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ABSTRACT 

 
 

Optimal Compost Rates for Organic Crop Production 

Based on a Decay Series 
 
 

by 
 
 

Jeffrey B. Endelman, Master of Science 

Utah State University, 2009 
 
 

Major Professor: Dr. Jennifer R. Reeve 
Department: Plants, Soils, and Climate 
 
 

One of the more challenging aspects of organic farming is the development of an 

appropriate fertility plan, which may include crop rotation, cover crops, and/or soil 

amendments.  When fertility is maintained by applying manure and/or compost, a 

pressing question is how much should be used.  A framework was developed to address 

this question based on the idea of a decay series, which is a sequence of numbers 

quantifying the effects of compost on crop yield over a multi-year period.  Prior research 

has focused on decay series expressed in nitrogen fertilizer equivalents.  Given this 

information, I show how to calculate what manure/compost rates are needed to meet the 

nitrogen targets in a multi-crop rotation.  Analogous results are presented for when the 

objective is profit rather than yield maximization.    

 The planning framework is then generalized to include decay series where the 

carryover effects of manure/compost are measured, not against nitrogen fertilizer, but 

against new applications of the amendment.  This change of basis, from nitrogen fertilizer 



iv 
equivalents to manure/compost equivalents, allows for field research on organically 

certified land and quantifies non-nutritive effects in a more meaningful way.  Two case 

studies are presented to illustrate how this new type of decay series may be estimated and 

used to optimize crop production.  By using data from a continuous corn (Zea mays L.) 

system amended with cattle manure slurry, the case study in estimation explores the 

methodological challenges that arise when the yield response to nitrogen fertilizer is not 

available as a benchmark.  The case study in optimization looks at profit-maximizing 

compost rates for dryland, organic wheat (Triticum aestivum L.) in northern Utah.       

(69 pages) 
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CHAPTER 1 

INTRODUCTION 
 
 

 One of the more challenging aspects of organic farming is the development of an 

appropriate fertility plan (Gaskell et al., 2006).  Although sometimes narrowly equated 

with nutrient management, fertility is a far more dynamic phenomenon with physical, 

chemical, and biological dimensions (Weil and Magdoff, 2004).  The difficulty lies, not 

in building fertility per se, but in balancing the cost of improving fertility with the 

revenue generated by cash cropping.  Some fertility-enhancing strategies, such as cover 

cropping and crop rotation, incur opportunity costs because land is not used for maximum 

profit at all times.  Amendments such as compost, fish meal, bone meal, etc., incur direct 

costs when they are purchased.  With so many options, there is no one formula for 

fertility.  A plan that is economically and ecologically sound in one context may be ill-

advised in another.   

 In many situations, manure or compost is used to maintain fertility (Kuepper, 2003).  

Although questions about what kind of manure or compost should be used are important, 

they receive little attention here.  The focus of this thesis is, given a particular material, 

how much of it should be used.   

Previous attempts to address the question of manure/compost rate have involved 

adapting conventional nutrient management to the unconventional properties of these 

amendments.  One such property is that manure and compost contain many nutrients, 

although this is not without parallel in conventional agriculture.  For a multi-nutrient 

fertilizer such as ammonium phosphate, which supplies the macronutrients nitrogen (N) 
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and phosphorus (P), one rate would be needed to meet the N recommendation while a 

different rate would be needed to meet the P recommendation.  To prevent over-

fertilization, the smaller of these two rates would be used, and the remaining nutrient 

deficit would be met with a synthetic fertilizer containing only that nutrient (Tisdale et 

al., 1993).       

Because manures have a P/N ratio larger than that for plants, the rate needed to 

supply adequate plant P is typically smaller than the rate needed for adequate N (Eghball 

and Power, 1999; Toth et al., 2006).  Concerns about phosphorus accumulation and 

leaching might therefore lead one to apply manure/compost based on the P 

recommendation, but there is no organic fertilizer that supplies only N (Gaskell and 

Smith, 2007).  Approximate solutions to this problem include high N/P organic fertilizers 

such as fish meal (Hartz and Johnstone, 2006), as well as nitrogen-fixing cover crops.  

Even so, it is clear that the N and P targets are difficult to consider independently.   

A further complication is that, unlike synthetic fertilizer, not all of the nutrients 

present in manure/compost are immediately available for plant uptake.  Of the three 

macronutrients, potassium is the most bioavailable, with 80–100% of it present in 

soluble, inorganic form (Laboski et al., 2006; Mikkelsen, 2007).  Next is phosphorus, 70–

100% of which is bioavailable depending on soil reactions (Eghball et al., 2002; Nelson 

and  Janke, 2007).  Nitrogen is the least bioavailable, with anywhere from 10% to 50% of 

the total N in solid manure/compost available for plant uptake within the season of 

application, this fraction tending to decrease with the extent of decomposition (Gale et 

al., 2006).   
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The partial bioavailability of manure/compost nitrogen complicates the development 

of guidelines for organic fertility management.  Phosphorus aside, many extension 

publications suggest applying manure/compost at a rate where the estimated bioavailable 

N meets the N fertilizer recommendation (Baldwin, 2006; Gaskell et al., 2006; Andrews 

and Foster, 2007).  This approach builds on conventional N management, which aims to 

apply enough N fertilizer to fill the gap between what the soil can provide and what is 

needed to reach a yield goal (Tisdale et al., 1993).   

A potential difficulty is that early-season soil tests may not accurately predict the 

soil’s capacity to supply inorganic N (Bundy and Meisinger, 1994; Williams et al., 2007; 

Osterhaus et al., 2008).  One can measure the amount of inorganic N present before 

planting, but this will not account for organic N that mineralizes during crop 

development.  By sampling the soil later in the season, the presidedress N test improves 

upon this limitation (Magdoff et al., 1984), but sidedressing with manure/compost is not 

generally feasible.  Because the N targets for crops are readily found in agricultural 

handbooks, a grower may simply use these in conjunction with published estimates of 

bioavailable N.  Such an approach will not account for organic N mineralization in the 

years after application.   

To characterize the long-term fertilizing value of manure, agronomists have 

developed the idea of a N decay series (Pratt et al., 1973; Klausner et al., 1994; Cusick et 

al., 2006).  This is a sequence of numbers describing what fraction of the 

manure/compost N is bioavailable in the first, second, third, etc., years after application.  

N decay series are most readily measured by comparing the yield or N uptake of crops 

fertilized with manure/compost with the response to N fertilizer.  As an example, a decay 
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series of 0.40, 0.20, …, means that plots receiving 200 kg manure N ha-1 would on 

average yield the same as plots receiving 200 × 0.40 = 80 kg fertilizer N ha-1 for the year 

in which the manure was applied.  In the following year, provided no new manure was 

added, the manured plots would have the same average yield as plots receiving 200 × 

0.20 = 40 kg fertilizer N ha-1.   

Conventionally, the parameters in the N decay series are multiplied by the 

manure/compost rates from years past to estimate how much bioavailable N may be 

expected for the current season (Laboski et al., 2006).  This credit is then applied to the N 

target for the crop, and the balance is met using N fertilizer.  As indicated earlier, this 

strategy could be adapted to an organic system by converting the N fertilizer 

recommendation into a manure/compost rate based on a short-term estimate of 

bioavailable N (Hue and Silva, 2000).   

One certainly expects to meet N targets this way, but whether this strategy makes the 

most efficient use of manure/compost is a priori unclear.  The conventional N credit 

system was designed to make efficient use of N fertilizer, not manure/compost.  The 

concerns of an organic grower who purchases manure/compost are very different than 

those of a grower who applies manure to dispose of it.  The first objective of this thesis 

was thus to develop a framework for calculating optimal manure/compost rates based on 

a decay series.  The results of this research are presented in Chapter 2. 

This framework can accommodate more general descriptions of manure/compost 

carryover than those couched in terms of N fertilizer.  This is significant because a 

paradigm based on N fertilizer equivalents has several drawbacks for organic agriculture.  

For one, N fertilizer equivalency experiments cannot be conducted on organically 
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certified land because N fertilizer is prohibited.  A second concern is that nitrogen is not 

the only factor contributing to the long-term fertilizing value of manure/compost.  By 

increasing soil organic matter, manure/compost can increase the soil’s capacity to hold 

water and nutrients (Weil and Magdoff, 2004), and such changes can dramatically affect 

the yield of unirrigated crops (Stukenholtz et al., 2002).  Biological influences such as 

organic matter-mediated disease suppression may also be active on long time scales 

(Stone et al., 2004).   

When non-nutritive factors are significant, quantifying carryover in N fertilizer 

equivalents is not particularly meaningful.  A more useful benchmark for organic growers 

who rely upon a consistent source of manure/compost is the equivalency between 

carryover and prospective applications of the amendment.  This leads to a paradigm in 

which the yield response and decay series are based on manure/compost equivalents.   

The second objective of this thesis was to demonstrate how this new type of decay series 

may be estimated from yield records.  The results of this research are presented in 

Chapter 3 using data from the literature.  In addition, a field experiment was initiated on 

organically certified land to measure the decay series of compost.  A report on the first 

year of this experiment is included in the Appendix. 
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CHAPTER 2 

OPTIMAL COMPOST RATES FOR ORGANIC CROP PRODUCTION  

BASED ON A DECAY SERIES 
 
 

One of the more challenging aspects of organic farming is the development of an 

appropriate fertility plan, which may include crop rotation, cover crops, and/or soil 

amendments (Baldwin, 2006; Gaskell et al., 2006).  Determining how to best use these 

various tools requires intimate knowledge of the physical, chemical, biological, and 

economic dimensions of a farm.  When fertility is maintained by applying manure and/or 

compost (Kuepper, 2003), a pressing question is how much should be used. 

 Most attempts to address the question of manure/compost rate have focused on 

adapting conventional nutrient management to the unconventional properties of these 

amendments.  Because manures have a P/N ratio larger than that for plants, the rate 

needed to supply adequate plant P is typically smaller than the rate needed for adequate N 

(Eghball and Power, 1999; Toth et al., 2006).  Concerns about phosphorus accumulation 

and leaching might therefore lead one to apply manure/compost based on the P 

recommendation, but there is no organic fertilizer that supplies only N (Gaskell and 

Smith, 2007).  Approximate solutions to this problem include high N/P organic fertilizers 

such as fish meal (Hartz and Johnstone, 2006), as well as nitrogen-fixing cover crops.  

Even so, it is clear that the N and P targets are difficult to consider independently.   

A further complication is that, unlike synthetic fertilizer, not all of the nutrients 

present in manure/compost are immediately available for plant uptake.  Of the three 

macronutrients, potassium is the most bioavailable, with 80–100% present in soluble, 
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inorganic form (Laboski et al., 2006; Mikkelsen, 2007).  Next is phosphorus, 70–100% of 

which is bioavailable depending on soil reactions (Eghball et al., 2002; Nelson and  

Janke, 2007).  Nitrogen is the least bioavailable, with only 10% to 50% of the total N in 

solid manure/compost available for plant uptake within the season of application, this 

fraction tending to decrease with the extent of decomposition (Gale et al., 2006).   

 To characterize the long-term N-fertilizing value of manure, agronomists have 

developed the idea of a N decay series (Pratt et al., 1973; Cusick et al., 2006).  This is a 

sequence of numbers describing what fraction of the manure/compost N is bioavailable in 

the first, second, third, etc., years after application.  One way of measuring N decay series 

involves comparing the yields of manured plots with the yields of plots receiving N 

fertilizer (Klausner et al., 1994).  As an example, a decay series of 0.40, 0.20, …, means 

that plots receiving 200 kg manure N ha-1 would on average yield the same as plots 

receiving 200 × 0.40 = 80 kg fertilizer N ha-1 for the year in which the manure was 

applied.  In the following year, provided no new manure was added, the manured plots 

would have the same average yield as plots receiving 200 × 0.20 = 40 kg fertilizer N ha-1.   

Conventionally, the parameters in the N decay series are multiplied by the 

manure/compost rates from years past to estimate how much bioavailable N may be 

expected for the current season (Laboski et al., 2006).  This credit is then applied to the N 

target for the crop, and the balance is met using N fertilizer.  This strategy could be 

adapted to an organic system by converting the N fertilizer recommendation into a 

manure/compost rate based on a short-term estimate of bioavailable N, i.e., the first term 

in the decay series (Hue and Silva, 2000; Andrews and Foster, 2007).    
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One certainly expects to meet N targets this way, but whether this strategy makes the 

most efficient use of manure/compost is a priori unclear.  The conventional N credit 

system was designed to make efficient use of N fertilizer, not manure/compost.  The 

concerns of an organic grower who purchases manure/compost are very different than 

those of a grower who applies manure to dispose of it.  To address these concerns, I have 

developed a framework for calculating optimal manure/compost rates based on a decay 

series.   

Two different kinds of production goals are considered.  In the first, N targets are 

specified for each crop in a rotation.  In the second, the goal is profit-maximization, in 

which manure/compost is added until the cost of one additional unit exceeds the revenue 

from additional crop yield.  Although the theory for maximizing profit when “fertilizer” 

carries over between cropping periods was developed decades ago (Taylor, 1983; 

Kennedy, 1986), I am unaware of any reports in which it has been applied to 

manure/compost, only synthetic fertilizer.    

Results are presented in two sections.  The mathematical development of the 

planning framework is presented under THEORY, followed by numerical examples 

under RESULTS AND DISCUSSION.   

 

THEORY 

 

Modeling Carryover 

 

 

When modeling the effects of manure/compost rate on yield, it is convenient to link 

these two quantities through a state x representing the fertility of the soil.  In the case of 

nitrogen management, the state would be measured in units of bioavailable N, or N 
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fertilizer equivalents.  Adding manure/compost increases the fertility state, which in turn 

influences the yield.  The relationship between state and yield is succinctly represented 

by a response model Y(x), such as a quadratic or exponential function (Cerrato and 

Blackmer, 1990; Dillon and Anderson, 1990).   

When specifying the relationship between rate and state, the very idea of a decay 

series suggests a particular mathematical structure.  If one claims that 1 unit of 

manure/compost N is equivalent to b0 units of N fertilizer in the first season, b1 units of N 

fertilizer one year later, b2 units of N fertilizer two years later, etc., this implies a linear 

relationship between rate and state.  When successive cropping periods (e.g., years) are 

indexed by a discrete time variable t = 1, 2, 3, …, the linear carryover model can be 

written as 

L+−+−+= )2()1()()( 210 tubtubtubtx  [2.1] 

where u(t) and x(t) denote the rate and state, respectively, in period t.     

The way Eq. [2.1] is written reflects conventional use of the N decay series.  Given 

the manuring history u(t), u(t−1), u(t−2), …, these rates are multiplied by the appropriate 

decay series parameters b0, b1, b2, …, to calculate the N fertilizer equivalents x(t).  For 

the organic grower, it is the inverse of Eq. [2.1] that needs to be solved, i.e., what 

manure/compost rates are needed to meet one or more N targets?  The focus here is 

steady-state solutions, recognizing that higher rates will be needed during the transition to 

organic management.  

Note that the state is a relative, not absolute, measure of fertility.  When no 

manure/compost is applied, the state is zero according to Eq. [2.1], but other processes 

will still contribute bioavailable N (Brady and Weil, 2002).  As a result, crop-specific N 
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targets should be reduced by the amount of bioavailable N expected in the unmanured 

system, e.g., from leguminous cover crops.   

For continuous cropping, where the same compost rate u is applied every year to 

meet a single N target x*, inverting Eq. [2.1] shows that the N target should be divided by 

the sum of the entire decay series: 

L+++
=

210

*

bbb

x
u  [2.2] 

Recall the strategy mentioned in the introduction, in which the N fertilizer 

recommendation is divided by the first term in the decay series to calculate the 

manure/compost rate.  If N credits are awarded for the manuring history, this approach 

will converge to the steady-state solution in Eq. [2.2].  

For rotations with more than one crop, one needs to look for periodic rather than 

stationary solutions to Eq. [2.1].  Each crop will potentially have a different N target *

ix  

and receive a different manure/compost rate ui, where the subscript i denotes the position 

in the rotation.  For two crops, Eq. [2.1] becomes a system of two equations: 

( ) ( )LL +++++++= 53124201

*

1 bbbubbbux  

( ) ( )LL +++++++= 42025311

*

2 bbbubbbux  

[2.3] 

For an arbitrary number of crops, denoted by R, the governing equations are more easily 

written in matrix form: 
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 [2.4] 

which in vector notation would be x* = Hu (H is the R×R matrix in Eq. [2.4]).  The 

parameters hi are sums over those terms in the decay series for which the same crop is 

planted in the rotation.  This was shown explicitly for the R = 2 case in Eq. [2.3], where 

L+++= 4201 bbbh  and L+++= 5312 bbbh .   

Formally, one may invert Eq. [2.4] to solve for the manure/compost rates, u = H-1
x

*, 

but in practice the equation would be solved numerically.  There is a complication here, 

however, that does not arise in the continuous cropping case.  With only one crop, it is 

always possible to calculate what rate will, on average, precisely meet the N target.  With 

multiple crops, it may not be possible, even in theory, to apply manure/compost at rates 

that precisely meet the N targets.  This is because applying enough manure/compost to 

meet one crop’s N target may generate more carryover N than is needed for a subsequent 

crop.  The solution to Eq. [2.4] in this case would involve negative manure/compost rates, 

which are nonphysical.  In the case study presented below, I adopt a strategy of finding 

the smallest rates that meet or exceed the N targets.   

 

Maximizing Profit 

 
As an alternative to meeting N targets, now consider the goal of maximizing profit.  

The spirit of the approach adopted here is the same as that widely used to calculate 

optimal N fertilizer rates (Vanotti and Bundy, 1994; Hernandez and Mulla, 2008).  Rather 
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than build detailed economic models, the focus will be on those components of profit that 

depend on the manure/compost rate.  For a single cropping period, the net profit can be 

modeled as the difference between the revenue from crop yield and the cost associated 

with purchased manure/compost.  When “fertilizer” carries over, however, profit should 

be maximized over multiple cropping periods (Taylor, 1983; Kennedy, 1986).  The 

novelty of the approach taken here lies in finding periodic solutions for a crop rotation at 

steady state.  For this purpose, the profit (Π) for one complete rotation (with R crops) is 

modeled as 

[ ]∑
=

−=Π
R

i

iuiiiy upxYp
1

, )(  [2.5] 

which depends on one characteristic price (py,i) and yield response (Yi) for each crop, as 

well as one characteristic manure/compost price pu, expressed on the same basis as the 

rates ui.   

The objective is to maximize Eq. [2.5] with respect to the manure/compost rates.  

Whereas the dependence on compost rate is explicit in the cost terms, it appears 

implicitly in the revenue terms through the yield responses.  The yield response Yi(xi) is 

modeled as a function of the state variable xi characterizing the fertility of the soil, which 

is then related to the rates through the linear system x = Hu in Eq. [2.4]. 

If the optimal rates are nonzero, the first derivative of the profit with respect to rate 

will be zero at maximum profit: 

RjHxYpp
u

R

i

ijiiiyu

j

K2,1,)(0
1

*

, =′+−==
∂
Π∂

∑
=

 [2.6] 
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where I have made use of the fact that ∂xi/∂uj = Hij from Eq. [2.4], and xi

* denotes the 

optimal state.  The reader can verify by substitution that the solution to Eq. [2.6] is  

Ri
p

p

bbb

pp

H

pp
xY

iy

Niyu

R

k

kR

iyu

ii K
L

2,1,
//

)(
,210

,

1

,* ==
+++

==′

∑
=

 
[2.7] 

which makes use of the fact that the sum over any column in H equals the sum of the 

decay series.  The last equality in Eq. [2.7] follows by identifying pu/( L+++ 210 bbb ) as 

the unit cost for the nitrogen that becomes bioavailable over many years, denoted by pN.  

With this substitution, Eq. [2.7] resembles the well-known formula in which the slope of 

the yield response at the economically optimal N rate equals the N fertilizer to crop price 

ratio.   

Provided the yield models are concave, which includes the widely used quadratic and 

exponential models, then the profit is also concave with respect to the compost rates 

(Boyd and Vandenberghe, 2004).  This means the solution to Eq. [2.7] (a first-order 

condition) is optimal if it is feasible.  As in the previous section on N targets, a potential 

difficulty with Eq. [2.7] is that the optimal state is not physically attainable with 

nonnegative rates.   In this case, the first-order condition cannot be used to find the 

economic optimum, and the profit should be directly maximized, subject to the constraint 

that u ≥ 0.   

When a quadratic yield model of the form Yi = Ai + Bi xi + Ci xi
2 is used for each 

crop in the rotation, the profit-maximization problem can be stated in the following 

canonical form: 
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dQ TT ++ uwuu
u

~
max  

u ≥ 0 
[2.8] 

The matrix Q
~

= H
T
QH, where H is the matrix relating rate and state in Eq. [2.4], and Q is 

the diagonal matrix with entries Qii = py,iCi.  The vector w = HT
z – pu1, where the entries 

of vector z are zi = py,iBi, and 1 is a vector of ones.  The constant term d = Σi py,iAi.  Since 

the parameters Ci are nonnegative for concave yield models, the matrices Q and Q
~

are 

negative semi-definite, which guarantees a global optimum.  Eq. [2.8] can also be 

adapted for quadratic-plateau yield models (see METHODOLOGY). 

 

METHODOLOGY 

Meeting N Targets in a Two-Crop Rotation 

 

Optimal manure/compost rates for a hypothetical two-crop rotation were calculated 

for different sets of N targets.  Optimal in this context means the smallest total rate that 

will meet the N targets (at steady state).  This objective can be posed as a linear 

programming problem (cf. Eq. [2.4]): 

u

min Σi ui 

u ≥ 0  

Hu ≥ x* 

[2.9] 

where the last set of inequalities (Hu ≥ x*) ensures all of the N targets x* are met.  Eq. 

[2.9] was solved using CVX (version 1.1) for MATLAB (version 2008a), a package for 

specifying and solving convex optimization problems (Grant and Boyd, 2008). 

 

 

 



15 

Profit-Maximizing Compost Rates for Dryland Wheat 

 

 Profit-maximizing compost rates were calculated for a dryland, organic wheat-fallow 

rotation based on yields reported by Stukenholtz et al. (2002).  Their study was conducted 

in Box Elder County, UT, on a calcareous Thiokol silt loam (fine-silty, mixed, mesic 

Xerolic Calciorthid) with an average pH of 8.3 and organic matter content of 2.2%.  The 

hard red winter wheat (Triticum aestivum L.) cultivar Hansel was used.  The yield 

response to compost was measured at two different sites with no history of manuring.  At 

one site, compost was incorporated in the fall of 1994, and yields measured in 1995.  At 

the other site, compost was incorporated in the fall of 1995, and yields measured in 1996. 

The compost used in the Stukenholtz et al. (2002) experiment was not purchased but 

made at Utah State University (Logan, UT) from dairy manure.  On a dry weight basis, 

an average concentration of 1.9% was reported for total N and 2400 mg kg-1 for nitrate N, 

with a C/N ratio of 20.  The compost was 45% dry matter.   

To find a comparable, commercially available compost for economic analysis, I 

analyzed the ‘Premium’ brand, steer-manure compost sold by Miller’s in Hyrum, UT.  

This compost was also 1.9% total N, with a similar nitrate N concentration of 1900 mg 

kg-1, a C/N ratio of 11, and 58% dry matter.  Total C and N were determined by dry 

combustion (LECO TruSpec CN), while nitrate N was determined by automated 

colorimetry (Lachat QuickChem AE) in 5:1 compost extracts (2M KCl).   These chemical 

characteristics were deemed sufficiently similar to the compost used by Stukenholtz et al. 

(2002) to make the comparison meaningful.   
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Price information was nominally taken from the 2007–2008 cropping period.  On 1 

January 2008, the quoted price for Premium compost delivered to Box Elder County was 

$42 m-3 ($32 yd-3).  Based on a measured bulk density of 0.56 Mg m-3 and the moisture 

content reported above, a compost price of $130 (Mg DM)-1 was used.  This neglects 

variable costs associated with applying the compost.  Rather than estimate these 

specifically, results are presented for compost costs up to 50% above the delivery price.  

For the price of organic wheat I used $642 Mg-1 ($17.50 bu-1).  This was the price 

received in 2008 by the grower involved in the Stukenholtz et al. (2002) study (R. 

Grover, personal communication), albeit for a different hard red cultivar (Weston).  The 

effect of protein content on wheat price was not considered (Baker et al., 2004). 

Quadratic-plateau models were fit to the wheat yields using MATLAB’s System 

Identification Toolbox (version R2008a).  Profit-maximizing compost rates based on 

these models were calculated by modeling the system as five wheat crops in rotation, 

with the compost rate for all but the first wheat crop constrained to be zero.  For a wheat-

fallow rotation, this simulates one compost application per decade.  Results are presented 

for different values of the cumulative carryover CC = b1 + b2 + b3 + L, which for 

simplicity was split evenly over the five crops in the rotation.  This corresponds to a 5×5 

matrix H (cf. Eq. [2.4]) with main diagonal entries of 1 + CC/5 and remaining entries of 

CC/5.   

Optimizations were solved using CVX (version 1.1) for MATLAB (version 

R2008a).  To use a quadratic-plateau model with Eq. [2.8], first the problem was solved 

as if the yield response had no plateau, using only the quadratic function parameters.  If 

the optimal state for the wheat crop receiving compost was in the range where the yield 
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response should have been flat, the problem was resolved using the plateau portion of the 

yield response for this wheat crop.  This new problem still has the form shown in Eq. 

[2.8] because a constant function can be written as a quadratic one with zero slope and 

curvature.  For the wheat crops grown between compost applications, yield never reached 

the plateau.  

 

RESULTS AND DISCUSSION 

Meeting N Targets in a Two-Crop Rotation 

 

 To illustrate how the theory may be used to meet N targets, consider a rotation with 

two crops (A and B), one of which (A) has a target of 50 kg N ha-1 (adjusted for N 

contributions in the unmanured system).  Fig. 2.1 shows the optimal manure/compost 

rates for the two crops as the N target for crop B varies from 50 to 150 kg N ha-1.  By 

optimal, I mean the smallest total rate that will meet the N targets at steady state.  As 

noted previously, higher rates would be needed until the levels of soil organic matter 

stabilize.   

These results are based on a hypothetical N decay series of 0.20, 0.10, …, which 

might represent aged dairy manure or chicken manure compost (Klausner et al., 1994; 

Gale et al., 2006).  Rather than specify decay series parameters beyond the first two, the 

problem was solved for different assumptions about what fraction of the total N 

eventually becomes bioavailable.  For a decay series b0, b1, b2, …, the cumulative 

bioavailable N is the sum b0 + b1 + b2 + L.  The curve marked 50% in Fig. 2.1 assumes 

20% of the total N is released in year one, 10% in year two, and the remaining 30% split 

evenly between the two crops.  Similar calculations hold when 70% or 90% of the total N 



Fig. 2.1.  Meeting nitrogen targets in a two
grown in rotation, with the N target for A fixed at 50 kg N ha
(labeled B) show the optimal rate for B as a function 
dashed curves (labeled A) show the optimal rate for A.  Manure/compost rates were 
calculated based on 2% total N (dry weight), for three different assumptions (50%, 
70%, 90%) about the percentage of total N that becomes bio
disparity between the N targets for B and A increases, more amendment is applied to 
B than A.   
 

 

Meeting nitrogen targets in a two-crop rotation.  Two crops A and B are 
grown in rotation, with the N target for A fixed at 50 kg N ha-1.  The solid curves 
(labeled B) show the optimal rate for B as a function of the N target for B, while the 
dashed curves (labeled A) show the optimal rate for A.  Manure/compost rates were 
calculated based on 2% total N (dry weight), for three different assumptions (50%, 
70%, 90%) about the percentage of total N that becomes bioavailable.  As the 
disparity between the N targets for B and A increases, more amendment is applied to 
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crop rotation.  Two crops A and B are 
.  The solid curves 

of the N target for B, while the 
dashed curves (labeled A) show the optimal rate for A.  Manure/compost rates were 
calculated based on 2% total N (dry weight), for three different assumptions (50%, 

available.  As the 
disparity between the N targets for B and A increases, more amendment is applied to 
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ultimately becomes bioavailable.  

 As seen in Fig. 2.1, when the N targets for the two crops are equal (50 kg N ha-1), the 

same rate would be applied to each crop.  For manure/compost with 2% total nitrogen on 

a dry weight basis, the optimal rate would be 3–5 Mg DM ha-1.  As the N target for B 

increases relative to A, more manure/compost would be applied to B (solid lines) than A 

(dashed lines).   

If the disparity between N targets is large enough, it is not possible to meet both of 

them exactly.  In this example, when the N target for crop B exceeds 65–75 kg N ha-1 

(depending on the cumulative bioavailable N), the total amount of manure/compost can 

be minimized by applying amendment only to B.  This is because the N fertilizing value 

of the carryover from B to A exceeds the N target for A.  Because this excess N has the 

potential to degrade the environment (Di and Cameron, 2002), in certain contexts the 

objective of meeting all N targets may be inappropriate.   

When crop B has a high N target, the optimal manure/compost rate strongly depends 

on what fraction of the total N becomes bioavailable.  In this situation, when the sum of 

the decay series doubles, the optimal manure/compost rate is cut in half.   The cumulative 

bioavailable N is an important parameter that needs to be measured in different contexts, 

but N fertilizer equivalency experiments spanning a few years are inadequate for this 

purpose.  Although decay series terms fall to a few percent after several years (Klausner 

et al., 1994), they can remain at this low level for over a decade because the time scale 

for organic matter decay slows down dramatically (Paustian et al., 1992; Brady and Weil, 

2002).  One percent per year for 10–20 years adds up to substantial bioavailable N.   
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One approach to estimating the cumulative bioavailable N in a continuous cropping 

system is via the N fertilizer equivalency of plots that have received fixed, annual 

manure/compost applications over long periods of time (Schröder, 2005).  Extrapolations 

of experimental data based on this idea suggest 70–80% of the total N may eventually 

mineralize in different contexts (Schröder et al., 2005; Schröder et al., 2007).   

Measurements of cumulative bioavailable N based on long-term N mass balances have 

produced estimates in the range 50–60% (Chang and Jenzen, 1996; Peu et al., 2006).  The 

range of values considered in Fig. 2.1 spans these predictions. 

How does one estimate the cumulative bioavailable N in a multi-crop rotation?  

Naively, one might use the average N fertilizer equivalency of the crops in the rotation: 

(1/R) Σi xi/ui (cf. Eq. [2.4]).  By summing the rows in Eq. [2.4], however, one finds that 

the correct answer is the ratio between the average N fertilizer equivalents and the 

average manure/compost rate:  

L+++=
∑
∑

210
)/1(

)/1(
bbb

uR

xR

i i

i i
 [2.10] 

 

Profit-Maximizing Compost Rates for Dryland Wheat 

 

 Knowing the long-term fertilizing value of manure/compost is just as critical to 

maximizing profit as meeting N targets.  This point is illustrated with a case study based 

on the work of Stukenholtz et al. (2002), who measured the yield response of dryland, 

organic wheat to composted dairy manure (Fig. 2.2).  Data were collected from two 

neighboring fields staggered in a wheat-fallow rotation.  Yields were higher in 1995 than 

1996, and the 1995 crop also responded more sharply to compost, as illustrated by the  



 

 

Fig. 2.2.  Wheat yield response to compost.  Data points indicate the individual plot 
yields for one site in 1995 (filled squares) and a second site in 1996 (open circles).  
Quadratic-plateau models were separately fi
Ymax – (1/2) k (xmax–x

estimates (and standard errors) for the 1995 regression model parameters are 
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(Mg grain) (Mg DM)
model parameters are 
with the same units as above.  The average yield 
shown) is Ymax = 2.8 (0.2), 

 

 

Fig. 2.2.  Wheat yield response to compost.  Data points indicate the individual plot 
yields for one site in 1995 (filled squares) and a second site in 1996 (open circles).  

plateau models were separately fit for each site-year, in which yield 
x)2 when x ≤ xmax, and Y = Ymax when x > xmax.  The point 

estimates (and standard errors) for the 1995 regression model parameters are 
3.5 (0.1) Mg grain ha-1, xmax = 40. (8) Mg DM ha-1, and k = 2.5×10-3 

DM)-2.  Estimates (and standard errors) for the 1996 regression 
model parameters are Ymax = 2.2 (0.1), xmax = 69 (10.), and k = 6.2×10
with the same units as above.  The average yield model for the two site

= 2.8 (0.2), xmax = 52 (19), and k = 1.2×10-3 (0.9×10-3
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Fig. 2.2.  Wheat yield response to compost.  Data points indicate the individual plot 
yields for one site in 1995 (filled squares) and a second site in 1996 (open circles).  

year, in which yield Y = 
.  The point 

estimates (and standard errors) for the 1995 regression model parameters are Ymax = 
 (0.9×10-3) ha 

.  Estimates (and standard errors) for the 1996 regression 
10-4 (1.7×10-4), 

model for the two site-years (not 
3). 
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quadratic-plateau models fit to the data.  Stukenholtz et al. (2002) attributed these 

differences primarily to the effect of precipitation, which was 56 cm for the 1995 season 

but only 26 cm in 1996.   

Because these experiments were conducted on certified organic land, the yield 

response to N fertilizer was not measured.  Although not emphasized earlier, this is not a 

requirement of the theoretical framework developed here.  For an organic farm where 

yield is measured as a function of manure/compost, a more natural basis for the fertility 

state is manure/compost equivalents.  This entails comparing the carryover effects of 

manure/compost against new applications of the amendment, rather than N fertilizer.  In 

an experiment where plots that received 10 units of compost in year one and no compost 

in year two have the same average yield as plots that received no compost in year one and 

5 units in year two, the second term in the decay series would be b1 = 0.5.  The first term 

in the decay series (b0 = 1) is not meaningful in this case because one unit of 

manure/compost is trivially equivalent to itself in the first year.   

 To calculate profit-maximizing compost rates for the wheat yield models shown in 

Fig. 2.2, one must know the cumulative fertilizing value of the compost in the years after 

application (b1 + b2 + b3 + L) relative to its fertilizing value in the first year (b0).  This 

cumulative carryover (CC) was unknown for this system, so results are presented for a 

range of values.  Even though Stukenholtz et al. (2002) surmised that non-nutritive 

effects were present in their study, nitrogen may serve as a guide.  A typical N fertilizer 

equivalency for dairy manure compost in the season of application is b0 = 0.1, meaning 

10% of the total N is bioavailable (Gale et al., 2006).  If 50% of the total N is eventually 
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mineralized, then based on nitrogen alone one would expect CC = (0.5−0.1)/0.1 = 4.  If 

80% of the total N is eventually mineralized, then CC = (0.8−0.1)/0.1 = 7.    

The dashed curves in Fig. 2.3 are ex post optimal rates, meaning they depict what 

compost rate would have maximized profit for each site-year (Bullock and Bullock, 

1994), for different values of CC.  The solid curve is economically optimal for the 

average yield response of the two site-years (cf. Fig. 2.2 caption), making it the optimum  

under conditions of uncertainty (Bullock and Bullock, 1994).  These results assume 

compost is applied once every 10 years (5 wheat crops), which means only one-tenth of a 

producer’s acreage would need to be amended per year.  More frequent compost 

applications would lead to smaller optimal rates than those shown in Fig. 2.3.   

Based only on the observed yield responses, with no accounting for carryover (CC = 

0), the most profitable rate is zero.  However, for a wide range of plausible CC values (4–

8), the optimal rate based on the average yield is 15–20 Mg DM ha-1 10 yr-1.  As the CC 

increases within this range, the difference between the optimal strategies for the two site-

years tends to decrease.       

An interesting feature of the curves in Fig. 2.3 is that the optimal rate passes through 

a local maximum as the cumulative carryover increases.  This is because of two 

competing effects.  As the carryover increases, the marginal cost of the compost that must 

be recouped in the year of its application decreases (Kennedy, 1986).  This decreases the 

slope of the yield response at the economic optimum (cf. Eq. [2.8]), leading to higher 

levels of production.  For the quadratic-plateau model, higher yield requires a more fertile 

is both proportional to the state and inversely proportional to the cumulative carryover 

(cf. Eq. [2.2-4]), which exert opposite influences.   



 

 

Fig. 2.3.  Economically optimal compost rates.  
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assuming compost would be applied once ev
economic optimum for the average yield.  Larger cumulative carryover leads to 
monotonically higher optimal levels of the soil fertility state, but the optimal compost rate 
exhibits a local maximum because it is both
proportional to the cumulative carryover.  The optimal rate was higher in 1995 because 
the yield exhibited a sharper response to compost.  The kink in the curve for 1995 at 
≈ 5 is where the optimal state reaches 
rate is related to the first derivative of the yield, a discontinuity in the curvature of the 
yield leads to a discontinuity in the slope of the optimal rate.
 

 

Fig. 2.3.  Economically optimal compost rates.  Ex post optimal rates (dashed curves) 
were calculated for the two site-years as a function of the cumulative carryover (
assuming compost would be applied once every 10 years.  The solid curve shows the 
economic optimum for the average yield.  Larger cumulative carryover leads to 
monotonically higher optimal levels of the soil fertility state, but the optimal compost rate 
exhibits a local maximum because it is both proportional to the state and inversely 
proportional to the cumulative carryover.  The optimal rate was higher in 1995 because 
the yield exhibited a sharper response to compost.  The kink in the curve for 1995 at 
≈ 5 is where the optimal state reaches the plateau in the yield model.  Because the optimal 
rate is related to the first derivative of the yield, a discontinuity in the curvature of the 
yield leads to a discontinuity in the slope of the optimal rate. 
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optimal rates (dashed curves) 
years as a function of the cumulative carryover (CC), 

ery 10 years.  The solid curve shows the 
economic optimum for the average yield.  Larger cumulative carryover leads to 
monotonically higher optimal levels of the soil fertility state, but the optimal compost rate 

proportional to the state and inversely 
proportional to the cumulative carryover.  The optimal rate was higher in 1995 because 
the yield exhibited a sharper response to compost.  The kink in the curve for 1995 at CC 

the plateau in the yield model.  Because the optimal 
rate is related to the first derivative of the yield, a discontinuity in the curvature of the 
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Fig. 2.4 shows the sensitivity of the optimal rate to changes in the compost/wheat 

price ratio.  As the price ratio increases, the cost of the compost relative to the value of 

the wheat increases, and therefore the optimal rate declines.  At higher values of 

cumulative carryover, the optimal rate is less sensitive to changes in the price ratio. 

 

CONCLUSIONS 

 

 A framework has been developed for planning manure/compost applications in 

which efficient use of the amendment is an explicit goal.  Achieving this objective 

requires knowledge of the decay series, which is an estimate of the impacts a particular 

manure/compost will have on crop yield over the course of many years.  In principle, 

decay series can be measured in any cropping system, with many possible standards for 

measuring carryover.  In practice, most experimental studies have focused on continuous 

corn, with the carryover measured relative to N fertilizer.  Thus, a significant gap exists 

between our current ability to optimize organic crop production and what may eventually 

be realized with the framework developed here. 

Depending on the complexity of the cropping system, full knowledge of the decay 

series may not be required.  For continuous cropping, it is only the sum of the decay 

series that is relevant.  As more crops are added to the system, each with potentially 

different production goals, matching the carryover effects of manure/compost against the 

changing needs of the rotation becomes less intuitive.  The framework presented here 

provides a starting point for tackling these problems.   

One of the most interesting features of the economic theory is that it suggests a new 

standard for the decay series, in which the carryover effects of manure/compost are  
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Fig. 2.4. Sensitivity analysis.  The solid circles indicate the economically optimal 
compost rate at a compost/wheat price ratio of 0.20 (Mg grain)(Mg DM)-1, which was the 
base case used in Fig. 2.3.  The curves here show how the optimal rate changes as the 
price ratio ranges from 20% below to 50% above the base case.  As the price ratio 
increases, the compost becomes more expensive relative to the value of the wheat, and 
therefore the optimal rate declines.  Note that the optimal rate is less sensitive to changes 
in the price ratio at higher values of cumulative carryover (CC).    
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measured relative to new applications of the amendment.  I have shown how this idea 

may be used in fertility planning for a dryland, organic wheat-fallow rotation.  Although 

valuable in theory, future research must address the practicality of measuring decay series 

based on manure/compost equivalents.  The next chapter is a step in this direction.  
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CHAPTER 3 

ESTIMATION OF DECAY SERIES BASED ON 

MANURE/COMPOST EQUIVALENTS 

 
An important strategy for maintaining fertility on organic farms is the judicious use 

of manure and/or compost (Kuepper, 2003; Gaskell et al., 2006).  A defining feature of 

these amendments is that their effects on crop yield are evident for many years after 

application (Sullivan et al., 2003).  One reason for this carryover is that, unlike synthetic 

fertilizers, some nutrients present in manure/compost are not readily available for plant 

uptake.  For phosphorus and potassium, 70–100% of the nutrient is available upon 

application (Eghball et al., 2002; Mikkelsen, 2007; Nelson and Janke, 2007).  By 

contrast, only 10–50% of the nitrogen (N) in solid manure/compost is bioavailable within 

the season of application, this fraction tending to decrease with the extent of 

decomposition (Gale et al., 2006; Laboski et al, 2006).  The remaining nitrogen is found 

in organic forms that slowly mineralize over the course of many years. 

This multi-year effect can be quantified by a N decay series, which is a sequence of 

numbers describing what fraction of the manure/compost N is expected to be bioavailable 

in the first, second, third, etc., years after application (Pratt et al., 1973; Cusick et al., 

2006).   One way of measuring N decay series involves comparing the yields of manured 

plots with the yields of plots receiving N fertilizer (Klausner et al., 1994).  As an 

example, a decay series of 0.40, 0.20, …, means that plots receiving 200 kg manure N 

ha-1 would on average yield the same as plots receiving 200 × 0.40 = 80 kg fertilizer N 

ha-1 for the year in which the manure was applied.  In the following year, provided no 
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new manure was added, the manured plots would have the same average yield as plots 

receiving 200 × 0.20 = 40 kg fertilizer N ha-1.   

Conventionally, the parameters in the N decay series are multiplied by the 

manure/compost rates from years past to estimate how much bioavailable N may be 

expected for the current season (Laboski et al., 2006).  This credit is then applied to the N 

target for the crop, and the balance is met using N fertilizer.  For an organic system, one 

could convert the N fertilizer recommendation into a manure/compost rate based on the 

first term in the decay series (Hue and Silva, 2000).  Alternatively, one may choose to 

apply manure/compost at a rate that maximizes profit.  In Chapter 2 I showed how N 

decay series may be used to achieve both economic and yield objectives.   

A compelling reason to use N decay series in organic fertility planning is that such 

information is widely available.  As a paradigm for the future, however, it has some 

disadvantages.  For one, N fertilizer equivalency experiments cannot be conducted on 

organically certified land because N fertilizer is prohibited.  A second concern is that 

nitrogen is not the only factor contributing to the long-term fertilizing value of 

manure/compost.  By increasing soil organic matter, manure/compost can increase the 

soil’s capacity to hold water and nutrients (Weil and Magdoff, 2004), and such changes 

can dramatically affect the yield of unirrigated crops (Stukenholtz et al., 2002).  

Biological influences such as organic-matter mediated disease suppression may also be 

active on long time scales (Stone et al., 2004).   

When non-nutritive factors are significant, quantifying carryover in N fertilizer 

equivalents is not particularly meaningful.  A more useful benchmark for organic growers 

who rely upon a consistent source of manure/compost is the equivalency between 
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carryover and prospective applications of the amendment.  Since manure/compost is 

trivially equivalent to itself in the first year, the first term in this kind of decay series is 

simply 1.  In an experiment where plots that received 10 units of compost in year one and 

no compost in year two have the same average yield as plots that received no compost in 

year one and 5 units in year two, the second term in the decay series would be 0.5.  

Higher order terms could be generated by continually comparing carryover effects 

against the yields of plots receiving amendment for the first time, but other experimental 

designs are also possible. 

Given its potential importance in organic fertility planning, the objective of this 

chapter was to explore how decay series based on manure/compost equivalents may be 

estimated from yield records.  To frame the discussion, I have re-analyzed data from a 

long-term experiment (Schröder et al., 2005) in which cattle manure slurry was applied to 

continuous corn (Zea mays L.).  This example was chosen because its unique design is 

well-suited to the methodological challenges encountered when the response to N 

fertilizer is unavailable as a benchmark.  

 

METHODOLOGY 

 

The field experiment of Schröder et al. (2005) was conducted in Hengelo, 

Netherlands, on a slightly loamy, moderately fine sandy soil (cambic Spodosol) with 

2.7% organic matter and pH 5.5 (0–30 cm).  From 1997 to 1999, one of three slurry rates 

(none, low, high) was applied annually to 21-row plots measuring 11.0 m long by 

15.75 m wide, in a randomized block design with four replicates.  From 2000 to 2002, 

each 21-row plot was subdivided into three 7-row plots (11.0 m by 5.25 m), to which one  
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Table 3.1. Manuring history for plots of silage corn. The average low slurry rate was 
2 Mg DM ha-1, and the average high slurry rate was 4 Mg DM ha-1. 

 Treatment 

Year 1 2 3 4 5 6 7 8 9 

‘97-‘99 None None None Low Low Low High High High 
‘00-‘02 None Low High None Low High None Low High 

‘03 None Low High None Low High None None None 

 

of the three slurry levels was applied.  The slurry rate was changed again for some of the 

subplots in 2003.  In total, nine different slurry sequences, or treatments, were used (see 

Table 3.1).  The average low slurry rate was approximately 2 Mg DM ha-1, and the 

average high slurry rate was approximately 4 Mg DM ha-1.  On average the slurry was 

9.0% dry matter, with 4.9% total N and 2.6% NH4-N on a dry weight basis, and a C/N 

ratio of 7.  Manure slurry was injected 10–15 cm deep following moldboard plowing 

each spring.  Since Schröder et al. (2005) were interested in nitrogen management, the 

plots also received annual applications of phosphorus and potassium fertilizer at rates 

calculated to meet crop demand.  Corn silage was harvested at 35% moisture in late 

September each year. 

 

Statistical Analysis 

 

In the analytical framework used here, the manure rate u and yield Y are linked 

through a state variable x, representing soil fertility in manure equivalents.  For a decay 

series of 1, b1, b2, …, the effect of the manure on soil fertility was modeled as  

L+−+−+= )2()1()()( 21 tubtubtutx  [3.1] 

where u(t) and x(t) denote the rate and state, respectively, in year t.  Similar results were 

obtained using both exponential and quadratic-plateau yield models, so only the latter are 
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 presented here:  

 Y = Ymax – (1/2) k (xmax–x)2,     

Y = Ymax,  

x ≤ xmax 

x > xmax. 
[3.2] 

 Nonlinear regression analyses, carried out using MATLAB’s System Identification 

Toolbox (version 2008a), involved simultaneously fitting yield models and decay series 

(Eq. [3.1-2]) to the data.  Prior to 2000, although rate varied across plots, it did not vary 

substantially with year.  This had important implications for the regression.  For example, 

in 1999 the state would be x(1999) ≈ (1 + b1 + b2 ) 9997−
u = λ

9997−
u , where 

9997−
u is the 

average rate before the change in 2000 and λ is the sum of the decay series.  When the 

decay series parameters only enter the model through their sum, they cannot be resolved.  

Furthermore, under these conditions even the decay series sum cannot be estimated 

independently of the parameters in the yield model.  This is because upon making the 

substitution x = λu in Eq. [3.2], xmax and k can be rescaled by an appropriate power of λ to 

produce the same functional form.   

After the change in rate in 2000, the situation is different.  If 
0200−

u denotes the 

average (approximately constant) slurry rate from 2000 to 2002, the state can be modeled 

by 
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[3.3] 

At first the regression was based only on 2000 yields, which allowed for the estimation of 

the sum (b1 + b2 + b3).  When the fit was extended to all three years, a different yield 



33 
response model was used for each of the three years to more precisely estimate the decay 

series.  Since xmax and k can be rescaled for each yield model, only the ratio of the rate 

coefficients in Eq. [3.3] can be uniquely estimated: 
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[3.4] 

where x~ indicates the rescaled state in each year, and b3+ is a lumped decay series 

parameter that includes higher order terms.  In the end, 12 parameters were fit to the 108 

plot yields from 2000 to 2002, including the 3 decay series parameters in Eq. [3.4] and 3 

yield response parameters (k, xmax, Ymax) for each of the 3 years.   

 

RESULTS AND DISCUSSION 

Assessing the Adequacy of the Decay Series Model 

 

 Before estimating the decay series parameters, I investigated whether it was an 

appropriate model for the effects of carryover in the data of Schröder et al. (2005).  The 

bottom panel in Fig. 3.1 shows the average silage yield for slurry treatments 1, 2, 4, and 

7, from ’98 through ‘03.  Only the pooled yield data for treatments 1 and 2 were available 

before 2000, during which time the plots received no manure.  During these same years 

('97−'99), treatments 4 and 7 received annual slurry applications of 2 and 4 Mg DM ha-1, 

respectively.  Focusing on the yield in '98 and '99, one sees that the unmanured 

treatments (1 and 2) had the lowest average yield, followed by treatment 4 (2 Mg DM 
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ha-1), and the highest average yield was recorded in treatment 7 (4 Mg DM ha-1).  Note 

that although the slurry rate in treatment 7 was twice that in treatment 4, the average yield 

increased by less than a factor of two relative to the unmanured plots.  This is an example 

of the law of diminishing returns (Dillon and Anderson, 1990), which in this context can 

be accommodated by a nonlinear relationship between yield and state, e.g., a quadratic or 

exponential yield model, with little implication for the linear carryover model that defines 

the decay series (cf. Eq. [3.1]). 

The true test of the linear carryover model, and with it the usual notion of a decay 

series, comes from data recorded after the change in slurry levels that occurred in 2000.  

As illustrated in the top panel of Fig. 3.1, treatments 4 and 7, which had been receiving 

manure prior to 2000, received no manure from 2000 onward.  Treatment 1 continued 

without manure.  Thus, the extent to which treatments 4 and 7 yielded more than 

treatment 1 from 2000 onward must be due to carryover. 

Treatment 2 is included in the figure to help quantify the nature of this carryover 

effect.  Although unmanured prior to 2000, from 2000 onward treatment 2 plots received 

approximately 2 Mg DM ha-1 annually.  Although crop yields tend to saturate with 

increasing amounts of fertilizer, there is generally some lower range where the yield 

response is linear (Dillon and Anderson, 1990).  The data from '98 and '99 indicate that 

the yield response is nonlinear between 2 and 4 Mg DM ha-1, but regression modeling 

(see below) suggests that the yield response at fertility levels between 0 and 2 Mg DM 

ha-1 is fairly linear.  Consequently, treatment 2 serves as a benchmark for where nonlinear 

behavior in the relationship between yield and state may show up after the step change in 

rate.  If the carryover were to have nonlinear effects on yield below this benchmark, it 
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Fig. 3.1.  Manure rates and silage yields for select treatments.  Treatment 1 received 
no manure from 1997 to 2003.  Treatment 2 began to receive annual manure 
applications beginning in 2000.  Treatments 4 and 7 received manure from 1997 to 
1999 but none beginning in 2000.  Treatment means based on four replicates are 
shown for the yield data, with the error bars representing +/- one standard deviation.  
The data from 1997 are not shown. 
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would suggest the linear carryover model is inadequate. 

From 2000 onward, treatments 4 and 7 both yielded less than or equal to treatment 2.  

Thus, under the linear carryover model, the ratio of the yield improvements in treatments 

4 and 7 relative to treatment 1 should equal the ratio of rates, which differed by a factor 

of two.  Visual assessment of Fig. 3.1 suggests the linear carryover model is plausible, 

although not perfect, since the mean for treatment 4 appears to split the difference 

between treatments 7 and 1 in every year but 2001 after the change in slurry rate.   

As an additional preliminary before presenting the regression, it is worth noting how 

slowly the fertilizing value of the slurry appears to decay in Fig 3.1.  From 2001 onward, 

the improvement of treatments 4 and 7 over the unmanured treatment 1 remains fairly 

consistent.  Although the large concentration of inorganic N in the slurry is a 

confounding factor, the silage yields suggest a familiar pattern of organic matter decay in 

which an initially rapid rate gives way to a much slower rate after a few years (Brady and 

Weil, 2002). 

 

Estimating the Decay Series 

 

Fig. 3.2A shows the silage yield in 2000 for all nine treatments as a function of the 

slurry applied that year.  The plot yields (open circles) appear in three vertically stacked 

clusters corresponding to the three slurry rates (0, 2.4, 4.8 Mg DM ha-1).  The solid line is 

the best-fit quadratic-plateau model, which captures R2 = 0.68 of the total variation.  This 

is not an impressive fit and points to the inherent difficulty of explaining crop yields 

without accounting for carryover effects.   
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Fig. 3.2. Modeling carryover for the 2000 yields.  Below its maximum, the yield model 
(solid line) follows Y = Ymax – (1/2) k (xmax - x)2. (A) With no carryover, the state x equals 
the slurry applied in 2000.  (B) When carryover is modeled, x = (slurry in 2000) + b 
(average slurry level before 2000).  In this case, the parameter estimates (and standard 
errors) are Ymax = 14 (0.3) Mg DM ha-1, xmax = 6.0 (0.8) Mg DM ha-1, k = 0.40 (0.10) ha 
(Mg DM)(Mg DM)-2, and b = 0.50 (0.09).  An additional 20% of the variation in the data 
(R2) is captured by modeling carryover.  
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The explanatory power of the model is dramatically improved when a decay series is 

included.  In Fig. 3.2B, yield is plotted against manure equivalents, which is the sum of 

the manure applied in 2000 and the manure equivalents from slurry applied before 2000.  

Because a constant rate was applied for three years before the step change in 2000, 

manure equivalents were estimated with a single parameter b representing the sum of the 

first three terms in the decay series (cf. Eq. [3.3]).  The regression estimate (and standard 

error) for b was 0.5 (0.1).  With the additional yields from 2001 and 2002, I attempted to 

isolate the contributions from one-year-old and two-year-old slurry (see 

METHODOLOGY).  Due to spatial and temporal variability, these decay series 

parameters could not be precisely estimated: b1 = 0.13 (0.16) and b2 = 0.05 (0.13).   

It is instructive to compare these results, expressed in manure equivalents, with what 

might be expected from a N decay series.  This requires normalizing the N decay series 

by its first term.  As an example, Pratt et al. (1976) have reported a N decay series for 

manure slurry of 0.75, 0.15, 0.10, …, which becomes 1, 0.2, 0.13, …, when normalized.  

This means that one year after its application, 1 unit of slurry was equivalent to 0.2 units 

of fresh slurry, as compared with the value of 0.13 (standard error 0.16) estimated from 

the data of Schröder et al. (2005).  Because the high inorganic N content of liquid manure 

creates high fertilizing value in year one, the carryover relative to year one is small 

compared with solid manure, which tends to have a normalized N decay series parameter 

b1 in the range 0.3–0.5 (Pratt et al., 1976; Klausner et al., 1994).   

Since N fertilizer plots were not part of the experimental design of Schröder et al. 

(2005), they used models calibrated with other data to estimate the N decay series.  For a 

scenario where the first term in the N decay series was 0.55, the sum after 5 years was 
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approximately 0.75.  On a normalized basis, this corresponds to a cumulative carryover 

of (0.75–0.55)/0.55 = 0.36, as compared with the estimate of 0.5 (standard error 0.1) 

reported here.  One would expect that how well a N decay series approximates a decay 

series based on manure/compost equivalents will depend on the relative contribution of 

factors other than nitrogen in the carryover.  For the system investigated by Schröder et 

al. (2005), nitrogen seems to dominate the carryover, as might be expected for liquid 

manure.   

 

Extension to Other Field Experiments 

 

A natural question at this point is how the methods employed here may be applied 

elsewhere.  The above case study serves as a model for estimating the first few decay 

series parameters during the transient response of an agroecosystem to a change in the 

manure/compost rate.  This may be a “step” change in rate, as in Schröder et al. (2005), 

in which the rate before and after the change is constant.  One may equally well track the 

effect of a one-time application of manure/compost, which is effectively two sequential 

steps (up then down), provided some plots are receiving manure/compost in every year.   

Complementary to these approaches are experiments designed to measure the sum of 

the decay series at steady state.  In Chapter 2 it was shown how this information may be 

used to optimize manure/compost rates.  A practical design for this purpose involves 

applying manure/compost at regular intervals over the course of many years.  To 

illustrate how the regression analysis might proceed, consider the case where 

manure/compost is applied at a fixed rate u once every three years.  At steady-state, the 

fertility will oscillate through three (average) states, x1, x2, x3, with x1 representing the 
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year of application and x3 the last year before the next application.  These states are 

related to the rate by (cf. Eq. [3.1]) 

 ( ) uhbbux 1631 1 =+++= L

 

( ) uhbbbux 27412 =+++= L

 

( ) uhbbbux 38523 =+++= L  

[3.5] 

where the sums h1, h2, and h3 pick out every third term in the decay series, as indicated.   

One would like to estimate the parameters hi based on yield records, but this is not 

straightforward.  The complication can be illustrated using a quadratic yield model, 

although the difficulty also exists with other models.  Substituting the rate-to-state 

relationship xi = hiu into the yield model Y = Ax
2 + Bx + C produces the expression Yi =  

A
2

ih u
2 + Bhiu + C.  The parameter hi is not uniquely determined by this regression 

equation because it is multiplied by the yield model parameters A and B, which are also 

to be fit.  However, for a continuous cropping system, where yield is modeled by a 

response function with either the same curvature (A) or the same initial slope (B) in every 

year, the ratio of the coefficients of u2 or u, respectively, in the regression equations for Yi 

and Yj can be used to estimate hi/hj.  To form this ratio, at least two states are required in 

the steady-state oscillation.  Thus, the interval between manure/compost applications 

must be at least two years.     

To proceed further an approximation is needed.  Because the rate of organic matter 

decay slows down dramatically after a few years (Brady and Weil, 2002), higher order 

terms in the decay series tend to be small and fairly uniform.  A reasonable 

approximation is thus h1 ≈ 1 + h3, which allows h1 and h3 to be calculated from the 
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regression estimate for h1/h3.  Since the ratio h2/h3 is also determined from the regression, 

h2 would be available too.     

 

CONCLUSIONS 

 

My objective has been to demonstrate how decay series based on manure/compost 

equivalents may be estimated from yield records.  Using data from the literature, the first 

few terms in a decay series were estimated from the response of a continuous corn system 

to a step change in manure rate.  The problem of estimating the sum of the decay series 

for a system at steady-state was also addressed, based on the idea of applying 

manure/compost at regular intervals.   

The primary motivation for considering a decay series based on manure/compost 

equivalents is its potential use in optimizing organic crop production.  In addition to 

representing non-nutritive effects in a more meaningful way, the decay series can be 

measured on organically certified land.  Since organic systems tend to be highly 

individualized, the ability to derive site-specific fertility parameters is desirable.  

Conversely, a potential concern is that decay series parameters based on manure/compost 

equivalents will be less transferrable between contexts.  With a N decay series, the 

manure/compost rate can be adjusted to variation in total N.   A decay series in 

manure/compost equivalents only allows for planning based on average N.  Whether this 

proves to be a significant limitation will depend on how the variability in N compares 

with the overall variability in the system, as well as on the relative fertilizing value of 

nitrogen vs. other factors. 
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CHAPTER 4 

CONCLUSION 

 
My primary aim has been to lay the theoretical foundation for a new approach to 

organic fertility planning.  The existing paradigm is essentially the same as that used in 

conventional agriculture, in which the fertilizing value of manure or compost is compared 

against a synthetic nutrient source, usually N fertilizer, over the course of several years.  

For the purpose of meeting nutrient targets, knowing the synthetic fertilizer equivalency 

of manure/compost in the years after its application is very useful.  The two main 

drawbacks to this approach are that it cannot be implemented on organic farmland 

because synthetic fertilizer is prohibited, and it awkwardly measures non-nutritive effects 

relative to nutritive ones.    

A major contribution of this thesis was to recognize that these difficulties are 

overcome if the carryover effects of manure/compost are compared against new 

applications of the amendment.  This is a natural framework for organic growers because 

the decision they face is how much new amendment should be applied.  Two questions 

immediately follow.  One is how this new type of decay series, expressed in 

manure/compost equivalents, may be measured in field experiments.  The second is how 

the decay series enables efficient use of the manure/compost.  

It is the second of these questions that I addressed first, in Chapter 2.  In 

conventional agriculture, an important concept is the economically optimal, or profit-

maximizing, fertilizer rate, which is where the marginal cost of fertilizer equals the 

marginal revenue from crop yield.  For the first time in the scientific literature, I have 
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adapted this idea to an organic system in which the “fertilizer” is purchased compost.  

The carryover effects of the compost, which are captured in the decay series, must be 

considered to properly evaluate profitability.  Using data from an organic, dryland wheat 

system, it was shown how the optimal compost rate varies with the properties of the 

decay series.   

To be good land stewards, organic farmers must also consider issues besides 

profitability when setting the compost rate.  As an example, the economically optimal 

compost rate may have unacceptable environmental consequences.  If the most profitable 

rate is too low, and other fertility-building strategies are not adequately employed, 

repeated cropping will deplete nutrients and endanger the land’s ability to produce quality 

food for future generations.  If the most profitable rate is too high, nutrients may 

accumulate to such high levels that runoff and leaching harm the ecosystem. 

Concerning the experimental measurement of decay series in manure/compost 

equivalents, I have made two contributions.  The first was to design a three-year field 

experiment specifically for this purpose and then execute the first year (described more 

fully in the appendix).  The unique feature of this design is that in every year some plots 

receive compost for the first time, which allows them to be used as benchmarks for 

carryover effects.  My second contribution has been to show that even when this feature 

is not present in an experiment, regression modeling may still be used to estimate decay 

series parameters without N fertilizer benchmarks.  Future work should focus on 

identifying long-term data sets from which decay series parameters may be extracted 

based on the methods presented in Chapter 3.   
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Despite these accomplishments, much more research is needed before extension 

recommendations can be made based on the ideas developed here.  Important questions 

concerning the robustness of the decay series parameters, and the optimal strategies based 

on them, to the spatial and temporal variability found in agroecosystems must ultimately 

be addressed empirically.  Even after some of these issues are resolved in a research 

setting, one must still find effective ways of communicating the results to growers.  This 

thesis is but a first step towards a new paradigm for organic fertility management.   
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MEASURING THE DECAY SERIES OF COMPOST  

 
 This report describes the first year of a multi-year field experiment designed to 

measure the carryover effects of compost against new applications of the amendment.  

The logic of the experiment is as follows.  In year one, compost was applied to some but 

not all plots, at varying rates.  In year two, the plots amended in year one will receive no 

additional compost, but their yields will be compared against the yields of plots receiving 

compost for the first time in year two.  If a plot that received 10 units of compost in year 

one and no compost in year two were to have the same yield as a plot that received no 

compost in year one and 5 units in year two, the second term in its decay series would be 

0.5.  In year three, the yields of plots that received compost in year two and one will be 

compared against the yields of plots receiving compost for the first time in year three to 

estimate the second and third terms in the decay series, respectively.  The key feature of 

this design is that the plots used as a benchmark in each year have no carryover from 

previous compost applications.   

 

METHODOLOGY 

 

In the spring of 2008, two identically designed experiments were established at the 

Greenville research farm of Utah State University in North Logan, UT (Fig A.1).  The 

soil was a Millville silt loam (coarse-silty, carbonatic, mesic Typic Haploxeroll).  The site 

had not received fertilizer for several years prior to 2008 and had been planted with 

various cover crops.   

Four different nonzero levels of compost (10, 20, 30, 40 Mg DM ha-1) were planned 
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Fig. A.1.  Plot layout for Greenville experiment.  Four strips with 20 plots each were 
arranged within a rectangle 21.3 m (70 ft.) wide by 91.4 m (300 ft.) long.  A 0.91 m (3 
ft.) wide buffer separates the 100 series plots from the edge of the rectangle, and a 0.61 m 
(2 ft.) wide buffer separates the 100 series from the 200 series plots.  Each plot is 4.6 m × 
4.6 m (15 ft. × 15 ft.).  In 2008 the 100 series plots were planted to summer squash and 
the 200 series plots were planted to corn.  The dashed lines indicate the position of 
irrigation lines, with sprinkler heads spaced every 12 m (40 ft.).  Note that the 100 series 
plots are arranged symmetrically with respect to the irrigation lines, as are the 200 series 
plots. 
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for each of the three years 2008, 2009, and 2010, for a total of 12 treatments in which 

compost would be applied only once during the three-year experiment.  For the 13th 

treatment, no compost would be applied during the three years.  Three plots were 

assigned to each of the 12 nonzero treatments and four plots to the zero treatment, for a 

total of 40 plots, in a completely randomized fashion (see Table A.1).  As a consequence 

of this design, in year one there were 28 plots with no compost and 3 plots for each of the 

nonzero rates.  

 ‘Premium’ brand compost was purchased in bulk from Miller’s in Hyrum, UT, at a 

cost of $34 m-3 ($26 yd-3) in early May 2008.  Laboratory analysis revealed the material 

to be 58% dry matter (DM) with a bulk density of 0.56 Mg m-3, which means the cost per 

Mg DM was $104.  Select chemical analyses are shown in Table A.2.  Total N and C 

were determined by dry combustion (LECO TruSpec CN).  Nitrate N was measured in 

5:1 compost extracts (2M KCl) by automated colorimetry (Lachat QuickChem AE).  

Olsen P and K concentrations were determined from sodium bicarbonate extracts by 

inductively coupled plasma spectroscopy (IRIS Intrepid II XDL).   

On May 15, the compost was spread evenly over the plots with a rake and 

incorporated with a rototiller.  No other additional amendments or fertilizers were used.  

The crop in Experiment 1 was a certified organic summer squash (C. pepo L.) hybrid 

(‘Goldy Zucchini’, Seeds of Change).  Plants were started in the greenhouse on May 7 in 

50-cell flats.  The potting mix contained peat moss, vermiculite, perlite, and a fertilizing 

mixture of bone, kelp, and blood meal.  No synthetic fertilizers were used.  On May 19, 

three sheets of black plastic mulch (1.2 m wide) were laid down the full length of the plot 

area (91.4 m) at a spacing of 1.5 m (5 ft.).   Plants were transplanted into the mulch on  
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Table A.1. Plot assignments.  Compost rates given for each year in Mg DM ha-1. 

Plot 2008 2009 2010 Plot 2008 2009 2010 

101 0 0 0 201 0 10 0 
102 0 20 0 202 0 40 0 
103 0 10 0 203 0 0 30 
104 0 0 40 204 30 0 0 
105 0 0 20 205 0 20 0 
106 20 0 0 206 0 0 30 
107 0 40 0 207 40 0 0 
108 0 0 20 208 0 30 0 
109 0 0 0 209 0 10 0 
110 0 0 10 210 0 0 0 
111 40 0 0 211 20 0 0 
112 30 0 0 212 0 0 10 
113 40 0 0 213 0 0 40 
114 10 0 0 214 0 20 0 
115 0 10 0 215 30 0 0 
116 0 40 0 216 0 0 20 
117 0 0 0 217 0 0 40 
118 0 40 0 218 40 0 0 
119 0 0 30 219 0 30 0 
120 0 0 0 220 0 20 0 
121 30 0 0 221 10 0 0 
122 0 0 10 222 0 0 10 
123 20 0 0 223 20 0 0 
124 0 30 0 224 0 10 0 
125 0 0 40 225 0 0 20 
126 30 0 0 226 10 0 0 
127 40 0 0 227 0 0 0 
128 0 0 20 228 0 0 30 
129 10 0 0 229 0 40 0 
130 20 0 0 230 0 30 0 
131 0 20 0 231 40 0 0 
132 0 20 0 232 0 0 10 
133 10 0 0 233 0 0 0 
134 0 0 40 234 0 0 20 
135 0 0 10 235 0 0 40 
136 0 0 30 236 30 0 0 
137 0 30 0 237 0 0 0 
138 0 10 0 238 0 40 0 
139 0 30 0 239 20 0 0 
140 0 0 30 240 10 0 0 
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Table A.2.  Select compost properties.  Concentrations given on a dry weight basis. 

Property Value 

Dry matter  58% 
Total N 1.9% 

C/N 11 
Nitrate-N 1900 mg/kg 
Olsen P 1000 mg/kg 
Olsen K 11,000 mg/kg 

pH5:1 8.0 
EC5:1 5.4 dS/m 

 

 

May 28.  Each sheet of mulch contained two rows of plants in a staggered pattern, with a 

spacing of 0.61 m (2 ft.) between plants within a row.  This resulted in six rows per plot 

with a density of 21,500 plants ha-1.     

Squash fruit were picked twice a week from July 3 through July 31 for a total of nine 

harvests.  All fruit larger than 15 cm in length were harvested.  Most of the fruits 

appeared fertile based on size, and I also noticed bees pollinating the flowers on a regular 

basis.  Although all fruit were picked, fresh weight was only recorded for the 6 plants 

within a 1.5 m × 1.5 m (5 ft. × 5 ft.) area within the center of each plot to minimize 

potential boundary effects.  First the average cumulative harvest weight per plant was 

calculated, and then this number was scaled to a 1 ha basis using the density of 21,500 

plants ha-1.   

The crop in Experiment 2 was a certified organic field corn (Z. mays L.) hybrid 

(Dahlco 2146).  On May 28 seeds were drilled in rows 91.4 m (300 ft.) long, spaced 0.76 

m (30 in.) apart.  The crop was not systematically thinned but emerged with an average 

density of 66,000 plants ha-1.   On June 1, prior to corn emergence, plots were burned 
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with a five-torch, walk-behind flamer to control weeds.  After emergence, weeds were 

controlled by hand within the row and with a walk-behind wheel hoe between the rows.   

On June 29, 32 days after planting, 2–4 whole plants were cut from the center of 

each plot, and their tissue N concentrations determined by dry combustion (LECO 

TruSpec CN).   These plants were 25–30 cm tall with 7–9 leaves. 

Corn plants were harvested by hand 96 days after planting (Dahlco 2146 is a short-

season variety), at approximately 30% dry matter.  To minimize potential boundary 

effects, yields were only recorded for the (on average, 14) plants within a 1.5 m × 1.5 m 

(5 ft. × 5 ft.) area within the center of each plot.  It took nearly two weeks for the entire 

above-ground portion of the plant to dry in an oven at 50°C, after which the ears were 

shelled.  First the average yield per plant was calculated for total biomass and grain, and 

then this number was scaled to a 1 ha basis using the density of 66,000 plants ha-1.   

 Yield response functions were fit to the corn and squash data using PROC REG in 

SAS (version 9.1.3).  Data from plots at the far south end of the field (101 and 121 for 

squash, 201 and 221 for corn in Fig. A.1) were not used in the regression models.  Due to 

the slope of the field, irrigation water tended to pool there, and unusually high yields 

were observed for those plots.  Because the number of observations at each compost level 

varied, residual error terms were weighted so that each compost level had equal weight as 

a group.  This was accomplished by giving each error term a weight equal to the inverse 

of the number of observations at that compost level.   

The compost/crop price ratio for squash was calculated based on a compost price of 

$104 (Mg DM)-1, as detailed above.  The squash harvested in this experiment were sold 

at a local market for $3.30 to $4.40 kg-1 ($1.50 to $2 lb-1), depending on the time of 
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season.  Using the midpoint of this range led to a compost/crop price ratio of 0.03 (Mg 

squash)(Mg DM)-1.    

 

RESULTS AND DISCUSSION 

 

 Fig. A.2 shows the effect of compost on squash yield after 2, 3, and 4.5 weeks of 

harvest, picking fruit twice a week.  Data points represent the average yield at each of the 

five compost rates investigated.  Production peaked in the third week of harvest, which is 

evident by comparing the change between 2 and 3 weeks and between 3 and 4.5 weeks.  

The overall shape of the yield response, in which yield seemed to reach a maximum 

between 20 and 30 Mg DM ha-1, suggested a quadratic model would be appropriate.   

For the data at 4.5 weeks, the regression model (dashed curve) had an initial slope of 

0.42 (standard error 0.13), which exceeds the compost/crop price ratio of 0.03 (Mg 

squash)(Mg DM)-1.  This means it was more profitable to apply compost than not.  

Precisely how much compost would be optimal depends on the magnitude of the 

carryover, which will be estimated in years two and three of the experiment.  

 Corn grain yield responded weakly to compost, as shown in Fig. A.3.  Over the range 

of rates considered here, the average response (dashed line) was 0.013 (Mg grain)(Mg 

DM)-1, or 0.004 ha (Mg DM)-1 when normalized by the mean yield of 3.4 Mg grain ha-1.  

By comparison, the initial response of the squash, normalized by its mean yield, was five 

times larger.   

Because the nutritional requirements for corn are generally higher than for squash, it 

is surprising that squash but not corn responded to compost at the site.  One possibility is 

that higher levels of fertility are needed for corn to produce a clear yield response 
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discernible against the background of variability present in the field.  This could be tested 

by using higher compost rates in future years. 

For the purpose of estimating the decay series in years two and three, the yield 

responses in year one are not needed.  Comparisons only need to be made between plots 

within a single season.  Nonetheless, the weak response for corn over the range 0−40 Mg 

DM ha-1 is cause for concern.  If the amended corn plots were similar to the zero-rate 

plots in year one, then corn plots fertilized only with carryover are also likely to be 

indistinguishable from zero-rate plots in year two.  If this happens, the second term in the 

decay series will appear to be zero. 

 

 

 



Fig. A.2.  Squash yield re
plotted after 2, 3, and 4.5 weeks of harvest (individual plot yields reported in Table 
A.3).  Data points are the average for each compost level (plots 101 and 121 not 
included), and the errors bars 
weeks was omitted so that the s.d. at 4.5 weeks could be clearly seen.  The dashed 
curve is the best-fit quadratic model (
The regression estimates (and
squash)(Mg DM)-2, B
squash ha-1. 

 

Squash yield response.  The cumulative fresh weight of summer squash is 
plotted after 2, 3, and 4.5 weeks of harvest (individual plot yields reported in Table 
A.3).  Data points are the average for each compost level (plots 101 and 121 not 
included), and the errors bars indicate +/- one standard deviation (s.d.).  The s.d. at 3 
weeks was omitted so that the s.d. at 4.5 weeks could be clearly seen.  The dashed 

fit quadratic model (Y = Ax
2 + Bx + C) for the data at 4.5 weeks.  

The regression estimates (and standard errors) are A = -0.0076 (0.0032) ha (Mg 
B = 0.42 (0.13) (Mg squash)(Mg DM)-1, and C = 15.0 (1.1) Mg 
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sponse.  The cumulative fresh weight of summer squash is 
plotted after 2, 3, and 4.5 weeks of harvest (individual plot yields reported in Table 
A.3).  Data points are the average for each compost level (plots 101 and 121 not 

one standard deviation (s.d.).  The s.d. at 3 
weeks was omitted so that the s.d. at 4.5 weeks could be clearly seen.  The dashed 

) for the data at 4.5 weeks.  
0.0076 (0.0032) ha (Mg 

= 15.0 (1.1) Mg 
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Table A.3. Squash yields.  Cumulative fresh weights (Mg ha-1) are reported. 

Plot  Compost (Mg DM ha-1) Yield (2 weeks) Yield (3 weeks) Yield (4.5 weeks) 

101 0 1.7 10.1 18.4 

102 0 2.3 9.7 13.0 

103 0 2.6 13.4 18.5 

104 0 3.5 14.9 22.1 

105 0 3.0 11.7 16.8 

106 20 6.2 15.5 22.1 

107 0 0.9 7.7 10.1 

108 0 0.5 9.5 11.4 

109 0 0.5 7.6 12.4 

110 0 1.8 8.7 11.0 

111 40 2.8 12.9 17.5 

112 30 5.2 16.0 21.2 

113 40 4.5 12.7 18.3 

114 10 4.5 13.7 19.6 

115 0 0.8 5.2 10.5 

116 0 2.6 11.2 14.6 

117 0 1.1 7.7 13.1 

118 0 1.2 6.8 9.3 

119 0 3.0 11.6 14.4 

120 0 1.3 7.6 9.9 

121 30 7.2 22.7 35.7 

122 0 5.8 17.3 26.2 

123 20 6.0 19.2 24.4 

124 0 8.7 21.4 26.4 

125 0 6.8 15.3 18.9 

126 30 8.6 16.6 21.2 

127 40 5.2 15.7 21.4 

128 0 3.2 11.7 16.2 

129 10 3.7 13.5 19.0 

130 20 4.9 13.1 15.8 

131 0 4.9 14.8 21.7 

132 0 4.3 12.3 14.1 

133 10 4.7 10.6 12.8 

134 0 5.3 15.7 21.9 

135 0 4.7 14.5 17.8 

136 0 5.0 12.6 15.4 

137 0 4.3 12.3 16.2 

138 0 3.2 9.6 11.7 

139 0 3.6 11.5 13.8 

140 0 2.8 7.4 12.1 

 



 

 

 

Fig. A.3.  Corn grain yield response.  The average yield (+/
plots with no compost is shown, as well as the i
rates (plots 201 and 221 excluded from figure; see Table A.4 for full listing).   A linear 
model (Y = Ax + B, dashed line) was fit to the data.  The regression estimates (and 
standard errors) are A = 0.013 (0.005) (
ha-1.  

 

 

Corn grain yield response.  The average yield (+/- one standard deviation) for 
plots with no compost is shown, as well as the individual plot yields at nonzero compost 
rates (plots 201 and 221 excluded from figure; see Table A.4 for full listing).   A linear 

, dashed line) was fit to the data.  The regression estimates (and 
= 0.013 (0.005) (Mg grain)(Mg DM)-1 and B = 3.1 (0.1) Mg grain 
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one standard deviation) for 
ndividual plot yields at nonzero compost 

rates (plots 201 and 221 excluded from figure; see Table A.4 for full listing).   A linear 
, dashed line) was fit to the data.  The regression estimates (and 

= 3.1 (0.1) Mg grain 
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Table A.4. Corn data for Greenville experiment.   

Plot 
Compost 

(Mg DM ha-1) 
Tissue %N 
at 32 days 

Silage yield 
(Mg DM ha-1) 

Grain yield 
(Mg ha-1) 

201 0 3.6 15.7 4.6 
202 0 3.8 14.9 4.0 
203 0 3.7 14.0 3.5 
204 30 3.9 16.8 4.0 
205 0 3.8 14.2 3.1 
206 0 3.7 12.7 3.4 
207 40 4.1 15.4 3.5 
208 0 3.8 13.2 3.5 
209 0 4.0 10.6 2.1 
210 0 3.8 11.4 2.8 
211 20 3.9 13.2 3.2 
212 0 3.7 12.3 3.3 
213 0 4.1 13.2 3.8 
214 0 3.8 11.2 2.7 
215 30 3.5 15.7 3.4 
216 0 3.5 13.2 3.2 
217 0 3.7 12.7 2.6 
218 40 3.7 16.2 3.6 
219 0 3.3 10.1 2.5 
220 0 2.7 9.2 3.0 
221 10 3.7 17.9 4.7 
222 0 3.8 16.7 3.7 
223 20 3.6 16.5 4.0 
224 0 3.5 14.4 3.6 
225 0 3.9 18.6 3.7 
226 10 3.6 13.7 3.6 
227 0 3.8 11.3 3.1 
228 0 3.4 14.4 3.8 
229 0 3.6 13.2 3.3 
230 0 3.8 15.4 4.0 
231 40 3.9 15.7 3.9 
232 0 3.5 16.5 3.6 
233 0 3.4 11.2 2.9 
234 0 3.4 13.2 3.4 
235 0 3.6 11.4 2.6 
236 30 3.4 14.1 3.1 
237 0 3.2 12.4 3.0 
238 0 3.3 10.5 2.6 
239 20 3.4 13.2 2.8 
240 10 2.9 9.9 2.5 
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