatch year   31 -23.2 ± 1.1 -26.1 to -19.4 
 

8.7 ± 1.1 7.4 to 10.9 
 

3.5 ± 0.2 1.9 ± 0.2 
 

2.1 ± 0.2 1.9 ± 0.2 

Potential insect prey 

Aquatic  
4

   9 -26.7 ± 2.2 -31.5 to -23.9 
 

6.6 ± 2.2 3.0 to 9.8 
 
-- -- 

 
-- -- 

Terrestrial     8 -25.1 ± 1.2 -28.7 to -22.5 
 

6.8 ± 2.1 0.9 to 12.8 

 

-- -- 
 

-- -- 

 
6

0
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Table 3.2. P anka’s  ndex est mates of d et overlap among 7 Willow Flycatcher studies. 

 
Bakian et al. Beal Durst et al. Drost et al. Delay et al. 

Wiesenborn  and 
Heydon 

Prescott and 
Middleton 

Bakian et al.  1 0.945 0.728 0.592 0.927 0.474 0.144 

Beal  0.945 1 0.773 0.723 0.955 0.654 0.403 

Durst et al.  0.728 0.773 1 0.608 0.781 0.572 0.389 

Drost et al.  0.592 0.723 0.608 1 0.776 0.896 0.650 

Delay et al.  0.927 0.955 0.781 0.776 1 0.639 0.318 

Wiesenborn  and 
Heydon  0.474 0.654 0.572 0.896 0.639 1 0.882 

Prescott and 
Middleton  0.144 0.403 0.389 0.650 0.318 0.882 1 

 
6

1
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Our Bayesian mixing models detected a greater consumption of terrestrial insects than 

aquatic insects by male, female and hatch year birds.   Aquatic insects comprised 28% ±4.82 SD 

(posterior high density region = 0 to 67%), 22% ±3.73 SD (posterior high density region = 0 to 

56%) and 13% ±1.13 SD (posterior high density region = 0 to 32%) of male, female, and hatch 

year Willow Flycatchers, respectively.  Terrestrial insects comprised 72% ±4.82 SD (posterior 

high density region = 33% to 100%), 78% ± 3.73 SD (posterior high density region = 44% to 

100%), and 87% ±1.13 SD (posterior high density region = 68% to 100%) of male, female, and 

hatch year Willow Flycatchers, respectively.  

 

 

Fig. 3.2. Mean abundance (±SD) of nine prey groups for adult (n = 18) and nestling (n = 25) Willow 
Flycatchers at Fish Creek, Utah.  

 

Fecal sample analysis.-Fifty-seven fecal samples were collected over the 2003, 2004, and 

2005 breeding seasons yielding a total of 150 identifiable prey items (Fig. 3.2).  The fecal 

samples were comprised primarily of hymenoptera and coleoptera but seven other orders of 
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insects were represented in the samples.  We identified approximately 75% of the fragments in 

the fecal samples. On average, coleoptera and hymenoptera frequency was higher in nestling than 

adult fecal samples however frequency differences of these prey items were not statistically 

significant (Fig. 3.3). Hymenoptera and coleoptera occurred in 80% and 60% of nestling fecal 

samples, respectively, and 61% and 56% of adult fecal samples, respectively (Fig. 3.4).  Overall, 

the nestling fecal samples (n = 8 insect orders) were more prey species rich than the adult fecal 

samples (n = 5 insect orders).   

Diet overlap among Willow Flycatcher studies ranged from 0.14 (current study and 

Prescott and Middleton 1988) to 0.95 (Beal 1912 vs. Delay et al. 2002, Table 3.2). The overall 

diet of Willow Flycatchers sampled in this study most closely resembled the diets sampled by 

Beal (1912) and DeLay et al. (2002). Diet overlap across all other studies varied from 0.318 in 

Prescott and Middleton (1988) and DeLay et al. (2002) to 0.955 in DeLay et al. (2002) and Beal 

(1912). 

 

DISCUSSION 

In this study, we investigated the contribution of aquatic insects to the flycatcher diet, 

examined differences in the diet consumed by adult flycatchers versus the diet adults feed to their 

nestlings, and compared the diet of Willow Flycatchers at Fish Creek with the diet of Willow 

Flycatchers reported in previously published studies.  We derive three major points from our 

analysis.  First, aquatic insects contribute to the Willow Flycatcher diet at Fish Creek in 

proportions similar to those found in other bird species.  Second, we observed little variation in 

the diet of male and female adult flycatchers however adult Willow Flycatchers appear to 

consume a different diet than the one they feed to their nestlings. Third, the diet of Willow 

Flycatchers at Fish Creek is most similar to the diets described in Beal (1912) and DeLay et al. 

(2002). We base our conclusions on evidence from both stable isotope and fecal sample analyses. 
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Fig. 3.3. Mean diet frequency/sample (±SD) of nine prey groups for adult (n = 18) and nestling (n = 
25) Willow Flycatchers at Fish Creek, Utah.   
 
 

Contribution of Aquatic insects.-Although terrestrial insects comprised large proportions 

of the diet of adult and hatch year Willow Flycatchers at Fish Creek during the 2004 and 2005 

breeding seasons, aquatic arthropod subsidies comprised almost 1/3 of the diet of adult Willow 

Flycatchers and 13% of the diet of hatch year birds. These findings are consistent with results 

from previous studies investigating consumption of aquatic insects in a range of bird species 

(Nakano and Murakami 2001, Murakami and Nakano 2002). Nakano and Murakami (2001) 

showed that aquatic insects comprised 15.5% and 31.8% of the diets of two summer resident 

flycatcher species, the Brown Flycatcher and the Narcissus Flycatcher, at Horonai stream in 

Hokkaido, Japan.   
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Fig. 3.4. Occurrence of nine prey groups for adult (n = 18) and nestling (n = 25) Willow 
Flycatchers at Fish Creek, Utah. 
 
 

Evidence from this study, as well as previous Willow Flycatcher diet studies, suggests 

that the use of aquatic insects by Willow Flycatchers may be influenced by the insect productivity 

in the riparian breeding habitats as well as the habitats adjacent to nesting habitat. Wiesenborn 

and Heydon (2007) found that flycatchers nesting in Tamarisk dominated habitats in Arizona 

relied heavily on Odonata derived from aquatic habitats and concluded that in Tamarisk 

dominated habitats with low in situ arthropod production, insect subsidies from adjacent habitats 

may be essential to the Willow Flycatcher during the breeding season.  In contrast, DeLay et al. 

(2002) investigated variation in Willow Flycatcher diet in birds breeding in native riparian habitat 

in the Gila Valley, New Mexico, and found only evidence of low use of aquatic insects by 

flycatchers.  This variation in the use of aquatic insect subsidies appears to reflect relative 

productivity of habitats surrounding the riparian zone.  The potential arthropod productivity of 

flycatcher nesting habitat should be considered by land managers when identifying areas to 
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protect for flycatchers during the breeding season.  Depending on the breeding location, habitats 

adjacent to riparian land cover may be an essential source of food resources to Willow 

Flycatchers during the breeding season.   

Willow Flycatcher‘s dependence on aquatic insects is likely to vary temporally across the 

breeding season. Peak benthic productivity in temperate creeks typically occurs during spring 

(Sumner and Fisher 1979), and correspondingly, aquatic insect availability may also peak during 

spring.  Specific timing of aquatic insect emergence varies across species (Corbet 1964) and is 

influenced by local variation in nutrition and climate (Needham et al. 1935, Sweeney and 

Vannote 1982).   Aquatic insect hatches can provide abundant but temporally limited and 

stoichastic sources of food.  This was observed at Roosevelt Lake where one breeding male 

Willow Flycatcher was radio-tracked moving approximately 2 kilometers from his home range to 

feed on a mayfly hatch on the Salt River (Cardinal and Paxton 2004).  

Our mixing models measured Willow Flycatcher‘s average use of aquatic and terrestrial 

at Fish Creek during body feather molt which typically occurs late in the breeding season. We did 

not capture Willow Flycatcher‘s use of aquatic insects towards the beginning of the breeding 

season but suspect that it could be higher than the levels observed in this study due to the timing 

of peak aquatic arthropod emergence, variation in the insect productivity of terrestrial habitats, 

and the observation of high foraging of aquatic insects in the spring by other bird species in 

temperate systems (Smith et al. 1998, Nakano and Murakami 2001, Gende and Willson 2001).  

Diet differences in adult and nestling flycatchers.-Male and female Willow Flycatchers 

did not differ statistically in their δ
13
C or δ

15
N values and although the mixing models found that 

the diet of male flycatchers was comprised of a higher proportion of aquatic insects than the diet 

of female flycatchers, these differences were not statistically significant.  These results 

corroborate findings from other Willow Flycatcher diet studies that have identified only subtle 

degrees of diet differences between male and female flycatchers (DeLay et al. 2002, Drost et al. 
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2003, Wiesenborn and Heydon 2007, Durst et al. 2008).  We did observe considerable individual 

variation in stable isotope values among adult Willow Flycatchers likely reflecting individual 

differences in their foraging behavior.  Stream geomorphology, riparian habitat heterogeneity and 

variation in benthic productivity are known to affect the flux of emerging aquatic insects (Iwata et 

al. 2003, Baxter et al. 2005). Individual variation in carbon and nitrogen stable isotope values 

among adult flycatchers may also reflect spatial variation in the availability of aquatic insects 

across home ranges.  

Previous studies have consistently observed variation in the type and proportions of prey 

types consumed by adult Willow Flycatchers versus that fed to nestling flycatchers (Prescott and 

Middleton 1988, Drost et al. 2003, Wiesenborn and Heydon 2007, Durst et al. 2008). Our study 

indicates that diet differences between adults and nestlings are also present in their use of aquatic 

insects. A number of factors may explain the discrepancy between adult and nestling flycatchers 

in their consumption of aquatic insects.  First, adult Willow Flycatchers may be selectively 

feeding nestlings different prey items than they select for themselves due to differences in dietary 

requirements for adults and nestling birds (Newton 1967).  Adult flycatchers may be selecting 

prey items with higher nutrient content and, more specifically, predaceous insects which have 

been found to contain greater nitrogen content than herbaceous insects (Fagen et al. 2002). 

Herbaceous and predaceous insects from aquatic (e.g. aquatic Diptera versus Odonata) and 

terrestrial (e.g. pollen-feeding bees versus Camponotus sp.) habitats were identified in fecal 

samples of nestling flycatchers. However, we encountered a greater number of predaceous 

terrestrial insects than predaceous aquatic insects in the nestling‘s fecal samples.   

To examine if differences in nitrogen content exist between aquatic and terrestrial insects, 

we looked post-hoc at the mass spectrometry results which provide measurements of nitrogen 

concentration in the insect samples used in the stable isotope analysis.  In our sample, a pattern 

began to emerge where terrestrial insects (mean = 0.12, SD = 0.002) contained higher 
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concentrations of nitrogen than aquatic insects (mean = 0.11, SD. = 0.003, P = .06, t46 = -1.94).  

We suspect that at Fish Creek a greater number of predaceous insects are produced in mountain 

shrub steppe and upland forest habitats than in aquatic habitats. Adult flycatchers may be 

intentionally selecting predaceous terrestrial insects to feed to their young.  If this is the case, then 

this is the second piece of evidence we have identified that indicates that alternative habitats 

bordering riparian habitat including mountain shrub steppe and upland forest are important for  

providing food resources to Willow Flycatchers during the breeding season.  Further study 

involving experimentation is required however to determine if adult flycatchers are preferentially 

selecting predaceous terrestrial arthropods to feed to their young at Fish Creek.   

Alternatively, diet differences between nestling and adult Willow Flycatchers may be the 

result of temporal differences in feather sampling. Nestling feather development occurs largely in 

July at Fish Creek while adult body feather molt begins in August. Nestling and adult feather 

isotope signatures therefore reflect two distinct time periods at Fish Creek with potentially 

different arthropod availability.   

We expected δ
15

N enrichment to follow a step-wise progression from prey source to 

consumer tissue within the range of 3-5‰ (Peterson and Fry 1987, Mizutani et al. 1992, Hobson 

and Bairlein 2003).  This expectation was satisfied in the nitrogen enrichment of adult flycatcher 

feathers from terrestrial and aquatic arthropod prey however mean nitrogen enrichment levels 

were lower than we expected in nestling feathers.  Hatch year feathers were found to be more 

depleted in 
15
N than male but not female feathers. Since δ

15
N values indicate the trophic-level at 

which a consumer is foraging, we suggest four possible scenarios responsible for differences in 

15
N between male and hatch year feathers. One, we may have missed sampling an insect food 

source consumed primarily by males that is more 
15

N enriched on average than the insects we 

sampled.  Conversely, we may have missed a food source commonly fed to nestlings that is more 

15
N depleted than the food items we sampled.  Differences in the feather structure itself between 
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hatch year and adult feathers may be responsible for differences in nitrogen enrichment between 

adult and nestling flycatcher feathers. Finally, as Willow Flycatcher‘s body molt may occur any 

time from late July thru November, we may have unknowingly sampled body feathers grown 

during fall migration.  Carbon and nitrogen isotope signatures would thus reflect the diet 

consumed by Willow Flycatchers while on migration rather than the Fish Creek diet.  

Using stable isotopes in bird diet analysis.-The precision of our aquatic and terrestrial 

insect estimates depends on the accuracy of the δ
13

C discrimination factor used in our mixing 

models.   The change in δ
13

C from prey source to feather has been found to vary considerably 

across bird species and prey items (Mizutani et al.1992, Hobson and Bairlein 2003).  We used a 

δ
13

C trophic discrimination factor of 2.0 ± 0.1 and based this choice on laboratory studies that 

were conducted with bird species and diets most similar to the Willow Flycatcher (Hobson and 

Bairlein 2003, Pearson et al. 2003).  A more accurate determination of the δ
13

C discrimination 

factor to use in our mixing models would require laboratory experiments of isotope fractionation 

in Willow Flycatchers fed a homogeneous insect diet.  The benefit of using a Bayesian mixing 

model over traditional mixing models (e.g. Phillips and Gregg 2001, 2003) is its ability to 

incorporate some of the uncertainty in trophic enrichment factor into model parameter estimation. 

However, there remains a considerable need for additional laboratory experiments to provide 

precise diet-tissue discrimination factors for use in isotope mixing-models for ascertaining wild 

bird population diets (Gannes et al. 1997, Martinez del Rio et al. 2009). 

To further address the problem of δ
13

C isotopic discrimination uncertainty, we conducted 

a post-hoc exploration of the influence of varying δ
13

C discrimination factor on flycatcher diet 

composition by incrementally increasing the δ
13

C discrimination factor by 0.5‰  starting at 1.0‰  

and ending at 4.5‰.  We found that the diet output from male and female mixing-models to 

behave robustly across the range of δ
13

C isotopic discrimination values. For example, in the male 

flycatcher mixing-models, the mean proportion of their diet comprised of aquatic insects ranged 
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from 28% to 30% across the entire range of δ

13
C trophic enrichment values.  Greater variation 

was observed in the proportion of aquatic and terrestrial insects comprising the hatch year 

flycatchers under varying δ
13

C trophic enrichment values.  The mean contribution of aquatic 

insects to the hatch year diet was observed to increase with increasing δ
13

C trophic enrichment 

value so that their diet appeared to be dominated by aquatic insects when using trophic 

enrichment values at the extreme end of the range (4.5‰).  Given these post-hoc findings, we feel 

confident in our choice of a 2.0‰ isotopic discrimination factor.  

Diet comparisons with other studies.-We examined diet overlap in Willow Flycatchers 

across seven flycatcher studies including six previously published diets as well as the diet 

reported in this study.  In combination, the six previously published diet studies examined Willow 

Flycatcher diet in varying depths across much of their North American breeding range including 

parts of Canada.  Four out of the six studies specifically investigated diet of the federally listed 

endangered Southwestern Willow Flycatcher during the breeding season at various sites in 

California, Arizona and New Mexico using fecal sample analyses (Delay et al. 2002, Drost et al. 

2003, Wiesenborn and Heydon 2007, Durst et al. 2008). Beal (1912) collected stomach contents 

from 135 Willow Flycatchers in 17 states and three Canadian provinces from May to September.  

Given his sampling time frame, it is likely that some of his samples came from birds in migration 

and the diet samples from migrating birds do not reflect their diet during the breeding season 

adding a source of error to our investigation of diet overlap during the breeding season.  Prescott 

and Middleton (1988) collected gut samples from seven adult Willow Flycatchers, and insect prey 

samples from an unspecified number of nestlings with neck ligatures in Guelph, Ontario.  In 

contrast to other flycatcher diet studies, Prescott and Middleton (1988) treated individual diet 

prey items as the individual sample rather than the stomach or fecal sample. 

There is considerable variation in diet overlap across Willow Flycatcher populations, and 

the pattern in dietary overlap cannot be entirely explained by geographic proximity.  The diet of 
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the Fish Creek Willow Flycatchers most closely resembles the diet sampled by Beal (1912) and 

Delay et al. (2002).  In Beal (1912), Willow Flycatcher diet was sampled from across their North 

American breeding range while DeLay et al. (2002) examined diet in a population of 

Southwestern Willow Flycatchers breeding in the Gila Valley, New Mexico.  Willow 

Flycatcher‘s high consumption of Hymenoptera and Coleoptera was the common trend across 

these three studies.  Fish Creek Willow Flycatcher diet was most dissimilar from the diet of 

nestling Willow Flycatchers in southeastern Ontario.  The diet of the Ontario population of 

nestling Willow Flycatchers was dominated by Diptera species, and although the authors did not 

quantify the diet of adult flycatchers in their study, they did observe differences in the diet of 

adult and nestling flycatchers.  Part of the discrepancy between the Fish Creek and Ontario 

flycatcher diets may be due to differences in diets sampled; nestling flycatchers were the focus in 

the Ontario study while we examined diet in both adult and nestling flycatchers.  Diptera species 

comprised a larger proportion of the diet of nestling flycatchers at Fish Creek than adult 

flycatchers although not at levels anywhere close to those observed in the Ontario population.  

The Ontario nestling population‘s diet may be unique among the diets of the flycatcher 

populations studied while the flycatcher diet described by Beal (1912) was most congruent with 

other flycatcher diets. Beal‘s (1912) Willow Flycatcher sample included a wide geographic range 

while the other flycatcher studies examined flycatcher diet in distinct populations.  Beal (1912) 

appears to have captured the general diet of Willow Flycatchers across broad geographic scales 

while other studies have demonstrated the variability in Willow Flycatcher diets on finer 

geographic scales.  Also, if Willow Flycatchers are generalist foragers (Durst et al. 2008), we 

may expect flycatcher diets to differ among sites due to differences in the distribution of 

arthropod populations, local and regional composition and structure of habitats, climate patterns, 

and random forces. 
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Conclusions and management implications.-Willow Flycatcher diet at Fish Creek is 

largely comprised of terrestrial insects however aquatic insects make up 20%-30% of the diet of 

adult flycatchers.  Similar to other studies, we found considerable differences in the diets 

consumed by adults compared to the diet they feed their nestlings.  Further, many of the insects 

identified in fecal samples were likely produced in non-riparian habitats, either aquatic or upland 

terrestrial habitats.  The use of insect subsidies derived from neighboring habitats by Willow 

Flycatchers suggests that the availability of adjacent habitat types may be important for producing 

food resources to complement in situ riparian arthropod production.  As conservation and 

management plans are focused on preserving or restoring habitat for the Willow Flycatcher, in 

addition to preserving riparian habitat for breeding, wildlife managers need to consider the 

movement of insect prey across habitat boundaries. If low insect productivity in riparian habitat is 

suspected, adjacent habitats should be preserved to provide the food resources required by 

Willow Flycatchers during the breeding season. 
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CHAPTER 4 

SPACE USE COMPARISONS IN TWO POPULATIONS OF WILLOW FLYCATCHER, 

EMPIDONAX TRAILLII
1
 

 

Abstract. The Willow Flycatcher, Empidonax traillii, has experienced population declines 

throughout its range in the western United States with one subspecies Empidonax traillii extimus 

listed as an endangered species.  Consequently, most of the research on Willow Flycatchers has 

been focused on the federally endangered Southwestern Willow Flycatcher, E.t. extimus.  In this 

study, we compare and contrast space use characteristics in two populations of Willow 

Flycatchers, one belonging to the E.t. extimus subspecies and the other belonging to the E.t. 

adastus subspecies as a function of breeding site, breeding status, and sex.  Willow Flycatchers 

were radio-tagged and tracked over the course of two breeding seasons at Fish Creek (2003, 

2004, E.t. adastus) and three breeding seasons at Roosevelt Lake (2003-2005, E.t. extimus). 

Differences in home range size, core area size, proportion of core area comprised of riparian 

habitat, home range habitat richness and home range heterogeneity were found among breeding-

flycatchers as a function of breeding site and sex.  Variation in space use characteristics as a 

function of breeding site, breeding status, and sex indicates that a number of different 

mechanisms may be driving space use in Willow Flycatchers over the breeding season.  

 

INTRODUCTION 

Knowledge of an animal‘s use of space is vital for effective conservation and 

management planning.  Currently, avian population managers in need of demographic and habitat 

requirement information for the active management of Willow Flycatcher populations rely on 

research studies conducted on the endangered E. t. extimus subspecies.    In this study, we 

compare home range and core area space use in two populations of Willow Flycatchers, an E.t. 

                                                 
1
 Coauthored by Bakian, A.V., K.A. Sullivan, and E.H. Paxton 
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extimus population breeding at Roosevelt Lake, Arizona and a population of E.t. adastus breeding 

at Fish Creek, Utah to examine the generality of the studies of space use in one population for 

managing other populations.   

The Willow Flycatcher (Empidonax traillii) is a small, neo-tropical migrant that depends 

upon riparian habitat for survival and reproduction throughout the continental United States (Fig. 

1.1).  The Southwestern Willow Flycatcher (Empidonax traillii extimus; SWFL) is a federally 

endangered subspecies with a breeding distribution spanning six states including Arizona, New 

Mexico, southern Colorado, southern Utah, Nevada and Southern California (U.S. Fish and 

Wildlife Service 2002). Population declines in the Southwestern Willow Flycatcher are primarily 

the result of wide-spread habitat loss, degradation or modification (U.S. Fish and Wildlife Service 

1993, Marshall and Stoleson 2000). Since receiving federal endangered species protection in 

1995 (U.S. Fish and Wildlife Service 1995), SWFLs have been the subject of detailed population 

surveys, monitoring and demographic study (e.g. Paxton et al. 1997, English et al. 1999, 

Kenwood and Paxton 2001, Newell et al. 2003, Causey et al. 2005, Paxton et al. 2007). 

  The Empidonax trailli adastus (WIFL) subspecies of Willow Flycatcher breeds 

throughout the intermountain west and Great Basin region of the U.S including Utah, Colorado, 

Wyoming, Idaho, Nevada, eastern California, eastern Oregon and eastern Washington.  Similar to 

the SWFL, this sub-species of flycatcher restricts its breeding to riparian woodlands that typically 

occur in isolated patches. Populations of E.t. adastus are also in decline (Schlorff 1990, Sauer et 

al. 1997, Stefani et al. 2001) yet it has received considerably less research attention.   

We used ratio-telemetry to track female and male flycatchers at Fish Creek and male 

flycatchers at Roosevelt Lake during the breeding season.  Previous estimates of Willow 

Flycatcher space use (e.g. home range, territory, or core area) have relied primarily on mapping 

the movement of individual‘s within the landscape based on visual and auditory identification 

(Walkinshaw 1966, Eckhardt 1979, Stafford and Valentine 1985, Flett and Sanders 1987, Prescott 
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and Middleton 1988). Territorial mapping techniques have been found to underestimate the true 

space requirements in some passerines (Hanski and Haila 1988, Anich et al. 2009).  In addition, 

as singing is uncommon in female Willow Flycatchers (Sedgwick 2000), radio-telemetry may 

more accurately capture space use than territory mapping in females as well as males.  

The mechanisms responsible for intraspecific variation in home range size are poorly 

understood (Kjellander et al. 2004, Saïd and Servanty 2005).  Potential variables that may 

influence home range size variation within a species include sex and age (Cederlund and Sand 

1994), reproductive status (Bertrand et al. 1996), population density (Kjellander et al. 2004) and 

landscape heterogeneity (Kie et al. 2002).  Landscape structure and composition can influence 

home range and core area size by impacting the distribution of food resources (Smith and Shugart 

1987), the availability of shelter (Fisher 2000) and the presence of predators (reviewed in 

Whittingham and Evans 2004). The patch and landscape level vegetation structure of Willow 

Flycatcher habitats differ between Roosevelt Lake and Fish Creek. At Roosevelt Lake, temporal 

fluctuations in reservoir water levels due to the operation of Roosevelt Dam have produced a 

mosaic of riparian woodland stands with varying vegetation age and canopy heights (Paxton et al. 

2007).  Riparian woodland stands are embedded in a xeric landscape comprised of open areas and 

Sonoran desert scrub habitat. In contrast, Fish Creek has patches of fairly uniform riparian willow 

stands situated in a broad canyon bordered by upland forest and mountain shrub habitats (Bakian 

unpublished data). We predict that differences in flycatcher home range and core area size are 

influenced by variation in the habitat vegetation structure and pattern at Fish Creek and Roosevelt 

Lake.  In addition, we expect space use metrics to vary as a function of flycatcher sex due to 

behavioral differences between male and female flycatchers.  Our study‘s primary objective is to 

compare and contrast space use in Willow Flycatchers including home range and core area size, 

home range and core area habitat heterogeneity and habitat composition as a function of breeding 

site, and breeding status and flycatcher sex.  
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FIGURE 4. 1.  Location of Fish Creek, in Manti-La Sal National Forest, Carbon County, Utah. 

 

METHODS 

 

 

STUDY AREA 

Two geographically disparate populations of Willow Flycatchers were examined in this 

study.  The first is a population of Empidonax traillii adastus breeding at Fish Creek, a perennial, 

high elevation stream in Manti-La Sal National Forest, Utah (Fig. 4.1).  The second group is a 

population of the federally endangered Southwestern Willow Flycatcher, Empidonax traillii 

extimus, breeding along the Salt River and Tonto Creek inflows of Roosevelt Lake, Gila County, 

Arizona (Fig. 4.2).   
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FIGURE 4.2. Location of Roosevelt Lake, Arizona. 
 
 

Breeding habitat differed by both vegetation composition and riparian patch size between 

the two study sites.  The Fish Creek drainage is composed of linear patches of thick, willow 

dominated (Salix spp.) riparian habitat with a maximum canopy height of 5 meters.  These 

distinct riparian patches range from 0.29 ha to 2.5 ha and are bordered by mountain shrub steppe 

habitat on southern slopes characterized by big sagebrush (Artemisia tridentate sp.), Utah 

serviceberry (Amelanchier utahensis), chokecherry (Prunus virginiana), mountain snowberry 

(Symphoricarpos oreophilus) and various shrubsteppe grasses. Riparian habitat is bordered by 

upland mixed-forest habitat with Englemann‘s spruce (Picea engelmanni), White fir (Abies 

concolor) Douglas fir (Pseudotsuga menziesii) forest, and Quaking aspen (Populus tremuloides) 
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species on north-facing canyon slopes.  Riparian patches are separated by open water. Each 

distinct patch of riparian habitat typically contained a single pair of breeding flycatchers during 

the study period (Bakian personal observation).  

The Roosevelt Lake study site is a low elevation (~690 m) desert riparian zone comprised 

of patches of riparian habitat ranging from 0.2 ha to 43 ha which are separated by bare ground, 

scrub habitat, emergent riparian habitat or open water.  Mature riparian habitat patches are 

composed of Gooding‘s willow (Salix gooddingii), exotic saltcedar (Tamarix ramosissima) or a 

combination of the two. Sonoran desert uplands surround flycatcher breeding habitat and consist 

of palo verde (Cercidium microphyllum), creosote (Larrea tridentate), saguaro cacti (Carnegiea 

gigantea), and screwbean mesquite (Prosopsis pubescens) (see Paxton et al. 2007, Cardinal 2005 

for more detail). In contrast to Fish Creek, riparian habitat patches at Roosevelt Lake often 

support more than one pair of nesting Willow Flycatchers.  

 

CAPTURE AND TRANSMITTER ATTACHMENT 

Data was collected over the 2003 and 2004 breeding seasons at Fish Creek and over the 

2003, 2004 and 2005 breeding seasons at Roosevelt Lake. Willow Flycatchers typically arrive at 

Fish Creek in late May and at Roosevelt Lake in early May.  Following arrival and territory 

establishment, Willow Flycatchers were selected for capture and radio transmitter attachment by 

assigning a number to each territory and drawing a number at random.  Both male and female 

flycatchers were studied at Fish Creek while only male flycatchers were sampled at Roosevelt 

Lake due to the endangered status of the subspecies.  Sex was determined based on behavior, the 

presence of a brood patch and lack of a cloacal protuberance in females, and the presence of a 

cloacal protuberance and lack of a brood patch in males.  Occasionally wing chord and tail length 

was used to aid in determining sex (Table 3 in Pyle 1997, USGS unpublished data).  At Roosevelt 

Lake, the sex of some flycatchers had been previously identified using sex-specific genetic 

markers (Cardinal 2005).  
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 Willow Flycatchers were captured using both passive and target mist-netting techniques 

(Sogge et al. 2001).  Following capture, birds were individually banded with an individually 

numbered, color-anodized Federal bird band on one leg, and a colored metal band on the other leg 

(Koronkiewicz et al. 2005).  We used the Holohil (Carp, Ontario) LB-2N (Utah and Arizona) or 

BD-2N (Arizona only) radio transmitters (21 day expected battery life; weight range 0.40-0.48 g). 

A lightweight grid-cloth was glued to the back of the transmitter to create a more textured surface 

area prior to attachment. Following capture, an area of feathers was removed on the lower back of 

the bird approximately 1.5cm above the uropygial gland. Transmitters were attached using a glue-

on method (Johnson et al. 1992, Paxton et al. 2003) with Skin-bond® medical adhesive (Smith 

and Nephew®).  The final weight of the transmitters including medical adhesive and grid-cloth 

was 0.46-0.50 g (approximately 3.8%-4.2% of the flycatcher‘s weight).  Flycatchers were 

released following 5 minutes of adhesive drying time, and the entire banding and transmitter 

application process took less than 20 minutes.  

 

RADIO-TRACKING 

Radio-tracking was started the day following transmitter attachment to provide time for 

the birds to acclimate to the presence of the transmitter (Suedkamp Wells et al. 2003). Each 

flycatcher was radio-tracked at least four times a day within at least 2 out of 4 pre-established 

time periods:  AM early (0600-0915), AM late (0916-1230), PM early (1231-1545) and PM late 

(1546-1900). Individual tracking sessions were separated by at least 30 minutes to guarantee 

biological independence (White and Garrot 1990) of sequential tracking locations with the goal of 

collecting at least 30 locations per bird.  Tracking equipment used included R-1000 Telemetry 

receivers (Communications Specialists, Inc.), and standard hand-held 3-element yagi antennas 

(Biotrack Equipment).  

Flycatchers were located using the homing-in method (Paxton et al. 2003), and exact 

location was pin-pointed through visual confirmation or estimated through triangulation. The 
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bird‘s geographical point location and position error was recorded in Universal Transverse 

Mercator coordinates via a handheld Global Positioning System (Garmin Etrex Legend) after the 

flycatcher moved from its pin-pointed location.  Information recorded at point location included 

the bird‘s behavior, habitat type, vegetation substrate, height position of the flycatcher in the 

vegetation, observation of foraging event, and vocalization type if heard.   Radio-tracking was 

conducted for the lifetime of the transmitter battery or until the flycatcher became undetectable 

for other reasons.  

Willow Flycatchers were categorized as ―breeding‖ if they maintained and defended a 

territory, exhibited pair-mating behavior, and attempted/succeeded in nesting.  Flycatchers were 

categorized as non-breeding if they were territorial and mate-paired but radio-tracked pre or post-

breeding season, if they were territorial but not mate-paired, or if they exhibited ―floater‖ 

behavior in which flycatchers were present but did not actively defend a territory (Sherry and 

Holmes 1989, Newton 1992).   

 

DATA ANALYSIS 

Home range and core area estimation.  Home range is defined as an area that an 

organism normally uses to forage, breed and care for young (Burt 1943).  We used the 95% fixed-

kernel utilization distribution (UD) with least squares cross validation for estimating individual 

flycatcher home ranges.  The 95% fixed-kernel UD corresponds to the area of landscape 

encompassing the 95% probability distribution for individual flycatchers. Kernel UD approaches 

are considered among the more rigorous home range quantification approaches (Kernohan et al. 

2001).  Fixed-kernel methods have been found to produce unbiased estimates of home range size 

when at least 30 telemetry locations are available for estimation (Seaman et al. 1999).  We 

restricted our home range analysis to flycatchers with at least 28 radio locations. Home ranges 

were estimated in ArcView 3.3 using the ANIMAL MOVEMENT extension (Hooge and 

Eichenlaub 1997).   



86 
Core areas are areas within the home range that receive intensive use (Kernohan et al. 

2001).  Often, the 50% fixed kernel UD is used to represent home range core areas (Laver and 

Kelly 2008).  The application of the 50% fixed kernel UD to identify core areas is arbitrary and 

lacking in biological support for many species.  We used a core area estimation method described 

by Seaman et al. (1998) that determines core area probability isopleth size based on identifying 

the maximum isopleth containing a greater than expected density rule.  

Habitat composition. We identified the habitat composition of home ranges and core 

areas from high resolution, rectified, aerial photographs of Fish Creek and Roosevelt Lake.  The 

habitat types present at Fish Creek included mature riparian habitat (riparian vegetation > 1 meter 

height), young riparian habitat (riparian vegetation <1 meter height), mountain shrub steppe, 

upland forest, or other (bare ground and open water).  Roosevelt lake habitat types included 

mature riparian habitat (riparian vegetation > 5 years old), young/emergent riparian habitat 

(riparian habitat < 5 years old), upland habitat (Sonoran desert upland vegetation), scrub 

(tamarisk dominated patchy vegetation), and other (bare ground and open water).  At both 

Roosevelt Lake and Fish Creek, Willow Flycatchers select mature riparian habitat for nest site 

placement (Paxton et al. 2007, Bakian personal observation).  Vegetation classification as 

determined by aerial photograph was validated through field checks.  

We measured a number of home range and core area metrics for each Willow Flycatcher 

including home range size (in hectares), core area size (in hectares), the proportion of the home 

range comprised of mature riparian habitat, the proportion of the core area comprised of mature 

riparian habitat, home range habitat heterogeneity, core area habitat heterogeneity, home range 

habitat richness, and core area habitat richness.  Habitat richness was measured as the number of 

habitat types present in each individual flycatcher‘s home range and core areas. Shannon‘s 

diversity index was used to estimate home range and core area heterogeneity (H),  
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                                                                                                                           (1) 

 

where S = habitat richness, and     = proportion of home range or core area comprised of habitat 

type  .  

Statistical analysis. One-way Analysis of Variance (ANOVA) was used to test for 

differences among Fish Creek female flycatchers, Fish Creek male flycatchers, and Roosevelt 

Lake male flycatchers in core UD isopleth size, home range size, core area size, home range and 

core area habitat composition (proportion comprised of riparian habitat), home range and core 

area habitat richness, and core area and home range habitat heterogeneity.  The Student-Newman-

Keuls (SNK) test and two-tailed t-tests assuming unequal variances were used for multiple-

comparison testing following statistically significant overall ANOVA tests. Two-tailed t-tests 

assuming unequal variances was also used to test for differences in space use characteristics 

among breeding and non-breeding SWFLs at Roosevelt Lake. Separate ANOVAs were used to 

test differences among all Willow Flycatchers, breeding Willow Flycatchers and non-breeding 

Willow Flycatchers. To meet the assumption of normality, home range and core area size was 

natural log transformed prior to statistical analysis.    

Separate linear regression models were fit to predict home range and core area sizes 

(natural log transformed) based on home range and core area metrics. Maximal home range and 

core area models included the following variables (with model variable name and type in 

parentheses): flycatcher sex (SEX, dummy variable), breeding status (BREED, dummy variable), 

population site (SITE, dummy variable), proportion of home range (HRRIP, continuous variable) 

or core area (CORIP, continuous variable) comprised of mature riparian habitat, and home range 

(HRHETERO, continuous variable) or core area heterogeneity (COHETERO, continuous 

variable).  Models were evaluated with Akaike‘s information criteria for small sample sizes 

(AICc; Burnham and Anderson 2002).  AICc weights were computed by standardizing AICc 
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values across models to sum to 1.0 which provides a measure of each individual model‘s 

likelihood among all models in the model set (Burnham and Anderson 2002). Statistical analysis 

and modeling were conducted using SAS software, version 9.2 (SAS Institute 2008), and an 

alpha=0.05 was assumed for all statistical tests.   

 

RESULTS 

RADIO-TELEMETRY 

In 2003, 2004, and 2005, a total of 93 Willow Flycatchers were radio tagged and tracked 

at Fish Creek and Roosevelt Lake.  At Fish Creek, 13 females, 14 males and 8 flycatchers of 

unknown sex were tracked and 1371 total radio locations were collected.  The number of radio 

locations ranged from 5-95/flycatcher with an average of 39.5 locations/bird.   At least 28 radio 

locations were collected in 24 Willow Flycatchers (female n = 12, male n = 12) at Fish Creek. Of 

the Willow Flycatchers with sufficient radio telemetry locations to estimate home range, 18 were 

categorized as breeding and 6 were categorized as non-breeding (Table 4.1).  Fifty-eight male 

Willow Flycatchers were radio-tracked at Roosevelt Lake from 2003-2005 and 1827 total radio 

locations were collected.  The number of radio locations among the Roosevelt Lake flycatchers 

ranged from 3-71 points with an average of 33 locations/bird.  Sufficient radio locations for 

conducting analysis were collected on 31 male flycatchers out of which 18 were categorized as 

breeding and 13 were categorized as non-breeding.  

 

SPACE USE 

Differences between flycatcher populations in space use were found primarily among 

breeding Willow Flycatchers (Table 4.1).  Male breeding flycatcher‘s mean core area size at Fish 

Creek was significantly larger than the mean size of female Fish Creek flycatcher‘s core areas 

(t15.245 = -4.12, P = <.001) and Roosevelt Lake male flycatcher‘s core areas (t14.262 = 3.58, P = 

.003; Table 4.1).  Similarly, mean home range size was significantly larger for male flycatchers at 
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Fish Creek than for female flycatchers at Fish Creek (t12.374 = -3.32, P = .006) and male 

flycatchers at Roosevelt Lake (t17.311 = 4.67, P = <.001, Table 4.1).  Among breeding birds, female 

flycatchers at Fish Creek had a greater proportion of riparian habitat in their core areas than male 

flycatchers at Fish Creek (t 9.75= -2.17, P = .01) or Roosevelt Lake (t17.27 = 3.92, P <.01). 

Differences in the proportion of riparian habitat in their core areas did not differ between Fish 

Creek males and Roosevelt Lake males (t22.52 = 1.63, P=.12). The mean home range heterogeneity 

in the home ranges of male flycatchers at Fish Creek was significantly greater than the mean 

home range heterogeneity in the home ranges of Fish Creek female (t15.037 = -2.48, P = .03) and 

Roosevelt lake male (t12.677 = 2.38, P = .03) flycatchers.   Finally, among breeding flycatchers, 

Fish Creek male flycatcher home ranges had higher mean habitat richness than the home ranges 

of Roosevelt Lake male flycatchers (t15.181 =  2.49, P = .03). No differences were found in core 

area isopleth size, proportion of riparian habitat comprising the home range, core area habitat 

richness, or core area habitat heterogeneity among breeding flycatchers as a function of site or 

sex.  

In the comparisons across all Willow Flycatchers regardless of breeding status, only 

mean home range habitat heterogeneity differed significantly by population.  Fish Creek male 

flycatcher home ranges were significantly more heterogeneous than the home ranges of male 

Roosevelt Lake flycatchers (t20.983 = 2.63, P = .02; Table 4.1).  Among the non-breeding 

flycatchers, core isopleth size, core area size, home range size, proportion of riparian habitat in 

core areas, proportion of riparian habitat in home ranges, core area habitat richness, home range 

habitat richness, core area heterogeneity and home range heterogeneity were not found to differ 

significantly as a function of flycatcher site or sex (Table 4.1).  

The Seamen et al. (1998) rule was used to identify core areas in each home range.  The 

kernel UD isopleth selected to represent core area did not vary statistically as a function of 

breeding site.  Figure 4.3 displays the total number of times that each probability isopleth was 
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selected to represent the core area boundary.  The average kernel UD size selected was 35% in 

the Fish Creek female flycatcher population, 40% in the Fish Creek male flycatcher population 

and 38.71% in the Roosevelt Lake male flycatcher population (Table 4.1).  

 

 
 

FIGURE 4.3.  Counts of the kernel UD isopleth selected to represent the core area boundary 
using the Seaman et al. 1998 rule for each Willow Flycatcher by breeding site and sex: Fish Creek 
females (pink), Fish Creek males (green), and Roosevelt Lake males (blue).  
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4.1).  Average core area isopleth size was larger in breeding than non-breeding flycatchers (t 28.86 

= -2.19, P = .04). Non-breeding flycatchers maintained larger mean core areas (t14.32 = 2.88, P = 

.01) and mean home range sizes (t13.88 = 2.88, P = .01) than breeding flycatchers.  Other space use 

characters were not found to differ between breeding and non-breeding flycatchers at Roosevelt 

Lake (Table 4.2).  

 

PREDICTING HOME RANGE AND CORE AREA SIZE 

Eighteen models (nine home range and nine core area specific models) were fit to explore 

the relationship between home range and core area size and home range metrics and population 

attributes (Table 4.3). The home range model with the highest AICc weight (0.35) included 

breeding status and home range heterogeneity to predict home range size.  The second most likely 

model (  = 0.17) included the effect of sex in addition to breeding status and home range 

heterogeneity to  predict home range size.  Breeding status was negatively associated with home 

range size while increasing home range heterogeneity was positively associated with home range 

size (Table 4.4). Figure 4.4 illustrates the strong linear relationship between home range habitat 

heterogeneity and home range size and that this pattern appears independent of population. 

The core area model with the highest AICc weight (0.35) included sex, breeding status, 

and core area heterogeneity.  The second most likely model (   = 0.23) included the effect of site 

in addition to sex, breeding status and core area heterogeneity on predicting core area size (Table 

4.4). Both the breeding categorization and female sex were found to have a negative effect on 

core area size while core area heterogeneity and core area size were positively associated (Table 

4.4).  Figure 4.5 illustrates the strong linear relationship between core area habitat heterogeneity 

and core area size as a function of breeding site.   
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TABLE 4.1. Sample size (N), mean, and standard error (SE) of home range and core area metrics for Fish Creek female Willow Flycatchers, 
Fish Creek male Willow Flycatchers, and Roosevelt Lake male Willow Flycatchers further stratified by breeding status with F-statistic and 
P-value from one-way ANOVA analysis.  

 Fish Creek Females  Fish Creek Males  Roosevelt Lake Males    

Metric n Mean SE  n Mean SE  n Mean SE F df P 

 All Willow Flycatchers   

Core isopleth 12 35 2.85  12 40 3.26  31 38.71 38.71 0.68 2,52 .51 

Core area size
a
 (ha) 12 0.23 0.13  12 0.60 0.28  31 1.87 1.87 2.28 2,52 .11 

Home range size
a
 (ha) 12 2.03 0.82  12 4.10 1.72  31 23.69 23.69 1.53 2,52 .23 

Proportion core area riparian
b
 12 0.84 0.07  12 0.72 0.08  28 0.54 0.54 3.15 2,49 .05 

Proportion home range riparian
c
 12 0.58 0.08  12 0.35 0.06  28 0.42 0.42 2.08 2,49 .14 

Core area habitat richness 12 2 0.39  12 2.5 0.36  28 2.07 2.07 0.72 2,49 .49 

Home range habitat richness 12 3.42 0.36  12 4.17 0.27  27 3.30 3.30 2.68 2,48 .08 

Core area habitat heterogeneity 12 0.23 0.09  12 0.41 0.10  28 0.25 0.25 1.54 2,49 .23 

Home range habitat heterogeneity 12 0.51 0.07  12 0.70 0.06  27 0.49 0.49 3.43 2,48 .04 

 Breeding Willow Flycatchers   

Core isopleth 9 32.78 3.24  9 40 4.08  18 41.67 2.39 2.16 2,33 .13 

Core area size
a
 (ha) 9 0.04 0.02  9 0.35 0.12  18 0.08 0.04 11.14 2,33 <.01 

Home range size
a
 (ha) 9 0.87 0.50  9 2.64 0.75  18 0.61 0.26 9.01 2,33 .<01 

Proportion core area riparian
b
 9 0.96 0.03  9 0.75 0.09  16 0.51 0.11 5.13 2,31 .01 

Proportion home range riparian
c
 9 0.31 0.07  9 0.59 0.07  16 0.44 0.09 2.68 2,31 .08 

Core area habitat richness 9 1.44 0.34  9 2.22 0.40  16 1.94 0.11 1.92 2,31 .16 

Home range habitat richness 9 3 0.37  9 4 0.33  16 3.00 0.22 3.42 2,31 .05 

Core area habitat heterogeneity 9 0.09 0.07  9 0.35 0.12  16 0.25 0.04 2.72 2,31 .08 

Home range habitat heterogeneity 9 0.40 0.06  9 0.66 0.08  16 0.44 0.04 4.64 2,31 .02 

 Non-breeding Willow Flycatchers   

Core isopleth 3 43.33 3.33  3 40 5.77  13 34.62 2.15 1.78 2,16 .20 

Core area size
a
 (ha) 3 0.78 0.41  3 1.35 1.06  13 4.34 2.14 0.03 2,16 .97 

Home range size
a
 (ha) 3 5.49 1.97  3 8.49 6.74  13 55.65 29.93 0.01 2,16 .99 

Proportion core area riparian
b
 3 0.47 0.12  3 0.65 0.17  12 0.58 0.12 0.16 2,15 .85 
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aNatural log transformed for analysis, non-tranformed values reported for mean and S.E. 
bProportion of core area comprised of riparian habitat. 
cProportion of home range comprised of riparian habitat.

Proportion home range riparian
c
 3 0.74 0.10  3 0.84 0.05  11 0.39 0.08 1.24 2,14 .32 

Core area habitat richness 3 3.67 0.33  3 3.33 0.67  12 2.25 0.43 1.74 2,15 .21 

Home range habitat richness 3 4.67 0.33  3 4.67 0.33  11 3.73 0.38 1.37 2,14 .29 

Core area habitat heterogeneity 3 0.65 0.12  3 0.60 0.21  12 0.26 0.10 2.58 2,15 .11 

Home range habitat heterogeneity 3 0.81 0.09  3 0.79 0.01  11 0.58 0.08 2.01 2,14 .17 

TABLE 4.2. Sample size (N), mean and standard error (SE) of home range and core area metrics for breeding (breed) and 
non-breeding (non-breeding) Willow Flycatchers at Roosevelt Lake with t statistic, degrees of freedom (df), and P-value 
from two-tailed t-tests assuming unequal variances. 

 n Mean SE    

Metric Breed Non-breed Breed Non-breed Breed Non-breed t df P 

Core isopleth 18 13 41.67 34.62 2.39 2.15 -2.19 28.86 .04 

Core area size
a
 (ha) 18 13 0.081 4.34 0.04 2.14 2.88 14.32 .01 

Home range size
a
 (ha) 18 13 0.61 55.65 0.26 29.92 2.88 13.88 .01 

Proportion core area riparian
b
 16 12 0.51 0.58 0.11 0.12 0.42 24.52 .68 

Proportion home range riparian
c
 16 11 0.56 0.61 0.09 0.08 0.38 24.71 .70 

Core area habitat richness 16 12 1.94 2.25 0.11 0.43 0.71 12.47 .49 

Home range habitat richness 16 11 3 3.73 0.22 0.38 1.64 16.67 .12 

Core area habitat heterogeneity 16 12 0.25 0.26 0.04 0.10 0.10 14.59 .92 

Home range habitat heterogeneity 16 11 0.44 0.58 0.05 0.08 1.54 16.66 .14 
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TABLE 4.3. Candidate models predicting core area and home range size. Models with the 

lowest AICc and highest weights  are best supported. 

Model K
a
 AICc ∆AICc  R

2
 

 Home range  

BREED + HRHETERO 3 36.59 0 0.35 0.42 

SEX + BREED + HRHETERO 4 38.05 1.46 0.17 0.42 

SITE + BREED + HRHETERO 4 38.31 1.72 0.15 0.42 

SEX + BREED + SITE + HRHETERO 5 38.37 1.78 0.14 0.44 

HRHETERO 2 38.77 2.18 0.12 0.37 

SEX + BREED + SITE + HRHETERO + HRRIP 6 39.57 2.98 0.08 0.45 

HRRIP 2 52.49 15.90 <0.001 0.17 

BREED 2 67.55 30.96 <0.001 0.24 

Intercept 1 80.30 43.71 <0.001 0 

 Core area  

SEX + BREED + COHETERO 4 28.67 0 0.36 0.63 

SEX + BREED + SITE +  COHETERO 5 29.51 0.84 0.23 0.64 

BREED +  COHETERO 3 29.61 0.94 0.22 0.61 

SEX + BREED + SITE + COHETERO + CORIP 6 31.24 2.57 0.10 0.64 

SITE +  BREED +  COHETERO 4 31.57 2.90 0.08 0.61 

COHETERO 2 38.35 9.68 <0.001 0.52 

BREED 2 69.82 41.15 <0.001 0.25 

CORIP 2 70.71 42.04 <0.001 0.11 

Intercept 1 83.44 54.77 <0.001 0 
a
Number of model parameters. 

 

 

TABLE 4.4. Coeff c ent est mates (β) and 
standard errors (S.E.) for best fit home range 
size and core area size regression models.  

Variable  β S.E. p 

 Home range  

BREED -0.89 0.44 .05 

HRHETERO 3.91 0.87 <.001 

 Core area  

SEX -0.70 0.42 .10 

BREED -1.24 0.38 .002 

COHETERO 4.39 0.62 <.001 
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DISCUSSION 

In this study, we compared space use metrics in two populations of Willow Flycatchers 

as a function of breeding status and sex.  We expected breeding site to have the strongest 

influence on space use due to differences in habitat structure at Fish Creek and Roosevelt Lake 

however we found that variation in space use across Willow Flycatchers appears to be influenced 

by breeding status and flycatcher sex as well as by breeding site.   

 In the nine space use metrics we examined, only core area habitat heterogeneity did not 

vary statistically by breeding status, flycatcher sex or breeding site.  The lack of variation in core 

area heterogeneity as a function of flycatcher sex, breeding status or site appears to illustrate 

Willow Flycatcher‘s need to breed in mature riparian habitat.  This seems to be especially true for 

the core areas of females which are almost completely comprised of mature riparian habitat.  

Heterogeneity shows little variation among flycatchers because the majority of the core area is 

composed of a single patch of mature riparian habitat.  This finding is consistent with previous 

work that identified little variation in the presence and density of willows at the microplot scale 

within the territories of Willow Flycatchers (Sedgwick and Knopf 1992). 

 

CORE AREA SIZE 

The kernel UD isopleth selected to represent individual flycatcher‘s core areas within the 

home range ranged from 15% to 60% across all Willow Flycatchers we studied with an average 

kernel UD isopleth size of 35% for female flycatchers and 40% for male flycatchers.  Many bird 

space use studies use a 50% kernel UD isopleth to represent core area (e.g. Elchuk and Wiebe 

2003, Vega Rivera et al. 2003). Our use of a rule-based approach to identify core areas suggests 

that the application of the 50% kernel UD isopleth does not accurately reflect the core area of 

most Willow Flycatchers. The 50% kernel UD overestimates the size of core area in the home 

ranges of most the Willow Flycatchers tracked in this study.  The accurate delineation of home 

range core areas is important because behavior has been found to vary in core areas relative to 
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other parts of the home range (Indermaur et al. 2009; Bakian in preparation).  The regular use of 

the 50% kernel UD is likely done for convenience and to facilitate cross-study comparisons.  We 

found the application of a rule-based core area procedure to be straight-forward and easy to 

implement in a GIS framework.  The use of data distribution-driven approaches to delineate core 

area boundaries has been suggested elsewhere (Hodder et al. 1998; Barg et al. 2005, Wilson 

2010) and we also encourage researchers to use non-arbitrary methods of delineating core areas 

whenever possible. 

 

BREEDING FLYCATCHERS 

As we expected, we found that breeding male flycatchers at Roosevelt Lake maintained 

smaller home ranges than male breeding flycatchers at Fish Creek. We hypothesized a priori that 

any observed differences in home range size were due to variation in the distribution and 

structure of breeding habitat at Fish Creek and Roosevelt Lake.  Home ranges of breeding males 

at Fish Creek were more heterogeneous.  Home range size has been found to be inversely related 

to home range quality as home ranges will expand to the point that they encompass resources 

sufficient to optimize fitness (Harestad and Bunnell 1979).  If habitat quality differences are 

driving home range size in Willow Flycatchers then our findings suggest that breeding habitat at 

Fish Creek is of lower quality than at Roosevelt Lake. Our findings and more specifically our 

linear models provide support for the resource-dispersion hypothesis (Macdonald 1983) which 

predicts that home range size will increase with increasing resource patchiness or heterogeneity.  

Riparian habitat patch sizes at Fish Creek are relatively small averaging 1.40 hectares and 

ranging from 0.29 hectares to 2.5 hectares. In comparison, patch sizes at Roosevelt Lake range 

from 0.2 ha to 43 ha (Paxton et al. 2007). Previous research with Southwestern Willow 

Flycatchers has found that they will not nest in mature riparian patches less than 10 meters wide 

(Sogge and Marshall 2000).  In addition, SWFLs have been found to cluster their home ranges 

into small sections of large mature riparian patches while leaving large stretches of riparian 
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habitat unused (Whitfield and Enos 1996, Paxton et al. 1997, Sferra et al. 1997).  Previous studies 

have reported minimum patch sizes of 0.6 ha required for selection by Southwestern Willow 

Flycatchers (Sogge and Marshall 2000). If Willow Flycatchers require buffer zones within habitat 

patches, then the size of mature riparian patches at Fish Creek may be on the smaller end of the 

range of patch sizes that Willow Flycatchers will select for breeding.  Willow Flycatchers may 

limit the density within individual patches at Fish Creek to provide adequate buffer zones within 

patches.  

 

 
FIGURE 4.4.  Relationship between home range habitat heterogeneity and the natural log of 
home range size (ha) as a function of sex and breeding site: Fish Creek females (pink), Fish Creek 
males (green) and Roosevelt Lake males (blue). Adjusted R2 = .35. 
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Conversely, Fish Creek male flycatchers may maintain larger home ranges because 

habitat is not a limiting factor at Fish Creek. Population density and home range size are inversely 

related (Kjellander et al. 2004, Wang and Grimm 2007) and flycatcher density appears to be 

higher at Roosevelt Lake than Fish Creek. However, it has been reported elsewhere that 

flycatchers reach their highest densities in mesic sites (Sedgwick and Knopf 1992) such as Fish 

Creek. Fish Creek flycatcher home ranges may be larger and more heterogeneous because the 

microclimate transitions at habitat boundaries are less abrupt than at Roosevelt Lake where 

riparian habitat is bordered by xeric uplands and open areas. 

The home ranges and core areas of female breeding Willow Flycatchers were smaller 

than the home ranges of male breeding Willow Flycatchers at Fish Creek.  We suspect that 

females at Fish Creek maintained smaller home ranges than males at Fish Creek due to behavioral 

differences during the breeding season. Female flycatchers are required to center their activity 

around the nest site as they are primarily responsible for nest construction and egg incubation 

(McCabe 1991). Conversely, a study by Stafford and Valentine (1985) investigating territory 

sizes in a Willow Flycatcher population in central Sierra Nevada reported larger territory sizes for 

female than male flycatchers. Although female SWFLs were not sampled at Roosevelt Lake, we 

predict based on our findings that the core area and home ranges of female SWFLs at Roosevelt 

Lake are smaller than the core area and home ranges of female and male flycatchers at Fish Creek 

and male SWFLs at Roosevelt Lake.  

 

NON-BREEDING FLYCATCHERS 

In our categorization of breeding versus non-breeding flycatchers, we did not distinguish 

between territorial flycatchers radio-tracked during pre and post-breeding periods, territorial 

unpaired flycatchers and floaters due to small sample sizes in the latter two groups.  Space use 

metrics in radio-tracked non-breeding flycatchers did not appear to be influenced by flycatcher 

sex or population site.  This suggests that when flycatchers are free from the energetic costs of 
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breeding, Willow Flycatchers will expand their home range size.  Alternatively, the opposite 

relationship may exist in which resource availability is more sparse pre and post-breeding and 

flycatchers are increasing their space use during these periods to meet their resource needs. 

Estimates of home range size in Willow Flycatchers during the pre and post-breeding stages may 

also include long-range movements that were conducted to prospect for future territory site 

establishment (Bayne and Hobson 2001).   

 

 

FIGURE 4.5.  Relationship between core area habitat heterogeneity and the natural log of core 
area size (ha) as a function of sex and breeding site: Fish Creek females (pink), Fish Creek males 
(green) and Roosevelt Lake males (blue). R2 = .51. 
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Home range expansion during pre and post-nesting periods has not been observed in 

many bird species. Some studies have found home range size to be consistent across pre-

breeding, breeding, and post-breeding stages in other neo-tropical migrants (Vega Rivera et al. 

2003, Garza et al. 2005) as well as other populations of the Willow Flycatcher (Stafford and 

Valentine 1985). Given the small sample size of floater and territorial, non-mated paired 

flycatchers in our Roosevelt Lake study sample, the trends we identified here do not appear to be 

driven by unmated flycatchers.   

We did not test for differences in space use metrics between breeding and non-breeding 

flycatchers at Fish Creek.  As space use metrics were not found to differ among non-breeding 

flycatchers as a function of breeding site, we feel that the differences observed in space use in 

breeding versus non-breeding flycatchers at Roosevelt Lake may also be common to Fish Creek 

flycatchers. 

MANAGEMENT IMPLICATIONS 

Previous estimates of flycatcher home range and territory size using territory mapping 

techniques range from 0.3 ha in the Sierra Nevada Mountains of California (Flett and Sanders 

1987) to 1.72 ha in the Colorado Rockies (Eckhardt 1979). Problems associated with these studies 

include their reliance upon territorial mapping using re-sight or recapture techniques and their 

focus primarily on male flycatchers.  Territory mapping techniques may underestimate home 

range size (Anich et al. 2009) and our findings suggest that this may be the case with Willow 

Flycatchers. The average home range size for breeding males at Fish Creek is larger than any 

previously reported estimate of Willow Flycatcher home range or territory size.  Willow 

Flycatchers do not vocalize throughout their home range and are difficult to detect when not 

vocalizing (Bakian, in preparation). The area defined by male song is more likely to represent the 

boundary of an individual‘s defended territory rather than the home range.   Resource use patterns 

collected within the territory may not represent the resources acquired from the entire home 
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range. The home range size of female flycatchers, who do not sing conspicuously throughout the 

breeding season, is even more challenging to accurately estimate in the absence of radio-tracking.  

In this study, we found that home range size varies as a function of breeding site, breeding status 

and sex.  This suggests that multiple characteristics of the population need to be considered when 

protecting landscape space for Willow Flycatchers during the breeding season as space use shows 

considerable fluctuation.  To accurately determine which mechanisms are responsible for 

variation in space use, home range characteristics should be considered relative to habitat quality 

and fitness measures.    

Our findings indicate that patterns in space-use among non-breeding Southwestern 

Willow Flycatchers may be relevant to other populations of non-breeding Willow Flycatchers.  

This appears to be the case for both male and female non-breeding flycatchers. Patterns in space 

use in breeding Southwestern Willow Flycatchers do not seem to be generalizable to non-SWFL 

populations whether male or female.  Local factors appear to influence inter-population 

differences in home range size.  Of interest would be to determine if common patterns in space 

use are observed among breeding Willow Flycatchers inhabiting mesic versus xeric areas. If so, 

this would suggest that habitat quality for Willow Flycatchers vary as a function of larger scale 

climatic factors.  
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CHAPTER 5 

CONCLUSIONS 

  Spatial heterogeneity drives ecological processes and impacts population-level dynamics 

(Kareiva 1990).  Given the wide-spread alteration of natural landscapes currently underway, 

understanding how wild populations respond to environmental heterogeneity is more important 

now than ever.  The Willow Flycatcher, a neo-tropical migrant, is a species facing population 

declines throughout much of its range in the western United States (Sedgwick 2000).  

Environmental heterogeneity may impact Willow Flycatcher population dynamics in a variety of 

ways including their dispersal and migration, reproductive fitness, resource selection patterns and 

space use. My research specifically examines the selection of resources for vocalization and 

foraging by Willow Flycatchers at individual and population-level scales, Willow Flycatcher‘s 

use of aquatic and terrestrial prey subsidies, and variation in space use characteristics in two 

geographical disparate populations of Willow Flycatchers.  In combination, the findings I report 

illustrate some ways that Willow Flycatchers respond to spatial heterogeneity. In addition, the 

patterns in resource selection and space use in Willow Flycatchers identified in this study have 

important species-level conservation and management implications. 

 In chapter 2, I formulated spatial Bayesian resource selection functions to investigate 

behavioral resource selection in Willow Flycatchers at individual and population-scales.  Results 

from the individual-level models illustrate the high degree of intraspecific variation in 

vocalization and foraging resource selection exhibited by Willow Flycatchers. Resource selection 

functions are often formulated on a population-level ignoring intraspecific variation in selection 

(e.g. Sawyer et al. 2006, Belant et al. 2010). In addition, wildlife managers typically base their 

conservation plans on inference derived from population-level studies.  However, for species that 

live in a meta-population like the Willow Flycatcher, species management that is done without 
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considering intra-specific variation may lead to deleterious effects over the long-term (Pulliam 

1988).   

 Ecologists increasingly use more and more sophisticated analytical tools to model 

wildlife-environment relationships.  They are improving the realism of their models through the 

use of hierarchical frameworks and the addition of random effects.  In chapter 2, I introduced a 

novel approach to modeling flycatcher behavior using spatial Bayesian resource selection 

functions.  Output from these models was used to produce predictive images of behavior which 

may be interpreted as ―behavioral landscapes.‖  These behavioral landscapes create the link 

between space use and behavior; a link that has been largely missing from resource selection and 

space use research (Lima and Zollner 1996, Marzluff et al. 2001).   

 Sedgwick and Knopf (1992) investigated differences in habitat selection between male 

and female flycatchers.  They observed variation in habitat selection as a function of sex at the 

nest and song perch scale.  My research further elucidates differences in the ecology of male and 

female flycatchers. I compared and contrasted resource selection, and space use among male and 

female flycatchers.  Only subtle differences in diet were observed as a function of sex while 

considerable differences were found in vocalization resource selection and space use 

characteristics. In general, breeding females require less space during the breeding season than 

breeding males as indicated by home range and core area size comparisons.  Interestingly, this 

pattern seems to dissolve during the pre and post-breeding periods. Further, males are more likely 

than females to vocalize from high vegetation perches. Discrepancies in space use among males 

and females are likely the result of sex-specific differences in behavior during the breeding 

season (Gowaty 1996, Sedgwick 2000).  Sex-based behavioral differences may go largely ignored 

when managing wild passerines populations yet the accumulation of sex-specific inference 

improves the feasibility of managing landscapes for both sexes.   
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I observed that vocalization and foraging often occur in spatially disparate areas of the 

home range.  This suggests that multiple core areas exist within the home ranges of Willow 

Flycatchers.  This finding along with the estimates of core area size I made in chapter 4 using the 

Seaman et al. (1998) rule shows that researchers need to reconsider their arbitrary use of the 50% 

kernel UD to represent core area.  This is certainly the case for Willow Flycatchers in which core 

areas appear to be better represented by the 35% to 40% kernel UD than the 50% kernel UD.  In 

addition, the clustered distribution of vocalization behavior indicates that both male and female 

flycatchers do not vocalize throughout their home ranges. Bird researchers need to be aware of 

this when conducting census studies based on sight or sound.   

 Willow Flycatcher‘s selection of alternative habitats for foraging at Fish Creek was an 

unexpected finding. The presence of high-levels of heterogeneity in the flycatcher home ranges at 

Fish Creek suggests that the availability of multiple habitat types may be important to this 

flycatcher population. The use of non-riparian habitats by Willow Flycatchers has not been 

previously documented.  This may be the result of Southwestern Willow Flycatcher based studies 

dominating the literature as SWFLs have not been observed to use alternative habitats for 

foraging during the breeding season (Cardinal 2005).  The use of alternative habitats may be a 

characteristic of Willow Flycatchers inhabiting mesic zones. Further study is required to 

determine if this is a common pattern among Willow Flycatcher populations breeding in mesic 

areas.   

 My research provides evidence that landscape configuration may be important to Willow 

Flycatchers breeding at Fish Creek. The diet component of my study demonstrates that Willow 

Flycatchers consume both aquatic and terrestrial insects.  I found evidence suggesting that adult 

flycatchers are differentially feeding their nestlings predaceous insects.  Other Willow Flycatcher 

studies have observed similar patterns (Prescott and Middleton 1988, Drost et al. 2003, 

Wiesenborn and Heydon 2007, Durst et al. 2008).  At Fish Creek, adjacent habitats such as 
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mountain shrub, upland forest and open water may produce greater numbers of predaceous 

insects than the riparian zone.  Insect prey derived in alternative habitats bordering riparian 

habitat may move into the riparian zone to compliment in situ insect production.   

 This study was conducted in part to determine the relevance of SWFL based studies to 

non-SWFL populations. My research uncovered considerable differences in space use 

characteristics between flycatchers as a function of breeding site and breeding status.  Breeding 

status was found to influence home range characteristics as non-breeding flycatchers used larger 

areas of the landscape than breeding flycatchers.  Similar patterns in space use characteristics 

were observed in non-breeding flycatchers regardless of breeding site.  This suggests that Willow 

Flycatchers use the largest portion of the landscape towards the beginning and end of the Willow 

Flycatcher breeding season. Conversely, space use patterns have been found to be largely 

consistent across the entire breeding season in other neo-tropical migrants (Vega Rivera et al. 

2003, Garza et al. 2005). Differences in space use among breeding flycatchers as a function of 

breeding site indicates that it is inappropriate to apply information gleaned from SWFL-based 

studies to manage non-SWFL populations.   

 In conclusion, in this study, I tested Willow Flycatcher‘s response to environmental 

heterogeneity, developed a novel modeling approach to analyze behavioral resource selection, 

and increased our understanding Willow Flycatcher ecology.  This was the first study that I am 

aware of that compared and contrasted space use in different populations of Willow Flycatcher. 

Finally, future research projects and improved Willow Flycatcher management plans may 

develop out of this study‘s major findings.  
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(c) 

(d) 

Fig. A.1. WIFL #1 observed (a) vs. fitted (b) vocalization behavior, and observed (c) vs. fitted (d) 
foraging behavior. 
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(c) 

 
           (d) 
Fig.A.2. WIFL #1 mean predicted vocalization behavior with prediction grid locations (a), 
standard deviation predicted vocalization (b), mean predicted foraging with prediction grid 
locations (c), and standard deviation predicted foraging (d).
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Fig. A. 3. Comparison of approaches to visualizing home range space use: 95% utilization 
distribution (UD, black outline) using a fixed-kernel estimator (a), probability of vocalization 
behavior within 95% utilization distribution from fitted Bayesian generalized linear spatial 
model, scale ranges from 0.0 (dark blue) to 1.0 (red) (b), and probability of foraging behavior 
withing 95% utilization distribution from fitted Bayesian generalized linear spatial model, scale 
ranges from 0.0 (dark blue) to 1.0 (red). Nest site location represented by gold star. 
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