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ABSTRACT 

 

 

Object-based Segmentation and Classification of One- 

Meter Imagery for Use in Forest Management Plans 

by 

W. Kevin Wells, Master of Science 

Utah State University, 2010 

Major Professor: Dr. R. Douglas Ramsey  

Department: Wildland Resources 

 

 This research developed an ArcGIS Python model that extracts polygons from 

aerial imagery and assigns each polygon a vegetation type based on a modified set of 

landcover classes from the Southwest Regional Gap Analysis Project.  The model 

showed an ability to generate polygons that accurately represent vegetation community 

boundaries across a large landscape.  The model is for use by the Utah Division of 

Forestry, Fire, and State Lands to assist in the preparation of forest management plans. 

The model was judged useful because it was easy to use, it met a designated 50% 

threshold of useable polygons, and it met a designated 50% threshold of vegetation class 

assignment accuracy. 

  

(56 pages) 
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BACKGROUND 

 There is a need for an automated process to develop vegetation landcover maps at a 

scale appropriate for use in forest management plans within the Utah Division of 

Forestry, Fire and State Lands (Division).  Currently Division foresters use digital aerial 

photographs and geographic information systems (GIS) to manually digitize polygons 

around vegetation communities for inclusion in management plans.  The polygons are 

assigned a landcover class by the forester; e.g., aspen, spruce-fir, etc.  This workflow can 

be difficult and time consuming for foresters who use GIS infrequently.  This process can 

be automated and standardized using consistent inputs coupled with digital image 

processing algorithms, thereby becoming easier to implement, requiring less time, and 

providing an output that is repeatable and useful in the preparation of forest management 

plans. 

 In order to successfully meet the needs of land managers, the model developed here 

must meet three criteria.  First, the model must be easy to use.  Second, the model must 

segment an aerial image into polygons of vegetation types at a scale useable in forest 

management plans.  Third, the vegetation types assigned to the segmented polygons must 

be accurate.  Advancements in image segmentation and GIS tools plus the ready 

availability of high resolution aerial imagery make the creation of such a model feasible. 

Many different digital image segmentation and classification methods have been 

developed over the years.  For reviews of image segmenting algorithms see Pal and Pal 

(1993), Skarbek and Koschan (1994), Egmont-Petersen et al. (2001), and Zhang et al. 

(2007).  Image segmentation algorithms can be divided into two generic types:  1) pixel-

based classification and 2) object-oriented classification.  I focus my work on the latter 
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type.  More specifically, I wish to segment imagery into the various contextual 

components, or objects, that make up a given landscape.  

Pixel-based classifications focus primarily on the spectral properties of pixels, 

often combined with ancillary data to provide geographic context.  These classification 

methods were developed at a time when image spatial resolution was too coarse to detect 

individual features on a given landscape. 

Object-oriented classifications focus on groups of pixels that constitute an 

“object” in the image.  In the context of this study, a meadow or a stand of conifers are 

two examples of vegetation objects.  Object-oriented classification is a relatively new 

class of algorithms that have been developed to focus not only on the spectral properties 

of features, but also their shape, orientation, and adjacency to other features.  These 

classifiers are generally termed feature extraction or object-oriented classifiers.  Object-

based image analysis (OBIA) is an emerging field (Lang and Blaschke 2006) that seeks 

to extract complex information from remotely sensed images.  Hay and Castilla (2006) 

propose that OBIA be considered a sub-discipline of GIScience.  This sub-discipline is 

referred to as GEOBIA.  On August 6-7, 2008 the University of Calgary hosted the first 

ever conference on this sub-discipline that uses the new name (GEOBIA 2008). 

 Castilla (2004) and Castilla et al. (2007) describe two very similar object based 

segmentation workflows that create polygon output around vegetation objects in aerial 

imagery.  The workflows contained these steps. 

• Apply a smoothing algorithm to an aerial image to reduce inter-pixel variance 

thereby increasing homogeneity within vegetation type objects. 
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• Use Euclidean distance or another distance measure to calculate dissimilarity 

between vegetation objects creating a raster that is a gradient of the dissimilarity. 

• Apply a partitioning algorithm to segment the image into individual objects. 

• Vectorize the image to create polygons that represent vegetation objects. 

This research seeks to develop a computer model that meets the needs of Division 

foresters to derive a vegetation data layer from aerial imagery for use in forest 

management plans.  It will use as inputs the readily available one meter 2006 aerial 

imagery from the National Agricultural Imagery Program (NAIP) and landcover classes 

from the Southwest Regional Gap Analysis Project (SWReGAP) (USGS National Gap 

Analysis Program 2004).  In essence, the model will extrapolate SWReGAP land cover 

classes to a finer scale making them useful in Division forest management plans. 
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THE RESEARCH PROBLEM 

 

 

 Humans can readily discern vegetation patterns in remotely sensed imagery and can 

draw polygons around vegetation types.  Transferring this ability to a computerized 

system consisting of statistical and object-oriented classification algorithms has been a 

major thrust in remote sensing research for many years.  Blaschke (2010) reviews pixel-

based and object-based efforts to identify objects from remotely sensed data over the last 

few decades with special emphasis on object-oriented methods of the current decade.  

Pixel-based classification workflows do not easily partition landscapes into logical forest 

stands or community types when using fine resolution imagery. 

 Consider the aerial photograph in Figure 1.  A typical human analyst can readily 

identify and combine the various landscape components into a small set of logical 

categories.  If the mapping objective is to identify areas of similar cover, the human 

analyst can easily filter out the individual trees or shrubs and place them in the context of 

a community.  Pixel-based classification systems are, by design, focused on individual 

pixels and cannot innately combine individuals into a larger context.  

 The output for a pixel-based classification algorithm of the same area is shown in 

Figure 2.  In this example, the clustering and classification algorithm generated four 

clusters which correspond to a simple segmentation of landscape components.  The end 

result has a salt and pepper look to it with each pixel assigned to one of the four classes 

without considering the relationships between pixels. 

 The problem for this project then is how to create a relatively simple, automated 

process that segments high-resolution imagery into vegetation types based not upon 
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individual pixels but upon the larger vegetation objects within an image, i.e. a stand of 

trees. 

 

 

Figure 1.  Aerial photograph of mountain area. 

 

 

Figure 2. Salt and pepper effect of pixel-based classification. 
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Objective and Thesis Statement 

 The objective of this research is to develop a model useful to Division foresters in 

the development of forest management plans that automatically segments 1-meter aerial 

imagery into polygons representing vegetation types and assigns each polygon a 

vegetation type.  This objective can be stated as a research question:  Can a GIS model be 

created that is easy to use and that automatically and accurately segments aerial imagery 

into a vegetation data layer that would be useable in forest management plans?  

 

The Study Area 

 Data covering an 18,000 acre area of state, private, and Bureau of Land 

Management land near Range Creek on the West Tavaputs Plateau of Carbon County, 

Utah was used to develop the model.   See Figure 3 for a map showing the location of the 

study area. 

 This area is delineated by the USGS Bruin Point SE and Bruin Point SW quarter 

quadrangles (3.75’ x 3.75’ of latitude and longitude).  The area is mountainous, forested 

and undeveloped.  Human alteration within the study area includes dirt roads, fence lines, 

communication towers, and a few buildings. 

 Within the study area is the 2,600 acre Cold Spring Property owned by the Utah 

Division of Wildlife Resources.  During 2007 the Utah Division of Forestry, Fire and 

State Lands created a Forest Stewardship Plan for the Cold Spring property (Conlin 

2007).  The Cold Spring property is characteristic of the entire study area.  The 

management plan describes the area as having a diverse topography of deep canyons, 

ridge lines, and gentle sloping areas, with general vegetation cover of forests and 
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Figure 3.  Location of study area. 

 

sagebrush steppe meadows.  Tree species include quaking aspen (Populus tremuloides 

Michx.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), subalpine fir (Abies 

lasiocarpa Nutt.), and Engelmann spruce (Picea engelmannii Parry ex Engelm.).  

Shrubland cover primarily consists of sagebrush (Artemisia tridentata Nutt. ssp. 

vaseyana).  There are several riparian areas adjacent to creeks and springs. 

 Reference data in the study area are the digitized forest stands of the Cold Spring 

Forest Stewardship Plan and 14 SWReGAP ground training data points (Figure 4). 
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Figure 4.  Reference data in study area. 
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METHODS 

Data Inputs 

 The primary inputs were two spatial data layers.  The first was one meter resolution 

NAIP aerial imagery collected in 2006 and obtained from the Utah Automated 

Geographic Reference Center.  The images were used as delivered with no additional 

processing applied.  The second primary data layer was the statewide, general land cover 

map produced by the Southwestern Gap Analysis project (SWReGAP) (Lowry et al. 

2006 and Lowery et al. 2007).  The SWReGAP land cover map identified 80 individual 

natural land cover classes within Utah.  These 80 classes were combined into 18 general 

classes to better represent the level of detail used in forest management plans.  The 18 

land cover classes for this study are 1) Mixed Conifer, 2) Spruce-Fir, 3) Lodgepole Pine, 

4) Ponderosa Pine, 5) Limber-Bristlecone Pine, 6) Pinyon-Juniper, 7) Aspen, 8) Aspen-

Mixed Conifer, 9) Bigtooth Maple, 10) Gambel Oak, 11) Mountain Mahogany, 12) 

Riparian Woodland, 13)Brush-Shrubs, 14) Grass-Forbs, 15) Agriculture, 16) Developed, 

17) Water, and 18) Non-vegetated.  Appendix A lists the 18 land cover classes with the 

SWReGAP classes they were derived from. 

 

Model Development 

 The model was created as a Python script compatible with ArcGIS™ software 

which is used by the state of Utah.  The model uses several ArcGIS spatial data 

processing tools as well as image processing subroutines of the Python Imaging Library 

(PIL).   The Python code of the model is given in Appendix B.  The model consists of 9 

steps. 
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 Step 1 establishes access to the input data.  This is accomplished through 

ArcGIS’s model interface that prompts the user to identify model inputs.  Three inputs 

are required:  the location of the input image (e.g. NAIP image), the location of the 

vegetation class layer (e.g. SWReGap), and the location of an output folder (Figure 5). 

 Step 2 extracts the equivalent geographic area of the input image to be segmented 

from the existing, coarser resolution vegetation layer and identifies the individual land 

cover classes contained in the subset land cover map.  The number of vegetation classes 

is the number of segmentation types the model will use in the subsequent step.  This 

subset of the statewide vegetation map will also be used to label polygons extracted from 

the high-resolution image. 

 

 

Figure 5.  Input dialog. 
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 Step 3 processes the image to accentuate the objects in the image.  This is one of 

the most important steps of the model.  It is this step that focuses the model on the objects 

within the image rather than on individual pixels. The model uses a blur filter to 

repeatedly blur the image in 20 different iterations.  The effect is greater uniformity 

within vegetation objects and an increase in the contrast between vegetation object 

boundaries (Figure 6).  The final operation of step three uses the “slice” tool in the 

ArcGIS tools library to segment the image into preliminary classes defined by the clipped 

SWReGap land cover map and uses natural breaks in the data (Figure 7).  During 

development it was determined that this initial segmentation was best if the same number 

of SWReGap classes was used instead of more classes with the idea of merging later 

because it proved to be a shorter route to the same results. 

 

 

Figure 6.  Repeated blur effect. 
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Figure 7.  Slice tool effect. 

 

 Step 4 merges objects of less than 10 acres into adjacent objects.  Ten acres was 

chosen because areas less than this are not commonly delineated for forest management 

plans.  Future editions of the model will have this as a parameter that the user can 

specify.  This merging is accomplished in three intermediate steps of increasing 

minimum sizes.  The intermediate approach allows smaller areas to merge and become an 

object larger than the minimum threshold without being eliminated in a single merge 

step.  This procedure protects unique and possibly important areas within the image.  

Input units use the English system in order to relate to the target user.  All units are 

converted to metric to correspond to measurement units used by the geospatial data. 

 Step 5 creates polygons by converting the segmented raster data into a vector 

shapefile.  The polygons are preliminary polygons needing further refinement. 

 Step 6 reduces the number of exceedingly large polygons that consist of several 

areas connected by long, thin corridors not suited for use in forest management plans 

(Figure 8).  This is accomplished by creating a three-meter buffer on both sides of the 

preliminary polygons’ boundary lines, using the buffer as a mask to extract from the  
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Figure 8.  Example of exceedingly large polygon. 

 

raster everything not within the buffer, then expanding all the classes to fill in the blank 

areas created by the buffer.  This step also creates distinct boundaries between classes. 

 Step 7 tests for and removes tiny artifact polygons that sometimes are created 

during step six.  These are minute polygons likely formed from a line that looped itself. 

They are removed by eliminating any polygon with an area of less than one square meter.   

 Step 8 assigns vegetation types and names to each polygon by intersecting the 

vector output of Step 7 with the raster layer extracted from the SWReGap land cover 

map.  The model assigns to a polygon the land cover class having the largest association 

with the polygon based upon a simple overlay.  This means that polygons in the same 
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preliminary segmented class of Step 3 may be assigned to different vegetation classes 

in this step based upon the overlay.  This also allows for adjacent polygons, initially 

identified as different, to be assigned the same land cover class.   

 Step 9 creates an output shapefile named “VegTypes” which can be further 

modified if needed (Figure 9). 

 

 

Figure 9.  Example of model’s polygon output. 
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Testing the Model 

 Three questions need to be answered to determine if the model is useful for its 

intended purpose.  First, is the model easy to use?  Second, do the model-generated 

polygons represent vegetation types in a manner useable in a forest management plan?    

Third, are the vegetation class assignments accurate?  

 To generate data to answer these questions 64 individual quarter quadrangles tiles 

of 2006 NAIP imagery were selected across the state (Figure 10).  Each image needed at 

least one SWReGAP ground reference site within the area covered by the image to be 

selected.  The model was run for each of the 64 images. 

 

 

Figure 10.  Location of testing images. 
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Testing Polygon Representation of Vegetation Objects 

 To get a statistical idea of how well output polygons represent vegetation objects I 

needed a sample size of at least 100 polygons.  This was based upon a population size of 

at least several thousands vegetation objects across the state, a confidence level of 95%, 

and a precision of plus or minus 10%.  The first 29 image tiles run in the model were 

selected at random for testing.  Polygons within these tiles that contained a SWReGAP 

ground reference site were chosen to use in the sample.  This process identified 115 

polygons. 

 Two visual subjective judgments of the polygons were made with the polygons 

overlaid on their corresponding image.  The first judgment assumed that a polygon would 

be useful if it accurately represented the vegetation type and was not too radically 

different from what a forester would hand digitize.  The polygon was judged to be 

useable as is, useable after simple modifications, or useable only after complex 

modifications.  A polygon that required simple modification was defined as needing only 

some clipping and/or merging to become useable.  A polygon that required complex 

modifications was defined as needing excessive clipping, merging, or vertex 

manipulation to reshape the polygon to make it useable.  Figure 11 shows examples of 

these three types of polygons. 
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Figure 11.  Polygon judging (A) Use as is, (B) Easy to 

modify, (C) Difficult to modify. 

 

 The second subjective judgment of the polygon considered only how well the 

polygon’s shape represented the vegetation object.  It did not consider how it might or 

might not be similar to a forester’s hand digitizing.  This time the polygons were judged 

as good, fair, or poor.  Good means the polygon represents the vegetation type.  Fair 

means the polygon represents the vegetation type but has some inaccuracies, i.e., a small 

inclusion of an adjacent vegetation type.  Poor means the polygon does not represent the 

vegetation type. 

 For both of these subjective judgments a threshold of 50% was applied to 

determine if the model was useful.  In the first case the model was considered useful if 

more than 50% of the polygons were judged useable as is or only needing simple 

modifications.  In the second case the model was considered useful if 50% of the 

polygons were judged as good or fair.  The 50% threshold was chosen because if 

foresters have to modify more than 50% of the polygons it would probably be easier to 

just hand digitize from the beginning and not use the model. 
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Testing Vegetation Class Assignment 

 Assigned vegetation classes were compared to SWReGAP ground reference sites.  

Three classes, agriculture, developed, and water did not have ground control points and 

photo interpretive points were used. 

 At least 15 points within each class were desired to assess the accuracy of 

vegetation class assignments.  The original 29 randomly selected images did not provide 

enough reference sites in each vegetation class so an additional 35 images were selected 

that contained the needed reference sites.  All reference sites within a selected image 

were used. 

 The threshold of 50% was applied to this test as well.  If 50% or more of the 

vegetation class assignments were correct then the model would be judged useful. 
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RESULTS AND DISCUSSION 

 The three questions that determine if the model will be useful for its intended 

purpose will be discussed.  These are:  ease of using the model, polygon representation of 

vegetation objects, and accuracy of vegetation class assignments.  Forester responses on 

the likelihood of using the model and other potential uses of the model will also be 

discussed.  But first, the visual differences between human-digitized polygons and the 

model’s outputted polygons are considered (Figure 12).   

 The human-digitized polygons are block-like.  It is easier and less tedious to 

digitize straight lines rather than lines full of curves.  The model-generated polygons are 

sinuous following the natural boundaries of vegetation types.  The human generated 

 

 

Figure 12.  Human-digitized polygons (left) and 

model-generated polygons (right). 
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polygons do not cover the entire landscape.  Humans may tend to digitize the least 

amount possible, even if full coverage is desirable.  The model-generated polygons do 

cover the entire landscape.  The human generated polygons have straight edges at 

property boundaries.  The model-generated polygons transcend property boundaries but 

have straight edges at the image’s edge. 

 

Ease of Using the Model 

 Division employees have access to ArcGIS and the spatial analyst extension needed 

to run the program.  The required inputs are readily available and the model’s interface is 

intuitive and user friendly.   The approximately 30 minutes of model run time is quicker 

than it would take a human to hand digitize the same area with a comparable level of 

detail. Users will probably need some initial training to install and run the model, but it 

does not require advanced and intensive training.  Therefore, the model meets the ease of 

use criteria. 

 

Polygon Representation of Vegetation Objects 

 The two subjective judging methods used to determine that output polygons 

accurately represented vegetation objects led to the conclusion that the model met the 

second criteria of usefulness.  Also, comments from potential users of the model reveal 

the model’s outputted polygons would likely be used. 

 The first subjective judgment was made by answering the question, “Could this 

polygon substitute for a hand digitized polygon and be used in a forest stewardship 

plan?”  This considered not only how well the polygon represented the vegetation object 



 21 

in the photograph but whether or not the overall shape of the polygon was too radically 

different to fit into the current norm of a forest management plan.  Table 1 shows the 

results of this analysis, revealing that 107 of the115 polygons were judged as either being 

useful as is or needing only simple modification to be useful.  This is 93%, well above 

the 50% threshold for the model to be useful.  Even though the shapes of the outputted 

polygons were judged useful 74 of the 115 or 64% require some modification.  This 

requires additional processing time to modify polygons for the final output. 

 The second subjective judgment only considered how well the polygon’s shape 

represented the vegetation type in the aerial photograph.  Table 2 shows the results, 

revealing that 96 of the 115 polygons were judged as being useful because they had good 

or fair representation of the vegetation type.  This is 83%, well above the 50% threshold 

for the model to be useful. 

 

Table 1.  Polygon usefulness, considering vegetation representation and polygon 

shape. 
 

             Useful    Non-useful 

           Polygons     Polygons 
   ________________________ __________ 
          Use with    Use With 

           Simple     Difficult 

   Use As Is  Modification Modification  Total 
 

  Polygons        33         74          8     115 
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Table 2.  Polygon usefulness, considering only vegetation representation. 
 

             Useful    Non-useful 

           Polygons     Polygons 
   ________________________ __________ 
       Good        Fair         Poor   Total 

 
  Polygons        52         44          19     115 

 
 

 

 

Accuracy of Vegetation Class Assignments 

 Table 3 is the error matrix of vegetation class assignment compared with reference 

points.  It reveals that 346 of the 534 points were within correctly assigned polygons 

giving an overall accuracy of 65%.  This is above the 50% threshold and lends support to 

the thesis statement.  Let’s consider what this overall accuracy means. 

 Errors in class assignment could come from two sources, the model’s assignment 

algorithm itself or error passed along from SWReGAP data, since the model assigns 

vegetation classes using a data layer derived from SWReGAP data.  The final report on 

land cover mapping methods for the SWReGAP states an overall correct classification of 

61% for that project (p. 22, Lowry et al. 2005).  Since the model’s overall accuracy of 

65% is slightly above the 61% accuracy of SWReGAP it appears that the model 

successfully transfers the SWReGAP data to the refined polygons. 

 However, not all classes meet the 50% threshold and a closer look at the data is 

warranted.  Five classes are below the threshold.  They are Class 5 Limber/Bristlecone 

Pine, Class 7 Aspen, Class 12 Riparian Woodland, Class 14 Grass/Forbs, and Class 16 

Developed.  Their importance in forest management plans will be considered next. 
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Table 3.   Error matrix of vegetation class assignments to polygons.

 
       Assigned Vegetation Class                        

 
  Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total % 

 
  Class 1 
  Mixed Conifer 21 1 2 2  2  1 1 5         35 60% 
  
  Class 2 
  Spruce/Fir 3 26 1    5   1   1     1 38 68% 
 
  Class 3 
  Lodgepole Pine  1 19          2      22 86% 
 
  Class 4 
  Ponderosa Pine 2   14  1    3         20 70% 
 
  Class 5 
  Limber/ 
  Bristlecone Pine 1 2   2   2     1     2 10 20% 
 
  Class 6 
  Pinyon/Juniper      28    1   2 1    1 33 85% 
 
  Class 7 
  Aspen 3  1 1   13 1 1 3 1  4      28 46% 
 
  Class 8 
  Aspen/ 

  Mixed Conifer 1 2     3 14  1   2      23 61% 
 
  Class 9 
  Bigtooth Maple 4      2  10 1         17 59% 
 
  Class 10 
  Gambel Oak    2   5 1  17   1      26 65% 
 
  Class 11 
  Mountain Mahogany 
      1   1  9  4      15 60%  
  Class 12 
  Riparian Woodland  1    1 1  1   5 5 1   1 1 17 29% 
 
  Class 13 
  Brush/Shrubs 1 1    10 1    1  99 5    3 121 82% 
 
  Class 14 
  Grass/Forbs  5  1  2   1 2  1 14 17   1 7 51 33% 
 
  Class 15 
  Agriculture             1  15    16 94% 
 
  Class 16 
  Developed             2  6 6 1  15 40% 
 
  Class 17 
  Water            1 1 1 1 1 11  16 69% 
 
  Class 18 
  Non-vegetated  1    1    1   5 3    20 31 65% 

 
  Totals 36 40 23 20 2 46 30 19 15 35 11 7 144 28 22 7 14 35 534 
 
  Percentage 58% 65% 83% 70%100% 61% 43% 74% 67% 49% 82% 71% 69% 61% 68% 86% 79% 57% 

 
  Boldface shows correctly assigned polygons. 
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 Aspen is a common vegetation type on the landscape and often is very important 

in forest management plans.  The fact that it does not quite (46%) meet the 50% threshold 

is a concern.  Still, users should be aware that with aspen the model will likely be wrong 

a little over 50% of the time.  The Grass/Forbs (33%) class may be a prominent 

vegetation type in some landscapes and may be very important in forest management 

plans when grazing by domestic or wild animals is a concern.  The model often assigned 

this type to the Brush/Shrub class, a similar class in that trees are not present.  Riparian 

Woodlands (29%) were often incorrectly assigned.  They are important in management 

plans because of the woodland’s functions in riparian areas.  Users should understand that 

even though this type is found near riparian areas the model usually does not assign it 

correctly.  Limber/Bristlecone Pine (20%) is a rare vegetation type and not normally of 

great importance in forest management plans.  Developed areas (40%) were often 

assigned as agricultural areas.  The model, while often incorrectly assigning it, is at least 

keeping it separate from the natural vegetation classes which are of more importance in 

forest management plans. 

 The model’s strengths and weaknesses can be further understood by considering 

errors of commission and omission.  Errors of commission are considered from the 

reference point of the polygon.  They are errors of assigning (committing) the polygon to 

the wrong class.  Errors of omission are considered from the reference point of a 

vegetation type on the landscape.  These are errors of being omitted from the correct 

class. 

 Table 4 shows errors of commission, the incorrect assignment of polygons.  The 

table also contains an estimate, based upon the errors, of the likelihood that the model 
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Table 4.  Errors of Commission, polygons assigned to incorrect vegetation class. 
 

   Errors of Estimated 

   Commission Likelihood 

  Polygons Polygons of Model 

 All Polygons Committed Committed Committing 

 Assigned to to Correct to Incorrect polygon to 

 Class Class Class Incorrect Class 
 

  Class 1, Mixed Conifer 36 21 15 42% 

 

  Class 2, Spruce/Fir 40 26 14 35% 

 

  Class 3, Lodgepole Pine 23 19 4 17% 

 

  Class 4, Ponderosa Pine 20 14 6 30% 

 

  Class 5, Limber/Bristlecone Pine 2 2 0 0% 

 

  Class 6, Pinyon/Juniper 46 28 18 39% 

 

  Class 7, Aspen 30 13 17 57% 

    

  Class 8, Aspen/Mixed Conifer 19 14 5 26% 

 

  Class 9, Bigtooth Maple 15 10 5 33% 

 

  Class 10, Gambel Oak 35 17 18 51% 

 

  Class 11, Mountain Mahogany 11 9 2 18% 

 

  Class 12, Riparian Woodland 7 5 2 29% 

 

  Class 13, Brush/Shrubs 144 99 45 31% 

 

  Class 14, Grass/Forbs 28 17 11 39% 

   

  Class 15, Agriculture 22 15 7 32% 

 

  Class 16, Developed 7 6 1 14% 

 

  Class 17, Water 14 11 3 21% 

 

  Class 18, Non-vegetated 35 20 15 43% 
 

  Totals 534 346 (65%) 118 (35%) 
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 will make an incorrect assignment when it assigns a polygon to a particular class.  

Clearly, Class 7 Aspen is of the most concern, followed by Class 10 Gambel Oak, Class 

18 Non-vegetated, and Class 1 Mixed Conifer. 

 Table 5 shows errors of omission, the omitting of a vegetation type from the correct 

class.  The table also contains an estimate, based upon the errors, of the likelihood that 

the model will omit a vegetation type from its correct class.  Class 5 Limber/Bristlecone 

Pine and Class 12 Riparian Woodland are both very likely to be omitted from the correct 

class.  

 Table 6 shows both estimates of the likelihood of errors side by side.  The table 

shows that, except for aspen, the model is most likely to have errors of omission for those 

classes that did not meet the threshold of usefulness.  For aspen the model is just as likely 

to have errors of commission as errors of omission. 

 Users should note the five classes for which the model does not perform in a 

manner to meet the threshold of usefulness.  Additional manipulation of the output will 

be needed for these classes.  However, overall the model does meet the threshold of 

usefulness. 
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Table 5.  Errors of Omission, ground points omitted from correct vegetation class. 
 

   Errors of Estimated 

   Omission Likelihood 

  Ground Ground of Model 

 All Ground Points Points Omitting Ground 

 Points in Included in Omitted from Point from 

 Class Correct Class Correct Class Correct Class 
 

  Class 1, Mixed Conifer 35 21 14 40% 

 

  Class 2, Spruce/Fir 38 26 12 32% 

 

  Class 3, Lodgepole Pine 22 19 3 14% 

 

  Class 4, Ponderosa Pine 20 14 6 30% 

 

  Class 5, Limber/Bristlecone Pine 10 2 8 80% 

 

  Class 6, Pinyon/Juniper 33 28 5 15% 

 

  Class 7, Aspen 28 13 15 54% 

    

  Class 8, Aspen/Mixed Conifer 23 14 9 39% 

 

  Class 9, Bigtooth Maple 17 10 7 41% 

 

  Class 10, Gambel Oak 26 17 9 35% 

 

  Class 11, Mountain Mahogany 15 9 6 40% 

 

  Class 12, Riparian Woodland 17 5 12 71% 

 

  Class 13, Brush/Shrubs 121 99 22 18% 

 

  Class 14, Grass/Forbs 51 17 34 66% 

   

  Class 15, Agriculture 16 15 1 6% 

 

  Class 16, Developed 15 6 9 60% 

 

  Class 17, Water 16 11 5 31% 

 

  Class 18, Non-vegetated 31 20 11 35% 
 

  Totals 534 346 (65%) 188 (35%) 
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Table 6.  Estimated likelihood of committing and omitting errors of the model. 
 

 Estimated Likelihood Estimated Likelihood 

 of Model Committing of Model Omitting 

 Polygon to Ground Point from 

 Incorrect Class Correct Class 
 

  Classes Below Threshold 
 

  Class 5, Limber/Bristlecone Pine 0% 80% 

 

  Class 7, Aspen 57% 54% 

 

  Class 12, Riparian Woodland 29% 71% 

 

  Class 14, Grass/Forbs 39% 66% 

 

  Class 16, Developed 14% 60% 
 

  Classes Above Threshold 
 

  Class 1, Mixed Conifer 42% 40% 

 

  Class 2, Spruce/Fir 35% 32% 

 

  Class 3, Lodgepole Pine 17% 14% 

 

  Class 4, Ponderosa Pine 30% 30% 

 

  Class 6, Pinyon/Juniper 39% 15% 

 

  Class 8, Aspen/Mixed Conifer 26% 39% 

 

  Class 9, Bigtooth Maple 33% 41% 

 

  Class 10, Gambel Oak 51% 35% 

 

  Class 11, Mountain Mahogany 18% 40% 

 

  Class 13, Brush/Shrubs 31% 18% 

 

  Class 15, Agriculture 32% 6% 

 

  Class 17, Water 21% 31% 

 

  Class 18, Non-vegetated 43% 35% 
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Likelihood of the Model Being Used 

 The results of the model were presented to five staff foresters at the Utah Division 

of Forestry, Fire and State Lands.  All five indicated they would try the model and three 

indicated that they likely would use it during the preparation of forest stewardship plans.  

Reasons given for using the model included:  eliminates need for digitizing, faster, and 

perhaps better accuracy.  Two foresters mentioned the need for ground truthing when 

using the model. 

 One forester, while willing to try, was not likely to use the model in the preparation 

of forest stewardship plans because of the inability to control number of polygons, size of 

polygons, and the sinuosity of boundaries ─ features not part of the model but may be 

added in the future.  This forester also expressed that he/she enjoyed hand digitizing 

stand boundaries. 

 Another forester responded that he would most likely use the model to suggest 

boundary lines for forest stands but hand digitize the actual boundaries.  This forester 

thinks that the model delineates between vegetation types too finely creating too many 

polygons, and that the boundaries are too sinuous. 

 

Other Uses of the Model 

 Three of the foresters indicated that the model might be useful for work tasks other 

than in the preparation of forest management plans.  Those mentioned were:  fire and fuel 

projects, prescribed burns, rangeland management, evaluation of tamarisk in riparian 

forests, and mapping cheat grass to plan fuel breaks.  Because the model’s output is 
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useable in a GIS, any project that requires spatial information about vegetation types is 

a likely candidate to benefit from use of the model. 

 The model could be used in the creation of a statewide vegetation data layer at a 

resolution that currently doesn’t exist.  This would negate the need for individuals to run 

the model on a case by case basis.  The model would need to be run for over 6,000 aerial 

images that cover the state of Utah and the output shapefiles combined.  This is not a 

trivial task but very doable.  One option to reduce the workload is to first combine quarter 

quadrangle images before applying the model.  This would also reduce the number of 

boundaries between images which is a common area for errors to occur. It seems that a 

statewide vegetation layer produced from one meter aerial imagery would be useful and 

thus valuable. 

 The model could be changed, modified and/or improved to be used for other tasks.  

The ability to control the minimum and maximum size of polygons could be added.  One 

forester mentioned that it would be nice if the shapefile’s attributes table included 

acreage, aspect, and slope.  These calculations could be added to the model.  Other 

changes could also be made. 

 An intriguing idea is to use the model to create a series of vegetation objects of 

varying sizes that lie upon each other to see how smaller vegetation groups combine into 

larger groups.  This could be accomplished by changing the number of vegetation types 

possible within the model.  For instance, a researcher could designate 10, 15, and 20 

possible vegetation types for a given input image and overlay the outputs.  Another 

option is to assign all possible SWReGap types from the beginning and then dissolve 

common boundaries between types as desired. 
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Because the model’s output simulates natural boundaries between vegetation 

types with sinuous lines in more detail than a human would digitize, the model could be 

helpful to those studying the environmental factors that impact vegetation and the 

establishment of natural boundaries between vegetation.  The sinuous lines of the 

polygons reveal in greater detail the interlocking connections between vegetation types 

and may provide valuable insight to possible effects of management actions. 

In summary, the model has many other possible uses besides what it was created 

for initially.  It provides a means to explore and gain greater understanding of vegetation 

types and the natural boundaries between them. 

 The model will be distributed to Division foresters.  They will be trained in its use.  

The model will then be a tool to help foresters accomplish their work tasks, especially in 

the creation of forest stewardship plans.  Improvements and additions will be made as use 

of the model identifies problem areas.  Also, it is likely that the Division will pursue other 

uses of the model. 
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Appendix A. Vegetation Classes 

 The reduction of 80 SWReGAP classes to18 classes. 
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 Following are the land cover classes used in this study and the SWReGAP land 

cover types within each class. 

 

Class 1 Mixed Conifer 

 Rocky Mountain Montane Dry-Mesic Mixed Conifer Forest and Woodland 

 Rocky Mountain Montane Mesic Mixed Conifer Forest and Woodland 

 

Class 2 Spruce-Fir 

 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland 

 Rocky Mountain Subalpine Mesic Spruce-Fir Forest and Woodland 

 

Class 3 Lodgepole Pine 

 Rocky Mountain Lodgepole Pine Forest 

 

Class 4 Ponderosa Pine 

 Rocky Mountain Ponderosa Pine Woodland 

 

Class 5 Limber-Bristlecone Pine 

 Rocky Mountain Subalpine-Montane Limber-Bristlecone Pine Woodland 

 Inter-Mountain Basins Subalpine Limber-Bristlecone Pine Woodland 

 

Class 6 Pinyon-Juniper 

 Colorado Plateau Pinyon-Juniper Woodland 
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 Great Basin Pinyon-Juniper Woodland 

 Colorado Plateau Pinyon-Juniper Shrubland 

 

Class 7 Aspen 

 Rocky Mountain Aspen Forest and Woodland 

 

Class 8 Aspen-Mixed Conifer 

 Inter-Mountain West Aspen-Mixed Conifer Forest and Woodland Complex 

 

Class 9 Bigtooth Maple 

 Rocky Mountain Bigtooth Maple Ravine Woodland 

 

Class 10 Gambel Oak 

 Rocky Mountain Gambel Oak-Mixed Montane Shrubland 

 Rocky Mountain Lower Montane-Foothill Shrubland 

 

Class 11 Mountain Mahogany 

 Inter-Mountain Basins Mountain Mahogany Woodland and Shrubland 

 

Class 12 Riparian Woodland 

 Rocky Mountain Subalpine-Montane Riparian Woodland 

 Rocky Mountain Lower Montane Riparian Woodland and Shrubland 

 North American Warm Desert Lower Montane Riparian Woodland and Shrubland 
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 North American Warm Desert Riparian Woodland and Shrubland 

 North American Warm Desert Riparian Mesquite Bosque 

 Great Basin Foothill and Lower Montane Riparian Woodland and Shrubland 

 Invasive Southwest Riparian Woodland and Shrubland 

 

Class 13 Brush-Shrubs 

 Rocky Mountain Alpine Dwarf-Shrubland 

 Inter-Mountain Basins Mat Saltbush Shrubland 

 Great Basin Semi-Desert Chaparral 

 Inter-Mountain Basins Big Sagebrush Shrubland 

 Great Basin Xeric Mixed Sagebrush Shrubland 

 Colorado Plateau Mixed Low Sagebrush Shrubland 

 Mogollon Chaparral 

 Colorado Plateau Blackbrush-Mormon-tea Shrubland 

 Mojave Mid-Elevation Mixed Desert Scrub 

 Inter-Mountain Basins Mixed Salt Desert Scrub 

 Sonora-Mojave Creosotebush-White Bursage Desert Scrub 

 Sonora-Mojave Mixed Salt Desert Scrub 

 Inter-Mountain Basins Montane Sagebrush Steppe 

 Inter-Mountain Basins Big Sagebrush Steppe 

 Inter-Mountain Basins Semi-Desert Shrub Steppe 

 Rocky Mountain Subalpine-Montane Riparian Shrubland 

 Inter-Mountain Basins Greasewood Flat 
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 Sonora-Mojave-Baja Semi-Desert Chaparral 

 Wyoming Basins Low Sagebrush Shrubland 

 Southern Colorado Plateau Sand Shrubland 

 

Class 14 Grass-Forbs 

 Inter-Mountain Basins Juniper Savanna 

 Rocky Mountain Dry Tundra 

 Rocky Mountain Subalpine Mesic Meadow 

 Southern Rocky Mountain Montane-Subalpine Grassland 

 Inter-Mountain Basins Semi-Desert Grassland 

 North American Arid West Emergent Marsh 

 Rocky Mountain Alpine-Montane Wet Meadow 

 Recently Burned 

 Invasive Perennial Grassland 

 Invasive Annual Grassland 

 Invasive Annual and Biennial Forbland 

 Recently Logged Areas 

 Recently Chained Pinyon-Juniper Areas 

 

Class 15 Agriculture 

 Agriculture 

 

Class 16 Developed 
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 Developed, Open Space - Low Intensity 

 Developed, Medium - High Intensity 

 

Class 17 Water 

 Open Water 

 

Class 18 Non-vegetated 

 North American Alpine Ice Field 

 Rocky Mountain Alpine Bedrock and Scree 

 Rocky Mountain Alpine Fell-Field 

 Rocky Mountain Cliff and Canyon 

 Inter-Mountain Basins Cliff and Canyon 

 Colorado Plateau Mixed Bedrock Canyon and Tableland 

 Inter-Mountain Basins Shale Badland 

 Inter-Mountain Basins Active and Stabilized Dune 

 Inter-Mountain Basins Volcanic Rock and Cinder Land 

 Inter-Mountain Basins Wash 

 Inter-Mountain Basins Playa 

 North American Warm Desert Bedrock Cliff and Outcrop 

 North American Warm Desert Volcanic Rockland 

 North American Warm Desert Wash 

 North American Warm Desert Playa 

 Barren Lands, Non-specific 
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 Disturbed, Non-specific 

 Recently Mined or Quarried 

 Disturbed, Oil well 
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Appendix B. Model Code 

The Python code that constitutes the model. 
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# Img2VegPolygons.py 

# (c) W. Kevin Wells, 2009 

# 

# This Python script is for use in ArcMap.  It creates polygons representing 

# vegetation objects from a 1 meter aerial photograph and assigns a vegetation 

# type to each polygon from data derived from 2004 ReGAP data.  The resulting 

# polygons are at a scale suitable for use in Forest Management Plans. 

# 

# The script was created during research pursuit to a Masters of Science Degree 

# from Utah State University.  It was specifically designed for use by the Utah 

# Division of Forestry, Fire, and State Lands. 

# 

# The model uses Python Image Library and ArcGIS tools. 

 

# Import libraries 

import sys, string, os, shutil 

sys.path.append("c:/Program Files/ArcGIS/Bin") 

import arcgisscripting 

from PIL import Image, ImageFilter 

 

# ArcGIS settings 

gp = arcgisscripting.create() 

gp.overwriteoutput = 1 

coorsysPart1 = "Coordinate Systems\Projected Coordinate Systems\Utm" 

coorsys = coorsysPart1 + "\Nad 1983\NAD 1983 UTM Zone 12N.prj" 

gp.OutputCoordinateSystem = coorsys 

tempworkspace = str(sys.argv[3]) + "/TempFolderImg2Veg" 

os.mkdir(tempworkspace) 

gp.workspace = tempworkspace 

gp.CheckOutExtension("spatial") 

 

# ***** Functions, listed in the order used in the model ***** 

 

def getNumGAPvegTypes(toClipImg): 

    """ 

    This function calculates the number of vegtation classes. 

 

    The function first clips the ReGAP data by the extent of the input image. 

    Then it calculates the number of vegetation classes in the clip. 

    """ 

    # Get the GapClasses.tif file 

    gapClassesToClip = sys.argv[2] 

 

    # Describe the inImage to have access to the extent 

    descToClipImg = gp.Describe(toClipImg) 
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    # Clip the ReGAP raster to the extent 

    gp.Clip_management(gapClassesToClip, descToClipImg.Extent, "clip", \ 

                        toClipImg, "", "NONE") 

 

    # Count and return the number of classes 

    classcnt = gp.GetRasterProperties_management("clip", "UNIQUEVALUECOUNT") 

    return int(classcnt) 

 

 

def accentuateObjectsInImage(nextImage, outImage, numVegTypes): 

    """ 

    This functions accentuates the vegetation objects in the image by 

    reducing the variability of pixel colors. 

    """ 

    # Blur the image with PIL 

    im = Image.open(nextImage) 

    outBlur = gp.workspace + "/outBlur.png" 

    loops = 0 

    while loops < 20: 

        im = im.filter(ImageFilter.BLUR) 

        loops = loops + 1 

    im.save(outBlur) 

 

    # Georectify the blurred image 

    georectifyImage(nextImage, outBlur, "shiftBlur") 

 

    # Segment the image into the number of vegetation types 

    gp.Slice_sa("shiftBlur", outImage, numVegTypes, "NATURAL_BREAKS") 

 

 

def georectifyImage(baseImage, shiftImage, newImage): 

    """ 

    Creates a copy of the shiftImage at the location of the baseImage. 

    """ 

    # Georectify the processed image. 

    leftBase = gp.GetRasterProperties(baseImage, "LEFT") 

    topBase = gp.GetRasterProperties(baseImage, "Top") 

    leftShift = gp.GetRasterProperties(shiftImage, "LEFT") 

    topShift = gp.GetRasterProperties(shiftImage, "Top") 

 

    shiftX = leftBase - leftShift 

    shiftY = topBase - topShift 

    gp.Shift_management(shiftImage, newImage, shiftX, shiftY) 
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def replaceSmallAreas(inRaster, outRaster, acres, pixelSize): 

    """ 

    Replaces regions in a raster with nearby pixel for regions smaller than the 

    given acreage. 

    """ 

    # Region group to get a count (size) of each region 

    gp.RegionGroup_sa(inRaster, "regions") 

 

    # Create a mask based upon the small areas 

    # A count of 4046.87 one meter pixels is approximately 1 acre 

    pixelsPerAcre = 4046.87 / (pixelSize * pixelSize) 

    msq = int(acres * pixelsPerAcre) 

    exp = "0 " + str(msq) + " NoData;" + str(msq + 1) + " 999999999 1" 

    gp.Reclassify_sa("regions", "COUNT", exp, "mask", "NODATA") 

 

    # Fill in small areas with nearest pixels 

    gp.Nibble_sa(inRaster, "mask", outRaster) 

 

 

def assignGAPvegType(polygonLayer): 

    """ 

    This function assigns the GAP vegetation type. 

    """ 

    # Add attribute fields 

    gp.addfield(polygonLayer, "VegCode", "SHORT") 

 

    # Use search cursor to work with each polygon 

    cur = gp.UpdateCursor(polygonLayer) 

    row = cur.Next() 

    while row: 

        # Create a virtual layer of the polygon 

        gp.FeatureToPolygon(row.shape, "tempPoly.shp") 

        gp.MakeFeatureLayer("tempPoly.shp", "tempPolyLyr") 

 

        # Extract area of interest from Clip of GAP classes 

        gp.ExtractByMask_sa("clip", "tempPolyLyr", "tempclip.img") 

 

        # Determine and assign the largest vegetation type to the polygon 

        cur2 = gp.SearchCursor("tempclip.img") 

        row2 = cur2.Next() 

        count = 0 

        highCount = 0 

        value = 0 

        while row2: 
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            count = row2.count 

            if highCount < count: 

                highCount = count 

                value = row2.value 

            row2 = cur2.Next() 

 

        row.VegCode = value 

        cur.UpdateRow(row) 

        try: 

            gp.deletefeatures("tempclip.img") 

            gp.deletefeatures("tempPolyLyr") 

        except: 

            pass 

        row = cur.Next() 

 

 

def addVegName(inShp): 

    """ 

    This function adds the vegetation type name. 

    """ 

    gp.addfield(inShp, "VegName", "text", 25) 

 

    vegDict = {1:"Mixed Conifer", 2:"Spruce-Fir", 3:"Lodgepole Pine", \ 

            4:"Ponderosa Pine", 5:"Limber-Bristlecone Pine", \ 

            6:"Pinyon-Juniper", 7:"Aspen", 8:"Aspen-Mixed Conifer", \ 

            9:"Bigtooth Maple", 10:"Gambel Oak", 11:"Mountain Mahogany", \ 

            12:"Riparian Woodland", 13:"Brush-Shrubs", 14:"Grass-Forbs", \ 

            15:"Agriculture", 16:"Developed", 17:"Water", 18:"Non-vegetated" } 

 

    cur = gp.UpdateCursor(inShp) 

    row = cur.Next() 

    while row: 

        try: 

            row.VegName = vegDict[row.VegCode] 

            cur.UpdateRow(row) 

            row = cur.Next() 

        except: 

            row = cur.Next() 

 

    # Release the data layer by deleting cursors 

    del row, cur 

 

 

# **** Steps of the Model ***** 
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# Step 1 

# Get the input image. 

inImage = sys.argv[1] 

 

# Step 2 

# Determine number of ReGAP vegetation groups within the extent of the image. 

numVegTypes = getNumGAPvegTypes(inImage) 

 

# Step 3 

# Process the image to accentuate vegetation objects in the image. 

accentuateObjectsInImage(inImage, "objects", numVegTypes) 

 

# Step 4 

# Merge objects less than 10 acres with adjacent objects. 

smallacres = 10 

firstacres = smallacres / 3 

secondacres = firstacres + firstacres 

replaceSmallAreas("objects", "processed", firstacres, 1) 

replaceSmallAreas("processed", "processed2", secondacres, 1) 

replaceSmallAreas("processed2", "processed3", smallacres, 1) 

 

# Step 5 

# Vectorize to polygons. 

gp.RasterToPolygon_conversion("processed3", "vectors.shp", "SIMPLIFY", "VALUE") 

 

# Step 6 

# Reduce thin connections between vegetation objects that create one 

# exceedingly large polygon. 

gp.featuretoline("vectors.shp", "lines.shp") 

gp.buffer("lines.shp", "buffer.shp", 3, "FULL", "ROUND", "NONE") 

gp.PolygonToRaster_conversion("buffer.shp", "ID", "mask1", "CELL_CENTER", \ 

                              "NONE", "1") 

reclassValues = "0 999999999 NoData;NoData 1" 

gp.Reclassify_sa("mask1", "Value", reclassValues, "mask2", "NODATA") 

gp.ExtractByMask("processed3", "mask2", "extract") 

gp.Expand_sa("extract", "expanded", "50", \ 

                "1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18") 

mergeSmallAreas("expanded", "expanded2", smallacres, 1) 

gp.RasterToPolygon_conversion("expanded2", "vectors2.shp", "SIMPLIFY", "VALUE") 

 

# Step 7 

# Test for and remove tiny artifact polygons. 

gp.addfield("vectors2.shp", "Acres", "DOUBLE", 10, 1) 

gp.CalculateField_management("vectors2.shp", "Acres", "!shape.area@acres!", \ 

                             "PYTHON") 
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gp.MakeFeatureLayer("vectors2.shp", "tempvectors") 

gp.SelectLayerByAttribute("tempvectors", "NEW_SELECTION", "\"Acres\" < 1") 

gp.deleterows("tempvectors") 

gp.CopyFeatures("tempvectors", "vectors3.shp") 

 

# Step 8 

# Assign vegetation types and names. 

assignGAPvegType("vectors3.shp") 

addVegName("vectors3.shp") 

 

# Step 9 

# Create the output shapefile and delete the temporary working folder. 

gp.CopyFeatures("vectors3.shp", sys.argv[3] + "/VegTypes.shp") 

shutil.rmtree(tempworkspace) 

 

# End of Model 
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