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ABSTRACT 

 

 

Integration of Ultrasonic Consolidation and Direct-Write to Fabricate an Embedded 

Electrical System Within a Metallic Enclosure 

by 

Ludwing A. Hernandez, Master of Science 

Utah State University, 2010 

Major Professor: Dr. Brent E. Stucker 

Department: Mechanical and Aerospace Engineering 

A research project was undertaken to integrate Ultrasonic Consolitation (UC) and 

Direct-Write (DW) technologies into a single apparatus to fabricate embedded electrical 

systems within an ultrasonically consolidated metallic enclosure. Process and design 

guidelines were developed after performing fundamental research on the operational 

capabilities of the implemented system. In order to develop such guidelines, numerous 

tests were performed on both UC and DW. The results from those tests, as well as the 

design and process guidelines for the fabrication of an embedded touch switch, can be 

used as a base for future research and experimentation on the UC-DW apparatus. The 

successful fabrication of an embedded touch switch proves the validity of the described 

design and process parameters and demonstrates the usefulness of this integration. 

(127 pages) 
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CHAPTER 1 

INTRODUCTION 

Additive Manufacturing (AM) processes (also known as Rapid prototyping
 
(RP) 

processes) have been widely investigated as a generic manufacturing approach for 

quickly building arbitrarily complex shapes. In general, AM processes in use today begin 

decomposing a 3D CAD model of an object into cross-sectional layers, followed by the 

use of additive manufacturing techniques to physically build up parts in a layer by layer 

fashion, using the sliced-object model.  

Potential benefits of AM include the capability to build multi-material, functionally-

graded, and embedded structures. In that sense, Embedded Structures are structures 

which contain any functional component enclosed within the part resulting in functional 

"smart" parts having other components/features (sensors, electronics, mechanisms, 

actuators, devices, etc.) embedded within its structure.  

There are many situations in which the integration of embedded components in parts 

can be helpful. Indeed, sensors, actuators, and electronic devices are just some examples 

where embedded structures can be a feasible solution for specific applications. Through 

the use of additive manufacturing techniques enclosed structures can be assembled that 

would not be possible to build using traditional methods or would use a greater number 

of parts.   

1.1 Background 

1.1.1 Additive Manufacturing 

Rapid prototyping (RP), rapid manufacturing (RM), layered manufacturing (LM), and 

solid free-form fabrication (SFF) are all names given to the evolution of the now mature 
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Additive manufacturing (AM) technologies. More recently, many of these technologies 

are used to produce parts for the final consumer, contrary to RP that had only design 

purposes. 

In the late 1960s, Herbert Voelcker—then an engineering professor at the University 

of Rochester—asked himself how to do "interesting things" with the automatic, 

computer-controlled machine tools that were just beginning to appear on factory floors. 

With funding from the National Science Foundation (NSF), Voelcker first developed the 

basic mathematical tools needed to unambiguously describe three-dimensional parts. 

Thus, a computer-controlled machine tool would cut away at a hunk of metal until what 

remained was the required part.  

In 1968 Charles Hull patented a process he coined ―Stereolithograhy‖ (SLA) for 

automated manufacture of plastic 3D objects directly from CAD models by adding 

material layer-by-layer using an ultraviolet laser and photo-curable liquid polymers.  

Similarly, in 1987, University of Texas researcher Carl Deckard came up with the 

idea of building up parts layer by layer using a laser and powders. Deckard took his idea 

to NSF, which gave him support to pursue what he called "selective laser sintering." 

Deckard's initial results were promising and in the late 1980s his team was awarded one 

of NSF's first Strategic Manufacturing (STRATMAN) awards [1]. The result of 

Voelcker's, Deckard's, and Hull‘s efforts helped launch the additive manufacturing 

industry, which has revolutionized how products are designed and manufactured. 

The similarity of a prototype to the ―real product‖ is determined by its form, fit and 

function. Advantages of creating prototypes are that they (1) improve the ability to 
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visualize the part geometry, due to its physical existence, (2) enables earlier detection and 

reduction of design errors, and (3) increases the capability to compute mass properties of 

components and assemblies. Preparing prototypes will help you describe your product 

more effectively with your team and customers contributing to the elimination of waste 

and costly late design changes [2]. 

In the last decades globalization has made the world a more competitive environment, 

especially in the industrial market. The bar has been raised for all companies that offer 

any product or service. Customers now require products with better quality, at lower 

prices and decreased lead times. Rapid prototyping, now known as additive 

manufacturing, arose as a tool for designers and developers to reduce their product design 

cycle; as a result, launching products faster and cheaper. Objects that have traditionally 

been impossible to build because of the complex shapes or variety in materials can now 

be built by additive manufacturing [3]. The general approach for additive manufacturing 

is presented in the following schematic (see Figure 1.1).  

First a solid model is designed in a conventional CAD system; it is usually saved in 

the STL file format for it to be processed by the AM process planner, which inputs the 

data to the automated AM machine for it to build the physical object layer by layer. 

Additive manufacturing technologies are often labeled as non-traditional processes 

because they use techniques not commonly used previously to fabricate parts. Some of 

the existing additive manufacturing processes and techniques are mentioned below (see 

Table 1.1). 
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Figure 1.1:  Additive manufacturing general approach [3]. 

Some of the most important technologies due to their market presence are: 3D 

printing systems (3DP), Selective Laser Sintering (SLS) of metals and plastics, Stereo-

lithography (SL), and Fused Deposition Modeling (FDM) [4]. 

Currently additive manufacturing is being used widely in industry. The 2008 Wohlers 

Report identifies three segments that make up the largest use of AM technology. The 

biggest is consumer products and electronics, including toys, cell phones, and televisions; 

followed by motor vehicles—cars, pickups, and motorcycles; and then by medical and 

dental devices. 

The biggest is consumer products and electronics, including toys, cell phones, and 

televisions; followed by motor vehicles—cars, pickups, and motorcycles; and then by 

medical and dental devices. Examples of companies actively using additive 

manufacturing technologies include PET bottle consultant Plastic Technologies, Inc. in 

Holland, Ohio, which has been utilizing SLA for two and a half years to create a gripping 

chuck for its hand-held TorqTraQ torque-testing device (which measures the torque 

needed to twist off a bottle cap) [5].  

http://www.ptonline.com/dp/showpt/index.cfm?code=PLASTICT&lcode=TL
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Table 1.1: Additive Manufacturing Processes [3] 

Category Rapid Prototyping System Manufacturer

Strereo-lithography Aparatus (SLA) 3D System

Solid Creation System (SCS) D-MEC

Solid Object UV laser plotter CMET

Stereos System EOS

Rapid Prototyping System Meiko

Fused Depostion Modeling (FDM) Stratasys

Laminated Object Modeling (LOM) Helisys

ModelMaker-6B Solidscape, Inc.

Multijet Modeling (MJM) 3D System

Selective Adhesive and hot pass (SAHP) Kira

Rapid Prototyping System IBM

Laser-engineered Net Shaping (LENS) Optomec

Ultrasonic Consolidation Solidica

Selective Laser Sintering (SLS) 3D System

Direct Shell Production Casting (DSPC) Soligen

Multiphase Jet Solidification (MJS) Fraunhofer

3D Printing (3DP) MIT

Laser Sintering EOS

Powder-Based Systems

Liquid-Based Systems

Solid-Based Systems

 

Other established companies that use additive manufacturing as their primary 

production process are Invisalign, which is a corrective technique used by dentists and 

orthodontists, which won the 2001 Stereolithography Excellence Award [6]. They use 

Stereolithography to build custom retainers for persons to correct tooth alignment 

problems. Another AM based company is Freedom of Creation, a design company 

founded by designer, Janne Kyttänen, in Helsinki, Finland. Freedom of Creation uses 

Selective Laser Sintering (SLS) and other AM technology to produce truly unique 

lighting shades and other products. This company is a model for localized manufacturing 

and distribution logistics, where no stock, no assembly, minimal transportation and just-

in-time production are future goals [7]. 

 



6 

 

1.1.2 Ultrasonic Consolidation 

Ultrasonic welding is a solid-state joining process producing a bond by local high-

frequency vibration, coupled with normal compression of the parts for a short time period 

[8]. Typically ultrasonic welding equipment converts 50/60 Hz current to 15, 20, 30, or 

40 kHz electrical energy through a solid-state power supply. This high frequency 

electrical energy is supplied to the converter that transforms it to mechanical motion at 

ultrasonic frequencies. The mechanical motion is then transmitted through an amplitude-

modifying booster to the horn. The horn, an acoustic tool, transfers this vibratory energy 

directly to the parts being assembled. The main components of an ultrasonic system are 

the power supply, converter/booster/horn stack, part fixture, and a means of providing 

horn contact with the parts; usually an actuator (see Figure 1.2) [9]. 

Ultrasonic consolidation (UC) is a novel additive manufacturing process developed 

for fabrication of metallic parts from foils. 

The process uses a high frequency ultrasonic energy source to induce combined static 

and oscillating shear forces within metal foils to produce solid-state bonds and build up a 

near-net shape part, which is then machined to its final dimensions using an integrated, 

three-axis CNC milling machine (see Figure 1.3) [10]. UC combines the advantages of 

additive and subtractive fabrication approaches allowing complex parts to be formed with 

high-dimensional accuracy and surface finish, including objects with complex internal 

passageways, objects made up of multiple materials, and objects integrated with wiring, 

fiber optics, sensors, and instruments. 

http://www.emeraldinsight.com/Insight/ViewContentServlet;jsessionid=0591B380968274EA3AC80FAB7813A360?contentType=Article&Filename=Published/EmeraldFullTextArticle/Articles/1560130404.html#idb12
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Figure 1.2:  Schematic of the basic functional components in an ultrasonic welding   

                    apparatus [9]. 

Since, the process does not involve melting; one need not worry about dimensional errors 

due to shrinkage, residual stresses and distortion that are typically caused by high-

temperature processing [11]. 

The main advantages of UC are that it does not need an enclosed inert atmosphere 

building chamber and/or very high temperatures in order to build when compared to other 

metal additive manufacturing processes [12]. The UC process can be performed at 

various temperatures ranging from room temperature (72
O
F/22

O
C) to 400

O
F (204

O
C). 

Generally a temperature of 300
O
F (150

O
C) is used to build, which is a relatively low 

temperature compared to other metal SFF processes. The ultrasonic welding produces 

localized heat at the welding spot but it usually does not rise higher than 50% of the 

melting temperature of the base metal [14]. Furthermore, since the UC bonding process 

takes place in the solid state; residual stresses, dimensional changes, and other 

metallurgical incompatibilities are not generated. This is different than other SFF 

processes that are phase transformation (solid-liquid-gas) based [15]. As a result, UC is 

one of the most suitable available technologies for structure embedding (see Figure 1.4). 
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 Figure 1.3:  Schematic of UC process [13]. 

1.1.3 Direct Write Technologies 

The term ―Direct Write‖ (DW) refers to any kind of technology that dispenses or 

deposits different type of materials over various surfaces following a computer-generated 

pattern without any tooling or masks. 

 

 
 

Figure 1.4:  Solidica Formation™ located at Utah State University. 
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Several other additive manufacturing technologies, such as Laser Engineered Net 

Shaping (LENS) and Fused Deposition Modeling (FDM), might fit this definition but the 

difference is a matter of size. We can call a process Direct Write when the freeform 

deposition tool is intended to build structures of about 5mm or less with resolution 

ranging around 50µm on one or some of its features [13].  

Different processes have been developed to attain DW; this includes ink-based 

processes, aerosol-based processes, laser-transfer processes, beam deposition processes 

and thermal spray processes [13]. Using the physics principals behind these processes 

different techniques have been developed to accomplish DW. Some of the most common 

are Nozzle Dispensing (Micropen and nScrypt), Plasma Spray (PLS), Laser Particle 

Guidance (LPG), Matrix-Assisted Pulsed-Laser Evaporation (MAPLE), Laser Chemical 

Vapor Deposition (LCVD), Micropen, Ink Jet, E-beam, Focused Ion Beam (FIB), and 

others (see Table 1.2) [16].  

The most relevant DW techniques for this project are the ink-based processes, 

because we are using this type of technology for our experiments; more specifically the 

nScrypt direct write dispensing system utilizing a Smart Pump
TM

. Ink-based systems 

typically use a nozzle attached to a pump or syringe mechanism to push the inks through 

an orifice to deposit it onto the substrate in a controlled fashion [13]. The deposited line 

width is directly dependent on the material. Generally, the minimum line width is a least 

10 times bigger than the biggest particle size in the specific paste. nScrypt is able to print 

any line width between 25μm and 3mm with tolerances under ±5%. 
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Table 1.2:  Available Direct-write Technologies [16] 

Processes Techniques
Micropen

nScrypt

Dip-Pen

Aerosol-based M3D

Laser Particle Guidance

Matrix Assisted Pulsed laser Evaporation Direct Write (MAPLE DW)

Laser Chemical Vapor Deposition (LCVD)

Focused Ion Beam CVD

Electron Beam CVD

Plasma Spray

ThermoChemical Liquid Deposition (TCLD)

Electrochemical Liquid Deposition (ECLD)

Ink-based

Laser-transfer

Beam deposition

Thermal & Electrochemical 

 

This high precision control is obtained through accurately controlled air pressure, timing, 

valve opening and dispensing height [17]. Moreover, the 3-axis movement of the DW 

head is controlled by a motion control system to which the equipment must be attached. 

The materials that DW ink-based systems dispense are typically denominated inks or 

slurry pastes depending on their viscosities. These ―inks‖ can have different properties 

according to the application for which they are being used. For example conductive, 

insulator and dielectric inks would be used for applications such as the fabrication of 

passive electronic components. Other application examples of DW include the printing of 

active electronic components (batteries, antennas, etc.), micro-electronics, MEMS, optics, 

pharmaceutics and biomedical materials; hence an ink suitable for each application must 

be available. The wide range of applications for DW is enhanced by the variety of 

materials processing capabilities, the simplicity of the DW processes and flexibility of 

―writing‖ in different substrate topologies (flat, round, inflatable, irregular and 3D) [17].  

Direct Write techniques have been developed and used for embedding passive 

Surface Mount Devices (SMD‘s), such as resistors and capacitors, surface mount light 
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emitting diodes (LED‘s), unpackaged semiconductor Integrated Circuits (ICs) in bare die 

form, and the required metal patterns to interconnect each of these components into a 

working circuit. They may be embedded in circuit boards, metallic or polymer parts.  

Some of the reasons why the Smart Pump
TM

, designed and developed by the company 

nScrypt, was the direct write system chosen for this project are the following: it extrudes 

virtually any material ranging from 1 to 1x10
6
 centipoises (it can process from water to 

tomato paste) as a continuous filament which enables it to maintain a fixed cross-

sectional area and a wider range of ink rheologies. The capability of this equipment to 

maintain a constant and controllable cross-section is valuable (precisions down to 50µm 

lines and 75µm dots), as this is a major variable in the properties (conductivity, 

resistivity, etc.) of the dispensed materials.  The dispensing tip has been designed to 

reduce the pressure drop inside the dispensing nozzle causing the material to be 

vacuumed back when the valve closes, resulting in no material sticking out of the 

dispensing tip which enables the ability to continue the next dispensing without any need 

of cleaning [18].  

A Smart Pump
TM

 system consists of three basic parts a (1) pump, a (2) nozzle, and a 

(3) motion control system (see Figure 1.5). The pump design determines the volumetric 

control, the repeatability of dispensing and the speed at which the deposits can occur. The 

nozzle design will determine the smallest feature size and the shape of the deposit, 

influences the start and stop dispensing precision and also determine the size of the fillers 

which can be used on the inks to be dispensed. The motion controller to where the Smart 



12 

 

Pump
TM

 is attached will determine the dimensional accuracy, repeatability and maximum 

size of the deposits, as well as the speed with which deposits can be laid down [13]. 

The Smart Pump
TM

 preparation process is the following: First you load the ink to be 

dispensed into a 3cc syringe and screw the syringe to the flow inlet by means of a female 

lure. 

A digitally controlled air pressure outlet that comes from the Smart Pump‘s control 

box is attached to the other end of the syringe; this enables the exact dispensing of the 

inks. The Smart Pump
TM

 can be programmed through software to open or close the 

dispensing valve depending on the material‘s rheological properties. The dispensing tip 

will ultimately define the shape and size of the traces. For the actual printing process we 

need to define a trace path which the motion control system will follow while the DW 

head is dispensing material with a fixed z-height to maintain the same line width. 

 

Figure 1.5:  Schematic of the nScrypt Smart Pump
TM

 direct-write system [19]. 
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Some nozzle devices include a scanning system that first determines the topology of the 

substrate on which the deposit is to be made, and then deposits conformably over that 

substrate surface based on the scan data [13]. 

1.1.4 Embedded Structures 

Embedded structures can be defined as functional parts with different components, 

features or devices (as sensors, integrated circuits, assemblies, actuators, and fiber optics) 

placed inside the part structure. In that sense, the term ‗embedded‘ refers to the fact that 

there are elements firmly fixed in a surrounding mass [3]. 

Embedded structures have many advantages. Parts with embedded structures are 

fabricated with the components being added during construction, so post assembly is not 

needed. This characteristic is very attractive for automation, and indeed is used 

extensively in the fabrication of complex reliable and small electronics, which is a 

promising application area for embedding structures. 

Sensors embedded within the structural materials add intelligence to structures and 

enable real-time monitoring. In general, sensors are useful means to gain data for 

validating or improving physical designs or to obtain information on the performance and 

conditions of functional components in service. This can have great benefits, for 

example, a tool die could have embedded thermocouples for process control purposes 

[20]. 

Embedded components offer great improvement opportunities for the products or 

parts that contain them by increasing their versatility. Embedded structures are designed 

to improve one or various aspects of the product and enhance their abilities. As a result of 
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having embedded structures some designs can be optimized having strategic location of 

parts anywhere in the product, complex geometries or material gradients, size and weight 

reduction, and better protection of the embedded parts from the hazards of the 

environment, among other things [21]. The following paragraphs will expand on those 

ideas. 

Embedded sensors may enable real-time monitoring at locations not accessible to 

ordinary sensors, which must be attached to the surface. For example, in a study sensors 

were embedded into the core and cavity of an injection molding process mold. Then, 

using the information from the sensors a quality control system was developed [3].  

Embedded sensors have an extra protection layer from hazardous external 

environments as long as the component integrity stands. In many cases, outer 

environmental hazard effects are isolated or reduced by embedding; for example when 

the external part acts as a heat dissipating medium. 

Using AM techniques embedded functional products with complex geometry or 

material gradients may be obtained. Optimizing the distribution of material properties 

(such as strength, hardness, thermal resistance, etc.) ensures desired responses to given 

mechanical, thermal, and electromagnetic or biochemical loading is achieved. Functional 

graded materials (FGMs) can be used to improve fracture toughness of machine tools, as 

thermal or flow gradient structures, or to provide wear and corrosion (oxidation) 

resistance of high temperature aerospace, automotive or chemical industry components 

[22]. 
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Embedded structures are usually smaller and lighter than traditional structures or 

products. In fact, a wide range of applications really can be better served with lighter, 

smaller components. For example, embedding components is advantageous for creating 

small electromechanical systems, where the size and weight of the design are constrained 

by assembly factors, and aerospace/aeronautical devices where the weight is always a 

main design constrain [21].  

Due to the mentioned advantages of component embedding numerous applications 

can be found on the field.  For example, embedded structures are being widely used in the 

manufacturing industry to place sensors, such as thermocouples or strain gauges, into 

molds, dies, and drilling bits to analyze and improve their performance. In the same 

fashion the aerospace industry is embedding sensors on components of jet engines. Other 

industries that are taking advantage of the embedding technique are the automotive 

industry (components of motors), the oil industry (drilling equipment), the power 

industry (vessels and pipes) and the construction industry (structural components in 

buildings) [23]. 

In general, constraints for embedding are functionality and available processes to 

embed. The challenges actually faced result from the fact that tooling and components in 

the manufacturing, automotive, power, and oil industries, is frequently metallic. Most 

additive manufacturing techniques are designed to produce functional metallic parts in a 

high-temperature state in order to achieve high-quality interlayer bonding. Thus, 

embedded sensors will have to be protected during the high temperature deposition steps. 

It is important to maintain the integrity of the sensors to obtain functional metallic 
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structures [23]. However, ultrasonic consolidation eliminates the need for thermal 

protection of sensors. 

The principle of embedding structures is not complicated, but each kind of 

component presents different issues that must be taken into consideration. Some 

challenges are positioning, maintaining the functionality, and dealing with tolerances. 

The techniques used to solve these problems may add some extra steps to the process. 

Some tasks may include pre-treating the embedded component by adding material to 

preserve it or adding alignment features.  

Furthermore, it must be assured that the building and support materials are thermally, 

chemically and mechanically compatible with the embedded components. Moreover, 

mechanical components that transmit forces such as motor shafts and springs need strong 

adhesion between the part and the embedded component. The design of parts with 

embedded components need integrated analysis to ensure manufacturability, 

functionality, mechanical behavior of the whole structure (deflections, stress gradients) 

and thermal behavior during operation.  

Some real projects focused on structural embedding involve the following parts: 

sensors, integrated circuits, circuit boards, batteries, inductors, wires, complete functional 

assemblies, actuators, MEMS, thin film sensors, fiber optics, etc. Wireless sensor 

embedding and Fiber Bragg Grating (FBG) sensors are also popular [3]. FBG allows 

critical parameters of materials and structures to be sensed while offering lightweight 

immunity to electromagnetic interference, non-obtrusive embeddability, resistance to 

hostile environments, and extremely high-bandwidth capability. A network of embedded 
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fiber-optic sensors can allow a structure to monitor its integrity or health during 

manufacturing and service. Moreover, these sensors could replace many of the functions 

traditionally performed by human visual inspection and could provide real-time feedback 

in the event of structure failure [23]. 

THESIS STATEMENT 

The goals of this thesis are to integrate an nScrypt Smart Pump
TM

 direct write head 

into a Solidica Formation
TM

 ultrasonic consolidation machine and explore the capabilities 

to rapidly fabricate parts with novel features enabled by the combination of both 

technologies. The objectives of this project are: 

1. Develop the process plan guidelines for operating the combined ultrasonic 

consolidation and direct write technologies. 

2. Develop design guidelines for the effective fabrication of structures and use them 

to fabricate a proof of concept part using an ultrasonically consolidated metallic 

enclosure, as well as direct write (DW) to interconnect embedded components. 

The research that is presented in and associated with this thesis is directed to obtain 

process and design guidelines to be used when fabricating structures using the integrated 

UC and DW apparatus. This research focuses primarily on the application of fabricating 

embedded passive electronic components (resistors and capacitors); hence the presented 

guidelines can be used for other applications as well. This is the first time UC and DW 

technologies have been merged into a single system and therefore necessitated 

fundamental testing of features that could be utilized in the fabrication of embedded 
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passive components. The results of the tests performed to answer process and design 

questions are presented in the subsequent chapters of this thesis. 

This is a multipaper thesis in which Chapters 2, 3, and 4 are individual papers that 

were published or submitted for publication. Chapter 2, published in the proceedings of 

the 20
th

 Annual Solid Freeform Fabrication Symposium, addresses the process of 

integration of the nScrypt Smart Pump
TM

 with the Solidica Formation
TM

 ultrasonic 

consolidation machine, as well as an appropriate process planning sequence to exploit the 

capabilities of the integrated technologies. Testing and results of a study performed to 

assess the UC machine gantry system XY-axes accuracy and repeatability and the process 

to obtain the best possible post-cured electrical properties of several DW inks are 

discussed in Chapter 3. The information contained in Chapter 4 is related to embedding 

DW traces in UC structures. Chapter 4 describes how the results obtained in previous 

chapters are utilized to fabricate a functional embedded touch sensor circuit in an 

aluminum enclosure using direct write for passive components as well as commercial off-

the-shelf (COTS) components enclosed in a UC bonded structures.  Conclusions and 

future work are presented in Chapter 5. A summary of the process and design guidelines 

obtained throughout the various tests performed during the completion of this thesis is 

presented in the Appendix. 
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CHAPTER 2 

INTEGRATION AND PROCESS PLANNING FOR COMBINED ULTRASONIC 

CONSOLIDATION AND DIRECT WRITE
1
 

This chapter is a paper published in the proceedings of the 20
th

 Annual Solid 

Freeform Fabrication Symposium. 

Abstract  

A research project is underway to integrate an nScrypt Smart Pump
TM

 direct write 

nozzle with a Solidica Formation
TM

 ultrasonic consolidation machine to rapidly fabricate 

parts with novel multi-functional features. The process of integration of both machines 

has been addressed, and an appropriate process planning sequence to exploit the 

capabilities of the integrated technologies is developed. General processing guidelines are 

formulated, and form the basis for further fundamental research and for the production of 

proof of concept multi-functional parts to demonstrate the usefulness of this integration. 

2.1 Introduction 

In the modern world customers are everyday more demanding. They want cheaper 

products; with better quality, smaller lead times, and that are more compact, among other 

characteristics.  More recently customers also desire some degree of customization. 

Additive manufacturing (AM) techniques might be the solution to help meet and exceed 

the requirements of the modern world customer. Using additive manufacturing we are 

                                                 
1
 Coathored by: Ludwing A. Hernandez, Brent Stucker: Utah State University. 
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able to create complex shapes that in the past were not possible to be fabricated by 

traditional manufacturing processes. Products can be made more compact and 

consolidation of parts is possible, thus reducing or eliminating assembly processes. As a 

result we are able to obtain reductions in cost, size, and mass on products manufactured 

by Additive Manufacturing. Ultrasonic Consolidation (UC) and Direct Write (DW) are 

two types of additive manufacturing technologies that when combined can be effectively 

used to fabricate integrated structures.  

This paper explains how UC and DW technologies were physically integrated to 

work as a semi-automated single system for the first time and the current process 

planning sequence to follow for the safe and effective fabrication of structures using the 

integrated system. The fabrication possibilities that arise from this integration are useful 

in varied fields, such as electronics manufacturing, aerospace, automotive, and any 

industry that demands more compact and lighter parts. 

2.1.1 Ultrasonic Consolidation (UC) 

Ultrasonic consolidation (UC) is an additive manufacturing process that creates 

complex-shaped three dimensional metallic objects by combining the deposition of metal 

foils layer by layer, bonded by ultrasonic welding, with the operation of a CNC milling 

machine to create the desired cross-section [1]. 

UC is a process developed by Solidica Inc., using the basics of ultrasonic welding. 

For this project we are using the Solidica Formation
TM

 machine at Utah State University 

(see Figure 2.1).  
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Figure 2.1: Solidica Formation™ located at Utah State University [2]. 

The build process of the UC machine has the following sequence. First, the tool 

paths file has to be loaded into the machine control PC. A metallic substrate (usually of 

the same material that is being deposited) is firmly bolted to the building chamber 

platform. When the build is triggered to start by means of the software, an automatic 

feeding system starts depositing the metallic foils on to the substrate and uses a sonotrode 

to induce normal force and vibration between the substrate or previously deposited layers 

and the new foil being deposited. The vibration induced modifies both surfaces by 

displacing surface oxides between the interfaces as a result of elastic-plastic deformation. 

Oxide-free regions are then in close-proximity, resulting in metallurgical bonding across 

the interface. After bonding one or several layers, the computer controlled milling head 

shapes the contour of the layer. This process is repeated until the finished part is obtained 

[1]. 

The UC process can weld with excellent bonding quality if the correct process 

parameters, oscillation amplitude, welding speed, temperature, and normal force, are 

used. The ability to build at a low temperature (150ºC or less) and ambient atmosphere 
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are key process characteristics that make this technology ideal for electronics embedding 

[1]. Moreover, the system has the ability to be paused and restarted at any stage of the 

build without affecting the quality of the part. All the mentioned attributes of the UC 

process are very convenient for integration with DW in a single apparatus [2].  

2.1.2 Direct Write (DW) 

Direct writing signifies a group of processes used to precisely deposit functional 

and/or structural materials on to a substrate in digitally preset locations, without the use 

of masks or geometry-specific tooling. Using DW technologies a wide range of materials 

can be deposited including metals, ceramics, polymers, electronically and optically 

functional materials, and biological materials including living cells. One of the 

characteristics that define DW is the small size of deposits, in terms of line width, 

ranging from sub-microns to millimeters. DW traces can be dispensed on virtually any 

substrate. Some systems can be equipped with a laser positioning feedback system, 

enabling it to dispense on flat, curvilinear, round, flexible, irregular or inflatable 

substrates [3].  

According to Hon [3] the group of processes that constitutes DW can be classified 

into 4 categories: droplet, energy beam, flow and tip; depending on the method of 

material transfer on to a substrate. Droplet based can be obtained by thermal, 

piezoelectric, electrostatic, acoustic techniques or aerosol. Energy beam-based DW 

means that the deposition is accomplished by means of laser or ion beams. Flow-based 

DW use high precision pumps or extrusion to achieve micro-dispensing. Tip-based DW 
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is a method for nano-manufacturing that employs dip-pen lithography to diffuse on to a 

substrate through micro-capillary action between the tip and the surface [3]. 

For this project the DW dispensing method utilized is the precision pump flow-based 

DW rendered by the Smart Pump
TM

 developed by nScrypt Inc. The Smart Pump
TM

 is a 

high precision micro-dispensing pump with accurately controlled air pressure timing, 

valve opening and dispensing with an integral suction function to remove all residual 

materials sticking on the tip; preparing it to continue the next dispensing without the need 

for cleaning [3].  

The Smart Pump
TM 

system includes a positive pressure pump with a computer 

controlled needle valve (see Figure 2.2) attached to a control box that receives the digital 

signals from a computer and sends it to the pump to execute the preprogrammed routines 

[4]. 

2.2 Experimental Work 

The plan is to physically and electronically integrate the Smart Pump
TM

 Direct write 

system to the Solidica Formation
TM

 Ultrasonic Consolidation machine to make them 

work in a semi-automatic fashion. In this paper we address how the physical-electronic 

integration was done and the process plan to work with both machines simultaneously. 

Furthermore, details for the near future experimentation to develop design guidelines and 

proof of concept are exposed. 



27 

 
 

 

 

 

 

 

 

 

Figure 2.2:  Schematic of the nScrypt Smart Pump
TM

 direct-write system [4]. 

2.3 Results 

2.3.1 Integration Process Description 

To operate the Smart Pump
TM

 the system needs three basic parts: a pump, a nozzle, 

and a motion control system. On the other hand the Solidica Formation
TM 

machine 

consist of a sonotrode, a milling head and a foil feeding system mounted on a computer 

controlled 3-axis motion control system. The compact design and low weight (2.5lb) of 

the Smart Pump
TM

 permitted it to be attached to the motion control system of the UC 

machine. Available locations for the DW head were evaluated to determine the best place 

to install the Smart Pump
TM

 to the motion control system; taking into consideration user 

accessibility and jamming precautions for the 3-axes of motion (see Figure 2.3).  
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Figure 2.3:  nScrypt Smart Pump
TM

 Direct-write and Solidica Formation
TM

 ultrasonic    

       consolidation integration. 

When the DW system is actively dispensing, it needs to be very close to the substrate 

(about 100µm). Thus it has to be positioned at the lowest point with respect to all the 

other parts on the Sonotrode head. Nonetheless, to attach the Smart Pump
TM

 in one fixed 

position the tip of the pump has to be lower than the sonotrode head but higher than the 

smallest tool used on the milling machine. Although it was possible to use a fixed point, 

the clearance was so small it constituted a hazard for the equipment. The solution was to 

incorporate a manual precision slider (see Figure 2.4) to make it possible for the DW 

head to be in different positions (while at rest or in use). The slider has a high precision 

lead screw with an accuracy of 0.0015‖/10‖ or 0.033mm/20cm or better. In addition the 

slider features a graduated knob with 100 divisions. One complete turn of the knob 

moves the slider platform 1mm, meaning that each visual division represents 0.01mm 

(10µm) (see Figure 2.5) [5]. 

Ultrasonic Consolidation + Direct Write system Smart Pump 100
TM
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For the physical integration some custom parts were fabricated from aluminum 

3003. A custom aluminum bar was machined (see Figure 2.6) to firmly attach the slider 

and Smart Pump
TM

 to the UC motion control system. A small rectangular base (see 

Figure 2.7) was used between the Smart Pump
TM

 mounting bracket and the slider 

platform to avoid drilling additional holes in the slider‘s stainless steel platform. 

 

 

 

 

 

 

 

Figure 2.4:  Velmex A40 Series UniSlide assembly with graduated knob [5]. 

 

 

 

 

 

Figure 2.5:  Velmex graduated knob [5]. 

 

 

 

 

 

 

 

 

 



30 

 
 

 

 

 

 

Figure 2.6:  Custom base for Smart Pump
TM

 and slider attachment to motion control    

                    system. 

 

 

 

 

 

 

 

 

Figure 2.7:  Rectangular base for Smart Pump 
TM

 attachment to slider. 

To reduce vibration of the Smart Pump
TM

 during stage motion, a screw was used to 

maintain a fixed distance between the slider and one of the sonotrode‘s motor side walls 

(see Figures 2.8 and 2.9). This screw held the Smart Pump
TM

 perpendicular to the X,Y 

plane. 
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Figure 2.8:  Side view of vibration              Figure 2.9:  Bottom view of vibration     

                    reducer.          reducer.                                                  

The Smart Pump 
TM

 control box was also bolted to the inner right side of the UC 

machine enclosure (see Figure 2.10). 

In addition to the physical integration we were able to integrate the DW and UC 

system‘s electronically, enabling both technologies to work in a semi-automatic fashion 

for the first time. A junction box (J-box) containing a smart relay (see Figure 2.10) 

enables digital signal communication between the DW control box and the UC controller.  

The main purpose of the J-box is to trigger the dispenser and the motion control 

system movement simultaneously by the push of a button. The Cycle Start button on the 

front panel of the Solidica control box (see Figure 2.11) was connected to the J-box 

circuit to work as the trigger button for both systems.  
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Figure 2.10:  nScrypt control box and junction box. 

 

 

 

 

 

Figure 2.11:  Solidica Formation
TM

 control box front panel. 

2.4 Discussion 

2.4.1 Process Planning Sequence 

Figure 2.12 is a flow chart that describes the basic process planning sequence (see 

Figure 2.12). Each step is explained in detail. 1) The traces to be dispensed can be 

designed as sketches in any 2D CAD software, 2) converted to Gcode with a CAM 

application or Gcode converter. For our purposes we have found good results using 

AutoCAD 2010 to design the 2D traces and a software called ―Image to Gcode‖ to 

convert ―.dxf‖ files to Gcode. 

Solo control 

box 

Junction box 
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Figure 2.12:  UC-DW process flow chart. 

3) The Gcode must be modified to make it suitable for our purposes. Some possible 

modifications needed are the following: delete the tool spindle on and off commands 

(M3, M5), establish the coordinate system to work with (i.e. G54), and add program stops 

(M0) right before and after each trace movement. The M0‘s are later used during the 

building process to start and stop dispensing by manually pressing the Cycle Start (CS) 

button. 4) The next step is to load and activate the modified Gcode as a ―.ppg‖ file in 

Solidica‘s programs data base and activate it on the software; the motion control system 

is now ready start a build. The Smart Pump
TM

 is set up with material to dispense. 5) The 

Smart Pump
TM

 set up process starts with the ink to be dispensed being loaded into a 3cc 

syringe. A digitally controlled air pressure outlet from the Smart Pump‘s control box is 

attached to the syringe. 6) Set up of the substrate where the inks are to be dispensed 

occurs at the same time. This system can dispense on virtually any substrate the only 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 
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requirement is flatness. The substrate is firmly secured to the building platform to prevent 

movements that would affect the quality of the build. 7) Continuing with the Smart 

Pump
TM

 set up, the dispensing routines are programmed through the Smart Pump‘s  

―Solo Control Center‖ software. The parameters are defined according to the material‘s 

rheological properties. The DW system has an integrated camera zoomed into the pen tip 

for better set-up purposes. In the software (see Figure 2.13), the routines are configured 

to precisely open and close the dispensing valve by setting up the pressure and position of 

the valve according to the viscosity of the material. 8) The next step is to lower the stages 

to the lowest point programmed on the Gcode (ideally Z0). 9) Using the manual slider the 

Smart Pump
TM

 is lowered very close to the substrate (150µm). 10) After the Smart 

Pump
TM

 is ready, the J-box is set up. The J-box transmits the digital commands between 

the Smart Pump
TM

 and the motion control system (see Figure 2.14). The J-box triggers 

the Smart Pump
TM

 commands by pushing the black button on the J-box or by pushing the 

Cycle Start green button on the front panel of the Solidica control box. Furthermore, the 

J-box has an on/off switch to power up the circuitry and three other switches (B2, B2, and 

B0) that are used to manually select the bits to trigger each routine to the Smart Pump
TM

  

with the parameters previously inputted in the Solo Control Center software, guided by 

the following routine select combinations. 11) Once the Gcode program is loaded into the 

Solidica system, the Smart Pump
TM

 is set up close to the substrate, and the J-box is 

prepared the cycle start button is pressed and dispensing is started (see Figure 2.15). 
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Figure 2.13:  Solo control center: tab used to set up the dispensing flow rate. 

12) As mentioned before, this process is semi-automatic, meaning that it needs some 

degree of human intervention to carry it out. 

 

 

 

 

 

 

 

Figure 2.14:  Junction box front panel. 
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ROUTINE SELECT
 

 

 

 

 

 

While dispensing, this system needs an operator present, whose job is to select the 

correct routine [i.e; routine 1 (valve close) and routine 2 (valve open)] on the J-box 

considering whether the stages are doing a trace movement or just moving between 

traces. The B0, B1, B2 switches on the J-box must be manually moved to the desired 

position for dispensing to start or stop before the motion control system reaches a pre-

established program stop (M0). When an M0 is reached the operator must push the cycle 

start and the build will continue. In this way the Smart Pump
TM

 will only dispense were 

needed for the build to be completed. 13) The inks or pastes dispensed through the Smart 

Pump
TM

 usually need post-processing or curing. Curing process experiments have not yet 

been carried out, but the plans are to test the post-cured materials properties after using 

the substrate heating feature of the UC machine versus curing them in a furnace.  

2.4.2 Future Experiments to Formulate General Design Guidelines 

The first set of experiments to be performed with the UC-DW integrated system are 

basic research experimentation to develop general knowledge about the system‘s 

capabilities for the effective fabrication of structures.  
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Figure 2.15:  UC-DW integrated system dispensing onto a plastic substrate. 

A project is underway to formulate design guidelines, focusing on electronics 

fabrication. Conductive, insulator, dielectric, and resistor inks properties are going to be 

tested when dispensed onto aluminum 3003 and the post-cured adhesion will be 

evaluated as well.  

The substrate heating feature of the UC machine is going to be tested as curing 

method for the DW materials and compared to the regular furnace curing process. Traces 

resistance to ultrasonic welding will be evaluated and the best orientation with respect to 

the sonotrode‘s movement will be determined. Parallel experimentation will be 

performed using small channels on the substrate to deposit the DW materials. 

A second set of experiments will be performed to fabricate discrete electronic 

elements (resistors and capacitors) using the DW system; thus embedding them into an 

aluminum enclosure. The final objective of this project is to fabricate a proof of concept 

using the design guidelines previously learned.  

See Table 2.1 for the posted design questions and tasks to be performed. 
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2.5 Conclusions 

An integrated Ultrasonic Consolidation–Direct write (UC-DW) apparatus has been 

put in place for the first time. It works in a semi-automatic fashion to dispense a 2D trace 

with virtually any ink or paste onto any flat substrate at room temperature and normal 

ambient conditions. This integration constitutes a step towards fully automated additive 

manufacturing of functional products with metallic enclosures and embedded electronic 

circuitry. 

Future work includes: automating of the system by modifying the PLC of the UC 

machine to include new codes for the Smart Pump
TM

; performing experiments to develop 

design guidelines for components made using the integrated system; and the fabricating 

proof of concept parts to demonstrate the capabilities of the system. 
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Table 2.1:  Design Questions and Tasks for Future Experiments 
Objective Design Questions Tasks

a) Can DW traces be dispensed directly on aluminum and 

maintain the same material properties?                                      b) 

Is an insulator always needed between DW traces and the 

aluminum enclosure?

a) Dispense a trace of each material to be used in a non-

conductive substrate and dispense it on the aluminum 

substrate and perform different tests according to the 

material; electrical conductivity for conductive inks, 

resistance for resistor inks, and dielectric constant for 

dielectric inks. Then evaluate and compare.                                                        

b) Different substrates will be tested for conductive DW 

traces (Insulators, Dielectric)

Do the DW traces adhere to aluminum 3003? Dispense the available inks in an aluminum substrate, 

go through the curing process and then do pilling tests 

to evaluate the adhesion of the cured inks to the 

aluminum substrate.

Can the DW ink traces cure by heating the aluminum substrate? Compare the properties of each ink when cured in an 

oven versus when cured using the substrate heating 

system available on the UC machine.

a) Can aluminum foils be ultrasonic welded directly on top of 

DW traces?                                                                             b) 

Are channels or pockets needed on the aluminum substrate to 

protect the DW traces?

a) Build test specimens to determine the optimal 

positioning of direct write traces with respect  to the 

movement of the sonotrode.                                           - 

Specimens will be build in 3 orientations (Horizontal, 

vertical, and diagonal)

- Specimens will be build in 3 different sizes                

b) The inks are going to be deposited in small channels. 

Seep test are going to be 

performed.

Can passive components such as resistors and capacitors 

fabricated by DW be embedded within a UC structure?

Fabricate discrete electronic elements by dispensing 

conductive and dielectric inks through the Smart Pump 

to demonstrate the possibility of embedding those 

elements into the structure.                            (Embedded 

resistors and capacitors)

Can DW write traces be used as support material for UC? Build test specimens using the DW system as a support 

material dispenser for small overhanging features.

Can a UC structure with embedded DW circuitry be fabricated in 

an effective manner?

Design a proof of concept part using a UC metallic 

enclosure, FDM material as dielectric substrate and 

support material, as well as DW to interconnect 

embedded components and support material for small 

features

- Test ABS dielectric properties

- Tensile testing with cured DW ink

- Seep testing of DW ink

- Fabricate the enclosure to demonstrate the proof of 

concept

Develop design guidelines for the 

effective fabrication of structures.
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CHAPTER 3 

DESIGN AND PROCESS GUIDELINES FOR EFFECTIVE FABRICATION OF 

STRUCTURES COMBINING DIRECT WRITE AND ULTRASONIC 

CONSOLIDATION
2
 

Abstract  

Design guidelines for the effective fabrication of structures using combinations of 

ultrasonically consolidated metallic enclosures and direct write (DW) to interconnect 

embedded components were developed. An uncertainty analysis was carried out on the 

Ultrasonic Consolidation (UC) machine to determine the accuracy and repeatability of its 

gantry system. A Taguchi experiment was designed to study the effects of thermal curing 

process and substrate materials on the electrical properties of conductive, resistor, and 

dielectric inks dispensed by direct write. DW traces were embedded in different 

orientations (0
o
, 45

o
, 90

o
) with respect to the sonotrode‘s movement and using different 

methods (channel, no channel). The current UC system‘s dimensional accuracy of 0.008‖ 

and repeatability 0.002‖ were determined.  The UC heat plate feature was shown to be 

effective for thermal curing of inks. Finally, embedding using channels proved to be 

more reliable than embedding without channels. 

 

 

                                                 
2
 Coauthored by: Ludwing A. Hernandez, Brent Stucker: Utah State University. 

 



42 

 

3.1 Introduction 

During the last few decades electronic products have followed a trend to become 

more compact, light weight and with integrated multiple functions in a single package.  

As a result the electronics industry had to find new alternatives to keep up with the 

demands of the market. Additive manufacturing processes have the capability to create 

compact parts in complex shapes, thus consolidating parts to reduce or eliminate 

assembly processes.  

Additive manufacturing processes such as Ultrasonic Consolidation provide the 

ability to create three dimensional shapes with internal passages, multiple materials, and 

functionally-graded materials; and the ability to produce parts with embedded mechanical 

and electrical components. UC is particularly useful for embedding of electrical 

components into a metallic material because the process does not require high 

temperatures. UC possibilities include embedding passive components, sensors, and 

microprocessors to create ―smart‖ structures.  Embedding components is advantageous 

for creating small electromechanical systems, where the size and weight are constrained.  

Direct write (DW) also presents numerous advantages dispensing electrical traces for 

embedding purposes. With DW it is possible to fabricate custom resistor networks, 

conductive traces, capacitors, and integrated Restistor-Capacitor (RC) filters on any kind 

of substrate; (polymer, ceramic, and metallic). Some systems include a laser positioning 

feedback to enable conformal printing over uneven surfaces, which makes them ideal for 

multilayer 3D dispensing.  
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This paper presents design and process guidelines for integrating DW ink 

dispensing, ultrasonic consolidation and thermal cure for embedding electronics in 

aluminum structures. 

3.2 Background 

3.2.1 Direct Write (DW) 

Direct write refers to a group of processes intended to precisely deposit small 

functional and/or structural materials on to a substrate in digitally defined locations, 

without the use of masks. A variety of mechanisms and processes such as inkjet printing, 

laser transfer, mechanical pressure and extrusion tips are used to transfer material to a 

substrate to produce features from nm to mm scale. Using DW technologies a wide range 

of materials can be deposited including metals, ceramics, polymers, electronically and 

optically functional materials, and biological materials including living cells. The Direct 

write system available at Utah State University is the nScrypt Smart Pump
TM

, a high 

precision micro-dispensing pump with accurately controlled air pressure timing, valve 

opening and dispensing with an integral suction function to remove all residual materials 

sticking on the tip; preparing it to continue the next dispensing without the need for 

cleaning [1]. 

Direct write technologies are increasingly of interest due to trends for 

miniaturization of electrical systems. Direct write provides alternate methods to simplify 

printed circuit board manufacturing while reducing costs. Patterning of passive and active 

electrical components has been made by direct write techniques using a variety of 

materials. Suitable materials for DW technologies include ―inks‖ and ―pastes.‖ 
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Combinations of powders, nanopowders, flakes, surface coatings, organic precursors, 

binders, solvents, dispersants, and surfactants are typical components of DW inks. Their 

applications range from conductors to resistors and dielectrics, and are generally 

developed for low temperature deposition (less than 400
o
C); intended for substrates such 

as plastics, paper, and fabrics. According to Chrisey [2] silver, gold, palladium, and 

copper conductors; polymer thick film and ruthenium oxide-based resistors; and metal 

titanate-based dielectrics are among the most used materials for electronic applications.  

Metal filled inks consist of a colloidal suspension of nano-sized metal particles 

within a polymer matrix [3]. The electrical properties of composite materials of metallic 

filler particles embedded in polymer matrices strongly depend on the concentration and 

morphology of the particles. The electrical resistance shifts from dielectric to metallic 

behavior with increasing metal content [4]. The system can be considered as an average 

of the resistivity of the matrix and the filler. Hence, when the resistivity of the matrix is 

high compared with that of the particles, the resistance of the composite will be high [5]. 

The concentration of the filler in the composite can be augmented by a process 

called sintering or curing. The curing process can be performed using several methods 

such as heat-treatment, UV, microwave or laser [6]. Generally, after a nano-ink has been 

printed onto a substrate, it is cured and, upon solvent evaporation, forms a continuous 

conductive thin film. Curing is a necessary step to establish electrical contact in the 

feature, since the ink is essentially an insulator in its original state. The curing process 

initiates the polymer flow of the solvent allowing it to evaporate and leaving room for the 

metal particles to establish contact. This final process directly affects the electrical 
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properties of dispensed features. In the case of conductive traces with metallic nano-

particles, the post-cured resistivity measurements can approach close-to-bulk values [3]. 

3.2.2 Four-Point Probe Test 

A method used to measure the resistance of thin film conductors is the 4-point probe 

test. The theory behind the four point probe test is a fixed current injected into the feature 

through the two outer probes, and the voltage is measured between the two inner probes 

(see Figure 3.1). 

For a very thin layer (thickness t<<s) the expression for the area of the sample is 

defined as, A=2πxt. We can derive the resistivity as follows: 

 

Since x1 = s and x2 = 2s, the equation can be simplified to: 

 

When R = V/2I, the sheet resistivity for a thin sheet is: 

 

 

 

 

 

Figure 3.1: Four-point probe operation schematic. 
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This expression is independent of probe spacing s. 

In case of a semi-infinite thin sheet (sample size 40 times larger than the spacing 

between the probes) sheet resistivity, Rs ~ ρ/t can be expressed as: 

 

where the factor k = 4.5324 is a geometric factor, which corresponds to the value of 

π/ln2. 

Conductivity (c) can be obtained from the resistivity value as follows: 

    [7] 

The units established by the International System of Units (SI) for resistivity and 

conductivity are Ωm and Sm
-1

 respectively [8]. 

3.2.3 Ultrasonic Consolidation (UC) 

Ultrasonic Consolidation is an additive manufacturing process that uses the 

principles of ultrasonic welding to build up rough shape parts and 3-axis CNC milling to 

produce net shape parts. The UC machine available at Utah State University, the Solidica 

Formation
TM

, is an integrated machine which incorporates an ultrasonic welding head, 

foil feeding mechanism, a 3-axis milling machine, a heat plate on top of which a base 

plate substrate is firmly bolted for part fabrication to take place, and software to 

automatically generate tool paths for material deposition and machining. The heat plate 

maintains the temperature of the base plate between ambient and 350
o
F [9]. 
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3.2.4 Uncertainty Analysis for Computer Numerical Controlled (CNC) Machines 

To perform geometric error measurements on 3 or 5-axis CNC machines, direct or 

self-calibration methods can be used [10]. Direct methods, sometimes called parametric 

methods, generally use a measurement device, such as a probe ball, to measure the 

overall position error of all the axes of a machine tool. To perform the accuracy test, a 

three-degree-of-freedom measuring probe or extension bar is installed in the main spindle 

and attached to a turntable fixed in the CNC base plate (see Figure 2). The spindle is 

programmed to move in circles. The system continuously captures the spindles path. Data 

points are obtained and analyzed to explain the nature of the probe-ball error 

measurements [11]. 

A self-calibration method consists of measuring spatial coordinates of an artifact 

when it is placed in different positions in the machine working volume. The artifact has N 

defined points with invariant distances, measured in P positions [10]. By International 

accord, the evaluation is to be done in accordance with the ISO Guide to the Expression 

of Uncertainty in Measurement (GUM). The guidelines in ISO 230-2 International 

Standard are used to calibrate positional deviations of CNC machine tools [12]. In simple 

terms, the self calibration method requires to build a part and measure its offset compared 

to the CAD model dimensions. Standards like ISO 230-2 standardized to drill a certain 

number of holes in a flat plate depending on the machine‘s building area. It also specifies 

the displacement directions the spindle has to follow while in test. Finally measurements 

are taken and analyzed to draw conclusions about the accuracy and repeatability of the 

equipment.  
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3.3 Experimental Plan 

A previous paper included in the 2009 Solid Freeform Fabrication Symposium 

Proceedings, ―Integration & Process planning for combined ultrasonic consolidation and 

direct write‖ explains in detail how a direct write head, nScrypt Smart Pump
TM

 and the 

Solidica Formation
TM

 UC machine were integrated to work in a semi-automatic fashion. 

This current paper contains results of studies performed on this system, in an effort to 

develop design guidelines to obtain good post-cured electrical properties on dispensed 

materials before and after embedding.  In order to ascertain the capabilities of the 

combined machine, an uncertainty analysis was performed on the UC gantry. 

Additionally, the effectiveness of different thermal curing methods for DW inks 

dispensed on various substrates was evaluated. Finally, tests were performed to determine 

the most reliable embedding method.  The experimental procedures for each of these are 

described below. 

3.3.1 CNC Machine Uncertainty Analysis  

In our integrated system, direct write dispensing accuracy is dependent on the 

accuracy of the 3-axis CNC machine to which it is physically attached. An uncertainty 

analysis was carried out on the UC machine to determine its accuracy and repeatability, 

using the ISO 230-2 International Standard.  As the nScrypt direct write process used in 

this research is capable of fabrication of small features (nm to mm scale) [1]. the 

accuracy of the depositions will be a function of the UC machine rather than the DW 

head.  
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A pattern of 161 points distributed over a 14‖ x 14‖ plate was designed in AutoCAD 

(see Figure 3.2) and was fabricated using the CNC machine capabilities of the UC 

machine. Each point was drilled twice on the aluminum plate, first using a 0.125‖ end 

mill tool to a depth of 0.02‖ and then using a 0.03125‖ ball mill tool to a depth of 0.02‖ 

(see Figure 3.3). 

Figure 3.3: Sketch drilled holes from side view. 

 

 

Figure 3.2: AutoCAD design for uncertainty analysis. 
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The following was measured: 

- Accuracy: The actual positions pij of the points in the plate were measured and 

compared to the target positions PIJ in the design file (aij = PIJ – pij).  

- Repeatability: The positions of the center points of the 0.125‖ diameter dots Cij 

were measured and compared with the center points of the 0.03125‖ diameter dots 

cij (rij = Cij –cij). 

  The measurements were carried out using an optical microscope with an embedded 

scale measurement system. The results were plotted and accuracy and repeatability 

ranges within a 95% confidence were determined. 

3.3.2 Curing Method Evaluation 

The effectiveness of the ultrasonic consolidation heat plate feature for use as a curing 

method for DW dispensed inks was evaluated. Each available DW ink was dispensed on 

four different substrates and post-cured electrical characterization was performed. 

Table 3.1 lists the DW materials used for these experiments and their manufacturer 

recommended curing requirements. The substrate types are listed in Table 3.2 and show 

in Figure 3.4. 

Table 3.1: Direct Write Materials 

DW Materials Curing Requirements 

1. Polymer Thick Film Conductive Silver Coating (E1660)  121 C – 1 to 5 min 

2. Electrical Resistor Ink (104-18) 175 C – 0.5 hour 

3. High Dielectric Constant Ink (114-14A)  175 C – 1 hour 
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Table 3.2: Substrates 

Substrates 

1. Aluminum 3003 coated with Blue Insulator
TM

  

2. Aluminum 3003 coated with Aquaseal
TM

 

3. FR4 

4. Glass 

 

 

 

 

 

 

 

 

 

Figure 3.4: Substrates on Top of Aluminum 3003 Base Plate. 

 An L24 Taguchi experiment was designed to study the effects of thermal curing 

process and substrate materials on the electrical properties of conductive, resistor, and 

dielectric inks. In these tests, ―Substrate temperature‖ refers to the temperature of the 

substrate before and at the moment dispensing takes place (85 F or 250 F). ―Curing 

temperature‖ is the temperature the substrate is heated to for a period of time to cure the 

ink. ―Curing method‖ is the source of thermal energy: UC heat plate, furnace, or a 

combination of UC and furnace. The supplier‘s curing suggestions were taken as a 

guideline for the required curing temperatures and times for each material.  
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Figure 3.5: Keithley lab multimeter with hand applied four point probe. 

 

Figure 3.6: LCR meter. 

The response was taken as resistivity ρ for resistor and dielectric inks, and 

conductivity σ for the conductive ink. Resistor and conductive inks were measured with a 

four point probe (see Figure 3.5) and the resistance of the dielectric ink was measured 

with a Inductance-Capacitance-Resistance (LCR) meter (see Figure 3.6). 

3.3.3 Embedding Method  

Embedded components need to withstand the conditions inherent to the embedding 

process, such as temperature and pressure. The UC process welds metallic foils using 

ultrasonic vibration, resulting in applied shear and normal forces. Elements embedded 
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Sonotrode

Vertical (0o) Diagonal (45o)

Horizontal (90o)

using ultrasonic consolidation should be able to withstand the stresses induced during UC 

bonding. To find the best embedding method test specimens were built to determine the 

optimal positioning of the direct write traces with respect to the movement of the 

sonotrode. Specimens were built in 3 orientations: Vertical (0
o
), Horizontal (90

o
), and 

Diagonal (45
o
) (see Figure 3.7). Two different line widths were used for the dispensed 

lines, 50µm and 125µm. The use of channels to enclose ink traces was compared to direct 

welding over the traces using each of the orientations. The results were evaluated in 

terms of number of process steps and reliability.  

3.4 Results 

3.4.1 CNC Machine Uncertainty Analysis   

The actual position pij of the points on the plate were compared to the nominal 

position PIJ in the design file (aij = PIJ – pij) (see Figure 3.8). 

 

 

 

 

 

 

 

Figure 3.7: Build orientations (0
o
, 45

o
, 90

o
). 
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The distance between the points was designed to be 0.5‖. If, for instance, the 

measurement from point to point gave 0.4985‖, then the recorded value was aij = 0.5‖ – 

0.4985‖ = 0.0015‖. Fifty values were obtained for each (X and Y) axis. The results are 

shown in Figure 3.9 and Table 3.3. 

Figure 3.8: Point to point measurement for accuracy. 
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Figure 3.9:  Graphical summary of accuracy measurements of XY-axes. 
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Table 3.3:  Tolerance Results for Accuracy Measurements 
Tolerance (Confidence) Level:  95% 

Proportion of Population Covered:  90% 

 

N    Mean      StDev      Tolerance Interval 

100  0.000568  0.0021998  (-0.0035541,  0.0046901)~ ±100µm 

 
 

Repeatability is the position of the center point of the 0.125‖ diameter dot Cij 

compared with the center point of the 0.03125‖ diameter dot cij (rij = Cij –cij) (see Figure 

3.10). The results are the shown Figure 3.11 and Table 3.4. 

Figure 3.10: Center to center measurement for repeatability. 
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Figure 3.11:  Graphical summary of repeatability measurements of XY-axes. 
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Table 3.4:  Minitab Tolerance Results for Repeatability Measurement 
Tolerance (Confidence) Level:  95% 

Proportion of Population Covered:  90%  

 

N    Mean      StDev      Tolerance Interval  

100  0.001327  0.0006636  (0.0000835, 0.0025705) ~ ±30µm  

 

 

The results indicate that we can expect from the CNC a positioning accuracy within 

0.008‖ and position repeatability within 0.002‖ with a 95% confidence. 

3.4.2 Curing Method Evaluation 

The heat plate feature of the UC machine was evaluated to determine whether it is an 

effective curing method for the DW inks when dispensed on a metallic, polymer or 

ceramic substrate. For this study: 

H0 = Means are not statistically significantly different among levels of curing 

method, and 

H1 = Means are statistically significantly different among levels of curing method. 

3.4.2.1 Statistical Analysis for Resistor Ink 

The following are the results for the resistor ink. The response is resistivity, 

measured in Ωmm (see Table 3.5 and Figure 3.12): 

Table 3.5:  Response Table for Resistivity Means for Resistor Ink 
Response Table for Means 

 

       Substrate             Curing 

Level       Temp  Substrate  Method 

1          25.12      35.41   34.02 

2          34.81      28.29   26.81 

3                     19.03   29.06 

4                     37.13 

Delta       9.69      18.10    7.21 

Rank           2          1       3 
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     Figure 3.12:  Main effect results of resistivity for resistor ink. 

We can observe that the larger variation source among the evaluated variables is the 

substrate, followed by the substrate temperature, and the curing method constitutes the 

smallest variation source. To verify mean statistically significant difference between the 

variable levels One-way ANOVA is carried out for each variable (see Table 3.6).. 

With a one-way ANOVA of Resistivity versus Substrate we can determine that there 

are no statistically significant differences between the mean values of the four substrates 

(AL-blue, AL-Aqua, FR4, and Glass) because P > α (0.071>0.05).  ―Substrate 

temperature‖ (P = 0.078) and ―Curing Method‖(P = 0.572) both have P > α. Which 

means that the null hypothesis (H0) could not be rejected; there is no statistically 

significant difference between curing using a furnace, the UC heat plate, or both 

combined. 

Specific thermophysical properties must be known for electronic passive 

components for a circuit to perform as intended. 
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Table 3.6:  One-way ANOVA of Resistivity vs. Substrate, Substrate Temperature, and 

Curing Method for Resistor Ink 
One-way ANOVA: Resistivity versus Substrate  
 
Source     DF    SS   MS     F      P 

Substrate   3  1220  407  2.73  0.071 

Error      20  2980  149 

Total      23  4200 

 

S = 12.21   R-Sq = 29.05%   R-Sq(adj) = 18.41% 

 
 

One-way ANOVA: Resistivity versus Substrate Temp  
 
Source          DF    SS   MS     F      P 

Substrate Temp   1   564  564  3.41  0.078 

Error           22  3637  165 

Total           23  4200 

 

S = 12.86   R-Sq = 13.42%   R-Sq(adj) = 9.48% 

 

 

One-way ANOVA: Resistivity versus Curing Method  
 
Source         DF    SS   MS     F      P 

Curing Method   2   218  109  0.57  0.572 

Error          21  3983  190 

Total          23  4200 

 

S = 13.77   R-Sq = 5.18%   R-Sq(adj) = 0.00% 

 

Therefore, this study evaluates the response variability for each level, curing method, 

initial surface temperature, and curing temperature. A test for equal variances was 

performed (see Figures 3.13, 3.14, and 3.15). 

UC heat curing method presents the smallest variance. Dispensing at room 

temperature (85F) contributes less variation to the process. Using FR4 substrates brings 

less variation into the process. When dispensing over aluminum there is no statistically 

significant difference between Blue Insulator
TM

 (thermoplastic) and Aquaseal
TM

 insulator 

(thermoset).  
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Tests for equal variances for resistive ink 

  

Figure 3.13:  Curing method levels.        Figure 3.14:  Initial substrate temperature      

                                                                                         levels.  

 
 

 

 

 

 

 

Figure 3.15:  Substrate levels. 

3.4.2.2 Statistical Analysis for Silver-Filled Conductive Ink 

The same set of experiments was performed for the conductive silver ink. H0 and H1 

remain the same as for the resistor ink analysis. The response is conductivity, in Smm
-1

 

units. The results are shown in Table 3.7 and Figure 3.16.  

The larger variation source is the substrate, followed by the substrate temperature, 

while curing method constitutes the smallest variation source. 

One-way ANOVA is used to statistically compare the means between levels (see 

Table 3.8). 
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Table 3.7:  Response Table for Conductivity Means for Conductive Ink 
     Response Table for Means 

 

       Substrate             Curing 

Level       Temp  Substrate  Method 

1          2.011      1.572   2.183 

2          2.472      2.007   1.962 

3                     2.014   2.579 

4                     3.372 

Delta      0.461      1.800   0.618 

Rank           3          1       2 
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Figure 3.16:  Main effect results for conductivity for conductive Ink. 

  

Using a 95% confidence interval (α = 0.05), none of the variables have statistically 

significant differences among their levels. 

The null hypothesis H0 could not be rejected. There is no statistical difference 

between the three curing methods used.  

Design guidelines will be addressed based on the test for equal variances, which are 

shown in Figures 3.17, 3.18, and 3.19. 

Variables levels with less variation contribution when using silver filled conductive 

ink are the following: aluminum coated with Aquaseal
TM

 insulator, low temperature 

(85
o
F), and UC heating feature as heat source to cure the ink. 
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Table 3.8:  One-way ANOVA of Conductivity vs. Substrate, Substrate Temperature, and 

Curing Method for Conductive Ink 
One-way ANOVA: Conductivity versus Substrate 
 
Source     DF     SS    MS     F      P 

Substrate   3  11.00  3.67  1.93  0.157 

Error      20  37.98  1.90 

Total      23  48.97 

 

S = 1.378   R-Sq = 22.45%   R-Sq(adj) = 10.82% 

 
One-way ANOVA: Conductivity versus Substrate Temp  
 
Source          DF     SS    MS     F      P 

Substrate Temp   1   1.28  1.28  0.59  0.451 

Error           22  47.70  2.17 

Total           23  48.97 

 

S = 1.472   R-Sq = 2.60%   R-Sq(adj) = 0.00% 

 

One-way ANOVA: Conductivity versus Curing Method  
 
Source         DF     SS    MS     F      P 

Curing Method   2   1.57  0.78  0.35  0.711 

Error          21  47.41  2.26 

Total          23  48.97 

 

S = 1.502   R-Sq = 3.20%   R-Sq(adj) = 0.00% 

 

 

 Test for equal variances for conductive ink  

  Figure 3.17: Curing method levels.                Figure 3.18: Initial substrate temperature.  
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       Figure 3.19: Substrate levels. 

3.4.2.3 Statistical Analysis for Dielectric Ink 

The experiments were repeated for the dielectric ink. The hypotheses remained the 

same as the above results. The response is resistivity expressed in MΩmm. The results 

are shown in Table 3.9 and Figure 3.20. 

 

Table 3.9:  Response Table for Resistivity Means for Dielectric Ink 
Response Table for Means 

       Substrate             Curing 

Level       Temp  Substrate  Method 

1          48.39      48.11   49.39 

2          50.97      43.44   46.60 

3                     49.50   53.06 

4                     57.68 

Delta       2.58      13.24    6.46 

Rank           3          1       2 

 

        Substrates represent the largest variation, followed by curing method and then the 

substrate dispensing temperature. One-way ANOVA is carried out to verify statistically 

significant difference among the levels (see Table 3.10). The F value from the ANOVA is 

F = 7.02, which falls very far from the F = 1 value expected if there are no differences 

between the means. 
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Figure 3.20:  Response table for resistivity means for dielectric ink. 

The p-value p = 0.002 provides evidence that the average resistivity is different for 

at least one of the substrates from the others when α = 0.05. Thus, the multiple 

comparison results need to be interpreted to evaluate where the differences exist among 

the substrates. 

 

Table 3.10:  One-way ANOVA of Resistivity Versus Substrate for Dielectric Ink 
One-way ANOVA: Resistivity versus Substrate  
 
Source     DF      SS     MS     F      P 

Substrate   3   632.7  210.9  7.02  0.002 

Error      20   600.6   30.0 

Total      23  1233.3 

 

S = 5.480   R-Sq = 51.30%   R-Sq(adj) = 44.00% 

 

 

Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level   N    Mean  StDev  -----+---------+---------+---------+---- 

AL-aq   6  48.106  5.154         (-------*-------) 

AL-blu  6  43.437  5.752  (------*-------) 

FR4     6  49.503  6.715            (-------*------) 

Glass   6  57.678  3.921                         (-------*-------) 

                          -----+---------+---------+---------+---- 

                            42.0      48.0      54.0    60.0 
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Tukey‘s honest significant difference (HSD) test was used to provide multiple 

comparison intervals (see Table 3.11). When statistically comparing means using 

Tukey‘s test method every possible pair of treatment is considered; their means are 

substracted and compared to the critical value wα.  

 

where  is the critical value of the Studentized range distribution.  is a 

function of the significance level α, the number of treatments , and the number of errors 

degrees of freedom for the ANOVA . If the difference between the means ∆X > wα, 

we can conclude that those means are significantly different from each other [13]. 

Table 3.11:  Tukey‘s Test of Multiple Comparison Intervals for Dielectric Ink 

 
 

 

 

 

  

 

With a 95% confidence interval, our experiment has  = 4 treatments, and . = 20, 

 = 5.48, and n = 6, as shown in the ANOVA Table 3.10. In reference 13 of this paper, 

Appendix A, Table A.7, we can find that  = 3.958. Performing the calculations 

for this simple formula: wα = 8.85. 

Mean N Substrate

A 57.678 6 Glass

B A 49.503 6 FR4

B 48.106 6 AL-aq

B 43.437 6 AL-blue

Tukey's Grouping

Means with the same letter are not significantly 

different

wα = 8.855 
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When the dielectric ink is dispensed over glass it results in the highest mean 

resistivity value, thus it is not statistically significantly different from when dispensed on 

FR4, which has the second largest mean resistivity value. Nonetheless, FR4 is not 

statistically significantly different from AL-aq or AL-blue which have the two lowest 

mean resistivity values respectively, but the last two are statistically significantly 

different from glass. 

In order to formulate design guidelines for the use of dielectric inks, tests for equal 

variance were performed (see Figure 3.21, 3.22, and 3.23). 

The test for equal variances graphs indicate which level of each variable contributes 

with less variation to the process while fabricating an electrical component.  Glass 

substrate, UC and furnace curing method, and 250F substrate temperature are the 

optimum parameters in order to reduce resistivity variation. 

 

Test for equal variances for dielectric ink 

  Figure 3.21:  Substrate levels.                         Figure 3.22:  Initial substrate temperature    

                                                                                                 levels. 
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Figure 3.23:  Curing method levels. 

3.4.3 Embedding Method 

Theoretically the preferred embedding method is direct welding over the DW traces 

because it would involve less process steps. Therefore, the first attempt was to weld 

directly on top of the DW traces, 0
o
, 45

o
, and 90

o
 taking as reference the sonotrode‘s 

movement. The procedure was to apply an insulator coating with a small brush on top of 

a layer of ultrasonic consolidated aluminum 3003; with approximate dimensions of 4‖ x 

0.3‖ x 0.005‖ in order to leave some uncoated aluminum on both sides of the insulator, 

for welding (see Figure 3.24); After it dried, a conductive ink line of 50µm or 125µm was 

dispensed on top and then covered with an insulator coating with the same dimensions.  

  Welding was attempted on top of the traces using the following parameters: force = 

1750N, feedrate = 40in/min, amplitude = 160, tension = 45. The result for 0
o
 was that the 

aluminum foil did not weld (see Figure 3.26), for 45
o
 it welded very poorly, and for 90

o
 

aluminum welded on both sides but not on to the trace (see Figure 3.25). Nonetheless, the 

sonotrode partially destroyed the traces (see Figure 3.27), therefore the continuity test 

presented short-circuit failure.  
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Figure 3.24:  Experiment setup for direct embedding.  

The test was repeated in an effort to achieve successful results by doubling the top and 

bottom insulator coating thicknesses to protect the conductive line. The results in terms of 

welding were the same for all angles, but the continuity test this time presented non-

continuity electrical failure because of fatigue failure along the trace.  

 

 

 

 

 

 

 

Figure 3.25:  90
o
 direct embedding. 

 

  

 

 

Figure 3.26:  0
o
 Direct                          Figure 3.27:  DW conductive trace after    

                      embedding.                                          welding attempt. 
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The next step was to place one, two, or three strips of aluminum 1100 on top of each 

other on each side of the DW trace to reduce the pressure of the sonotrode on the trace 

(see Figure 3.28). We observed poor welding at 0
o
 and 45

o 
(see Figure 3.29) and fairly 

good welding at 90
o
 (see Figure 3.30). 0

o
 and 45

o
 failed continuity after the first welded 

layer. For 90
o
 the failure happened after subsequent layers of aluminum welded on top of 

the trace. The samples with one and two Al1100 strips failed continuity on the second 

layer and the ones with three strips failed on the third layer. None of the direct 

embedding trials were successful. 

Channels were implemented at 0
o
, 45

o
, and 90

o
.  The channels‘ dimensions were 4‖ 

x 0.3125‖ x 0.02‖ (see Figure 3.31). An insulator coating of approximately 0.01‖ in 

thickness was manually dispensed into the channel with a small flat spatula. The traces 

were dispensed and cured, and then the channel was filled up with insulator. Welding was 

successful on all samples, although the 45
o
 samples presented some difficulties due to 

foils warping during the sonotrode pass. 

 

Figure 3.28: AL1100 strips used to embed traces. 

 

 

 

 

          Figure 3.29:  0
o
 embedding with Al 1100.                  Figure 3.30:  90

o
 Embedding   

                                                                                                              with Al 1100. 
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Figure 3.31:  Experiment setup for embedding using channels. 

Thus, all samples passed the continuity test. Hence a dramatic increase in the 

resistance values of the traces were appreciated; from approximately 1.5 ohms to about 

30 ohms. For future studies, the effects of this increase will be evaluated on a circuit. 

3.5 Discussion 

3.5.1 CNC machine Uncertainty Analysis  

  After analyzing the obtained data using a 95% confidence interval, we can conclude 

that the accuracy of the XY-axis of the CNC machine is 0.000568‖ ± 0.002‖ (14.43µm 

±100µm) and its repeatability is 0.001327‖ ± 0.002‖ (33.70µm ±100 µm). This accuracy 

and repeatability are acceptable for our initial applications; fabricating conductive traces 

and passive electronic components. Therefore, the DW dispensing unit can be effectively 

utilized without further modifications to the integrated UC-DW system.  

3.5.2 Curing Method evaluation 

        The heat plate feature of the UC machine was evaluated to test its curing capabilities 

for the resistive, conductive, and dielectric inks. After conducting experiments for three 
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inks with different properties, on different substrates, dispensing them at different 

temperatures, and curing them using various methods several design guidelines are 

apparent. The optimum parameters are summarized in the following table (see Table 

3.12) 

Table 3.12:  Optimum Parameters for Each Ink 

Inks Substrate Initial 

Substrate 

Temperature 

Curing 

Method 

Conductive Aluminum 

w/aquaseal 

30C ~ 85F UC 

Resistor FR4 30C ~ 85F UC 

Dielectric Glass 120C ~ 250F UC + 

Furnace 

 

These parameters can be used as a baseline for the fabrication of electronic 

components. Nonetheless, other factors have to be considered in order to establish design 

standards for embedding in UC. When inks are dispensed on a substrate at temperatures 

near or above the suggested curing temperature, generally the binder in the fluid begins 

evaporating immediately when it comes in contact with the substrate; reducing the 

adherence properties of the material and increasing the surface roughness of the trace. 

Experimental observations include: 

- Resistive ink resistance value is a function of the trace length, and has an inverse 

relationship with the curing temperature and time. 

- Conductive ink and dielectric ink resistance value is independent of the trace 

length and is only determined by the curing temperature and time. 
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FR4 can be used as an alternate substrate, but aluminum is preferred in order to 

reduce process complexity. Glass was used as a substrate for comparison purposes, 

although it cannot be used for embedding due to its brittle properties. Aluminum with 

Aquaseal
TM

 coating proved to be a better option than Blue Insulator
TM

 in terms of 

variation reduction and temperature resistance. Among the evaluated substrates, 

aluminum with Aquaseal
TM

 insulator has the best combined effects, and will be 

recommended as the substrate to be used for all dispensed electrical traces. 

3.5.3 Embedding Method 

From the experimental results we conclude that the use of channels is more reliable 

than direct embedding; nevertheless direct embedding remains a challenge for future 

research. 45
o
 angle channels should be avoided to prevent poor welding quality issues. 

Advantages of using channels include the ability to embed components with larger 

dimensions than the tape width. It also enables the use of any set of welding parameters 

with less risk of damaging the traces. It was found, however, that care must be taken to 

make sure that the DW traces do not come in contact with the side walls of the channels 

to prevent short circuiting. 

3.5.4 Design Guidelines 

The following design guidelines were are recommended:  

- The initial substrate temperatures for each ink will be standardized as per the 

experimental results; room temperature (85F) for conductive and resistor inks and 

250F for the dielectric ink will be used. 
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- The UC heating feature proved to be effective to cure the inks; it will be used as a 

standard method to cure. The following are the process parameters to be used for 

dispensing and ink curing (see Table 3.13). 

Table 3.13:  Suggested Process Parameters 

Inks Substrate Initial 

Substrate 

Temperature 

Curing 

Method 

Curing 

Temperature 

Curing 

Time 

Conductive Aluminum 

w/aquaseal 

30C ~ 85F UC 120C~250F 10 min 

Resistive Aluminum 

w/aquaseal 

30C ~ 85F UC 120C~250F 30 min 

Dielectric Aluminum 

w/aquaseal 

120C ~ 250F UC 175C~350F 60 min 

Circuits often need electronic components with specific values to achieve good 

performance. Tests were run using the previously suggested process parameters to cure 

the inks. The approximate resistance values obtained for each ink, which can be used as 

design guidelines for the fabrication of passive components and conductive traces, are 

shown in Table 3.14.  As can be seen from this table, there is still significant variability in 

the resistance values achieved (a factor between 1.5 and 2) and thus care must be taken to 

design circuits that can work robustly over a large resistance range. 

Table 3.14:  Electrical Characterization Results 

Inks Resistance Length 

Conductive 0.7-1.4Ω independent 

Resistive 9-17Ω Per mm 

Dielectric 36-51MΩ Per mm 

Note that bulk resistivity of silver is 1.6 × 10
−5

 Ω mm [3] 
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3.6 Conclusions 

The positional uncertainty of the CNC gantry system with the Smart Pump
TM

 

installed is acceptable for simple circuit applications. Experimental results with combined 

UC/DW have enabled the development of design guidelines for the fabrication of 

conductive traces and passive components, such as capacitors and resistors.  The 

effectiveness of the UC heat plate for curing was demonstrated for the standard 

aluminum substrate with Aquaseal coating as an insulator. Curing temperatures depend 

upon the ink being used. Embedding using channels proved to be more effective in terms 

of reliability of the embedded components. Future work includes designing and 

fabricating a circuit that will be encapsulated in aluminum – as a proof of concept to 

demonstrate the integrated UC/DW system capabilities.  
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CHAPTER 4 

USE OF DIRECT WRITE TO FABRICATE EMBEDDED ELECTRONIC ELEMENTS 

AS PROOF OF CONCEPT FOR COMBINED ULTRASONIC CONSOLIDATION 

AND DIRECT WRITE TECHNOLOGIES
3
 

Abstract  

       General design and process guidelines were developed for the fabrication of 

embedded circuits using direct write to dispense passive electronic components and 

interconnects combined with Commercial Off-the-Shelf (COTS) electronic components, 

embedded into an ultrasonically consolidated metallic enclosure. Passive components 

such as resistors were fabricated in different shapes in an effort to tailor their electrical 

values. The performance of fabricated passive components was evaluated. Finally, an 

embedded touch sensor circuit with a Light Emitting Diode (LED) was fabricated as a 

proof-of-concept. 

4.1 Introduction 

  Additive Manufacturing (AM) technology has emerged from modern world needs 

for faster product development, customized end-user products, and more compact 

designs.  AM technologies produce 3-dimensional objects from digital data by adding 

layers of material together in a controlled fashion. 

                                                 
3
 Coauthored by: Ludwing A. Hernandez, Brent Stucker, Miguel Leonardo, Utah State 

University. 
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  Direct write (DW) technology, a subset of AM, have gained increasing interest from 

the electronics industry. DW is a collection of AM techniques which deposit small-scale 

traces of material, primarily to build up electronic circuitry.  These technologies offer the 

potential for low cost, customized low volume manufacturing and component integration, 

which is important for Micro-electronic mechanical systems (MEMS) industry 

development. Highly compact and light-weight assemblies are generally the target 

applications for DW. The ability of DW to print onto virtually any substrate, including 

uneven surfaces, makes it very attractive for the fabrication of components for 

embedding in polymer or metal based additive manufactured parts [1].  

 One of the most promising metal based additive manufacturing technologies for 

electronics embedding is ultrasonic consolidation (UC) due to its capability to weld metal 

in a layer by layer fashion at or near room temperature. This opens up a possibility for the 

creation of ―smart‖ structures intended for shape, size and weight constrained 

applications [2].  

 The capabilities of an integrated UC-DW system to fabricate structures with 

embedded circuits were explored and design and process guidelines for their successful 

fabrication have been outlined. 

4.2 Background 

4.2.1 Ultrasonic Consolidation for Embedding Electronic Components 

The Solidica Ultrasonic Consolidation (UC) additive manufacturing process utilizes 

solid state ultrasonic welding to manufacture components from metal foil feedstock 

directly from CAD models at or near room temperature (< 400 F). The additive welding 
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is enhanced by the subtractive capability of an integrated CNC machine, allowing 3-

dimensional objects to be formed, including objects with complex internal channels, 

multiple material objects and structures with integrated wiring, sensors and electronic 

components. The result is a monolithic part with enclosed components, without any bolts 

[3].  

UC‘s additive manufactured layers are approximately 150 microns thick, permitting 

small cavities to be built into the structure for inserting components at the right time 

during the build.  Since the UC process can be stopped and re-engaged without any harm 

to the part it is ideal for integration with Direct write technologies to produce metallic 

parts with embedded DW fabricated electronic components [3].  

4.2.2 Direct Write (DW) for Electronic Applications 

Traditional deposition techniques used in the microelectronics industry are thin film 

and thick film processes. Thin film refers to the use of chemical or physical deposition 

such as chemical vapor deposition, evaporation, spin coating, sputtering or plating to 

deposit a layer of material. Patterns are formed using photolithography or etching. Thick 

film process use screen printing to deposit ink or paste of electronic materials and then 

need to be cured at temperatures ranging from 300
 o

C to 900
o
C. Both methods require 

masks, can be expensive, time consuming and limited in feature capability. DW can be 

used to produce these same patterns, but are controlled directly by a computer-driven 

deposition tool, and can thus be used in the microelectronics industry in place of 

traditional thin and thick film processes. The same or better results can be achieved by 
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DW without the need of masks (pholithography, etching, etc.) at much lower costs and 

using lower curing temperatures [4]. 

The need for high-density microelectronics requires integration of diverse materials, 

use of nontraditional substrates, and rapid prototyping. Traditional methods such as 

screen printing and lithography become very complex processes for the requirements of 

today. CAD/CAM controlled DW is intended to precisely deposit small size functional 

and/or structural materials on to a substrate, without the use of masks [1]. One good 

example of such a method is the nScrypt Smart Pump
TM

 (see Figure 4.1), a high precision 

micro-dispensing pump currently capable of 50µm resolution printing, with accurately 

controlled air pressure timing, valve opening and dispensing with an integral suction 

function to remove all residual materials sticking on the tip; preparing it to continue the 

next dispensing without the need for cleaning [5]. With a wide range of fluid viscosity (1 

– 1,000,000 cp) the Smart Pump
TM

 is able to print almost any slurry such as conductors, 

resistors, dielectrics, magnetic materials, and chemically sensitive material structures. 

Some systems can be equipped with a laser positioning feedback system, enabling it to 

dispense on flat, curvilinear, round, flexible, irregular or inflatable substrates [6].  

According to Chrisey [1], the most used materials for electronic applications are 

silver, gold, palladium, and copper for conductive lines; polymer thick film and 

ruthenium oxide-based pastes or inks for resistors; and metal titanate-based pastes or inks 

for dielectrics. 



80 

 

 

 

 

 

 

 

 

Figure 4.1:  Schematic of the nScrypt Smart Pump
TM

 Direct-write system [7]. 

The main drawback of DW based systems is that the inks must typically be post-

processed, using methods such as thermal, laser or UV curing, to achieve the desired 

properties for most end-use applications.  

The curing process initiates the polymer flow of the solvent allowing it to evaporate 

and leaving room for the metal particles to establish contact. This final process directly 

affects the electrical properties of dispensed features. In the case of conductive traces 

with metallic nano-particles, the post-cured resistivity measurements can approach close-

to-bulk values [6]. 

4.2.3 Passive Electronic Components 

A common accepted category heading for types of electronic components are active 

and passive electronic components. Active components provide gain to current or direct 

current; for example transistors and diodes. On the other hand, passive components do 

not provide gain or direction, thus they can slow current or store electrical energy; 
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examples include resistors, capacitors, inductors and transformers. Using active and 

passive electronic components, complex electronic systems can be created [9].  

Resistance of an electric circuit is considered a scalar property which describes the 

rate at which electrical energy is converted to thermal energy. Measured in ohms, 

resistors can limit the amount of current and the potential difference in certain parts of a 

circuit. One ohm is defined as the potential difference between two points of 1 volt, 

associated to the current of one ampere (one coulomb per second) and a thermal 

dissipation on one watt (one joule per second).  Changes in resistance value are 

associated with physical, mechanical, and chemical changes in the structure and materials 

of a resistor [10].  

Direct write technologies are developing to be an enabling tool to produce well-

controlled resistance values. Most resistors for integrated electronic applications are 

required to display good tolerance from their predetermined value, and to have small 

temperature coefficients of resistance (TCR). The key to achieving a resistor with 

specific resistivity and low TCR lies in tailoring composition of the material. Two 

approaches can enable desired resistance values. Conductivity can be lowered by mixing 

a conductive ink with an insulative paste. Another method is to dispense very thin and/or 

elongated paths to achieve reproducible results. Typically, material formulations for 

direct write have to be designed for processing at temperatures below 400
o
C. The 

challenge is the achievement of proper conductive, insulative, or semiconductive phases 

without relying on high temperature sintering [1]. 
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Capacitance is a physical property enabled by two electrically conductive surfaces 

separated by a dielectric material, such as air, vacuum, or any material of very high 

resistivity. When an electrical potential is applied across the conductive plates the charge 

is drained from one conductive surface and accumulates in the opposite; the extent to 

which this phenomenon occurs depends on the time and amount of voltage applied. The 

farad, unit of capacitance, is defined as the amount of capacitance that will produce a 

current of one ampere during a voltage change of one volt per second (1 farad = 1 

coulomb per volt). Because the farad is a large measurement typically picofarads (10
-12

), 

nanofarads (10
-9

), and microfarads (10
-6

) are used [10].  

4.2.4 Embedded Electronics 

  The development of embedded passive electronics, active component interconnects 

and power source elements opens opportunities for new levels of miniaturization. By 

embedding circuits inside a part a significant weight and size reduction can be achieved. 

Moreover, embedded circuits typically show enhanced electrical performance and 

enables function integrations to create ―smart‖ structures [11].  

 Patent application number US20070040702A1 ―Method for Creating Highly 

Integrated Satellite Systems,‖ describes a process for fabricating integrated satellite 

systems and electronic systems using advanced additive manufacturing techniques, such 

as ultrasonic consolidation and direct write. Integrating ultrasonic consolidation with 

direct write capabilities provides the ability to create features such as encapsulated 

devices, directly from a computer aided design (CAD) rendering, with the ability to 

automatically write networks of conductive, resistive, and insulator material traces on 
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conformal surfaces directly onto one or more internal or the external surfaces of the 

structure to perform a predetermined function. Employing the mentioned technologies 

provides the ability to fabricate structures with encapsulated electronics and 

computational and processing components, as well as wiring, sensors and antennas within 

a dense metal matrix, such as aluminum. This process can be carried out in a single 

operation flow at relatively low cost and high flexibility for design changes; having as a 

result high performance products. The main advantage of this process is the complete 

elimination of tooling as well as enhanced geometric complexity, novel material 

combinations, and reduction of human-related errors in manufacturing. As a result, 

production times can be significantly reduced from months to days by automating 

traditionally labor-intensive operations [12].  

4.3 Experimental Plan 

A previous paper titled ―Design and Process Guidelines for Effective Fabrication of 

Structures Combining Direct Write and Ultrasonic Consolidation‖ describes dispensing, 

curing, and embedding methods. These guidelines were implemented to design and 

fabricate a proof of concept part involving an aluminum enclosure with insulator coating, 

DW passive components, commercial off-the-shelf (COTS) surface mount actives and 

passives, all interconnected by DW conductive traces and embedded using UC.  

To show DW-UC integrated system capabilities, an embedded touch sensor circuit 

was fabricated using DW passive components and surface mount COTS components. The 

circuit was fabricated in the order described in the process flow chart. As per the 

previously developed design guidelines the touch switch was printed onto a continuous 
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surface of aluminum 3003 to prevent from short circuiting; previews coating of the 

surface with thermo set insulator was done by hand with a pallet to insulate the 

dispensing area. It was applied and dried at room temperature to obtain an acceptable 

surface flatness. Because the width of the channel is greater than a tape width the part 

was build at 45
o
 angle to completely cover it. The conductive traces were dispensed onto 

the insulator preventing them to touch any un-insulated aluminum surface or corner. The 

resistors where obtained with the required values using lessons learned from the resistor 

tailoring experiments.   

4.3.1 Touch Sensor Design 

The objective of the part is to light a light emitting diode (LED) when a certain 

interconnecting line is touched, which stays on until touched again. A circuit was 

designed to perform the touch sensor function [13, 14] (see Figure 4.2).  

A combination of embedded DW printed components and COTS was implemented 

for the fabrication of a human touch sensor. 

 

 

 

 

Figure 4.2:  Touch switch circuit. 
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This circuit was designed with a ―555 timer‖ integrated circuit (IC) that senses human 

capacitance, when touched it triggers a logic pulse (0 or 1) to a SN74F112D ―J-K 

negative-edge-triggered flip-flop‖ IC, which 

upon the received signal opens or closes the current flow to the output. In addition to the 

mentioned IC‘s the circuit required four resistors (200ohm, 400ohm, 100Kohm, 

10Mohm), four capacitors (300pF, 10uF), and a light emitting diode (LED). Three 

resistors and a capacitor were fabricated using DW technology as well as the 

interconnecting conductive traces, the rest of the parts are COTS components. 

When touched in a specified trace the electronic circuit lids a Light Emitting Diode 

(LED) that stays on until it is touched a second time to turn it off. In this particular case 

our final product did not have any size constraints or requirements, thus the metallic 

structure was designed so it can hold the interconnected electronic components. 

4.3.2 Direct Write Embedded Structure Process Guidelines 

The process plan to fabricate the embedded component will be explained in this 

section. Considering the aforementioned design guidelines, the process to fabricate an 

embedded circuit including resistors, capacitors, COTS components and conductive 

traces embedded in a UC enclosure is in Figure 4.3. 

In general, to fabricate DW circuitry including external components embedded in a 

metallic substrate, first weld the base of the part; make sure it is completely flat. Drill the 

channels needed with the minimum possible width and enough clearance so that the 

sonotrode does not apply force directly onto the parts. 

http://focus.ti.com/docs/prod/folders/print/sn74f112.html#SN74F112D
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Figure 4.3:  Flow chart to fabricate embedded circuitry in a metallic enclosure. 

Dispense or manually apply two layers of thermo set insulator onto the metallic substrate 

to prevent circuit shorting. Start by dispensing the conductive ink interconnecting traces 

and the bottom capacitor layer; then cure. After cooling, dispense a shape with dielectric 

ink on top of the previously deposited conductive layer and cure. Cool the substrate again 

and finalize the capacitors by dispensing the top conductive layer and cure. Make sure the 

top and bottom conductive layers never come in contact, thus leave out a trace connected 

to each conductive plate to interconnect the capacitor with the rest of the system. Next, 

resistors need to be dispensed. Proceed to glue the COTS components in their places 

using conductive epoxy. Test that the circuit is operating correctly and cover it with 

thermo set insulator. Finally, weld on top of the channels until the part is finished. 

Remember to design appropriately the connections for the voltage source and the output 

signal. 

4.3.3 Resistor Tailoring Study 

There are two ways of tailoring resistor values when printing: by controlling the 

length and width or by mixing resistive and dielectric material. A study was performed to 

create guidelines for the fabrication of resistors with specific ohmic values based on 104-
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18 Electrical Resistor Ink. The used substrate was Aluminum 3003 with Aquaseal 

thermoset polymer coating. The samples were cured with the UC machine heat source at 

250F for 30 minutes. A tip size of 150µm was used to dispense the resistive ink. The 

purpose of the study was to determine which shows a higher resistance value in order to 

reduce space requirements for resistors in any given circuit. The printed shapes were 

0.7in x 0.8in rectangles, 2in straight lines, 1in long step function shape, and 1 in long 45
o
 

and 60
o
 angles triangular function shape (see Figure 4). A second study was performed in 

an effort to achieve high ohmic value resistors. Resistive and dielectric ink was mixed by 

volume in the following percentages: (resistor-dielectric) 70%-30%, 50%-50%, and 30%-

70%. A 0.25 inch long, 0.02in line width was used. 

 

   

 

  

 

 

Figure 4.4:  Resistors: a) rectangle, b) straight line, c) step function, d) 45
o
 triangular 

function, e) 60
o
 triangular function. 

 

 

 

 

a) 

b) 

c) 

d) 

e) 
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4.4 Results and Discussion 

4.4.1 Building Process for an Embedded Touch Sensor Circuit 

The touch sensor circuit was sketched in AutoCAD, then was converted to Gcode to 

DW fabricate resistors, capacitor, and interconnecting conductive lines (see Figure 4.5).  

The enclosure was modeled in Solid Edge with the appropriate dimensions to hold 

the previously designed circuit (see Figure 4.6). The general process flow explained 

before was used as guideline for the fabrication of an embedded touch sensor. 

 

 

 

 

 

Figure 4.5:  Drawing of the touch sensor circuit including COTS components. 

 

 

 

 

 

 

 

Figure 4.6:  CAD model of touch sensor metallic enclosure. 
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4.4.1.1  Base part formation 

 Welding is a crucial step since it is the housing to the embedded electronics and must 

be able to completely hold the components on an internal or external surface. It is 

important to consider that the traces should be printed onto a continuous surface to 

prevent short circuiting. Since our machine is designed to automatically feed 0.9 inches 

wide aluminum tapes, when traces are printed onto a typical UC surface, short circuits 

can occur at periodic small gaps between foils (see Figure 4.7). 

  This fault can be prevented in two ways: by welding metallic sheets which cover the 

entire area of the circuit (which eliminates gaps between foils) or by using the aluminum 

base plate as the substrate on which to print the circuit and then continue building over it 

until the part is finished. Our part was able to be fabricated by machining a channel into 

the aluminum base plate, onto which the traces were printed and then embedded. 

 4.4.1.2 Machine channels and features 

  The channel was designed deeper than the highest embedded component to prevent 

the sonotrode from smashing it while embedding. 

 

 

 

 

Figure 4.7:  Sketch of gaps between aluminum tapes.  
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It may have different levels, but no trace should come in contact with an edge of the 

channel because the insulator is not capable of protecting the corners and the circuit will 

short when coming in contact with the metal (see Figure 4.8). 

4.4.1.3  Apply substrate insulator coating 

The insulator coating used was Aquaseal
TM

, which is electrically nonconductive. It 

was manually applied with a plastic pallet at room temperature to obtain a flat and 

smooth surface for the direct write tip; to maintain a constant height in order to print 

constant thickness traces (see Figure 4.9). 

 4.4.1.4 Dispense inks (Conductive, dielectric, resistive) 

Inks were printed in a continuous manner to enable current flow (see Figure 4.10). 

The width of the traces affects the conductivity of resistor inks; however for conductive 

inks the difference is negligible. The touch sensor includes two direct write manufactured 

resistors with 200Ω and 400Ω values, which were tailored to those values by varying 

length while maintaining constant line width (see Figure 4.10). 

 

 

 

 

 

 

 

 

Figure 4.8:  Machined aluminum 3003 part base. 
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Figure 4.9:  Aquaseal themoset insulator coating. 

4.4.1.4.1 Resistor tailoring study results  

The average resistance results for the printed shapes (2in straight lines, 0.7in x 0.8in 

rectangles, 1in long step functions shape, 1 in long 45
o
 and 60

o
 angles triangular 

functions shape) were 280Ω, 59Ω, 4.62KΩ, 3.18KΩ, and 2.25KΩ respectively. This 

illustrates that thin elongated lines give higher resistance values. The step function kind 

of a shape was used to obtain 400Ω and a straight line, 200Ω resistance. 10MΩ and 

100KΩ resistors were also required for the touch circuit. An ink mixing study was 

performed in an attempt to DW fabricate high value resistors. The results for the resistor 

and dielectric ink mixing (70%-30%, 50%-50%, 30%-70%) were approximately 400Ω, 

1KΩ, and 15MΩ, respectively, though the used Inductance-Capacitance-Resitance (LCR) 

meter showed up to 35% variability in the measurements for the 15MΩ resistor. 

For this experiment surface mount COTS resistors were used, as the repeatability of 

high resistance traces using ink mixtures was low. Future studies will include variation 

reduction studies for high value resistor tailoring. 
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Figure 4.10:  DW fabricated passive components interconnected with silver-filled    

                      conductive traces. 

 

4.4.1.5 COTS components mounting 

  Surface mount COTS components were adhered to their correct locations after all 

DW traces were printed. Silver-filled epoxy was used to paste the surface mount 

components by their pads to the conductive traces (see Figure 4.11). The use of silver-

filled epoxy enhances the contact between the already cured traces and the COTS 

components to improve conductivity as opposed to just making surface contact onto the 

conductive traces.  

 

 

 

 

 

Figure 4.11:  Touch sensor circuit with lid LED. 
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4.4.1.6  Apply top insulator coating 

 A study was carried out to compare the resistance values of the conductive and 

resistive traces before and after an insulator layer was applied onto them as well as after 

embedding in a channel. The samples used were 3 inches long and 150 µm wide 

embedded in channels 4 inches long by 0.325 in wide. The following are the results (see 

Table 4.1): 

Table 4.1:  Average Resistance for Conductive and Resistive Inks 

Ink Before top 

insulator coating

After top 

insulator coating 

applied

After 

embedding

E1660 Polymer Thick Film Conductive

Silver Coating
1.4 Ω 2.2 Ω 1.8 Ω

104-18 Electrical Resistor Ink 360 Ω 372 Ω 365 Ω

Average resistance

 

  

  The observed resistance fluctuation phenomena after the top insulator coating dries 

is attributed to particle interchange between the interfaces. Since the insulator is non-

conductive the particles that come in contact with the conductive trace surface causes its 

resistance value to rise. The substrate was heated up to 250
o
F for better welding while 

embedding, simultaneously further curing the inks, which causes the resistance value to 

decrease. Optical microscope pictures were taken to learn about embedded trace 

interfaces with the insulator and the metallic structure (see Figure 4.12). 

  The observed cracks in the traces that were embedded without channels resulted in 

discontinuities along the matrix, which disabled the current flow through the conductive 

line. The channel method was used to embed the touch sensor circuit. 
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Figure 4.12:  Embedded traces: a)front view of embedded trace with no channel,   

              b) front view of embedded trace with channel, c) top view of trace    

              surface that was embedded without channel, d) top view of trace that   

              was embedded using a channel. 

 

The channel height after insulator coating application was 0.16 in, leaving a clearance of 

0.08 in from the tallest embedded components, which are the integrated circuits (IC) with 

a height of 0.08in max.  This proof of concept part was not completely encapsulated in 

order to leave exposed the traces that actuate the system when touched, as well as the 

battery that powers the circuit, which eventually will have to be replaced. For future 

demonstrations, similar circuits can be completely embedded, but for initial 

demonstration purposes a gap was left on a side of the structure to connect the battery. 

  The resulting circuit is powered from a 12 volt battery connected to the traces using 

regular flexible wire (0.016 outer diameter (OD)) adhered from the battery poles to the 

conductive traces with silver filled conductive epoxy. Three LEDs were connected to the 
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traces with conductive epoxy. A touch lit the LEDs, staying on until touched again, 

indicating that the circuit is working properly. 

4.4.1.7  Embedding Process 

 The part was built at a 45 degree angle with respect to the sonotrode welding 

direction to help the embedding process. The channel that contains the circuit has the 

width of 0.09 inches, which is close to the default aluminum 3003 tape on the machine, 

thus the part would not be possible to embed at a 0 degree angle. It was possible to 

embed at a 90 degree angle but 45 degree results in a more robust welding for 

encapsulating relatively wide channels without the use of support material. 

 4.4.1.8 Testing of the DW circuitry 

 In each stage of the process the DW dispensed traces were tested to check their 

proper function, continuity, and resistance value. Two resistors were tailored to a 

resistance value of 200Ω and 400Ω and their values were re-measured after each 

subsequent step and their values remained within a 10% range. Also non-continuity was 

tested for traces that are very close to each other. Capacitance was measured for the 

fabricated capacitor of 300pF. The COTS components were adhered to the conductive 

traces; continuity was assessed to check for proper positioning. Finally, the LED 

responded to touch, as a proof that everything in the circuit was properly installed. 
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4.4.2  Benefits of the Integrated System 

  The integration of the Solidica Formation
TM

 ultrasonic consolidation machine and 

the Smart Pump
TM

 100 direct write nozzle into a single apparatus enables the fabrication 

of novel structures with embedded circuitry impossible to achieve by traditional 

manufacturing methods. The UC machine can manufacture metallic parts in a layer-by-

layer fashion by ultrasonically welding metal foils (i.e., aluminum, stainless steel, copper, 

and titanium) at near-room temperature. On the other hand, the direct write nozzle can 

print traces of inks, pastes or slurries, directly from a digitally predefined sketch, onto 

any flat surface to create complex shaped electrical paths.  

  The UC-DW apparatus at Utah State University main benefit is its ability to rapidly 

fabricate custom ―smart‖ metallic structures with complex shaped embedded electrical 

traces without the use of tooling or masks. These kinds of structures are very useful for 

applications such as data acquisition through sensors or antennas located within the 

structure, as well as computational and processing components. 

 The direct write Smart Pump
TM

 100 attached to the UC gantry system has the 

capability of printing active and passive electronic components such as transistors, 

diodes, batteries, resistors, capacitors, inductors, transformers, and antennas with high 

accuracy. It was tested with the successful fabrication of resistors, capacitors and 

conductive traces with a printing accuracy of line widths down to 0.003in and distances 

between two lines down to 0.01in.  
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 The UC-DW system in the Additive Manufacturing Laboratory at Utah State 

University will be used in the future to fabricate custom metallic parts with embedded 

electronics for naval and other applications. 

4.4.3 Limitations of the Integrated System 

  Although the UC-DW system at Utah State University is ready to fabricate custom 

embedded structures some limitations may be considered during the planning and 

fabrication stages of embedded parts.  

  The integrated system faces some software limitations. Before dispensing any given 

set of traces these have to be sketched and converted to Gcode. Commercial software is 

utilized for these purposes; hence Gcode optimization is done manually in a text editor. 

Manually revising a couple of Gcode pages can take several hours and can also generate 

new errors in the Gcode that then need to be manually fixed.  

  Since the software used by the Solidica UC machine was not modified to include 

functions of the nScrypt DW system, the nozzle is manually activated by a push button. 

For this reason accuracy limitations are faced during the fabrication stages. It is possible 

to obtain feature sizes down to 0.01 in (―Feature‖ in this context is referred as the 

distance between two traces that cannot touch each other.) Features smaller than 0.02 in 

are only obtained using pen tips with OD of 0.002 in or smaller while also tightly 

controlling parameters such as air pressure, valve opening position, valve opening speed, 

and gantry moving speed. Ink dispensing starts and stops are key process steps that 

should be controlled by achieving the correct combination among the mentioned 

parameters for each specific ink rheology. ―Dispensing height‖ is a variable that is 
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limited by the operator‘s intervention limiting the traces width repeatability. All these 

limitations result in less overall printing accuracy and can be improved by adding 

automation to the system, such as a PLC for automated starts and stops and a laser 

feedback positioning system for controlled dispensing height as well as enabling printing 

over 3D surfaces. Although these limitations exist the system was successfully used to 

fabricate electronic circuits including conductive wires, resistors, and capacitors with 

features down to 0.015 in.  

4.5 Conclusions 

  The fabricated embedded touch sensor has demonstrated that the DW-UC integrated 

system is capable of producing complex shape aluminum parts with embedded circuitry. 

―Smart‖ structures can be fabricated for applications that need electronics protected from 

harsh environments or where size and weight of multi-functional parts are a constraint.   

  Some improvements to the UC-DW system would be beneficial for future studies. 

Further automation of the machines‘ intercommunication by including in the ultrasonic 

consolidation Gcode program a function for the activation and deactivation of the DW 

valve‘s routines would be highly beneficial for the quality and reliability improvement of 

the traces and passive components. Installing the conformal printing feature to this 

system would constitute a solid step towards a wide range of fabrication possibilities, 

including 3-dimensional circuitry. Finally, it would be interesting to add the video 

recording option to the camera that the system already holds for presentations and 

teaching purposes.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

 This thesis constitutes one of the first steps towards the combination of two 

promising technologies, Direct Write and Ultrasonic Consolidation, that will likely have 

an important impact in the future of Direct Digital Manufacturing. It was demonstrated 

that ―smart‖ integrated structures can be fabricated using the Ultrasonic Consolidation 

and Direct Write. A touch switch was fabricated as a proof of concept to demonstrate the 

capabilities of the integrated system.  

5.1.1 Direct Write and Ultrasonic Consolidation Integration 

 A Direct write dispensing nozzle system was integrated to an Ultrasonic 

Consolidation apparatus for the first time. The Smart Pump
TM

 was chosen as the ideal 

equipment for the integration with the Solidica Formation
TM

 ultrasonic consolidation 

machine due to its small size, reduced weight and dispensing capabilities. A safe, yet 

accessible place to install the nozzle and the control box to the ultrasonic consolidation 

machine was determined. A manual slider with graduated knob was used to attach the 

pump to the UC gantry system enabling the pump to have multiple positions. The 

systems where electronically integrated using a smart relay, enabling to work in a semi-

automatic fashion. A process plan for the use of the UC-DW integrated system was 

standardized and used as reference for all the subsequent experiments.  
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5.1.2 Uncertainty Analysis 

 The accuracy and repeatability of the CNC gantry system in the Ultrasonic 

Consolidation machine was evaluated using an indirect method, which consists on 

building a certain part and then measuring key points.  This study demonstrated that the 

CNC positioning accuracy of ± 0.004‖ and a repeatability of ± 0.001‖ with a 95% 

confidence interval. This uncertainty was considered acceptable for our applications in 

embedded electronics. 

5.1.3 Curing Method  

  Design guidelines for each direct write ink (resistive, conductive, and dielectric) use 

in combination with the UC machine was evaluated through statistical analysis. The 

variables included were three curing methods (UC heat, furnace, and a combination of 

UC and furnace), four substrates (Aluminum with thermo set polymer coating, aluminum 

with thermo plastic polymer coating, Fire Retardant (FR4) polymer and glass) and two 

initial dispensing temperatures (85
o
F and 250

o
F).  The optimum parameters where 

determined maximizing conductivity for the conductive ink, while minimizing it for the 

resistive and dielectric inks. For the conductive and dielectric inks the best initial 

substrate temperature to dispense is 85
o
F, thus the dielectric ink conductivity is lower 

when dispensed over a substrate heated to 250
o
F. The conductive ink best conductivity 

occurs when dispensed onto aluminum with thermo set coating using the UC heat plate 

feature. The conductivity is lowered for the resistive ink when dispensed onto FR4 and is 

cured using the UC heat plate. Finally, the dielectric ink has lower conductivity when 

dispensed onto glass and cure combining UC and furnace. When using E1660 silver filled 
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conductive ink, dispensed in traces of 150µm or less and cured at 250
o
F for at least 10 

minutes, resistance values between 0.7Ω and 1.4Ω can be expected, the length of the 

trace is negligible. Many variables influence the value of the resistors, nonetheless in 

these initial experiments traces of approximately 150µm width where dispensed and 

cured for 30 minutes in the UC heat plate; values between 9Ω and 17Ω were obtained. 

Finally, the dielectric ink was also dispensed in 150µm line width and cured for 60 

minutes on the heat plate; getting results in the ranges of 36MΩ to 51MΩ. These values 

were taken as a guideline for the upcoming experimentation. 

5.1.4 Embedding Method 

  It was demonstrated that using a channel of slightly higher depth than the thicker 

component to be embedded is a more reliable method than direct embedding and gives 

more flexibility for COTS component embedding combined with direct write fabricated 

components. When embedding at 45
o
 from the sonotrode movement some unbonded 

areas where observed. The same did not happen for 0
o
 and 90o embeddings.  For 

channels of less than 0.3‖ wide 0
o
 and 90

o
 orientation are recommender and 45

o
 for wider 

channels. While setting up the build remember to arrange the foils positioning so the 

edges are decoupled resulting in a brick-wall kind of orientation.  

  Using a conductive material such as aluminum to encapsulate electronics requires 

placing an insulator coating onto the substrate and on top of the traces prior to 

embedding. Sheet foils of material are required for the substrate where the traces are 

printed; conductive lines can easily short circuit in the small gaps between inherent to the 

tape deposition ultrasonic welding process.  
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5.1.5 Resistor Tailoring 

 Experiments to tailor resistors where done by varying the shapes of the lines and 

mixing the resistor ink with dielectric ink, which has a much higher resistive value. The 

step function shape resulted in greater resistance values than the triangular wave shape, 

the straight line and the filled rectangle. By mixing inks in different percentages a wide 

range of resistors values where obtained, from 400Ω to 15MΩ in 0.25‖ length samples. 

Nonetheless, the values were not easily repeatable,thus three different resistors where 

fabricated as concept proof for the touch switch, with 200Ω, 400Ω, and 100KΩ. Future 

studies can include the fabrication of resistors with specific values. 

5.1.6 Touch Switch Design 

  Based on the results from the performed experiments integration of DW and UC, 

uncertainty analysis, curing method, embedding method, resistor tailoring, a circuit was 

designed for the fabrication of an embedded touch switch. The enclosure was done by the 

UC machine and the circuitry by direct write plus several COTS components. The 

developed design and process guidelines were used and a ―smart‖ part with an embedded 

touch switch was successfully fabricated as a proof of concept.  

5.2 Future Work 

  Taking as a base line the work presented in this thesis, further work can be done to 

improve the UC-DW system and its performance. 
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5.2.1 Direct Write and Ultrasonic Consolidation Integration 

  It is suggested for future studies to do an upgrade of the UC-DW system to work 

automatically. The PLC can be modified to include commands for the direct write pump 

directly from the programs Gcodes. A laser feedback system can also be added to the 

current system to enable printing over conformal substrates. 

5.2.2 Curing Method  

 Other curing methods can be studied to increase the repeatability of the DW 

dispensed components, for example a laser can be suggested as curing method and it will 

reduce the waiting time for the plate to chill to room temperature and might give more 

stable resistance results. Other insulator coating, as well as other inks can be explored. 

5.2.3 Embedding Method 

  Studies can be performed to embed 3D circuitry by printing onto several levels 

within the structure or different external faces. The laser feedback positioning system 

would be of great utility for this application. 

5.2.4 Resistor Tailoring 

  There is great potential with the passive components that can be fabricated using the 

Smart Pump
TM

. A variation reduction study can be done for the direct write fabrication of 

resistors, as well as capacitors, and the fabrication of inductors can be implemented for 

future studies. 
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5.2.5 Proof of Concept Part 

  The UC-DW integrated system has a big potential and additional work needs to be 

done to answers many questions that remain unanswered. Different DW materials can be 

explored for a wide range of applications. This work has laid a foundation for future work 

to be done in any of the aspects already studied or new ones such the integration UC and 

DW with integrated FDM apparatus, for the fabrication of a proof of concept part with a 

specific applications for an industry or government institution. 
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APPENDIX A 

UC – DW SYSTEM GUIDEBOOK 

Gcode programming: The Gcode should be arranged in a way to minimize the 

dispensing starts and stops or maximize line length in order to achieve better quality.  

 

Direct write material set up: Usually materials need to be thoroughly mixed to a uniform 

consistency using a plastic or stainless steel spatula. Mix slowly to avoid the creation of 

bubbles. After intake to the syringe put the syringe in an upright position and wait for 

several minutes (if more viscous wait more minutes) for the bubbles to go away. 

 

Pre-dispensing check: After setting up the Smart PumpTM with material in the syringe, 

but before using the system, it is recommended to check for any misalignment that the 

Smart Pump might have suffered. Place a level on top of the slider knob and manually 

correct any possible misalignment in the X direction and in the Y direction; also check 

the slider back for correct positioning of the vibration damper. 

 

Dispensing height: A good dispensing height is 0.006‖. An aluminum 3003 foil with that 

thickness can be used for the first time dispensing height set up and the graduated knob of 

the slider can be used for subsequent repetitions of the same dispensing height. 
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Substrate temperature: It is usually better to dispense with the substrate at room 

temperature. Heating up the plate causes more clogs in the pen tip as well as a fast drying 

effect in the ink that changes the surface texture of the trace and degrades its adhesive 

properties. 

 

Pen tip size: Pen tips sizes offered by nScrypt Inc. go from 25µm to 175 µm (0.00098‖ to 

0.0069‖) outer diameter (OD). If the diameter of the pen tip is smaller the trace width will 

be less. A general rule researched by nScrypt is that the solid particles in the ink must be 

10 times smaller than the inner diameter of the pen tip for flow to occur. 

 

Dispensing parameters: To print good quality traces a good combination of parameters 

should be obtained for each material rheology. The following are the parameters that 

must be controlled: 

 

Material feed pressure: The applied air pressure depends upon the ink rheology and will 

determine the flow speed. Establish air pressure as low as possible to avoid excess of 

material flow.   

 

Valve opening position: This parameter opens a gap that enables the flow of material. It 

is good to fairly open the valve to prevent clogging. 
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Valve closing position: Is used to stop the flow. It should be as close as possible to the 

valve opening distance to reduce material that stays in the chamber and is expelled when 

dispensing reinitiates. 

 

Valve opening speed: It is recommended to set it up at slow speed to prevent the fast 

expel of material in the chamber when dispensing starts. 

 

Valve closing speed: Fast valve closing speed is helpful for precise stops. 

 

Substrate: The electro conductive traces must never come in contact with conductive 

substrates; an insulator must be applied before printing the traces. The flat substrate must 

always be firmly attached to prevent unwanted movement. 

 

Side clearance: A minimum clearance of 0.02‖ should be left from any channel side wall 

if the depth of the channel is .2‖ or less. For deeper channels the clearance must be 

evaluated. 

 

Capacitors: To build a capacitor three layers are need in a sandwich form. Conductive 

layers on top and bottom and dielectric in the middle. Capacitor‘s value is dependent 

upon the material properties, nonetheless it increases with contact area between the 

conductive plates and dielectric plates; hence the top and bottom conductive plates cannot 

make contact with each other.  
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Resistors: The resistor‘s values are dependent upon the utilized ink; nevertheless there 

are two ways in which resistor values can be tailored: By printing thin traces in non 

straight shapes that prevent current flow and/or by mixing resistive inks with other 

resistive inks, thinner or dielectric inks to significantly increase the resistive value of the 

ink. High resistor values are unrepeatable.  

 

COTS Components Mounting: Conductive traces must be printed to match the off-the-

shelf components contact fingers. Using silver filled adhesive COTS can be glued to the 

conductive traces. 

 

Potting: The ideal potting epoxy should be a heat dissipater, electrically non conductive, 

and ideally it should serve as support material for the top layers. 

 

Embedding: The contact area where the foils are welded need to be clean and clear of 

any obstruction for good ultrasonic welding results.  
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APPENDIX B 

PERMISSIONS 

This appendix includes the required permissions for publication of the papers presented 

as Chapters 2-4 and Appendix A of this thesis. 
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