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ABSTRACT 

 
 

Ecophysiology and Genetic Variation in Domestication of Sphaeralcea and Shepherdia 

Species for the Intermountain West 
 
 

by 
 
 

Chalita Sriladda, Doctor of Philosophy 

Utah State University, 2011 
 
 
Major Professor: Dr. Roger K. Kjelgren 

Department: Plants, Soils, and Climate 
 
 
 Low-water landscaping is an essential tool for water conservation in the arid 

Intermountain West (IMW) for managing limited supplies and population-driven 

increased demand. The IMW harbors a large number of drought-tolerant native species 

that have potential for use in the low-water use landscape (LWL). However, many 

species are not available in the nursery trade due to their morphological confusion and 

establishment difficulty in the managed landscapes. The overall goal of this study is to 

elucidate morphological, ecophysiological, and genetic distinctions within two IMW 

native plant genera containing species with high urban low-water landscape potential. 

For the first study, morphological and genetic variations among populations of 

four putative Sphaeralcea species were evaluated using canonical variate analysis (CVA) 

on the basis of morphological characteristics of their type specimens, and amplified 

fragment length polymorphisms (AFLP). The putative S. grossulariifolia was not 
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significantly different morphologically and genetically from S. coccinea, similar to the 

relationship between S. munroana and S. parvifolia. The results in the Mantel’s 

correlation tests suggest there are con-specific species due to isolation-by-distance within 

each composite group, and the putative S. munroana appeared to be an ecotype of S. 

parvifolia. 

In the second study, environmental conditions, morphology, and AFLP genetic 

variations among populations of Shepherdia rotundifolia in its native habitats were 

evaluated. Environmental conditions in selected six populations varied among 

populations in terms of elevation, precipitation, temperature, relative light intensity 

(RLI), and soil properties. Leaf area, specific leaf area (SLA), and leaf trichome structure 

exhibited adaptive traits to shady environments as well as hot and dry summer and cold 

winter environments in its native habitats. The SLA was significantly correlated with 

RLI, soil organic matter, and potassium.  

In the third study, interspecific hybrid S. rotundifolia x argentea was created to 

achieve the aesthetic quality of S. rotundifolia and wet soil tolerance of S. argentea. The 

hybrid was intermediate morphologically and genetically (AFLP) to its parents. Trichome 

structure and physiological responses in terms of diurnal stomatal conductance (gs), 

photosynthetic light response curve, midday photosynthesis assimilation (Pn), and midday 

quantum efficiency (PhiPS2) of the hybrid were also more similar to S. argentea than to 

S. rotundifolia. The physiological responses of the hybrid compared to its parents may 

suggest tolerance to regularly watered conditions. 

(96 pages) 
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PUBLIC ABSTRACT 

 
 
Ecophysiology and Genetic Variation in Domestication of Sphaeralcea and Shepherdia  

Species for the Intermountain West 
 
 

Chalita Sriladda 
 
 
 Low-water landscaping (LWL) using native drought tolerant species is an 

essential tool for water conservation in the arid Intermountain West (IMW) for managing 

limited water supplies. However, many potential species have not been evaluated for 

LWL. Some species are difficult to visually distinguish from each other, thus decreasing 

confidence in products from native plant industry. Meanwhile, some species are difficult 

to establish to urban landscape conditions. The overall goal of this study is to elucidate 

morphological, ecophysiological, and genetic distinctions within two IMW native plant 

genera containing species with high urban low-water landscape potential. 

 For the first study, a classification model based on morphological characteristics 

of type specimens using canonical variate analysis (CVA) was successful in clarifying 

morphological variation among four Sphaeralcea species. Genetic variation among 

populations and species based on amplified fragment length polymorphisms (AFLPs) 

revealed two pure types among four putative species. Sphaeralcea munroana and S. 

parvifolia separated genetically from S. coccinea and S. grossulariifolia, and S. 

munroana appeared to be an ecotype of S. parvifolia. 

 In the second study, environmental conditions in selected six populations of 

Shepherdia rotundifolia varied among populations in terms of elevation, precipitation, 
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temperature, relative light intensity (RLI), and soil properties. AFLP genetic varied 

between high and low elevation populations. Leaf area, specific leaf area (SLA), and leaf 

trichome structure exhibited adaptive traits to shady environments as well as hot and dry 

summer and cold winter environments in its native habitats. The SLA was significantly 

correlated with RLI, soil organic matter, and potassium. 

 In the third study, interspecific hybrid S. rotundifolia x argentea was intermediate 

morphologically and genetically to its parents. Leaf trichome structure and physiological 

responses of the hybrid were more similar to riparian S. argentea than S. rotundifolia, 

suggesting tolerance to regular watered urban landscape conditions. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

Urban landscape management in arid and semiarid areas is complicated by 

concerns about water use efficiency of plants as well as their aesthetics. The 

Intermountain West (IMW) has a very limited water supply and increasing population 

growth, demand from which is straining the water supply. Approximately 50-70% of total 

municipal water consumption is applied to urban landscapes. The urban landscape is 

composed of largely turfgrass, which has high water need and thus drives urban 

irrigation. Consequently, urban water suppliers have targeted urban landscapes for 

conservation in order to reduce water demand. 

Low-water landscaping is a key tool in water conservation. Drought adapted 

native plants are key fundamentals for low-water use landscapes (LWL). The IMW has 

many native woody and herbaceous species that are drought adapted with aesthetic 

qualities for LWL. Low-water use landscape not only has the potential to reduce water 

demand but also has potential to increase urban biodiversity. Urban biodiversity not only 

provides diverse aesthetic qualities, but also provides ecosystem services, such as 

sustenance for native birds and insect pollinators. Ultimately, LWL in the IMW 

diversified with native plants tells a compelling story about native systems in a high 

desert climate. 

Many native plant species in Utah are adapted to harsh conditions and are 

ornamentally attractive, but have not been evaluated for use in managed landscape 

conditions. Some species are promoted for use in urban landscapes but difficult to 

distinguish due to genetic variation among accessions and species, therefore decreases 
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consumer confidence in the native plant industry. Clarification in terms of 

morphological and genetic variations among accessions and species may improve 

production and confidence in the native plant industry. Some species are grower-

desirable to introduce to the native plant industry, but production has proved difficult to 

establish in LWL. It is important to understand how native plants adapt to environmental 

conditions in their native habitats before using them in urban landscapes, due to the 

difference between their natural habitats and landscape conditions. 

The genus Sphaeralcea (Globemallow) produces attractive orange flowers, and 

has species, which are used in the urban landscape. Sphaeralcea grossulariifolia is 

promoted as a superior choice for urban landscapes. However, it is one of four common 

species in Utah, including S. coccinea, S. grossulariifolia, S. munroana, and S. parvifolia, 

that have confusing morphological characteristics. Difficulty in their accurate 

identification and therefore collection and propagation creates concerns for seed 

collectors and reduces consumer confidence in the native plant industry. The 

morphological confusion in identifying characteristics between species could be a result 

of either natural hybridization between them, and/or differences in geographical 

distribution among populations. 

The genus Shepherdia (Buffaloberry) has attractive leaves and berries. 

Shepherdia rotundifolia occurs on hillsides and the bases of cliffs on very well drained 

rocky soils; it has an attractive crown shape, but is very sensitive to over-watering and 

difficult to establish in the urban landscape. Even though this species has potential for use 

in the landscape and has been sought by plant growers, it has not been studied enough to 
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understand and resolve its limits for landscape use; in particular, understanding how this 

species is adapted to the different ecological conditions in its natural habitats. 

Although the two genera have potential for use in low-water use urban landscapes 

because they are drought tolerant and ornamentally attractive, there are not enough data 

to develop these species for domestication for use in low-water use landscapes. 

Understanding the morphological, ecophysiological, and genetic variations of 

Sphaeralcea and Shepherdia species may help to clarify factors that limit their successful 

introduction to low-water use landscaping. It also may help in selection of species or 

cultivars with genetically superior forms for use in low-water use urban landscapes. 

Genetic improvement by hybridization with other species that can adapt to urban 

landscape conditions may also accommodate the aesthetic characteristics and adaptability 

to low-water use landscapes in a hybrid. 
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CHAPTER 2 

 
GOAL AND OBJECTIVES 

 
 

The overall goal of this study is to elucidate morphological, ecophysiological, and 

genetic distinctions within two IMW native plant genera containing species with high 

urban landscape potential. The specific objectives are: 

1. To clarify morphological and genetic distinctions among the four Sphaeralcea 

species, S. coccinea, S. grossulariifolia, S. munroana, and S. parvifolia, which may 

improve superior cultivar selections for use in low-water use landscapes. 

2. To investigate variability in terms of environmental conditions, morphology, 

and genetics among populations of Shepherdia rotundifolia in its native habitats, which 

may help to understand mechanisms underlying sensitivity to irrigated LWL. 

3. To compare genetic, morphological characteristics, and physiological responses 

of the interspecific hybrid between S. rotundifolia and S. argentea with its parents. 
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CHAPTER 3 

 
MORPHOLOGICAL AND GENETIC VARIATION AMONG 

SPHAERALCEA SPECIES1,2 

 
 
ABSTRACT. The herbaceous perennial species in the genus Sphaeralcea have desirable 

drought tolerance and aesthetics with potential for low-water use landscapes. However, 

taxonomy of these species is ambiguous, which leads to decreased consumer confidence 

in the native plant industry. The goal of this study was to test and clarify morphological 

and genetic differentiation among four putative species. Morphological characteristics of 

the type specimens were used as species references in canonical variate analysis to 

generate a classification model, and assigned putative species names to USU herbarium 

specimens to clarify morphological, and field specimens to clarify genetic variation 

among species. Genotypic classifications were tested using Bayesian cluster analyses of 

AFLP genotypes. The putative S. grossulariifolia was not significantly different 

morphologically and genetically from S. coccinea, with similarities between S. munroana 

and S. parvifolia. The composite group of S. coccinea and S. grossulariifolia was 

distinguished morphologically and genetically from the S. munroana and S. parvifolia 

composite group, with significant correlation between genotypic and morphological 

characteristics in the overall samples. There was no correlation between geographical and 

genetic distances when all putative species pooled together in the Mantel’s correlation 

tests. However, the correlation was significant when tested within each composite group, 

suggesting they are con-specific species due to isolation-by-distance within each group. 

                                                
1 Authors: Chalita Sriladda, Heidi Kratsch, Steven Larson, Roger Kjelgren 
2 Additional index words: Sphaeralcea coccinea, Sphaeralcea grossulariifolia, Sphaeralcea 
munroana, Sphaeralcea parvifolia, globemallow, AFLP 
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Morphological distance exhibited a correlation with geographical distance within the S. 

parvifolia and S. munroana composite group, suggesting morphological isolation by 

distance. Therefore, the putative S. munroana may only be an ecotype of S. parvifolia. 

 

 

 Globally, urbanization has dramatically increased, with nearly half of the world’s 

population currently living in urban areas; it is expected that approximately three quarters 

of the world’s population will be living in urban areas by the year 2025 (United Nations, 

2010). Substantial increases in urban population lead to increased demand for water in 

commercial, industrial, and residential sectors (Foster and Beattie, 1979). This increased 

demand in arid and semiarid urban regions means facing the additional challenge of 

absolute water scarcity (Vorosmarty et al., 2000). 

Demand for urban green spaces includes urban landscapes is increasing with 

population growth because those spaces provide aesthetic and mental health benefits and 

a positive association with the perceived general health of residents (Maas et al., 2006). 

Urban green spaces also mitigate a number of undesirable environmental effects such as 

urban heat islands (Deloya, 1993). Many urban green spaces require irrigation, 

particularly in arid and semi-arid areas. Thus, increasing irrigation for urban landscapes is 

causing an increased demand for efficient watering systems. Low-water landscaping 

describes landscapes full of plants that use substantially less water. Therefore, low-water 

landscaping is a key tool for conserving water in irrigated urban landscapes, particularly 

in arid and semiarid areas (Kjelgren et al., 2009). 
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Drought-tolerant plants, particularly native species promoting water 

conservation, are key elements for successful low-water landscapes because they require 

little maintenance, provide a natural look to the landscape (Cane and Kervin, 2009; 

Kjelgren et al., 2009; McKinney, 2002), and honor natural habitats. Native plant 

landscaping also supports local economies, facilitating sustainability in urban systems at 

multiple levels. However, lack of native plant availability, cost of native plant materials, 

inconsistent and unreliable demand, and lack of production knowledge has minimalized 

the native plant market (Peppin et al., 2010). 

The U.S. Intermountain West (IMW) has an abundance of woody and herbaceous 

perennial native plants that are drought-tolerant and ornamentally attractive 

(Intermountain Native Plant Growers Association, 2011; Kratsch, 2011; Mee et al., 2003; 

Meyer et al., 2009). The genus Sphaeralcea (Malvaceae), Globemallow, is an annual or 

perennial herb or shrub wildflower, characterized by brilliant, largely orange, flowers. 

About 40 species of the genus are found throughout temperate North and South America 

(Holmgren et al., 2005). The genus Sphaeralcea includes 27 species in North America, 

from southern Canada through western United States to northern Mexico, with disjunct 

populations in temperate South America (Holmgren et al., 2005). Several of these species 

appear to have both aesthetic and drought-tolerance qualities that lend them well to low-

water landscaping (Intermountain Native Plant Growers Association, 2011; Mee et al., 

2003); however, they are ostensibly closely related and difficult to distinguish. Four 

promising low-water landscape species, S. coccinea, S. grossulariifolia, S. munroana, 

and S. parvifolia are commonly found in the IMW (Holmgren et al., 2005; Ring, 2005; 
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Ring and Cully, 2007; Ring et al., 2009), and they are particularly difficult to distinguish 

from one another (Holmgren et al., 2005). 

Polyploidy and hybridization have been reported as factors contributing to weak 

morphological differences among species in the genus (La Duke and Northington, 1978). 

Tate (2002) also suggested the possible importance of geographical isolation for 

speciation. Analysis of nuclear ribosomal DNA internal transcribed spacer (ITS) 

sequences showed that the North American Sphaeralcea species (S. angustifolia and S. 

wrightii) cluster together, as do the two South American taxa (S. crispa and S. 

philippiana) (Tate, 2002). Inter-gradation among species challenged early taxonomists in 

their efforts to clearly identify Sphaeralcea species using only morphological 

distinctions. 

To varying degrees, these four species are being promoted by the nursery industry 

(Intermountain Native Plant Growers Association, 2011), but it is difficult to determine 

which species are actually being sold. Difficulty to determine species decreased 

consumer confidence in these species. Leaf morphology was used as the first taxonomic 

key to separate these species into two groups (Holmgren et al., 2005). Leaves shallowly 

lobed putatively separate S. munroana and S. parvifolia from S. grossulariifolia and S. 

coccinea, whose leaves are deeply lobed, cleft more than half way to the base, and in 

many, cleft to the base. However, S. munroana is often difficult to distinguish from S. 

parvifolia, while S. grossulariifolia can be easily confused with S. coccinea and some 

specimens of S. munroana (Holmgren et al., 2005). Besides leaf morphology, the mature 

fruiting carpel characteristics, density of leaf hairs, and hair ray orientation sometimes are 

used as keys for taxonomists to identify specimens (Atwood and Welsh, 2002). However, 
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these characters are seldom-used in practical settings, and are not efficient for field use 

or for non-taxonomist collectors. The intergrading morphology of these species might be 

a result of genetic overlap, and makes selection for superior forms difficult. 

In terms of the geological distribution of the four species (United States 

Department of Agriculture, 2010), S. coccinea is found extensively throughout the IMW, 

and S. grossulariifolia is found throughout the Great Basin area on the west side of the 

IMW. Distribution of S. munroana and S. parvifolia overlaps in Nevada, Utah, and 

Colorado, where S. parvifolia is distributed further south and S. munroana distributed 

further north. In Utah where the distributions of the four species overlap, geographical 

differences seem to play an important role in putative species distribution, particularly for 

S. munroana and S. parvifolia, which occur in the north and south, respectively (Shultz et 

al., 2010). The distribution has sometimes been used as a key for species identification 

because of difficulty due to morphological overlap among these species. 

Difficulty in their accurate identification creates concerns for those collecting 

Sphaeralcea seeds for nursery production, and reduces consumer confidence in the native 

plant industry, with plants varying widely in morphology being sold as the same species. 

The goal for this study was to clarify morphological and genetic distinctions among the 

four Sphaeralcea species, S. coccinea, S. grossulariifolia, S. munroana, and S. 

parvifolia,which may improve superior cultivar selections for use in low-water 

landscapes. 
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Materials and Methods 

 
 

Type specimens of the four Sphaeralcea species were used as references. We 

borrowed all available type specimens (holotype/isotype) representing the four species 

from herbaria across the U.S. and Great Britain. In summer 2008, we collected field 

specimens from 20 populations in Utah (Fig. 3-1). The field specimens were used for 

genetic and correlation analysis. In addition to the field specimens, existing voucher 

specimens from the Intermountain Herbarium at Utah State University (USU) were used 

to verify morphological variation within and among species. The voucher specimens 

from the USU Herbarium were also used to locate the field specimens. 

 MORPHOLOGY. Morphological variation within and among type specimens were 

evaluated by measuring ten morphological characteristics of fully mature leaves (3 leaves 

per plant) (Table 3-1). In order to observe all possible variation within and among the 

type specimens, we measured morphological characteristics of all type specimens even 

though the numbers representing each species were unequal. Morphological 

characteristics of the type specimens were subjected to analysis of variance (ANOVA) 

using PROC GLM in SAS software (SAS Institute, Cary, NC) to compare variation of 

each morphological character among species. The morphological characteristics were 

subjected to canonical variate analysis (CVA) in NTSYSpc 2.2N software (Exeter 

Software, Setauket, NY) to generate a model for the purpose of assigning field and 

existing herbarium specimens to one of four putative Sphaeralcea species groups. 
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Fig. 3-1. Geographical distribution of Sphaeralcea species in Utah used in this study; 

letters were used to indicate species names; capital letters representing 

herbarium specimens (C = S. coccinea; G = S. grossulariifolia; M = S. 

munroana; P = S. parvifolia); lower-case letters representing field collected 

specimens (c = S. coccinea; g = S. grossulariifolia; m = S. munroana; p = S. 

parvifolia) 
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Table 3-1. Means (range) for morphological characteristics for type specimens among putative Sphaeralcea species, including S. 

coccinea (n = 8), S. grossulariifolia (n = 5), S. munroana (n = 3), and S. parvifolia (n = 17) 

 

 

Character S. coccinea S. grossulariifolia S. munroana S. parvifolia 
Petiole length (mm)z 10.63 (5.7 – 20.0)a 14.67 (7.0 – 17.7)a 8.72 (5.8 – 10.3)a 14.02 (8.5 – 25.3)a 

Mid-lobe length (mm) 19.88 (8.0 – 35.7)a 25.53 (24.7 – 26.3)a 22.44 (19.7 – 26.7)a 20.55 (12.0 – 27.3)a 

Mid-lobe width (mm) 3.31 (1.0 – 6.3)b 4.67 (4.3 – 5.7)b 3.72 (3.3 – 4.3)b 10.60 (7.0 – 15.7)a 

Secondary-lobe length (mm) 13.08 (5.7 – 19.3)a 17.47 (16.0 – 21.0)a 14.33 (12.2 – 15.7)a 14.14 (8.0 – 18.3)a 

Secondary-lobe width (mm) 2.56 (1.0 – 4.0)b 3.57 (3.0 – 4.0)b 2.78 (2.7 – 2.8)b 8.30 (4.3 – 12.3)a 

Lobe-depth (%) 97.00 (80.0 – 100.0)a 83.00 (60.0 – 100.0)a 51.00 (30.0 – 70.0)b 22.00 (3.0 – 50.0)c 

Max. number of flowers/ node 1.00 (1.0 – 1.0)b 5.20 (4.0 – 6.0)a 4.33 (4.0 – 5.0)a 5.59 (1.0 – 9.0)a 

Pedicel length (mm) 3.08 (2.0 – 4.0)a 2.90 (1.7 – 3.7)a 2.89 (2.0 – 3.7)a 2.99 (1.7 – 5.0)a 

Calyx length (mm) 6.67 (4.0 – 9.0)a 5.73 (4.7 – 6.7)a 5.89 (5.7 – 6.0)a 6.54 (5.2 – 8.0)a 

Petal length (mm) 12.33 (7.0 – 19.0)a 11.73 (9.3 – 14.7)a 11.00 (10.0 – 11.7)a 11.65 (5.0 – 14.3)a 

 

 

z Values within a row with different letters indicate statistical significance at α = 0.05. The type specimens (holotype and isotype) 
were on loan from Harvard University Herbarium, New York Botanical Garden Herbarium, Rancho Santa Ana Botanic Garden 
Herbarium (CA.), United States National Herbarium (Washington, D.C.), and Royal Botanical Garden, Kew Herbarium (England) 
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We selected 15 to 16 existing USU herbarium specimens of each species from 

different locations in Utah (Fig. 3-1) for morphological variation study. Similar to the 

type specimens, ten morphological characteristics were measured on fully mature leaves 

(3 leaves per plant). Morphological characteristics of the herbarium specimens were 

subjected to CVA in order to assign putative species names based on the classification 

model. Morphological variations within and among species were determined based on 

deviation of putative species names assigned to the USU herbarium specimens compared 

to names given by taxonomists. 

 GENETICS. Three voucher specimens were taken at each field population to 

represent morphological characters of the population. Similar to the type specimens, three 

fully mature leaves from each plant were used to measure ten morphological 

characteristics. Morphological characteristics of the field specimens were subjected to 

CVA in order to assign putative species names on the basis of the classification model of 

the type specimens. The assigned species names of the field specimens were later used 

for the genetic variation and correlation analysis. 

Leaf samples (2-3 leaves per plant) collected from each field population (12 

plants per population) were dried in 28-200 mesh silica gel (Fisher Scientific, Pittsburgh, 

PA). DNA was extracted with the Dneasy 96 Plant Kit (QAIGEN, Valencia, CA). 

Amplified fragment length polymorphisms (AFLPs) were assayed as described by Vos et 

al. (1995) with described modifications. The DNA samples were preamplified with 

EcoRI +1 / MseI +1 using A/C selective nucleotides. Selective amplification primers 

consisted of five EcoRI +3 / MseI +3 primer combinations using AAG/CAG, ACT/CAG, 

ACT/CTC, ACT/CAC, ACA/CTG selective nucleotides. The EcoRI selective 
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amplification primers included a fluorescent 6-FAM (6-carboxy fluorescein) label on 

5’ nucleotides. Selective amplification products were combined with GS600 LIZ internal 

lane size standard and were fractionated using an ABI 3730 instrument with 50-cm 

capillaries and sized between 50 and 600 bp with Genescan software (Applied 

Biosystems, Foster City, CA). Although DNA molecules vary in length by increments of 

1 bp, the relative mobility of bands is also affected by sequence composition. Thus, non-

homologous bands of the same length may not have the same relative mobility. Genescan 

trace files for each individual were visually analyzed for the presence or absence of DNA 

bands in bins that were at least 0.3 bp or more apart using Genographer software 

(available free at http://hordeum.oscs.montana.edu/genographer/ or directly from the 

author, Tom Blake, at blake@hordeum.oscs.montana.edu). Bayesian clustering of 

individual plants without a priori assignment of individuals to hierarchical groups was 

used to determine genetic structure and to test for possible admixture between taxa, 

which might otherwise confound phylogenetic analysis, using Structure v2.1 (Pritchard et 

al., 2000). Three analyses were used of each model with 100,000 iterations and 10,000 

burn-in or 200,000 iterations and 20,000 burn-in with the dominant-allele, admixture 

model of Structure v2.2 Falush et al., 2007; Pritchard et al., 2000). 

 CORRELATIONS. Morphological, genetic, and geographical distance matrices of 

the field specimens were used for correlation tests. Fifteen field populations were used 

for the correlation tests. The Euclidean distance matrix of morphology and NEI-72 

distance matrix of genetics were computed using NTSYSpc 2.2N software (Exeter 

Software, Setauket, NY). Geographic distance matrix was computed in Geographic 

Distance Matrix Generator v1.2.3 (Center for Biodiversity and Conservation, the 
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American Museum of Natural History, New York, NY). Mantel’s correlation tests 

(Mantel and Valand, 1970) were performed with 999 permutations in the NTSYSpc 2.2N 

software (Exeter Software, Setauket, NY). We also constructed neighbor-joining 

clustering trees, in order to compare similarity in classification between distance matrices 

of morphology and genetics of the field collected specimens using NTSYSpc 2.2N  

software (Exeter Software, Setauket, NY). 
 
 

Results and Discussion 
 
 

MORPHOLOGY. Morphological variation among the type specimens was mostly 

described by leaf lobing. Four out of ten morphological characters were significantly 

different among species in ANOVA, including lobe-depth, mid-lobe width, secondary-

lobe width, and number of flowers per node (Table 3-1). Lobe-depth of more than 80% of 

the leaf of S. coccinea and S. grossulariifolia type specimens was significantly different 

and putatively separated from S. munroana and S. parvifolia. Shallow leaf lobing are 

associated with wide mid-lobe width and secondary-lobe width separated S. parvifolia 

from the other species. Having only one flower at a node separated S. coccinea from the 

other species. According to CVA of the type specimens, the first component accounted 

for 92% of the morphological variation among species (Table 3-2). This suggests the 

classification model on the basis of the ten morphological characters of the type 

specimens was powerful enough to use as a species reference. Lobe-depth contributed 

most to the variation, followed by mid-lobe width and secondary-lobe width, 

respectively. 
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Table 3-2. Principal component in canonical variate analysis of morphological 

characters for type specimens of S. coccinea (n = 8), S. grossulariifolia (n = 

5), S. munroana (n = 3), and S. parvifolia (n = 17) 

 

Morphological Traits Component 1 Component 2 Component 3 

Petiole length (mm) 0.6093 -0.1236 0.5630 

Mid-lobe length (mm) -1.2335 -0.3611 -0.9685 

Mid-lobe width (mm) 1.1507 -1.6038 0.8345 

Secondary-lobe length (mm) 0.2947 1.4056 0.8925 

Secondary-lobe width (mm) 0.6142 -0.3122 0.1624 

Lobe-depth (mm) -2.5134 -1.2082 1.1876 

Number of flower per node 0.3356 1.0642 0.0845 

Pedicle length (mm) 0.4761 -0.1044 0.0343 

Calyx length (mm) 0.4654 -0.1782 -0.3516 

Petal length (mm) -0.5647 -0.1586 -0.0607 

Variation (%) 92.3100 6.1600 1.5300 

 

 

Morphological characteristics of S. grossulariifolia were similar to S. coccinea, as 75% 

of S. grossulariifolia USU herbarium specimens were assigned to the type group of S. 

coccinea (Table 3-3; Fig. 3-2). Meanwhile, only 6% of the S. coccinea USU herbarium 

specimens fell into the type group of S. grossulariifolia. Morphological characteristics of 

S. munroana were very similar to S. parvifolia, as all of the USU herbarium specimens of 
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Table 3-3. Percentage of numbers of existing USU herbarium specimens of the four putative Sphaeralcea species assigned to its type 

group based on the classification model generated from morphological characteristics of the type specimens in the 

canonical variate analysis 

 

Type specimens 
Herbarium specimens 

S. coccinea (n=8) S. grossulariifolia (n=5) S. munroana (n=3) S. parvifolia (n=17) 

S. coccinea (n=16) 93.75% (15) 6.25% (1) - - 

S. grossulariifolia (n=16) 75.00% (12) 12.50% (2) 12.50% (2) - 

S. munroana (n=15) - - - 100.00% (15) 

S. parvifolia (n=16) - - - 100.00% (16) 
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Fig. 3-2. Putative species name assignment of herbarium specimens and field collected specimens on the basis of the classification 

model generated based on morphological characteristics of the type specimens by means of canonical variate analysis 
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S. munroana were assigned to the type group of S. parvifolia based on the 

classification model, and all of the USU herbarium specimens of S. parvifolia fell into 

their type group. 

 The results from morphological studies support the suggestion by Holmgren et al. 

(2005) that S. grossulariifolia can be easily confused with S. coccinea; and S. munroana 

can be confused with S. parvifolia. All of the USU herbarium specimens of S. munroana 

fell into the type group of S. parvifolia, supporting the suggestion by Holmgren et al. 

(2005) that S. munroana and S. parvifolia may be no more than varietally different. On 

the basis of morphological characteristics, these four putative species may be 

distinguished into two groups, including the composite group of S. coccinea and S. 

grossulariifolia and the composite group of S. munroana and S. parvifolia. However, 

some of the USU specimens of S. grossulariifolia collected in Cache County in northern 

Utah where S. munroana is co-occurring (Shultz et al., 2010) fell into the type group of S. 

munroana. The overlap in morphological characteristics between these two putative 

species may be a result of inter-specific hybridization. Holmgren et al. (2005) reported 

that some collections from the distributional range where S. munroana overlaps that of S. 

grossulariifolia appear to be first generation hybrids between the two putative species. 

GENETICS. The field population assigned as S. grossulariifolia on the basis of the 

classification model of the type specimens (Fig. 3-2) grouped together with populations 

assigned as S. coccinea, while the population assigned as S. munroana grouped together 

with populations assigned as S. parvifolia in the Bayesian cluster analysis (Fig. 3-3A-C). 

Separation of the S. coccinea and S. grossulariifolia composite group from the S. 

munroana and S. parvifolia composite group occurred when testing a two population 
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Fig. 3-3. Inferred population structure of Sphaeralcea AFLP genotypes from the field 

specimens when; (A) testing a two population model (K = 2); (B) testing a three 

population model (K = 3); and (C) testing a four population model (K = 4); a 

thin vertical line represents each individual, black lines separate individuals of 

different populations; S. coc = S. coccinea; S. gros = S. grossulariifolia; S. mun 

= S. munroana; S. par = S. parvifolia 
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model (K = 2) in the structure analysis, and remained separated when increasing the 

number of test populations in the model to three and four. Genetic variation was 

relatively greater within the composite group S. munroana and S. parvifolia, specifically 

within populations of S. parvifolia when the presumed number of populations in the 

model was increased. The population assigned as S. munroana also shared approximately 

20% genetic similarity with the composite group of S. grossulariifolia. 

The genetic distinctiveness between the two composite groups was consistent 

with morphology. These results strongly support the suggestions by Holmgren et al. 

(2005) that S. munroana may be no more than varietally different from S. parvifolia, as 

all of the USU herbarium specimens of S. munroana fell into the type group of S. 

parvifolia, and the field population assigned as S. munroana grouped genetically with S. 

parvifolia. Similarly, the results from morphological and genetic studies suggest that S. 

grossulariifolia and S. coccinea may be no more than varietally different, as 75% of the 

USU herbarium specimens of S. grossulariifolia fell into the type group of S. coccinea, 

and the field population assigned as S. grossulariifolia grouped genetically with S. 

coccinea in the structure analysis. Morphological and genetic distinctions appeared to be 

greatest between S. coccinea and S. parvifolia. It is possible that putative species, S. 

coccinea and S. parvifolia have evolved in different ecological niches, leading to genetic 

distinctions. This is similar to the findings of Tate (2002) who classified other 

Sphaeralcea species into North America and South America groups based on ITS genetic 

data. 

The Bayesian cluster analysis showed that the field population assigned as S. 

munroana shared approximately 20% ancestry with the composite group of S. 



 22 
grossulariifolia (Fig. 3-3A-C), which supports the possibility of inter-specific 

hybridization between S. grossulariifolia and S. munroana suggested by Holmgren et al. 

(2005), resulting in morphological overlapping between the two, as some of the USU 

herbarium specimens of S. grossulariifolia fell into the type group of S. munroana. 

Only one population out of 20 populations from the field collection was assigned 

as S. grossulariifolia; and only one population was assigned as S. munroana based on the 

classification model (Fig. 3-2). The small sample sizes of these species may be because 

there were not many populations of the putative species S. grossulariifolia or S. 

munroana, even though we used locations of the existing USU Herbarium specimens of 

the four putative species to collect the field specimens. 

CORRELATIONS. The field population assigned as S. grossulariifolia grouped 

morphologically and genetically with the populations assigned as S. coccinea in cluster 

analysis (Fig. 3-4A and B). The field population assigned as S. munroana was 

morphologically closely related to the composite group of S. coccinea and S. 

grossulariifolia, but grouped genetically with the populations assigned as S. parvifolia. 

This result was consistent with the results from the morphological and genetic studies 

about the distinction of the composite group of S. coccinea and S. grossulariifolia from 

the composite group of S. munroana and S. parvifolia, and supports the possibility of 

hybridization between S. grossulariifolia and S. munroana. 

There was a correlation between morphological and genetic distances when all 

putative species pooled together in Mantel’s correlation tests (Table 3-4), but the 

correlation was not significant within each composite group. The correlation between 

geographical and genetic distances was significant within both composite groups, but 
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Fig. 3-4. Neighbor-Joining clustering trees constructed from morphological and AFLP 

genetic data of field collection of Sphaeralcea species; (A) the tree constructed 

from Euclidean distances of morphology; (B) the tree constructed from NEI-72 

genetic distances 



 

24 

Table 3-4. Mantel’s correlation tests performed with 999 permutations of morphological (Euclidean distances of morphology), genetic 

(NEI-72 genetic distances), and geographic distances of the field specimens assigned on the basis of the classification 

model as S. coccinea, S. grossulariifolia, S. munroana, and S. parvifolia 

 

  

All (n = 15) 

S. coccinea (n = 3) 

& 

S. grossulariifolia (n = 1) 

S. parvifolia (n = 10) 

& 

S. munroana (n = 1) 

Geographical – Genetic distances NS p = 0.038; r = 0.978 p = 0.024; r = 0.384 

Geographical – Morphological distances NS NS p = 0.011; r = 0.437 

Morphological – Genetic distances p = 0.001; r = 0.665 NS NS 
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not significant when all species pooled together. Only within the S. munroana and S. 

parvifolia composite group was the correlation between geographical and morphological 

distances significant. 

The Mantel’s correlation test between AFLP genetic- and geographical distances 

was used by Larson et al. (2010) for species delimitation tests of endemic Lepidium 

papilliferum. Similar to their approach, the correlation between AFLP genetic distance 

and geographical distance was not significant when all putative species pooled together 

(Table 3-4). This result is interpreted, as described by Good and Wake (1992) regarding 

species delimitation, as being different species. However, the correlation was significant 

when tested within each composite group, suggesting putative species within each 

composite group as being con-specific species and isolated by distance (Good and Wake, 

1992). In addition, the significant correlation between geographical and morphological 

distances within the S. munroana and S. parvifolia composite group supports the Atwood 

and Welsh (2002) morphological isolation-by-distance findings within this group. 

Utah is separated by the Rocky Mountains into two major ecoregions, including 

the Northwest ecoregion (Great basin) and the Southeast ecoregion (Colorado plateau). 

The Colorado Plateau differs from the Great Basin in having greater amounts of summer 

rainfall due to frontal systems moving northward from the Gulf of California, sandier 

soils, and streams which drain into river systems rather than closed basins and salt playas, 

resulting in a relatively more suitable growing season on the Colorado Plateau and 

somewhat greater diversification of plant habit, phenology, and physiology (Comstock 

and Ehleringer, 1992). According to the map of distribution (Fig. 3-1), the populations 

assigned as S. parvifolia (p1, p2, p3, p4, p5, p9, p10) and the population assigned as S. 
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munroana (m1) fell into the Great Basin ecoregion, and shared genetic similarity and 

grouped together in the structure analysis (Fig. 3-3C). The other populations of the field 

specimens assigned as S. parvifolia fell into the Colorado Plateau ecoregion according to 

their geographical distribution. 

On the basis of genetic similarity, the populations assigned as S. parvifolia within 

the Colorado Plateau ecoregion group suggested by the structure analysis can be 

separated into two subgroups (Fig. 3-3C). The first subgroup included S. parvifolia, 

population p6, p7, and p8. All populations in this subgroup were collected in Emery 

County, in the central east section of Utah (Fig. 3-1). The other subgroup included S. 

parvifolia, population p11, p12, p13, and p14. The populations p11 and p12 were 

collected from south-western Utah, and the populations p13 and p14 were collected from 

south-eastern Utah. The populations p13 and p14 also shared genetic similarity with the 

other subgroup (p6, p7, p8) (Fig. 3-3C). 

Morphological adaptation to different environmental settings may account for leaf 

morphological variation among populations of the S. parvifolia and S. munroana 

composite group. Leaf dissection could be a trade-off with pubescence, as both reduce 

heating, dissection through greater convection, hairs through reflection, with the hairs 

having the additional benefit of reducing boundary layer conductance. Anecdotally, 

leaves of S. parvifolia in the Colorado plateau were relatively densely pubescent but less 

lobed than S. parvifolia in the Great basin. Within the Colorado plateau group, leaf 

pubescence of the populations from the south (p11, p12, p13, p14) was relatively dense 

compared to that of the populations from the central east section of Utah (p6, p7, p8). The 



 27 
dense pubescence may be an adaptation to the relatively hotter temperatures in the 

south, thus a lower transpiration rate and less rapid soil water depletion. 

The results from morphological, genetic, and correlation studies support two pure 

types among the four putative species. Sphaeralcea grossulariifolia grouped 

morphologically and genetically with S. coccinea, while S. munroana grouped 

morphologically and genetically with S. parvifolia. The morphological variation among 

populations of S. munroana and S. parvifolia correlated with geographical distances. 

Resource identification is critical for using these Sphaeralcea species for low-water 

landscaping, especially within the composite group of S. parvifolia and S. munroana, 

because of morphological isolation-by-distance. Uses of plant materials from a similar 

ecological setting may provide more confidence in native plant production being brought  

to market. 
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CHAPTER 4 

 
ECOLOGICAL ADAPTATION OF SHEPHERDIA ROTUNDIFOLIA1,2 

 
 
ABSTRACT. In addition to biodiversity conservation, the Colorado plateau’s native and 

endemic shrub, Shepherdia rotundifolia, has potential to be used for sustainable urban 

low-water landscapes (LWL). However, it appears to be difficult to establish in irrigated 

urban landscapes. Little is known about this species in its native habitats that would help 

to facilitate use in LWL. The goal of this study was to investigate variability in terms of 

environmental conditions, morphology, and genetics among populations of S. 

rotundifolia in its native habitats, which may help to inform its limits to establishment in 

LWL. Six selected populations of S. rotundifolia occurred at elevation ranging from 

1,200 to 2,500 m. The annual precipitation (199-409 mm/yr), average maximum 

temperature (17-25oC), average minimum temperature (3-9oC), and relative light 

intensity (RLI) (31-100%) were significantly different among populations. The air 

temperature was highest in July and dropped at least 10oC in December. Soil properties 

varied among the six populations, in terms of soil salinity (0.7-1.2 dS/m), pH (6.5-7.8), 

phosphorus (P) (1.6-27.1 mg/Kg), potassium (K) (148.5-373.5), and organic matter (OM) 

(0.7-8.7%). Leaf area, specific leaf area (SLA), and leaf trichome structure exhibited 

adaptive traits to shady environments as well as hot and dry summer and cold winter 

environments in its native habitats. The SLA was significantly correlated with RLI, OM, 

and K. A high level of K in its native habitats and a correlation of K with SLA may 

suggest potassium deficiency in LWL soils. 

                                                
1 Authors: Chalita Sriladda, Roger Kjelgren, Heidi Kratsch 
2 Additional index words: Roundleaf buffaloberry, SEM, AFLP 
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Water conservation is critical for urban systems, particularly in the U.S. 

Intermountain West (IMW) due to limited water supply. Low-water landscaping (LWL), 

specifically using drought-tolerant native species, is a key element for successful water 

conservation (Kjelgren et al., 2009). Drought-tolerant native species use minimal water, 

provide a natural look to the urban landscape, and support local native plant industries 

(Kjelgren et al., 2009; McKinney, 2002). The low-water landscape using drought adapted 

native species not only has potential to conserve water, it also has potential to increase 

biodiversity in urban environments. 

Biodiversity is important for sustainable ecosystems. Preservation of species 

diversity endemism is typically focused on natural habitats in biodiversity hotspots, 

national parks, wildlife refuges, and national forests (Brooks et al., 2006; Myers et al., 

2000). In addition to preservation of species in their natural habitats, wise use of the 

species in urban landscapes can create a commercially viable asset and urban biodiversity 

(Alvey, 2006) that creates more sustainable urban systems, educates the public about 

natural systems, and honors the species’ natural habitat. 

The IMW harbors large number of endemic species (Intermountain Native Plant 

Growers Association, 2011; Mee et al., 2003; Meyer et al., 2009) that have potential as 

urban landscape plants, since most are found in dry habitats. These species may be suited 

to LWL. Roundleaf buffaloberry (Shepherdia rotundifolia) in the family Elaeagnaceae, is 

an evergreen shrub that has a number of aesthetic qualities and apparent drought 

tolerance as well as nitrogen fixation that could be well suited to LWL. Aesthetically, it 

has a hemispherical-shaped canopy and silvery green, evergreen foliage that could accent 

the LWL (Mee et al., 2003). The Utah Division of Wildlife Resources encourages 
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creating landscapes for wildlife using native plants, such as S. rotundifolia as its fruit is 

food and cover for quail and small mammals (Nordstrom, 2001), therefore creating more 

urban biodiversity. 

Even though this species has potential for use in the landscape and has been 

desired by plant growers, S. rotundifolia plants appear to be sensitive to over-watering 

and difficult to establish in irrigated urban landscapes (Mee et al., 2003), which 

constrains risk-averse native plant growers. Little is known about this species, especially 

the mechanisms underlying the difficulty to establish in urban landscapes. Temperature, 

irrigation, and fertilization increase N2O and NO emission from urban soils (Bijoor et al., 

2008; Hall et al., 2008; Livesley et al., 2010), which may lead to nitrogen deficiency in 

plants. However, this species is associated with Frankia for nitrogen fixation, thus N-

deficiency may not be a limiting factor. Other urban environmental conditions may also 

limit establishment of S. rotundifolia in irrigated urban landscapes. Variability among 

populations of S. rotundifolia in their native habitats has not been studied enough to 

understand and resolve the limits of S. rotundifolia for landscape use in urban areas. 

Understanding how this species adapts to the different environmental conditions in their 

natural habitats may help to understand mechanisms underlying sensitivity to irrigated 

LWL. 

The species is an endemic native to the Colorado Plateau, from southern Utah into 

the Grand Canyon region of Arizona (Schmutz et al., 1967; United States Department of 

Agriculture, 2011). The species naturally occurs on hillsides and bases of cliffs on very 

well drained rocky soils (Mee et al., 2003). Elevation and precipitation appear to be a 

strong environmental gradient for this species in Utah. Its natural habitat has been 
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reported to range from 170 to 480 mm yearly rainfall (Brotherson et al., 1983), from 

1,500 up to 2,400 m. elevation (Kearney and Peebles, 1960). Variability in environmental 

conditions in their native habitat may have affected variation in adaptability among 

populations of this species. Leaf traits, specifically leaf area (LA) and specific leaf area 

(SLA) have been recognized as adaptive adjustments of plants to variations in 

environmental conditions (Gomes et al., 2011; Jin et al., 2011; Rieger et al., 2003), as 

well as contributing to genotype discrimination within species (Gomes et al., 2011). Low 

SLA is considered as an important strategy for plants living in harsh environmental 

conditions (Ceriani et al., 2009; Liu et al., 2011; Reich et al., 1998; Wilson et al., 1999). 

Variability among populations of S. rotundifolia has not been described, in particular the 

correlation between leaf traits and environmental conditions, but if it were described the 

information could facilitate S. rotundifolia use in LWL. 

The goal of this study was to investigate variability in terms of environmental 

conditions, morphology, and genetics among populations of Shepherdia rotundifolia in 

its native habitats, which may help to understand mechanisms underlying sensitivity to  

irrigated LWL. 
 

 
Materials and Methods 

 
 

Since S. rotundifolia is only found in far southern Utah and northern Arizona, we 

chose to collect from populations from southwestern across southeastern Utah. The total 

number of populations selected was six, representing different ecological settings in their 

natural habitats. Elevation and precipitation variation were specifically selected for 

environmental, morphological, and genetic studies. The six populations included three 
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populations at different elevation in the town of Torrey in central Utah (Tor-2500, Tor-

2300, and Tor-1600), one population in Bluff (Bluff), Utah and one population by 

Natural Bridges Monument (Nat. Bridge) in southeastern Utah, and one population in 

Springdale by Zion National Park (Springdale) in southwestern Utah (Fig 4-1). 

 ENVIRONMENT. Populations of S. rotundifolia were measured for elevation, 

precipitation, relative light intensity (RLI), temperature, evapotranspiration (ETo), and 

soil properties. Relative light intensity, as a percent of total incoming solar radiation 

below the canopy compared to total incoming solar radiation above the canopy, was 

estimated from three canopy images taken with CI-110 Plant Canopy Digital Imager 

(CID Inc., Camas, WA) at each collection site. The canopy images were then analyzed 

with HemiView Canopy Analysis Software 2.1 (Delta-T Devices Ltd., Burwell, 

Cambridge). Air temperature and precipitation over 30-year records (1981-2010) at 

existing weather stations close to each site were downloaded from the Utah Climate 

Center website (http://climate.usurf.usu.edu/products/data.php), and reported in Table 4-

1. The three populations located in the town of Torrey (Fig. 4-1), were used to represent 

variation in terms of environmental conditions due to differences in terms of elevation 

and canopy closure. Environmental Monitoring Systems-HOBO-U30 (Onset Computer 

Corporation, Pocasset, MA) was used at each site to monitor air temperature and solar 

radiation over time (May 2009-December 2009). ETo was calculated on the basis of 

maximum and minimum air temperature at each site (Hargreaves and Allen, 2003). 

Two soil samples from six populations were collected from soil surface to 30 cm 

depth. The soil samples were analyzed, in terms of salinity, pH, phosphorus (P), 

potassium (K), and organic matter (OM), at Utah State University (USU) Analytical Labs 
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Fig. 4-1. Location of Shepherdia rotundifolia populations collected in southern Utah 

 

 

 



 37 
Table 4-1. Environmental conditions among populations of Shepherdia rotundifolia in 

southern Utah, including elevation; average 30-year records (1981-2010) of 

annual precipitation and average maximum and minimum air temperature; and 

relative light intensity (RLI), and soil properties 

 
 

Average over 30 yrsz 

(1981-2010)* (n = 30) 

RLIz 

(%) 
(n = 3) Pop. ID 

 
Location  

Latitude, Longitude 
Elevation, Nearest town Precip. 

(mm/yr) 
Tmax 
(oC) 

Tmin 
(oC) 

 

Tor-2500 38.13N, 111.33W 
2,507 m Torrey 31+4.3b 

Tor-2300 38.20N, 111.35W 
2,295 m Torrey 

285+13.9b 17+0.2d 3+0.1d 

98+0.2a 

Tor-1600 38.19N, 111.10W 
1,642 m Torrey 210+11.3c 19+0.1b 6+0.1b 100+0.0a 

Nat. Bridge 37.30N, 109.54W 
1,342 m Blanding 327+14.5b 17+0.1c 4+0.1cd 99+0.1a 

Bluff 37.28N, 109.53W 
1,342 m Bluff 199+11.5c 17+0.2d 4+0.2c 94+0.6a 

Springdale 37.19N, 113.00W 
1,188 m Springdale 409+23.2a 25+0.2a 9+0.1a 88+5.5a 

 
 
 
z Values within a column with different letters indicate statistical significance at α = 0.05 

*Average precipitation, maximum and minimum temperatures over a 30 year record at each site obtained 

from an existing weather station closest to the site; the weather station Boulder (lat./long. 37.9 N 111.4W, 

elev. 2,036 m.) was used for the populations Tor-2500 and Tor-2300; the weather station Capital Reef NP 

(lat./long. 38.3 N 111.3W, elev. 1,676 m.) was used for the population Tor-1600; the weather station 

Natural Bridge NM (lat./long 37.6 N 110.0 W, elev. 1,981 m.) was used for the population Nat. Bridge; the 

weather station Bluff (lat./long. 37.3 N 109.6 W, elev. 1,317 m.) was used for the population Bluff; and the 

weather station Zion NP (lat./long. 37.2 N 113.0 W, elev. 1,234 m.) was used for the population Springdale 
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(USU, Logan, UT). The environmental variables among populations were subjected to 

Analysis of Variance (ANOVA) in PROC GLM in SAS software (SAS Institute, Cary, 

NC). 

MORPHOLOGY. Morphological variation among populations of S. rotundifolia to 

different environmental conditions in their habitats was measured on leaf area (LA), 

specific leaf area (SLA), leaf thickness, and leaf pubescence. Because some populations 

were relatively small (approximately 5-10 individuals per population), specifically the 

populations Tor-2500, Tor-2300, and Tor-1600, a total number of five plants was used to 

represent each population. Approximately 15-20 mature sun leaves were randomly sub-

sampled from each individual plant summer 2009. Specific leaf area was calculated as 

single-sided leaf area determined using a leaf area meter (LI-3100, Li-Cor, Lincoln, NE) 

divided by the leaf weight after drying at 65oC for 24 hours. Leaf thickness and leaf 

pubescence were measured on leaf samples collected from three populations located in 

Torrey, Utah; Tor-2500, Tor-2300, Tor-1600. Leaf punches were collected from each 

site, and directly fixed in formalin-aceto-alcohol (FAA) solution in the field. The fixed 

leaf tissue was subjected to critical point drying using Samdri-PVT-3D (Tousimis, 

Rockville, MD). Two fixed leaf tissues were used to observe leaf trichome on the adaxial 

and abaxial surfaces, and the other fixed tissue was used to observe leaf thickness on 

cross-section surface under a scanning electron microscopy (SEM) (Hitachi S4000, 

Pleasanton, CA). 

Leaf area and specific leaf area among populations were subjected to ANOVA 

using PROC GLM in SAS software (SAS Institute, Cary, NC) and were analyzed as 

correlation with environmental data at the six sites, including elevation, precipitation, air 
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temperature, relative light intensity, and soil property using Pearson’s correlation 

coefficient in PROC GLM. 

GENETICS. Leaf samples (2-3 leaves per plant) collected from each field 

population (5 plants per population) were dried in 28-200 mesh silica gel (Fisher 

Scientific, Pittsburgh, PA). DNA was extracted with the Dneasy 96 Plant Kit (QAIGEN, 

Valencia, CA). Amplified fragment length polymorphisms (AFLPs) were assayed as 

described by Vos et al. (1995) with described modifications. The DNA samples were pre-

amplified EcoRI +1 / MseI +1 using A/C selective nucleotides. Selective amplification 

primers consisted of five EcoRI +3 / MseI +3 primer combinations using AAC/CAA, 

AAG/CAG, ACC/CAT, ACG/CTA, AGG/CTA, AGA/CCC selective nucleotides. The 

EcoRI selective amplification primers included a fluorescent 6-FAM (6-carboxy 

fluorescein) label on 5’ nucleotides. Selective amplification products were combined with 

GS600 LIZ internal lane size standard and fractionated using an ABI 3730 instrument 

with 50-cm capillaries and sized between 50 and 600 bp with Genescan software 

(Applied Biosystems, Foster City, CA). Although DNA molecules vary in length by 

increments of 1 bp, the relative mobility of bands is also affected by sequence 

composition. Thus, non-homologous bands of the same length may not have the same 

relative mobility. Genescan trace files for each individual were visually analyzed for the 

presence or absence of DNA bands in bins that were at least 0.3 bp or more apart using 

Genographer software (available free at http://hordeum.oscs.montana.edu/genographer/ 

or directly from the author, Tom Blake, at blake@hordeum.oscs.montana.edu). Bayesian 

clustering of individual plants without a priori assignment of individuals to hierarchical 

groups was used to determine genetic structure and to test for possible admixture between 
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taxa, which might otherwise confound phylogenetic analysis, using Structure v2.1 

(Pritchard et al., 2000). Three analyses used of each model with 100,000 iterations and 

10,000 burn-in or 200,000 iterations and 20,000 burn-in with the dominant- 

allele, admixture model of Structure v2.2 (Falush et al., 2007; Pritchard et al., 2000). 
 
 

Results and Discussion 
 
 

ENVIRONMENT. The six collection sites were generally found on hill slopes at 

elevations ranging approximately from 1,200 to 2,500 m (Table 4-1). These populations 

could be tentatively classified into two groups on the basis of elevation gradient, 

including the high elevation populations (Tor-2500 and Tor-2300) and the low elevation 

populations (Tor-1600, Nat. Bridge, Bluff, and Springdale). Most populations occurred in 

an open area associated with pinyon pine community; except the population Tor-2500 

which occurred underneath the canopy of a ponderosa pine forest, resulting in the lowest 

relative light intensity and suggesting a degree of shade tolerance. 

On the basis of a 30-year record (1981-2010), average annual precipitation at the 

six collection sites ranged from approximately 200 to 400 mm/year (Table 4-1). The 

population near Springdale, located adjacent to Zion National Park, had the highest 

annual precipitation, approximately two times greater than annual precipitation at the 

populations Tor-1600 and Bluff due to summer monsoonal subtropical ridge from the 

Gulf of California. Average maximum temperature ranged from 17-25oC, while average 

minimum temperature ranged from 3-9oC. Average maximum and minimum 

temperatures were also highest near the Springdale population, due to its relatively lower 
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elevation. Habitats of the two high elevation populations had lower temperature 

compared to the low elevation populations. 

Weather data recorded in the field in the year 2009 at the three sites in the town of 

Torrey showed average temperature to be highest in the month of July (~ 40oC at the site 

Tor-1600) and lowest in the month of December (~ -20oC at the site Tor-2500). In July 

2009, average maximum air temperature at the site Tor-1600, which was located on a 

sandy hill slope habitat adjacent to Capital Reef National Park, was relatively higher than 

temperatures at the sites Tor-2300 and Tor-2500, respectively, and consistent with 

average minimum air temperature (Fig. 4-2). Maximum and minimum air temperatures at 

the three sites dropped down at least 10oC in the month of December compared to 

temperatures in the month of July, specifically at the site Tor-1600 where the maximum 

and minimum air temperatures dropped to be as cold as the temperatures at the site Tor-

2500. The site Tor-2300 had the warmest winter maximum and minimum temperatures, 

probably because it surrounded by dense tree cover. Meanwhile the site Tor-1600 

surrounded by sparsely perennial herbaceous, resulting in greater maximum and 

minimum differences between summer and winter at this site. 

During the growing season (May-September), overall solar radiation intensity was 

highest at the site Tor-1600 and lowest at the site Tor-2500 (Fig. 4-3A) although peak 

evapotranspiration was highest at the site Tor-2500 (Fig. 4-3B). The lowest daily solar 

radiation at Tor-2500 and Tor-2300 compared to Tor-1600 may be a result of being 

underneath a canopy of ponderosa pine forest at 2500 m as well as being cloudier both 

the two high elevation sites (Figure 4-3B and C). Average reference evapotranspiration 

(ETo) over year 2009 was also greatest at the site Tor-1600 (781 mm year-1), where 
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Fig. 4-2. Average maximum and minimum air temperature recorded from May 2009 to December 2010 at three populations in Torrey, 

Utah; Tor-2500, Tor-2300, and Tor-1600
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Fig. 4-3. Solar radiation intensity recorded at Tor-2500, Tor-2300, and Tor-1600; (A) daily solar radiation from August 16, 

2009 to September 16, 2009; (B) hourly solar radiation on a sunny day (August 19, 2009); and (C) hourly solar 

radiation on a cloudy day (August 25, 2009) 
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precipitation was lower and average air temperature higher in the summer than at the 

sites Tor-2300 and Tor-2500, where ETo were 705 and 564 mm year-1, respectively. 

Soil properties also varied among the six collection sites (Table 4-2). Soil parent 

material can be different among the sites (Stohlgren et al., 2005), but in general, S. 

rotundifolia occurs in very well drained sandy soils (Mee et al., 2003). Shepherdia 

species are symbiotic nitrogen-fixing shrubs with Frankia. Well-drained soils tend to 

have higher nitrogen mineralization and nitrification rates than poorly drained soil 

conditions (Ullah and Moore, 2009). Soil salinity levels at the sites were relatively low 

compared to salinity tolerant levels of crop species (Aragues et al., 2010; Dai et al., 

2008), ranging from 0.7-1.2 dS/m. Soil pH of most sites was slightly alkaline, except at 

the site Tor-2500, where soil pH was slightly acid due to relatively high content of 

organic matter (OM) from ponderosa leaves. Alkaline condition also favors the activity 

of Frankia-nitrogen fixation (Bai et al., 2010). 

Nutrient levels in the native soils of S. rotundifolia habitats varied among 

populations of S. rotundifolia. Even though phosphorus (P) level in soils at the site Tor-

2500 was significantly higher than the other sites, the P level was low compared to the 

normal soil P level recommended for crop production lands (He et al., 2009). Meanwhile, 

potassium (K) level at all sites was very high compared to the level of K recommended in 

crop production soils (Franzen, 2007). The high concentration of potassium ions seemed 

to be common in soils beneath populations of S. rotundifolia compared to levels in soils 

adjacent to the shrub. This result was similar to findings of Fairchild and Brotherson 

(1980), who found that nitrogen and phosphorus were in greater concentration beneath 

the species’ canopy than in open areas adjacent to the shrub. 
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Table 4-2. Soil properties; including soil texture, salinity (EC), pH, phosphorus (P), 

potassium (K), and organic matter (OM) at the six collection sites in Utah 

(n=2) 

 

 

 

 

 

 

 

 

 

z Values within a column with different letters indicate statistical significance at α = 0.05 

 

 

The range of environmental conditions in terms of RLI, precipitation, 

temperature, solar radiation, ETo, and soil properties among native habitats of S. 

rotundifolia suggests that the species adapted to full sun conditions and very well drained 

soils with low OM, and also tolerate shady environments as well as very hot and dry 

summer and cold winter environments. To tolerate such environmental conditions, S. 

rotundifolia may exhibit remarkable adaptive morphological characteristics. 

MORPHOLOGY. Plants of S. rotundifolia appeared to have adaptive morphological 

characteristics to tolerate hot and dry conditions in its native habitats. Leaf morphological 

Pop ID Texture ECNS 

(dS/m) 

pHz Pz 

(mg/kg) 

KNS 

(mg/kg) 

OMNS 

(%) 

Tor-2500 Silt loam 0.7+0.2 6.5+0.1b 27.1+7.9a 373.5+105.5 8.7+2.1 

Tor-2300 Sandy loam 1.2+0.5 7.5+0.2a 5.2+1.2b 148.5+48.0 1.8+0.8 

Tor-1600 Sandy clay 0.8+0.1 7.7+0.1a 8.5+5.5ab 193.5+3.5 0.7+0.2 

Nat. Bridge Sandy loam 1.0+0.1 7.6+0.0a 1.6+0.0b 243.0+15.0 2.0+0.4 

Bluff Sandy loam 1.1+0.4 7.4+0.0a 3.3+0.5b 190.0+103.0 3.9+2.8 

Springdale Sandy loam 0.8+0.1 7.9+0.2a 8.3+1.2ab 360.0+73.0 6.3+3.3 
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characteristics of S. rotundifolia varied among populations (Table 4-3). Variation in 

leaf size and leaf thickness of S. rotundifolia may suggest different mechanisms at leaf 

level to tolerate different environmental conditions in their habitats. Plants at the site Tor-

2500 exhibited adaptive traits to shady environments by having a relatively large leaf 

area (LA) and a relatively high specific leaf area (SLA) to increase surface area to absorb 

light for photosynthetic carbon assimilation under low light conditions (Schumacher et 

al., 2008). Meanwhile, plants at the site Tor-1600 adapted to a hot and dry habitat by 

having a relatively small LA and a relatively low SLA, although LA and SLA were not 

significantly different. Small leaf size of plants at the site Tor-1600 helps to reduce 

transpiration surface against high ambient temperature and ETo, thus reducing water loss. 

The leaf trichome layer in S. rotundifolia appeared to largely contribute to the leaf 

thickness (Fig. 4-4A-C). The abaxial trichome thickness of plants from the site Tor-1600 

was almost two times greater than plants from the site Tor-2500. Even though we only 

had one measurement on leaf thickness for plants at the three sites, the relatively thick 

leaf of plants from the site Tor-1600 was consistent with low SLA (Table 4-3). Leaf 

trichomes, peltate and stellate (Cooper, 1932), were present on adaxial and abaxial 

surfaces, respectively (Fig. 4-5A and B). Abaxial surface trichome density was 

approximately five times higher than adaxial density, similar to the findings of Bissett et 

al. (2009) on Elaeagnus umbellata, also in the Eleagnaceae family. The peltate trichome 

on the upper surface helps to reflect excess radiation to protect the underlying tissues 

against ultraviolet-B radiation damage (Karabourniotis et al., 1993). The thicker 

underside stellate trichome helps with insulation and provides a moisture trap on leaf 

surface to protect against heat loss and reduce water loss, and increase leaf boundary 
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Table 4-3. Morphological characteristics of S. rotundifolia from different populations, 

including leaf area; specific leaf area (SLA), leaf thickness in mesophyll layer, 

and leaf trichome thickness 

 

Pop. ID 
Leaf AreaNS 

(cm2) (n = 5) 

SLANS 

(cm2/g) (n = 5) 

Mesophyll- 

Thickness (mm) 

Trichome- 

Thickness (µm) 

Tor-2500 2.3+0.5 48.6+5.5 0.15 0.46 

Tor-2300 2.2+0.3 37.0+1.2 0.23 0.39 

Tor-1600 1.3+0.2 37.8+1.5 0.21 0.75 

Nat. Bridge 1.8+0.2 40.0+1.8 - - 

Bluff 1.5+0.1 40.4+3.0 - - 

Springdale 1.6+0.2 41.7+2.2 - - 

 

 

layer, thus reducing transpiration and impact of wind on plant energy budget (Press, 

1999). The relatively thick stellate trichome at the population Tor-1600 may suggest 

regulating transpiration is more important for plants at this site than at the site Tor-2500. 

Specific leaf area is a measure of plant adaptation to environmental stresses, specifically 

heat and soil stresses. The SLA of plants at the six sites exhibited significant correlation 

with RLI (Pearson’s r = 0.886; p = 0.019), K (Pearson’s r = 0.832; p = 0.040), and OM 

(Pearson’s r = 0.854; p = 0.030) in the Pearson’s correlation test (Fig. 4-6A-C). The 

environmental conditions with high RLI, low K and OM, as appeared at the site Tor-

1600, tend to force S. rotundifolia to invest in producing a thick abaxial leaf trichome 
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Fig. 4-4. Cross section of leaves observed under scanning electron microscope (SEM) of plants from three populations in 

Torrey, Utah, including Tor-2500 (A); Tor-2300 (B), and Tor-1600 (C) 

b ~ 0. 46 mm  

a ~ 0. 15 mm  

Tor-2500 

(A) 

a ~ 0. 23 mm  

b ~ 0. 39 mm  

aTor-2300 

(B) 

a ~ 0. 21 mm  

b ~ 0. 75 mm  

aTor-1600 
(C) 
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Fig. 4-5. Leaf trichome morphological characteristics observed under scanning electron microscope (SEM); (A): adaxial 

trichome (upper) and (B) abaxial trichome (lower) sides of the leaf 
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Fig. 4-6. Pearson’s correlation of specific leaf area (SLA) with (A) relative light intensity 

(RLI), (B) soil organic matter (OM), and (C) soil potassium (K) 

 

 

layer, resulting in low SLA. The variation in SLA, specifically between plants at the site 

Tor-2500 and Tor-1600, suggests morphological plasticity of the species to the range 

from shady environments to hot and dry environments. 

The responses of S. rotundifolia in terms of SLA responses to RLI, OM, and K, 

but no relationship to EC, P, and N in its native habitat conditions may suggest similar 

responses in urban landscape conditions. Increasing of RLI tends to increase heat 

stresses, thus decreasing SLA (Fig. 4-6A). Urban landscape conditions can range from 

shady environments to fully exposed to full sun, and similar to native habitats of S. 

rotundifolia. Increasing of OM tended to reduce environmental stresses, thus increasing 

SLA (Fig. 4-6B). Organic matter contents in urban soils can be as low as less than 1% in 

densely populated urban areas (Jim, 1998). The low OM in urban soils is consistent with 
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soil OM in native habitats of S. rotundifolia, specifically at the site Tor-1600 (Table 4-

2). Low organic matter can lead to nutrient deficiency, particularly N and P (Jim, 1998). 

Shepherdia species are symbiotic nitrogen-fixing shrubs with Frankia, which is found to 

be abundant in dried sand dune habitats (Batzli et al., 2004). This may help S. 

rotundifolia to cope with soil N insufficient in its native soils. 

Similar to responses to OM, increasing K tended to increase SLA (Fig. 4-6C). 

Even though concentrations of K in urban landscape soils can meet or exceed the 

recommended concentrations for horticultural soils (Pickett et al., 2008), temperature and 

irrigation can affect soil chemical and biological properties (Groffman et al., 2006), 

potentially leading to K deficiency in urban soils. Potassium is involved in many 

physiological processes such as photosynthesis, assimilate transport and enzyme 

activation, and plant water relation (Pettigrew, 2008) through lack of control over turgor 

(Amtmann and Armengaud, 2007). Water use efficiency is critical for plants, such as S. 

rotundifolia, that occur in dry habitats, such as the very dry site at Tor-1600. The high 

level of K in the native habitats of S. rotundifolia may have improved efficiency of plant 

water use (Egilla et al., 2005), thus possibly contributing to survival in such hot and dry 

habitats. Anecdotally, S. rotundifolia plants growing in urban soil conditions often show 

a yellowing in old leaves that progressively spreads to new growth and ultimately kills 

the whole plant. This response appears to be consistent with K+ deficiency symptoms 

reported to appear first in older leaves (Amtmann and Armengaud, 2007). Sangakkara et 

al. (2011) found that fertilizer K can enhance root development, growth, and N-use 

efficiency of maize and mungbean, and may play a role in S. rotundifolia health. 
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 GENETICS. Environmental variation, specifically elevation, appeared to be a 

strong environmental gradient for genetic variation among populations of S. rotundifolia. 

AFLP genetics of the high elevation populations, Tor-2500 and Tor-2300 was distinctive 

from the lower elevation populations in the Bayesian cluster analysis (Fig. 4-7A-D). The 

distinctiveness between the two population groups occurred when testing a three-

population model (K = 3) using S. argentea as an out-group. Genetic variation among the 

lower elevation populations appeared to be greater than genetic variation among the high 

elevation populations when testing a three-population model in the structure analysis, and 

remained separated when increasing the number of test populations in the model to seven. 

The genetic distinction between the high elevation populations and the lower elevation 

populations may suggest genetic isolation by elevation of the two population groups and 

may further suggest underlying adaptive morphological characteristics that allow the 

species to tolerate a range of environmental conditions in its native habitats.  

Anecdotally, seedling recruitment was minimal to nonexistent at all of the six 

collection sites, and may suggest species decline. A study on Holocene vegetation at 

Capitol Reef National Park using packrat middens by Cole et al. (1997) revealed that S. 

rotundifolia and other native species were severely reduced during the past 200 years to 

their lowest levels over a 5,400-year record. This dramatic decline may have been caused 

by grazing history in that area (Fisher et al., 2009), which may be cause for concern 

regarding species long-term sustainability. The high elevation populations have low 

genetic diversity, as no evidence of genetic polymorphism was detected based on AFLP 

analysis. In situ conservation of the species may enable greater gene flow among 

populations, thus increasing fitness to avoid potential species population decreases. In 
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Fig. 4-7. Inferred population structure of Shepherdia rotundifolia AFLP genotypes from 

six populations in the field when; (A) testing a four population model (K = 4); 

(B) testing a five population model (K = 5); (C) testing a six population model 

(K = 6); and (D) testing a seven population model (K = 7); a thin vertical line 

represents each individual, black lines separate individuals of different 

populations 
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addition, species conservation for biodiversity ex-situ, including wise use of species to 

create diverse and sustainable urban low-water landscapes may decrease the potential of 

species decline. 

Variability in native habitats of S. rotundifolia suggests a species tolerance of a 

range of environments: from full sun to canopy shade and relatively cloudy conditions, as 

well as tolerance to a range of soil organic matter and drought, hot summer, and cold 

winter environments. The species appears particularly well adapted to drought, 

specifically leaf thickness and trichome structure that minimizes leaf temperature and 

transpiration; to poor nutrient and organic matter (OM) soils but with high potassium (K) 

compared to K in crop production areas. The variability in environmental conditions in 

the native habitats may facilitate its use in low-water landscaping, specifically the use of 

plants adapted to environmental settings that are similar to a given landscape 

environment. Genetic variation is also important for superior selection for future 

development. AFLP of six populations selected in southern Utah was distinguished  

between the high elevation populations and low elevation populations. 
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CHAPTER 5 

 
POTENTIAL OF SHEPHERDIA ROTUNDIFOLIA X ARGENTEA HYBRID FOR 

LOW-WATER LANDSCAPING1,2 
 
 
ABSTRACT. The species, Shepherdia rotundifolia native to southern Utah and northern 

Arizona has apparent aesthetic and ostensible drought tolerant qualities desirable for use 

in low-water urban landscapes (LWL). However, anecdotally the species appears to be 

sensitive to higher soil water conditions typical of landscape soils, thus difficult to 

produce in nursery production and establish in urban landscapes. We hand crossed S. 

rotundifolia with the riparian relative, S. argentea to develop an interspecific hybrid with 

desirable aesthetic characteristics of S. rotundifolia and tolerance of S. argentea to 

irrigated soil conditions. We compared genetic, morphological, and gas exchange 

characteristics of the hybrid with that of the two parents. The interspecific hybrid 

exhibited intermediate AFLP genetics, approximately 50% genetic similarity to both 

parents in Bayesian cluster analysis. Leaf morphological characteristics of the hybrid 

were also intermediate to its parents. Trichome structure of the hybrid was more similar 

to that of the female parent, S. argentea with peltate trichome on both leaf surfaces. 

Physiological responses, in terms of diurnal stomatal conductance (gs), light response 

curve, midday Pn, and midday PhiPS2 of the hybrid were more similar to S. argentea than 

S. rotundifolia. The morphological characteristics and physiological responses of the 

hybrid compared to its parents may suggest tolerance to wet soil condition. The aesthetic 

qualities and physiological responses of the hybrid may lend them well to use in LWL. 

                                                
1 Authors: Chalita Sriladda, Roger Kjelgren, Heidi Kratsch 
2 Additional index words: Roundleaf buffaloberry, Silver buffaloberry, hand cross pollination, 
SEM, AFLP, morphology, physiology 
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Water conservation in the Intermountain West is becoming critically important 

as the population grows but water supplies do not. Large amounts of water are often 

applied to irrigated landscapes where turfgrass is prevalent (Kjelgren et al., 2009). Low-

water use landscaping (LWL) is an increasingly important conservation tool in reducing 

water use in irrigated urban landscapes (Kjelgren et al., 2009). Use of drought tolerant 

plant material is an essential element of LWL, specifically native species because they 

use minimal water, require low maintenance, and provide a natural look to the urban 

landscape (Meyer et al., 2009). Native plant species also enhance biodiversity, thus 

creating a more sustainable urban system. 

Several drought-tolerant species native to the Intermountain West have potential 

for use in LWL, but such taxa will need genetic improvement in order to meet both 

aesthetic and functional expectations in urban landscapes. The genus Shepherdia, in the 

Eleagnaceae family, contains S. rotundifolia (roundleaf buffaloberry), endemic to 

southern Utah and northern Arizona (United States Department of Agriculture, 2011). 

The species is dioecious (Nelson, 1935) naturally occurring on very well drained hillside 

slopes (Mee at al., 2003) at 1,500 to 2,400 m. elevation (Kearney and Peebles, 1960). 

Shepherdia rotundifolia has many aesthetic and practical desirable qualities for low-water 

landscapes, including apparent drought tolerance based on its native habitat in dry, rocky 

slopes in the 170 to 480 mm/year precipitation range (Brotherson et al., 1983), and 

evergreen gray-blue foliage which forms multiple clusters of attractive rosettes in a 

hemispherical crown shape (Mee et al., 2003). The Utah Division of Wildlife Resources 

encourages creating landscapes for wildlife using native plants, including S. rotundifolia, 
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as its fruit is food and cover for quail and small mammals (Nordstrom, 2001), thus 

create more biodiversity in urban landscape. 

Even though the species has potential for use in LWL, it appeared to be sensitive 

to overwatering and difficult to establish in irrigated urban landscapes (Mee et al., 2003). 

A study of variability among species, in terms of environmental and morphological 

variations in their native habitats may help in cultivar selection as well as in 

understanding its limit in the LWL. However, as an alternative to cultivar selection, 

genetical improvement by crossing with related species better adapted to tolerate wet 

soils may help to develop a new taxon that meets both aesthetic and functional 

expectations in LWL. Interspecific hybridization plays an important role in plant adaptive 

evolution, and the process often results in phenotypic novelty in the hybrid (Scascitelli et 

al., 2010; Soltis and Soltis, 2009; Stelkens et al., 2009). A related species, S. argentea 

(Silver buffaloberry), is a riparian shrub found throughout the western United States, that 

tolerates a wide range of conditions from wet and heavy to dry soils (Mee et al., 2003). 

However, it has thorns and an indistinct rangy growth habit, which makes it less 

aesthetically desirable for low-water use landscapes compared to S. rotundifolia (Mee et 

al., 2003). 

Potential interspecific hybridization between S. rotundifolia and S. argentea may 

create a hybrid that contains the aesthetic quality of S. rotundifolia and wet soil tolerance 

of S. argentea. The goal of this study was to compare genetic, morphological 

characteristics, and physiological responses of the interspecific hybrid between S. 

rotundifolia and S. argentea with its parents. 
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Materials and Methods 

 
 

We hand cross-pollinated S. rotundifolia and S. argentea (dioecious) in their 

natural habitats in central Utah near the town of Torrey where both S. rotundifolia and S. 

argentea plants could be found in close proximity. Five female plants from a population 

of S. argenetea, located by the Fremont river on the roadside of Highway 12 (38.3 N, 

111.4 W), were bagged with pollination bags, five bags per plant including a control bag 

with no pollination, on April 11th, 2008 before their flowers opened to prevent 

unexpected pollination. Meanwhile, five female plants of S. rotundifolia from a 

population located on rocky hillside of Boulder mountain on Highway 12 (38.2 N, 111.4 

W), were bagged the same way as for the female of S. argentea on the same day. On 

April 30th, 2008, when flowers of both female S. argentea and S. rotundifolia in the 

pollination bags were open, we collected fresh pollen from male plants of both species 

from a population that was located closest to the bagged female plants for reciprocal 

crosses. The S. argentea pollen used to pollinate the female S. rotundifolia was collected 

from male plants at the same location with bagged female S. argentea, whereas the S. 

rotundifolia pollen used to pollinate the female S. argentea were collected from male 

plants from a population located adjacent to Capital Reef National Park. 

In May 29th, 2008, we collected seeds from all pollination bags. Only one 

pollination bag collected from a bagged female S. argentea produced seeds, with the total 

number of five seeds. No seeds were produced from bagged female S. rotundifolia. These 

seeds were subjected to stratification and germination, as described by Beddes and 

Kratsch (2009). One week after seed germination, seedlings were grown in a growing 
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substrate designed for native plants in the Utah State University research greenhouse. 

We watered these seedlings every other day. In the winter 2008, we put the hybrid 

seedlings in a walk-in cooler to prevent the seedlings from outdoor freezing damage. 

Seeds of S. rotundifolia and S. argentea were collected from both female parent 

populations, geminated, and grown under the same conditions with the hybrid for future 

comparison. 

However, S. rotundifolia is slow growing compared to S. argentea and the hybrid 

plants, therefore we used cuttings taken from the same bagged female population of S. 

rotundifolia that were rooted, instead of plants grown from seeds for this study. In April 

2008, stem bases of S. rotundifolia cuttings from plants growing in their natural habitats 

were rooted and held on a propagation bench for 12 weeks under shade cloth and 

irrigated using intermittent mist. In summer 2009, plants of the hybrid and its parents 

were transplanted into three-gallon pot filled with a native mix soil. These plants were 

then grown in a pot-in-pot system in a common garden setting at the Utah State 

University (USU) Research Farm (Logan, UT). We watered these plants once a week. 

To clarify the effect of age difference on physiological responses between plants 

of S. rotundifolia grown from cuttings and plants of S. argentea and the hybrid grown 

from seeds, we measured differential stomatal conductance (gs) in situ between S. 

rotundifolia and S. argentea. On June 7th, 2009, gs of both species was measured on five 

plants, three leaves per plants, from each species using leaf porometers (SC-1 porometer, 

Decagon Device, Pullman, WA) at 09:00 am, 11:00 am, and 01:00 pm, respectively. Two 

leaf porometers were calibrated before making measurements to eliminate errors due to 

porometer difference. These data were considered when comparing common garden 



 66 
physiological responses between the two species and their hybrid. In the winter, we put 

these plants back in to the walk-in cooler, and put them out again in the common garden 

at the Greensville Research Farm for the physiological study in summer 2010. Four out 

of five hybrid plants survived and were used for the physiological study. 

 GENETICS. Leaf samples (2-3 leaves per plant) were collected from five to seven 

plants at a field population of S. rotundifolia and S. argentea, and from newly grown 

hybrid plants. These leaf samples were dried in 28-200 mesh silica gel (Fisher Scientific, 

Pittsburgh, PA). DNA was extracted with the Dneasy 96 Plant Kit (QAIGEN, Valencia, 

CA). Amplified fragment length polymorphisms (AFLPs) were assayed as described by 

Vos et al. (1995) with described modifications. The DNA samples were pre-amplified 

EcoRI +1 / MseI +1 using A/C selective nucleotides. Selective amplification primers 

consisted of five EcoRI +3 / MseI +3 primer combinations using AAC/CAA, AAG/CAG, 

ACC/CAT, ACG/CTA, AGG/CTA, AGA/CCC selective nucleotides. The EcoRI 

selective amplification primers included a fluorescent 6-FAM (6-carboxy fluorescein) 

label on 5’ nucleotides. Selective amplification products were combined with GS600 LIZ 

internal lane size standard and were fractionated using an ABI 3730 instrument with 50-

cm capillaries and sized between 50 and 600 bp with Genescan software (Applied 

Biosystems, Foster City, CA). Although DNA molecules vary in length by increments of 

1 bp, the relative mobility of bands is also affected by sequence composition. Thus, non-

homologous bands of the same length may not have the same relative mobility. Genescan 

trace files for each individual were visually analyzed for the presence or absence of DNA 

bands in bins that were at least 0.3 bp or more apart using Genographer software 

(available free at http://hordeum.oscs.montana.edu/genographer/ or directly from the 
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author, Tom Blake, at blake@hordeum.oscs.montana.edu). Bayesian clustering of 

individual plants without a priori assignment of individuals to hierarchical groups was 

used to determine genetic structure and test for possible admixture between taxa, which 

might otherwise confound phylogenetic analysis, using Structure v2.1 (Pritchard et al., 

2000). Three analyses used of each model with 100,000 iterations and 10,000 burn-in or 

200,000 iterations and 20,000 burn-in with the dominant-allele, admixture model of 

Structure v2.2 (Falush et al., 2007; Pritchard et al., 2000). 

 MORPHOLOGY. Morphological characteristics of S. rotundifolia x argentea hybrid 

compared to its parents were described on the basis of leaf morphological characteristics. 

Morphological measurements included petiole length, leaf length and width, and leaf 

length/leaf width on two year-old plants of the hybrid plants, which were then compared 

to its parents. In addition to these leaf morphological characteristics, fine scale 

morphological differences were compared through scanning electron microscope (SEM) 

images. Three leaf punches per plant were collected from three plants from each species 

and the hybrid, and directly fixed in formalin-aceto-alcohol (FAA) solution in the field. 

The fixed leaf tissue was subjected to critical point drying using Samdri-PVT-3D 

(Tousimis, Rockville, MD). Microscopic images of leaf structure were collected from the 

SEM at the Nanoelectronics laboratory (USU, Logan, UT). Characteristics measured 

included average leaf thickness and leaf trichome structures. 

PHYSIOLOGY. Physiological responses of the hybrid in comparison to its parents 

were investigated under well-watered conditions in summer 2010 on four individuals for 

each parent species and their hybrid. Diurnal stomatal conductance (gs) was measured on 

three mature leaves for each individual plant, four plants from each species using a leaf 
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porometer (SC-1 Porometer, Decagon Device, Pullman, WA), every hour from 08:00 

am-05:00 pm on a sunny day (28th June 2010). 

Photosynthesis light response curves were measured on three consecutive days 

(30th June 2010 – 2nd July 2010) using a portable photosynthesis system (LI-6400, Li-Cor 

Corp., Lincoln, NE). The leaf chamber fluorometer was used as light source to vary 

photosynthetically active radiation (PAR) incident on leaf (PAR = 2000, 1500, 1000, 500, 

200, 100, 50, 20, 0 µmol m-2s-1). The leaf chamber environment was maintained under 

the following conditions during measurements of all populations: CO2 concentration 400 

µmol mol-1; airflow 500 µmol s-1 (Monaco et al., 2005); block temperature 24oC 

(somewhat variable depending on ambient temperature during measurement). Net 

photosynthesis (Pn) was measured between 11:00 am-01:00 pm when the intensity of 

solar radiation is most consistent and when stomata were most active.  

From July 5th –July 26th, 2010, we measured midday (11:00 am – 01:00 pm) 

physiological responses of the hybrid compared to its parents. The midday measurements 

included Pn, quantum efficiency in photosystem II (PhiPS2), gs, and leaf water potential 

(Ψleaf). The midday Pn and PhiPS2 were measured using a portable photosynthesis system 

(LI-6400, Li-Cor Corp., Lincoln, NE), midday gs was measured using a leaf porometer 

(SC-1 Porometer, Decagon Device, Pullman, WA), and midday Ψleaf was measured using 

a pressure chamber. Variances in diurnal gs and light response curve between the hybrid 

and its parents were subjected to a repeated measures analysis in PROC MIXED in SAS 

software (SAS Institute, Cary, NC). Midday measurements, including midday gs, Pn, 

PhiPS2, and Ψleaf were subjected to analysis of variance (ANOVA) in PROC GLM in  

SAS software. 
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Results and Discussion 

 
 
 GENETICS. The AFLP genetic data support that five plants grown from seeds 

collected from the pollination bag on the S. argentea female parent are interspecific 

hybrids between female S. argentea and male S. rotundifolia parents. The hybrid plants 

exhibited intermediate genetic to its parents (Kuhlman et al., 2008). Even though there 

was some genetic variation, the F1-generation of S. rotundifolia x argentea hybrid plants 

exhibited approximately 50% of genetic similarity to the male parent (S. rotundifolia), 

and the other 50% of genetic similarity to the female parent (S. argentea) on the basis of 

Bayesian cluster analysis (Fig. 5-1A and B). The genetic distinction of the hybrid from its 

parents remained consistent when the test population increased in number from two 

populations (K = 2) into three populations (K = 3). The intermediate genetics in the 

hybrid may result in intermediate morphological characteristics in the hybrid plants 

compared to its parents. 

 MORPHOLOGY. Indeed, overall morphological characteristics of the S. 

rotundifolia x argentea hybrid were intermediate to the parents (Table 5-1; Fig. 5-2). The 

hybrid plants appeared to be evergreen similar to the male parent, S. rotundifolia based 

on observations during winter 2010 where plants were housed in a cold frame. Leaf 

length and leaf width of the hybrid were intermediate to the parents, with leaf length of 

the hybrid more similar to the female parent, S. argentea, and leaf width more similar to 

the male parent, S. rotundifolia, based on ANOVA analysis. This resulted in the 

intermediate leaf shape in the hybrid. Leaf shape of S. rotundifolia was revolute-oval 

with approximately equally leaf length and leaf width (leaf length/width = 1.0). 
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Fig. 5-1. Inferred population structure of S. rotundifolia, S. argentea, and hybrid S. 

rotundifolia x argentea AFLP genotypes when; (A) testing a two population 

model (K = 2); and (B) testing a three population model (K = 3); a thin vertical 

line represents each individual, black lines separate individuals of different 

populations 
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Table 5-1. Leaf morphological characteristics of S. rotundifolia, S. argentea, and the 

interspecific hybrid S. rotundifolia x argentea 

 

zValues within a column with different letters indicate statistical significance at α = 0.05 

 

 

Meanwhile leaf shape of S. argentea was entire-lanceolate (leaf length/width = 3.4). Leaf 

shape of the hybrid plant was entire-ovate (leaf length/width = 1.6), which was 

intermediate to the parents. Even though most morphological characteristics of the 

hybrids appeared to be intermediate between its parents, petiole length of the hybrid was 

greater than petiole length of either of the parents. 

The intermediate morphological characteristic of the hybrid (Table 5-1; Fig. 5-2) 

was consistent with the AFLP genetic differences, as the hybrid shared approximately 

half-half of genetic similarity to its parents in the Bayesian cluster analysis (Fig. 5-1). 

These results are similar to findings of Kuhlman et al. (2008) in the interspecific hybrid 

of Sorghum bicolor x macrospermum and Sun et al. (2010) in the interspecific hybrid of

Species 

Morphology S. rotundifoliaz 

(n = 2) 

S. rotundifolia x argentea 

(n = 2) 

S. argentea 

(n = 2) 

Petiole length (mm) 5.3+0.0b 10.5+1.2a 7.0+0.0b 

Leaf length (mm) 24.0+0.7b 39.3+3.3a 42.5+0.5a 

Leaf width (mm) 23.3+0.3a 24.5+1.2a 12.7+0.3b 

Leaf length/width 1.0+0.0c 1.6+0.1b 3.4+0.1a 
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Fig. 5-2. Leaf scanning electron microscopic images (SEM) of S. rotundifolia (A); hybrid 

S. rotundifolia x argentea (B); and S. argentea (C) 
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Chrysanthemum grandiflorum x indicum. However, morphological traits of an 

interspecific hybrid can be significantly different from one or both parents (Jakesova et 

al., 2011; Jun et al., 2009). Morphological variation in a hybrid can result in phenotypic 

novelty (Scascitelli et al., 2010; Soltis and Soltis, 2009; Stelkens et al., 2009), such as 

theinterspecific hybrid between orchid Ophrys arachnitiformis and O. lupercalis 

producing more and different compounds in their floral odour, triggering fewer 

inspecting flights and contacts by male bees than those of the parental orchid species 

(Vereecken et al., 2010). 

Leaf thickness of the hybrid appeared to be intermediate (~ 370 µm) to the 

parents; S. rotundifolia (~ 754 µm) and S. argentea (~ 251µm) (Fig. 5-2A-C). Leaf 

trichomes on the adaxial (upper side) of the male parent, S. rotundifolia, are peltate, 

meanwhile trichomes on the abaxial (lower side) are stellate (Fig. 5-2A). Leaf trichome 

of both surfaces of the female parent, S. argentea, are peltate (Fig. 5-2C). The female 

parent leaf structure appeared to dominate that of the hybrid, which had peltate trichomes 

on both leaf surfaces (Fig. 5-2B). However, the abaxial trichome of the hybrid was 

relatively thicker than S. argentea and there were some tall scales emerging from the 

peltate trichome coverage of the adaxial surface of the hybrid not observed in either 

parent. Emergent phenotypic features generated in the hybrid may be rare but have 

potential to create a new lineage and lead to evolutionary divergence (Johnston et al., 

2004). 

The stellate trichome on the abaxial surface of S. rotundifolia was densely packed, 

resulting in thicker leaves compared to S. argentea and the hybrid (Fig. 5-2A-C), likely to 

serve the function of reducing water loss from transpiration in hot and dried habitats 
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(Press, 1999). The peltate structure is an advantage in reflecting sunlight 

(Karabourniotis et al., 1993), but may not limit transpiration to the same extent as the 

stellate trichomes. Lack of the stellate trichome in S. argentea may be due to infrequent 

drought since it is typically found in riparian habitats (Mee et al., 2003). The leaf 

trichome structure of the hybrid was more similar to the female parents, S. argentea, than 

to the male parent, S. rotundifolia. This may suggest similar adaptation to wet soil 

conditions between the hybrid and S. argentea. 

 PHYSIOLOGY. The interspecific hybrid, S. rotundifolia x argentea, exhibited 

similar physiological responses to S. argentea in a common garden environment under 

well watered conditions through stomatal opening (Fig. 5-3). Even though diurnal 

stomatal conductance was not significantly different among the hybrid and its parents (F-

value = 1.76, P = 0.20), S. rotundifolia appeared to have the relatively lowest dawn to 

dusk stomatal conductance compared to the hybrid and S. argentea. Shepherdia argentea 

and the hybrid appeared to have a more aggressive water use strategy, close to 

anisohydric, characteristic of species adapted to a regularly available water supply 

(Franks et al., 2007). 

The differential between gs of S. rotundifolia (grown from cuttings) and S. 

argentea (grown from seeds) in the common garden study (Fig. 5-3) was similar to the in 

situ stomatal conductance measurement of the two species. Average in situ gs of S. 

rotundifolia at 09:00 am, 11:00 am, and 01:00 pm, were 138, 249, and 216 mmol m-2 s-1, 

respectively. Meanwhile, average gs of S. argentea at 09:00 am, 11:00 am, and 01:00 pm, 

were 284, 263, and 207 mmol m-2 s-1, respectively. In both in situ and common garden 
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Fig. 5-3. Diurnal stomatal conductance (gs) of S. rotundifolia, S. argentea, and the 

interspecific hybrid S. rotundifolia x argentea 

 

 

measurements, gs of S. argentea were higher than gs of S. rotundifolia in the morning (at 

09:00 am), then at 11:00 am to 01:00 pm, gs of both species were close to each other. The 

similar pattern of gs of both species between the measurements in a common garden and 

in situ suggests that the use of S. rotundifolia plants grown from cuttings did not appear 

to have effects of age-difference to compare physiological responses with plants of S. 

argentea and the hybrids grown from seeds. 
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Overall Pn in response to different levels of PAR of the hybrid was relatively 

higher than its parents, even though Pn among species was not significantly different (F-

value = 0.39, P = 0.69) (Fig. 5-4). The light-independent reaction of S. rotundifolia, 

which is adapted to very limited water supply in its dry habitat has reached their 

maximum (light saturation point) at lower light level. The light response curve of S. 

argentea, which is adapted to regular water supply in its riparian habitat exhibited 

relatively higher Pn at high light level, than Pn of S. rotundifolia but lower than Pn of the 

hybrid. A study by Montgomery and Givnish (2008) on Hawaiian lobeliad species, whose 

habit ranges from open alpine bogs to densely shaded rainforest interiors, demonstrated 

the potential adaptive nature of species differences. They found that Pn in responses to 

different light regimes among lobeliad species appeared to maximize in its native 

environments. In this study, Pn in responses to different light levels of both S. rotundifolia 

and S. argentea were measured under well-watered conditions and open to full sun 

conditions, which more similar to native environments of S. argentea. The higher light 

response curve of S. argentea than S. rotundifolia may similar to finding of Montgomery 

and Givnish (2008) in lobeliad species. Therefore, the more similar light response curve 

of the hybrid to S. argentea may suggest the efficiency to adapt to a regular water supply, 

as in irrigated urban landscapes. The relatively higher Pn and gs in the hybrid than its 

parents is similar to findings of Rieger et al. (2003) in interspecific hybrids between 

Prunus ferganesis and P. persica. 

Overall midday physiological responses in terms of Pn and quantum efficiency 

(PhiPS2) of the hybrid exhibited responses closer to those of S. argentea than to S. 

rotundifolia under well water conditions over this study (Fig. 5-5A and B). Plants of S. 
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Fig. 5-4. Light response curve of S. rotundifolia, S. argentea, and the interspecific hybrid 

S. rotundifolia x argentea 

 

 

rotundifolia exhibited lowest midday Pn and PhiPS2 and were consistent with light 

response curve (Fig. 5-4). Plants of S. rotundifolia naturally occurred in hot and dry 

habitats, thus transpiration regulation is critical in order to tolerate such drought 

conditions. Drought stress inhibits Pn by decreased stomatal aperture (Cornic, 2000) in S. 

rotundifolia. The relatively thick abaxial trichome layer (Fig. 5-2A) helps to prevent 

water loss through transpiration. The low midday Ψleaf in S. rotu ndifolia may suggest  
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Fig. 5-5. Midday physiological responses of S. rotundifolia, S. argentea, and the interspecific hybrid S. rotundifolia x 

argentea; (A) midday photosynthesis (Pn), (B) midday quantum efficiency of photosystem 2 (PhiPS2), (C) midday 

stomatal conductance (gs), and (D) leaf water potential (Ψleaf) 
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high leaf hydraulic resistance to conserve water by limiting transpiration rates under 

high evaporative conditions, which associate with drought tolerance (Sinclair et al., 

2008). Even though overall midday gs and Ψleaf of the hybrid were not significantly 

different (at significant level α = 0.05) from its parents (Fig. 5-5C and D), its diurnal gs, 

light response curve, midday Pn, and midday PhiPS2 were more similar to those of S. 

argentea and may suggest greater tolerance to wet soil condition than S. rotundifolia. 

The interspecific hybrid, S. rotundifolia x argentea obtained genetic and morphological 

characteristics from both parents. Physiological responses under well water conditions of 

the hybrid appeared to be more similar to responses of S. argentea than S. rotundifolia, 

suggesting it may be more adapted to wet soil conditions. The aesthetic morphological 

characteristics and physiological responses of the hybrid may lend them well to use in 

LWL. A study on physiological responses of the hybrid to drought conditions compared 

to its parents may be necessary before use of the hybrid under drought conditions in  

urban landscapes. 
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 CHAPTER 6 

 
CONCLUSION 

 
 

Evaluation of ecophysiological, morphological, and genetic distinctions within the 

two IMW native plant genera containing species with high urban low-water landscape 

potential suggests genetic variation is important in developing superior selections of both 

Sphaeralcea and Shepherdia genera. Within the genus Sphaeralcea, even though the four 

putative species appeared to be only two pure types; S. coccinea and S. parvifolia, there is 

genetic variation among populations of the type S. parvifolia correlated with geographical 

distribution. Meanwhile, within the genus Shepherdia, the high elevation populations 

were genetically different from the low elevation populations. The genetic variation 

among populations of S. rotundifolia may underlie variations in terms of morphological 

characteristics and ecophysiological responses to variable environments in their native 

habitats.  

Genetic improvement by hybridization may be an alternative to developing native 

plant species for use in the LWL. The interspecific hybrid, S. rotundifolia x argentea, 

appeared to obtain aesthetic qualities, specifically leaf morphological characteristics from 

both parents. Physiological responses of the hybrid under high water availability 

compared to its parents may also suggest superior adaptation, and lend them well to use 

in the LWL. 

 
 
 
 
 



 85 
  VITA 

 
 

Chalita Sriladda 
(September 2011) 

 
 
CAREER OBJECTIVE: 

 To obtain a position in plant science research institute. Special areas of interest: 

plant ecophysiology and plant genetics. 

 

EDUCATION: 

 BS in Forest Biology, Kasetsart University, Bangkok, Thailand (3/2002) GPA: 

2.74. MS in Silviculture, Kasetsart University, Bangkok, Thailand (11/2005) GPA: 3.68. 

PhD in Plant Science, Utah State University, Logan, UT (expected 9/2011). 

 

EXPERIENCE: 

 GRADUATE RESEARCH ASSISTANT, Department of Plants, Soils, and 

Climate, Utah State University, Logan, UT (2007 – Present). 

RESEARCH ASSISTANT, Department of Silviculture, Kasetsart University, 

Bangkok, Thailand (2005 - 2007). 

TEACHING ASSISTANT, Department of Silviculture, Kasetsart University, 

Bangkok, Thailand (2003 - 2005). 


	Ecophysiology and Genetic Variation in Domestication of Shpaeralcea and Shepherdia Species for the Intermountain West
	Recommended Citation

	CoverPage
	Dissertation_CS_Binding
	Dissertation_CS-2
	Dissertation_CS-3
	Dissertation_CS-4
	Dissertation_CS-5
	Dissertation_CS-6
	Dissertation_CS-7
	Dissertation_CS-8
	Dissertation_CS-9
	Dissertation_CS-10
	Dissertation_CS-11
	Dissertation_CS-12
	Dissertation_CS-13
	Dissertation_CS-14-2
	Dissertation_CS-15


