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Abstract

Analysis of Square-Root Kalman Filters for

Angles-Only Orbital Navigation and

the Effects of Sensor Accuracy

on State Observability

by

Jason Knudsen Schmidt, Master of Science

Utah State University, 2010

Major Professor: Dr. David K. Geller
Department: Mechanical and Aerospace Engineering

Angles-only navigation is simple, robust, and well proven in many applications. How-

ever, it is sometimes ill-conditioned for orbital rendezvous and proximity operations because,

without a direct range measurement, the distance to approaching satellites must be esti-

mated by firing thrusters and observing the change in the target’s bearing. Nevertheless,

the simplicity of angles-only navigation gives it great appeal. The viability of this technique

for relative navigation is examined by building a high-fidelity simulation and evaluating the

sensitivity of the system to sensor errors. The relative performances of square-root filter-

ing methods, including Potter, Carlson, and UD factorization filters, are compared to the

conventional and Joseph formulations. Filter performance is evaluated during closed-loop

“station keeping” operations in simulation.

(165 pages)
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Chapter 1

Introduction

The intent of this study is to understand the feasibility of angles-only navigation for

orbital rendezvous operations and to see if square-root Kalman filters will do angles-only

navigation better than conventional filters. This study is motivated by a growing interest

in autonomous rendezvous and docking operations. This interest has resulted from a shift

in political priorities and improvements in small satellite capabilities.

Since the close of the Cold War, the United States has had a more difficult time

justifying monolithic satellite missions like Hubble. These massive satellites require billions

of dollars of one-time funding and are susceptible to the failure of a single subsystem. While

Hubble has benefited from manned repair missions, the majority of missions cannot expect

such support. In addition, budgeting would be simplified if the the cost of these missions

could be spread over several years.

In order to address these issues, NASA adopted the “smaller, faster, cheaper” slogan.

However, the reduced capability of these small satellites was inadequate for many missions.

The new buzzword in small satellite circles is “fractionated space.” Primarily implemented

by DARPA’s F6 program, the goal is to replace extremely capable monolithic satellites

with clusters of small wirelessly-networked satellites. The hope is to improve the relia-

bility, survivability, and serviceability of large, complex systems without losing important

capabilities [1].

Programs such as F6 will require small spacecraft to rendezvous and coordinate with

each other on a regular basis. For F6 this challenge is simplified because each satellite

will cooperate by beaming range, attitude, and other important information to the other

spacecraft. However, it is probable that even more advanced missions will require small

satellites to rendezvous with uncooperative satellites that may have lost power, or belong
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to other parties. In order to keep spacecraft small, sufficient navigation information for

rendezvous and proximity operations must be extracted from small, low-powered sensors.

One of the most simple yet useful sensors is a camera, whether infrared or optical.

With a camera, a satellite can track where a second satellite is located within its field-of-

view. While such measurements can be obtained from many types of sensors (e.g. Lidar or

Radar), the camera has the additional advantage of being entirely passive.

The line-of-sight (LOS) measurement is the foundation of angles-only navigation (AON).

Navigation by measuring angles is not new. Sailors take angle measurements to the north-

star to determine latitude. Hikers take bearings to mountains and other known objects

on the horizon to determine their own position. Astronauts on Gemini and Apollo would

trigger key maneuvers required for orbital rendezvous by measuring the relative elevation

angle to the target spacecraft [2, pg 42, 47]. The Deep Space One spacecraft autonomously

estimated its position and velocity on its way to rendezvous with asteroids and comets by

performing optical data triangulation to known planets, asteroids, and other bodies [3, pg

2-3].

It is clear that angles-only navigation is simple, robust, and well proven in many ap-

plications. However, angles-only-navigation can be ill-conditioned for orbital rendezvous

and proximity operations because, without a direct range measurement, the distance to

approaching satellites must be estimated in other ways. Nevertheless, the simplicity of

angles-only navigation gives it great appeal.

Various strategies have been developed to overcome the limitations of AON. Two tech-

niques are 1) taking “apparent diameter” measurements to the target object, and 2) per-

forming translational maneuvers so the range of the target may be estimated [4]. Apparent

diameter measurements have been explored in detail in [2, pg 119]. Both methods have

their advantages. Apparent diameter measurements are range limited based on the resolu-

tion of the camera and require prior knowledge of the satellite being observed. Translational

maneuvers consume fuel and lower the life of the satellite.

Using translation maneuvers to estimate range can be readily compared to orienteering
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Fig. 1.1: Hiker analogy for observing range.

with a compass (see figure 1.1). Hikers can take a bearing to a distant landmark and draw a

line on the map, emanating from the landmark, representing all of their possible locations.

If there was a second landmark, a second measurement would result in a second line. The

hikers would be where the two lines cross. In the absence of a second landmark, the hikers

must get more creative. If they are carrying a pedometer or know the length of their stride,

they can walk a half mile in a direction normal to the first line. Taking a second bearing

measurement, only one location will satisfy the half mile distance they walked. In this way

one could estimate position using a single landmark.

Translational maneuvers to estimate range have been explored for land and sea based

operations [5–8], but is not as well understood for space rendezvous applications. In concept,

a satellite would track it’s target using a camera. These angles-only measurements would

be processed by a state estimator like a Kalman filter. Assuming the satellite knows where

it is, it can narrow the possible locations of the target satellite to a narrow cone projecting

out from the camera. Of course, the range is unknown at this point. Thrusters can then

be fired in a direction that will cause the angle to the target spacecraft to change. This

change is a function of the magnitude and direction of the ∆V imparted by the thrusters,

and the range to the target. The ∆V can be measured with accelerometers, leaving the

range as the free variable to be solved for (see section 3.4 for a more detailed description of

this concept).
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Real world implementation of angles-only navigation for orbital rendezvous has some

complications. First, the measurements will not be exact, so how will line-of-sight camera

and accelerometer errors effect the ability to estimate relative position, especially in the

range component? Second, numerical word length is limited in a digital computer. Under

what conditions will finite word length cause problems? Can square-root filtering methods

alleviate these problems? It is the purpose of this research to answer these questions and

to demonstrate the feasibility of using AON for orbital rendezvous through high-fidelity

simulation.

To provide background and context for this research, a more thorough discussion of

space-based angles-only-navigation missions and research is contained in Chapter 3. The

Kalman filter algorithm and its more numerically stable relatives are covered in Chapter

4. A more intuitive understanding of numerical roundoff error and its effects on filter

performance may be obtained by studying the “Toy Cases” explored in Chapter 5.

To aid in this research, a high fidelity, six degree-of-freedom simulation of two space-

craft (a “chaser” and “target”) in low-Earth orbit was developed. The simulation includes

sensor, actuator, and dynamic models that include noise, bias and other errors. Appropriate

attitude and translational controllers were built for the “chaser” spacecraft. The simulation

models are covered in detail in Chapter 6.

Chapter 7 develops an extended Kalman filter for Angles-Only-Navigation applications.

The filter design model, linearization of these models and other supporting derivations are

contained here.

The effects of LOS camera and accelerometer errors as well as finite numerical word

length was explored by running the simulation open-loop and processing the sensor data in

the Kalman filters after-the-fact. Results of the open-loop analysis are found in Chapter 8.

To obtain more realistic performance results of AON for orbital rendezvous and proximity

operations, the filters were also implemented in a closed-loop manner. Chapter 9 details

their performance during “station-keeping” scenarios. Conclusions and possible future work

are discussed in Chapter 10.
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Chapter 2

Thesis Statement

The thesis of this research is to show that angles-only navigation (AON) is viable for

short duration orbital rendezvous and proximity operations (RPO) and that square-root

formulations of the Kalman filter will exhibit better numerical stability than the standard

extended Kalman filter under realistic conditions.
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Chapter 3

Literature Survey

3.1 Rendezvous Missions that Used Angles based Navigation

Line-of-sight or angles based navigation has been implemented during proximity oper-

ations as early as Gemini. During rendezvous operations, Gemini astronauts would trigger

the terminal phase initiation (TPI) burn when the relative elevation angle to the target was

at 27.5 degrees [9]. Apollo adopted a similar strategy for initiating orbital rendezvous [10].

In both cases, an angle measurement was chosen to initiate the TPI burn to reduce ap-

proach trajectory dispersions and because it lent itself to backup techniques dependent on

the crew [9, pg 1024]. To keep things simple, relative attitude determination and docking

relied on the human eyeball.

The simple, fault tolerant systems on Gemini and Apollo were replaced by much more

complex systems on later spacecraft. The American Space Shuttle uses Radar as the primary

sensor for proximity operations, but also has a laser ranging device and a centerline camera

[11]. The Russian Soyuz Spacecraft employs multiple directional and omnidirectional radio

antennas and receivers on both vehicles to acquire range, range-rate, line-of-site angles, and

relative attitude measurements [12]. The Shuttle and Soyuz systems both consume a lot of

power, which would be unacceptable on a small spacecraft.

Recent attempts at autonomous orbital rendezvous have tried to reduce the size and

power-consumption of onboard sensors. XSS-11 employed an IMU, a sun sensor, a camera,

and a scanning LIDAR [13].

The Demonstration of Autonomous Rendezvous Technology (DART) spacecraft had

only GPS and the Advanced Video Guidance Sensor (AVGS) which had one camera and a

laser to illuminate special reflectors on the target. At long ranges, GPS provided the re-

quired relative position data. At closer ranges the AVGS system allowed DART to determine
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range through apparent diameter measurements [14]. Unfortunately, errors in computer

software design and filter implementation caused the DART mission to fail [15].

Orbital Express was equipped with two imaging systems, the Autonomous Rendezvous

and Capture Sensor System (ARCSS), which had three cameras, and AVGS, the same

system used on DART. Orbital Express was also equipped with a laser rangefinder [16].

It is important to note that none of these spacecraft relied entirely on a non-illuminating

(passive), angles-only camera. All of them were equipped with an active sensor to determine

range, whether it was GPS, a laser rangefinder, or LIDAR.

3.2 The Kalman Filter

The Kalman Filter was first developed by R.E. Kalman [17] and has been improved and

expanded over the years to process all sorts of measurements. A Kalman filter propagates

an estimated state (x̂) and the covariance (Px) (or uncertainty) of that state in real time.

When measurements are made, the estimated state is improved and the state covariance

decreases.

The covariance of position can be thought of as a ellipsoid enclosing most of the possible

solutions. The ellipsoid is represented by a 3x3 matrix. The eigenvalues of this matrix

correspond to the length, width, and height of the ellipsoid.

The behavior of Kalman Filters when processing LOS measurements has been analyzed

in [4, 18]. It was shown that during free motion the component of the covariance ellipsoid

parallel to the LOS vector will grow almost without bound. As a result, extremely large and

very small values will be contained in the same covariance matrix. These ill-conditioned

covariance matrices can lead to numerical errors that can cause the filter to fail.

This problem can be alleviated by normalizing the matrix in some manner. Several

filters that operate on the square-root of the covariance matrix have been developed and

are well summarized by Maybeck [19, Chapter 7]. Taking the square-root of the covariance

matrix makes large values smaller and small values larger, making the matrix better condi-

tioned. This research will make use of the conventional, Joseph, Potter, Carlson, and UD

factorization filters. These filter algorithms are covered in detail in Chapter 4.
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Fig. 3.1: A family of relative-motion trajectories exhibiting identical line-of-sight measure-
ment histories.

3.3 Range Estimation with Angles-only Navigation

There are still unanswered questions about how effective angles-only navigation will be

for proximity operations. For non-maneuvering satellites the problem is especially vexing.

If the satellites are far apart enough to observe the curvature of their orbit, Gauss’ method

for orbit determination can be used to determine range [20]. However, at closer distances,

Gauss’ method breaks down. This is because whole families of trajectories will exhibit

nearly identical Line-of-sight (LOS) measurement histories as seen in figure 3.1. They only

differ in their range component. If this motion is linearized using CW equations, then the

LOS measurement histories will truly be identical. Without a unique solution for the given

measurements, the state of the chaser will remain unobservable.

When these angle measurements are processed in a Kalman filter, no information can

be gleaned along the line of sight. Thus, the component of the covariance ellipsoid parallel

to the LOS vector will grow almost without bound.



9

ractual_2

!r

"2

!r

rnominal_1
ractual_1

"1

rnominal_2

Fig. 3.2: Predictable change in observability angle (δr) results from known acceleration.

3.4 Observability Burns

In order to estimate range, satellites using AON during proximity operations can make

a calculated maneuver to improve observability. As figure 3.2 shows, only one range will

satisfy the known change in position, δr, resulting from a known acceleration delivered by

the spacecraft’s thrusters. It is important to note that δr cannot be parallel to rnominal.

The change in the LOS vector for a given δr is known as the observability angle (θ) [2] .

These LOS measurements are processed in an EKF for state estimation.

The difference between the actual θ and the calculated θ is a function of accelerometer

and centroiding errors. As shown in figure 3.3, if the measured observability angle is too

small, then the Kalman filter will ignore it, because it falls within bounds that might be

due to process noise. Only when the differences are statistically significant will the range

estimate be improved. Thus, if accelerometers or camera measurements are poor, either the

satellite must wait longer for the trajectories to diverge or larger burns will be required.

3.5 Summary of Related Work

Essentially, the proposed thesis will expand on previous work done by Raja Chari, Dave

Woffinden, and Nathan Stastny. As summarized in table 3.1, Chari explored the navigation

performance of an angles-only navigation Kalman filter during proximity operations. This
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Fig. 3.3: Observability angle as a function of time.

analysis was done by way of linear covariance analysis, which produced highly useful, but

idealized results. Dave Woffinden expanded on the concept with a six-degree-of-freedom

simulation to prove the concepts applicability in a more realistic scenario. Nathan Stastny

expanded on Chari’s work by applying angles-only navigation techniques to deep space plan-

etary rendezvous. The proposed thesis will expand on Dave Woffinden’s work by comparing

the performance of various square-root formulations of the EKF to the Conventional EKF

(with and without the Joseph form of the update equations) under the more realistic con-

ditions that a six-DOF simulation provides, and without the benefit of apparent diameter

measurements.
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Table 3.1: Summary of Related Research

Chari [4] Woffinden [21] Stastny [3] Schmidt

Year 2001 2004 2006 2010

Angles Only Nav
√ √ √ √

Standard Kalman Filter
√ √

Extended Kalman Filter
√ √

Square-Root EKFs
√

Proximity Operations
√ √ √

LinCov
√ √

Simulation
√ √

Apparent Diameter Measurements
√

Line-of-Sight Errors
√ √ √ √

Accelerometer Errors
√

Closed-Loop
√ √

Open Loop
√ √ √



12

Chapter 4

Conventional and Square-Root Kalman Filters

4.1 Introduction to the Kalman Filter

The Kalman filter is a two-step process as shown in figure 4.1. The first step is to

propagate the state and state covariance matrix. The second step is the “update” step,

where the state and state covariance matrix are updated based on new measurements and

a priori information.

There are a number of variations on the conventional Kalman filter. Some maintain the

inverse of the covariance matrix, others maintain the square-root of the covariance matrix,

and one uses the square-root of the inverse of the covariance matrix! These variations

have been developed to improve the performance of a Kalman filter when implemented on

a computer that has memory and word length constraints. Four of these variations are

covered in sections 4.2.1 through 4.2.4. A study comparing their numerical performance is

found in Chapter 5.

The conventional Kalman filter is shown in figure 4.2a. In addition to the variations

mentioned above, the conventional Kalman filter may be derived in continuous time, dis-

crete time, and combinations thereof. In the continuous case, the state estimate and state

covariance are defined in term of their time derivatives (i.e. ẋ = f(x)), and they must be

continuously integrated to get the actual value at any instant. There is no separate update

step. In the discrete case, the state estimate and state covariance are propagated forward

discretely (i.e. xk+1 = Φkxk), and there is a separate update step whenever a measurement

is processed.

This study will implement a hybrid of the two. The state estimate will be numerically

integrated, while the state covariance will be propagated discretely. Both the state estimate

and state covariance will be updated when a measurement is processed.



13

All five forms of the Kalman filter discussed in this chapter are applied in future

chapters. Chapter 5 compares their numerical performance during application to two simple

linear scenarios. Chapter 7 provides all of the groundwork necessary to create Extended

forms of these filters for the non-linear scenario of rendezvousing satellites implementing

Angles-only navigation.

It is important to understand key elements of the Kalman filter algorithm that apply to

the conventional filter as well as its numerical variations discussed in sections 4.2.1 through

4.2.4. A brief summary of these elements, following the order of presentation in figure 4.2a,

is included here.

First, every filter must be initialized with an initial state (x̂0) and state covariance

(P 0). The state may be position, velocity, bias, or any other value of interest. The initial

covariance must be large enough that the estimated state will be free to move to the true

value. If the initial covariance is too small, the filter will be locked and unresponsive to the

measurements processed.

Next comes the propagation step. The dynamics of the state are modeled by the

function f(x). If f(x) is a linear function then it may be described by a matrix F such that

ẋ = Fx, and the state transition matrix (Φ) can be calculated ahead of time as Φ = e
Fdt

(where dt is the propagation stepsize) such that xk+1 = Φxk. If f(x) is not a linear function,

it may be linearized about either a nominal state or the current state estimate such that

F = df(x)
x

|x̂. Thus, in the nonlinear case, the value of F and Φ must be recalculated for

every times-step. A filter that operates this way is known as an Extended Kalman filter.

It goes without saying that the mathematical model f(x) will fail to capture all the

dynamics present in a real world case. The Kalman filter assumes that these unmodeled

effects can be accounted for by adding a Gaussian white or colored noise process with zero

mean to the dynamic model. This noise causes the covariance to grow with time. The

strength of this noise is captured in the matrix Q. Thus, the covariance is propagated

forward in time with the state transition matrix and grows larger due to Q, the noise

strength, and B, the noise input matrix.
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Fig. 4.1: Basic Kalman filter algorithm.

The update step introduces the sensor model h(x). This function relates the state

to the measurement. Like the dynamic model, if h(x) is a nonlinear function, it can be

linearized by H = h(x)
x

|x̂, where H is known as the measurement sensitivity matrix. The

sensor model is used to predict what the measurement should be. When a measurement

is made, the error between the estimated measurement (ŷ) and actual measurement (�y) is

used to improve the estimate of the state, and to modify the shape and size of the covariance

matrix. However, the actual measurement is not trusted completely. It is given a weight

based on a priori knowledge of the sensor measurement covariance (R), the current state

covariance, and the linearized sensor model. This weight (K) is known as the Kalman gain.

The initial state and state covariance matirx (x̂0 and P 0), linearized dynamic model

(F ), state transition matrix (Φ), noise strength and noise input matrices (Q and B),

measurement sensitivity matrix (H), measurement covariance (R), and Kalman gain (K)

are important elements common to all of the numerical variations of the Kalman filter

discussed below, though they may take different forms.
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4.2 Variations of the Kalman Filter

The variations of the conventional Kalman filter that will be discussed in this section

include:

1. Joseph form Kalman filter [19, pg 237]

2. Potter covariance square root filter [19, pg 384]

3. Carlson covariance square root filter [19, pg 385]

4. UD covariance factorization filter [19, pg 392]

4.2.1 Joseph Form Kalman Filter

The Joseph form of the Kalman Filter addresses issues with the update portion of the

Kalman filter algorithm. The symmetric and positive definite (positive, non-zero eigenval-

ues) nature of the covariance matrix can be lost in a finite word length computer when the

covariance update equation is defined by P
+ = (I −KH)P−. As seen in figure 4.2b, the

Joseph form replaces this formulation with one better conditioned for numerical evaluation.

This is the only change from the conventional formulation and, though it exhibits better

numerical conditioning, is not classified as a square-root filter.

4.2.2 Potter Covariance Square-root Kalman Filter

The fully implemented Potter covariance square-root Kalman filter (see figure 4.3a)

modifies both the propagation and update steps for the covariance matrix. The square-root

of the state covariance matrix is maintained in place of the conventional covariance matrix.

While the square-root of a matrix is not unique, the Cholesky factorization algorithm will

find a lower triangular square-root in a numerically well conditioned manner. This algorithm

is easily implemented in Matlab with S0 = chol(P 0,
�
lower

�) where SS
T = P . The square

root of the noise strength is similarly derived with W d = chol(Q dt,
�
lower

�), where W d is

the square root of the discrete process noise strength. The Potter formulation of the Kalman

filter doubles the effective precision of the conventional filter in ill-conditioned problems.
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There are three options for the propagation step. They are as follows.

• Matrix RSS (root-sum-square) method [19, pg 377]

• Modified Gram-Schmidt (MGS) method [19, pg 380]

• Householder transformation method [19, pg 382]

The first method is quick and easy but has the same numerical precision as the conventional

Kalman filter propagation step. The MGS method requires more calculations than the

Householder transformation method, but is slightly more precise when processing large

residuals. See Appendix E.8 for implementation of the MGS method in code.

The update step for the square-root of the state covariance matrix was first developed

by Potter for the case of scalar measurements. While vector forms of the Potter square-root

update exist, they are unnecessary. Non-scalar measurement updates may be performed by

using the Potter update multiple times. If the measurements are correlated (i.e. R is not

diagonal), then a transformation must be performed before processing the measurements

[19, pg 375]. In addition, while the state covariance matrix may start out lower triangular,

the Potter update equation will not maintain the lower triangular form.

4.2.3 Carlson Covariance Square-root Kalman Filter

The Carlson covariance square-root Kalman filter (figure 4.3b) improves on the Potter

filter by maintaining the covariance square-root matrix in triangular form. This reduces

required computations and memory storage. Theoretical performance improvements are

discussed in section 4.3. The propagation step is unchanged from that of the Potter filter.

Like the Potter filter, the update step processes vector measurements sequentially as scalars.

4.2.4 UD Covariance Factorization Filter

Though the UD covariance factorization filter is not a true, square-root filter, it exhibits

the same numerical performance as the Carlson and Potter formulations. The UD covariance

factorization filter replaces the state covariance matrix P with upper triangular and diagonal
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matrices such that P = UDU
T . The upper and diagonal matrices are calculated with an

algorithm outline in [19, section 7.7 pg 392] referenced here as [U ,D] = udu(P ). This

algorithm may be replicated in Matlab with [u,d,p] = ldl(P ,
�
upper

�) where D = d and

U = p
−T

u
T = p

�\u�. The UD filter also requires use of the Weighted Modified Gram-

Schmidt (WMGS) method detailed in [19, pg 397].

Like the Carlson filter, these triangular and diagonal forms reduce computation and

memory requirements as compared to the Potter filter. In addition, the UD filter does not

require any of the scalar square-root operations that the Carlson filter mandates. Thus, it

has the best theoretical performance of any of the square-root filters, but considerable work

must be done in order to take advantage of the symmetric and upper diagonal matrices.

The UD covariance factorization filter is outlined in figure 4.3c.

Measurement 
Available?

No

Yes

�y

Initialize Loop

(a) Conventional Kalman Filter

Measurement 
Available?

No

Yes

�y

Initialize Loop

(b) Joseph Form Kalman Filter

Fig. 4.2: Conventional and Joseph Kalman filter algorithms.

4.3 Comparison of Run-Times

The numerical requirements for each of these filters is shown in figure 4.4. These

bar plots are graphical representations of Maybeck’s numerical analysis summarized in [19,
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Tables 7.1 and 7.2]. The run times calculated in figure 4.4b are based on instruction times

on an IBM 360, a 1960’s era machine, and do not reflect actual runtimes on any modern

chip. Nevertheless, the advantages of the UD factorization filter over the Carlson filter are

illustrated due to the lack of square-roots in the UD formulation. It should be noted that on

modern machines the square-root operation is only slightly more expensive then division.

These calculations assume that R and Qd (Where Qd = Q∆t) are diagonal and that

all implementations take advantage of symmetry and zeros as they appear in general forms.

This last assumption is key. While a sparse matrix implementation of these filters in Mat-

lab would take advantage of zeros, additional work would be necessary to take advantage

of symmetry. Sparse matrices are not supported in Simulink�, so the theoretical speed

advantages of the Carlson and UD factor filters over the Potter formulation would not be

realized if implemented in Simulink without further modifications. In fact, without special

implementation, the UD factorization filter takes over twice as long to run as the Potter

filter.
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Chapter 5

Numerical Errors in Kalman Filters

Numerical errors due to finite world length can be tricky to track down, especially in

an algorithm as complex as a Kalman filter. Nevertheless, it is important that these effects

be detected when they occur. In order to better understand the nature of these failures this

chapter will examine the performance of the Conventional, Joseph, Potter, Carlson, and UD

factorization filters in extreme detail for a couple of very simple “Toy Cases.” The first toy

case involves a single rotating shaft with absolute position measurements in degrees. The

second toy case involves two rotating shafts with relative position measurements in degrees.

The toy case linear Kalman filter codes are found in Appendix D.

5.1 Toy Case 1: Rotating Shaft with Absolute Measurements

Description of Toy Case 1

Cases 1A-1E involve filters estimating the state of a rotating shaft. Thus, the state is

a two dimensional vector containing angular position (r) and angular rate (v). The only

measurement comes from an extremely accurate position sensor with measurement noise

standard deviation on the same order as machine epsilon (“eps” in the figures, and � in the

text), though measurement noise is varied from case to case. The initial condition is zero for

position and velocity, however, there is process noise on both acceleration and velocity. By

varying the amount of process noise and the size of the initial covariance values, the effect

of numerical errors on filter performance may be observed and characterized. While these

models were implemented in degrees and degrees per second, with a one second stepsize,

only the numerical values themselves are relevant to the results emphasized in this chapter.

Thus, units have been dropped in all tables and figures.
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5.1.1 Case 1A: Working Case

Following the steps in figure 5.1, it can be seen that all five formulations of the Kalman

filter are numerically stable and match the symbolic solution very well (though they are not

identical to it). While the state covariance matrix is stored in a different form in the Potter,

Carlson, and UD filters, the equivalent state covariance matrix is shown in these figures for

comparative purposes. Walking through the steps sequentially reveals the following:

Step 0: Initially the covariance is an identity matrix.

Step 0+: After the first update step the highly accurate position measurement results in a

position covariance of R. The symbolic solution is slightly smaller. Thus, the numeric

filters are slightly conservative. If R was sufficiently large, then the numeric filters

would match the symbolic result exactly.

Step 1: After the first propagation step the velocity covariance has been fed into the po-

sition covariance. This is a very ill-conditioned situation, with a very small number

(R) being added to one.

Step 1+: After the second update step all the values in the covariance matrix have become

very small because the velocity and position states are almost perfectly correlated.

The 1+R position covariance from the previous step has resulted in a 2R velocity

covariance on this step. The symbolic solution is not shown (due to its complexity)

but the numerical solution continue to be conservative as seen in step 0+.

Step 2: After the second propagation step the values have all grown as expected.

Step 2+: After a third update step covariance shrinks as expected.

The Conventional and Joseph filters can fail as the problem becomes more ill-conditioned.

Ill-conditioning can be produced a number of ways. Making the measurement more accurate

(shrinking R) or increasing the values in the initial covariance matrix (P0) can both cause

one or more of these filters to fail. These two cases are examined in detail in sections 5.1.2

and 5.1.3.
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5.1.2 Case 1B: Numerical Failure Due to More Accurate Measurements

In this case (figure 5.2), the magnitude of R has been reduced from 4� to �/4. Such an

accurate measurement causes the conventional filter to encounter filter-lock, where one or

more of the eigenvalues of the state covariance matrix have gone to zero.

Step 0: Initially, the covariance matrix P is the identity matrix.

Step 0+: After the first update step the Conventional filter truncates the actual position

covariance to zero, while the Joseph, Potter, Carlson and UD filters round to R. This

is because the inverse required to solve for K in the Conventional and Joseph filters

failed. Instead of outputting 1/(1+R) the matrix inverse algorithm outputted 1. This

is easily overcome in the scalar case by replacing the matrix inverse algorithm with

a scalar inverse. However, this is is common point of failure when matrix inverse

methods are employed.

The symbolic solution for the position covariance is slightly smaller than R, thus the

Joseph, Potter, Carlson and UD filters are conservative.

Step 1: After the first propagation step the covariance propagated by the Joseph form

does not properly represent the effect of R. Because R<�, 1+R becomes 1. It should

be noted, if R was equal to epsilon and not �/4, the Joseph filter would not fail at this

point. Potter, Carlson and UD filters maintain R. Again, Potter, Carlson and UD

filters are conservative (larger than necessary) compared to the symbolic solution.

Step 1+: After the second update step the Conventional filter covariance goes to zero

because states are perfectly correlated and R is rounded to zero. The Joseph filter

covariance is also perfectly correlated, but R is better represented. The Potter, Carlson

and UD 1+R term in step 1 results in 2R velocity covariance in step 1+. While

the symbolic solution is not shown, Potter, Carlson and UD results continue to be

conservative.
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Step 2: After the second propagation step process noise slowly starts to make the conven-

tional covariance grow. Joseph covariance is smaller than it should be due to losing

R during step 1.

Step 2+: After a third update step the Joseph filter covariance is still smaller than it

should be.

5.1.3 Case 1C: Numerical Failure Due to Larger Initial Covariance

Another way to create an ill-conditioned problem that causes the lower fidelity filters

to fail is to increase the magnitude of the initial covariance matrix P. This is because

machine epsilon is always with respect to a given value. By convention machine epsilon is

usually given with respect to one, but each floating point number has a machine epsilon. For

example, on a certain machine, eps(1)=222.0446e-18 while eps(10)=177.63568e-17. A larger

initial covariance decreases a filters ability to correctly process an accurate measurement.

In this example (figure 5.3), the measurement covariance has been returned to 4� (like

Case 1A), but the P matrix has been increased to ten times the identity matrix.

Step 0: Initially, the covariance matrix P is ten times the identity matrix.

Step 0+: After the first update step there are already signs that the conventional filter is

not working correctly, with the position covariance larger than the other solutions.

This is a result of the inverse operation failing. Instead of rounding 1
10+R

to 1/10, it

has been rounded to 1
10+R/64 . This is a result of using the Cholesky inverse algorithm

(M−1 = (LL
∗)−1 where L

∗ is the complex conjugate). If the LDL inverse algorithm

(M−1 = (LDL
∗)−1) is used, then the inverse is rounded to 1/10, in the same way as

case B.

The symbolic solution for the position covariance is slightly smaller than R, thus the

Joseph, Potter, Carlson and UD filters are conservative.

Step 1: After the first propagation step both the Conventional and Joseph filters are unable

to represent the effect of R, even though R>�. 10+R becomes 10 because � is with
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respect to 1, not 10. Potter, Carlson and UD filters maintain the effect of R on the

state covariance. Again, Potter, Carlson and UD filters are conservative (larger than

necessary) compared to the symbolic solution.

Step 1+: After the second update step the conventional filter covariance is in error and

is no longer symmetric! This is a direct result of numerical errors like those seen

in step 0+. With the inverse being incorrectly calculated by the Cholesky inverse

algorithm. Use of a LDL inverse algorithm would have maintained symmetry, but

would have resulted in filter-lock. The Joseph filter has incorrectly calculated the

velocity covariance because it unable to represent the effect of R during step 1. While

the symbolic solution is not shown, Potter, Carlson and UD results continue to be

conservative.

Step 2: After the second propagation step, errors in the Conventional and Joseph filters

continue to exist. Potter, Carlson and UD filters continue to perform correctly.

Step 2+: After a third update step the Conventional and Joseph filters continue to have

errors. Potter, Carlson and UD filters continue to perform correctly.

If the initial covariance matrix was 100 times the identity matrix, then the behavior of the

filters would exactly match case B.

5.1.4 Case 1D: Filter Lock with Virtually No Process-Noise

In this case, as seen in table 5.1, the process noise (w) has been set to machine epsilon

squared, thus, the noise strength (Q) is �
4 which is virtually zero. The measurements noise

(ν) has been set to �, thus the measurement covariance (R) is �
2. As shown in Figures

5.4 and 5.6, the highly accurate measurement causes the conventional filter to completely

ignore future measurements, while the Potter filter continues to operate correctly.
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Table 5.1: Model Information for Case 1D: Filter Lock When Process Noise 1σ is �
2

Initial Conditions Symbol Truth Model Filter Model

state

h
r0 v0

iT h
0 0

iT h
0 0

iT

state covariance P0 eye(2)

Model Dynamics Symbol Truth Model Filter Model

state dynamics ẋ ẋ = Fx + Bw ẋ = Fx

state covariance

dynamics

Pt+dt Pt+dt = function(Pt, F, B, ω)

Linear Model F [0 1; 0 0] [0 1; 0 0]

Noise input

matrix

B eye(2) eye(2)

Process Noise

standard

deviation

w

h
�
2

�
2

iT h
�
2

�
2

iT

Sensor Info Symbol Truth Model Filter Model

position sensor ỹ ey = H x̄ + ν ŷ = Hx̂

measurement

sensitivity matrix

H [1 0] [1 0]

measurement

noise standard

deviation

v � �

5.1.5 Case 1E: Filter Lock with Low Process-Noise

If the magnitude of the process noise is increased, as seen in table 5.2, the initial filter-

lock will be overcome because process noise increases the magnitude of the eigenvalues of

the covariance matrix (see Figures 5.5 and 5.7).
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Table 5.2: Model Information for Case 1E: Filter Lock When Process Noise 1σ is �/100

Initial Conditions Symbol Truth Model Filter Model

state

h
r0 v0

iT h
0 0

iT h
0 0

iT

state covariance P0 eye(2)

Model Dynamics Symbol Truth Model Filter Model

state dynamics ẋ ẋ = Fx + Bw ẋ = Fx

state covariance

dynamics

Pt+dt Pt+dt = function(Pt, F, B, ω)

Linear Model F [0 1; 0 0] [0 1; 0 0]

Noise input

matrix

B eye(2) eye(2)

Process Noise

standard

deviation

w

h
� �

iT

100

h
� �

iT

100

Sensor Info Symbol Truth Model Filter Model

position sensor ỹ ey = H x̄ + ν ŷ = Hx̂

measurement

sensitivity matrix

H [1 0] [1 0]

measurement

noise

v � �

5.1.6 Other Failure Modes

In addition to these failure modes, the Joseph formulation can be as susceptible to

numerical errors as the Conventional filter if a measurement is correlated to more then one

state (e.g. H=[1 1]). See [19, example 7.11] for more details.
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5.2 Toy Case 2: Two Rotating Shafts with Relative Measurement

The following case involves a filter estimating the absolute state (position and velocity)

of two “rotating” shafts (see table 5.3). However, only a relative position measurement is

to be processed. In this scenario, the absolute state covariance continues to grow with-

out bound, while the correlation between the two rotating shaft’s positions and velocities

becomes higher and higher.

Under these conditions the high correlation between the positions and velocities results

in an ill-conditioned matrix. This is most easily seen by looking at the relative state error

and covariance. The relative state is defined by:

2

4 rrel

vrel

3

5 =

2

4 −1 0 1 0

0 −1 0 1

3

5

2

6666664

r2inertial

v1inertial

r2inertail

v2inertial

3

7777775
(5.1)

The relative covariance matrix is defined by:

2

4 Prrel 0

0 Pvrel

3

5 =

2

4 −1 0 1 0

0 −1 0 1

3

5 Pinertial

2

6666664

−1 0

0 −1

1 0

0 1

3

7777775
(5.2)

In this case, the Conventional and Joseph filters encounter filter lock (in terms of the

relative covariance) within the first 250 seconds as seen in Figure 5.8. The consequence

of this filter lock is devastating, as seen in figure 5.9. The Potter, Carlson, and UD filters

continue to estimate the relative state well (see figure 5.10) and their relative state estimates

differ only on the order of machine precision (see figure 5.11).
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Table 5.3: Model Information for Case 2: Relative Measurements

Initial Conditions Symbol Truth and/or Filter Model

state

h
r10 v10 r20 v20

iT h
0 0 1 0

iT

state covariance P0

2

6666664

1 0 0 0

0 .01 0 0

0 0 1 0

0 0 0 .01

3

7777775

Model Dynamics Symbol Truth and/or Filter Model

state dynamics ẋ ẋ = Fx + Bw / ẋ = Fx

state covariance

dynamics

Pt+dt Pt+dt = function(Pt, F, B, ω)

Linear Model F

2

6666664

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

3

7777775

Noise input

matrix

B eye(4)

Process Noise

standard

deviation

w [eps; eps; eps; eps]× 1e4

Sensor Info Symbol Truth and/or Filter Model

position sensor ỹ ey = H x̄ + ν / ŷ = Hx̂

measurement

sensitivity matrix

H [-1 0 1 0]

measurement

noise standard

deviation

v
√

eps× 100
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Fig. 5.10: Case 2: No filter lock in Potter, Carlson, and UD filters.
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Fig. 5.11: Case 2: Difference between Potter, Carlson, and UD filter relative state estimates
during a 5,000 sec run. Note that differences are on the order of machine epsilon.

Performance Comparison: Potter/Carlson and the UD filter

Up to this point, no significant difference has been detected between the Potter, Carl-

son, and UD factorization filters. With a relative state measurement, however, numerical

differences between the filters do show up. Figure 5.12 plots both the Potter, Carlson, and

UD absolute states and the true absolute states. In this case, because the initial angular

position and velocity are zero, all the states should stay at zero. It is clear that the UD

factorization filter performs better than either the Potter or Carlson filters. The Potter

and Carlson filters are corrupting the initial state when they process relative state measure-

ments. Comparing figure 5.12 with figure 5.13, shows that the UD filter is outperforming

both the Potter and the Carlson filters by a couple orders of magnitude.

This difference can probably be attributed to how the Kalman gain (K) is calculated.

As seen in the flowcharts in figure 4.3, the Potter filter Kalman gain K = bSa, where b is

a scalar, S is a matrix, and a is a vector. In the Carlson filter, K = en/dn where en is an
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element of a vector calculated by ek = ek−1 + S
−
k

ak. S
−
k

is a matrix and ak is a vector.

Both of these formulations seem to be more susceptible to numerical errors due to matrix

multiplication. The UD factorization filter stays with scalar calculations with K = b/an,

where b is a vector calculated by iterating through bj = bj old + Ujkvk.

These errors, however, are much, much smaller than the covariance of these states.

Thus, real world gains of the UD filter over the Potter and Carlson filters due to these

differences are most likely undetectable.
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Fig. 5.12: Filtered absolute states minus true absolute states.
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Chapter 6

Orbital Rendezvous Simulation Model Development

The high fidelity, six degree-of-freedom simulation consists of two spacecraft (a “chaser”

and “target”) in low-Earth orbit. The simulation includes sensor, actuator, and dynamic

models that include noise, bias and other errors. Appropriate attitude and translational

controllers were built for the “chaser” spacecraft. Since this simulation is not the main

focus of the thesis, only a basic overview of the key models and equations is included here.

Unusual symbols unique to this chapter are summarized in Appendix A. Initial conditions,

constants, and sensor noise and bias specifications are covered in section 8.2.

6.1 Simulation Overview

A quick overview of the satellite simulation may be seen in figure 6.1. The labeled

blocks are implementations of models covered in this chapter.

6.2 Vehicle Dynamics

The chaser spacecraft consists of a 1x1x1 meter cube with a mass of 15 kg and and

inertia matrix:

I =

2

6664

0.8 0.05 0.05

0.05 0.8 0.05

0.05 0.05 0.8

3

7775
kg m

2
(6.1)

6.2.1 Translation Dynamics

While translational dynamics is covered in more detail in Chapter 7, J2 gravity, thruster

accelerations, and process noise were summed and integrated to obtain the spacecraft’s po-

sition and velocity in the ECI frame. Thus, the acceleration of the spacecraft was calculated



43

A
Se

ct
io

ns
6.

2
an

d
6.

3

B
Se

ct
io

n
6.

5

C
Se

ct
io

n
6.

4

D
Se

ct
io

n
6.

7
an

d
C

ha
pt

er
s

4
an

d
7

E
Se

ct
io

n
6.

6

F
Se

ct
io

n
6.

8

A CB

D

E
F

F
ig

.6
.1

:
O

ve
rv

ie
w

of
sa

te
lli

te
si

m
ul

at
io

n.



44

by:

ā = −µ
r̄

|r̄|3 − µ
J2R

2
e

2|r̄|5
˘
6(r̄ · n̄)n̄ + 3r̄ − 15(̄ir · n̄)

2
r̄
¯

+
F̄thrust

mass
+ w̄acc (6.2)

r̄ = ECI position, īr = unit vector form of r, F̄thrust = thrust vector

mass = masso − ( ˙mass)t, w̄acc = process noise with strength of 1× 10
−12

m
2
/s

3

µ, J2, Re, and n̄ are defined in table 8.7.

6.2.2 Attitude Dynamics

Traditional Euler equations and quaternion propagation in conjunction with the Simulink

integrators was used to propagate the attitude of the spacecraft. Thus the attitude accel-

eration was calculated by

˙̄ω = I−1
n
−ω̄ ×

`
Iω̄ + h̄

´
+ T̄ +

˙̄
h

o
(6.3)

ω = angular rate, h̄ = angular momentum of momentum wheels (6.4)

The torque (T̄ ) is a function of the thrusters being fired, the actuation of the momentum

wheels, and process noise with a strength of 1× 10−12(N m)2/sec.

Integrating angular acceleration yields angular velocity ω̄ which can be written in terms

of a quaternion derivative:

˙̄q =
1

2
Ω(ω̄)q̄ (6.5)

where

Ω(ω̄) =

2

4 −[ω̄×] ω̄

−ω̄
T

0

3

5 (6.6)

[ω̄×] =

2

6664

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

3

7775
(6.7)

This quaternion derivative is also integrated to yield the attitude in terms of a quater-

nion.
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Fig. 6.2: Chaser satellite thruster configuration.

6.3 Environment Models

No atmospheric drag, or solar pressure models were implemented in this simulation.

However, random acceleration and torque effects are included as noted in equations 6.2 and

6.3.

6.4 Sensor Models

The onboard sensors include three-axis accelerometers, a line-of-sight camera for ob-

serving the target satellite, and a star-camera for determining attitude. The specifications

for the accelerometers and LOS camera are found in tables 8.2 and 8.3 on pages 68 and 68.

6.4.1 Accelerometers

The accelerometers provide a measurement of all non-gravitational forces corrupted by

misalignment (�), noise (ηacc) and bias (βacc) and quantization effects with 1 × 10−9m/s2

resolution. The actual values for misalignment and noise are dependent on the specific run.
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ã = quant(Eorthoānon−grav + η̄acc + ¯βacc) (6.8)

Eortho =

2

6664

0 �z −�y

−�z 0 �x

�y −�x 0

3

7775
(6.9)

6.4.2 Line-of-sight Camera

The line-of-sight camera provided the tangent of the azimuth and elevation angles

corrupted by misalignment and noise. The actual values for misalignment (βLOS) and noise

(ηLOS) are dependent on the specific run. R
cam is the same as Rrel defined in figure 7.2.

tan(el) = tan

„
asin

„
R

cam
z

|Rcam|

«
+ ηLOS + βLOS

«
(6.10)

tan(az) = tan

„
atan2

„
R

cam
y

|Rcam| ,
R

cam
x

|Rcam|

«
+ ηLOS + βLOS

«
(6.11)

6.4.3 Star-Camera

For this simulation, a perfect Star-Camera was used to define orientation of the body

frame. The effect of any non-zero camera errors is easily modeled as LOS-camera error and

accelerometer misalignment. Thus, the star-camera measurement defines the true attitude

of the chaser.

6.5 Actuator Models

Actuators for the chaser satellite include twelve thrusters for translation and attitude

control, and four momentum wheels for more precise attitude control.

6.5.1 Thrusters

The 12 thrusters on the chaser satellite are located a half meter from the center of mass

and are configured as seen in figure 6.2. The force of each thruster depends on the scenario

being run (see section 8.7). The orientation and position of the thrusters are described by

the matrices below. The F
c matrix contains unit vectors pointing in the direction of the
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force from each thruster. The R
c matrix defines the position of each thruster in the chaser

body frame.

F
c

= −

2

6666666666666666666666666666664

0 0 −1

0 0 1

0 0 1

0 0 −1

−1 0 0

1 0 0

1 0 0

−1 0 0

0 −1 0

0 1 0

0 1 0

0 −1 0

3

7777777777777777777777777777775

(6.12)

R
c

=

2

6666666666666666666666666666664

0 0.5 0

0 −0.5 0

0 0.5 0

0 −0.5 0

0 0 0.5

0 0 −0.5

0 0 0.5

0 0 −0.5

0.5 0 0

−0.5 0 0

0.5 0 0

−0.5 0 0

3

7777777777777777777777777777775

m (6.13)

Note that the thrusters are in pairs and can be used to generate torque and force effects.

The thrusters are either on or off, and the magnitude and direction of the force and torque

on the spacecraft due to the thrusters is modeled by:

F̄thrust = (I + Eortho)(I + S)F̄nominal + w̄force + β̄force (6.14)

T̄thrust = (I + Eortho)(I + S)T̄nominal + w̄torque + β̄torque (6.15)

Eortho is defined in equation 6.8, S is the identity matrix multiplied by the scale factor.

Pertinent values in the above equations are defined in tables 6.1 and 6.2.

Table 6.1: Thruster Force Model Specifications

Thruster Force model Specification

Spec Value Units

Noise Strength 1× 10−8 (N s)2/s

Bias Variance 1× 10−8 (N)2

Bias Time Constant 60 sec

Misalignment Standard Deviation 20 arcseconds rad

Scale factor 100× 10−6 PPM
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Table 6.2: Thruster Torque Model Specifications

Thruster Torque model Specification

Spec Value Units

Noise Strength 1× 10−6 (N m s)2/s

Bias Variance 1× 10−6 (N m)2

Bias Time Constant 60 sec

Misalignment Standard Deviation 20 arcseconds rad

Scale factor 100× 10−6 PPM

6.5.2 Momentum Wheels

The moment wheel system is actually four wheels that work together to generate

torques around the three primary axes. These momentum wheels are arranged accord-

ing to figure 6.3. The controller and model is based on work found in [22, Chapter 7 section

3]. For a given torque command [Tcx Tcy Tcz]T , the individual wheel torque commands are

calculated according to

2

6666664

T1

T2

T3

T4

3

7777775
=

1

2

2

6666664

1 0
1
2

1
2

0 1
1
2 − 1

2

−1 0
1
2 − 1

2

0 −1
1
2

1
2

3

7777775

2

6666664

Tcx

Tcy

Tcz

0

3

7777775
− [h1 − h2 + h3 − h4]

2

6666664

1

−1

1

−1

3

7777775
KmomMan (6.16)

where the momentum management gain (KmomMan) was set to 0.05 sec
−1.

The resultant torque around each axis is calculated by

2

6664

Tcx

Tcy

Tcz

3

7775
=

1√
2

2

6664

1 0 −1 0

0 1 0 −1

1 1 1 1

3

7775

2

6666664

T1

T2

T3

T4

3

7777775
(6.17)
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Fig. 6.3: Momentum wheel orientation.

6.6 Translation and Attitude Guidance

Translational guidance consisted of a simple stationkeeping command. The chaser is

commanded to hold a desired position in the LVLH frame. For this application, the LVLH

frame is defined as follows. The origin is at the target spacecraft. The x axis is the local

horizontal axis, with the positive direction aligned with the velocity bar (V-bar) of the

target spacecraft. The y-axis is the cross track axis, with the positive direction aligned

with the positive of the angular momentum. The z-axis is the local vertical axis, with the

positive direction aligned with the radius bar (r-bar).

Rcom = Rdes (6.18)

Vcom = [0 0 0]T

The attitude guidance consisted of a simple target tracking command. The command

issued by the algorithm would orient the chaser such that the LOS camera would point at

the target. The commanded quaternion is derived from the commanded direction cosine
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matrix by way of equation 6.25. The commanded direction cosine matrix is calculated by

equation 6.19. The commanded angular rate is calculated by equation 6.20.

Rcom = [
ē
T
x ē

T
y ē

T
z

] (6.19)

ēx =
(r̄t − r̄c)

|r̄t − r̄c|

ēy =
(r̄c × v̄c)× ex

|(r̄c × v̄c)× ex|
ēz = ēx × ēy

ωcom =
(r̄t − r̄c)× (v̄t − v̄c)

|r̄t − r̄c|2
(6.20)

6.7 Navigation

Navigation was accomplished by the Kalman filters developed in Chapters 4 and 7.

6.8 Position, Velocity, and Attitude Controllers

Primary controllers consist of a station keeping position-derivative (PD) controller, and

two attitude controllers: a phase-plane controller for the thrusters, and a position-integral-

derivative (PID) controller for the momentum wheels.

6.8.1 Translational Control: Station Keeping PD Controller

The station keeping PD computed a change in velocity command d̄vcom .

d̄vcom = Kp(r̄com − r̂c) + KD(v̄com − v̂c) (6.21)

The position gain Kp = 0.010966227 sec
−1. The derivative gain KD = 0.18849556.

Because the thrusters are either on or off, d̄vcom was rounded to zero if less then half of
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the thruster’s minimum ∆V . The KP and KD gains were computed based on a natural

frequency (ωn) and damping ratio (ξ) of 2π/60 and 0.9 respectively.

6.8.2 Attitude Controllers

Two controllers exist to control attitude. When the errors are large, the thrusters are

used to correct attitude by way of a phase-plane controller. When the errors are small

enough to be handled by the momentum wheels, the phase-plane controller is deactivated

and a PID controller uses the momentum wheels for precision pointing.

6.8.2.1 Phase-Plane Controller for Thrusters

Phase Plane Controllers are exceptional at maintaining stable and predictable behav-

ior when using bang-bang actuators like thrusters. A Phase Plane Controller has been

implemented successfully on the Space Shuttle for many years. The phase plane controller

implemented in the simulation is based on the work found in [23].

The geometry of the deadband and a typical control path is represented in figure 6.4.

The initial state is to the bottom left and represents a large error in attitude and attitude

rate. A PD control law drives the rate to the deadband region. The satellite then coasts

until it approaches the desired position. The PD control law commands minimum impulse

burns whenever the state leaves the deadband region, slowing the angular rate until it

slightly overshoots the desired rate and reverses direction. A steady-state oscillation then

occurs about the desired position/rate with a predictable frequency. If the rate is ever too

fast, then a rate control law will slow the spacecraft down to the deadband rate.

The parameters required to develop the deadband geometry were:

• User Selected Parameters

– δθ = permissible error in attitude = 6◦

– Convergence rate = 4◦/sec

– ζ = damping ratio of the controller =0.707
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• Satellite Specification Parameters

– In =Satellite Inertia about respective axis

– T = Available torque about respective axis

– ∆t = minimum thruster ontime

• Derived Parameters

– K = controller gain = 2∆t

δθ

– ωn = natural frequency =
�

KT

In∆t

– τ = time constant of the system = 2ζ

ωn

– δθ̇ = permissible error in attitude rate =
�

2∆t

Kτ

– Minimum time between thrusts during steady state operation = 2In

KT

Initial
state

PD Control Region

PD Control Region

Derivative Control
Region

Derivative Control
Region

Fig. 6.4: Phase-plane attitude controller for thrusters.
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6.8.2.2 PID Controller for Momentum Wheels

The PID controller for the momentum wheels is an extension of the quaternion error

PD controller found in [22, Chapter 7 section 2]. Implementation involves just a few steps.

Sidi develops a control law using the elements of the direction cosine error matrix defined

by

AE = AdesAc (6.22)

This law is shown in equation 6.23, where axxE denotes an element of AE .

Tcx =− 1

2
Kx(a32E − a23E) + Kxdωx

Tcy =− 1

2
Ky(a13E − a31E) + Kydωy (6.23)

Tcz =− 1

2
Kz(a21E − a12E) + Kzdωz

This control law has the advantage of always commanding a rotation about the Euler

axis of rotation, minimizing the angular path to be covered. This control law can be

implemented in terms of quaternions by calculating an error quaternion, which captures

the difference between the desired and estimate quaternions (qdes and qc).

qE =

2

6666664

qdes4 qdes3 −qdes2 qdes1

−qdes3 qdes4 qdes1 qdes2

qdes2 −qdes1 qdes4 qdes3

−qdes1 −qdes2 −qdes3 qdes4

3

7777775

2

6666664

−qc1

−qc2

−qc3

qc4

3

7777775
(6.24)

Then, noting the relationship between direction cosine matrix elements and the ele-

ments of the quaternion vector noted in equation 6.25, equation 6.23 can be rewritten as

equation 6.26.

q4 = ± 0.5
√

1 + a11 + a22 + a33

q1 =0.25(a23 − a32)/q4 (6.25)

q2 =0.25(a31 − a13)/q4

q3 =0.25(a12 − a21)/q4

Tcx =2Kxq1Eq4E + Kxdωx

Tcy =2Kyq2Eq4E + Kydωy (6.26)

Tcz =2Kzq3Eq4E + Kzdωz
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This result was modified into a PID controller by adding an integral and associated

gain as seen in equation 6.27.

Tcx = 2KxIq1Eq4Edt + 2Kxq1Eq4E + Kxdωx

Tcy = 2KyIq2Eq4Edt + 2Kyq2Eq4E + Kydωy (6.27)

Tcz = 2KzIq3Eq4Edt + 2Kzq3Eq4E + Kzdωz

For implementation a deadbeat setup was used such that the deadbeat coefficients adb

= 1.90 and bdb = 2.20. The desired natural frequency was wn = .707 rad/sec. This resulted

in position, derivative, and integral gains of:

Kp = Ibdbw
2
n = [0.87973424 0.87973424 1.0996678] sec

−1

Kd = adbwnI = [1.07464 1.07464 1.3433]

KI = Iw3
n = [0.02827145944 0.02827145944 0.0353393243] sec

−2
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Chapter 7

Extended Kalman Filter for Angles-only Navigation

Developing an Extended Kalman Filter for orbital rendezvous angles-only navigation

involves several steps, which are summarized in figure 7.1. First the filter design model must

be developed. This is the navigation system designer’s “working model.” This nonlinear

model accounts for the position and velocity of the chaser and target vehicles, misalignment

and measurement noise on the accelerometers and the optical camera, and bias on the

accelerometers. It uses process noise in the vehicle acceleration channel to account for

unmodeled effects like drag and solar pressure.

Once the filter design model has been established, a different model without process

noise effects, and possibly of lower fidelity, must be developed. This new model is still

nonlinear and its integral with respect to time will be the state propagation equation inside

the Kalman filter. Next, the state covariance propagation equation must be developed.

The state covariance propagation equation requires a linearization of the state filter model

as well as noise strength estimates based on the process noise values developed during the

filter design model step.

Once the filter propagation equation has been established, the filter update step must

be developed. The specifics of the update step will vary depending on whether it is a

Conventional, Joseph, Carlson, or some other type of filter. However, each of these filters

require a measurement sensitivity matrix, which is a linearized version of the measurement

equation.

Once these five steps have been completed, these equations can be implemented into a

conventional, Joseph, Potter, or some other Kalman filter formulation.



56✬

✫

✩

✪

1. Develop filter design model.

˙̄x = f(x̄) + Bw̄
ȳ = h(x̄) + ηcam

2. Develop state propagation equation.

x̂i+1 = f(x̂i) dt

3. Linearize state filter model.
F =

∂f(x̂)
∂x̂

����
x̂

4. Develop the state covariance propagation equation.

P i+1 = ΦiP iΦT
i + BQB

T
δt where Φ = e

Fdt

5. Linearize measurement equation (a.k.a. measurement sensitivity matrix).

H =
∂h(x̂)

∂x̂

����
x̂

6. Implement into a conventional, Joseph, Potter, or other Kalman filter formulation.

Fig. 7.1: Extended Kalman filter development summary.

7.1 Filter Design Model

This is the navigation system designer’s “working model.” This model accounts for

the position and velocity of the chaser and target vehicles in the Earth Centered Inertial

(ECI) frame, misalignment and measurement noise on the accelerometers and the optical

camera, and bias on the accelerometers. Note that the misalignment terms �̄acc and �̄cam

and the bias term β are modeled as exponentially correlated random variables (ECRV’s)

with very long time constants. Also, the filter design model uses process noise in the vehicle

acceleration channel to account for unmodeled effects like drag and solar pressure.

The only measurement that will be processed in the Kalman filter directly will be the

LOS camera measurements. Accelerometers will be used to propagate position and attitude

states directly. As a result, the accelerometer measurement noise (ηc) will be treated like a
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process noise. The star-camera measurements will be used to transform between the chaser

body frame and the ECI frame (i.e. Tb→I).

The filter design model is represented by equations 7.1 and 7.2. Note that the n̄ symbol

is a vector defined as [0 0 0]T .

˙̄x = f(x̄) + Bw̄

ȳ = h(x̄) + ηcam

(7.1)

where

˙̄x =

2

6666666666666664

˙̄rc

˙̄vc

˙̄rt

˙̄vt

˙̄
β

˙̄�acc

˙̄�cam

3

7777777777777775

21x1

f(x̄) =

2

6666666666666664

v̄c

g(r̄c) + T b→I [I3x3 + [�̄acc×]][ea− β̄]

v̄t

g(r̄t)

−β̄/τaccβ

−�̄acc/τacc

−�̄cam/τcam

3

7777777777777775

21x1

g(r̄) = −µ
r̄

|r̄|3 − µ
J2R

2
e

2|r̄|5
˘
6(r̄ · n̄)n̄ + 3r̄ − 15(̄ir · n̄)

2
r̄
¯

(7.2)

w̄ =

2

6666666666664

w̄c

η̄c

w̄t

w̄accβ

w̄acc

w̄cam

3

7777777777775

18x1

B =

2

6666666666666664

03x3 03x3 03x3 03x3 03x3 03x3

I3x3 −T b→I [I3x3 + [�̄acc×]] 03x3 03x3 03x3 03x3

03x3 03x3 03x3 03x3 03x3 03x3

03x3 03x3 I3x3 03x3 03x3 03x3

03x3 03x3 03x3 I3x3 03x3 03x3

03x3 03x3 03x3 03x3 I3x3 03x3

03x3 03x3 03x3 03x3 03x3 I3x3

3

7777777777777775

21x18

h(x̄) =

2

4 tan(az)

tan(el)

3

5 =

2

4 R
cam
z /R

cam
x

R
cam
y /R

cam
x

3

5 (7.3)

R̄
cam

rel = [I3x3 − [�̄cam×]](T I→b(r̄t − r̄c)− r
b

cam) = [R
cam

x R
cam

y R
cam

z ]
T

(7.4)

Transformation Matrix

The Transformation Matrix comes directly from the star camera, which returns a

quaternion measurement (�q), as seen below:
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T I→b(q̄) =

2

6664

q
2
0 + q

2
1 − q

2
2 − q

2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q
2
0 − q

2
1 + q

2
2 − q

2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q
2
0 − q

2
1 − q

2
2 + q

2
3

3

7775

3x3

(7.5)

where

q̄ =

2

6666664

q0

q1

q2

q3

3

7777775

4x1

=

2

4 cos(θ/2)

ûsin(
θ

2 )

3

5 (7.6)

û = unit vector defining axis of rotation

θ = angle of rotation in radians

x
b

y
b

z
b

Chaser

Target
Rrel

Rz

Rx

Ryaz

el

rcam

Fig. 7.2: Azimuth and elevation measurements in chaser body frame.

7.2 State Propagation Equation

The state propagation equation is simply the integral of f(x̂) over time.

x̂i+1 = f(x̂) dt (7.7)
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7.3 Linearized State Filter Model

The linearization of the dynamics equation is a precondition for solving for the transi-

tion matrix Φ.

The system dynamics equation (f(x̄)) is linearized as follows:

F =
∂f(x̂)

∂x̂

˛̨
˛̨
x̂

=

2

4 ∂f(x̂)
∂r̂c

∂f(x̂)
∂v̂c

∂f(x̂)
∂r̂t

∂f(x̂)
∂v̂t

∂f(x̂)

∂β̂

∂f(x̂)
∂�̂acc

∂f(x̂)
∂�̂cam

3

5

21x21

(7.8)

Each element of the above matrix is a column of partials as seen below.

F =

2

666666666666664

∂ ˙̂rc/∂r̂c ∂ ˙̂rc/∂v̂c ∂ ˙̂rc/∂r̂t ∂ ˙̂rc/∂v̂t ∂ ˙̂rc/∂β̂ ∂ ˙̂rc/∂�̂acc ∂ ˙̂rc/∂�̂cam

∂ ˙̂vc/∂r̂c ∂ ˙̂vc/∂v̂c ∂ ˙̂vc/∂r̂t ∂ ˙̂vc/∂v̂t ∂ ˙̂vc/∂β̂ ∂ ˙̂vc/∂�̂acc ∂ ˙̂vc/∂�̂cam

∂ ˙̂rt/∂r̂c ∂ ˙̂rt/∂v̂c ∂ ˙̂rt/∂r̂t ∂ ˙̂rt/∂v̂t ∂ ˙̂rt/∂β̂ ∂ ˙̂rt/∂�̂acc ∂ ˙̂rt/∂�̂cam

∂ ˙̂vt/∂r̂c ∂ ˙̂vt/∂v̂c ∂ ˙̂vt/∂r̂t ∂ ˙̂vt/∂v̂t ∂ ˙̂vt/∂β̂ ∂ ˙̂vt/∂�̂acc ∂ ˙̂vt/∂�̂cam

∂
˙̂
β/∂r̂c ∂

˙̂
β/∂v̂c ∂

˙̂
β/∂r̂t ∂

˙̂
β/∂v̂t ∂

˙̂
β/∂β̂ ∂

˙̂
β/∂�̂acc ∂

˙̂
β/∂�̂cam

∂ ˙̂�acc/∂r̂c ∂ ˙̂�acc/∂v̂c ∂ ˙̂�acc/∂r̂t ∂ ˙̂�acc/∂v̂t ∂ ˙̂�acc/∂β̂ ∂ ˙̂�acc/∂�̂acc ∂ ˙̂�acc/∂�̂cam

∂ ˙̂�cam/∂r̂c ∂ ˙̂�cam/∂v̂c ∂ ˙̂�cam/∂r̂t ∂ ˙̂�cam/∂v̂t ∂ ˙̂�cam/∂β̂ ∂ ˙̂�cam/∂�̂acc ∂ ˙̂�cam/∂�̂cam

3

777777777777775

21x21

(7.9)

Many of these partial derivatives are zero, resulting in the following.

F =

2

6666666666666664

03x3 ∂ ˙̂rc/∂v̂c 03x3 03x3 03x3 03x3 03x3

∂ ˙̂vc/∂r̂c 03x3 03x3 03x3 ∂ ˙̂vc/∂β̂ ∂ ˙̂vc/∂�̂acc 03x3

03x3 03x3 03x3 ∂ ˙̂rt/∂v̂t 03x3 03x3 03x3

03x3 03x3 ∂ ˙̂vt/∂r̂t 03x3 03x3 03x3 03x3

03x3 03x3 03x3 03x3 ∂
˙̂
β/∂β̂ 03x3 03x3

03x3 03x3 03x3 03x3 03x3 ∂ ˙̂�acc/∂�̂acc 03x3

03x3 03x3 03x3 03x3 03x3 03x3 ∂ ˙̂�cam/∂�̂cam

3

7777777777777775

21x21

(7.10)

The individual partial derivatives are evaluated as follows:

∂ ˙̂rc/∂v̂c = I3x3

∂ ˙̂vc/∂r̂c = A1(r̂c) + A2(r̂c) + A3(r̂c)

∂ ˙̂vc/∂β̂ = −T b→I [I3x3 + [�̂acc×]]

∂ ˙̂vc/∂�̂acc = T b→I [[β̂×]− [ea×]]

∂ ˙̂rt/∂v̂t = I3x3 (7.11)

∂ ˙̂vt/∂r̂t = A1(r̂t) + A2(r̂t) + A3(r̂t)

∂
˙̂
β/∂β̂ =

−1

τaccβ

I3x3

∂ ˙̂�acc/∂�̂acc =
−1

τacc

I3x3

∂ ˙̂�cam/∂�̂cam =
−1

τcam

I3x3
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where
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T

r +
r̂î
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T
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T
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”–

7.4 State Covariance Propagation Equation

The covariance matrix is propagated discretely with the state transition matrix.

P i+1 = ΦiPiΦ
T
i + BQB

T
δt (7.12)

Transition Matrix

Φ = e
F dt

= I + F dt +
F

2
dt

2

2!
+

F
3
dt

3

3!
+ · · · (7.13)

Strength of the Process Noise

The strength of the process noise Q is related to the process noise w̄ by the relationship:

Qδ(t
� − t) = E(ŵ

�
ŵ

T
) = E[ŵ(t

�
)ŵ(t)] (7.14)

where the E operator is the expected value, and δ(t� − t) is the Dirac delta function.

Q may be represented as a matrix as shown below.

Q =

2

6666666666664

Q
wc

03x3 03x3 03x3 03x3 03x3

03x3 Q
ηc

03x3 03x3 03x3 03x3

03x3 03x3 Q
wt

03x3 03x3 03x3

03x3 03x3 03x3 Q
waccβ

03x3 03x3

03x3 03x3 03x3 03x3 Q
wacc

03x3

03x3 03x3 03x3 03x3 03x3 Q
wcam

3

7777777777775

18x18

(7.15)

The values in these submatrices usually come from the hardware specification, while

Qωc
and Qωt

are functions of unmodeled accelerations of the chaser and target, these would
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include J3+ gravity effects and solar radiation forces.

7.5 Linearized Measurement Equation

The linearization of the measurement equation results in the measurement sensitivity

matrix (H), which is required to solve for the Kalman gain (K).

Note that the H matrix will take the general form:

H =
∂h(x̂)

∂x̂

˛̨
˛̨
x̂

=
∂h(x̂)

∂R̂
b

rel

∂R̂
b

rel

∂x̂

˛̨
˛̨
˛
x̂

=
∂h(x̂)

∂R̂
b

rel

2

4 ∂R̂
b
rel

∂r̂c

∂R̂
b
rel

∂v̂c

∂R̂
b
rel

∂r̂t

∂R̂
b
rel

∂v̂t

∂R̂
b
rel

∂β̂

∂R̂
b
rel

∂�̂acc

∂R̂
b
rel

∂�̂cam

3

5

2x21

(7.16)

The angle measurement is not a function of acceleration bias (β), accelerometer misalign-

ment (�̂acc), or vehicle velocities. So the measurement sensitivity matrix becomes:

H =
∂h(x̂)

∂R̂
b

rel

2

4 ∂R̂
b
rel

∂r̂c
0

∂R̂
b
rel

∂r̂t
0 0 0

∂R̂
b
rel

∂�̂cam

3

5

2x21

(7.17)

The individual partials are:

∂h(x̂)

∂R̂
b

rel

=

2

6666664

−Rz
R2

x
0

1
Rx

−Ry

R2
x

1
Rx

0

3

7777775

2x3

∂R̂
b

rel

∂r̂c

= −[I3x3 − [�̂cam×]]TI→b (7.18)

∂R̂
b

rel

∂r̂t

= [I3x3 − [�̂cam×]]TI→b

∂R̂
b

rel

∂�̂cam

= [

“
TI→b(r̂t − r̂c)− r

b

cam

”
×]

7.6 Implementation of the Extended Kalman Filter

Actual implementation of the extended Kalman filter combines the filter algorithms

discussed in Chapter 4 (figures 4.2 and 4.3) with the equations developed so far in this

chapter. Figure 7.3 shows how the equations covered in this chapter may be implemented
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in a conventional Kalman filter. The labeled blocks are implementations of the following

equations:

A Equations 7.17 and 7.3

B Equation 7.5

C Equation 7.7 with f(x̂) defined in equation 7.2 (Also see propagate step in figure 4.2a)

D Equations 7.13 and 7.10

E Exponentially decaying value for measurement covariance (R) (see section 8.3)

F State and state covariance update (see figure 4.2a)

G See definition of B in equation 7.2

H Equation 7.12 (Also see the propagate step in figure 4.2a)

Of course, there are many constants and parameters that must be defined before this code

will run. However, these values depend on the scenario to be run. Thus they are defined in

sections 8.2 and 8.3. Actual code can be found in Appendix E.
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Chapter 8

Open-Loop Relative Navigation Performance Analysis

This chapter examines the sensitivity of navigation performance and range observability

to sensor accuracy, thrust acceleration levels, initial state uncertainties, and the type of

navigation filter that is employed. To ensure an accurate comparison of the navigation

performance data, all maneuvers are executed in an open-loop manner. Chapter 9 examines

the performance of the navigation filter in a closed-loop environment.

The effects of accelerometer and LOS camera errors on filter performance is examined

in sections 8.4 through 8.6. Section 8.7 covers a couple of approaches for improving filter

performance without changing sensor performance. Section 8.8 quantitatively demonstrates

that square-root filters are less susceptible to numerical errors brought on by large initial

uncertainties or extremely accurate measurements.

8.1 Performance Metrics

The performance metrics for this study are the true relative navigation position errors

and the associated relative navigation position error covariance. Particular attention will

be given to the relative range error and variance in order to better understand when and

under what conditions the relative range is observable. In general, a smaller error is better,

but only if the filter covariance reflects the true estimation error statistics. In the absence

of Monte-Carlo analysis, performance evaluation is often a pass/fail approach. If the true

errors are reliably within the 3σ bounds, the filter is performing well.

8.2 Nominal Trajectory

The nominal flightpath consists of a chaser satellite that is following a non-maneuvering
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target satellite. The chaser is located slightly off the v-bar and 406 m behind with zero

relative velocity.

In order to make the range observable, the Chaser satellite fires thrusters every 75

seconds, alternatively in the positive and negative cross-track directions for 15 and 16.5

seconds, respectively. The resulting thrust acceleration is shown in figure 8.1. The resulting

flightpath is shown in figures 8.2 and 8.3. This thruster firing pattern continues until the

end of the simulation.

The LOS camera measurements are shown in figure 8.4. Initially, the chaser is pointing

three degrees above and two and a half degrees to the right of the target, but the attitude

controller quickly brings that pointing error down to almost zero.

The initial position and velocity of the target and chaser are shown in table 8.1.
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Fig. 8.1: Nominal accelerations.
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Table 8.1: Position and Velocity Initial Conditions in ECI Frame

State Description True Initial Condition

r̄c
Chaser
Position

x

y

z

=





5114.081942

−3998.006812

−334.998180




km

v̄c
Chaser
Velocity

x

y

z

=





4.819968

6.171422

−0.071192




km/s

r̄t
Target

Position

x

y

z

=





5114.325821

−3997.682427

−335.016751




km

v̄t
Target
Velocity

x

y

z

=





4.819554

6.171718

−.071167




km/s
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The accelerometer and LOS camera specifications are categorized as good, average

and poor and are given in the tables below. The star-tracker was assumed to give perfect

measurements.

Table 8.2: Accelerometer Specifications

Accelerometers

Noise Strength 1σ per axis Bias 1σ per axis Misalignment 1σ per axis

good 3× 10−9m2
/s3 3× 10−4m/s2 1× 10−5

rad

average 3× 10−7m2
/s3 3× 10−3m/s2 1× 10−4

rad

poor 3× 10−5m2
/s3 3× 10−2m/s2 1× 10−3

rad

The nominal accelerometer performance is good

Accelerometer quantization is held fixed at 1× 10−9
m/s

2

Table 8.3: Line-of-sight Camera Specifications

Line-of-Sight Camera

Measurement Noise 1σ per axis Misalignment 1σ per axis

good 1× 10−5
rad 1× 10−5

rad

average 1× 10−4
rad 1× 10−4

rad

poor 1× 10−3
rad 1× 10−3

rad

The nominal LOS camera performance is good with misalignment 1σ set to 1× 10−6
rad

8.3 Filter Setup

The filter initial state and state covariance values are summarized in tables 8.4 and

8.5. Because this study did not perform a Monte Carlo analysis, the initial positions and

velocities have a fixed 1σ error on each axis. This 1σ error is added to the chaser initial

state, and subtracted from the target state. Thus, the inertial states are in error by 1σ/axis

and the relative state is off by 2σ in each axis. By default, the position error 1σ is 10m/axis

and velocity 1σ is 1cm/s/axis.
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Filter bias and misalignment states are treated a little differently. These states are

initialized to zero, but the true misalignment or bias is a random value with a standard de-

viation corresponding to the sensor specifications for that run. The initial filter covariances

is tuned accordingly.

The measurement covariance matrix (R) is a diagonal matrix whose elements are set

to the LOS camera angle variance specifications defined in table 8.3. If the initial position

covariance is large, and an accurate LOS camera measurement is taken, the filter will

overwhelmingly favor the LOS camera measurement. This is not desirable, because too

few LOS measurements have been taken to be statistically representative of the camera’s

accuracy. An initial 3σ measurement error can drastically degrade filter performance. To

overcome this problem, the measurement covariance matrix is initially oversized, and then

exponentially decays to the correct value. This can be tuned from case to case, but for this

simulation R is varied according to Ractual = Rnominal + Ie
−3t, where t is the simulation

time.

The strength of the process noise in the filter is dependent on the dynamic model

inadequacies and sensor parameters. The values are summarized in table 8.6. Qηc
is the

strength of the accelerometer noise. The process noise strengths for the accelerometer

bias (Qωaccβ
), accelerometer misalignment (Qωacc

), and camera misalignment (Qωcam
) are

functions of the their associated ECRV time constants and standard deviation. They are

calculated by

Qωaccβ
=

2σ
2
accβ

τaccβ

Qωacc
=

2σ
2
acc

τacc

Qωcam
=

2σ
2
cam

τcam

The variances (σ2) comes from tables 8.2 and 8.3, and the time constants from table 8.7.
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Other filter parameters, including gravitational constants, time constants, simulation

stepsize, and the LOS camera position in the chaser body frame are listed in table 8.7. For

the open-loop analysis with a stepsize of .01 seconds, an Euler integrator was found to be

sufficiently accurate for analysis.

Table 8.4: Filter State Initial Conditions in ECI

State Description Filter initial condition Units

r̂c
Chaser
Position

Truth+1σ error/axis km

v̂c
Chaser
Velocity

Truth+1σ error/axis km/s

r̂t
Target

Position
Truth-1 σ error/axis km

v̂t
Target
Velocity

Truth-1 σ error/axis km/s

β̂
Bias of

accelerometers
[0 0 0] km/s

2

�̂acc

Misalignment
of

accelerometers
[0 0 0] rad

�̂cam
Misalignment

of camera
[0 0 0] rad

Table 8.5: Filter State Covariance Initial Conditions

Component of
Covariance

Description Value (1σ)

P rcrc
Chaser Position 10 m/axis

P vcvc
Chaser Velocity 1 cm/s/axis

P rtrt
Target Position 10 m/axis

P vtvt
Target Velocity 1 cm/s/axis

P ββ Accelerometer Bias see table 8.2

P �acc�acc
Accelerometer Misalignment see table 8.2

P �cam�cam
LOS Camera Misalignment see table 8.3
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Table 8.6: Process Noise

Parameter Description Value in Filter (1σ) Units

Qωc

Strength of process noise due to
random accelerations on Chaser 1.0× 10−18 km2

/s3

Qηc

Strength of Process Noise due to
accelerometer measurement noise

being processed directly in
propagator

Reference
acclerometer noise

strength in table 8.2
km2

/s3

Qωt

Strength of process noise due to
random accelerations on target 10−18 km2

/s3

Qωaccβ

Strength of process noise on
accelerometer bias

2σ2
accβ

τaccβ

1.8× 10−19 for good
case

km2
/s3

Qωacc

Strength of process noise on
accelerometer misalignment

2σ2
acc

τacc

2× 10−16 for good
case

rad2
/s

Qωcam

Strength of process noise on
camera misalignment

2σ2
cam

τcam

2× 10−16 for good
case

rad2
/s

Table 8.7: Navigation Filter Constants

Symbol Definition Value

µ Gravitation Constant 398600.4415 km
3
/s

2

J2 Second order gravitation parameter 0.0010826269

Re Radius of the Earth 6378.1367 km

τaccβ ECRV time constant for accelerometer bias 106 sec

τacc ECRV time constant for accelerometer
misalignment

106 sec

τcam ECRV time constant for camera
misalignment

106 sec

dt Propagation step size 0.01 sec

rcam Position of the LOS camera in the Chaser
Satellite Body Frame

[0 0 0] m
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8.4 Effect of Accelerometer Errors

The effect of accelerometer accuracy is quantified by performing runs with the nom-

inal specifications on the LOS camera, and good, average and poor specifications for the

accelerometers (see tables 8.2 and 8.8).

As the sensor accuracy becomes worse, it is more and more difficult to identify thruster

burns (figure 8.5). For the poor accelerometers, the acceleration measurements are almost

completely swamped by the noise.

As seen in figure 8.6, all three components of the relative position estimate are af-

fected by th accelerometer errors, but the dominant effect is on the range estimate. Thus

accelerometer accuracy requirements are strongly determined by range error requirements.

For the poor case, the true errors grew to be greater than the 3σ value (figure 8.7). This

is undesireable because it indicates that the filter is not modeling the covariance correctly.

Increasing the initial relative range solves this problem (figure 8.8) demonstrating that

non-linear effects were the culprit. In other words, if the range covariance is a significant

percentage of the total range, then the linear assumptions used to propagate the covariance

are no longer valid.

Overall, the good and average accelerometers demonstrate good relative navigation

performance, with good range observability. The poor accelerometers are not sufficiently

accurate to observe range reliably.

Table 8.8: Cases Comparing Effects of Accelerometer Errors

Study Thruster 
Acceleration

Accels LOS Cam Chaser Location

Good
Average

Verify nonlinearity effects V-bar, 1620 m behind

Explore effects of accelerometer 
accuracy 13.33 mm/s2 Nominal V-bar, 406 m behind

Poor
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Fig. 8.5: Accelerometer measurements for good, average, and poor cases.
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Fig. 8.6: Effects of accelerometer errors on relative position navigation errrors (good-solid,
average-dashed, poor-dotted).
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Fig. 8.7: With poor accelerometers at close range (420m), the size of the filter covariance
is such that non-linear effects become significant, causing the true relative position errors
to exceed the 3σ bound.
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Fig. 8.8: With poor accelerometers at a far range (1620m), the non-linear effects are not
significant and true relative position errors stay inside the 3σ bound.
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8.5 Effect of Line-of-sight Camera Errors

The effect of line-of-sight camera accuracy was quantified by performing a set of runs

with nominal settings on the accelerometers and good, average and poor specifications for

the LOS camera (see tables 8.3 and 8.9).

As seen in figure 8.9, relative position estimation is not as sensitive to LOS camera

errors as it is to accelerometer errors. While the acceleration returns to zero when a burn in

finished, the LOS measurement continues to change until it has significantly diverged from

the non-perturbed measurement. Thus even a poor LOS camera permits range observability.

However, the less accurate LOS camera is slower to estimate range when a thruster is fired.

This can be seen in figure 8.9 when a thruster fires at 85 seconds. The good LOS camera

improves the range estimate almost immediately. The average LOS camera is a few seconds

behind, and the poor LOS camera doesn’t improve the range estimate until around 100

seconds.

In this example camera misalignment is not large enough to be a significant problem.

However, if the misalignment is large, it can be estimated if the filter has a good a priori

estimate of the relative state. If misalignment is significant and not properly characterized,

then significant errors will be introduced into the state estimate.

Table 8.9: Cases Comparing Effects of Line-of-sight Camera Errors

Study Thruster 
Acceleration

Accels LOS Cam Chaser Location

Good
Average

Poor

Explore effects of LOS camera 
accuracy 13.33 mm/s2 Nominal V-bar, 406 m behind
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Fig. 8.9: Effect of LOS camera errors on relative position navigation errors (good-solid,
average-dashed, poor-dotted).

8.6 Effect of Good, Average, and Poor Sensor Suites

Finally a general trade analysis was performed with high, average, and low cost sensor

suites (see table 8.10). These classes correspond to the good, average, and poor sensors

listed in tables 8.2 and 8.3. The comparative performance of these suites is shown in figure

8.10. The 3σ error bounds and the true error for each case are shown in figures 8.11

through 8.13. The good sensor suite can resolve range to ±3m, the average sensor suite

resolves down to ±25m and the poor sensor suite struggles to resolve range any better then

±160m with non-linear effects causing the true error to leave the 3σ bound. The complete

estimation histories for each case and all the states are found in Appendix B.

Overall, the good and average sensor suites are sufficiently accurate for range observ-

ability. However, the poor sensor suite is not sufficiently accurate to observe range reliably.
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Table 8.10: Cases Comparing Effects of Good, Average, and Poor Sensor Suites

Study Thruster 
Acceleration

Accels LOS Cam Chaser Location

Good Good
Average Average

Poor Poor

Explore performance of difference 
sensor suites 13.33 mm/s2 V-bar, 406 m behind
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Fig. 8.10: Effects of good, average, and poor sensor suites on relative position navigation
errors (good-solid, average-dashed, poor-dotted).



78

0 50 100 150 200 250 300
!10

0

10

lo
ca

l h
or

iz
 (m

)

Relative Position Error and Covariance

0 50 100 150 200 250 300
!1

0

1

cr
os

s t
ra

ck
 (m

)

0 50 100 150 200 250 300
!0.5

0

0.5

lo
ca

l v
er

tic
al

 (m
)

time (seconds)

 

 

Fig. 8.11: Good sensor suite relative position navigation error and 3σ bound.
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Fig. 8.12: Average sensor suite relative position navigation error and 3σ bound.
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Fig. 8.13: Poor sensor suite relative position navigation error and 3σ bound.

8.7 Alternate Methods for Improving Filter Performance

There are a number of ways to improve filter performance without modifying the sen-

sors. This section examines the effect of increasing the thrust acceleration and selectively

integrating the acceleration data. The cases are summarized in table 8.11.

The usefulness of the accelerometer measurements can be improved by increasing the

level of thrust acceleration. This causes the acceleration to stand out from the accelerometer

measurement noise. Figure 8.14 shows the accelerometer measurements (with average noise

and bias) when the thrust is increased from 0.1 N to 5 N. The ontime is shortened accordingly

to keep the ∆V the same. The improved filter performance over the original thrust is shown

in figure 8.15. Note that the covariance shrinks faster for the larger thrust case than for the

original thrust case, but does not shrink by as much. This is because acceleration bias and

misalignment are not as well known early on. This implies that it would be good practice

to characterize errors like misalignment and bias before attempting maneuvers.

Sections 8.4 and 8.6 showed that poor accelerometers are inadequate when estimating
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range. Performance can be improved by integrating the very noisy accelerometer measure-

ments only when the thrusters have been turned on. Whenever the accelerometer data is

not being processed, ∂ ˙̂vc/∂β̂ and ∂ ˙̂vc/∂�̂acc in equation 7.11, T b→I [I3x3 + [�̄acc×]][�a− β̄] in

equation 7.2, and Qηc
in equation 7.15 are multiplied by zero. The effect is to change f(x)

and F so x̂ and P are propagated as if there were no accelerometers. In addition, the mod-

ified F causes K to be modified so correlations between states grow or shrink depending

on whether the accelerometer data is being processed.

This alternate method can tolerate high noise accelerometers. The results for the poor

sensor suite with no bias on the accelerometers is shown with continuous and selective

integration in figure 8.16. While the continuous integration navigation error and covariance

grows large, the selective integration navigation error and covariance stays relatively small.

The results for the poor sensor suite with bias on the accelerometers with continuous

and selective integration is shown in figure 8.17. The continuous integration results are

identical to figure 8.13, where the true errors leave the 3σ bounds. Fortunately, selective

integration allows the poor sensor suite to resolve range 3σ to an order of ±30m! This is a

tremendous improvement and most useful when long periods of time go by with no thrust

commands. Because the impact of accelerometer noise is eliminated, velocity (and position)

uncertainties do not grow as quickly.

The poor sensor suite can produce even better results (range error on the order of

±15m) by combining large thrusters with selective accelerometer integration. The selective

integration results seen in figure 8.17 are further improved by using larger thrusters (figure

8.18).

Table 8.11: Cases Comparing Alternate Methods of Improving Filter Performance

Study Thruster 
Acceleration

Accels LOS Cam Chaser Location

Results with big thrusters 666.66 mm/s2 Average Average
Poor-with no bias

Poor
Results with big thrusters and 
selective integration 666.66 mm/s2 Poor

V-bar, 406 m behindResults with selective Integration 13.33 mm/s2

Poor
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Fig. 8.14: Plot of larger thrust accelerations.
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Fig. 8.15: Average sensor suite performance with larger thrusters.
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Fig. 8.16: Navigation errors and covariance for continuous and selective accelerometer data
integration with the poor sensor suite with no accelerometer bias.

8.8 Conditions Leading to Numerical Failure

Numerical errors occur when an extremely accurate LOS camera causes two compo-

nents of the relative position covariance to become extremely small, while the range com-

ponent stays large. The sensor accuracy that will result in numerical problems is a function

of the size of the initial position covariance. A LOS camera angle variance of 7×10−15 rad2

(σ = 8.4× 10−8) and a initial position covariance 100m
2 will not cause any problems in a

Conventional or Carlson filter. However, if the LOS camera angle variance is decreased to

7×10−16rad2 (σ = 2.64×10−8), numerical failure will occur (figure 8.19). Numerical failure

will also occur if the LOS camera angle variance is kept at 7 × 10−15 rad2 but the initial

position covariance is increased to 10, 000 m
2 (figure 8.20). In each case, the Conventional
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Fig. 8.17: Navigation errors and covariance for continuous and selective accelerometer data
integration with poor sensor suite.

results are indistiguishable from the Carlson results until the Conventional filter fails. These

cases are summarized in table 8.12. While these camera accuracies are unrealistic, satellites

often employ single precision hardware. In that case, realistic camera hardware might cause

problems.

Numerical errors can also occur when the inertial covariances are large but the chaser

and target position and velocities are highly correlated. In fact, as seen in table 8.12, even

the average sensors suite can cause the Conventional Kalman filter to experience numerical

failure if the inertial position covariance is 100, 000 m
2 but the correlations between the

target and chaser are defined such that Pchaser,target = 0.9999×(Pchaser +Ptarget)/2. This is

a relatively common situation when only relative measurements are processed in the filter.

Under such conditions the inertial state covariances grow without bound, while the relative
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Fig. 8.18: Navigation errors and covariance selective accelerometer data integration with
5.0 N thrusters (nav error=black and covariance=dotted) vs selective integration with 0.1
N thrust (nav error=red and covariance=solid).

state covariance becomes smaller as the chaser and target states become highly correlated.

It should be noted that, as expected, the Conventional and Joseph filters do not fail

identically. As seen in figure 8.21, the Joseph filter buys a few more seconds before it also

succumbs to numerical errors caused by finite word length. These extra few seconds show

the superiority of the Joseph formulation over the conventional formulation (Section 4.2.1).

Table 8.12: Cases Comparing Numerical Performance of Different Filters

Study Thruster 
Acceleration

Accels LOS Cam Chaser Location

Po=100 m2, both conventional and 
Carlson work

Very good

Po=100 m2, conventional fails Too good

Po=10,000 m2, conventional fails Very good
Po=10,000 m2, 0.9999 correlated, 
conventional fails

Good

Po=100,000 m2, 0.9999 correlated, 
conventional fails

Average Average

13.33 mm/s2

Good
V-bar, 406 m behind
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Conventional filter fails

Fig. 8.19: Demonstration of numerical failure in Conventional filter due to more accurate
camera measurements while Carlson continues without problems. Note that the Conven-
tional and Carlson results are indistinguishable until the Conventional filter fails.
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Fig. 8.20: Demonstration of numerical failure in Conventional filter due to larger initial
position covariance, while Carlson continues without problems. Note that the Conventional
and Carlson results are indistinguishable until the Conventional filter fails.
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Fig. 8.21: Numerical failure: Conventional vs Joseph filter.
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Chapter 9

Closed-Loop Control Simulation Results

In this chapter we examine relative navigation performance and relative position control

performance in a closed loop GN&C environment. A position-derivative (PD) controller is

implemented to maintain a “station-keeping” condition in the LVLH frame by driving the

estimated position and velocity to the desired position and velocity. This presents a problem

if the estimated position and velocity exhibit erratic behavior because of poor measurements

forcing the thrusters to fire an inordinate amount of time. To better understand filter

performance in conjunction with controller performance, several scenarios are used for the

closed loop analysis (see table 9.1).

First, the controller is given the true position and velocity derived directly from the

simulation. The navigation filter is running, but its results are not used for control purposes.

This perfect navigation scenario provides reasonable estimates of how observable the system

is when under closed-loop control. Unreasonable cases can quickly be eliminated without

massive control issues confusing analysis.

Second, the reasonable cases discovered with the perfect navigation scenarios are ana-

lyzed with a true closed system where the filter estimates are given to the PD controller. As

expected “chatter” and other fuel wasting patterns are observed, but more realistic results

are obtained for a variety of interesting cases.

Finally, in an attempt to reduce fuel use, the controller is modified by adding a position

and velocity error deadband determined by the covariance of the estimates coming from the

filter. Filter performance and ∆V costs are compared with unmodified scenarios.

To improve simulation runtimes, the simulation stepsize was increased from .01 to .05

seconds and the Euler integrator was replaced with a 4th order Runga-Kutta integrator.
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Table 9.1: Closed-loop Cases

Study Thruster minimum 
Delta V Accels LOS Cam Chaser Location Comments

0.1 mm/s Min DeltaV is much too small to get range 
estimate

1 mm/s Min DeltaV is still too small to get range 
estimate

10 mm/s Min DeltaV is sufficient to get range 
estimate

50 mm/s
Min DeltaV is sufficient to get range 
estimate, but controllability issues are 
starting to occur

100 m below, 500 m back
200 m below, 500 m back

1 mm/s
10 mm/s
50 mm/s

100 m below, 500 m back
200 m below, 500 m back

10 mm/s V-bar, 500 m back Enhanced controllers
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rs

Good

V-bar, 500 m back

V-bar, 500 m back
Requires more DeltaV than the perfect 
navigation counterpart, but exhibits 
improved observability too
Moving off the V-bar provides negligible 
observability improvements

Moving off the V-bar provides negligible 
observability improvements

The majority of these plots show only the 3σ bounds of the navigation errors. Results

with both 3σ error bounds and the true navigation errors for a particular run are shown in

Appendix C.

9.1 Perfect Navigation Scenarios

Two studies are conducted with the perfect navigation scenario. The first study exam-

ines the effect of thruster minimum ∆V on navigation errors. The second study examines

the effect of station keeping below the V-bar on navigation errors. In both cases the PD

controller is given perfect estimates of position and velocity derived directly from the simu-

lation and commanded to station-keep 500 m behind the target. Due to the nature of a PD

controller and the minimum impulse thrusters, a repeating thrusting pattern is observed.

A range of minimum ∆V are selected for study one (table 9.2). The effect on position

control and filter performance is examined. The position control dispersions for ∆V =

10 mm/s are shown in figure 9.1. Because the PD controller is actually targeting positions

in the inertial frame that have been transformed from the LVLH frame, control dispersions

are largly a function of steady state errors innate to a PD control tracking a moving target.

In this case there is a steady state error of 10 m in the local vertical, and an oscillatory
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error on the same order of magnitude in the cross track. Range hovers around the desired

value with chatter very evident.

The control dispersions are more erratic for the larger ∆V cases. To a degree, this is

actually desirable, because forced changes in position allow range observability. As seen in

figure 9.2, 0.1 mm/s ∆V is too small to observe range. 1 mm/s min ∆V is right on the edge

of observability with true errors often leaving the 3σ bound for the perfect navigation case

(figure 9.3). 1, 10, and 50 mm/s minimum ∆V thrusters result in the 3σ position covariance

bounds shown in figure 9.4. If thruster minimum ∆V is too large then the system becomes

unstable due to controllability issues.

Table 9.2: Table of Minimum ∆V Values

min ∆V stepsize acceleration

0.1mm/s 0.05 s 2 mm/s
2 0.0002039 g

1 mm/s 0.05 s 20 mm/s
2 0.002039 g

10 mm/s 0.05 s 200 mm/s
2 0.02039 g

50 mm/s 0.05 s 1000 mm/s
2 0.102 g
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Fig. 9.1: Closed-loop control with perfect nav: Relative position control dispersions with
10 mm/s minimum ∆V thrusters (compare with figure 9.7).
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Fig. 9.2: Closed-loop control with perfect nav: Relative navigation error and 3σ bound with
0.1 mm/s minimum ∆V thrusters.
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Fig. 9.3: Closed-loop control with perfect nav: Relative navigation error and 3σ with 1
mm/s minimum ∆V thrusters.
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Fig. 9.4: Closed-loop control with perfect nav: Relative navigation error and 3σ bound for
stationkeeping on the V-bar at 500m with 1,10, and 50 mm/s minimum ∆V thrusters.
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The second study involves moving the location of the chaser. When the chaser is

stationkeeping above or below the V-bar, a continuous thrust is required to prevent relative

orbital dynamics from moving the chaser away from the target. The magnitude of the

required thrust depends on how far off the Vbar the chaser is. This effect can be seen in

figure 9.5. When the chaser is on the V-bar, body y-axis accelerations (which correspond

to the local vertical) are simply chatter. When the chaser is 200 m below the V-bar, all of

the accelerations are in the negative body y-axis direction. The body x-axis sees a similar

effect.

The 3σ position covariance bounds for 10 mm/s thrusters with the chaser at locations

500 m behind the target, and 0, 100, and 200 m below the target are shown in figure 9.6.

Note that as the satellite moves down, more of the range error is transformed into the local

vertical component. Surprisingly, the position estimate does not improve much for this case

because the minimum ∆V is still 10 mm/s and they are fired on about the same intervals

(figure 9.5). If a different controller was implemented, one that did not fire at regular

intervals (due to Chatter) when on the Vbar, dramatic improvement could probably be

observed by stationkeeping off of the Vbar.
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Fig. 9.5: Closed-loop control with perfect nav: Accelerometer measurements with 10 mm/s
minimum ∆V thrusters on the Vbar (top) and 200 meters below (bottom).
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Fig. 9.6: Closed-loop control with perfect nav: Relative navigation performance (3σ), sta-
tionkeeping 500 m behind the target and 0, 100 and 200 m below the Vbar, with 10 mm/s
minimum ∆V thrusters.

9.2 Close-loop Control with Navigation Errors

The next step is to use the filter estimates to drive the position controller. This

causes a number of interesting things to happen. Extraneous thrusters fire (as compared to

the perfect navigation scenario) because the estimated location is noisy, while the desired

location is static. The controller tries to overcome a position error that promptly disappears

once better estimates of location are obtained. The effect is especially severe in the range

component, as it has the largest estimation errors.

There are now two performance metrics that are closely linked. One is control dis-

persions, or the difference between the actual and desired location. Some of this error is

attributed directly to the controller, as seen in section 9.1, while the rest of the error is

attributed to the second performance metric, the filter state estimation errors. The control

dispersions when 1, 10 and 50 mm/s minimum ∆V thrusters are used are shown in figure
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9.7. As expected, the 1 mm/s thrusters result in the largest dispersions and the 50 mm/s

thrusters the smallest. With the exeption of the 1 mm/s thrusters, they compare favorably

with the perfect navigation dispersions seen in figure 9.1.

The range dispersion in the 1 mm/s ∆V case is due to poor filter performance in the

range component as seen in figure 9.8. Comparing figure 9.8 with figure 9.4 shows some

interesting changes. Because large navigation errors lead to additional thruster firings, filter

performance is better when navigation errors are injected into the PD position controller.

As predicted by its perfect navigation counterpart, the change in position study (see

Section 9.1 for description) does not show much improvement by moving off of the V-bar

(figure 9.9).
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Fig. 9.7: Closed-loop control with nav errors: Relative position dispersions for station
keeping on the Vbar at 500m with 1, 10 and 50 mm/s minimum ∆V thrusters (compare
with figure 9.1).
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Fig. 9.8: Closed-loop control with nav errors: Relative navigation performance error (3σ)
for station keeping on the Vbar at 500m with 1, 10 and 50 mm/s minimum ∆V thrusters
(compare with figure 9.4).

9.3 Modified Controller Scenarios

The biggest problem with the AON filter in conjunction with the PD position con-

troller is the tremendous amount of fuel wasted in trying to correct for navigation error.

The controller with navigation errors uses about three times as much fuel as the perfect

navigation controller. In this section a number of different controllers are compared in an

attempt to reduce ∆V requirements.

One proposed solution is to create a controller deadband on each body axis whose size

is dependent on the relative position and velocity covariance on that axis. The enhanced

PD controller will not command the thrusters to fire unless the errors are larger then the

deadband. The magnitude of the position and velocity error is compared to the magnitude

of the square root of the position and/or velocity variance in that component. In the

boresight direction (body x-axis), if the error is less then the 3σ value of the covariance, the

error is reset to zero. In the other two directions, the deadband is at 1σ. In another version

of this controller “enhanced 1σ,” all three deadbands are set at the 1σ bound. Another
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Fig. 9.9: Closed-loop control with nav errors: Relative navigation performance error (3σ),
stationkeeping 500 m behind the target and 0 m, 100 m and 200 m below the Vbar, with
10 mm/s minimum ∆V thrusters (compare with figure 9.6).

proposed solution is a “quadratic” control law. In this setup, if the any of the errors are

less than the 3σ bound then they are scaled such that

∆Vcom = Kp

(r − rdes)2

3σ
+ Kd

(v − vdes)2

3σ

The “quadratic” and deadband control laws are illustrated in figure 9.10.

The ∆V expended for each of the controllers are shown in figure 9.11. Though none

of these controllers are superior to the straight PD controller, they illustrate the complex

issues that must be solved if a superior control is to be found.

Simulation shows that even though the new controllers fire less often in the range

component, they have to correct larger errors, resulting in a higher overall ∆V requirements.

Of all the proposed solutions, the enhanced setup came the closest to the original PD ∆V

requirements.

Despite these disappointments, the resulting position dispersions as compared with the
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plain PD controller are encouraging. The enhanced controller is compared with the original

PD in figure 9.12. Only the range component has a little more error. The navigation errors

are hardly affected (figure 9.13). This is because the majority of the thruster firings that

have been eliminated were in the boresight direction and have essentially no effect on range

observability. Comparing the original PD controller accelerations with the enhanced (figure

9.14) shows that the enhanced controller goes more than 1000 seconds before it corrects the

boresight component of position. However, the error has grown so large by this point that

corrections are more expensive than the nearly continuously firing original controller.

Further tuning, for example, combining the enhanced controller with the quadratic

control law so corrections are not so violent when the deadband is exited, might yet enable

a modified controller to require less ∆V then the original PD controller.
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Fig. 9.10: Illustration of controller modifications.
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Fig. 9.12: Relative position control dispersions for enhanced PD controller station keeping
on the Vbar at 500m with 10 mm/s minimum ∆V thrusters.
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Fig. 9.13: Relative navigation performance (3σ) for station keeping on the Vbar at 500m
with enhanced PD controller.



102

0 1000 2000 3000 4000 5000 6000
!0.5

0

0.5
bo

dy
!x

 (b
or

es
ig

ht
)

(m
/s

2 )

Accelerometer Measurements

0 1000 2000 3000 4000 5000 6000
!0.5

0

0.5

bo
dy
!y

 (m
/s

2 )

0 1000 2000 3000 4000 5000 6000
!0.5

0

0.5

bo
dy
!z

 (m
/s

2 )

Time (sec)

0 1000 2000 3000 4000 5000 6000
!0.5

0

0.5

bo
dy
!x

 (b
or

es
ig

ht
)

(m
/s

2 )

Accelerometer Measurements

0 1000 2000 3000 4000 5000 6000
!0.5

0

0.5

bo
dy
!y

 (m
/s

2 )

0 1000 2000 3000 4000 5000 6000
!0.5

0

0.5

bo
dy
!z

 (m
/s

2 )

Time (sec)

Fig. 9.14: Thruster activity for original PD controller (top) and enhanced PD controller
with deadband (bottom).
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Chapter 10

Conclusions and Future Work

The aim of this research was to verify that square-root formulations of the Kalman filter

would exhibit better numerical stability during angles-only orbital rendezvous operations,

and to assess the sensor accuracy required for such operations.

It has been shown that numerical stability of a filter during angles-only operations

is a function of both the measurement accuracy and the inertial covariance. Numerical

problems result when the filter maintains large inertial state covariances but a small relative

state covariance. This happens whenever the target and chaser satellite states are highly

correlated. This is a very common occurrence when accurate relative measurements are

processed in the filter. If the difference between the largest and smallest eigenvalues in

the covariance matrix is larger than the precision of the filter, numerical failure will occur.

Because square-root filters have twice the precision of conventional filters, they are much

more robust under these conditions.

These findings are supported by results from the high fidelity angles-only navigation

simulation. While extremely accurate measurements and/or large initial covariances were

required to make the high-fidelity simulation filters fail, actual satellite hardware may have

a much shorter numerical word length. Flight computers are often implemented on single

precision or even fixed-point (integer) hardware. Under such conditions, only moderately

accurate measurements can cause numerical issues. Such implementations have much to

benefit from using square-root formulations of the Kalman filter.

It was shown that the thruster acceleration to accelerometer noise ratio has a tremen-

dous impact on whether range can be estimated. If the thrust cannot be detected, then the

range estimate cannot be improved. Open-loop analysis showed that if the range covari-

ance is allowed to grow to a significant fraction of the total range, then non-linear effects
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render the linear propagation of the covariance invalid, and true errors will often leave the

estimated 3σ bound.

In contrast, it was shown that the Kalman filter range estimate is not as sensitive to

LOS camera noise because the observation angle continue to grow with time. However,

more accurate LOS camera measurements allow observation burns to improve the range

estimate more quickly. Future work could examine the long-term impact of unrecognized

LOS camera misalignment errors on filter performance. Such work could also examine the

effect of star-camera misalignment on filter performance.

Increasing the thruster acceleration (within limits) and only processing the accelerom-

eter measurements when firing those thrusters, can significantly improve the performance

of the Kalman filter when processing noisy accelerometers. The selective integration of

accelerometers was found to be extremely useful if large amounts of time passed without

thruster burns.

Thus, for a wide range of sensor and actuator parameters, it has been shown that range

observability is achievable. Key requirements and trends include the following. Thruster

accelerations must be distinguishable from accelerometer measurement noise. LOS camera

accuracy directly affects how long it takes before an observability burn yields range observ-

ability. Using large thrusters and selectively integrating the accelerometer measurements

can dramatically improve range observability and filter performance.

Finally, closed-loop analysis proved that station keeping with AON is possible, but

requires a sizable ∆V budget. Much work could be done to replace the translational PD

controller used for this research with controllers better suited for the peculiarities of angles-

only navigation. Initial attempts to modify the PD controller in order to reduce unnecessary

fuel use were unsuccessful, but indicate that such controllers should be possible, and will

not significantly reduce the ability of the Kalman filter to estimate range.

Overall, this research demonstrates the superior numerical stability of square-root

Kalman filters under realistic conditions and verifies that angles-only navigation can be

used for short term orbital rendezvous operations as long as quality sensors are used. How-
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ever, further work is required to improve fuel efficiency. This requires the development of a

controller and guidance system that will 1) perform observability burns only when needed,

and 2) refrain from correcting position and velocity errors when the associated navigation

errors are large. Balancing these conflicting requirements may not be a simple task.
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Appendix A

Symbols unique to Chapter 6: Simulation Development

Symbol Description/Value Equation # Page #

Ac direction cosine matrix for chaser spacecraft 6.22 53

Ades desired direction cosine matrix for chaser spacecraft 6.22 53

AE direction cosine error matrix 6.22 53

d̄v commanded change in velocity 6.21 50

Eortho misalignment matrix 6.8, 6.14, 6.15 46, 47, 47

F
c

matrix of unit vectors denoting the thrust direction

for thrusters

6.12 47

F̄nominal nominal force due to thrusters 6.14 47

F̄thrust force due to thrusters 6.2 44

˙̄
h rate of change of the angular momentum for the

momentum wheels

6.3 44

h̄ total angular momentum of the momentum wheels in

the body frame

6.3 44

h1, . . . h4 angular momentum of the individual momentum

wheels

6.16 48
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Symbol Description/Value Equation # Page #

I inertia matrix for the satellite 6.1, 6.3 42, 44

KD derivative gain 6.21 50

KmomMan momentum management gain 6.16 48

KP proportional gain 6.21 50

mass mass of the chaser satellite (15 kg) 6.2 44

R
c

matrix of position vectors of the thrusters in the

chaser body frame

6.13 47

R
cam

target satellite in camera frame 6.10,6.11 46,46

r̄com commanded position 6.21 50

S Scale factor 6.14, 6.15 47

T̄ total torque on the spacecraft 6.3 44

T̄nominal nominal torque due to thrusters 6.15 47

T̄thrust actual torque due to thrusters 6.15 47

T1, . . . T4 commanded torque for each momentum wheel 6.16, 6.17 48, 48

Tcx, Tcy, Tcz commanded torque about each body axis 6.16, 6.17 48, 48

v̄com commanded velocity 6.21 50

w̄acc acceleration process noise normally distributed

random variable with noise strength of 1e-12 m
2
/s

3

6.2 44
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Symbol Description/Value Equation # Page #

˙̄ω angular acceleration 6.3 44

ω̄ angular rate 6.3 44
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Appendix B

Open-Loop Sensor Accuracy Trade Study

The true error and covariance (3σ) is shown in figures B.1 through B.15 for the relative

position and velocity, the accelerometer bias and misalignment and the camera misalignment

for the good, average, and poor cases discused in Section 8.2.

B.1 Good Sensor Suite Results
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Fig. B.1: Good sensor suite: Relative position error and covariance (3σ).
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Fig. B.2: Good sensor suite: Relative velocity error and covariance (3σ).
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Fig. B.3: Good sensor suite: Accelerometer bias error and covariance (3σ).
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Fig. B.4: Good sensor suite: Accelerometer misalignment error and covariance (3σ).
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Fig. B.5: Good sensor suite: LOS camera misalignment error and covariance (3σ).
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B.2 Average Sensor Suite Results
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Fig. B.6: Average sensor suite: Relative position error and covariance (3σ).
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Fig. B.7: Average sensor suite: Relative velocity error and covariance (3σ).
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Fig. B.8: Average sensor suite: Accelerometer bias error and covariance (3σ).
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Fig. B.9: Average sensor suite: Accelerometer misalignment error and covariance (3σ).
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Fig. B.10: Average sensor suite: LOS camera misalignment error and covariance (3σ).

B.3 Poor Sensor Suite Results
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Fig. B.11: Poor Sensor Suite: Relative position error and covariance (3σ).
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Fig. B.12: Poor Sensor Suite: Relative velocity error and covariance (3σ).
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Fig. B.13: Poor Sensor Suite: Accelerometer bias error and covariance (3σ).
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Fig. B.14: Poor Sensor Suite: Accelerometer misalignment error and covariance (3σ).
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Fig. B.15: Poor Sensor Suite: LOS camera misalignment error and covariance (3σ).
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Appendix C

Closed-Loop Minimum ∆V Trade Study

The true error and covariance (3σ) for position and velocity is shown in figures C.1

through C.30. The accelerometer bias and misalignment and the camera misalignment for

the 1 mm/s, 10 mm/s, and 50 mm/s minimum ∆V cases are discused in Section 8.2.



122

C.1 1 mm/s minimum ∆V Results
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Fig. C.1: 1 mm/s ∆V Perfect nav: Relative position error and covariance (3σ).
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Fig. C.2: 1 mm/s ∆V Estimated nav: Relative position error and covariance (3σ).
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Fig. C.3: 1 mm/s ∆V Perfect nav: Relative velocity error and covariance (3σ).
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Fig. C.4: 1 mm/s ∆V Estimated nav: Relative velocity error and covariance (3σ).
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Fig. C.5: 1 mm/s ∆V Perfect nav: Accel bias error and covariance (3σ).
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Fig. C.6: 1 mm/s ∆V Estimated nav: Accel bias error and covariance (3σ).
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Fig. C.7: 1 mm/s ∆V Perfect nav: Accel misalignment error and covariance (3σ).
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Fig. C.8: 1 mm/s ∆V Estimated nav: Accel misalignment error and covariance (3σ).
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Fig. C.9: 1 mm/s ∆V Perfect nav: Accel misalignment error and covariance (3σ).
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Fig. C.10: 1 mm/s ∆V Estimated nav: Accel misalignment error and covariance (3σ).
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C.2 10 mm/s minimum ∆V Results
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Fig. C.11: 10 mm/s ∆V Perfect nav: Relative position error and covariance (3σ).
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Fig. C.12: 10 mm/s ∆V Estimated nav: Relative position error and covariance (3σ).
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Fig. C.13: 10 mm/s ∆V Perfect nav: Relative velocity error and covariance (3σ).
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Fig. C.14: 10 mm/s ∆V Estimated nav: Relative velocity error and covariance (3σ).
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Fig. C.15: 10 mm/s ∆V Perfect nav: Accel bias error and covariance (3σ).

0 1000 2000 3000 4000 5000 6000

!5
0
5

x 10!5

A
cc

el
 B

ia
s

x!
co

m
po

ne
nt

 (m
/s2 ) SimOutput Filter: Accelerometer Bias, Error and Covariance

0 1000 2000 3000 4000 5000 6000

!5

0

5

x 10!5

A
cc

el
 B

ia
s

y!
co

m
po

ne
nt

 (m
/s2 )

0 1000 2000 3000 4000 5000 6000
!4
!2

0
2
4

x 10!5

A
cc

el
 B

ia
s

z!
co

m
po

ne
nt

 (m
/s2 )

time (seconds)

Fig. C.16: 10 mm/s ∆V Estimated nav: Accel bias error and covariance (3σ).
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Fig. C.17: 10 mm/s ∆V Perfect nav: Accel misalignment error and covariance (3σ).
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Fig. C.18: 10 mm/s ∆V Estimated nav: Accel misalignment error and covariance (3σ).
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Fig. C.19: 10 mm/s ∆V Perfect nav: Accel misalignment error and covariance (3σ).
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Fig. C.20: 10 mm/s ∆V Estimated nav: Accel misalignment error and covariance (3σ).
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C.3 50 mm/s minimum ∆V Results
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Fig. C.21: 50 mm/s ∆V Perfect nav: Relative position error and covariance (3σ).
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Fig. C.22: 50 mm/s ∆V Estimated nav: Relative position error and covariance (3σ).
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Fig. C.23: 50 mm/s ∆V Perfect nav: Relative velocity error and covariance (3σ).

0 1000 2000 3000 4000 5000 6000
!0.1

0

0.1

lv
lh

 x
!a

xi
s

(lo
ca

l h
or

iz
) (

m
/s)

SimOutput Filter: Relative Velocity Error and Covariance

0 1000 2000 3000 4000 5000 6000

!1

0

1

x 10!3

lv
lh

 y
!a

xi
s

(c
ro

ss
 tr

ac
k)

 (m
/s)

0 1000 2000 3000 4000 5000 6000
!4
!2

0
2
4

x 10!3

lv
lh

 z
!a

xi
s

(lo
ca

l v
er

tic
al

) (
m

/s)

time (seconds)

Fig. C.24: 50 mm/s ∆V Estimated nav: Relative velocity error and covariance (3σ).



134

0 1000 2000 3000 4000 5000 6000

!5

0

5

x 10!5

A
cc

el
 B

ia
s

x!
co

m
po

ne
nt

 (m
/s2 ) SimOutput Filter: Accelerometer Bias, Error and Covariance

0 1000 2000 3000 4000 5000 6000
!5

0

5
x 10!5

A
cc

el
 B

ia
s

y!
co

m
po

ne
nt

 (m
/s2 )

0 1000 2000 3000 4000 5000 6000
!4
!2

0
2
4

x 10!5

A
cc

el
 B

ia
s

z!
co

m
po

ne
nt

 (m
/s2 )

time (seconds)

Fig. C.25: 50 mm/s ∆V Perfect nav: Accel bias error and covariance (3σ).
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Fig. C.26: 50 mm/s ∆V Estimated nav: Accel bias error and covariance (3σ).
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Fig. C.27: 50 mm/s ∆V Perfect nav: Accel misalignment error and covariance (3σ).
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Fig. C.28: 50 mm/s ∆V Estimated nav: Accel misalignment error and covariance (3σ).
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Fig. C.29: 50 mm/s ∆V Perfect nav: Accel misalignment error and covariance (3σ).
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Fig. C.30: 50 mm/s ∆V Estimated nav: Accel misalignment error and covariance (3σ).
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Appendix D

Toy Relative Kalman Filter Codes

This appendix includes the Simulink implementations of the Linear conventional, Pot-

ter, UD factorization filters in figures D.1 through D.3. The m-code setup file with filter

models and initial conditions is found in Section D.2.

D.1 Linear Kalman Filters in Simulink

StateCov
2

StateEst
1

Update State and State Covariance

Measurement

StateCov

StateEst

StateCovUpdate

StateEstUpdate

Unit Delay
External IC1

u

IC
y

1
z

Unit Delay
External IC

u

IC
y

1
z

To Workspace

PconvPlus

Propagate State Covariance
Cov CovProp

Propagate State
StateEst StateEstProp

Constant1

xo

Constant

Po

Measurement
1

Fig. D.1: Conventional linear Kalman filter implementation.
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SqrtStateCov
2

StateEst
1

Update State and State Covariance

Measurement

SqrtStateCov

StateEst

SqrtStateCovUpdate

StateEstUpdate
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u
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y

1
z

Unit Delay
External IC

u

IC
y

1
z

To Workspace1
SpotterPlus

To Workspace
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StateEst StateEstProp

Product

Matrix
Multiply

Permute
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xo
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So
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1

Fig. D.2: Potter linear Kalman filter implementation.
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Matrix
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Constant2
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xo
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Measurement
1

Fig. D.3: UD factorization linear Kalman filter implementation.
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D.2 Toy Relative Case Setup

3/9/10 9:35 PM /Users/jasonschmidt/Documents.../Run_RelativeCase.m 1 of 2

%% Simple Relative State Filter
clear all; close all; clc;
savePDF=0;
saveFIG=0;
 
%% GENERATE DATA FOR WORKSPACE
 
%% Initial State and State Covariance
%first rotating shaft
r1o = 0; %deg
v1o = 0; %deg/sec
%second rotating shaft
r2o = 1; %deg
v2o = 0; %deg/sec
 
xo = [r1o; v1o; r2o; v2o]
 
%Initial Covariance
Po = diag([1 .01 1 .01]);%*1e 10
So = chol(Po,’lower’); %Such that S0*S0’ = P0
[Uo, Do]=udu(Po);      %Such that U0*D0*U0’ = P0
 
%% Measurement Info
%measurement sensitivity matrix
H=[ 1 0 1 0]
%Measurement noise
v = sqrt(eps)*1e2;
%Measurement covariance matrix
R = diag(v.*v)
 
%% State Transition Matrix
%integration stepsize
stepsize = 1;
%Linearized Dynamics
F = [0 1; 0 0];
F = [F zeros(2); zeros(2) F]
%state transition matrix
Phi = eye(4)+ F*stepsize
 
%% Process Noise
%Process Noise
w = [eps; eps; eps; eps]*1e4;%.*eps;%
%noise strength
Q = diag(w.*w)
%discrete process noise
Qd = Q*stepsize;
Wd = chol(Qd,’lower’); %such that Wd*Wd’ = Qd
%Noise input matrix
B = eye(4)
 
%% Matrix to convert absolute covariance to relative covariance
REL = [ eye(2) eye(2)];
 
%% RUN SIMULATION
 
sim(’RelativeCase.mdl’,[0 5000])
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Appendix E

Extended Kalman Filter Codes

The Simulink implementations of the Non-linear conventional and Joseph, Potter and

Carlson, and UD factorization filters are shown in figures E.1 through E.3. The m-code

implementation of the state dynamic model and integration code is in Section E.2. The

“Extended” protions of the codes are covered in sections E.3 and E.4. The Potter, Carl-

son, and UD factorization “Update” codes are covered in sections E.5 through E.7. The

Potter/Carlson and UD covariance propagation codes are shown in sections E.8 and E.9.

E.1 Extended Kalman Filters in Simulink

yhat
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State Cov (P)
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Fig. E.1: Conventional and Joseph extended Kalman filter implementation.
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Fig. E.2: Potter and Carlson extended Kalman filter implementation.
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Fig. E.3: UD factorization extended Kalman filter implementation.
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E.2 State Dynamics and Integration
2/16/10 9:41 PM Block: SatelliteSIM/Satellite/F.../Propagate State 1 of 2

function xnew =PropState(xhat,atilde,con,T)                                %
<<====  PropState
dt  = con(10);
 
y=xhat;
x=0;
dydx=getxdot(y,x,atilde,con,T);
 
h=dt;
hh=h/2;
h6=h/6;
xh=x+hh;
 
yt=y+hh*dydx;
 
dyt=getxdot(yt,xh,atilde,con,T);
yt=y+hh*dyt;
 
dym=getxdot(yt,xh,atilde,con,T);
yt=y+h*dym;
dym=dyt+dym;
 
dyt=getxdot(yt,x+h,atilde,con,T);
yout=y+h6*(dydx+dyt+2*dym);
xnew=yout;
 
 
end
 
function xdot=getxdot(xhat,t,atilde,con,T)
%% Parse Data
 
%xhat
rc  = xhat(1:3);
vc  = xhat(4:6);
rt  = xhat(7:9);
vt  = xhat(10:12);
beta= xhat(13:15);
eacc= xhat(16:18);
ecam= xhat(19:21);
 
 
%con
mu      = con(1);
J2      = con(2);
Re      = con(3);
nbar    = con(4:6);
tauaccB = con(7);
tauacc  = con(8);
taucam  = con(9);
 
 
 
%% ihat_r
ihat_rc = rc/norm(rc);
ihat_rt = rt/norm(rt);
2/16/10 9:41 PM Block: SatelliteSIM/Satellite/F.../Propagate State 2 of 2

 
%% f(xhat) = xdot
xdot = [vc;
         g(rc,mu,J2,Re,nbar,ihat_rc)+T’*(eye(3)+crs(eacc))*(atilde beta);
         vt;
         g(rt,mu,J2,Re,nbar,ihat_rt);
         beta/tauaccB;
         eacc/tauacc;
         ecam/taucam];
     
 
 
end
 
%_______________________________________
%         SUBFUNCTIONS
%_______________________________________
function gr = g(r,mu,J2,Re,nbar,ihat_r)                                     
%<<====  g
 
gr= mu*(r/norm(r)^3) mu*(J2*Re^2/(2*norm(r)^5))*...
    (6*dot(r,nbar)*nbar+3*r 15*dot(ihat_r,nbar)^2*r);
end
 
function crsform=crs(vect)
%calculate the cross product form of a vector
 
crsform = [0        vect(3)    vect(2)
           vect(3)  0           vect(1)
           vect(2) vect(1)     0];
end
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E.3 Measurement sensitivity matrix (H) and measurement estimate (yhat)

2/16/10 9:40 PM Block: SatelliteSIM/Satellite.../Calculate H, yhat 1 of 1

function [H,yhat] = H(xhat,T,con)
% Calculate the measurements sensitivity matrix (H) and the predicted 
% measurement (yhat).  This is a function of the states and various 
% constants.
 
% Parse xhat
rc  = xhat(1:3);
rt  = xhat(7:9);
ecam= xhat(19:21);
% Parse con
rcam=con(11:13); 
 
 
% Calculate Relative state
Rrel = (eye(3) crs(ecam))*(T*(rt rc) rcam);
Rrel=Rrel/norm(Rrel);
Rx=Rrel(1);
Ry=Rrel(2);
Rz=Rrel(3);
 
 
yhat = [ Rz/Rx
          Ry/Rx];
      
dh_dRrel = [ Rz/Rx^2    0    1/Rx;
            Ry/Rx^2    1/Rx 0];
dRrel_drc = (eye(3)  crs(ecam))*T;
dRrel_drt = (eye(3)  crs(ecam))*T;
dRrel_decam=crs(T*(rt rc) rcam);
 
H = dh_dRrel*[dRrel_drc’; zeros(3); dRrel_drt’; zeros(9,3); dRrel_decam’]’;
 
end
 
function crsform=crs(vect)
%calculate the cross product form of a vector
 
crsform = [0        vect(3)    vect(2)
           vect(3)  0           vect(1)
           vect(2) vect(1)     0];
end
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E.4 Linearized State Dynamics (F) and State Transition Matrix (Phi)
2/16/10 9:45 PM Block: SatelliteSIM/Satellite/Fli.../Calculate Phi 1 of 2

function Phi  = calcPhi(xhat,atilde,T,con)                                   

% calculate the transformation matrix form of q

 

dt      = con(10);

 

F = getF(xhat,atilde,con,T);

%F=sparse(F);

Phi=expm(F.*dt);

end

 

%_______________________________________

%         SUBFUNCTIONS

%_______________________________________

function [F] = getF(xhat,atilde,con,T)                                      

%<<====  getF

% Linear form of f function

 

%% Parse Data

 

%xhat

rc  = xhat(1:3);

 

rt  = xhat(7:9);

 

beta= xhat(13:15);

eacc= xhat(16:18);

 

%con

mu      = con(1);

J2      = con(2);

Re      = con(3);

nbar    = con(4:6);

tauaccB = con(7);

tauacc  = con(8);

taucam  = con(9);

 

 

%% Define Partials

ihat_rc = rc/norm(rc);

ihat_rt = rc/norm(rt);

 

drdot_dvc = eye(3);

dvdot_drc = A1(rc,mu,J2,Re,ihat_rc)+A2(rc,mu,J2,Re,nbar,ihat_rc) +...

                A3(rc,mu,J2,Re,nbar,ihat_rc);

dvdot_dB = T’*(eye(3)+crs(eacc));

dvdot_deacc = T’*(crs(beta) crs(atilde));

drdot_dvt = eye(3);

dvdot_drt = A1(rt,mu,J2,Re,ihat_rt)+A2(rt,mu,J2,Re,nbar,ihat_rt) +...

                A3(rt,mu,J2,Re,nbar,ihat_rt);

dBdot_dB = ( 1/tauaccB)*eye(3);

deaccdot_deacc = ( 1/tauacc)*eye(3);

decamdot_decam = ( 1/taucam)*eye(3);

 

%% Define F

F=NaN(21,21);

F(:,1:3) = [zeros(3); dvdot_drc; zeros(15,3)];
2/16/10 9:45 PM Block: SatelliteSIM/Satellite/Fli.../Calculate Phi 2 of 2

F(:,4:6) = [drdot_dvc; zeros(18,3)];
F(:,7:9) = [zeros(9,3); dvdot_drt; zeros(9,3)];
F(:,10:12)=[zeros(6,3); drdot_dvt; zeros(12,3)];
F(:,13:15)=[zeros(3); dvdot_dB; zeros(6,3); dBdot_dB; zeros(6,3)];
F(:,16:18)=[zeros(3); dvdot_deacc; zeros(9,3); deaccdot_deacc; zeros(3)];
F(:,19:21)=[zeros(18,3); decamdot_decam];
 
end
 
function [A1] = A1(r,mu,J2,Re,ihat_r)                                       
%<<==  A1
    A1 = mu/norm(r)^3*(eye(3) 3*ihat_r*ihat_r’);
end
 
function [A2] = A2(r,mu,J2,Re,nbar,ihat_r)                                  
%<<==  A2
    A2 = 3*mu*J2*Re^2*nbar/norm(r)^5*(nbar’*eye(3) 5*(ihat_r’*nbar)
*ihat_r’)...
         3*mu*J2*Re^2/(2*norm(r)^5)*(eye(3) 5*ihat_r*ihat_r’);
end
 
function [A3] = A3(r,mu,J2,Re,nbar,ihat_r)                                  
%<<== A3
    A3 = 7.5*mu*J2*Re^2/norm(r)^5*((ihat_r’*nbar)^2*eye(3)...
        5*(ihat_r’*nbar)^2*ihat_r*ihat_r’ +...
        r*ihat_r’*nbar*nbar’*eye(3)/norm(r)*(eye(3) ihat_r*ihat_r’));
end
 
function crsform=crs(vect)
%calculate the cross product form of a vector
 
crsform = [0        vect(3)    vect(2)
           vect(3)  0           vect(1)
           vect(2) vect(1)     0];
end
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E.5 Potter Update

2/16/10 9:47 PM Block: SatelliteSIM/Sa.../Embedded MATLAB Function 1 of 1

function [xPotter, Spotter] = fcn(x,S,H,R,ytilde,yhat)
% This block supports the Embedded MATLAB subset.
% See the help menu for details. 
numMeas = size(R,1);
 
for i=1:numMeas
    Htemp = H(i,:);
    Rtemp = R(i,i);
    ytildetemp=ytilde(i);
 
    a = S’*Htemp’;
    b=1/(a’*a+Rtemp);
    gamma = 1/(1+sqrt(b*Rtemp));
    K = b*S*a;
    xnew=x+K*(ytildetemp yhat(i));
    Snew=S gamma*K*a’;
    
    x=xnew;
    S=Snew;
end
 
%output answer
xPotter=x;
Spotter=S;
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E.6 Carlson Update

2/16/10 9:50 PM Block: SatelliteSIM/Sa.../Embedded MATLAB Function 1 of 1

function [xCarlson, SCarlson] = fcn(x,S,H,R,ytilde,yhat)
% This block supports the Embedded MATLAB subset.
% See the help menu for details. 
numMeas = size(R,1);
n=max(size(S)); %get size of S matrix
Snew = NaN(size(S));
 
e=zeros(n,1);
d=R(1,1);
xnew = x;
for j=1:numMeas
    Htemp=H(j,:);
    Rtemp=R(j,j);
    ytildetemp=ytilde(j);
    
    %Initialize d0,e0 and a
 
    d0=Rtemp;
    e0=zeros(n,1);
    a=S’*Htemp’;
 
    %%
    for i=n: 1:1 %1:n  %go backwards to maintain lower triangular nature of 
S matrix
        d=d0+a(i)^2;
        b=sqrt(d0/d);
        c=a(i)/sqrt(d0*d);
        e=e0+S(:,i)*a(i);
        Snew(:,i)=S(:,i)*b e0*c;
 
        d0=d;
        e0=e;
    end
 
    xnew=x+e*((ytildetemp yhat(j))/d);
    
    x=xnew;
    S=Snew;
end
 
%output answer
xCarlson=xnew;
SCarlson=Snew;
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E.7 UD factorization Update

2/16/10 9:52 PM Block: SatelliteSIM/Sa.../Embedded MATLAB Function 1 of 1

function [xUD, U_UD, D_UD] = update(x,U0,D0,H,R,ytilde,yhat)

% This block supports the Embedded MATLAB subset.

% See the help menu for details. 

numMeas = size(R,1);

n=max(size(D0)); %get size of S matrix

 

% assume the measurements are uncorrelated

v=NaN(n,1);

b=NaN(1,n);

p=NaN(1,n);

a=NaN(1,1);

xnew=x;

U=U0;

for l=1:numMeas

    %Make measurement scalar

    Htemp=H(l,:);

    Rtemp=R(l,l);

    ytildetemp=ytilde(l);

    

    %initialize

    f=U0’*Htemp’;

    for j=1:n %n: 1:1%

        v(j) = D0(j,j)*f(j);

    end

    a0=Rtemp;

 

    %run iterations

    U=U0;

    for k=1:n%n: 1:1 %

        a = a0+f(k)*v(k);

        D0(k,k) = D0(k,k)*a0/a;

        b(k)=v(k);

        if k>1

            p(k)= f(k)/a0;

            for j=1:k 1 %k 1: 1:1%

                U(j,k)=U0(j,k)+b(j)*p(k);

                b(j)=b(j)+U0(j,k)*v(k);

            end

            U0=U;

        end

        a0=a;

    end

    

    %update state

    K=b’/a;

    xnew=x+K*(ytildetemp yhat(l));

    

    x=xnew;

end

 

xUD=xnew;

U_UD  = U;

D_UD = D0;

%P_UD=U*D0*U’
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E.8 Potter/Carlson Covariance Propagation

2/16/10 9:49 PM Block: SatelliteSIM/Sa.../Embedded MATLAB Function 1 of 1

function SPotterProp  = fcn(S0,Phi,B,Wd)
% This block supports the Embedded MATLAB subset.
% See the help menu for details. 
S_modified = [Phi*S0 B*Wd];
 
[q,Sprop_trans]=MGS(S_modified’);
 
SPotterProp = Sprop_trans’;
 
end
 
function [Q,R]=MGS(A)
% Modified Gram Schmidt orthoginalization process
% Generates m by n matrix Q and n by n matrix R such that
% A = QR;
%
% INPUT
% A = matrix where columns are independent vectors
% OUTPUT
% Q = Orthonormal basis for vector space spaned by the columns of A
% R = Upper triangular matrix whos columns are a basis for vector space 
% spaned by the columns of A
%
% EXAMPLE
% [Q,R] = MGS(A)
%
% Written 8/18/09 by Jason Schmidt based on gramschmidtmat.pdf
 
[m,n]=size(A);
Q=zeros(m,n);
R=zeros(n,n);
 
for j=1:n
    v=A(:,j);                       %v begins as column j of A
    for i=1:j 1
        R(i,j)=Q(:,i)’*v;  %A(:,j); %replacing A(:,j) with v yields modified 
Gram Schmidt 
        v=v R(i,j)*Q(:,i);          %subtract the projection (qi^T aj)qi = 
(qi^T v)qi
    end
    R(j,j)=norm(v);
    Q(:,j)=v/R(j,j);                %normalize v to be the next unit vector 
q
end
 
end
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E.9 UD factorization Covariance Propagation

2/16/10 9:54 PM Block: SatelliteSIM/Sa.../Embedded MATLAB Function 1 of 1

function  [U_UDprop, D_UDprop] = prop(U0,D0,Phi,B,Qd)
% Note that this propagation is identical to the Potter Filter
% This block supports the Embedded MATLAB subset.
% See the help menu for details. 
eml.extrinsic(’blkdiag’)
eml.extrinsic(’ldl’)
[m,n]=size(D0);
%[o,p]=size(Qd);
D_modified=NaN(2*m,2*n);
u=NaN(m,m);
Qdnew=NaN(m,m);
p=NaN(m,m);
%Propagate UDU covariance matrix
[u,Qdnew,p]=ldl(B*Qd*B’,’upper’);
Bnew=p’\u’;
%[Bnew,Qdnew]=udu(B*Qd*B’);
Y=[Phi*U0 Bnew];
D_modified = blkdiag(D0,Qdnew);
[D_UDprop,U_UDprop]=MWGS(Y’,D_modified,D0,U0);
%Pprop_UD = Uprop_UD*Dprop_UD*Uprop_UD’
end
 
 
function [D,U]=MWGS(A,D_mod,D,U)
% Modified Weighted Gram Schmidt orthoginalization process
% based on Maybeck section 7.7 page 397
% Written 8/20/09 by Jason Schmidt
 
n=size(A,2);
c=NaN(size(A,1),n);
d=NaN(size(A,1),n);
for k=n: 1:1
    for j=1:1:size(A,1)
        c(j,k) = D_mod(j,j)*A(j,k);
    end
    D(k,k)=A(:,k)’*c(:,k);
    if k>1
        d(:,k)=c(:,k)/D(k,k);
        for j=1:1:k 1
            U(j,k)=A(:,j)’*d(:,k);
            A(:,j)=A(:,j) U(j,k)*A(:,k);
        end
    end
end
 
end
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