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ABSTRACT 

 

 

Microbiological, Thermal Inactivation, and Sensory Characteristics of 

 Beef Eye-of-Round Subprimals and Steaks 

 Processed with High-Pressure Needleless Injection 

 

 

by 

 

 

Laura Kahealani Jefferies, Doctor of Philosophy 

 

Utah State University, 2011 

 

 

Major Professor: Dr. Conly L. Hansen 

Department: Nutrition, Dietetics, and Food Sciences 

 

 

High-pressure needleless injection (HPNI) is a process where small-diameter, 

high-velocity burst of liquid, penetrate foods at pressures ≤ 10,000 psi.  The potential of 

HPNI as an enhancing technique for meat was studied.  In study 1, HPNI translocated 

surface  E. coli O157 into the interior of beef eye-of-round subprimals with an incidence 

of 40 (±7), 25 (±8), and 25 (±8)% for meat that had been surface-inoculated with a four-

strain cocktail at 0.5, 1, and 2 log10 CFU/cm
2
, respectively.  Run-off water contained 2, 2, 

and 3 log10 CFU/ml and was used for HPNI of additional subprimals, which resulted in a 

cross-contamination incidence of 83 (±4), 60 (±15), and 37 (±6) %, respectively.  

Incidence of translocation and cross-contamination was similar at all sampled levels 

below the inoculated surface.  Study 1 results indicate that surface microflora will be 

translocated from the surface into the interior of HPNI-treated beef by the injection fluid 

and by cross-contamination with recycled fluid.  
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In study 2, E. coli was undetected in cooked steaks (63˚C internal) cut from 

subprimals inoculated with 2 log10 CFU/cm
2
 and HPNI processed (study 1).  Although 

cooking reduced E. coli counts, determination of complete kill was not possible because 

the detection limit for bacterial recovery was about 1 log10 CFU/g.  Steaks cut from 

HPNI-processed subprimals took longer (p <0.05) to reach 63˚C with grilling or broiling, 

compared to control steaks, possibly due to increased moisture in enhanced steaks.   

In study 3, sensory acceptance of steaks was evaluated by a consumer panel.   

Appearance, flavor, and overall acceptance were similar among the untreated control, 

HPNI steaks, blade tenderized steaks (BT steaks), and steaks cut from subprimals that 

had been needle-injected with 0.35% (wt/vol) sodium tripolyphosphate using needle 

injection (NI-subprimal steaks) or HPNI (HPNI-subprimal steaks).  Texture of BT steaks 

(6.5±1.9) was more liked than control steaks (5.8±1.8), while texture was similar for all 

other comparisons.   Conversely, Warner-Bratzler shear force was NI-subprimal steaks < 

control < HPNI steaks = HPNI-subprimal steaks = BT steaks.   Lack of correspondence 

between texture acceptance data and WBSF suggests that sensory scores were influenced 

by factors other than the force required for mechanical shear.  

 

(109 pages) 
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CHAPTER 1 

 

INTRODUCTION AND OBJECTIVES 

 

                                                Introduction 

Steak palatability and value are most often determined by juiciness, flavor and 

texture (tenderness vs. toughness), but of these characteristics, texture is consistently 

ranked most important by consumers (Brady and Hunecke 1985; Belew and others 2003; 

Caine and others 2003).    Despite general guidelines of predicting beef cut tenderness, 

USDA grading standards can result in inconsistent tenderness categorization of beef 

(Wheeler and others 1999). Consequently, some consumers are frustrated with the 

unpredictability of getting the same quality or tenderness when re-purchasing that same 

cut (Maltin and others 2003).  The lack of consistent predictability of beef tenderness has 

encouraged researchers and processors to develop ways of increasing beef quality and 

consistency of cut to meet consumer expectations.  Current methods are simple and 

economical and include the use of tenderizing agents such as marinades, rubs, and glazes, 

as well as mechanical tenderization and enhancement processes such as tumbling, blade 

tenderization, and needle-injection of flavoring solutions, water binding ingredients and 

tenderizing agents.  

Mechanical tenderization and enhancement processes, such as blade tenderization 

and needle injection, use sharp blades or needles, respectively, to penetrate the meat’s 

surface to improve texture and overall palatability by severing muscle and connective 

tissue and/or introducing enhancing liquids into its interior.  In the United States, nearly 

all beef steaks and roasts served in restaurants, hotels, and those for institutional use may 
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be mechanically tenderized (USDA-FSIS  2002). Some might also be sold to the public 

through retail stores (USDA-FSIS 2004) or door-to-door vendors (Laine and others 

2005).  Of the cuts available, one that can benefit greatly from mechanical tenderization 

is the eye of the round (Jeremiah and others 1999). This elongated, naturally boneless cut 

comes from the semitendinosis muscle at the rear of the animal and is characterized as 

being very tough due to high amounts of connective tissue. 

In addition to blade tenderization and needle injection, there exists an emerging 

beef enhancement process of high-pressure needleless injection (HPNI) (Hendricks and 

Hansen 1991; Hansen and Watts 2004; Jefferies and Hansen 2010).  HPNI is a process 

that uses small diameter, high velocity liquid jets to penetrate soft foods without the use 

of needles, blades, or other contacting devices. High-pressure liquid bursts that can be 

controlled to 10,000 psi penetrate the product surface to introduce enhancing fluids into 

its interior.  HPNI has been used to add moisture, oil, flavors, spices, color, salt, enzymes, 

preservatives, acidulants, and minerals to cheese, meat, poultry, fish, vegetables and 

fruits (Lee and others 1978; Hendricks and Hansen 1991; Berry 2002; Pastorino and 

others 2003a,b,c; Hansen and Watts 2004).   

With HPNI processing, a liquid injectant is placed in a balance tank and is 

pumped through the system using a high-pressure, positive displacement piston pump 

which runs on relatively low pressure compressed air. The solution is then directed to one 

or more injection heads via high-pressure hoses and tubing; its flow is regulated by a 

solenoid-controlled high-pressure air-actuated valve. Each injection head typically has 

several nozzles arranged side-by-side, 1 cm apart. Products to be injected are placed on a 
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conveyor belt which passes the product under the injection heads. Solution is discharged 

simultaneously from all nozzles within a single head while the conveyor belt pauses so 

that the product remains stationary during injection. After each burst, the conveyor belt 

advances, then pauses again, so that the food may receive another injection of liquid. 

A small number of studies confirm that E. coli (Sporing 1999; Luchansky and others 

2008) and other natural microflora (Hajmeer and others 2000) can be translocated 

(moved from the surface to the interior) during blade tenderization of beef. The 

associated hazard is that such bacteria may not be exposed to the recommended minimum 

cooking temperatures that ordinarily kill those on the surface, and instead, remain viable, 

causing illness or even death (De Zuniga and others 1991; Tompkin and others 2001; 

USDA-FSIS 2002; Gill and McGinnis 2004; Stopforth and others 2006; Sofos and others 

2008).  

 Thermal inactivation of translocated E. coli O157 in HPNI processed beef is 

unknown.  The recommended endpoint temperature for highest eating quality of beef 

eye-of-round steaks is 63˚C (NCBA 2007). USDA-FSIS recommends that intact steaks 

be cooked to a minimum internal temperature of 63ºC/145°F (medium rare) (USDA-FSIS  

2002),  and recommends that non-intact beef products be cooked to a minimum internal 

temperature of  68ºC/155˚F (between medium rare  and medium) regardless of cooking 

method (USDA-FSIS 2009).   

Furthermore, subjective and objective data regarding the effect of HPNI in 

improving beef sensory acceptance is limited, although findings by Ricks and others 

(1998) indicated that beef tenderness, as measured by Warner-Bratzler Shear Force was 
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improved using HPNI. Considering the need to understand the characteristics of this 

emerging technology, the objectives of this research were as follows: 

 

Objectives 

1. To determine the incidence and depth to which Escherichia coli O157 strains are 

translocated from the inoculated surface of beef eye-of-round subprimals and to 

determine the incidence and depth to which Escherichia coli O157 strains in 

recycled enhancing fluid are injected into beef eye-of-round subprimals by high-

pressure needleless injection. 

2. To determine the degree of bacterial kill realized by oven broiling and gas grilling 

beef eye-of-round steaks that have been previously inoculated Escherichia coli 

O157 strains, followed by high-pressure needless injection processing. 

3. To determine sensory acceptance high-pressure needleless injection processed 

beef eye-of-round steaks and subprimals processed and to compare them to steaks 

and subprimals processed using blade tenderization and needle injection and an 

untreated control. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

Beef Overview 

 “Beef” is the term used to describe meat from mature cattle. When beef is 

harvested from cattle, the carcass is fabricated (sliced) into preliminary groups of muscle.  

These initial subdivisions are called primal or wholesale cuts because it is at this stage 

that they are usually boxed and sold to wholesale meat markets or butchers to be 

portioned for retail sale or to be furthered processed.  The four main primal cuts are the 

round, loin, rib, and chuck.  Smaller cuts of beef taken from a primal cut are called 

subprimals.  Subprimals can be sold “as is” or can be divided for retail sale. 

Americans eat an average of about 60 lbs of beef annually (USDA- FSIS 2007).  

Results from a 2005 survey concluded that beef is most often eaten as ground beef, 

followed by consumption as deli products and steaks (Melusky 2006).  According to this 

same survey, nearly half of Americans choose steak as their most preferred form of beef.  

Steak palatability and value are most often determined by juiciness, flavor, and texture 

(tenderness vs. toughness), but of these characteristics, texture is consistently ranked 

most important (Brady and Hunecke 1985; Belew and others 2003; Caine and others 

2003).   In general, there are four variables that are central in determining meat texture:  

post-mortem proteolysis, amount of intramuscular fat, type and amount of connective 

tissue, and the contractile state of the muscle (Belew and others 2003).  Beef cuts may 

consist of a single muscle or several muscles and cuts of beef from certain muscles are 

more tender than others.   In general, the most tender, and therefore, more expensive cuts 
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come from the loin and the rib.  The toughest cuts of meat come from the front and the 

rear of the animal (chuck and round, respectively) because those muscles are used for 

movement.   One cut from the round that can benefit greatly from tenderization 

techniques is the eye of the round (Jeremiah and others 1999) which is the elongated, 

naturally boneless cut that comes from the semitendinosis muscle.  It is considered to be 

very tough due to high amounts of connective tissue.  

All beef in the United States is inspected by the U.S. Department of Agriculture 

(USDA) for wholesomeness, and while such inspection is mandatory, quality grading of 

beef is voluntary.  Present USDA quality grading standards are based primarily on the 

amount and distribution of intramuscular fat or marbling in the rib eye muscle at the 

sliced surface between the 12
th

 and 13
th

 rib.  Quality categories of beef sold at the retail 

level are Prime, Choice, and Select.  USDA Prime beef comprises approximately 2% of 

graded beef and consists of the most tender and flavorful cuts because they have more fat 

marbling.  USDA Choice and Select are the quality grades of beef most often sold in 

grocery stores.  The majority of beef carcasses consist of lower-valued, less tender cuts 

(Molina and others 2005).  Research shows that economic value from the lower rated cuts 

has not increased as much as those from the more tender and expensive loin and rib 

which consumers perceive as having greater value.  Although providing general 

guidelines of predicting beef cut tenderness, USDA grading standards can result in 

inconsistent tenderness categorization of beef (Wheeler and others 1999).  As a result, 

some consumers are frustrated with the unpredictability of getting the same quality or 

tenderness of beef when re-purchasing that same cut (Maltin and others 2003).    
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The lack of consistent predictability of beef tenderness has encouraged 

researchers and processors to develop ways of increasing beef quality to meet consumer 

expectations.  Current methods are simple and economical and include the use of 

tenderizing agents such as marinades, rubs, and glazes and mechanical tenderization 

processes such as tumbling, blade tenderization, and needle-injection of flavoring 

solutions and tenderizing agents.  In the United States, nearly all beef steaks and roasts 

served in restaurants, hotels, and those for institutional use may be mechanically 

tenderized (USDA-FSIS  2002). Some may also be sold to the public through retail stores 

(USDA-FSIS 2004) or door-to-door vendors (Laine and others 2005).  Meats that are 

mechanically tenderized are defined as non-intact meats, while those whose interior has 

not been cut or penetrated are called intact meats. 

Mechanical Tenderization and Enhancement 

 Two common mechanical tenderization and enrichment processes are that of 

blade tenderization and needle injection.  Blade tenderization is performed with one or 

more sets of dozens of double-edged stainless steel blades or knives that penetrate beef 

subprimals or steaks to cut muscle and connective tissue and thereby tenderize them.  

Meat is placed on a conveyor belt, and depending on the unit, blades enter the meat 

perpendicular to its surface or at an angle.  Meat may be passed more than once under the 

blades.  

Needle injection is a tenderizing and enhancing process where either a single or 

multiple hollow needles inject various whole muscle products such as ham, roasts, and 

turkey with curing brine, marinades, tenderizing solutions, or other ingredients. This 
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process also cuts muscle tissue to improve tenderness while increasing moisture content.  

Needles are pierced perpendicular to the product surface after which solutions are 

injected.  In multiple needle systems, injection pressure and frequency can usually be 

adjusted which results in very uniform and consistent distribution of brine and marinade 

solutions (Brandt 1996). In addition to blade tenderization and needle injection, an 

emerging enhancing process called high-pressure needleless injection (HPNI) offers 

another option. 

 HPNI is an enhancement process that uses small diameter, high velocity liquid 

jets to penetrate soft foods without the use of needles, blades, or other contacting devices 

(Hendricks and Hansen 1991; Hansen and Watts 2004; Jefferies and Hansen 2010). High-

pressure bursts of liquid that can range between 1,000 to 10,000 psi penetrate the product 

surface to introduce enhancing fluids into its interior.  HPNI has been used to add 

moisture, oil, flavors, spices, color, salt, enzymes, preservatives, acidulants and minerals 

to cheese, meat, poultry, fish, vegetables and fruits (Lee and others 1978; Hendricks and 

Hansen 1991; Berry 2002; Pastorino and others 2003a,b,c; Hansen and Watts 2004).  

Non-food applications of high velocity liquid jets include the cutting and fragmenting of 

hard materials such as stone and ice, cleaning processing equipment, injecting fluids into 

soft materials and measuring physical properties (Robertson and Berry 1976).   

 Published consumer acceptance data for HPNI processed foods is lacking, 

although consumers report that injection holes in the surface of injected meat are very 

slight.  Cheese injected with blueberry and sour apple flavors were accepted positively by 

an informal test of children ages 10-12 (Berry 2002).  
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HPNI systems have been manufactured for continuous or batch processes.  Units 

are designed so that the liquid injectant is placed in a balance tank and is pumped through 

the system using a high-pressure, positive displacement piston pump which runs on 

relatively low pressure compressed air. Due to the small diameter of nozzles used to 

create the injection jets, injecting solutions must be particulate free. To ensure this, the 

solution flows through a gravity-fed filter followed by a high-pressure-high-output in-line 

filter. The solution is then directed to one or more injection heads via high-pressure hoses 

and tubing; its flow is regulated by a solenoid-controlled high-pressure air-actuated valve. 

Each injection head typically has several nozzles arranged side-by-side, 1 cm apart.  

Solution is discharged simultaneously from all nozzles within a single head which can be 

aimed at different angles, if desired.  While nozzle diameter is fixed, jet diameters 

generally range from 0.005 – 0.5 mm, depending on the pressure of the liquid.  

In the continuous system, products to be injected are placed on a conveyor belt 

which passes the product under the injection heads.  During each injection burst, the 

conveyor belt pauses.  A control panel regulates injection pressure and burst duration, 

delay between injections, and conveyor belt speed.  In turn, these variables determine the 

density of the injection pattern and depth of liquid penetration. Injected from the meat 

side, HPNI has injected fish 6 mm thick to turkey breast > 150 mm thick; however, it has 

been most successful in food no greater than 100 mm thick (Hansen and Watts 2004). 

Cleaning is performed with a clean in place system and through the application of topical 

cleaners and antimicrobials.  
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Microbiological Safety of Mechanically Tenderized Beef 

The Centers for Disease Control and Prevention (CDC) estimate that 5 million 

cases of food borne illness annually in the United States are due to undercooked meats 

and meat products (CDC 2008).  Of these, it is estimated that at least one third of the 

5,000 deaths attributable to food-borne illnesses are due to contaminated meat and 

poultry.  Primary pathogens of concern in meat products in the United States are 

Salmonella, Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli 

O157:H7.  

Escherichia coli O157:H7 is one of hundreds of E. coli bacterium strains and is 

the most common Shiga toxin-producing strain.  While some strains are harmless, E. coli 

O157:H7 can cause human diseases such as diarrhea, severe stomach cramps, vomiting, 

and fever, and can result in serious, life threatening illnesses such as hemorrhagic colitis 

(bloody diarrhea) and hemolytic uremic syndrome (HUS), particularly in young children 

and the elderly.  It is a facultative anaerobic, Gram-negative, single-celled rod that grows 

between 7 - 50ºC and optimally at 37ºC.  It can survive at pH 4.4 and in foods with aw= 

0.95.  Incubation after exposure ranges from 3 – 8 days.   

E. coli O157:H7 is part of the natural microbial flora of ruminant animals 

including cattle, goats, sheep, deer, and elk.  Infection in humans occurs from ingesting 

the microorganism through contaminated raw or undercooked food, untreated water and 

unpasteurized milk or juices.  In beef, contamination can occur anywhere between the 

farm, to manufacture, processing and preparation. E. coli O157:H7 was first identified as 

a food borne pathogen in 1982 when it was associated with undercooked ground beef, a 
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source that continues to be linked to numerous outbreaks and recalls involving this 

bacterium (Rangel and others 2005).  Since 2000, there have been five reported 

outbreaks, with one as recent as December 2009, associated with E. coli O157:H7 in beef 

that had been mechanically tenderized rather than ground (USDA-FSIS 2007, 2009).   

  A small number of studies confirm that E. coli (Luchansky and others 2008; 

Sporing 1999) and other natural microflora (Hajmeer and others 2000) can be 

translocated (moved from the surface to the interior) during blade tenderization of beef. 

The associated hazard is that such bacteria may not be exposed to the recommended 

minimum cooking temperatures that ordinarily kill those on the surface, and instead, 

remain viable, causing illness or even death (De Zuniga and others 1991; Tompkin and 

others 2001; USDA-FSIS 2002; Gill and McGinnis 2004; Stopforth and others 2006; 

Sofos and others 2008).  While quantification of a definitive infectious dose of E. coli 

O157:H7 is complex, some researchers suggest that it is low (Mead and Griffin 1998), 

with estimates of <50 organisms (Tilden and others 1996) and even < 10 organisms 

(Greig 2010) although specific foods or portions are not specified.  While a “serving” 

was not defined in this estimate, USDA quantifies a serving of beef steak to be 99 – 113 

grams (USDA 2011).   

While there is no industry-wide baseline on the incidence of E. coli on beef cuts, 

it is estimated that the national incidence of E. coli O157:H7 in ground beef is 0.17% -

0.18%  which is thought to translate to about the same degree of frequency on the surface 

of whole muscle beef cuts (Stopforth and others 2006).  Kennedy and others (2006) 

concluded that the incidence of E. coli O157:H7 on subprimal beef cuts intended for 



24 

 

mechanical tenderization was <0.83%. Likewise, Heller and others (2007) reported that 

the incidence of E. coli on subprimal beef cuts is minimal (0.2% out of 1014 samples) 

with a mean concentration of the bacteria of <0.375 CFU/cm
2
 on samples testing 

positive. USDA estimates that 98% of time, steaks contaminated with E. coli O157:H7 

have a single E. coli organism per serving prior to cooking (USDA 2002).   

Efforts to Reduce the Risk of E. coli O157:H7  

Contamination in Beef 

 

All segments of the beef industry, from calf/cow producers, feedlot operators, 

fabricators and processors, to retail and foodservice companies, have worked separately 

and collectively to address and try to eliminate risks posed by E. coli O157:H7.  In 1993, 

there were no regulations on this pathogen.  By 1994, the U.S. Department of 

Agriculture, Food Safety and Inspection Service (USDA-FSIS) declared E. coli O157:H7 

to be a food adulterant, and in 1999 the policy was expanded to include non-intact beef 

products (USDA-FSIS 1999). In 2002, USDA-FSIS required manufacturers of 

mechanically tenderized beef products to reassess their Hazard Analysis Critical Control 

Point (HACCP) plans to take into account E. coli O157:H7 contamination risk.  

The following year, the National Cattleman’s Beef Association (NCBA) 

organized the Beef Industry E. coli Summit Meeting where approximately 200 beef 

industry leaders, representing every segment from farm to market, met with the objective 

of working to reduce and eventually eliminate E. coli O157:H7 in the beef supply. 

Among the focus and research needs identified were to develop science-based 

performance standards for non-intact products, to verify safe cooking temperatures for 

blade/needle-injected products, to validate cooking equipment temperature/time, and to 
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determine intervention and decontamination strategies of raw products (USDA-FSIS 

1999).  Despite these efforts, the risk of E. coli contamination in non-intact beef remains 

significant; in 2007 the CDC recently reported that incidences of E. coli O157:H7 

infections had increased since 2004 (CDC 2008). The increase in E. coli O157:H7 recalls 

prompted USDA-FSIS to again reassess the prevalence of the pathogen and instructed 

beef processors to reassess their HACCP programs and implemented a food safety 

checklist (USDA-FSIS 2007). Presently, the USDA-FSIS requires beef processors to 

perform E. coli enumeration counts to confirm the control of the slaughter process, yet no 

guidelines regarding the microbial load for fresh beef cuts are in effect (USDA-FSIS 

1999).   

Previous research regarding E. coli O157:H7 translocation and cross-

contamination in beef by Stopforth and others (2006), determined that beef cut 

contamination type and amount may be influenced by the part of the carcass from which 

the cut  originated and concluded that when contamination occurs,  its levels range from 

0.8 – 1.0 mean log CFU10/ml.  The study also concluded that the incidence of E. coli 

O157:H7 on whole muscle cuts (0.3%) was similar to that estimated in ground beef.  It 

also suggested that while there are regulatory efforts to control E. coli O157:H7 in 

ground beef, that the similar incidence of it in mechanically processed beef warrants 

greater attention.  

A benchmark study performed at Kansas State University (Sporing 1999) 

confirmed that E. coli O157:H7 was translocated by blade tenderization throughout beef 

muscle and concluded that 3 – 4% of surface organisms were pushed into the center of 
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the meat, as deep as 6 cm, regardless of initial starting concentrations.  The conclusions 

of this study have strongly influenced subsequent USDA research, protocol and 

recommendations.  Today, the incidence and prevention of E. coli O157:H7 is still of 

considerable interest to USDA-FSIS where studies continue to confirm the translocation 

of E. coli O157:H7 in blade tenderized steaks (Luchansky and others 2008; Ray and 

others 2010).  

The effect of HPNI on microbial translocation and cross-contamination using 

equipment made for the purpose of mechanically tenderizing and enhancing meat is 

minimal.  Ray and others (2010) used a manual, single-injection-at-a-time instrument, 

ordinarily used for livestock injections, on beef strip loins and concluded that E. coli 

could be translocated at 25 psi. Similarly, a study on the effect of high-pressure water jets 

on the penetration of bacteria during beef carcass washing concluded that bacteria were 

more likely to be driven deeper into tissue as pressure increased (De Zuniga and others 

1991).  A similar study by Anderson and others (1991) demonstrated that surface bacteria 

were translocated into muscle at fluid pressures > 100 psi. Some report that high-pressure 

jets cause less cross-contamination in foods than needle injection (Robertson and Berry 

1976; Lee and others 1978; Ricks and others 1998).  One such study compared the level 

of cross-contamination of natural microflora on chicken breasts enhanced with recycled 

injection fluid using HPNI to that of needle injection (Ricks and others 1998). Results 

showed that the degree of cross-contamination in chicken breasts by HPNI was 

significantly less than that by needle injection.   
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The degree and depth of bacterial translocation by any mechanical tenderization 

process depends on a variety of factors, such as the specific tenderizing method, 

variations within that method (Gill and McGinnis 2004), the injectant, and the specific 

matrix of the target food (Lee and others 1978; Anderson and others 1991).  Likewise, 

the  incidence of E. coli O157:H7 translocation by HPNI is likely to depend such 

characteristics of the jet velocity and resulting pressure (Smith and Kinslow 1976; 

Anderson and others 1991; De Zuniga and others 1991), injection density and pattern 

(Hansen and Watts 2004), volume delivered (Robertson and Berry 1976; Lee and others 

1978), nozzle type (De Zuniga and others 1991) and diameter (Lee and others 1978), as 

well as residence time of the jet against the target medium.  Injectant characteristics such 

as viscosity, temperature (Nezgada 1973; Lee and others 1978), and perhaps dissolved 

particles may also play a role, as well as physical and chemical characteristics of the 

injected medium including pump yield and initial microbial type, levels, and distribution 

(Ray and others 2010).   

Some investigators have concluded that the risk of E. coli O157:H7 translocation 

in mechanically tenderized beef is nominal, due in part to the increased risk management 

measures directed at the bacteria from feedlot to market that have taken place in recent 

years which make its incidence and surface concentrations very low (Gill and others 

2005; Heller and others 2007; Ray and others 2010). Nevertheless, the potential microbial 

translocation risks associated with mechanical tenderization continue to be a source of 

attention and concern.  
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Thermal Inactivation of Translocated E. coli O157 

 Americans overwhelmingly prefer outdoor grilling over other methods when 

cooking steaks; oven broiling is the next preferred method (Melusky 2006).  This same 

survey reported that 49% of respondents preferred their steaks medium rare to medium 

and that 45% preferred their steaks medium to well done.  USDA-FSIS recommends that 

intact steaks be cooked to a minimum internal temperature of 63ºC/145°F (medium rare) 

(USDA-FSIS 2002).  It further recommends that non-intact beef products be cooked to a 

minimum internal temperature of 68ºC/155˚F (between medium rare and medium) 

regardless of cooking method (USDA-FSIS 2009).  It also reports that there is sufficient 

anecdotal evidence that consumers frequently eat blade tenderized meat, particularly 

steaks, cooked to rare or  medium rare endpoints,  and believes that these levels of 

doneness are insufficient to destroy E. coli O157:H7 in the interior of the meat (USDA-

FSIS 2002).   Related challenges are  that many consumers do not measure the internal 

temperature of their steaks to determine doneness and rely instead on visual clues, such 

as the color of the interior of the meat (Neely and others 1999) and that consumers are 

unaware that beef has been mechanically tenderized at all (Stopforth and others 2006).                                         

Data reporting the thermal inactivation of translocated E. coli O157:H7 when 

heated to various endpoint temperatures by different cooking methods differs widely.  

Consequently, the effectiveness of heat in destroying E. coli O157:H7 translocated by 

mechanical tenderization or moisture enhancement is still uncertain (Mukherjee and 

others 2008). Sporing (1999) studied the effectiveness of various cooking methods 

(commercial gas grill, electric skillet, and oven broiling) in reducing numbers of 
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translocated E. coli O157:H7 in steaks.  It was concluded that oven broiling was most 

effective in reducing the pathogen’s level while the electric skillet was least effective.  

The study also reported a 5 log10 CFU/g reduction of E. coli O157:H7 in beef sirloin 

steaks broiled to 60˚C while Ortega-Valenzuela and others (2001) observed a 2.70 log10 

CFU/g reduction when restructured beef steaks were broiled to 63°C.  Both studies 

agreed that thermal death of the bacteria was less effective by grilling as Sporing 

observed that steaks needed to be cooked to 65.6 ˚C in order to achieve the same log 

reduction as that achieved through broiling. Ortega-Valenzuela and others (2001) 

reported a reduction of only 1.25 log10 CFU/g E. coli O157:H7 by grilling. These 

differences were believed to be due to the higher cooking temperatures achieved during 

grilling which allowed the meat to reach the target temperature faster than by broiling. 

Therefore, the meat was not exposed to heat as long and, consequently, fewer bacteria 

were destroyed.  Sporing concluded that blade tenderized steaks should be cooked to an 

internal temperature of 60°C by oven broiling to eliminate risk of this pathogen and that 

by doing so, beef so tenderized does not pose a greater risk to consumers than intact 

meat.  

 Other studies report that even steaks cooked to 71.1˚C on an open hearth 

Faberware electric grill still had translocated E. coli O157:H7 present (Patel and others 

2005).  Conversely, Luchansky and others (2008) determined that a grilling temperature 

as low as 48.8°C was sufficient enough to reduce that initial E. coli load of approximately 

4.0 log10 CFU/g by 2.6 to 4.2 log10 CFU/g.  Gill and others (2005) determined that low 

levels of bacteria in needle injected pork brine was likely destroyed at 61°C and were 
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completely destroyed at 70°C.  They, therefore, concluded, that cooking to the USDA-

recommended temperature of 63°C would render the product safe.  

USDA-FSIS believes that additional research to quantify E. coli O157:H7 

survival in blade-tenderized meat is required and currently recommends that beef that has 

not been mechanically tenderized, be cooked to a minimum of  63˚C and that 

mechanically tenderized beef be cooked to yet an even higher endpoint of 68˚C (USDA-

FSIS 2009), regardless of cooking method. Of the few studies published on thermal 

inactivation of E. coli O157:H7 in non-intact beef (Sporing 1999; Patel and others 2005; 

Luchansky and others 2008), none have addressed this issue with regard to HPNI 

processed beef. 

A number of factors influence heat resistance of translocated bacteria in beef, 

such as microbial species, product attributes such as muscle type, pH, the presence and 

distribution of fat, the presence of additives, and tenderizing method. One study 

compared the thermal resistance of ground vs. whole muscle cuts of beef purposely 

contaminated with Salmonella and concluded that whole muscle may offer more 

protection for embedded bacteria than ground muscle because more  homogeneous  fat 

distribution in ground meat may “dilute” its ability to shield the bacteria from heat (Orta-

Ramirez and others 2005).  Moreover, additives such as salts, lactates, and phosphates 

may increase thermal resistance of pathogens (Orta-Ramirez and others 2005; Mukherjee 

and others 2008).  Additionally, levels of surviving E. coli O157:H7 depend on the initial 

level of contamination, the cooking method used, the cooking temperature, and the duration 

of cooking (USDA-FSIS 2002).  Similarly, the rate of heat penetration into meat can be 

influenced by the energy supply rate, heat conduction within the meat, changes that occur 
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in the meat due to heating, size and shape of the product, meat composition, and muscle 

fiber orientation in relation to the heat source (Obuz and others 2001).  Furthermore, 

studies conclude that thicker steaks require longer cooking times than thinner steaks, 

which therefore, leads to greater destruction of bacteria in thicker steaks because of their 

longer exposure to heat (Sporing 1999; Ortega-Valenzuela and others 2001; Luchansky 

and others 2008).   

Beef Tenderness 

Studies that assess the tenderness of beef typically compare the findings of human 

sensory evaluation to those of objective tests (Brooks and others 2000; Peachey and 

others 2002; Caine and others 2003).  Questions posed through sensory tests typically 

assess acceptance of a food’s attributes such as overall, appearance, aroma, flavor and 

texture.  Questions about the ideality of certain levels of other attributes such as color or 

flavor intensity may also be asked.  Panelists may also rank samples in order of 

preference.  Consumer sensory data is nearly always essential in predicting product 

improvement, quality, or market potential.   

The most commonly used objective tool for assessing beef tenderness is the 

Warner-Bratzler (WBSF) shear force method (Brady and Hunecke 1985). The WBSF 

method is performed by coring a sample of cooked meat and measuring the force 

required to shear it perpendicular to the meat grain. WBSF values <3.9 and >4.6 kgf are 

considered slightly tender and slightly tough, respectively (Shackelford and others 1991).   

Beef tenderness studies often compare the data from human sensory evaluation 

and objective tests such as WBSF (Brooks and others 2000; Peachey and others 2002; 
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Caine and others 2003).  The purpose such comparison is often done to determine 

whether WBSF is an accurate predictor of human perception and consumer acceptance of 

texture.  Nevertheless, numerous attempts have frequently resulted in a wide range of 

inconsistent correlations ranging from 10 – 89% (Caine and others 2003; Lorenzen and 

others 2003).   Standardized procedures (AMSA 1995; Wheeler and others 1999) for 

performing WBSF tests and conducting sensory analysis are attempts to increase 

consistency among researchers. Still, correlations and conclusions between them continue 

to vary. Correlations between these objective and subjective tests may be best when the 

samples of the same muscle fiber orientation were used for both tests (Poste and others 

1993).   

 Further challenges to correlation may be inherent when attempting to compare 

subjective and objective data between and among muscle types (Belew and others 2003) 

including those specifically from the round.  Kolle and others (2004) reported that steaks 

from the round were inconsistent in tenderness.  A study of different tenderization 

treatments of chuck muscles determined that tenderness was not consistent between 

muscle types and concluded that inconsistencies may be due to physical and chemical 

variations within muscle types and cooking methods (Molina and others 2005).  Brooks 

and others (2000) concluded that choice and select quality grades had no effect on WBSF 

values or sensory scores for eye-of-round samples. 

 Cooking method also influences beef tenderness data.  Kolle and others (2004) 

reported that when eye-of-round subprimals were cooked using dry heat, such as clam 

shell grilling to 71˚C, that there was no improvement in WBSF tenderness scores and that 



33 

 

steaks from  eye-of-round subprimals produced lower (more tender) WBSF readings 

when they were cooked using moist heat methods.  

Since tenderness is the primary factor in determining consumer satisfaction of 

beef, both producers and researchers are interested in safely and economically providing 

this.   Traditional tenderization and enhancement techniques have been shown to 

translocate and cross-contaminate bacteria during processing (Sporing 1999; Hajmeer 

and others 2000; Luchansky and others 2008), which poses a potential safety concern if 

beef products are undercooked (De Zuniga and others 1991; Tompkin and others 2001; 

USDA-FSIS 2002; Gill and McGinnis 2004; Stopforth and others 2006; Sofos and others 

2008).  The microbiological, thermal inactivation, and sensory characteristics of the 

emerging beef technology of high-pressure needleless injection have not been studied, 

and are therefore, the impetus for this research. 
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CHAPTER 3 

 

TRANSLOCATION AND CROSS-CONTAMINATION OF 

 

 ESCHERICHIA COLI O157 IN BEEF EYE-OF-ROUND SUBPRIMALS 

 

PROCESSED WITH HIGH-PRESSURE NEEDLELESS INJECTION 

 

                                                   Abstract 

High-pressure needleless injection (HPNI) is an emerging enhancing process 

where small-diameter, high-velocity bursts of liquid penetrate soft foods at pressures up 

to 10,000 psi.  The incidence and depth of translocated surface E. coli O157 in HPNI 

processed beef eye-of-round subprimals was determined.  HPNI translocated E. coli 

O157 from the surface to the interior of eye-of-round subprimals with incidence of 40 

(±7), 25 (±8), and 25 (±8) % for subprimals that had been surface-inoculated with a four 

strain cocktail at 0.5, 1, and 2 log10 CFU/cm
2
, respectively.  The run-off water was 

collected and found to contain 2, 2, and 3 log10 CFU/ml E. coli O157, respectively.  The 

runoff was used for HPNI of additional eye-of-round subprimals, and this resulted in a 

cross contamination incidence of 83 (±4), 60 (±15), and 37 (±6) %, respectively.  

Incidence of translocation and cross contamination was similar at 0 - 1, 1 - 2, 2 - 3, 3 - 4, 

4 – 6, and 6 - 8 cm below the inoculated surface.  Results indicate that surface microflora 

on beef will be carried to the interior of HPNI treated beef by initial translocation from 

the surface with the injected fluid and by cross contamination with recycled fluid.  
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Introduction 

  Escherichia coli O157:H7 was first identified as a food borne pathogen in 1982 

when it was associated with undercooked ground beef, a source that continues to be 

linked to numerous outbreaks and recalls involving these bacteria (Rangel and others 

2005).  Since 2000, there have been five reported E. coli O157:H7 outbreaks, with one as 

recent as December 2009, associated with beef that had been mechanically tenderized 

(USDA-FSIS 2007, 2009).  Mechanical tenderization processes, such as blade 

tenderization and needle injection, use sharp blades or needles, respectively, to penetrate 

the meat’s surface to improve texture and/or introduce enhancing liquids into its interior.  

In the United States, nearly all beef steaks and roasts served in restaurants, hotels, and for 

other institutions may be mechanically tenderized (USDA-FSIS 2002).  Some are 

available through retail stores (Gill and McGinnis 2004; USDA-FSIS 2004) or door-to-

door vendors (Laine and others 2005).   

A small number of studies confirm that E. coli (Luchansky and others 2008; 

Sporing 1999) and other natural microflora (Hajmeer and others 2000) can be 

translocated (moved from the surface to the interior) during blade tenderization of beef. 

The associated hazard is that such bacteria may not be exposed to the minimum 

recommended cooking temperatures needed to destroy them and instead, remain viable, 

causing illness or even death (De Zuniga and others 1991; Tompkin and others 2001; 

USDA-FSIS 2002; Gill and McGinnis 2004; Stopforth and others 2006; Sofos and others 

2008).  While quantification of a definitive infectious dose of E. coli O157:H7 is 

complex, some researchers suggest that it is low (Mead and Griffin 1998), with estimates 
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of <50 organisms (Tilden and others 1996) and even < 10 organisms (Greig 2010) 

although specific foods or portions were not stated.  It is estimated that 98% of time, 

steaks contaminated with E. coli O157:H7 have a single E. coli organism per serving 

prior to cooking (USDA 2002).  While a “serving” was not defined in this estimate, 

USDA quantifies a serving of beef steak to be   99 – 113 grams (USDA 2011).   

  High-pressure needleless injection (HPNI) is an emerging enhancement process 

that uses multiple small diameter, high-velocity, discontinuous liquid jets instead of 

traditional needles or blades (Jefferies and Hansen 2010; Hendricks and Hansen1991; 

Hansen and Watts 2004).  Liquid bursts can be controlled between 1000–10,000 psi and 

are dispensed from nozzles above the product to penetrate its surface to introduce 

enhancing fluids into its interior.  HPNI has been used to add moisture, oil, flavors, 

spices, color, salt, enzymes, preservatives, acidulants and minerals to cheese, meat, 

poultry, fish, vegetables and fruits (Lee and others 1978; Hendricks and Hansen 1991; 

Berry 2002; Pastorino and others 2003a,b,c; Hansen and Watts 2004;).   

 The effect of HPNI on microbial translocation using equipment made specifically 

for the purpose of enhancing meat with high-pressure liquid jets is minimal.  Ray and 

others (2010) used a manual, single-injection-at-a-time instrument, ordinarily used for 

livestock injections, on beef strip loins and concluded that E. coli could be translocated at 

25 psi.  A study where the effect of high-pressure water jets on the penetration of bacteria 

during beef carcass washing concluded that bacteria were more likely to be driven deeper 

into tissue as pressure increased (De Zuniga and others 1991).  A similar washing study 
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by Anderson and others (1991) demonstrated that surface bacteria were translocated into 

muscle at fluid pressures > 100 psi. 

  With regard to cross contamination, some report that high-pressure jets cause 

less cross-contamination in foods than needle injection (Robertson and Berry 1976; Lee 

and others 1978; Ricks and others 1998).  One such study compared the levels of cross-

contamination of natural microflora on chicken breasts processed with HPNI to that of 

needle injection (Ricks and others 1998). Results showed that the degree of cross-

contamination, caused by using recycled injection fluid, was significantly less by HPNI 

than that by needle injection.   

The objective of this study was to determine the incidence and  depth  to which E. 

coli O157 strains are translocated from the  inoculated surface of beef eye-of-round 

subprimals  processed with HPNI. It was of further interest to determine the incidence 

and depth of cross-contamination that occurred through recirculated enhancing. It was 

hypothesized that, like customary mechanical tenderization and enhancement methods, 

translocation and cross-contamination in HPNI treated beef would occur.    

Materials and Methods 

Inoculum preparation 

A cocktail of two E. coli O157:H7 strains (93.0055, 93.0138), one O157:H12 

strain (6.2571) and one O157:NM strain (99.1224) was prepared.  All strains were 

isolated from beef and were obtained from The Pennsylvania State University E. coli 

Reference Center (University Park, Pa., U.S.A.).  Individual cultures were prepared from 

thawed freezer stocks by inoculating separate Erlenmeyer flasks, each containing 50 ml 
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of Trypic Soy Broth (TSB), with 1 µL of culture.   Cells were incubated at 37°C for 22 – 

26 hours, without shaking, to obtain stationary-phase growth.  The individual cultures 

were then combined to form a cocktail inoculum culture. Serial dilutions of the combined 

inoculum were plated onto Petrifilm™ Coliform Count Plates (3M Corp., St. Paul, Minn., 

U.S.A.) and incubated for 24 hours to determine viable cell counts.  Three inoculum 

levels (3, 2, 1 log10 CFU/ml) were prepared from the cocktail to deliver final target 

surface counts of 2, 1, 0.5 log10 CFU/cm
2
.  Inoculum levels were selected based on the 

levels used by Luchansky and others (2008). The cocktail was then transferred to a 

sterile, high density polyethylene, calibrated spray bottle (Sprayco, Detroit, Mich., 

U.S.A.) for surface inoculation of subprimals.   Work using these bacterial strains was 

performed at Brigham Young University (Provo, Utah, U.S.A.) with approval from the 

University Risk Management Office.  

 Translocation Study 

Fresh, unfrozen eye-of-round subprimals (IMPS, NAMP #171c), ~8 cm thick, 

were obtained from a local meat packing facility within 24 hours of harvest and were 

stored at 4°C ≤ 7 days after receipt.  Sections of surface fat, if any, were trimmed. Three 

subprimals were randomly selected to determine surface counts of naturally occurring E. 

coli O157:H7, if any. Three subprimals were randomly assigned to each of the 3 

inoculum level treatments.  One inoculum level treatment and injection was performed 

per day. Duplicate trials were performed on separate days and the order of each inoculum 

treatment and duplicate were randomized.   
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  Each subprimal was mist inoculated individually, under a biological hood, using 

the previously mentioned spray bottle which was calibrated to deliver 0.75 ml/pump, 

according to the method of Sporing (1999). Four pumps were administered per 

subprimal.  All working surfaces were sterilized with ethanol between inoculation of  

individual subprimals.  Each inoculated subprimal was then aseptically transferred, 

inoculated side facing up, to separate, sterile, covered aluminum foil containers.  To 

allow for bacterial adhesion the subprimals were held at 4°C for 30 - 60 min before HPNI 

processing (Sporing 1999).  

High-pressure needleless injection 

  Following the bacterial adhesion step, subprimals were removed from their 

containers and placed longitudinally to their direction of travel, in the center of the 

conveyor belt of a continuous, in-line process, high-pressure needleless injector (Hansen 

and Watts 2004; Hendricks and Hansen 1991) with the inoculated surface facing up. 

Subprimals were spaced ~2 cm apart, one behind the other.  

Seven and a half L of sterilized, filtered water (AquaOne, Orem, Utah, U.S.A.) 

were placed in the balance tank. Water without typical enhancing ingredients was used in 

order to focus only on the effect of HPNI jets on microbial translocation, similar to Lee 

and others (1978) who studied the properties of high-pressure water jets on mozzarella 

cheese.   The injectant first flowed through an inline FulFlo pleated, stainless steel wire 

cloth filter (Parker Hannifin Corp., Indianapolis, Ind., U.S.A.) with a micrometer rating 

>2, and was pumped to the injection head via Teflon® tubing reinforced with braided 

stainless steel casing, by a high-pressure, positive pressure piston pump driven by 
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compressed air.  A single injection head traversed the width of the conveyor belt and was 

comprised of 13 0.0015 cm inner diameter sapphire nozzles (A.M. Gatti, Inc., Trenton, 

N.J., U.S.A) arranged side-by-side, 1 cm apart. The mean distance between the top 

surface of the subprimals and the nozzle openings was ~4 cm.   

 Liquid jet injection pressure was 3000 psi. Preliminary work determined that a 

combined injection pressure of 3000 psi and injection burst duration of 1.5 seconds, 

while the conveyor belt remained stationary, would allow the injectant to penetrate each 

subprimal 7.5 to 8 cm, without passing through. After each injection burst, the conveyor 

belt advanced 0.5 cm.  Jet diameter varied, but was generally between 0.5 – 2.0 mm.  

Subprimals were passed once under the injection head.  The run-off injectant was not 

recycled, but was recovered in a sterile container for use in each subsequent and 

accompanying cross-contamination trial.  After injection, subprimals were aseptically 

removed from the conveyor belt and immediately returned, inoculated side up, to their 

original, covered containers. Each injected subprimal was held at -18°C for 2 hours to 

facilitate core sampling and slicing for microbial analysis.  

Cross-contamination study 

Immediately following each translocation trial, three uninoculated subprimals 

were injected using the run-off liquid collected from the preceding translocation study.  

Aliquots of this injectant were sampled in duplicate immediately after the earlier 

treatment to determine E. coli concentration.  Subprimal pre- and post-injection handling 

and injection parameters were otherwise identical to those of the translocation study.  

Contaminated injectant was recycled during injection.  
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Between accompanying translocation and cross-contamination trials, the injector 

was completely disassembled, cleaned and sanitized with a commercial detergent and 

quaternary ammonia.  Sterilization was confirmed by swabbing both critical and random 

locations and by collecting and testing the first water to flow through the nozzles at the 

beginning of each trial, for presence of E. coli.  

Microbial analysis 

For both studies, injected subprimals were then transferred from -18°C storage 

and held at 4°C ≤ 2 hours until they were sampled for microbial analysis.  Core samples 

were aseptically removed from injected subprimals in order to recover translocated E. 

coli, if any. Sampling procedures were based on those used by other researchers (Sporing 

1999; Luchansky and others 2008). To do this, each subprimal was aseptically transferred 

onto a sterile acrylic sheet surface under a biological hood with the inoculated surface 

face down.  A stainless steel coring device (4.3 cm diam.) was pressed through the 

uninoculated surface, parallel to the direction of injection, to excise a core.  The coring 

device was pressed through the uninoculated side of the subprimal to prevent surface 

inoculum from contaminating the cores. Five cores were sampled from the midline of 

each subprimal.  The coring device was ethanol and flame sterilized between each 

sampling. 

 In order to determine if E. coli were translocated to various depths of the 

subprimals, the cores were aseptically sliced across muscle fibers using an ethanol and 

flame sterilized scalpel and a sterile cutting guide into disks 0 - 1, 1 - 2, 2 - 3, 3 - 4, 4 – 6, 

and 6 - 8 cm from the inoculated surface (Figure 3-1).  After coring, ~2 mm of the non-



47 

 

inoculated surface was removed from its respective core to remove any inoculum, if any, 

that may have touched it during any previous step.  Disks were aseptically transferred to 

individual sterile filter bags (Nasco, Modesto, Calif., U.S.A.), and weighed.  A 0.1% 

peptone (Biotrace International, Muncie, Ind., U.S.A.) solution was added to each disk at 

a 1:10 w/w dilution.  Contents were stomached (Smasher, AES Laboratoire, Rennes, 

France) for 2 minutes. One ml of filtered slurry was transferred onto Petrifilm Coliform 

Count Plates (3M Corp., Minneapolis, Minn., U.S.A.) and incubated for 22-26 hours at 

37°C before testing for presence of E. coli.  The detection limit of the Petrifilm™ 

Coliform Count Plates used, with a single replication, is such that samples with fewer 

than 10 CFU/ml cannot be detected. Consequently, Petrifilm™ with no discernable 

growth was counted as negative for incidence of E. coli.  

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Sampling procedure to quantify number of disks 

testing positive for E. coli O157 at various subprimal depths. 
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Actual surface inoculum concentrations were quantified by mist inoculating, but 

not processing with HPNI, two subprimals per inoculation level. Five cores were 

removed from each subprimal, with E. coli counts determined for the top 1 cm disk and 

were reported as CFUlog10/g. The total time between coring and plating samples from a 

single subprimal was < 15 minutes. The procedures for determination of incidence and 

depth of translocated inoculum were likewise used to determine the same for cross-

contamination by recycled run off liquid. 

Statistical Analysis 

 Data were analyzed for significance by Chi-square analysis to determine 

significant differences among the percent disks testing positive for E. coli O157 among 

sample core depth using Excel 2007 (New York, N.Y., U.S.A.).  Significant differences 

were defined as P < 0.05. Percent positive samples were determined by dividing the 

number of total disks sampled per core depth into the number of disks testing positive for 

E. coli. 

Results and Discussion 

Translocation 

Actual mean surface inoculum concentrations were 2 (±0.30), 1 (±0.30), and 0.5 

(±0.05) log10 CFU/cm
2
.
 
 Percentage of samples testing positive for translocated E. coli 

O157 is shown in Table 3-1. Samples from all subprimal depths tested positive for 

translocated E. coli. At the 2 CFU log10/cm
2 
inoculum level, the amount of samples 

testing positive ranged from 27 – 47% throughout the depth of the subprimal with a mean 
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of 40 (±7)%.  At the 1 CFU log10/cm
2
 inoculum level, the amount of samples testing 

positive ranged from 13 – 33%, and at the 0.5 log10/cm
2
 inoculum level, 13 – 43% of the 

samples tested positive throughout all subprimal depths. Mean translocation at these 

levels was 25 (±8) and 25 (±12) %, respectively. Trends in the quantity of positive disks 

at each depth of translocated E. coli in this study are not evident as the percentage of 

disks testing positive at each depth did not differ significantly within each surface 

inoculum concentration level (P<0.05).
  

 

 

 

 

 

Mean initial surface concentrations log10 CFU/cm
2
 (SD) of E. coli O157 

on  control beef eye-of-round subprimals 
A
 

 2 (±0.30) 1 (±0.5) 0.5 (±0.05) 

Depth of core 

samples (cm)  

Percentage of samples testing positive for E. coli (%) 
B
 

 

Surface to 1 37
a 

23
a
 17

a
 

1 - 2 27
a 
 30

a
 13

a
 

2 – 3 43
a
 33

a
 13

a
 

3 – 4 43
a
 33

a
 33

a
 

4 –  6 47
a
 17

a
 33

a
 

6 – 8 43
a
 13

a
 43

a
 

Mean % 

translocation 

40 (±7) 25 (±8) 25 (±12) 

 

 Values with like superscripts within each column are not significantly different from one 

another. (P<0.05), χ
2
 (5, n=180) = 0.28, 0.01, and 8.1 x 10

-7 
for surface concentrations of 

2, 1, and 0.5 log10 CFU/cm
2
, respectively. 

A 
n=10 for each inoculum level 

B 
n=30 for each core depth 

 

 

 

 

 

Table 3-1. Translocation Study:  Percent samples testing positive  for E. coli O157 

recovered from core samples at various depths  in  beef eye-of-round subprimals 

inoculated at different initial surface concentrations and  processed with HPNI. 
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  The observation that surface E. coli are translocated throughout the entire depth 

of the subprimal seems likely attributable to the high-pressures used in this study, as the 

combined injection pressure of 3000 psi and injection burst duration settings  were 

intentionally  calibrated to allow the injectant to penetrate its entire depth. This agrees 

with a beef carcass washing study by De Zuniga and others (1991) where it was 

concluded that higher fluid pressures result in the translocation of more surface bacteria 

than lower fluid pressures and that bacteria are more likely to be driven deeper into 

muscle tissue as fluid pressure increases. 

It also seems likely that the penetration holes created by the injecting jets create 

individual channels in the subprimal which in turn, allows for the flow of injectant 

throughout its depth.   The movement of liquid within these channels could potentially 

carry E. coli and, therefore, the position of translocated bacteria at the time of sampling 

and may not reflect initial bacterial translocation depth. Ray and others (2010) also 

observed the development of such channels at pressures > 25 psi in their study using the 

one-dose-at-a-time needleless injector. 

Blade tenderization studies (Sporing 1999; Luchansky and others 2008), as well 

as the needleless single dose injector experiment (Ray and others 2010), generally 

concluded that E. coli counts are highest near the inoculated surface and decrease with 

increasing depth.  Sporing (1999) reported that 3 – 4% of surface E. coli was translocated 

to the geometric center of blade tenderized beef top butt subprimals where surface 

inoculums concentrations were 3 and 6 log10 CFU/cm
2
. These studies do not report the 
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penetration depth of the blades or liquid jets and the pressures used, if reported, were far 

below the 3000 psi used in the present study. 

 Cross-Contamination 

Recovery of positive samples of E. coli O157 injected into the interior of 

uninoculated subprimals through contaminated injectant collected is shown in Table 3-2.   

 Mean initial concentration of E. coli O157 in run-off injectant from the initial 2 log10 

CFU /cm
2 

surface contamination was 3 log10 CFU /ml. At this level of injectant 

contamination, the number of samples testing positive at each core depth ranged from 77 

– 90% with a mean of 83 (±4)%.  Mean initial concentration of E. coli 0157 in run-off 

injectant for both 1 and 0.5 log 10/cm
2
 initial surface concentrations was 2 log10 CFU/ml. 

The number of samples testing positive ranged from 30 – 80% and 30 – 47%   at the 1 

and 0.5 log10CFU/cm
2
 original surface contamination levels, respectively. Mean cross 

contamination at these levels was 60 (±15) and 37 (±6)% respectively. There was no 

significant difference in the percentage of positive samples at each depth at each original 

inoculation level (P<0.05). 

Generally, the percentage of samples testing positive are  higher than those from 

the translocation data, since the run-off water is a combination of all the surface 

inoculation run-off and suggests that contaminated run-off water injected directly into 

subprimals results in higher contamination than that which occurs solely by translocation. 

Cross-contamination results also show no specific trends in percentage of positive disks 

at each depth, and may again, be due to the free-movement of fluid in the channels 

created by the liquid jets, referred to earlier.  Results indicate that recirculating solutions 
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Mean initial surface concentrations log10 CFU/cm
2
 (SD) of E. coli O157 

on  control beef eye-of-round subprimals 
A
 

 2 (±0.30) 1 (±0.5) 0.5 (±0.05) 

Mean initial concentrations log10 CFU/ml (SD) of E. coli 0157 in run-off  liquid injected 

into non surface inoculated beef eye-of-round subprimals processed with HPNI
A
 

 3 (±2.3) 2 (±0.9) 2 (±1.2) 

Depth of core 

samples (cm) 

Percent samples testing positive for E coli (%)  
B
 

 

Surface to 1 83
a 

63
a
 40

a
 

1 - 2 77
a
 60

a
 30

a
 

2 – 3 90
a
 63

a
 37

a
 

3 – 4 83
a
 63

a
 40

a
 

4 –  6 83
a
 80

a
 47

a
 

6 – 8 83
a
 30

a
 30

a
 

Mean % 

 cross-

contamination 

83 (±4) 60 (±15) 37 (±6) 

 

Values with like superscripts within each column are not significantly different from one 

another.  (P<0.05), χ
2
 (5, n=180) = 0.96, 5.0 x 10

-4
, and 0.32 

 
for  run-off liquid 

concentrations of 3, 2, and 2 log10 CFU/cm
2
, respectively. 

A 
n=2 for each inoculum level 

B 
n=30 for each core depth 

 

 

that become contaminated with bacteria can be carried into a meat piece upon injection.   

As for the bacteria not accounted for in either the translocation or cross-contamination 

study, other research offers a possible explanation. Luchansky and others (2008) found 

that 45 – 63% of inoculated bacteria were recovered on the blades of the tenderizer, and 

that E. coli not accounted for was assumed to be on various contact surfaces including the 

conveyor belt. Other investigators have shown that recirculation of microorganisms in 

injectant solutions during needle injection can cross-contaminate other products such as 

Table 3-2.  Cross-contamination Study:  Percent samples testing positive for E. coli 

O157 recovered from core samples at various depths in beef eye-of-round subprimals 

processed with HPNI using recirculated, contaminated run-off liquid from the 

corresponding translocation study. 
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pork loins (Greer and others 2003) yet could possibly be minimized through filtration of 

large particles which may harbor more bacteria (Gill and others 2005). In the present 

study, particles of beef and fat were observed in the run-off liquid.  In the translocation 

study, injecting liquid was not allowed to recirculate; in the cross-contamination study, 

where run-off liquid was allowed to recirculate, particulates were filtered.  Bacteria that 

may have been on particulate matter or equipment contact surfaces was not quantified. 

Conclusions 

It is concluded that HPNI, with pressures as high as  3000 psi and a penetration 

density of 0.5 x 1 cm, can translocate E. coli O157 from the surface of beef subprimals at 

inoculation levels above those that are typically found and that bacteria can be distributed 

as deep as the jets penetrate. As demonstrated in other studies where injecting solutions 

were recirculated, it is not surprising that cross-contamination of foods that follow later in 

a process occurs when preceding products contaminate the injectant. There was no 

evidence of trends in the depth of contamination in samples testing positive, in either the 

translocation or cross-contamination studies, other than that positive samples were found 

at every level.  This may suggest that development of channels by high-pressure liquid 

jets allows for the movement of enhancing fluid to move throughout the depth to which it 

has penetrated. Continued efforts to minimize bacterial contamination of beef during pre-

fabrication steps, the use of good manufacturing practices during fabrication and 

processing, the application of antimicrobial agents on the surface of meat or in 

enhancement solutions are recommended steps toward minimizing surface contamination 

that could lead to translocation incidence during processing.   
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CHAPTER 4 

 

THERMAL INACTIVATION OF ESCHERECHIA COLI O157  

 

IN BEEF EYE-OF-ROUND STEAKS PROCESSED 

 

WITH HIGH-PRESSURE NEEDLELESS INJECTION 

 

                                                   Abstract 

 

High-pressure needleless injection (HPNI) is a novel process where soft foods are 

penetrated by small-diameter, high-velocity bursts of liquid up to 10,000 psi to enhance 

them with liquids.  Thermal inactivation of an E. coli O157 cocktail in beef eye-of-round 

steaks processed using HPNI was determined by cooking by consumer oven broiling and 

gas grilling.  It was hypothesized that at an initial E. coli O157 surface concentration of 2 

log10 CFU/cm
2
 that any microorganisms translocated into the interior of subprimals 

treated with HPNI would be reduced to about 1 log when the steaks from the subprimals 

were cooked to an internal temperature of 63˚C the recommended endpoint temperature 

for highest eating quality of beef eye-of-round steaks and the USDA minimum 

recommended endpoint temperature for intact beef. A mixture of 4-strain E. coli strains 

was applied to the surface of the subprimals at a 2 log10 CFU/cm
2
 concentration.  

Inoculated subprimals were injected with filtered, sterile water using HPNI at 3000 psi, 

then divided into 2.54 cm thick steaks.  HPNI processed and control steaks were cooked 

to 63˚C by both methods.  No microorganisms were recovered from steak samples, 

indicating a log reduction of translocated E. coli of at least 0.5 log10 CFU/g. As the 

detection limit for the bacterial enumeration method used is 1 log10 CFU/g, it is not 

possible to state that because E. coli was not recovered, that it was completely destroyed.  
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For both cooking methods, HPNI processed steaks took significantly longer (13.98±2.4 

minutes) to reach 63˚C compared to control steaks (12.73±3.76 minutes) which was 

likely due to the increased moisture content of the injected meat.  Grilled, control steaks 

reached the endpoint temperature significantly faster (9.74±2.02 minutes) than HPNI 

processed grilled steaks (13.48±2.5 minutes), HPNI processed broiled steaks (14.48 

±2.29 minutes), and control broiled steaks (15.73± 2.4 minutes).  Since grilling 

temperatures were higher than broiling temperatures, beef steaks reached the endpoint 

temperature faster when they were grilled. It was concluded that subprimals processed 

with HPNI that are subsequently sliced into steaks that are consumer oven-broiled or gas 

grilled to the suggested endpoint temperature for highest eating quality of beef eye-of-

round steaks and the minimum USDA-FSIS recommended temperature for intact beef of 

63°C, reduced surface E. coli of 2 CFU log10/cm
2
 to and undetectable quantity of about 1 

log10 CFU/g
 
. It was also concluded that  gas grilling is a faster cooking method for 2.54 

cm thick steaks that have been HPNI  processed than oven broiling, due to the higher 

temperatures associated with gas grilling. 

Introduction 

In 1982, Escherichia coli  O157:H7 was first identified as a food borne pathogen  

when it was associated with undercooked ground beef, a source that continues to be 

linked to numerous outbreaks and recalls (Rangel and others 2005).  There have been five 

reported outbreaks (USDA-FSIS 2007) since 2002 associated with E. coli O157:H7 in 

beef that has been mechanically tenderized, the most recent of which was in December 

2009 (USDA-FSIS 2009).  Blade tenderization and needle injection are mechanical 
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tenderization processes that use sharp blades or needles, respectively, to penetrate the 

meat’s surface to improve texture and/or introduce enhancing liquids into its interior.   

High-pressure needleless injection (HPNI) is an emerging enhancement process 

(Hendricks and Hansen 1991; Hansen and Watts 2004; Jefferies and Hansen 2010) where 

multiple small diameter, high-velocity, discontinuous liquid jets penetrate the meat 

instead of blades or needles.  Liquid bursts can be controlled between 1,000–10,000 psi 

and are dispensed from nozzles above the product to penetrate its surface.   HPNI has 

been used to add moisture, oil, flavors, spices, color, salt, enzymes, preservatives, 

acidulants and minerals to cheese meat, poultry, fish, vegetables and fruits (Lee and 

others 1978; Berry 2002; Pastorino and others 2003a,b,c; Hansen and Watts 2004).   

A handful of studies confirm that E. coli (Sporing 1999; Luchansky and others 

2008) and other natural microflora (Hajmeer and others 2000) can be translocated 

(moved from the surface to the interior) during blade tenderization of beef. The 

associated risk is that such bacteria may not reach the recommended minimum cooking 

temperatures needed to destroy them (De Zuniga and others 1991; Tompkin and others 

2001;  USDA-FSIS 2002; Gill and McGinnis 2004; Stopforth and others 2006; Sofos and 

others 2008).   Quantification of a definitive infectious dose of E. coli O157:H7 is 

complex, though some researchers suggest that it is low (Mead and Griffin 1998), with 

estimates of <50 (Tilden and others 1996) and even <10 organisms (Greig 2010) although 

specific foods or portions were not reported.  It is estimated that 98% of time, steaks 

contaminated with E. coli O157:H7 have a single E. coli organism per serving prior to 
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cooking (USDA 2002).  While a “serving” was not defined in this estimate, USDA 

quantifies a serving of beef steak to be   99 – 113 grams (USDA 2011).   

According to surveys, Americans overwhelming prefer outdoor grilling over other 

methods when cooking steaks; oven broiling is the next preferred method (Melusky 

2006).   The United States Department of Agriculture – Food Safety Inspection Service 

(USDA-FSIS) reports that there is sufficient anecdotal evidence that consumers 

frequently eat blade tenderized meat, particularly steaks, cooked to rare (60˚C) or 

medium rare (63˚C) endpoints and believes that these endpoint temperatures are 

insufficient to destroy E. coli O157:H7 that may be in the interior of the meat (USDA-

FSIS 2002).  Yet, the National Cattlemen’s Beef Association (2007) recommends that 

beef eye-of-round steaks be cooked to a maximum endpoint temperature of 63˚C for 

optimum eating quality. 

Based on the research of Sporing (1999), it was determined that mechanically 

tenderized beef does not pose a greater risk to consumers when it is cooked to a minimum 

internal temperature of 60°C.  Yet, current USDA recommendations are that 

mechanically tenderized beef be cooked to yet an even higher endpoint of 68˚C (USDA-

FSIS 2002), regardless of cooking method. The USDA minimum recommended 

temperature for intact beef is 63˚C (medium rare).  Of the few studies published on 

thermal inactivation of E. coli O157:H7 in non-intact beef (Sporing 1999; Patel and 

others 2005; Luchansky and others 2008), none have addressed this issue with regard to 

HPNI tenderized beef.  Consequently, the effectiveness of heat in destroying E. coli 
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O157:H7 translocated by mechanical tenderization or moisture enhancement is unknown 

(Mukherjee and others 2008).  

The objective of this study was to determine the degree of bacterial kill realized 

by oven broiling and gas grilling beef eye-of-round steaks that had been previously 

inoculated with E. coli, followed by HPNI processing. It was hypothesized that at  an 

initial E. coli O157 surface concentration of 2 log10 CFU/cm
2
 that any bacteria 

translocated into the interior of the beef would be  reduced to about1 log when steaks 

were cooked to 63˚C for intact steaks by both oven broiling and gas grilling. It was of 

further interest to determine whether the cooking time to an internal temperature of 63˚C 

would differ between the two cooking methods and between HPNI processed and 

untreated control steaks. 

Materials and Methods 

Inoculum preparation 

A cocktail of two E. coli O157:H7 strains (93.0055, 93.0138), one O157:H12 

strain (6.2571) and one O157:NM strain (99.1224) was prepared.  All strains, which were 

isolated from beef, were obtained from The Pennsylvania State University E. coli 

Reference Center (University Park, Pa., U.S.A.).  Individual cultures were prepared from 

thawed freezer stocks by inoculating separate Erlenmeyer flasks, each containing 50 ml 

of Trypic Soy Broth (TSB), with 1 µL culture.   Cells were incubated at 37°C for 20 – 22 

hours, without shaking, to obtain stationary-phase growth.  The individual cultures were 

then combined to form a cocktail inoculum culture. Serial dilutions of the combined 

inoculum were plated onto Petrifilm™ Coliform Count Plates (3M Corp., St. Paul, Minn., 
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U.S.A.) and incubated for 24 hours to determine viable cell counts.  One inoculum level 

of 3 log10 CFU/ml was prepared from the cocktail to deliver final target surface counts of 

2 log10 CFU/cm
2
.  The cocktail was then transferred to a sterile, high density 

polyethylene, calibrated spray bottle (Sprayco, Detroit, Mich., U.S.A.) for surface 

inoculation of subprimals.   Work using these bacterial strains was performed at Brigham 

Young University (Provo, Utah, U.S.A.) with approval from the University Risk 

Management Office.  

Subprimal inoculation  

Fresh, unfrozen eye-of-round subprimals (IMPS, NAMP #171c),   8 cm thick, 

were obtained from a local meat packing facility within 24 hours of harvest and were 

stored at 4°C ≤ 7 days after receipt.  Sections of surface fat, if any, were trimmed.  Each 

subprimal was mist inoculated individually, under a biological hood, using the calibrated 

spray bottle, according to the method of Sporing (1999).  Four pumps were administered 

per subprimal.  All working surfaces were sterilized with ethanol between subprimals.  

Inoculated subprimals were then aseptically transferred, inoculated side facing up, to 

separate, sterile, covered aluminum foil containers.  To allow for bacterial adhesion the 

subprimals were held at 4°C for 30 - 60 minutes before HPNI processing (Sporing 1999). 

High-pressure needleless injection 

  Following the bacterial adhesion step, subprimals were removed from their 

containers and placed longitudinally to the direction of travel, in the center of the 

conveyor belt of a continuous, in-line process, high-pressure needleless injector (Hansen 
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and Watts 2004; Hendricks and Hansen 1991) with the inoculated surface facing up. 

Subprimals were spaced one behind the other,    2 cm apart.   

Seven and a half L of sterilized, filtered water (AquaOne, Orem, Utah, U.S.A.) 

were placed in the balance tank. Water without typical enhancing ingredients was used in 

order to focus only on the thermal destruction of E. coli O157 without the potential 

shielding effects of added ingredients (Orta-Ramirez and others 2005; Mukherjee and 

others 2008; Byelashov and others 2010).  The injectant first flowed through an inline 

FulFlo pleated, stainless steel wire cloth filter (Parker Hannifin Corp., Indianapolis, Ind., 

U.S.A.) with a micrometer rating >2, and was pumped to the injection head via Teflon® 

tubing reinforced with braided stainless steel casing, by a high-pressure, positive pressure 

piston pump driven by compressed air.  The injection head traversed the width of the 

conveyor belt and was comprised of 13 0.0015-cm inner diameter sapphire nozzles (A.M. 

Gatti, Inc., Trenton, N.J., U.S.A) arranged side-by-side, 1 cm apart. The mean distance 

between the top surface of the subprimals and the nozzle openings was ~4 cm.   

 Liquid jet injection pressure was 3000 psi. Preliminary work determined that a 

combined injection pressure of 3000 psi and injection burst duration of 1.5 seconds while 

the conveyor belt with the subprimals remained stationary, would allow the injectant to 

penetrate each subprimal 7.5 to 8 cm, without passing through.  After each injection 

burst, the conveyor belt advanced 0.5 cm. Jet diameter varied, but was generally between 

0.5 – 2.0 mm.  Subprimals were passed once under the injection head and the injectant 

was not recirculated. After injection, subprimals were aseptically removed from the 

conveyor belt and immediately returned, inoculated side up, to their original covered 
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containers. Each injected subprimal was held at -18°C for 2 hours to facilitate their being 

sliced into steaks.   

After HPNI treatment and holding at frozen temperatures, subprimals were sliced 

perpendicular to the injection surface using a sharp knife and acrylic cutting guide into 

individual, 2.54 cm thick steaks.  Steaks were randomly assigned to be cooked by electric 

oven broiling or gas grilling to a final temperature of 63ºC.  Untreated control steaks that 

were neither inoculated or HPNI processed were sliced into 2.54 cm-thick widths using 

the same procedure as those that had been treated. 

Oven broiling 

General Electric model JSP34 electric ovens (General Electric Company, 

Louisville, Ky., U.S.A.) were set to “high” and pre-heated for ≥ 15 minutes. Steaks were 

placed on a broiler pan lined with aluminum foil in batches of four from the same 

treatment.  Foil was molded to the pans and slits cut so that juices could drip to the lower 

pan.  Broiler pans were placed on an oven rack 10.5 cm below the heat source.  Oven 

temperature was ~132°C. 

Gas Grilling 

A propane gas grill (Kenmore Master Flame, Sears, Roebuck and Co., Hoffman 

Estates, Ill., U.S.A.) was used for grilling.  Batches of 4 steaks from the same treatment 

were placed 11.5 cm above the heat source.  

For both cooking methods, internal temperature of each steak was were monitored 

using 32 gage (0.02 cm), type T (copper and constantan) thermocouples  probed through 

the side, into the geometric center of each steak and data were recorded using a CALPlex 
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data logger and CalSoft 32 heat penetration software (TechniCal New Orleans, La, 

U.S.A.).  Oven and grill surface temperature was also monitored. Temperature 

measurements were taken every 15 seconds.   For both cooking methods, steaks were 

turned after they were half way to the target endpoint temperature, after which they 

continued to cook until they reached the endpoint temperature.  Control steaks were 

cooked using the same cooking methods, to compare heating data between them and for 

both HPNI processed control steaks.  Each cooking method was replicated several times 

until 21 usable data sets were obtained as some data was deemed unusable for various 

reasons, such as thermocouple failure, the initial temperature of the steak was too high, or 

the steak did not reach the target endpoint temperature. Due to variations in initial steak 

temperature between trials, a standardized start time of when steaks were 21°C was 

employed to determine cooking time to 63°C. Grill temperature was ~189°C. 

Microbial analysis 

At the endpoint temperature, steaks were aseptically removed from the oven or 

grill, immediately quartered using a sterilized knife and immersed in 100 g chilled 0.1%  

peptone (Biotrace International, Muncie, Ind. U.S.A.) solution in individual sterile 

sample filter bags (Nasco, Modesto, Calif., U.S.A.).  Additional chilled peptone solution 

was added as needed to result in a 1:10 w/w sample:peptone dilution.  Contents were 

stomached (Smasher, AES Laboratoire, Rennes, France) for 2 minutes. One ml of filtered 

slurry was transferred onto Petrifilm Coliform Count Plates (3M Corp., Minneapolis, 

Minn., U.S.A.) and incubated for 22-26 hours at 37°C before enumeration.  The same 
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procedures for determination of E. coli remaining after heating by broiling were used to 

determine the E. coli remaining after grilling.   

Statistical Analysis 

  Data were analyzed with two -way analysis of variance (ANOVA) using the 

general linear model of XLSTAT 2008.7.03 (New York, N.Y., U.S.A.) at a significance 

level of P<0.05.  Statistically significant differences between the time to reach the 

endpoint temperature between cooking methods and mechanical processing treatment 

were further analyzed using the Tukey’s HSD test. 

Results and Discussion 

Results from a previous study by the authors (Jefferies and others 2011)  indicate 

that initial E. coli O157 surface contamination of  2 log10 CFU/cm
2
 on beef eye-of-round 

subprimals resulted in a mean of 1.53 (±0.11) log10 CFU/g  bacterial translocation to all 

depths of the subprimal interior. It is assumed that similar levels of E. coli were 

translocated in the present study.   Results from this study show that no E. coli was 

recovered from any of the steaks heated to 63˚C, regardless of cooking method. 

Considering the very low levels of surface inoculum and translocated bacteria, the 

observation that none could be detected after cooking to 63˚C is not surprising.  

However, it should be noted that the detection limit for the bacterial enumeration method 

used is 1 log; therefore, it is not possible to say that because E. coli was not recovered, 

that it was completely destroyed. Log reduction of E. coli O157, therefore, was at least 
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0.5.  These findings are consistent Ortega-Valenzuela and others (2001) who observed a 

2.70 log10 CFU/g reduction when restructured beef steaks were broiled to 63°C.    

 Time to reach 63˚C by cooking method was compared with results shown in 

Figure 4-1.  For both HPNI and control steaks, the average time for those that were oven 

broiled to reach 63°C was 15.10 (±2.4) minutes. This was significantly longer (P<0.05) 

than the average time of 11.61 (±2.9) minutes for steaks to reach that temperature by gas 

grilling.  This agrees with others who have reported that grilled steaks reach their 

endpoint temperature faster than by oven broiling due to the higher cooking temperatures 

typically achieved with grilling (Sporing 1999; Ortega-Valenzuela and others 2001) 

although each study varied in the types of cooking equipment and temperatures used.  

 

Figure 4-1. Time to reach 63°C (min) by cooking treatment (P<0.05). 
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  The time to reach 63˚C by processing treatment is shown in Figure 4 – 2. For 

both cooking methods, HPNI processed steaks took an average of 13.98 (±2.4) minutes to 

reach the endpoint temperature which was significantly longer than the 12.73 (±3.7) 

minutes for untreated control steaks. This is thought to be because of the added moisture 

in the  HPNI treated samples, as water has a much higher heat capacity (1 cal/g°C) than 

beef (0.68 cal/g °C) (The Engineering Toolbox 2011).   Consequently, more energy 

would be required to heat a water-containing beef sample than one without water which 

would in turn, take more time to reach a certain endpoint temperature. However, Pietrasik 

and others (2010) reported that steaks from enhanced semitendinosis beef steaks cooked 

faster than unenhanced controls when cooked using an electric grill while Savell and 

others (1977) determined that blade tenderized steaks cooked faster than the control.  

The interaction between processing and cooking methods was determined as 

shown in Figure 4 – 3.  There was no significant difference in the average amount of time 

it took for broiled steaks to reach  63°C, regardless of whether they had been  HPNI 

treated or not.  However, untreated control steaks that were grilled, cooked significantly 

faster than the other three treatments. Again, this supports the observation that the higher 

temperatures achieved by grilling cooks steaks faster than by oven broiling, regardless of 

processing treatment.  As thermal destruction of bacteria is a time/temperature 

relationship, the significance that one cooking method could take less time to heat beef is 

that most consumers prefer grilling to broiling (Melusky 2006) and do not always use 

thermometers to determine steak doneness (Jefferies and Hansen 2011).  
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Figure 4-2. Time to reach 63°C (min) by mechanical treatment (P<0.05). 

 

 

 

 

Figure 4-3. Time to reach 63°C (min) by mechanical and cooking treatments 

(P<0.05). 

 

            Means with like superscripts are not significantly different from one another. 

             n = 42 for each treatment 

13.98 12.73 

0

2

4

6

8

10

12

14

16

18

Mechanical Treatment

Ti
m

e
 t

o
 R

e
ac

h
 6

3
°C

 (
m

in
) 

HPNI

Control

b a 

14.48 15.73 

13.78 

9.74 

0

2

4

6

8

10

12

14

16

18

20

Mechanical/Cooking Treatment

Ti
m

e
 t

o
 R

e
ac

h
 6

3
°C

 (
m

in
) 

HPNI/Broiled

Control/Broiled

HPNI/Grilled

Control Grilled

ab ab a 

c 

ab ab a 

b 

Means with like superscripts are not significantly different from one another. 

 n = 42 for each treatment 

 



70 

 

Conclusions 

It is concluded that subprimals processed with high-pressure needleless injection 

that are subsequently sliced into steaks  that are consumer oven broiled or gas grilled to 

the recommended endpoint temperature of 63˚C for maximum eating quality and the 

minimum USDA-FSIS recommended temperature for intact tenderized beef, will reduce 

surface E. coli of 2 log10/cm by at least 1 log. Therefore, heating to the USDA 

recommended internal endpoint temperature for non-intact beef of 68˚C should likewise, 

be sufficient to result in a similar or greater bacterial kill, although this temperature is 

inconsistent with recommendations for highest eating quality of  eye-of-round steaks. 

Further work using higher inoculum concentrations is needed to determine greater log 

reduction of initial translocated populations.  It is also concluded that moisture-enhanced 

steaks using HPNI take significantly longer to cook than their unenhanced counterparts, 

by both consumer oven broiling and gas grilling. The addition of enhancement liquid 

could also increase cooking time to the desired endpoint temperature.  Enhanced steaks 

that were grilled reached their endpoint temperature significantly faster than oven broiled 

steaks.  
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CHAPTER 5 

 

SENSORY AND INSTRUMENTAL EVALUATION OF  

 

BEEF EYE-OF-ROUND STEAKS  

 

PROCESSED WITH HIGH-PRESSURE NEEDLELESS INJECTION 

 

                                                    Abstract 

High-pressure needleless injection (HPNI) is a novel technique used to enhance 

meat with moisture. The effect of HPNI on the sensory acceptance of beef eye-of-round 

steaks was evaluated and compared to steaks processed using conventional tenderization 

and enhancement techniques. Treatments were untreated control steaks (untreated), 

steaks processed using HPNI (HPNI), and blade tenderization (BT), and subprimals that 

were needle (NI-cut from processed subprimals) or high-pressure needleless (HPNI-cut 

from processed subprimals) injected with 0.35% (wt/vol) sodium tripolyphosphate 

solution and then cut into steaks.  Sensory characteristics were evaluated by 80 consumer 

panelists using a discrete 9-point hedonic scale.  Mean overall, appearance, and flavor 

acceptance scores  between all treatments were not significantly different. Texture 

acceptance was considered to be significantly more acceptable in BT steaks (6.5±1.9) 

when compared to the untreated control (5.8±1.8) while HPNI (6.2±1.8) and HPNI – cut 

from processed subprimals (6.0±1.9) when compared to the untreated control (5.8±1.8) 

(P<0.05).  Sensory ranking data showed that BT and HPNI steaks were ranked better than 

the other treatments. WBSF mean peak force (kgf) for HPNI – cut from processed 

subprimals, HPNI steaks and BT steaks (4.2±1.7, 4.4±1.2, and 4.4±1.5, respectively) 

were significantly higher (required more shear force) than that of NI (2.4±1.1) and the 
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control (3.4±1.4). Correlation between sensory and WBSF was low (r=0.31) suggesting 

that sensory tenderness liking scores are influenced by other factors than force required 

for mechanical shear.  Sensory results support the hypothesis that consumers would rate 

HPNI treated beef higher than that of an untreated control. 

Introduction 

Beef steak palatability and value are most often judged by its juiciness, flavor and 

texture (tenderness vs. toughness), but of these characteristics, texture is consistently 

ranked most important by consumers (Brady and Hunecke 1985; Belew and others 2003; 

Caine and others 2003).  Due to limitations in beef quality grading, some consumers are 

frustrated with the unpredictability of getting the same quality or tenderness of cut when 

re-purchasing that same cut (Maltin and others 2003).  This lack of consistent 

predictability has encouraged researchers and processors to develop ways of increasing 

beef quality and consistency to meet consumer expectations.  Current methods are simple 

and economical and include the use of tenderizing agents such as marinades, rubs, and 

glazes, as well as mechanical tenderization and enhancement processes such as tumbling, 

blade tenderization, and needle injection.   

Mechanical tenderization processes, such as blade tenderization and needle 

injection, use sharp blades or needles, respectively, to penetrate the meat’s surface to 

improve texture by severing muscle and connective tissue and/or introduce enhancing 

and flavoring liquids into its interior.  High-pressure needleless injection (HPNI) is an 

emerging mechanical enhancement process (Hendricks and Hansen 1991; Hansen and 

Watts 2004; Jefferies and Hansen 2010) where multiple small diameter, high-velocity, 
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discontinuous liquid jets penetrate the meat instead of blades or needles.  Liquid bursts 

that can be controlled between 1000–10,000 psi, are dispensed from nozzles above the 

product to penetrate its surface.   HPNI has been used to add moisture, oil, flavors, spices, 

color, salt, enzymes, preservatives, acidulants, and minerals to cheese, meat, poultry, fish, 

vegetables and fruits (Lee and others 1978; Berry 2002; Pastorino and others 2003a,b,c; 

Hansen and Watts 2004).  However, subjective and objective data regarding its effect on 

improving beef sensory quality is limited.  One study determined that beef tenderness, as 

measured by Warner-Bratzler shear force, was improved after it had been processed 

using HPNI (Ricks and others 1998). 

According to a 2005 survey (Melusky 2006), nearly half of Americans choose 

steak as their most preferred form of beef.  Of the cuts available, one that can benefit 

greatly from mechanical tenderization is the eye of the round (Jeremiah and others 1999). 

This elongated, naturally boneless cut, with high levels of connective tissue, comes from 

the semitendinosis muscle at the rear of the animal and is  considered to be very tough.  

The objective of this study was to determine sensory acceptance of HPNI  

processed beef eye-of-round steaks and subprimals and to compare them to steaks and 

subprimals processed by blade tenderization and needle injection and an untreated 

control. It was of further interest to gather information from beef steak consumers about 

their practices related to purchasing and preparation of beef steaks.  It was hypothesized 

that beef subprimals and steaks treated with HPNI would be liked more than an untreated 

control. 
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Materials and Methods 

Mechanical treatment of subprimals 

Thirty (6 per treatment group) fresh, eye-of-round subprimals (IMPS, NAMP 

#171c)  ~8 cm thick, were obtained from a local meat packing facility within 24 hours of 

harvest and were stored at 4°C ≤ 7 days after receipt.  Steers were Angus crosses 18 - 22 

months old with choice to high select quality grades.  Sections of visible surface fat, if 

any, were trimmed.  Eighteen subprimals were subdivided into 2.54 cm steaks using a 

sharp knife and acrylic cutting guide, which were randomly assigned to the following 

three treatment groups:  untreated control, steaks to be processed using HPNI (HPNI), 

and steaks to be processed using blade tenderization (BT).  The remaining twelve 

subprimals were randomly assigned to the following two treatment groups: subprimals to 

be processed using HPNI and subsequently subdivided into steaks (HPNI – cut from 

processed subprimals), and subprimals and treated using needle injection and 

subsequently subdivided into steaks (NI). All processes were performed in a single day, 

~72 hours before sensory analysis. 

 Blade tenderization was performed using a Hollymatic AMT·625B (Hollymatic 

Corp., Park Forest, Ill., U.S.A.).  Two injection bridges, each with forty-eight, 3 mm-

wide double-edged blades spaced 1 cm apart, were at 65 and 75 degree angles, 

respectively, to the steak surface.  Penetration depth of the blades was ~3 mm. BT steaks 

were passed through the blade tenderizer twice, once on each side, in accordance with 

industry practice. 
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Both HPNI and NI subprimals and steaks were injected with ambient temperature 

0.35% (wt./vol) sodium tripolyphosphate (Nutrifos® 088, ICL Performance Products, St. 

Louis, Mo., U.S.A.) filtered water (AquaOne Orem, Utah, U.S.A.) solution.  Needle 

injected subprimals were  passed once through a Fomaco model FGM (Robert Reiser 

Co., Inc. Canton, Mass., U.S.A.) set at 40 psi.  Needles were spaced 2 cm apart on a 

single needle bridge.  NI subprimals were passed once through the needle injector. HPNI 

injection of both steaks and subprimals was performed using a high-pressure needleless 

injector (Hansen and Watts 2004; Hendricks and Hansen 1991).  Liquid jet injection 

pressure was 3000 psi from each of 13 nozzles arranged side by side. Nozzles were 1 cm 

apart and after each injection burst, the conveyor belt advanced 0.5 cm.  Jet diameter 

varied, but was generally between 0.5 – 2.0 mm.  Both steaks and subprimals were 

passed once through the high-pressure needle injector. 

After treatment, subprimals were sliced perpendicular to the injection surface 

using the sharp knife and acrylic cutting guide described earlier to produce individual, 

2.54 cm steaks.  All steaks were individually wrapped in Saran™ plastic wrap (SC 

Johnson, Racine, Wis., U.S.A.) and stored in a single layer at 4° C for <72 hours before 

cooking and sensory analysis.  

Sensory analysis 

Sensory analysis was conducted at the Brigham Young University Sensory 

Laboratory (Provo, Utah, U.S.A.)  Eighty consumer panelists, who had positive feelings 

about and ate steak regularly, evaluated the sensory acceptance of a sample from each 

treatment.  Panelists were recruited from a database of campus and local communities 
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and were selected based on their willingness to evaluate beef steak.  Both genders were 

equally represented with approximately equal representation among age categories from 

18 – 29, 30 – 39, 40 – 49, 50 – 59, and ≥ 60 years.  The study was approved by the 

University’s Institutional Review Board and panelists provided informed consent. 

Panelists were compensated monetarily for their time.    

Steaks were removed from refrigerated temperature storage and were cooked 

prior to sensory analysis by oven broiling according to American Meat Science 

Association (AMSA 1995) guidelines.  Five General Electric model JSP34 electric ovens 

(General Electric Company, Louisville, Ky., U.S.A.) were set to “high” and pre-heated to 

163°C for 15 – 20 minutes before cooking. In order to minimize differences in heat 

distribution and temperature fluctuations in individual ovens, each treatment batch was 

rotated to cook in a different oven for each of five preparations.  Steaks were cooked in 

batches from the same treatment with four steaks at a time placed on a broiler pan lined 

with aluminum foil.  Foil was molded to the pans and slits cut in the foil to allow juices to 

drip to the pan below.  Each broiler pan was placed on an oven rack 10.5 cm below the 

heat source.  Steaks were turned after reaching an internal temperature halfway between 

the initial and endpoint temperatures, after which they continued to cook until they 

reached an internal temperature of 71C° (medium doneness).  Steak temperatures were 

monitored using 32 gauge (0.02 cm), type T (copper and constantan) thermocouple wire 

inserted into the geometric center of each steak.  Oven temperatures were monitored in 

like manner, with a thermocouple wire placed in the oven.  Thermocouples were 

connected to either a multiple channel data logger (TechniCAL, New Orleans, La., 
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U.S.A.) or hand-held digital thermometer (Fluke 51 II, Fluke Corp, Everett, Wash, 

U.S.A.).  Batches of steaks were cooked continuously throughout the sensory panel.  

After broiling, steaks were sliced parallel to the cooked surface, into 2.54 cm cubes.  If 

not served immediately, sample cubes were held in a covered stainless steel pan on a 77 - 

82 ºC steam table for no longer than 20 minutes.   

The panel was conducted in a single afternoon session within an approximate 

three hour period.  Panelists received all five samples side-by-side using a Williams 

design to balance the order of presentation (Macfie and others 1989).   Each sample was 

served on individual 15.24 cm diameter Styrofoam plates labeled with three-digit 

blinding codes.  Panelists were instructed to use a bite of unsalted cracker and a sip of 

bottled water to refresh their sense of taste between samples.  Samples were received 

though bread box-style pass-through compartments in isolated booths under normal 17 

Watt fluorescent lighting.   

Questions were presented one-at-a-time on a computer screen and data was 

collected using Compusense
®
5 (version 4.6) software (Compusense Inc., Guelph, 

Ontario, Canada).  Before receiving samples, panelists were asked questions regarding 

their habits related to purchase and preparation of steak.  Panelists were asked how often 

they consumed steak at home, what preparation methods they used when doing so, their 

preferred level of doneness, what method they used to determine steak doneness, the cut 

of beef they purchase most often, and whether or not they use a tenderizing method 

before cooking steaks at home.  Panelists evaluated first impression of overall liking, 

appearance, flavor, and texture using a discrete 9-point hedonic scale where 9 = like 
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extremely, 5 = neither like nor dislike, 1 = dislike extremely and tenderness/toughness 

and moistness/dryness ideality using a 5-point “just about right” scale (5 = definitely too 

tender/moist, 3 = just about right, 1 = definitely too tough/dry).  After assessing all 

attributes, panelists were then asked to rank the samples in order of preference.  After 

sample evaluation, panelists were asked questions regarding the likelihood of purchasing 

the steaks sampled.   

Warner-Bratzler Shear Force 

Steaks for Warner-Bratzler Shear Force (WBSF) were also cooked and evaluated 

using AMSA (1995) protocol, cooled to room temperature, and then wrapped 

individually in Saran™ plastic wrap.  They were placed in a single layer with no 

overlapping and cooled to 4°C overnight before testing.  WBSF was measured using a 

TA-XT 2 Analyzer (Texture Technologies Corp., Ramona, Calif., U.S.A.) to measure the 

force (kgf) required to shear a sample core, where kgf is the customary unit with which to 

report WBSF data. 

  Six 1.27 cm diameter cores were sampled from each of four randomly selected 

cooked steaks from each treatment group using a handheld coring device, parallel to the 

orientation of the muscle fibers.  For the untreated sample, data from three cores from a 

single steak were removed for analysis because their shear force values were outliers. All 

cores were free of significant amounts of connective tissue and were uniform in diameter. 

Each core was sheared once through its center using a TA-7 USDA Warner-Bratzler 

shear blade, perpendicular to the longitudinal orientation of the muscle fibers which is 

standard for this method.  Crosshead speed was set at 200 mm/min. The peak force (kgf) 
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required to shear each core was recorded and reported as the mean value of all cores for 

that treatment.  

Statistical analysis  

Sensory hedonic and ideality scores were evaluated by one-way analysis of 

variance using Compusense®5 version 4.6 (Compusense, Inc., Guelph, Ontario, Canada).  

Tukey’s HSD procedure determined significant differences among sample means for 

each attribute.  Statistical significance was defined as P<0.05.  Correlation between 

sensory hedonic tenderness scores and Warner-Bratzler shear force data was performed 

using XLSTAT 2008.7.03 (New York, N.Y., U.S.A.).   

 

Results and Discussion 

Sensory analysis 

Mean hedonic and ideality scores for each treatment are shown in Table 5-1.  

Hedonic scores ranged among the treatments from 6.3 to 6.7 for first impression of 

overall liking, 6.5 to 6.8 for appearance liking, and 6.2 to 6.6 for flavor liking, with no 

significant differences in the scoring of these attributes.  No significant differences in 

appearance scores may suggest that panelists were either unable to detect visual effects 

imparted by the processing treatments after the beef was cooked or that they did not find 

them objectionable. Significant differences did exist, however, in texture liking with BT 

steaks rating significantly higher (6.5) than control steaks (5.8). NI subprimal and HPNI 

steak and subprimal texture were not rated significantly different than either the BT or 

control steaks. One possible explanation for the significantly higher acceptance of the 
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texture of BT steaks over the control were that the BT steaks were processed on both 

sides.  It is of interest to note that there was no significant difference between the texture 

liking scores between beef that had been injected parallel (steaks) versus perpendicular 

(subprimals) to the muscle grain. 

  Ideality results show that all of the samples were judged to be slightly tough and 

slightly dry as mean ideality scores were 0.7 to 1.0 points below the ideal or “just about 

right” score of 3.00 for both attributes.  This is consistent with Jeremiah and others 

(1999) who studied 33 muscles or muscle groups using a trained sensory panel, and 

determined that eye-of-round roasts were deficient in juiciness, flavor, and texture.  In 

this study,  all beef was cooked to 71˚C using the dry cooking method of oven broiling, in 

keeping with the recommended temperature and cooking method published by AMSA 

(1995) which likely influenced mean sensory scores. As far as eating-quality, it is 

suggested that the eye-of-round be cooked using moist cooking methods (Neely and 

others 1999; NCBA 2007).   

After assessing all characteristics, panelists ranked BT (207) and HPNI (211)  

significantly better than the untreated control (265)  and HPNI-cut from processed 

subprimals (281) (lower scores equal higher ranking). Needle injected samples were not 

ranked significantly different from either BT, HPNI or the control (P>0.05).     

Treatments ranked least favorably were the untreated control and the HPNI – cut from 

processed subprimals.  Ranking results suggest that after all of the sample attributes had 

been considered individually, panelists were able to establish preferences among samples.  

Since panelists were only asked to rank the samples in order of preference, it is not 
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known which attributes were most influential in their ranking; however, because 

tenderness plays the primary role in beef sensory satisfaction among consumers (Brady 

and Hunecke 1985; Belew and others 2003; Caine and others 2003) it is assumed that 

texture acceptance was of considerable influence. 

The majority of panelists (79%) indicated that they ate steak in their homes at 

least once every three months and that the cooking methods used most frequently were 

grilling (59%), pan frying (19%), and broiling (10%). Kerth and others (2003) reported 

that broiling is the most common method for cooking beef steaks, but the panelists in this 

study used broiling the least.  The majority of panelists preferred their steaks cooked 

medium well (40%) or medium (40%). Panelists reported that their primary method of 

determining when steaks were “done” were visual cues such as muscle or juice color 

(72%), temperature as determined by a thermometer (9%), textural cues (6%) and 

cooking time (6%).  Most panelists (31%) indicated that when purchasing steaks, they 

were generally inexpensive cuts, such as those from the chuck or round and that they 

used no tenderizing method during preparation.  Such results suggest that these 

consumers typically purchased and prepared steaks from tougher cuts, but tended to use 

dry heat cooking methods to prepare them, although this is generally not recommended 

for highest eating quality (Neely and others 1999; Kolle and others 2004; NCBA 2007;).  

Furthermore, consumers tend to rely on subjective methods to determine when steak is 

done. Panelists were most willing to purchase BT and HPNI steaks. 
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        Table 5-1.  Mean hedonic scores (SD), Just About Right difference, and ranking of mechanically tenderized  

        beef eye-of-round steaks.   

 Overall 

Acceptance 

Appearance 

Acceptance 

Flavor 

Acceptance 

Texture 

Acceptance 

Tenderness/ 

Toughness 

Difference 

from Just 

About 

Right 

 (3.0) 

Moistness/ 

Dryness 

Difference 

from Just 

About 

Right 

 (3.0) 

Rank 

sum 

Untreated 

Control 

6.3
a  

(1.5) 

6.6
a
 

(1.5) 

6.3
a
 

(1.6) 

5.8
b
 

(1.8) 

-1.0  -1.0 265
bc

 

Blade 

tenderized 

 

6.7
a
 

(1.5) 

6.6
a
 

(1.4) 

6.6
a
 

(1.5) 

6.5
a
 

(1.9) 

-0.7 -0.7 207
a
 

Needle 

injected -

cut from 

processed 

subprimals 

6.4
a
 

(1.5) 

6.5
a 

(1.4) 

6.5
a
 

(1.5) 

6.0
ab

 

(1.9) 

-0.8 -0.9 236
ab

 

HPNI  6.3
a 

(1.5) 

6.8
a
 

(1.4) 

6.3
a
 

(1.6) 

6.2
ab

 

(1.8) 

-0.8 -0.8 211
a
 

HPNI - 

cut from 

processed 

subprimals 

6.3
a
 

(1.5) 

6.6
a
 

(1.4) 

6.2
a
 

(1.6) 

6.0
ab

 

(1.7) 

-0.7 -1.0 281
c
 

                  Means with like superscripts within each column are not significantly different from one another. 

                  n=80, (P<0.05) 
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Warner-Bratzler Shear Force  

WBSF mean peak force data is shown in Table 5-2. Mean scores ranged from 4.4 

kgf for both BT and HPNI steaks and 2.4 kgf for NI steaks.  The control had a mean of 

3.4 kgf. WBSF values < 3.9 and > 4.6 are considered to be slightly tender and slightly 

tough, respectively (Shackelford and others 1991). Eye-of-round steaks that have not 

been mechanically processed have been found to have WBSF readings between 4.08 and 

4.55 kgf (Otremba and others 1999; Brooks and others 2000).  Seideman and others 

(1977) reported that WBSF values for beef eye-of-round improved (were lowered) by 0.7 

kgf compared to an untreated control when treated with single and multiple passes 

through a blade tenderizer.  

 

Table 5- 2. Mean Warner-Bratzler Shear Force peak force (SD) of mechanically 

tenderized beef eye-of-round steaks.   

Treatment WBSF peak force (kgf) 

Control 3.4 (1.4) 
b
 

Blade tenderized 

 

4.4 (1.5)
 c
 

Needle injected  

(cut from processed subprimals) 

2.4 (1.1) 
a
  

HPNI 4.4 (1.2) 
c
 

HPNI  

(cut from processed subprimals) 

4.2 (1.7) 
c
 

Means with like superscripts within each column are not significantly different from one 

another. 

n=24 for all treatments except Untreated, where n=21. (P<0.05) 

 

 

WBSF results of this study are inconsistent with as the aforementioned findings, 

as readings were 1.0 kgf higher for BT steaks when compared to the control. It is 
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uncertain why WBSF values for the control steaks in this study were so low in 

comparison to the treated samples, but similar results were observed in other 

measurements taken in this study.   It is likely that the cooking method and endpoint 

temperature influenced the objective beef tenderness data.  Kolle and others (2004) 

reported that when eye-of-round subprimals were cooked using dry heat, such as the dry 

heat method of clam shell grilling to 71˚C, that there was no improvement in WBSF 

tenderness scores and that steaks from eye-of-round subprimals produced lower WBSF 

readings when they were cooked using moist heat methods.  The cooking methods used 

in this study were dry heat methods, which could explain why WBSF scores were 

generally not improved.  The exception to this is the improved scores for NI subprimals.  

Perhaps there was more injectant solution present in the NI samples, although, because 

pump yield was not measured, it is not possible to know this conclusively. Also, since 

only one level of sodium tripolyphosphate was used and only one set of processing 

conditions per mechanical tenderizing treatment, it is not known how results may have 

varied with different variables. 

 The National Cattlemen’s Beef Association’s (2007) recommends that beef eye-

of-round steaks be cooked to an internal endpoint temperature of 63˚C for maximum 

eating quality.  The endpoint temperature of 71˚C used in this study was well-above this 

and likely influenced both subjective as well as objective findings.  As the USDA-FSIS 

recommended endpoint temperature for non-intact beef (68˚ C) is also well-above the 

NCBA’s recommendation, there is a discrepancy between heating requirements for both 
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quality and safety.  This is of particular concern in instances where consumers are 

unaware that beef steaks have been mechanically treated. 

Correlation between the sensory acceptance data for tenderness and WBSF values 

is low (r = 0.31) which suggests that sensory tenderness liking scores are influenced by 

other factors than force required for mechanical shear. This low correlation is consistent 

with many similar studies, thereby illustrating limitations when comparing Warner-

Bratzler shear force to sensory scores, both consumer and descriptive (Shackelford and 

others 1995; Caine and others 2003; Lorenzen and others 2003.  In this study, WBSF data 

was not an accurate predictor of sensory response for tenderness acceptance. 

Standardized procedures (AMSA 1995; Wheeler and others 1999) for performing 

WBSF tests and conducting sensory analysis are attempts to increase consistency among 

researchers. Still, correlations and conclusions between them continue to vary.  

Correlations between the objective and subjective tests may be best when the samples of 

the same muscle fiber orientation were used for both tests (Poste and others 1993).  In the 

present study, muscle fibers were severed perpendicular to the WBSF blade.  Panelists 

were not instructed on how to orient or chew the samples. 

Conclusions 

It is concluded that steaks processed using HPNI can be ranked at parity to those 

processed using blade tenderization, as judged by consumers.   Variations to specific 

mechanical tenderization and cooking techniques will likely result in differences in 

tenderness and overall sensory results, as well as WBSF values.  Correlation between 

sensory and WBSF is not always a helpful predictor of consumer liking of mechanically 
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tenderized or enhanced beef.  Therefore, further research should attempt to improve 

methods to correlate sensory and instrument methods. Consumers likely need more 

education on the ideal way to prepare various cuts of beef, particularly those that are 

inherently tough, and to be encouraged to use a thermometer to determine end point 

temperature.  Recommended internal endpoint temperatures for beef safety and eating 

quality should support one another, and therefore, further efforts to reduce the risk of 

illness due to microbial contamination are necessary. 
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CHAPTER 6 

 

GENERAL CONCLUSIONS 

 

 

Overall Summary 

 This research was designed to increase understanding of the microbiological, 

heating, and sensory characteristics of the novel enhancing process of high-pressure 

needleless injection.   

The following conclusions summarize the major findings of this research. 

1.  High-pressure needleless injection can translocate E. coli O157 from the surface 

of beef subprimals at inoculation levels above those that are found naturally to the 

depth to which the liquid jets can penetrate. 

2.   There was no significant difference between the percentage of samples testing 

positive at each subprimal depth regardless of initial surface inoculum 

concentration (P<0.05). 

3.   Recirculating solutions that become contaminated with pathogens during the 

injection process are a potential source of cross-contamination in high-pressure 

needleless injection.  

4. Grilling and broiling were cooking methods that were effective in reducing the 

translocated microbial load of subprimals that were surface inoculated with 2 

log10 CFU/cm
2
 to an undetectable quantity of about 1 log10 CFU/g when steaks 

were cooked to an internal endpoint temperature of 63˚C. 
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5. Beef steaks cooked by broiling are a slower heating method than gas grilling due 

to the higher cooking temperatures generally associated with grilling. Steaks 

cooked to an internal temperature of 63 ˚C by broiling, took significantly longer 

(15.10 (±2.4) minutes) than gas grilling (11.61 (±2.9)  minutes) (P<0.05)  

6.  Moisture-enhanced steaks by HPNI take significantly longer to cook (13.98 

(±2.4) minutes) than their untreated counterparts (12.73 (±3.8) minutes), by both 

oven broiling and gas grilling which is likely due to the increased moisture 

content of injected steaks. 

7. Discrepancies between suggested endpoint temperatures for beef eye-of-round 

quality and safety require further study to make them more consistent with each 

other. 

8. Steaks processed using HPNI can be ranked at parity to those prepared using 

blade tenderization, as judged by beef consumers.  

9.  The majority of sensory panelists preferred their steaks cooked medium well 

(40%) or medium (40%); however vast majority of them also reported using 

subjective methods to determine when steaks were “done”, such as visual (72%) 

and textural (6%) cues. Only 6% reported using a meat thermometer.  

10.  Most panelists (31%) indicated that when purchasing steaks, they were generally 

inexpensive cuts that they used no tenderizing method during preparation and that 

they tended to use dry heat cooking methods to prepare them, although this is 

generally not recommended. 
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11.  To summarize, when the results of this research are collectively considered, high-

pressure needleless injection offers a potential alternative to common beef 

tenderizing methods. 

Recommendations for Future Research 

1. Further research is needed to study the incidence and depth of translocated E. coli 

O157:H7 cocktail and cross-contamination through recycled run-off injectant in 

beef subprimals using higher inoculum concentrations so that percent 

translocation can be more accurately determined. 

2. Future studies could consider the addition of antimicrobial agents in injecting 

solutions as a means of controlling translocated and cross-contaminated bacteria. 

3. Studies could be performed to determine the effect of high-pressure liquid jets on 

the survivability of surface E. coli. 

4. Considering the versatility of HPNI units with respect to variables such as 

pressures used, jet residence time, and jet diameter further work could be done to 

maximize tenderization and enhancement fluid retention in beef. 

5. Additional research is needed to confirm whether greater tenderization may occur 

when beef is severed parallel to the muscle grain instead of perpendicular to it.  

6. Experiments could also be performed to determine the water-binding properties of 

high-pressure needleless injected beef as a function of muscle disintegration when 

various additives, such as salt and phosphates are added to the injectant. 
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7. Thermal destruction of translocated E. coli in high-pressure needleless injected 

steaks at various moisture enhancement levels using commercial and consumer 

cooking equipment can also be studied.  

8. Further research could be done to study the log reduction of translocated E. coli 

O157:H7 during various cooking methods by using much higher concentrations of 

surface inoculum. 
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Table A-1. Translocation Study: Summary of statistical data for percent samples testing 

positive for E. coli O157 recovered from core samples at various depths in beef eye-of-

round subprimals inoculated at different initial surface concentrations and processed with 

HPNI.  

 

Surface 

concentration 

 of E. coli 

2 log10 CFU/cm
2
 

1 log10 CFU/ 

cm
2
 

0.52 log10 CFU/ 

cm
2
 

DF 5 5 5 

χ 2 Test Statistic 0.83 0.60 0.37 

Observed value 0.9606 0.0005 0.3223 

Critical value 1.15 1.15 1.15 

P 0.05 0.05 0.05 
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Table A-2. Cross-contamination Study:  Summary of statistical data for percent samples 

testing positive for E. coli O157 recovered from core samples at various depths in beef 

eye-of-round subprimals processed with HPNI using recirculated, contaminated run-off 

liquid from the corresponding translocation study. 

 

Concentration 

of E. coli in 

run-off liquid 

3 log10 CFU/ml 2 log10 CFU/ml 2 log10 CFU/ml 

DF 5 5 5 

χ 2 Test Statistic 0.40 0.25 0.23 

Observed value 0.2849 0.0122 8.092 x 10
-7

 

Critical value 1.15 1.15 1.15 

P 0.05 0.05 0.05 
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Table A-3 Heat Penetration Statistical Summary 

 

Comparison of Cooking Methods 

B = Broiling 

G = Grilling 

Sample Mean 

Standard deviation 

(n-1) 

Standard error 

of the mean 

Time to 63.00 | B 15.102                        2.427 0.375 

Time to 63.00 | G 11.607                        2.938 0.453 

 

Comparison of Processing Methods 

T = HPNI Processed 

U = Untreated 

Sample 

                                                   

Mean 

Standard deviation 

(n-1) 

Standard error                                                         

of the mean 

 

Time to 63.00 | T 13.976 2.424 

                           

0.374 

Time to 63.00 | U 12.733 3.757 0.580 

 

Cooking x Processing Interaction 

Sample Mean 

Standard deviation 

(n-1) 

Standard error 

of the mean 

Time to 63.00 | BT 14.476 2.290 0.500 

Time to 63.00 | BU 15.729 2.452 0.535 

Time to 63.00 | GT 13.476 2.505 0.547 

Time to 63.00 | GU 9.738 2.021 0.441 

Source DF 

Sum of 

squares 

Mean 

squares F Pr > F 

Model 3 419.740 139.913 25.893 < 0.0001 

Error 80 432.279 5.403   

Corrected 

Total 83 852.018       

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

Table A-4 

Demographics – Beef Steak Consumer test  

 What is your age category? 

  Under 20                      2 

  20 to 29 years        22 

  30 to 39 years        16 

  40 to 49 years        15 

  50 to 60 years         13 

  Over 60          12 

   Total        80 

 What is your gender? 

  Female         40 

  Male         40 

   Total        80 

             What is your attitude about beef steak?  

                         I like it                                                                          77 

                         I neither like nor dislike it                                              3 

                         I dislike it                                                                       0 

                                        Total                                                              80                                        

              How often do you eat beef steak at a restaurant, cafe, etc…? 

                         More than once a week                                                  3 

                         Once a week to every two weeks                                   9 

                         Once every two weeks to once a month                       27 

                         Once a month to once every three months                   25 

                         Less than every three months                                       15 

                         I don’t eat steak at restaurants, cafes, etc…                   1 

                                           Total                                                           80 

 

             How often do you eat beef steak at home? 

                         More than once a week                                                  3 

                         Once a week to every two weeks                                 14 

                         Once every two weeks to once a month                       14 

                         Once a month to once every three months                   32 

                         Less than every three months                                       10 

                         I don’t eat beef steak at home                                         7 

                                           Total                                                            80 

 

 What cooking method do you use most often when preparing beef 

steak at home? 

                         Pan frying                                                                     15 

                         Grilling                                                                         47 

                         Broiling                                                                          8 

                         Clamshell type grill (i.e. George Foreman Grill)           3 

                         Baking                                                                            0 

                         Other                                                                               1 

                         I don’t prepare steak at home                                         6 
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                                           Total                                                           80 

           Which of the following choices best describes your preferred level 

           of beef steak “doneness”? 

                         Well done                                                                        3 

                         Medium well                                                                 54 

                         Medium                                                                         54 

                         Medium rare                                                                    7 

                         Rare                                                                                 2 

                                           Total                                                            80 

 

             When preparing beef steak at home, what is your primary method  

             of determining when it is “done”? 

                         Visual cues, such a muscle or juice color                    58 

                         Temperature, as determined by a thermometer             7 

                         Textural cues                                                                 5 

                         Cooking time                                                                 5 

                         No method                                                                     0 

                         I do not prepare steak at home                                      5 

                                           Total                                                           80 

 

              Which of the following best describes how you purchase steak 

               from the grocery store? 

                         I purchase inexpensive steaks (round or chuck) 

                         and tenderize them at home                                         19  

                         I purchase inexpensive steaks (round or chuck) 

                         And use no tenderizing method                                    25 

                         I purchase more expensive steak cuts (loin or rib)       23 

                         I do not purchase steak                                                 13 

                                           Total                                                            80 

 

              How likely on unlikely would you be to purchase pre-tenderized or 

              pre-marinated steaks from the grocery store, assuming the cost was     

affordable? 

                         Definitely likely                                                             27 

                         Somewhat likely                                                            36 

                         Neither likely nor unlikely                                              7 

                         Somewhat unlikely                                                         7 

                         Definitely unlikely                                                          3   

                                           Total                                                            80 
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Table A-5 
Frequency Tables – Beef Steak Consumer Test  

Sample 1 – 105: Untreated Control steaks 

Sample 2 – 234: Blade Tenderized steaks 

Sample 3 – 420: Needle Injected subprimals 

Sample 4 – 673: HPNI steaks 

Sample 5 – 849: HPNI subprimals 

 

Table 3A – Overall first impression 
 

Sample 
 1 

[9] 
 2 

[8] 
 3 

[7] 
 4 

[6] 
 5 

[5] 
 6 

[4] 
 7 

[3] 
 8 

[2] 
 9 

[1] 

  
Total 

 1 - 105   15  27  21  7  5  4   1  80 
 2 - 234  3  25  23  15  7  2  4  1   80 
 3 - 420  2  11  33  18  6  7  1   2  80 
 4 - 673  2  10  34  17  4  8  4  1   80 
 5 - 849  1  13  28  18  8  9  2   1  80 

TOTALS  8  74  145  89  32  31  15  2  4  400 

 
Table 3B - Appearance acceptance 

 

Sample 
 1 

[9] 
 2 

[8] 
 3 

[7] 
 4 

[6] 
 5 

[5] 
 6 

[4] 
 7 

[3] 
 8 

[2] 
 9 

[1] 

  
Total 

 1 - 105  4  23  18  20  5  7  2  1   80 
 2 - 234  5  16  27  19  5  5  2  1   80 
 3 - 420  2  19  21  23  8  4  2   1  80 
 4 - 673  7  19  25  15  7  5  2    80 
 5 - 849  2  20  27  15  7  7  1  1   80 

TOTALS  20  97  118  92  32  28  9  3  1  400 

 
Table 3C – Flavor acceptance 

 

Sample 
 1 

[9] 
 2 

[8] 
 3 

[7] 
 4 

[6] 
 5 

[5] 
 6 

[4] 
 7 

[3] 
 8 

[2] 
 9 

[1] 

  
Total 

 1 - 105   14  32  17  5  5  5  1  1  80 
 2 - 234  3  24  22  14  8  5  3  1   80 
 3 - 420  2  18  27  18  7  5  1   2  80 
 4 - 673  3  16  26  18  5  4  6  1  1  80 
 5 - 849   16  24  17  10  9  1  2  1  80 

TOTALS  8  88  131  84  35  28  16  5  5  400 
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Table A-5 continued 
Frequency Tables – Beef Steak Consumer Test  

 

Sample 1 – 105: Untreated Control steaks 

Sample 2 – 234: Blade Tenderized steaks 

Sample 3 – 420: Needle Injected subprimals 

Sample 4 – 673: HPNI steaks 

Sample 5 – 849: HPNI subprimals 

 

Table 3D – Texture acceptance 
 

Sample 
 1 

[9] 
 2 

[8] 
 3 

[7] 
 4 

[6] 
 5 

[5] 
 6 

[4] 
 7 

[3] 
 8 

[2] 
 9 

[1] 

  
Total 

 1 - 105  1  10  25  17  6  11  5  3  2  80 
 2 - 234  6  22  16  21  5  3  2  3  2  80 
 3 - 420  3  13  21  19  7  8  4  2  3  80 
 4 - 673  1  21  22  13  5  10  5  1  2  80 
 5 - 849  3  11  25  16  7  13  2  2  1  80 

TOTALS  14  77  109  86  30  45  18  11  10  400 

 

Table 3E – Tenderness/Toughness level ideality 

 

Sample 
 1 

[5] 
 2 

[4] 
 3 

[3] 
 4 

[2] 
 5 

[1] 

  
Total 

 1 - 105    26  29  25  80 
 2 - 234   1  37  28  14  80 
 3 - 420   1  29  31  19  80 
 4 - 673    35  26  19  80 
 5 - 849   2  21  37  20  80 

TOTALS   4  148  151  97  400 

 

Table 3F – Moistness/Dryness level ideality 

 

Sample 
 1 

[5] 
 2 

[4] 
 3 

[3] 
 4 

[2] 
 5 

[1] 

  
Total 

 1 - 105   2  18  39  21  80 
 2 - 234   3  37  24  16  80 
 3 - 420   2  24  32  22  80 
 4 - 673    35  28  17  80 
 5 - 849   1  20  34  25  80 

TOTALS   8  134  157  101  400 
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Table A-5 continued 
Frequency Tables – Beef Steak Consumer Test  

 

Sample 1 – 105: Untreated Control steaks 

Sample 2 – 234: Blade Tenderized steaks 

Sample 3 – 420: Needle Injected subprimals 

Sample 4 – 673: HPNI steaks 

Sample 5 – 849: HPNI subprimals 

 

Table 3G - Preference ranking 
 

Sample 
  
 1 

  
 2 

  
 3 

  
 4 

  
 5 

  
Total 

 1 - 105  9  20  11  17  23  80 
 2 - 234  28  14  15  9  14  80 
 3 - 420  18  15  14  19  14  80 
 4 - 673  21  16  22  13  8  80 
 5 - 849  4  15  18  22  21  80 

TOTALS  80  80  80  80  80  400 

 

Table 3H – Likelihood of purchase 
 

Sample 
 1 

[5] 
 2 

[4] 
 3 

[3] 
 4 

[2] 
 5 

[1] 

  
Total 

 1 - 105  9  23  9  22  17  80 
 2 - 234  19  30  8  10  13  80 
 3 - 420  11  21  14  20  14  80 
 4 - 673  8  32  14  13  13  80 
 5 - 849  8  17  16  14  25  80 

TOTALS  55  123  61  79  82  400 
 

Table 3I – Likelihood of purchasing pre-marinated or pre-tenderized steaks 
 

Sample 
 1 

[5] 
 2 

[4] 
 3 

[3] 
 4 

[2] 
 5 

[1] 

  
Total 

n/a  27  36  7  7  3  80 

TOTALS  27  36  7  7  3  80 
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