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ABSTRACT 

 
Investigation of Joining Micro-Foil Materials with Selective Laser Sintering  

and Laser Powder Deposition 

 
by 
 
 

Andrew I. Deceuster, Master of Science 
 

Utah State University, 2009 
 
 

Major Professors: Dr. Gary Stewardson and Dr. Leijun Li 
Department: Engineering and Technology Education 
 
  
 Continuous and pulse selective laser sintering and laser powder deposition were 

used to find a solution to the manufacturing of micro-foil lattice structured components. 

A full factorial test matrix was used for each process to determine the processes 

capability to produce continuous tracks for joining the micro-foil materials. The samples 

were evaluated for dimensional profiles, distortion, and cycle times, to develop selection 

criteria for implementation of the processes into industry. 

 The selective laser sintering processes were able to join the micro-foil materials 

into lattice structures with continuous tracks. The laser powder deposition processes were 

not able to properly join the micro-foil materials into lattice structures. The end results 

showed that micro-foil lattice structures can be produced using continuous and pulse 

selective laser sintering.  

(95 pages) 
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CHAPTER I 
 

INTRODUCTION 

 
 The solution for many engineering problems has required the design of 

components incorporating lattice structures. A lattice structure is an open framework of 

overlapped, interlaced, or expanded materials, usually in a perpendicular or diagonal 

pattern. Figure 1 depicts a typical overlapped lattice structure. The lattice structure 

provides many different characteristics that make it a feasible solution to a variety of 

applications. Depending of the geometric design, lattice structures can provide rigidity, 

flexibility, expandability, and/or compressibility. The materials in the lattice structures 

can be designed to act as a sieve or screen by designing the slot width in between the 

materials to a desired specification. These characteristics have made the use of lattice-

structured components useful in solving a variety engineering problems. The use of 

micro-foil materials has now begun to be incorporated into the design of these structures 

as seen in Figure 2. The joining of micro-foil materials together to form a lattice-

structured component presents a variety of new manufacturing problems.   

Figure 1. Graphic representation of a typical lattice structure. 
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Figure 2. CAD model of a micro-foil structured well screen with micro-foil thickness of 
0.25mm with 0.25mm slots in between each micro-foil.  
 
 
 Joining technologies on large-scale lattice structures are quite common and 

include, fusion welding, resistance welding, brazing, soldering, epoxy bonding, and 

cutting for expanding. The use of these technologies for joining micro-foil materials has 

proven difficult. When subjected to the traditional joining technologies, micro-foil 

materials tend to burn through, distort, or form weak bonds. The material’s size has 

become a limiting factor in the design of lattice-structured components due to the 

limitations of current joining technologies.  

 Two technologies that have limited research as a means for creating the lattice 

structures in micro-foil components is selective laser sintering (SLS) and laser powder 

deposition (LPD). Both technologies use a laser for the joining process, which allows for 

detailed and controllable joining. SLS and LPD both utilize a powder metal filler material 

that would be melted to join the micro-foils together. The powder filler material will 

create the cross braces for structural support. Additional cross brace materials are not 

needed with these processes. Both processes may provide a feasible solution to the 
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problem of joining micro-foil materials into a lattice structure.  

 With the ability to join micro-foil materials together in these structures, many 

different industries would benefit from this technology. The thermal management 

industry has limiting factors on the conventional production of heat sinks. Bonded fin 

heat sinks are limited by 30:1 to 50:1 fin height to gap ratio. Figure 3 shows the aspect 

ratio of a heat sink. The fin thickness is limited to 0.2mm to 0.5mm. Using a lattice 

structure to hold the micro-foil materials, micro-foils down to 0.025mm thickness with 

height gap rations exceeding 50:1 would be possible. This would alleviate many of the 

design constraints on bonded fin heat sinks, allowing for better designed heat sinks to be 

manufactured.  

Another industry looking for similar solutions is the drilling industry, which uses 

well screens in the drilling process. Whether it is in the water or petroleum drilling 

industry, they both require screens in the bottom of the wells to keep large debris from 

flowing into the well. With the current oil prices, many companies have looked into 

 
Figure 3. Graphic representation of an aspect ratio for a heat sink (Thermshield, 2008). 
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relining or redrilling old shallow wells. An expandable lattice structure would allow the 

screen to be used in the recasing process. The use of micro-foil materials would increase 

the efficiency of the screen and allow for precise debris size filtration. Currently, well 

screens can be designed to a desired slot size for filtration but thicker materials must be 

used as seen in Figure 4. This thicker material decreases the efficiency of the screen by 

decreasing the amount of flow area available. The use of micro-foil lattice structured 

screens would allow for expansion and contraction of the screen, while still allowing for 

precise debris filtration without sacrificing the efficiency of the screen.  

Many other industries can benefit from this technology, including the composites 

industry, biomedical industry, and nuclear industry. Each industry has its own specific 

application that requires the joining of micro-foil materials together into lattice structures. 

With a solution to the joining of micro-foil materials into a lattice structure, new designs 

will be able to incorporate these structures and many existing designs maybe modified to 

 

Figure 4. Current well screen design that must incorporate support rods and thicker v-
shaped wire to achieve joining. (DMC Drillquip, 2008) 
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incorporate the new manufacturing process.   

 
Statement of the Problem 

 
 Solutions to current engineering problems require the use of micro-foil materials 

being joined into lattice-type structures. Traditional processes used to join micro-foil 

materials have a strong tendency to burn through, distort, or form weak bonds. Currently, 

there is not a feasible method for joining micro-foil materials into lattice structures. Since 

a new joining method is needed for the joining of the micro-foil materials, research is 

needed to find a solution to this joining problem and establish selection criteria for the 

solution.    

 

Statement of the Purpose 

 
 The purpose of the study was to investigate the use of continuous and pulse SLS 

subprocesses and continuous and pulse LPD subprocesses for the purpose of joining 

micro-foil materials into a lattice structure and to establish selection criteria for the 

acceptable subprocesses. The following subproblems were investigated to determine the 

capability of each subprocess and create selection criteria. 

1. To identify the samples produced by the four subprocesses as continuous or 

discontinuous based on track continuity. 

2. While maintaining continuous track continuity, identify the maximum and   

minimum dimensions obtainable for track penetration and width to establish selection 

criteria for various applications.  
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3. To characterize the subprocesses based on distortion and cycle time values to 

further establish selection criteria for various applications.  

 
Statement of Need 

 
 A variety of industries are currently limited in their ability to design and produce 

many different components. Joining limitations in the thermal management industry can 

restrict bonded fin heat sinks to certain aspect rations of 30:1 to a maximum of 50:1. Well 

screens for the petroleum and water drilling industries have limited flow efficiencies 

based on the minimum thickness of the materials needed to still achieve proper joining. 

Other industries such as the bio-medical, nuclear, and sieve, all have limitation on 

designs based on the same joining limitations. New joining processes for micro-foil 

material with selection criteria could push the design envelope further in all of the 

previously mentioned industries. Industries need this technology if they are to continue to 

increase their design potential.   

 

Statement of Procedure 
 

The procedure for this thesis was as follows. 

1. Reviewed the current literature on SLS and LPD to find parameter setting for 

the study. 

2. Created parameter matrix to use for the different processes. 

3. Produced samples for the study based on a current design incorporating 

micro-foil materials in a lattice type structure for the well industry. 
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4. Ran the experiments according to the parameter matrix. 

5. Sectioned and polished the samples to measure the profile dimensions. 

6. Measure the distortion and calculate values for the cycle times. 

7. Established selection criteria based on the continuity of the tracks, profile 

dimensions, distortion, and cycle times. 

 

Statement of Limitations 
 

The following limitations were inherent in the study. 

1. The laser systems selected were a 500 W Hass HL506D and a 50 W Hass 

HL54P. 

2. The results were limited to the range of parameter settings achievable by the 

laser systems. 

3. The spot size of the laser was 1mm in diameter.   

4. The micro-foil and powder materials were 316 stainless steel. 

5. A single gap distance and micro-foil thickness of 0.20 mm was used. 

 
Statement of Assumptions 

 

The following assumptions were made in this study. 

1. The parameter setting ranges of the laser systems would be adequate for 

initially studying the subprocesses. 

2. The transition points for forming continuous tracks to discontinuous tracks 

would be in the range of the parameter settings. 
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3. Enough data would be gathered from the parameters selected to form selection 

criteria for the subprocesses to make the study useful for industrial application.  

 
Terminology and Acronyms 

 

The following working definitions were used in this thesis. 

1. CAD: Computer-Aided Design 

2. LPD: Laser Powder Deposition 

3. Micro-foil: A material with a thickness of 250-25 micrometers, which falls 

between sheet metal gauges and nano-scale materials.   

4. SLS: Selective Laser Sintering 

5. Subprocess: A division of the SLS or LPD processes based on laser type. 

6. SS: Stainless steel 

7. Track: The resulting metal deposit created by the scanning laser. 

8. Cycle time: The time required to complete a process. 

9. Continuous tracks: Tracks that did not contain any breaks, cracks, or lack of 

bonding to the substrate. 

10. Discontinuous tracks: Tracks that contained breaks, cracks, and lack of 

bonding to the substrate. 

11. Cumecs: Cubic meter per second. 

12. Mushy zone: Refers to the region adjacent to the track where the temperature 

was between the liquidus and solidus state of the material. The area was comprised of 

connected round nodules of powder. 
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CHAPTER II 

REVIEW OF LITERATURE 
 
 

Introduction 
 
 
 The purpose of this review of literature is to describe the current state of research 

of laser-based manufacturing for the production of micro-foil material lattice structures. 

Limited information is available on the use of SLS and LPD for the production of lattice 

structures. So in this review of literature past studies detailing the process characteristics 

of the SLS and LPD processes were used. The information will be presented in three 

main sections. Two of the sections will review the two major types of laser 

manufacturing that will be used: SLS and LPD. The third section will cover the current 

and past manufacturing methods. 

 
Selective Laser Sintering 

 
 

Traditionally, SLS is a rapid prototyping process that uses a laser to fuse powder 

materials together. The goal of this rapid prototyping process is to produce a finished 

product from a three-dimensional (3D) CAD model in a single manufacturing process. 

Due to limitations in SLS, thin films cannot be produced based on the laser spot size and 

other effects. The incorporation of thin films into the process would allow it to produced 

thin film parts of similar material with complete metallurgical bonds. SLS can provide 

another technique for producing these types of parts without needing to braze or solder.  

 SLS is carried out in a controlled atmosphere container with two chambers.  One 
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chamber is the feed chamber and the other is the build chamber. The feed piston is raised 

and the leveling roller transfers the powder to the build chamber. After each scan of the 

infrared laser, the building piston is lowered and the next layer of powder is transferred. 

This is done layer by layer until the part is completed as shown in Figure 5.  

Many different types of laser sintering have been developed over the years.  Some 

of the first processes used photosensitive resin, which created very brittle parts that could 

be used as visual aids and indirect molds for casting (Katz & Smith, 2001). Other version 

of the process used a metal-polymer powder mix to produce parts.  The polymer had to 

be used as a binder for the metal powder and needed to be removed after laser sintering.  

The porous structure was then filled with copper or bronze to fill the space left by the 

polymer (Su, Erasenthiran, & Dickens, 2003). A composite blend of metal has also been 

used. One metal has a low melting temperature, while the second has a higher melting 

 

 
 

Figure 5. Graphic representation of the SLS process (Morgan, Sutcliffe, & O’Neill, 
2004). 
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temperature.  The lower melting point material would act as the binder in the matrix and 

hold the unmelted powder together (Su et al.). Many problems were associated with these 

processes, from brittleness to lack of heat resistance. 

 For SLS to make fully functional components, the process needs to produce parts 

that are similar in physical and chemical properties as the traditional powder metallurgy 

processed materials.  This required that single metal powders be used with no binder. The 

powder would then have to be directly melted and fused to other layers of previously 

melted powder (Morgan et al., 2004). 

 Numerous problems are associated with this version of SLS. When the laser 

initially scans the surface of the cold powder bed, there is an initial ball that forms from 

the high surface tension of the bed (Su et al., 2003; Tolochko et al., 2004). The surface 

tension creates a steep contact angle, limiting the wettability of the liquid pool 

(Agarwala, Bourell, Beaman, Marcus, & Barlow, 1995). The oxides in the powder add to 

the surface tension (Morgan et al., 2004; Simchi, 2006). The high surface tension causes 

the bead to form on the surface of the powder bed instead of penetrating into the bed. The 

beads then begin to develop pores in between each pass because the roots cannot be 

reached by the laser (Xiao & Zhang, 2007). The initial balling and any other balling that 

can occur in the track will deplete powder from the surrounding powder bed, which leads 

to more problems with nonuniform density, as seen in Figure 6. 

Thermal stresses are a similar problem like balling in the process. Most often this 

means that the part is not dimensionally correct and needs further machining to be a 

useable part. Many thermal issues are inherent with the process, and even more so some 
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Figure 6. Picture of a ball forming in the powder bed with the surrounding powder 
having been pulled into the ball (Tolochko et al., 2004). 
 
 
thermal issues are dependent on the part being made. The issue of curl has been very 

apparent in tracks that are made without a support base plate. When parts require long 

tracks to be made, there is an issue with distortion, cracking, and Christmas tree defects 

(Simchi, 2006). The non-uniform heating causes these problems to occur. Cracking is 

commonly seen and it is possible to have the delaminating of layers from the thermal 

stress.  Preheating the bed has shown to help alleviate the effect of the thermal stress 

(Morgan et al., 2001). 

Track profile has become another issue in the process. The combination of laser 

power and travel speed has been shown to produce different types of track profiles, as 

seen in Figure 7 (Childs, Hauser, & Badrossamay, 2004; Childs, Hauser, & Badrossamay, 

2005).  Figure 8 shows the combination of these two parameters and the corresponding 

track profiles, which can be seen in Figure 3. The characteristics of the powder bed have 

been shown to effect the track profile but not as much as the two previously mentioned  
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Figure 7. A picture showing the different track profiles formed in the powder bed  
(Childs, Hauser, & Badrossamay, 2005). 
 
 
 

 

Figure 8. A graph depicting the relationship between laser power and scan speed on  
stainless steel and the type of track formed as seen in Figure 7 (Childs et al., 2004). 
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parameters (Bugeda, Cervera, & Lombera, 1999; Chatterjee, Kumar, Saha, Mishra, & 

Choudhury, 2003). 

Producing thin film parts using SLS will involve all of the previously mentioned 

problems or issues. The major issues being: bonding between the powder tracks and thin 

foils, balling in the powder track, and thermal stresses distorting the final product. More 

research is needed to overcome these three main issues in the SLS process for the 

production of thin film components.  

 
Laser Powder Deposition 

 
 Laser powder deposition is the combination of rapid prototyping and laser 

welding with powder filler material. The process grew out of a need for new repair and 

fabrication techniques (Mazumder, Dutta, Kikuchi, & Ghosh, 2000). For this study, laser 

welding with powder filler version of LPD is the most similar process because thin 

materials are being welded together, but because of the numerous studies and research 

done on the rapid prototyping versions of LPD, they will be included in this review. 

Similar to SLS, LPD has its advantages and disadvantages, though they differ from those 

found in SLS. The advantages and disadvantages as they relate to process capability for 

the production of thin film parts will be discussed.  

In LPD, a laser is used to form a molten pool on a substrate in an inert 

atmosphere. Laser used in the process include Nd:YAG, CO2, and fiber. While the laser 

is forming a molten pool, powder is fed through a powder feeder to a nozzle delivery 

system. Multiple powder feeders can be used to control deposit composition. The nozzle 
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systems vary from single, multiple, and coaxial nozzles. The powder is injected into the 

molten pool to form a weld bead or deposit. The 3-D model is then traced out and built 

up until completion. Figure 9 shows the general setup for the LPD process.  

Many process characteristics of LPD are defined by the characteristics of the 

laser. The focal spot size of the laser determines the size of the features that it can 

produce. This becomes a limiting factor in the production of thin film components. The 

current systems will not allow the laser spot size to be made small enough to produce foil 

material members, so this eliminates the process from producing the part in an additive 

manner. The laser also has many thermal characteristics that are both advantageous and 

process limiting. The use of lasers creates a small concentrated heat source that, when 

compared to other welding processes, provides very little heat input. Due to the thin 

layers numerous passes of the laser are required for certain geometries. Distortion and 

  

 

Figure 9. A graphic representation of the laser powder deposition process using multiple 
powder feeders (Lewis & Schlienger, 2000). 
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residual stress start to become an issue the taller the part gets (Mazumder et al., 2000). 

Figure 10 shows two different scenarios, one with thermal feedback to control layer 

height and the other with no feedback. Without the thermal feedback, the parts can 

become very deformed. In crack sensitive alloys, this becomes very detrimental. If the 

part becomes too distorted, excessive secondary machining would be required to correct 

the parts.  

The use of the laser can also be advantageous in the production of certain 

microstructures in the part (Corbin, Toyserkani, & Khajepour, 2003). The rapid heating 

and solidification produces very fine grain structures with excellent mechanical 

properties (Song, Deng, Chen, Hu, & Li, 2006; Yellup, 1995). Figure 11 shows the fine 

grain structures that are achievable this LPD. This also allows for the production of 

directionally solidified parts, typically seen in the turbine industry. In certain materials, 

the rapid solidification produces undesirable microstructures, but as the laser passes over 

the previous layer it can be used to temper or change the undesired microstructure 

(Majumdar, Pinkerton, Liu, Manna, & Li, 2005; Pinkerton & Li, 2004). 

 
Figure 10. Picture of two different builds, one with feedback controls on the left and one 
with no feedback on the right (Mazumder et al., 2000). 
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Figure 11. Picture shows the rebuilt area and substrate. The microstructure of the rebuild 
can also be seen (Song et al., 2006). 
 
  

The powder feeding system determines the process characteristics to the same 

extent that the laser does. The high velocity of the powder out of the nozzle and into the 

molten pool will not allow for all of the powder to become fully molten. In some 

instances the deposit consists of fully melted, partial melted and unmelted powder 

material. This type of structure leads to issues with porosity and oxide inclusions 

(Pinkerton & Li, 2004). This lack of complete melting also contributes to a higher level 

of surface roughness, which is usually only evident on the surface layer (Mazumder et al., 

2000; Pinkerton & Li, 2004). The roughness can lead to porosities forming in the weld 

boundaries. The powder size will also control the density of the part similar to the SLS 

process (Lewis & Schlienger, 2000).  

Unlike the SLS process where there is no turbulence; LPD can produce turbulence 
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from the powder being injected at high velocities. The substrate is typically a flat plate or 

the build up is wide enough to avoid creating turbulence. Figure 12 shows the results of 

experimental and simulation of powder flow around an edge joint. The edge of a part is 

typically where turbulence is formed and a disruption in part uniformity is seen (Lin & 

Hwang, 2001).  

Although LPD has possible issues with turbulence, it has advantages in its ability 

to change filler alloy in mid process. Multiple powder feeders can be used each 

containing differ alloys and each one can use different flow rates to alter the alloy 

composition at anytime in the process, unlike the SLS process which uses one single 

filler alloy composition (Lewis & Schlienger, 2000). Figure 5 shows the use of multiple 

powder feeders in the LPD process. The use of multiple powder feeders also allows for 

 

 

Figure 12. A graphic model of the powder flow around the joint being welded (Lin & 
Hwang, 2001). 
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the control of microstructure. The use of different fillers can control segregation, carbide 

formation, and mechanical properties (Qian, Lim, Chen, & Chen, 1997). The system can 

use the powder feeders with a camera relay system to monitor the weld deposit and 

control the flow rate to control the deposit geometry. Figure 13 shows the typical multi-

sensor layout for controlling the height of the deposits. This allows for the system to 

make corrections as needed, which increases repeatability and improves the overall 

quality of the process (Mazumder et al., 2000). 

The use of multiple powder feeders and sophisticated software makes LPD a 

versatile process. However, very little has been done using LPD as a traditional welding 

process. Most research done on LPD has been done on flat plate (Yellup, 1995). Still, 

 

Figure 13. A graphic representation of multiple photodecetors used to monitor the build   
height (Mazumder et al., 2000). 
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there is some research in which it has been used to fill v-grooves and welding edge joints 

(Lin & Hwang, 2001; Song et al., 2006). Research has been performed using wire for 

filler with even few studies using powder material for the filler (Missori & Sili, 2000; 

Sun & Kuo, 1999).  Although more research has been done on just using flat plate to 

build up a part more research is needed to find out the potential LPD has as welding 

process. 

 Using LPD will involve all of the previously mentioned issues. The major issues 

being: bridging the gap between each thin film, avoiding turbulence from the preplaced 

materials, and thermal issues. Controlling these major issues will be critical in producing 

a final part. More research is needed to over come these major issues in the LPD process 

for the production of thin film components.  

 
Traditional Manufacturing Processes 

 
 
 The traditional manufacturing processes for producing lattice structured 

components involved four major joining processes. These four processes are: welding, 

brazing, soldering, and epoxying. These techniques have their advantages but still have 

numerous disadvantages when compared to the possibility of using SLS or LPD. The 

traditional processes will be discussed in further detail as they relate to the manufacturing 

of thin film components. 

 Arc welding is readily used when lattice structured components are designed with 

thicker sections. Typically, on the thinner sections resistance welding has been readily 

used. In the production of well screens, resistance welding has been limited to thicker 
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sections and would not qualify as micro-foil materials. Resistance welding requires high 

pressure and electrical flow. The pressure would cause the micro-foil materials to deform. 

Autogenous laser welding has also become popular for welding micro-foil materials, but 

is limited to certain joint geometries (Li, Gobbi, Norris, Zolotovsky, & Richter, 1997; Xie 

& Kar, 1999). Welding does provide the advantage of a complete metallurgical bond that 

would allow for better heat transfer in heat sinks. However, the main draw back to any 

welding process is the distortion associated with the high temperatures needed for 

welding. The process characteristics of welding decrease its feasibility for joining micro-

foil materials. 

 Brazing and soldering offer an advantage over welding on the distortion issue. 

Less heat input is needed due to the lower melting temperatures of braze or solder filler 

materials. As a result, the distortion can be better controlled. However, other issues arise 

from the process characteristics. Brazing and soldering work by capillary action to 

transport the filler materials into the joints. Capillary action limits the minimum spacing 

between micro-foils in a lattice structure. When the spacing becomes to close, the 

capillary action pulls the filler into the spacing instead of just the joint. The spacing 

distance can reach another minimum, where the surface tension has become to high. The 

surface tension at this point will not allow the filler material to enter the lattice structure.  

 Brazed and soldered joints have different mechanical properties due to dissimilar 

base and filler material. Heat transfer efficiency decreases from this difference. Similarly, 

the strength of the joint decreases as well. The loss of heat transfer is an issue for the 

thermal management industry, while strength loss is not. The opposite is true for the well 
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screens in the drilling industry. 

 The use of epoxy has its own advantages and disadvantages, which differ from 

those of welding, brazing, and soldering. Since there is no heat involved in epoxying, 

there is no distortion associated with it. Epoxying is a relatively quick and easy process 

with high strength. However, the epoxy is very brittle and does not allow for expansion 

and contraction of the lattice structures. The epoxy will also have the tendency to become 

weathered or aged and lose strength over time, especially when exposed to heat or UV 

radiation. The epoxying process becomes mostly limited to the thermal management 

industry.    

 
Summary 

 

 The traditional joining processes have limitations for joining micro-foil materials 

into lattice structures. Distortion, strength, and heat are limiting factors in these 

traditional processes. To overcome these limiting factors, SLS and LPD have been used 

to join micro-foil materials into lattice structures. The process characteristics of SLS and 

LPD alleviate many of the disadvantages of the traditional processes, making them ideal 

for joining micro-foil materials into lattice structures. 
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CHAPTER III 
 

METHODOLOGY 
 

 
Project Description 

 
 

The purpose of this study was to investigate the use of SLS and LPD processes in 

the joining of micro-foil materials. Continuous and pulse lasers were used as 

subprocesses in the SLS and LPD main processes to produce samples. Parameter 

matrices were created and used for testing the four subprocesses. The processed samples 

were categorized and evaluated to determine the characteristics of each process.    

 
Study Layout 

 
 
 Previous studies have not covered the joining of spaced micro-foil materials with 

powder filler material. The prior studies either focused on single open root joining of foil 

materials or laser sintering of a pure powder. To efficiently and effectively study the 

joining of spaced microfoil materials with powder filler, a two phase design was used for 

acquiring the results for this study. The purpose of the initial phase of the study was to 

categorize the processes by track formations produced. The categorization by track 

formation of the processes allowed for the elimination and retention of certain processes. 

The early elimination of processes that did not produced continuous tracks enabled 

greater focus on those processes showing potential success. A small test matrix was used 

in the initial phase for each process to gain a basic understanding of parameter effect and 

to provide a better format for the test matrices in the final phase. The continuous laser 
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subprocesses studied the variables of power and travel speed, while the pulse laser 

subprocesses studied the variables of power and pulse duration.  

 Following the initial phase, the final phase further identified the capabilities of 

the processes. The final phase provided an expansion of the test matrices that identified 

the limit ranges for each variable and ideal setting for the processes. In addition, an 

increased sample size in the final phase provided better validity for trends seen in the 

data. The results of the initial phase provided a logical starting point for data collection in 

the final phase, identifying solutions to the joining of spaced micro-foil materials with 

powder filler. 

 
Initial Phase 

 
 

Sample Preparation 
 

The samples used in the initial phase required the use of micro-foil material, 

narrow spacing, and standardization between samples. A fixture was constructed to meet 

the requirements of the samples. The micro-foil material used in the study was 316 

stainless steel (SS), with a thickness of 0.20 mm. The 316 material was sheared into strips 

measuring 6.35mm by 25.4mm. The fixture was used to hold the 316 SS micro-foil 

materials with a spacing of 0.20 mm between each piece of material. The spacing was 

achieved by placing a 0.20 mm thick copper strip in between each of the 316 SS strips 

that was recessed 3mm below the top of the SS strips. The clamping feature of the fixture 

was then used to secure the micro-foil materials for joining. A 0.30mm variation in the 

top of each stainless steel strip was permitted for the initial phase. The additional 
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tolerance allowed in the initial phase enabled observations to be made on the effect of 

height variation. Upon completion of joining the materials, the copper strips were 

removed and the samples were sectioned to separate them individually. The fixture 

clamping the micro-foil materials can be seen in Figure 14.  

 
Initial Phase  

Two subprocesses of SLS samples were produced in the initial phase. The first 

subprocess was produced using a 500-watt continuous laser (Hass HL506D) and the 

second subprocess using a 5-kilowatt pulse laser (Hass HL54P). The parameters used in 

the test matrices for the initial phase for the SLS subprocesses can be seen in Tables 1 

and 2. The variables manipulated for continuous laser SLS subprocess were power and 

travel speed. The initial phase values selected for study were similar to those used in 

other studies. A sample size of 16 was selected for the initial phase to find a logical range 

to further study in the final phase. The previous studies had used sample sizes much  

 

 

Figure 14. The large fixture used to produce the samples for the initial and final phases. 
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Table 1 
 
Parameter Settings for the Continuous SLS Subprocess in the Initial Phase 
 

Samples Power (W) Travel speed (mm/sec) 
1 400 1.0 
2 400 2.0 
3 400 3.0 
4 400 4.0 
5 300 1.0 
6 300 2.0 
7 300 3.0 
8 300 4.0 
9 200 1.0 

10 200 2.0 
11 200 3.0 
12 200 4.0 
13 100 1.0 
14 100 2.0 
15 100 3.0 
16 100 4.0 

 
 
 
Table 2 
 
Parameter Settings for the Pulse SLS Subprocess in the Initial Phase 
 

Samples Power (kW) Pulse duration (ms) Pulse frequency (Hz) Travel speed (mm/sec) 
1 4.0 8.0 1.0 0.25 
2 4.0 6.0 1.0 0.25 
3 4.0 4.0 1.0 0.25 
4 4.0 2.0 1.0 0.25 
5 3.5 8.0 1.0 0.25 
6 3.5 6.0 1.0 0.25 
7 3.5 4.0 1.0 0.25 
8 3.5 2.0 1.0 0.25 
9 3.0 8.0 1.0 0.25 

10 3.0 6.0 1.0 0.25 
11 3.0 4.0 1.0 0.25 
12 3.0 2.0 1.0 0.25 
13 2.5 8.0 1.0 0.25 
14 2.5 6.0 1.0 0.25 
15 2.5 4.0 1.0 0.25 
16 2.5 2.0 1.0 0.25 
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larger, however, a smaller sample size was chosen due to the unknown factor of the 

incorporation of the micro-foil materials (Childs et al., 2004). The variables that were 

manipulated for the pulse laser SLS subprocess were power and pulse duration. The 

values selected for the initial phase were similar to those used in other studies, though 

few studies have been performed using a pulse laser (Su et al., 2003). The sample size 

was 16 for the same reasoning as the continuous laser. The frequency and travel speed 

were held constant to produce a constant distance between pulses. The pulses were 

spaced 0.25mm apart to achieve a 75% overlap.  The spaces in the samples were filled 

with a 316 SS powder of mesh size 125-325. Argon shielding was supplied through a 

shielding nozzle at a flow rate of 0.014 cumecs. The lasers were then used to join the 

materials with a 1mm focal spot size by scanning the surface of the micro-foils and 

powder at certain parameter settings seen in Table 1 and 2. The joining was done 

perpendicular to the direction of the micro-foil materials. Figure 15, shows a graphic 

representation of the SLS subprocesses. 

 

Figure 15. Graphic depiction of the selective laser sintering process being used to join the 
micro-foil materials. 
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Laser Powder Deposition in the  
Initial Phase 
 

Two subprocesses of LPD samples were produced in the initial phase. The first 

LPD subprocess was produced using a 500-watt continuous laser (Hass HL506D) and the 

second LPD subprocess was produced using a 5-kilowatt pulse laser (Hass HL54P). The 

parameters used in Phase 1 of the LPD subprocesses can be seen in Table 3 for the 

continuous laser subprocess and Table 4 for the pulse laser subprocess. Tables 3 and 4 

had matching parameters to Tables 1 and 2 to allow for comparison of the SLS and LPD 

processes. The LPD subprocesses used the same fixture as the SLS subprocesses. The 

samples sizes were 16 for both the continuous and pulse LPD subprocesses. The sample  

 
Table 3 
 
Parameter Settings for the Continuous LPD Subprocess in the Initial Phase  
 

Samples Power (W) Travel speed (mm/sec) 
1 400 1.0 
2 400 2.0 
3 400 3.0 
4 400 4.0 
5 300 1.0 
6 300 2.0 
7 300 3.0 
8 300 4.0 
9 200 1.0 

10 200 2.0 
11 200 3.0 
12 200 4.0 
13 100 1.0 
14 100 2.0 
15 100 3.0 
16 100 4.0 
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Table 4 
 
Parameter Settings for the Pulse LPD Subprocess in the Initial Phase  
 

Samples Power (kW) Pulse duration (ms) Pulse frequency (Hz) Travel speed (mm/sec) 
1 4.0 8.0 1.0 0.25 
2 4.0 6.0 1.0 0.25 
3 4.0 4.0 1.0 0.25 
4 4.0 2.0 1.0 0.25 
5 3.5 8.0 1.0 0.25 
6 3.5 6.0 1.0 0.25 
7 3.5 4.0 1.0 0.25 
8 3.5 2.0 1.0 0.25 
9 3.0 8.0 1.0 0.25 

10 3.0 6.0 1.0 0.25 
11 3.0 4.0 1.0 0.25 
12 3.0 2.0 1.0 0.25 
13 2.5 8.0 1.0 0.25 
14 2.5 6.0 1.0 0.25 
15 2.5 4.0 1.0 0.25 
16 2.5 2.0 1.0 0.25 

 

 
size was kept smaller for the same reasoning as discussed in the SLS section. The LPD 

processes used a powder feeder to inject the powder into the weld pool formed by the 

laser. The powder feeder used compressed argon as the carrier gas for the 316 ss powder 

of mesh size 125-325. The powder was feed through a nozzle at an angle of 45 degrees 

off of the sample. The powder feeder was set to a flow rate of 20g/min. The focal spot 

size of the laser was 1mm and the joining was done perpendicular to the micro-foil 

materials. Figure 16 shows a graphic representation of the LPD process. 
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Figure 16. Graphic representation of laser powder deposition being used to join the   
micro-foil materials. 
 
 

Final Phase 
 
 

 In the final phase, the subprocesses that had produced continuous tracks were 

studied further to find the limiting and ideal parameter settings. The test matrices were 

further expanded to acquire the extra data points that were needed to find the limiting and 

ideal settings. The track profiles were further studied to find the effect of the parameters 

on profile shape along with track continuity. The results of the final phase provide a 

solution for the joining of spaced micro-foil materials with powder filler. 

    
Continuous Selective Laser Sintering  
in the Final Phase 

 The continuous SLS subprocess setup for the final phase was similar to the set up 

for initial phase with two differences. The two differences were the variation in the foil 
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height and the sample size. The variation in height was held to 0.05mm so that the effect 

of height variation would be reduced. The sample size was increased to provide more 

information on track characteristics. The sample size was increase to 35 to find the points 

where the tracks became discontinuous. The increased sample size with corresponding 

parameters for the final phase can be seen in Table 5. It was decided that if the 

discontinuous points could not be found with the parameter settings in Table 5, then the 

travel speeds would be increased along each power setting until the discontinuous points 

were found. Table 6 shows the final sample size with corresponding parameters that were 

needed to find all of the discontinuous points. 

 
Pulse Selective Laser Sintering in 
the Final Phase 

 The pulse SLS subprocess setup for the final phase was similar to the initial phase 

except for the foil height variation and increased sample size to find the limiting points 

for the power and duration to form a continuous track. The height variation was kept to 

0.05mm. The sample parameters were selected in a similar range to the initial phase but 

include lower values for the power and duration. The total number of samples was 

increased to 25 to find the lower limit of the process. The values for the final phase can 

be seen in Table 7.   

 
Subproblems 

 
 

The initial and final phases of the study investigated three subproblems to 

establish subprocess capabilities and selection criteria. The initial phase investigated 
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Table 5 

Parameter Settings for the Continuous SLS Subprocess in the Final Phase 
 

Samples Power (W) Travel speed (mm/sec) 
1 500 1.0 
2 500 2.0 
3 500 3.0 
4 500 4.0 
5 500 5.0 
6 500 6.0 
7 500 7.0 
8 400 1.0 
9 400 2.0 

10 400 3.0 
11 400 4.0 
12 400 5.0 
13 400 6.0 
14 400 7.0 
15 300 1.0 
16 300 2.0 
17 300 3.0 
18 300 4.0 
19 300 5.0 
20 300 6.0 
21 300 7.0 
22 200 1.0 
23 200 2.0 
24 200 3.0 
25 200 4.0 
26 200 5.0 
27 200 6.0 
28 200 7.0 
29 100 1.0 
30 100 2.0 
31 100 3.0 
32 100 4.0 
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Table 6 
 
Extended Parameter Settings Needed for Finding the Continuity Points for the 

Continuous SLS Subprocess in the Final Phase 

Samples Power (W) Travel speed (mm/sec) Samples Power (W) Travel speed (mm/sec) 
1 500 1.0 35 400 13.0 
2 500 2.0 36 400 14.0 
3 500 3.0 37 400 15.0 
4 500 4.0 38 400 16.0 
5 500 5.0 39 400 17.0 
6 500 6.0 40 400 18.0 
7 500 7.0 41 300 1.0 
8 500 8.0 42 300 2.0 
9 500 9.0 43 300 3.0 

10 500 10.0 44 300 4.0 
11 500 11.0 45 300 5.0 
12 500 12.0 46 300 6.0 
13 500 13.0 47 300 7.0 
14 500 14.0 48 300 8.0 
15 500 15.0 49 300 9.0 
16 500 16.0 50 300 10.0 
17 500 17.0 51 300 11.0 
18 500 18.0 52 300 12.0 
19 500 19.0 53 300 13.0 
20 500 20.0 54 300 14.0 
21 500 21.0 55 200 1.0 
22 500 22.0 56 200 2.0 
23 400 1.0 57 200 3.0 
24 400 2.0 58 200 4.0 
25 400 3.0 59 200 5.0 
26 400 4.0 60 200 6.0 
27 400 5.0 61 200 7.0 
28 400 6.0 62 100 1.0 
29 400 7.0 63 100 2.0 
30 400 8.0 64 100 3.0 
31 400 9.0 65 100 4.0 
32 400 10.0 66 100 5.0 
33 400 11.0 67 100 6.0 
34 400 12.0 68 100 7.0 
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 Table 7 

Parameter Settings for the Pulse SLS Subprocess in the Final Phase  
 

Samples Power (kW) Pulse duration (ms) Pulse frequency (Hz) Travel speed (mm/sec) 
1 4.0 8.0 1.0 0.25 
2 4.0 6.0 1.0 0.25 
3 4.0 4.0 1.0 0.25 
4 4.0 2.0 1.0 0.25 
5 4.0 1.0 1.0 0.25 
6 3.5 8.0 1.0 0.25 
7 3.5 6.0 1.0 0.25 
8 3.5 4.0 1.0 0.25 
9 3.5 2.0 1.0 0.25 

10 3.5 1.0 1.0 0.25 
11 3.0 8.0 1.0 0.25 
12 3.0 6.0 1.0 0.25 
13 3.0 4.0 1.0 0.25 
14 3.0 2.0 1.0 0.25 
15 3.0 1.0 1.0 0.25 
16 2.5 8.0 1.0 0.25 
17 2.5 6.0 1.0 0.25 
18 2.5 4.0 1.0 0.25 
19 2.5 2.0 1.0 0.25 
20 2.5 1.0 1.0 0.25 
21 2.0 8.0 1.0 0.25 
22 2.0 6.0 1.0 0.25 
23 2.0 4.0 1.0 0.25 
24 2.0 2.0 1.0 0.25 
25 2.0 1.0 1.0 0.25 

 
 

subproblem 1 and categorized track formations produced by the four subprocesses as 

continuous or discontinuous. The subprocesses that produced continuous track formations 

were further investigated in the final phase. The final phase investigated subproblems 2 

and 3. The purpose of subproblem 2 was to identify the maximums and minimums for the 

track profile dimensions which created selection criteria based on desired track profile 

dimensions. The purpose of subproblem 3 was to characterize the subprocesses based on 
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distortion and cycle time values to establish selection criteria for various applications. 

Through the three subproblems the study established; which of the four subprocesses 

were able to join the micro-foil material into a lattice structures with a continuous track; 

the maximum and minimum track profile dimensions obtainable for a continuous track; 

and provided a comparison of subprocesses based on distortion and cycle time values to 

establish selection criteria.          

Subproblem 1:  To identify the samples produced by the four subprocesses as 

continuous or discontinuous based on track continuity. 

The purpose of subproblem 1 was to categorize the track formations as continuous 

or discontinuous from the initial phase and identify which of the subprocesses would be 

further studied in the final phase. The results of the initial phase were used to answer 

subproblem 1. The samples that were produced in the initial phase according to Tables 1, 

2, 3, and 4 were categorized into two groups, continuous and discontinuous. The ability 

for a subprocess to produce continuous tracks was the criteria for the process to be further 

studied in the final phase. The use of an initial phase and subproblem 1 allowed the quick 

establishment of subprocess capability and permitted the study to focus on the capable 

subprocesses in the final phase.    

Subproblem 2:  While maintaining continuous track continuity, identify the 

maximum and minimum dimensions obtainable for track penetration and width to 

establish selection criteria for various applications. 

The purpose of subproblem 2 was to identify the maximums and minimums for 

the track profile dimensions which allowed the processes to establish selection criteria 
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based on desired track profile dimensions. The final phase samples that were categorized 

as continuous were sectioned, polished, and etched to reveal the track profile in the 

micro-foil and powder. The penetration and width of the profiles were measured to find 

the range of dimensions that were achievable for each subprocess. The identification of 

maximum and minimum dimensions in subproblem 2 was the first step in establishing 

selection criteria for the subprocesses.   

Subproblem 3:  To analyze the subprocesses based on distortion and cycle time 

values to further establish selection criteria for various applications. 

The purpose of subproblem 3 was to further establish a selection criteria based on 

distortion and cycle time values through further study of the continuous samples from the 

final phase. The gap distance in the samples was measured before and after processing. 

Distortion was evaluated by comparing the calculated averages and standard deviation of 

the measurements. The cycle times were found for each parameter set and categorized by 

profile dimensions. Subproblem 3, in combination with subproblem 2, provided the 

information necessary to establish selection criteria for a subprocess base on application 

need.  

 
Summary of Methodologies 

 

For this study, a two-phase design was used to study the SLS and LPD processes. 

The two phases were used to help improve the efficiency and effectiveness of the study. 

The initial phase was used to gather basic data on the processes and to eliminate 

parameters that would not produce continuous tracks. The final phase was used to gather 
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additional data on the remaining parameters and to establish selection criteria. The three 

subproblems provided information on the characteristics of each process and their ability 

to be used for various applications.    
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CHAPTER IV 
 

INITIAL PHASE RESULTS AND CONCLUSIONS 
 
 

Introduction 

 
 Engineering problems that require the joining of micro-foil materials into lattice 

structures have proved to be difficult due to the strong tendency of the traditional joining 

processes to burn through, distort, or form weak bonds. The use of continuous and pulse 

SLS and continuous and pulse LPD have been studied to examine their capability to join 

micro-foil materials into lattice structures. The purpose of the initial phase was to gather 

data on the four subprocesses to answer subproblem 1. Subproblem 1 established which 

of subprocess were capable and permitted the study to focus on the capable subprocesses 

in the final phase. 

 
Subproblem 1 

 

Subproblem 1:  To identify the samples produced by the four subprocesses as 

continuous or discontinuous based on track continuity. 

 
Selective Laser Sintering for Subproblem 1 

 Two SLS subprocesses were used in the initial phase. The first process 

incorporated a continuous laser while the second used a pulse laser. In answering 

subproblem 1, the processes were categorized based on track continuity. General trends 

were seen in the track surface profile, width, and mushy zone and were reported in the 

results for each SLS subprocess. 
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Continuous Selective Laser Sintering for  
Subproblem 1 

 In the initial phase, the continuous SLS subprocess produced continuous and 

discontinuous tracks. The processed samples can be seen in Figure 17. The parameter 

settings of 100, 200, 300, and 400 watts along with 1, 2, 3, and 4 mm/s were used. The 

samples with the parameter setting of 100 watts were all found to be discontinuous 

regardless of travel speed. The parameter settings of 200, 300, and 400 watts produced 

continuous tracks regardless of travel speed.  

 

Figure 17. The results of the initial phase for the continuous SLS subprocess. 
Magnification 20X.  
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 Although the samples in the 100-watt setting appeared to be continuous, upon 

removal from the fixture the samples broke apart at the discontinuous points. Under 

higher magnification, the discontinuous points appeared in the balled regions of the track. 

The balled regions were most likely formed by the low power level of the laser combined 

with increasing travel speeds. This phenomenon follows the results of previous studies 

about the balling effect in the SLS process (Su et al., 2003; Tolochko et al., 2004). The 

balling effect was also seen as the travel speed was increased in the other power settings. 

The track surfaces went from a flat profile to a rounded profile then ending with a balled 

and discontinuous track surface. 

 Like the track surfaces, trends could be seen in the track widths. The track widths 

were wider or more pronounced in the higher power samples and began to become 

narrower as the power was decreased. The travel speed had a similar effect with a wider 

bead in the slower travel speeds. The slower travel speeds also produced a larger mushy 

zone, which was the partial fusing of the powder materials adjacent to the track. The 

mushy zone generally refers to a region where temperature was between the liquidus and 

solidus. The mushy zone can be seen adjacent to the tracks in the higher power and 

slower travel speed range.   

 The continuous SLS subprocess was capable of joining micro-foil materials into 

lattice structures with continuous tracks. The results, seen in Figure 17, show the 

continuous and discontinuous samples that were produced by the subprocess. The 

continuous SLS subprocess was determined to be an acceptable process meeting the 

criteria specified in subproblem 1. As a result, the continuous SLS subprocess was 
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studied further in the final phase. 

 
Pulse Selective Laser Sintering for  
Subproblem 1 
 
 The pulse SLS subprocess produced continuous tracks. The processed samples are 

shown in Figure 18. Parameter settings of 2.5, 3.0, 3.5, and 4.0 kilowatts along with 2.0, 

4.0, 6.0, and 8.0 milliseconds were used. The results for pulse SLS subprocess showed 

that regardless of parameter settings all of the samples produced continuous tracks. 

 Although the samples appeared to be continuous, the track surface profiles 

Figure 18. The results of the initial phase for the pulse SLS subprocess. Magnification 
20X.  
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showed rounding and balling. Under higher magnification, all of the tracks exhibit a 

rounded or balled surface profile. The rounded and balled surface profiles were most 

likely caused by the short duration of the pulse, which allowed the powder to ball up due 

to surface tension, but did not allow enough time for the ball to wet on the surface of the 

sample. This phenomenon follows the results of previous studies about the balling effect 

in the SLS process (Agarwala et al., 1995). The balling effect was more pronounced in 

the lower power and lower pulse duration settings. 

 Like the track surfaces, trends could be seen in the track widths. The track widths 

were wider or more pronounced in the higher power settings or higher pulse duration 

settings. The tracks began to become narrower as the power or duration was decreased. 

Regardless of the parameter settings, the presence of the mushy zone was not seen 

adjacent to the track in the pulse SLS subprocess   

 The pulse SLS subprocess was capable of joining micro-foil materials into lattice 

structures with continuous tracks. The results seen in Figure 18, show the continuous 

samples that were produced by the subprocess. The pulse SLS subprocess was 

determined to be an acceptable process meeting the criteria specified in subproblem 1. As 

a result, the pulse SLS subprocess was studied further in the final phase. 

 
Laser Powder Deposition for Subproblem 1 

 

 Two LPD subprocesses were used in the initial phase. The first process 

incorporated a continuous laser while the second used a pulse laser. In answering 

subproblem 1, the processes were categorized based on track continuity. General trends 
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for the track surface profiles, if apparent, were reported in the results for each LPD 

subprocess.  

 
Continuous Laser Powder Deposition for  
Subproblem 1  

 The continuous LPD subprocess did not produce continuous tracks. The 

processed samples can be seen in Figure 19. The parameter settings of 100, 200, 300, and 

400 watts and 1, 2, 3, and 4 mm/s were used. The subprocess was not capable of forming 

tracks regardless of the parameter settings and tended to form balled protrusions and/or 

failed to achieve bonding to the samples. The 100 watt setting did achieve initial bonding 

but upon removal from the fixture the track or protrusion broke off of the sample. A 

similar issue was seen in the 200 watt samples with travel speeds of 3 and 4 mm/s. The 

other parameter settings produced bonded formations that were discontinuous. The 

slower travel speeds tended to build large protrusions that resembled a staircase structure. 

The other samples produce a track but under visual and optical observation, numerous 

discontinuities were seen in the track.    

The inability to form continuous tracks was caused by the turbulence from the gas 

carrying the powder deflecting off of the micro-foil materials. The powder material 

would be deflected toward the top of the track. As the deflected powder was melted into 

the track the track began to grow vertically as well as horizontally, which produced the 

stair case structure. Figure 20 shows the turbulence caused by this interaction. Turbulence  

has been reported in other studies as a main cause for deformities in the track formations 

(Lin & Hwang, 2001). 
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Figure 19. The results of the initial phase for the continuous LPD subprocess. 
Magnification 20X. 
 
 
 The continuous LPD subprocess was not capable of joining micro-foil materials 

into lattice structures with continuous tracks. The results seen in Figure 19 show the 

discontinuous samples that were produced by the subprocess. The continuous LPD 

subprocess was determined to be an unacceptable process not meeting the criteria 

specified in subproblem 1. As a result, the continuous LPD subprocess was not further 

studied in the final phase. 
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Figure 20. The turbulence created from the interaction of the carrier gas with the micro-  
foil materials. 
 

  
Pulse Laser Powder Deposition for  
Subproblem 1  

 The pulse LPD subprocess produced continuous and discontinuous tracks; 

however, severe cracking was seen in the continuous tracks. The processed samples can 

be seen in Figure 21. The parameter settings of 2.5, 3.0, 3.5, and 4.0 kilowatts along with 

2.6, 5.0, 7.6, and 10.0 milliseconds were used. The cracking was seen in all the samples 

and cannot be attributed to a particular parameter setting (e.g., power or pulse duration). 

An example of the severe cracking can be seen in Figure 22. The cracking was 

always seen in-between the micro-foil materials. The cause of the cracking was not the 

focus of the studied and will not be further investigated, however, it should be noted that 
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Figure 21. The results of the initial phase for the pulse LPD subprocess. Magnification 
20X. 
 

 
 
Figure 22. A typical crack seen in the pulse LPD samples upon microscopy inspection. 
Magnification 40X.  

Power (kW) 

2.5 

3.0 

3.5 

4.0 

Pulsed Laser Powder Deposition 

2.0 4.0 6.0 8.0 
Pulse Duration (ms)



47 
 
the cracking was the defect that did not allow any of the samples to be accepted. No 

previous studies have focused on the joining of microfoil materials into lattice structures; 

therefore, there was no study to compare with on the issue of cracking. 

 The pulse LPD subprocess was not capable of joining micro-foil materials into 

lattice structures with acceptable continuous tracks. The results seen in Figure 21 show 

the continuous and discontinuous samples that were produced by the subprocess. The 

continuous samples were unacceptable due to the severe cracking seen. The pulse LPD 

subprocess was determined to be an unacceptable process not meeting the criteria 

specified in subproblem 1. As a result, the pulse LPD subprocess was not further studied 

in the final phase. 

 
Summary of Subproblem 1 

 

 The results of the initial phase showed that the SLS subprocesses were capable of 

joining the micro-foil materials into lattice structures with continuous tracks. The LPD 

subprocesses were not capable of joining the micro-foil materials into lattice structures 

with continuous tracks. From these results, the two SLS subprocesses were studied 

further in the final phase, while the two LPD subprocesses were not further studied as a 

result of discontinuous track formation.    
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CHAPTER V 

FINAL PHASE RESULTS AND CONCLUSIONS 
 
 

Introduction 
 

 The problem of joining micro-foil materials into lattice structures has been 

difficult due to several factors. The initial phase results proved through the use of 

continuous and pulse SLS subprocesses, the proper joining of micro-foil materials with 

continuous tracks was possible. The purpose of the final phase was to further investigate 

the successful subprocesses identified by subproblem 1. The two SLS subprocesses meet 

the criteria of subproblem 1 by demonstrating the ability to produce continuous tracks, as 

a result the subprocesses were further studied. The two LPD subprocesses did not meet 

the requirements of subproblem 1 by producing discontinuous tracks, as a result the two 

subprocesses were not further studied. Subproblems 2 and 3 developed selection criteria 

based on track profile, distortion, and cycle time.  

 
Subproblem 2 

 

 Subproblem 2 states—while maintaining continuous track continuity, identify the 

maximum and minimum dimensions obtainable for track penetration and width to 

establish selection criteria for various applications. Subproblem 2 had two sections that 

needed to be addressed for each subprocess. The first was to identify parameter settings 

that would maintain continuous track continuity and the second was to identify the 

maximum and minimum profile dimensions.    
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Continuous Selective Laser Sintering  
for Subproblem 2 

 In the final phase of the study, the factors for maintaining track continuity and the 

maximum and minimum profile dimensions needed to be identified for the continuous 

SLS subprocess. To identify the factors for maintaining track continuity, a parameter 

study was preformed and analyzed. For developing selection criteria based on track 

profile dimensions, the samples produced in the parameter study were sectioned and 

measured. The results defined the factors necessary to maintain track continuity and 

provided data to develop selection criteria for the track profile dimensions for the 

continuous SLS subprocess.   

 The parameter study results provided data necessary to determine the boundary 

between continuous and discontinuous tracks. The processed samples can be seen in 

Figure 23 in a top-down orientation. The samples with the parameter setting of 100 watts 

were discontinuous regardless of travel speed setting. The 200-watt setting produced 

continuous tracks with travel speeds from 1 to 5 mm/sec. The 300-watt setting produced 

continuous tracks with travel speeds from 1 to 9 mm/sec. The 400-watt settings produced 

continuous tracks with travel speeds from 1 to 13 mm/sec. Finally, the 500-watt setting 

produced continuous tracks with travel speeds from 1 to 18 mm/sec. The results of the 

parameter study, as seen in Figure 23, matched those found earlier in the initial phase.  

 In addition, the similarity of results from the initial phase to the final phase 

showed that the change in foil height variation had no effect on track continuity. The 

continuous SLS subprocess was able to produce enough penetration in both phases to join  
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the micro-foil materials together. However, if the foil height variation was larger then the 

penetration of the track then the micro-foils would not be joined. 

 The parameter settings for the final test matrix were plotted and a trend line was 

added through the points that represent the boundary between track continuity and 

discontinuity. A linear trend line best represented the boundary. Previous studies in pure 

powder beds have shown that polynomial and linear trend lines constitute the boundaries 

(Childs et al., 2004).  The polynomial trend lines were used to divide different types of 

continuous tracks, while the linear lines divided the continuous tracks from the 

discontinuous tracks. Since there were no previous studies using micro-foil material there 

were no trend lines available for comparison. The plot of the track continuity based on 

parameter settings can be seen in Figure 24. 
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Figure 24. The plot of track continuity for the continuous SLS subprocess. 
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 The boundary in Figure 24 showed which parameter settings would maintain 

track continuity. Energy input provided a better explanation for defining track continuity 

due to the foil and powder materials requiring a minimum amount of energy to melt the 

materials together in a continuous track. The power and travel speed settings were used to 

derive the energy input for each sample. The energy input is the ratio of the total power 

of the laser in watts to the travel speed in mm/s. Energy input was measured in J/mm = 

Power (W) / Travel Speed (mm/s). The values for energy input were plotted against the 

presence or lack of track continuity. Figure 25 shows the energy input of the samples 

categorized by track continuity. From the trend seen in the energy input data, a boundary 

zone for producing continuous tracks was found to be between 27.8 J/mm and 33.3 J/mm.  
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Figure 25. The plot of energy input and continuity in which the boundary zone can be 
seen between continuous and discontinuous tracks at 27.8 J/mm to 33.3 J/mm.   
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 The energy input data showed the presence of two outliers. The outliers had 

energy inputs greater then 33.3 J/mm but produced discontinuous tracks. The rate in 

which the energy was applied to the samples accounted for the outliers. The energy rate 

or power was measured in watts = joules / second. The values for energy rate come 

directly from the parameter setting for power. The 100-watt setting did not produce any 

continuous tracks. The two outliers were produced with the 100-watt setting. The energy 

rate needed to be large enough to overcome the heat dissipation to produce continuous 

tracks.   

 To show the effect of power, Table 8 shows the measurement data for tracks with 

similar energy input but different powers. The table shows that as the power was 

decreased the track profile dimensions decreased until the tracks became discontinuous 

below the power of 200 watts. It was concluded that a boundary at 200 watts existed for 

the power. Maintaining track continuity was defined by energy input and power. It was 

found that to ensure and maintain track continuity the parameter settings needed to 

 
Table 8 
 
The Measurement Data for Tracks Produced with 100 J/mm Energy Inputs and Varying 

Power   

      
Foil profile 

───────────── 
Powder profile 

───────────── 
Power 
(W) 

Travel speed 
(mm/s) 

Energy input 
(W/mm) 

Penetration  
(mm) 

Width  
(mm) 

Penetration 
(mm) 

Width  
(mm) 

500 5.0 100.0 1.06 1.93 1.12 2.17 
400 4.0 100.0 0.77 1.91 0.94 2.06 
300 3.0 100.0 0.56 1.74 0.70 2.01 
200 2.0 100.0 0.41 1.57 0.56 1.78 
100 1.0 100.0 Discontinuous tracks, no data 
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produce an energy input of 33.3 J/mm or greater, with a power of 200 watts or greater. 

 The maintaining of track continuity was necessary for the development of the 

selection criteria for subproblem 2, which were based on the track profile penetration and 

width dimensions for continuous tracks. The resulting track profiles in the microfoil 

material can be seen in Figure 26 and the track profile in the powder can be seen in 

Figure 27. The resulting measurements of the track profiles can be seen in Table 9. It was 

important to note that the data in Table 9 was produce with a focal spot size of 1mm and 

that changing the spot size would alter the measurements. The measurements showed that 

the range for micro-foil profile penetration was 0.28mm to 1.45mm. The range for the 

micro-foil profile width was 1.27mm to 2.03mm. The range for the powder profile 

penetration was 0.41mm to 1.53mm. The range for the powder profile width was 1.38mm 

to 2.39mm.  

The data from Table 9 was plotted with the profile dimensions versus the energy 

input to show the trend in the profiles measurements. The resulting plots can be seen in 

Figure 28. Logarithmic lines provided the lines of best fit for showing the trends in the 

data points. The trend lines show a steady decline in profile dimensions until the 100 

J/mm energy input was reached. At that point the profile dimensions decline rapidly until 

they become discontinuous in the zone of 27.8 J/mm to 33.3 J/mm, which was 

determined to be the minimum energy input for maintaining track continuity.   

The maximum and minimum for profile dimensions were taken from the micro-

foil material due to the higher reliability of the measurements. The minimum limit for 

penetration that still produced a continuous track was 0.28mm and the minimum width 
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Table 9 

Measurement Data for the Continuous SLS Subprocess for the Final Phase 

Foil profile 
───────────── 

Powder profile 
───────────── 

Power 
(W) 

Travel speed 
(mm/sec) 

Energy input 
(J/mm) 

Penetration 
(mm) 

 Width 
(mm) 

Penetration 
(mm) 

Width 
(mm) 

500 1.0 500.0 1.45 1.97 1.53 2.27 
500 2.0 250.0 1.23 2.03 1.34 2.29 
500 3.0 166.7 1.15 1.92 1.18 2.27 
500 4.0 125.0 1.05 1.94 1.13 2.18 
500 5.0 100.0 1.06 1.93 1.12 2.17 
500 6.0 83.3 0.99 1.92 1.05 2.09 
500 7.0 71.4 0.92 1.97 1.00 2.07 
500 8.0 62.5 0.90 1.79 0.96 1.88 
500 9.0 55.6 0.82 1.75 0.83 1.69 
500 10.0 50.0 0.77 1.83 0.86 1.80 
500 11.0 45.5 0.67 1.81 0.78 1.79 
500 12.0 41.7 0.69 1.69 0.72 1.73 
500 13.0 38.5 0.59 1.76 0.70 1.68 
500 14.0 35.7 0.63 1.66 0.72 1.71 
500 15.0 33.3 0.52 1.78 0.64 1.77 
500 16.0 31.3 0.53 1.71 0.59 1.65 
500 17.0 29.4 0.46 1.65 0.58 1.68 
500 18.0 27.8 0.50 1.65 0.55 1.61 
400 1.0 400.0 1.07 2.01 1.08 2.23 
400 2.0 200.0 0.94 2.00 1.09 2.19 
400 3.0 133.3 0.85 1.95 0.97 2.19 
400 4.0 100.0 0.77 1.91 0.94 2.06 
400 5.0 80.0 0.82 1.75 0.98 1.97 
400 6.0 66.7 0.75 1.72 0.89 2.01 
400 7.0 57.1 0.71 1.74 0.88 1.97 
400 8.0 50.0 0.55 1.79 0.61 1.87 
400 9.0 44.4 0.48 1.79 0.51 1.77 
400 10.0 40.0 0.45 1.74 0.53 1.67 
400 11.0 36.4 0.40 1.72 0.52 1.65 
400 12.0 33.3 0.39 1.67 0.56 1.45 
400 13.0 30.8 0.37 1.60 0.42 1.42 
300 1.0 300.0 0.64 1.89 0.77 2.01 
300 2.0 150.0 0.63 1.83 0.81 2.06 

 
(Table continues)
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Foil profile 
───────────── 

Powder profile 
───────────── 

Power 
(W) 

Travel speed 
(mm/sec) 

Energy input 
(J/mm) 

Penetration 
(mm) 

 Width 
(mm) 

Penetration 
(mm) 

Width 
(mm) 

300 3.0 100.0 0.56 1.74 0.70 2.01 
300 4.0 75.0 0.50 1.71 0.60 1.95 
300 5.0 60.0 0.49 1.72 0.62 1.94 
300 6.0 50.0 0.49 1.59 0.60 1.76 
300 7.0 42.9 0.51 1.60 0.64 1.77 
300 8.0 37.5 0.49 1.46 0.57 1.58 
300 9.0 33.3 0.44 1.43 0.52 1.60 
200 1.0 200.0 0.42 1.59 0.51 1.70 
200 2.0 100.0 0.41 1.57 0.56 1.78 
200 3.0 66.7 0.34 1.55 0.46 1.59 
200 4.0 50.0 0.32 1.40 0.43 1.53 
200 5.0 40.0 0.28 1.32 0.43 1.38 

 

 

 

Figure 28. The plots of the profile dimensions versus the energy input with logarithmic 
trend lines added through the data points for each power setting. 
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was 1.27mm. The maximum limit for penetration that still produced a continuous track 

was 1.45mm and the maximum width was 2.03mm. It should be noted that these values 

are based on the focal spot size of the laser being 1mm in diameter. The changing of the 

spot size will change the power density and therefore change the results.    

 The variation in the measurements between the micro-foil and the powder 

materials was attributed to two factors. First, the mushy zone, which consists of partially 

melted powder particle zone adjacent to the track, makes accurate measurements difficult 

to obtain because of a blending of the boundary between the track and the mushy zone. 

An example of the mushy zone can be seen in Figure 29. The mushy zone in Figure 29 is 

comprised of the powder particles, which appear as circles around the track.  Second, the 

thermal conductivity of the powder was lower then the micro-foil. The lower thermal 

conductivity slowed the transfer of energy and therefore allowed more melting to occur. 

 

 
 
Figure 29. A detailed view of the mushy zone adjacent to the sintered powder track. The 
mushy zone consists of the area comprised of connected round nodules of powder. 
Magnification 40X. 
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Due to the close proximity of the micro-foils this effect was mitigated. The variation that 

was seen in the measurements was assigned to these two factors. 

 
Summary of Continuous Selective Laser  
Sintering for Subproblem 2 

 In the answering of subproblem 2, the continuity boundary and requirements were 

found along with the track profile selection criteria. No one factor can be attributed to the 

maintaining of track continuity for the subprocess. The parameter settings were found 

that were needed to produce a continuous track, however, the energy input and power of 

the parameter settings was used to define why the parameter settings did or did not 

achieve track continuity. To maintain continuous tracks, it was found that the minimum 

energy input was 27.8 J/mm to 33.3 J/mm and the minimum power was 200 watts. The 

change in foil height tolerance from the initial phase to the final phase had no effect on 

the continuity. The track profile selection criteria can be found in Table 9 where the 

parameter settings are stated with the resulting track profile dimensions.  

    
Pulse Selective Laser Sintering for  
Subproblem 2 

 In the final phase of the study, the factors for maintaining track continuity and the 

maximum and minimum profile dimensions needed to be identified for the pulse SLS 

subprocess. To identify the factors for maintaining track continuity, a parameter study 

was preformed and analyzed. For developing selection criteria based on track profile 

dimensions, the samples produced in the parameter study were sectioned and measured. 

The results defined the factors necessary to maintain track continuity and provided data 
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to develop selection criteria for the track profile dimensions for the pulse SLS 

subprocess.   

 The parameter study results provided data necessary to determine the boundary 

between continuous and discontinuous tracks. The processed samples can be seen in 

Figure 30 in a top-down orientation. The samples with the parameter setting of 1.0, 2.0, 

and 4.0 ms were discontinuous regardless of power setting. The 6.0 ms setting produced 

continuous tracks with 3.0, 3.5, and 4.0 kW settings. The 8.0 ms setting produced 

continuous tracks with 2.5, 3.0, 3.5, and 4.0 kW settings. The results of the parameter 

study, as seen in Figure 30, varied from those found earlier in the initial phase.  

 

 
Figure 30. The results for the final phase for the pulse SLS subprocess. Magnification 
20X.  
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In the initial phase, all of the parameter settings produced continuous tracks, however, 

even under similar parameter settings, discontinuous tracks were formed in the final 

phase. The change in foil height variation from the initial phase to the final phase 

attributed to the change in results. The greater variation in foil height in the initial phase 

lead to the formation of powder beds between the upper microfoils, which could span 

several micro-foils in length. During the melting phase of each pulse, high surface 

tension caused the liquid metal to ball. The pulse duration did not allow sufficient time 

for the wetting of the liquid metal to occur. The balling effect depleted the surrounding 

areas of powder material. If sufficient powder was present, as was the case in the initial 

phase, then the tracks remained continuous from the extra powder beds. If there was not 

enough powder, as was the case in the final phase, then the tracks became discontinuous 

from the depletion of powder from the leading edge of the track, unless the parameter 

settings provided enough energy to overcome the surface tension.     

 The parameter setting data points were plotted and a trend line was added through 

the points that represent the boundary between the continuous and discontinuous tracks. 

The trend line that best represented the data was a logarithmic trend line. No previous 

studies have outlined the track continuity in powder or any other media while using a 

pulse laser. Therefore, there was no other data for comparison of track continuity for 

pulse SLS. The plot of the track continuity can be seen in Figure 31. 

 The boundary in Figure 31 showed which parameter settings would maintain 

track continuity; however, the energy input provided another explanation for defining 

track continuity. The power, pulse duration, travel speed, and pulse frequency settings 
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Figure 31. The plot of track continuity for the pulse SLS subprocess. 

 

were used to derive the energy input for each sample. Energy input was measured in 

J/mm = Power (kW) * Duration (ms) * (Frequency (Hz) / Travel Speed (mm/s). The 

values for energy input were plotted against the presence or lack of track continuity. 

Figure 32 shows the energy input of the samples categorized by track continuity. From 

the trend seen in the energy input data, a boundary zone for producing continuous tracks 

was found to be between 64.0 J/mm and 72.0 J/mm.   

 The energy input defined the boundary zone for maintaining track continuity due 

to a lack of outliers present in the data. The energy input for the pulse SLS subprocess 

was a satisfactory indicator for maintaining track continuity. The lack of outliners in the 

data showed that no other indicators were needed to explain track continuity.    
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Figure 32. The plot of energy input and continuity in which the boundary zone can be 
seen between continuous and discontinuous tracks at 64.0 J/mm to 72.0 J/mm.  
  

 Associated with the amount of energy input, the resulting track profiles in the 

microfoil material can be seen in Figure 33. The track profile in the powder can be seen 

in Figure 34. The resulting measurements of the track profiles can be seen in Table 10. It 

was important to note that the data in Table 10 was produce with a focal spot size of 1mm 

and that changing the spot size would alter the measurements. The measurements showed 

that the range for micro-foil profile penetration was 0.50mm to 0.63mm. The range for 

the micro-foil profile width was 1.12mm to 1.51mm. The range for the powder profile 

penetration was 0.56mm to 0.67mm. The range for the powder profile width was 1.15mm 

to 1.57mm.   
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Figure 33. The micro-foil cross-sectional results for the final phase for the pulse SLS 
subprocess. Magnification 20X. 

 

 

Figure 34. The powder material cross-sectional results for the final phase for the 
continuous SLS subprocess. Magnification 20X. 
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Table 10 
 
Measurement Data for the Pulse SLS Subprocess for the Final Phase 
 

    
Foil profile 

──────────────── 
Powder profile 

──────────────── 
Power 
(kW) 

Duration 
(ms)  Penetration (mm) 

 Width 
(mm) Penetration (mm) 

Width 
(mm) 

4.0 8.0 0.58 1.51 0.63 1.55 
4.0 6.0 0.57 1.51 0.60 1.57 
3.5 8.0 0.63 1.38 0.67 1.32 
3.5 6.0 0.52 1.19 0.56 1.26 
3.0 8.0 0.60 1.31 0.61 1.29 
3.0 6.0 0.50 1.12 0.60 1.15 
2.5 8.0 0.62 1.22 0.64 1.19 

 

  The data from Table 10 did not provide enough data points for continuous tracks 

to find trends in the data. The machine was run at its upper limit and additional parameter 

settings were not available. The data for the pulse SLS subprocess was limited by the 

machine selected for the study but needs to be further examined by machines with greater 

capabilities.      

 The maximum and minimum for profile dimensions were taken from both the 

micro-foil and powder materials. The minimum dimension for penetration in the micro-

foil was 0.50mm and in the powder material was 0.56mm. The minimum width in the 

microfoil was 1.12mm and in the powder was 1.19mm. The maximum limit for 

penetration in the micro-foil was 0.63mm and in the powder was 0.67mm. The maximum 

width in the micro-foil was 1.51mm and in the powder was 1.57mm. 

 The variation in the measurements between the micro-foil and the powder 

materials was attributed to the difference of thermal conductivity between the micro-foil 

and powder materials. The thermal conductivity of the powder was lower then the micro-
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foil. The lower thermal conductivity slowed the transfer of energy and therefore allowed 

more melting to occur. The variation that was seen in the measurements was assigned to 

this factor. 

 
Summary of Pulse Selective Laser  
Sintering for Subproblem 2 

 In the answering of subproblem 2, the continuity boundary and requirements were 

found along with the track profile selection criteria. The parameter settings were found 

that were needed to produce a continuous track, however, the energy input was used to 

define why the parameter settings did or did not achieve track continuity. To maintain 

continuous tracks, the minimum energy input needed to be above the zone of 64.0 J/mm 

to 72.0 J/mm. The change in foil height tolerance from the initial phase to the final phase 

had an effect on the continuity. The tighter variation in the foil height produced 

discontinuous tracks for parameter settings that had previously produce continuous 

tracks. To overcome the effect of foil height the energy input needed to be increased. The 

track profile selection criteria can be found in Table 10 where the parameter settings are 

stated with the resulting track profile dimensions. 

 
Subproblem 3 

 

 Subproblem 3 states—to analyze the subprocesses based on distortion and cycle 

time values to further establish selection criteria for various applications. Subproblem 3 

had two sections that needed to be addressed for each subprocess. The first was to 

identify the distortion associated with each parameter setting and the second was to 
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identify the cycle times for each parameter setting to further define the selection criteria 

for the subprocesses.    

 
Continuous Selective Laser Sintering  
for Subproblem 3 

 In the final phase of the study, the distortion and cycle time values were identified 

for the continuous SLS subprocess. To identify the distortion associated with each 

parameter setting, the gap distance of the samples were measured before and after 

joining. The cycle times were identified by comparing the travel speeds with track profile 

dimensions. The results provided data to further develop selection criteria for the 

continuous SLS subprocess.   

  To examine the distortion, the gaps were measured adjacent to the tracks. Fifty 

gaps from each sample were measured to increase the validity of the results. The mean 

and standard deviation were calculated for the measurements so comparisons could be 

drawn between samples. The difference in the means before and after joining was used as 

the value for distortion. The measurements, calculated averages, standard deviations, 

difference in means, and parameter settings can be found in Table 11. The data showed 

that the continuous SLS subprocess created distortion in the samples. The range for 

distortion was from -0.02 mm to 0.02 mm. The distortion, however, showed no trend and 

had similar values regardless of parameter setting.  

 The data in Table 11 showed that the amount of distortion was minimal in the 

samples, which can be visually seen in Figure 35. The sample represented in Figure 35, 

had the highest energy input, and represented the sample with the greatest potential for  
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Table 11 

The Measurement Data for the Distortion of the Gap Distances for the Continuous SLS 

Subprocess 

  
Measurements before 
────────────  

Measurements after 
─────────── 

Difference 
in means 

Power 
(W) 

Travel speed 
(mm/sec) 

Mean 
(mm) 

SD 
(mm) 

Mean 
(mm) 

SD 
(mm) 

500 1.0 0.21 0.01 0.22 0.02 0.01 
500 2.0 0.21 0.01 0.23 0.02 0.02 
500 3.0 0.22 0.01 0.22 0.02 0.00 
500 4.0 0.21 0.01 0.23 0.02 0.02 
500 5.0 0.21 0.01 0.22 0.02 0.01 
500 6.0 0.21 0.01 0.22 0.02 0.01 
500 7.0 0.20 0.01 0.22 0.02 0.02 
500 8.0 0.21 0.01 0.22 0.02 0.01 
500 9.0 0.21 0.01 0.22 0.02 0.01 
500 10.0 0.21 0.01 0.22 0.01 0.01 
500 11.0 0.20 0.01 0.22 0.02 0.02 
500 12.0 0.21 0.01 0.22 0.02 0.01 
500 13.0 0.22 0.01 0.22 0.02 0.00 
500 14.0 0.21 0.01 0.22 0.01 0.01 
500 15.0 0.20 0.01 0.21 0.02 0.01 
500 16.0 0.21 0.01 0.21 0.02 0.00 
500 17.0 0.22 0.01 0.21 0.02 -0.01 
500 18.0 0.21 0.01 0.21 0.01 0.00 
400 1.0 0.21 0.01 0.22 0.02 0.01 
400 2.0 0.22 0.01 0.22 0.02 0.00 
400 3.0 0.21 0.01 0.22 0.02 0.01 
400 4.0 0.21 0.01 0.22 0.01 0.01 
400 5.0 0.21 0.01 0.22 0.02 0.01 
400 6.0 0.21 0.01 0.22 0.02 0.01 
400 7.0 0.20 0.01 0.22 0.02 0.02 
400 8.0 0.21 0.01 0.22 0.01 0.01 
400 9.0 0.20 0.01 0.21 0.02 0.01 
400 10.0 0.21 0.01 0.21 0.02 0.00 
400 11.0 0.22 0.01 0.21 0.01 -0.01 
400 12.0 0.21 0.01 0.21 0.01 0.00 
400 13.0 0.20 0.01 0.21 0.01 0.01 

 
(Table continues)
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Measurements before 
────────────  

Measurements after 
─────────── 

Difference 
in means 

Power 
(W) 

Travel speed 
(mm/sec) 

Mean 
(mm) 

SD 
(mm) 

Mean 
(mm) 

SD 
(mm) 

300 1.0 0.21 0.01 0.22 0.02 0.01 
300 2.0 0.21 0.01 0.22 0.02 0.01 
300 3.0 0.21 0.01 0.22 0.02 0.01 
300 4.0 0.20 0.01 0.22 0.02 0.02 
300 5.0 0.21 0.01 0.21 0.02 0.00 
300 6.0 0.21 0.01 0.21 0.02 0.00 
300 7.0 0.21 0.01 0.21 0.01 0.00 
300 8.0 0.22 0.01 0.20 0.01 -0.02 
300 9.0 0.21 0.01 0.21 0.01 0.00 
200 1.0 0.21 0.01 0.22 0.01 0.01 
200 2.0 0.20 0.01 0.21 0.02 0.01 
200 3.0 0.21 0.01 0.21 0.01 0.00 
200 4.0 0.21 0.01 0.21 0.01 0.00 
200 5.0 0.22 0.01 0.20 0.01 -0.02 

 
 

 

 

Figure 35. A detailed view of the gaps in the micro-foil material adjacent to the track. 
The parameter setting of the sample was 500 watts and 1mm/s. Magnification 40X. 
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distortion. The sample had the parameter settings of 500 watts and 1mm/s, which 

produced a difference in means of 0.01 mm. Visually, distortion was difficult to detect in 

any of the samples. Distortion was not an issue regardless of parameter setting when 

joining micro-foil materials into lattice structures using continuous SLS subprocess.  

 The lack of distortion in the samples was due to the combination of the 

subprocess and the setup. The use of a laser for joining as compared to traditional joining 

methods produces much lower energy input and therefore less distortion. The fixture also 

provided rigidity to keep the micro-foils from becoming distorted from the laser 

processing. Due to the subprocess and fixture, the distortion was minimal across the 

parameter settings. Distortion did not appear to be an issue when considering parameter 

selection.   

 Unlike the distortion the values for cycle time vary depending on desired profiles. 

The cycle times were based on the travel speed (mm/s) setting of the machine and were 

also reported in the time it took the settings to travel one meter (s/m). The purpose of the 

cycle times was to show that productivity of the subprocess could be increased for 

dimensionally similar track profiles by changing the parameter settings. 

 The information for cycle times can be seen in Table 12. Table 12 shows for 

example that the cycle time for achieving a track penetration of 1.07 mm in the foil 

material for the 400 watt setting had a travel speed of 1 mm/s (1000 s/m), while at the 

500 watt setting, the travel speed was 5 mm/s (200 s/m). The higher travel speed would 

produce the track 5 times faster then the other setting. The 500 watt setting produced a 

large range of geometries, and therefore could be the used as the preferred setting to  
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Table 12 
 
 The Cycle Time and Measurement Data for the Continuous SLS Subprocess 
  

      
Foil profile 

───────────── 
Powder profile 

──────────── 
Cycle time 

(s/m) 
Travel speed 

(mm/sec) 
Power 
(W) 

 Penetration 
(mm) 

Width 
(mm) 

Penetration 
(mm) 

Width 
(mm) 

1000.0 1.0 500 1.45 1.97 1.53 2.27 
500.0 2.0 500 1.23 2.03 1.34 2.29 
333.3 3.0 500 1.15 1.92 1.18 2.27 
250.0 4.0 500 1.05 1.94 1.13 2.18 
200.0 5.0 500 1.06 1.93 1.12 2.17 
166.7 6.0 500 0.99 1.92 1.05 2.09 
142.9 7.0 500 0.92 1.97 1.00 2.07 
125.0 8.0 500 0.90 1.79 0.96 1.88 
111.1 9.0 500 0.82 1.75 0.83 1.69 
100.0 10.0 500 0.77 1.83 0.86 1.80 

90.9 11.0 500 0.67 1.81 0.78 1.79 
83.3 12.0 500 0.69 1.69 0.72 1.73 
76.9 13.0 500 0.59 1.76 0.70 1.68 
71.4 14.0 500 0.63 1.66 0.72 1.71 
66.7 15.0 500 0.52 1.78 0.64 1.77 
62.5 16.0 500 0.53 1.71 0.59 1.65 
58.8 17.0 500 0.46 1.65 0.58 1.68 
55.6 18.0 500 0.50 1.65 0.55 1.61 

1000.0 1.0 400 1.07 2.01 1.08 2.23 
500.0 2.0 400 0.94 2.00 1.09 2.19 
333.3 3.0 400 0.85 1.95 0.97 2.19 
250.0 4.0 400 0.77 1.91 0.94 2.06 
200.0 5.0 400 0.82 1.75 0.98 1.97 
166.7 6.0 400 0.75 1.72 0.89 2.01 
142.9 7.0 400 0.71 1.74 0.88 1.97 
125.0 8.0 400 0.55 1.79 0.61 1.87 
111.1 9.0 400 0.48 1.79 0.51 1.77 
100.0 10.0 400 0.45 1.74 0.53 1.67 

90.9 11.0 400 0.40 1.72 0.52 1.65 
83.3 12.0 400 0.39 1.67 0.56 1.45 
76.9 13.0 400 0.37 1.60 0.42 1.42 

1000.0 1.0 300 0.64 1.89 0.77 2.01 
500.0 2.0 300 0.63 1.83 0.81 2.06 

 
(Table continues)
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Foil profile 

───────────── 
Powder profile 

──────────── 
Cycle time 

(s/m) 
Travel speed 

(mm/sec) 
Power 
(W) 

 Penetration 
(mm) 

Width 
(mm) 

Penetration 
(mm) 

Width 
(mm) 

333.3 3.0 300 0.56 1.74 0.70 2.01 
250.0 4.0 300 0.50 1.71 0.60 1.95 
200.0 5.0 300 0.49 1.72 0.62 1.94 
166.7 6.0 300 0.49 1.59 0.60 1.76 
142.9 7.0 300 0.51 1.60 0.64 1.77 
125.0 8.0 300 0.49 1.46 0.57 1.58 
111.1 9.0 300 0.44 1.43 0.52 1.60 

1000.0 1.0 200 0.42 1.59 0.51 1.70 
500.0 2.0 200 0.41 1.57 0.56 1.78 
333.3 3.0 200 0.34 1.55 0.46 1.59 
250.0 4.0 200 0.32 1.40 0.43 1.53 
200.0 5.0 200 0.28 1.32 0.43 1.38 

 
 
 
improve the cycle time.   

 The data in Table 12 helped to define the selection criteria based on cycle times. 

The cycle time values showed that the 500-watt setting has lower cycle times for the 

same profile dimensions as other power settings. The cycle times allow engineers to more 

efficiently produce products using the continuous SLS subprocess. With the data for the 

distortion and cycle times the selection criteria was further defined. 

 
Summary of Continuous Selective Laser  
Sintering for Subproblem 3 

 The distortion of the gaps in the micro-foil materials was measured for each 

parameter setting. The mean and standard deviation were calculated for the gaps before 

and after joining. It was found distortion was present in the samples; however, the 

distortion was similar in the after samples regardless of parameter settings. The distortion 

ranged from -0.02 mm to 0.02 mm. The cycle times were calculated for the parameter 
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settings in s/m. Table 12 shows the cycle times for each parameter setting along with 

resulting track profile dimensions. The cycle time showed that for a given track profiles 

the parameters can be changed to decrease the cycle time for a particular track profile 

dimension. The results further defined the selection criteria for the continuous SLS 

subprocess. 

 
Pulse Selective Laser Sintering for  
Subproblem 3 

 In the final phase of the study, the distortion and cycle time values were identified 

for the pulse SLS subprocess. To identify the distortion associated with each parameter 

setting, the gap distance of the samples were measured before and after joining. The cycle 

times were identified by comparing the travel speeds with track profile dimensions. The 

results provided data to further develop selection criteria for the pulse SLS subprocess.   

  To examine the distortion, the gaps were measured adjacent to the tracks. Fifty 

gaps from each sample were measured to increase the validity of the results. The mean 

and standard deviation were calculated for the measurements so comparisons could be 

drawn between samples. The difference in the means before and after joining was used as 

the value for distortion. The measurements, calculated averages, standard deviations, 

difference in means, and parameter settings can be found in Table 13. The data showed 

that the pulse SLS subprocess created distortion in the samples. The range for distortion 

was from -0.01 mm to 0.01 mm. The distortion, however, showed no trend and had 

similar values regardless of parameter setting.  

 The data in Table 13 show that the amount of distortion was minimal in the  
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Table 13 

The Measurement Data for the Distortion of the Gap Distances for the Pulse SLS 

Subprocess 

  
Measurements before joining 
──────────────── 

Measurements after joining 
─────────────── 

Difference in 
the means 

Power 
(kW) 

Duration 
(ms) Mean (mm) SD (mm) Mean  (mm) SD (mm) 

4.0 8.0 0.21 0.01 0.22 0.01 0.01 
4.0 6.0 0.21 0.01 0.22 0.02 0.01 
3.5 8.0 0.22 0.01 0.21 0.02 0.01 
3.5 6.0 0.21 0.01 0.20 0.01 0.01 
3.0 8.0 0.20 0.01 0.21 0.02 0.01 
3.0 6.0 0.21 0.01 0.22 0.01 0.01 
2.5 8.0 0.21 0.01 0.21 0.01 0.00 

 
 
 
samples, which can be visually seen in Figure 36. The sample represented in Figure 36 

had the highest energy input, and represented the sample with the greatest potential for 

distortion. The sample had the parameter settings of 4.0 kW and duration of 8 ms, which 

produced a difference in means of 0.01 mm. Visually, distortion was difficult to detect in 

any of the samples. Distortion was not an issue regardless of parameter setting when 

joining micro-foil materials into lattice structures using pulse SLS subprocess. 

 The lack of distortion in the samples was due to the combination of the 

subprocess and setup. Use of a laser for joining as compared to traditional joining 

methods produces much lower energy input and therefore less distortion. The fixture also 

provided rigidity to keep the micro-foils from becoming distorted from the laser 

processing. Due to the subprocess and fixture, distortion was minimal across parameter 

settings. Distortion did not appear to be an issue when considering parameter selection.   
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Figure 36. A detailed view of the gaps in the micro-foil material adjacent to the track. 
The parameter setting of the sample was 4.0 kW and 8 ms. Magnification 40X. 
 

 The cycle times were another important factor to consider along with distortion.  

The cycle times were based on the travel speed (mm/s) setting of the machine and were 

also reported in the time it took the settings to travel one meter (s/m). The cycle times, 

however, were kept constant for the pulse SLS subprocess samples. The travel speed and 

frequency were held constant to allow the energy of the machine to be used to manipulate 

the power and duration settings. The travel speed was held at 0.25mm/s and the 

frequency was held at 1.0 Hz. To maintain a continuous track the pulses of the laser 

needed to be spaced close enough to allow enough overlap. The spacing was kept at 0.25 

mm. The maintaining of the spot spacing directly relates the travel speed and frequency. 

A laser system with a higher output energy limit would allow for the manipulating of 

frequency and travel speed while still maintaining enough energy to produce all of the 
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parameter setting. Thus, the cycle times can be decreased with the use of a higher energy 

limit machine.  

 The data in Table 14 show the cycle time values for the parameter settings tested 

in the test matrix. The data helped to define the selection criteria based on cycle times, 

which showed for the pulse SLS subprocess that the cycle times did not affect the process 

because they were held constant. However, the cycle times could be improved through 

the use of a different machine. The cycle times allow engineers to more efficiently 

produce products using the pulse SLS subprocess. With the data for the distortion and 

cycle times the selection criteria was further defined. 

 
Summary of Pulse Selective Laser  
Sintering for Subproblem 3 

 The distortion of the gaps in the micro-foil materials was measured for each 

parameter setting. The mean and standard deviation were calculated for the gaps before 

 
Table 14  
 
The Cycle Time and Measurement Data for the Continuous SLS Subprocess   
 

          
Foil profile 

─────────── 
Powder profile 

─────────── 
Cycle 
time 
(s/m) 

Travel 
speed 

(mm/s) 
Frequency 

(Hz) 
Power 
(kw) 

Duration 
(ms) 

Penetration  
(mm) 

Width  
(mm) 

Penetration  
(mm) 

Width  
(mm) 

4000.0 0.25 1.0 4.0 8.0 0.58 1.51 0.63 1.55 
4000.0 0.25 1.0 4.0 6.0 0.57 1.51 0.60 1.57 
4000.0 0.25 1.0 3.5 8.0 0.63 1.38 0.67 1.32 
4000.0 0.25 1.0 3.5 6.0 0.52 1.19 0.56 1.26 
4000.0 0.25 1.0 3.0 8.0 0.60 1.31 0.61 1.29 
4000.0 0.25 1.0 3.0 6.0 0.50 1.12 0.60 1.15 
4000.0 0.25 1.0 2.5 8.0 0.62 1.22 0.64 1.19 
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and after joining. Distortion was present in the samples; however, the distortion was 

similar regardless of parameter settings. The distortion ranged from -0.01 mm to 0.01 

mm. The cycle times were calculated for the parameter settings in s/m. Table 14 shows 

the cycle times for each parameter setting along with resulting track profile dimensions. 

The results further defined the selection criteria for the pulse SLS subprocess. 

 
Summary of Subproblems 2 and 3 

 

 The focus of the study was to find a solution to joining micro-foil materials into 

lattice structures and create selection criteria for the processes used to achieve the joining. 

Two subprocesses, continuous SLS and pulse SLS, were used to achieve the joining of 

the micro-foil materials. Selection criteria for track profile dimensions, distortion, and 

cycle time, were defined for both subprocesses. 

 The continuous SLS subprocess was found to be a versatile process with 

numerous parameter combinations that produced acceptable results. The continuity of the 

tracks produced by this process were found to be a function of energy input and power. 

The energy input boundary was found to be between 27.8 to 33.3 J/mm. The minimum 

power was found to be 200 watts. The selection criteria for the subprocess can be seen in 

Table 15. The profile dimensions for the foil and powder materials were averaged to 

simplify the table. From the table, proper parameter settings can be selected for the 

joining of micro-foil materials into lattice structures based on desired results.  

 The pulse SLS subprocess was found to produce acceptable results; however, due 

to the limits of the machines, the full versatility of the subprocess was not fully 
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Table 15 

The Selection Criteria for Producing Continuous Tracks Using the Continuous SLS 

Subprocess 

Power 
(W) 

Travel speed 
(mm/sec) 

Track penetration 
(mm) 

Track width 
(mm) 

Distortion 
(mm) 

Cycle time 
(s/m) 

500 1.0 1.49 2.12 0.01 1000.0 
500 2.0 1.29 2.16 0.02 500.0 
500 3.0 1.17 2.09 0.00 333.3 
500 4.0 1.09 2.06 0.02 250.0 
500 5.0 1.09 2.05 0.01 200.0 
500 6.0 1.02 2.01 0.01 166.7 
500 7.0 0.96 2.02 0.02 142.9 
500 8.0 0.93 1.84 0.01 125.0 
500 9.0 0.82 1.72 0.01 111.1 
500 10.0 0.82 1.82 0.01 100.0 
500 11.0 0.72 1.80 0.02 90.9 
500 12.0 0.71 1.71 0.01 83.3 
500 13.0 0.64 1.72 0.00 76.9 
500 14.0 0.67 1.68 0.01 71.4 
500 15.0 0.58 1.78 0.01 66.7 
500 16.0 0.56 1.68 0.00 62.5 
500 17.0 0.52 1.67 -0.01 58.8 
500 18.0 0.52 1.63 0.00 55.6 
400 1.0 1.08 2.12 0.01 1000.0 
400 2.0 1.01 2.09 0.00 500.0 
400 3.0 0.91 2.07 0.01 333.3 
400 4.0 0.86 1.98 0.01 250.0 
400 5.0 0.90 1.86 0.01 200.0 
400 6.0 0.82 1.87 0.01 166.7 
400 7.0 0.79 1.86 0.02 142.9 
400 8.0 0.58 1.83 0.01 125.0 
400 9.0 0.50 1.78 0.01 111.1 
400 10.0 0.49 1.70 0.00 100.0 
400 11.0 0.46 1.69 -0.01 90.9 
400 12.0 0.47 1.56 0.00 83.3 
400 13.0 0.40 1.51 0.01 76.9 
300 1.0 0.71 1.95 0.01 1000.0 
300 2.0 0.72 1.95 0.01 500.0 

 
(Table continues) 
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Power 
(W) 

Travel speed 
(mm/sec) 

Track penetration 
(mm) 

Track width 
(mm) 

Distortion 
(mm) 

Cycle time 
(s/m) 

300 3.0 0.63 1.87 0.01 333.3 
300 4.0 0.55 1.83 0.02 250.0 
300 5.0 0.56 1.83 0.00 200.0 
300 6.0 0.54 1.68 0.00 166.7 
300 7.0 0.58 1.69 0.00 142.9 
300 8.0 0.53 1.52 -0.02 125.0 
300 9.0 0.48 1.52 0.00 111.1 
200 1.0 0.46 1.65 0.01 1000.0 
200 2.0 0.48 1.67 0.01 500.0 
200 3.0 0.40 1.57 0.00 333.3 
200 4.0 0.37 1.47 0.00 250.0 
200 5.0 0.35 1.35 -0.01 200.0 

 
 
 
investigated. The continuity of the tracks produced by this process were found to be a 

function of energy input. The boundary zone for energy input was found to be between 

64.0 to 72.0 J/mm. The selection criteria for the subprocess can be seen in Table 16. The 

profile dimensions for the foil and powder materials were averaged to simplify the table. 

From the table, proper parameter settings can be selected for the joining of micro-foil 

materials into lattice structures based on desired results. 

 The concept of using the SLS subprocesses as a means for joining micro-foil 

materials into lattice structures was new with little previous research. The focus of this 

study was to study the subprocess capability for joining the micro-foils and analyze some 

initial results. This introductory work provided many recommendations for future 

research, which include the following. 

1. Further test the pulse SLS subprocess with a higher power rated machine. 

2. The effect of the gap spacing between the micro-foil materials. 
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Table 16  

The Selection Criteria for Producing Continuous Tracks Using the Pulse SLS Subprocess 

Power 
(kw) 

Duration 
(ms) 

Track penetration 
(mm) 

Track width 
(mm) 

Distortion 
(mm) 

Cycle time 
(s/m) 

4.0 8.0 0.61 1.53 0.01 4000.0 
4.0 6.0 0.59 1.54 0.01 4000.0 
3.5 8.0 0.65 1.35 -0.01 4000.0 
3.5 6.0 0.54 1.23 -0.01 4000.0 
3.0 8.0 0.61 1.30 0.01 4000.0 
3.0 6.0 0.55 1.13 0.01 4000.0 
2.5 8.0 0.63 1.20 0.00 4000.0 

 

  
3. The relative strength of the joined micro-foil materials. 

4. The effect of alloy selection on the subprocesses. 

All of the points stated can provide a platform for future research in the joining of 

microfoil materials into lattice structures. 
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