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ABSTRACT 
 
 

A Comparison of Soil Moisture and Hillslope-Stream Connectivity Between Aspen and  
 

Conifer-Dominated Hillslopes of a First Order Catchment in Northern Utah 
 
 

by 
 
 

Amy Burke, Master of Science 
 

Utah State University, 2009 
 
 
Major Professor:  Dr. Tamao Kasahara 
Department:  Watershed Sciences 
 
 

Mountain headwater catchments in the semi-arid Intermountain West are 

important sources of surface water because these high elevations receive more 

precipitation than neighboring lowlands.  The hydrology of these mountain catchments is 

especially important as the region faces water shortages and conflicts.  Conifer 

encroachment on aspen stands has been observed across the western US and can result in 

a decline in water yield.  The overall objective of this study was to further our 

understanding of hillslope-stream connectivity in a headwater catchment of Northern 

Utah and any observable differences in this connection between aspen and conifer 

hillslopes.  Hillslopes are the fundamental unit of a watershed.  Therefore understanding 

processes at the hillslope scale is pertinent to managing valuable water resources.   

However, hillslope hydrology is understudied in the snow-driven, semi-arid west, leaving 

a gap in our knowledge of how watersheds function.  This thesis focuses on how and 
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when hillslope water contributes to stream water:  hillslope-stream connectivity.  Its 

specific objectives are (1) to compare peak snow accumulation under aspen and conifer 

stands, (2) to determine if shallow soil moisture shows organized patterns, indicating 

hillslope-connectivity and compare these patterns between vegetation types, (3) to 

examine hillslope-stream connectivity within deep layers of the soil profile and compare 

times of connectivity between vegetation types and (4) to find any thresholds past which 

hillslope-stream connectivity begins. 

(125 pages) 
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CHAPTER 1 
 

INTRODUCTION 
 
 

Vegetation and the water balance are undeniably linked, especially in forests 

dominated by snow, since forest canopies affect snow deposition and melt (Marsh, 1999).  

Woody vegetation also affects soil water movement, through transpiration and by 

influencing infiltration, percolation, retention and water repellency properties (Williams 

et al., 2003).  The mechanisms of streamflow generation must be known for the role of 

woody plants to be understood (Huxman et al., 2005).  The field of ecohydrology was 

born out of the recognition that to solve real world problems, a clear understanding of 

biological and hydrological systems interact is needed (Bond et al., 2007).   

Understanding how biologic and hydrologic components affect one another will 

help forecast the nature and magnitude of environmental changes and natural resources 

(Newman et al., 2006).  Just as vegetation affects the hydrological cycle, changes in 

vegetation cover will alter the interaction between biological and hydrological 

components of an ecosystem.  In Northern Utah there is a concern that a shift from aspen 

to conifer-dominated forests is causing a decline in surface water yield.  While the 

ecological importance of aspen is quite clear (Shepperd et al., 2006), there is a lack of 

concrete supporting evidence from the field that conifer invasion into aspen stands 

decreases surface water yield (LaMalfa and Ryel, 2008).  In order to fully understand 

vegetation and water yield, we must remember that annual streamflow and 

evapotranspiration do not tell the whole story because of seasonal interactions of factors 

affecting the water balance such as soil moisture (Brown et al., 2006).  



 2
Hillslopes are the fundamental unit of landscapes and the building blocks for 

catchment models (Lin et al., 2006; Tromp-van Meerveld and McDonnell, 2006b).  

Working at the hillslope scale guarantees relatively uniform climate and soil type 

(Tromp-van Meerveld and McDonnell, 2006b).  Hillslope hydrology helps connect point 

observations to hillslope phenomena and then to the whole catchment processes (Lin et 

al., 2006).  Ideally hillslope analysis should include integrated (trenchflow) and point 

scale (soil moisture) measurements coupled with an understanding of surface and 

subsurface features.  However, field hydrology will always be limited by measurement 

techniques and site choices (Freer et al., 1997).  Blume et al. (2007) found that high 

temporal resolution data is a cost effective means of measuring hydrology in mountain 

catchments. 

This study examined subsurface lateral flow from two hillslopes, one aspen the 

other conifer, in a first order catchment of Northern Utah.  Each vegetation type sits on a 

distinct soil profile, aspen over a deep mollic epipedon and conifer over a shallow rocky 

entisol.  Because vegetation effects cannot be uncoupled from soil effects, the two 

hillslopes were considered as two endpoint communities.  The study focused on lateral 

flow through shallow soil layers because this pathway flows through the root zone is 

therefore affected by vegetation.  I measured snow water equivalents, trenchflow, and 

streamflow and soil moisture in both space and time.  The first objective, addressed in 

chapter 1, was to determine whether shallow soil moisture reflects hillslope connectivity 

to the stream and if there is any difference between vegetation types.  Differences in 

water inputs between the vegetation types are also considered.  The second objective, 

addressed in chapter 2, was to look deeper into the soil profiles, using soil moisture 
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profiles as well as hillslope trenches, to decide when hillslope-stream connectivity is 

established and if it differs between the aspen and conifer hillsides.      
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CHAPTER 2 

 
SHALLOW SOIL MOISTURE PATTERNS AND HILLSLOPE-STREAM 

CONNECTIVITY IN A MONTAIN CATCHMENT OF NORTHERN UTAH 

 
ABSTRACT 

 
 

Conifer invasion has been considered a significant factor in the declining extent of 

aspen cover in Utah.  A consequence of this change in vegetation type may be lower 

water yields from mountain headwater catchments in the region.  This study examined 

two hillslopes, one aspen dominated, and the other conifer, adjacent to a stream in a 

headwater catchment of the Ogden River basin.  Snow accumulation, streamflow and 

shallow soil moisture patterns were compared between the conifer and aspen dominated 

hillslopes to understand the differences in hillslope-stream connectivity in the top 12 cm 

of soil.  Snow water equivalent was measured in the catchment, at peak snow 

accumulation in 2007 and 2008, under both vegetation types.  Below average 

precipitation was observed in 2007 and an average amount in 2008.  Shallow soil 

moisture was measured in a grid of 90 points (10 by 20 m) three times during the spring 

of 2008.  Geostatistical analysis was used to determine if soil moisture showed spatial 

organization indicating hillslope connectivity.  Streamflow was monitored at three points 

in the catchment, in 2008, in order to isolate the contribution of streamflow from the 

aspen and conifer dominated hillslopes.  To capture temporal patterns in soil moisture, 

water content reflectometry probes were installed on both hillslopes.  Transects of eight 

sensors, buried at 5 cm, extended uphill from the stream on each hillslope.  Snow surveys 

revealed an average 11 and 23% greater snow water equivalents under aspen stands 
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compared to conifer in 2007 and 2008, respectively.  Overland flow was observed but 

not quantified during the spring snow melt of 2008.  Semi-variograms of soil moisture 

showed hillslope scale organization in the aspen hillslope only in June.  No hillslope-

stream connectivity was detected in the top 12 cm of soil in either hillslope.  However, 

plots of soil moisture and streamflow show a threshold relationship between soil moisture 

and streamflow, indicating hillslope-stream connectivity, perhaps at deeper layers within 

the soil profile.     

 
INTRODUCTION 

 
 

Mountain headwater catchments in the semi-arid Intermountain West are 

important sources of surface water because these high elevations receive more 

precipitation than neighboring lowlands (Grant et al., 2004).  The hydrology of these 

catchments is especially important as the region faces water shortages and conflicts.  

Snow melt typically makes up 80% or more of streamflow in the semi-arid West and 

snow deposition and melt in montane catchments are largely a function of topography 

and vegetation (Marks et al., 2002).  The snow-driven system of the semi-arid 

Intermountain West is understudied, leaving a gap in our knowledge of how watersheds 

function and how runoff is produced (Grant et al., 2004).  There is a lack of information 

on soil moisture patterns in semi-arid catchments, yet the consequences of runoff and 

potential erosion are even greater in these regions (Williams et al., 2003). 

In locations across the Intermountain West conifer species are encroaching on 

aspen stands (Bartos and Campbell, 1998).  Possible reasons for this encroachment 

include human alterations in disturbance regimes, such as fire suppression and grazing, as 
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well as climate change (Bartos and Campbell, 1998; Brown et al., 2006; Shepperd et al., 

2006).  Utah holds 25% of the aspen in the western United States but it was reported that, 

since European settlement, there has been at least a 59% decline in aspen domination in 

Utah and a 66% decline in the Wasatch Cache National Forest (Bartos, 2001).  Though 

the exact mechanisms are not known and appear to be site specific, conifer encroachment 

into aspen stands has been blamed for declining water yield and water quality (Shepperd 

et al., 2006).  Bartos and Campbell (1998) claim that for every 1,000 acres of aspen that 

are replaced by conifers, an estimated 250 to 500 acre feet of water is lost as 

transpiration. 

Soil moisture plays an important role in various hydrologic processes at multiple 

scales, ranging from event to long term scale (Grayson et al., 1997).  It affects the 

partitioning of precipitation into infiltration and runoff (Grayson et al., 1997; Hupet and 

Vanclooster, 2002). It has control on runoff generation (O'Loughlin, 1986; Fitzjohn et al., 

1998; Grant et al., 2004; Blume et al., 2007), erosion (Grayson et al., 1997; Fitzjohn et 

al., 1998; Western et al., 2004), flooding (Western et al., 2004), solute transport (Grayson 

et al., 1997; Western et al., 2004), water availability for plants (Grayson et al., 1997; 

Kelleners et al., 2005) and groundwater recharge (Grant et al., 2004).  Soil moisture also 

influences the partitioning of net radiation into sensible and latent heat, linking the 

surface energy balance to the water balance (Grayson et al., 1997; Hupet and 

Vanclooster, 2002; Western et al., 2004).  An understanding of small scale soil moisture 

patterns can lead to a greater understanding of how integrated catchments will behave 

and how to best manage water resources (Western et al., 1999; Williams et al., 2003). 

Despite its importance, there is a lack of field data on soil moisture patterns (Grayson et 
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al., 1997). This study focuses on spatial and temporal soil moisture patterns under aspen 

and conifer stands in a montane catchment in the Intermountain West and links these 

patterns to streamflow fluctuations. 

 
Objectives and hypotheses 
 

The objectives of this study were to compare surface soil moisture patterns 

between aspen and conifer hillslope and to determine if soil moisture shows an organized 

pattern, in relation to vegetation type, hillslope position, and surface topography.  More 

specifically to:  

1.  Examine and compare hillslope soil moisture patterns between vegetation types.  

2.  Find any thresholds after which hillslope-stream connectivity begins and compare 

between soil/vegetation types. 

3.  Find any seasonal patterns of hillslope-stream connectivity and compare between 

vegetation/soil types.   

I hypothesize that: 

1.  Soil moisture patterns will remain in a wet, organized state longer in the aspen 

hillslope due to greater snow melt inputs.  

2.  Hillslope-stream connectivity will occur after a soil moisture content threshold.  This 

connection will last longer in the aspen hillslope due to greater snow melt inputs. 

3.  Subsurface lateral flow will connect the stream and hillslope only during the wettest 

periods of the spring snow melt while for the remainder of the year the hillslope and 

stream will remain disconnected and streamflow will not react to surface water inputs.  
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The influence of vegetation on soil moisture 

Vegetation influences the hydrologic cycle in multiple ways: by affecting soil 

properties and ground cover and therefore influencing infiltration capacity (Schume et al., 

2003; Williams et al., 2003), by creating macro-pores and altering subsurface flowpaths 

(Williams et al., 2003), through transpiration (Williams et al., 2003; Huxman et al., 2005) 

and by holding precipitation in the canopy and altering throughfall patterns (Schume et 

al., 2003; Western et al., 2004; Huxman et al., 2005).  In water limited systems, the type 

and pattern of woody vegetation affects stream and groundwater recharge, nutrient cycles 

and biodiversity (Newman et al., 2006).  Vegetation is, in turn, affected by soil properties 

and climate.  By measuring sap flow, soil moisture, surface and subsurface topography at 

the Panola Mountain Research Watershed in southeast Georgia, Tromp-van Meerveld 

and McDonnell (2006a) noted that vegetation had a large impact on soil moisture and that 

early season transpiration dictated patterns of soil water depletion, which controlled 

patterns of transpiration later in the season; a feedback loop between soil moisture and 

vegetation.   

Soils under aspen stands are often significantly different than those under adjacent 

forests that have succeeded to conifer species.  One notable difference found in the Sierra 

Nevada and Intermountain West was that soils under aspen stands had higher water 

holding capacity due to increased organic matter inputs from the annual leaf litter.  

Where conifers invaded aspen stands, needle litter altered soil properties over time and 

that soil was ultimately reflective of the vegetation that had occupied the site longest 

(Shepperd et al., 2006).  In Western Colorado, Cryer and Murray (1992) monitored soils 

under aspen stands for 10 to 12 years and found that heavy leaf fall in aspen stands 
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maintained a mollic horizon until the trees deteriorated due to a lack of disturbance.  

Mollic horizons were then replaced with albic (leached) horizons and pH was reduced.  

In sites of conifer invasion into aspen stands the speed of this transition to a leached 

acidic profile was greatly increased. 

Vegetation also affects hydrologic processes by altering soil properties.  Schume 

et al. (2003) describe a feedback loop between tree species, in which trees affect soil 

properties including litter, structure and infiltration.  Soil properties determine rooting 

depth and therefore the soil volume from which water is extracted for transpiration.  In 

California and Utah, aspen stands had nearly 100% cover (no bare soil) between the 

canopy, thick under-story and leaf litter, greatly reducing chances of overland flow 

(Shepperd et al., 2006), which can be an important contributor to streamflow in water-

limited systems (Newman et al., 2006).   

Vegetation can also greatly alter water movement through soil by creating 

macropores, usually formed by dead or live roots.  Bypass flow is the vertical movement 

of water by way of continuous pores through otherwise unsaturated or partially saturated 

soil (McDonnell, 1990).  At three catchments in Japan, there was significant flow on 

steep wet hillslopes through discrete soil pipes (soil macropores that conduct water at a 

higher rate than the surrounding soil matrix), most prevalent at the soil bedrock interface 

or at impeding layers (Uchida et al., 2004).  Field investigations in the Hitachi Ohta, 

Japan, indicated that the junctions, or nodes, where macropores connect to one another 

are the true limiting factors in preferential flow systems (Sidle and Noguchi, 2001).  Flow 

of water through macropores, bypassing unsaturated soil, also occurred through root 
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derived macropores in the upper soil horizons of a semi-arid ponderosa pine hillslope 

in New Mexico (Newman et al., 2004).   

Many factors control snow retention and loss by sublimation in snow-driven 

systems, including weather patterns, terrain and vegetation cover.  Forest canopy 

characteristics are dominant factors affecting throughfall patterns and snow accumulation 

in mountain headwater catchments.  Snow in exposed regions of the semi-arid Owyhee 

mountains was more vulnerable to turbulent air currents (the primary source of melt 

energy during the winter) as well as solar radiation (the primary source of melt energy in 

the spring), melted sooner and provided less surface water inputs overall.  Drift and 

shelter areas provided much more water inputs and snow there lasted later in the season 

(Marks et al., 2002).  Hiemstra et al. (2002) also found that trees helped retain snow in 

the high elevation tree line zone (3100-3300m) of the Medicine Bow Mountains in 

Wyoming, where snow makes up 50 to 80% of precipitation.  However different canopy 

types, as in the case of comparing aspen to conifer stands, may also differ in their ability 

to retain precipitation.  In a rain-dominated, mixed stand in Southern Austria, interception 

loss by the coniferous spruce canopy was much greater than that of the deciduous beech 

canopy, causing uneven recharge patterns (Schume et al., 2003).   

Previous investigations in Northern Utah revealed that snow accumulation was 

greater under aspen than conifer stands (LaMalfa and Ryel, 2008).  Conifer species retain 

their needles year round and thus are able to accumulate more snow in their canopy, 

lessening the snowpack on the ground around them.  Snow held in the canopy is more 

susceptible to sublimation; a water loss to the system, or simply redistribution, possibly 

to nearby aspen stands.  Experiments using simulated conifer branches showed that 
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sublimation rates from sunlit branches were double those from shaded branches and 

the ground surface and that sublimation could explain most or all of the differences in 

SWE under aspen and conifer stands (LaMalfa et al., 2007).  LaMalfa and Ryel (2008) 

also reported that aspen stands had a greater potential for generating runoff and 

groundwater recharge than conifer in Northern Utah.  

The majority of water uptake by vegetation is performed by fine, young roots in 

the upper soil horizons where nutrients are more abundant, however, roots can also be 

found in deep layers, even in bedrock, especially in water limited areas (Bond et al., 

2007).  Patterns of water depletion from the soil profile indicate water uptake and root 

activity (Caldwell and Virginia, 1989).  Schume et al. (2003) found that under vegetation, 

species-specific rooting depth and transpiration were the main source of soil moisture 

variation and that rooting depth decides the volume of soil from which trees access for 

water uptake.  Reproduction of aspen is primarily asexual, by means of root sprouts 

(Bartos, 2001).  These lateral roots are normally found within a foot of the soil surface 

and can be inhibited by subsurface rocks (Shepperd et al., 2006).  In contrast, conifer 

species have deeper roots, able to reach lower sources of groundwater compared to the 

relatively shallow rooted aspen.  Average maximum depth for temperate conifer forests 

was 3.9 m and only 2.9 m for temperate deciduous forests (Canadell et al., 1996). 

It is common for evapotranspiration to have direct impacts on streamflow or 

groundwater levels.  In a humid, Pacific Northwest fir catchment, Bond et al. (2002) 

demonstrated the link between streamflow and vegetation by comparing diel patterns of 

transpiration and streamflow.  Along the arid Rio Grande River, diel fluctuations in 

evapotranspiration from riparian vegetation resulted in daily responses in groundwater 
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levels during the growing season (Dahm et al., 2002).  According to Huxman et al. 

(2005), the effect of woody plants on streamflow generation depends on whether the 

woody vegetation is found in riparian or hillslope areas, whether surface water inputs are 

supplied during the growing season and whether or not there is a potential for bypass 

flow such as deep sandy soils, or fractured or Karst bedrock.  The more dominant 

subsurface runoff paths, the greater the expected impacts on streamflow by woody plant 

encroachment.   

Aspen and conifer have differences in water use through transpiration; therefore 

their effects on streamflow may be different.  Part of the competitive strategy of 

evergreen trees is to start significant water uptake as soon as climatic conditions allow 

(Schume et al., 2003).  This coincides with LaMalfa�’s (2007) findings that conifer stands 

in Northern Utah had longer transpiration activity periods relative to aspen, starting 5 

days before aspen and ending 24 to 31 days after aspen. 

Though Bartos and Campbell (1998) estimate great water yield losses associated 

with conifer replacement of aspens, the longer transpiration period in conifers seems to 

be offset by higher transpiration rates during leaf expansion of aspen or deciduous 

species.  Shume et al. (2003) found that beech trees used more water than nearby spruce, 

which were able to conserve water by closing their stomata during dry times.  Aspen 

showed less of an ability to regulate water loss through stomatal closure than neighboring 

pine and fir species in Wyoming, where aspen sap flux increased during the early season 

leaf-out period (Pataki et al., 2000).  In Northern Utah, aspen evapotranspiration was 

25% higher than conifer during leaf out, most likely due to more water in aspen soil 

profile (LaMalfa, 2007).  Both Pataki et al. (2000) and LaMalfa (2007) found that soil 
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moisture and water movements to both species regulate transpiration.  By the end of 

the water year both aspen and conifer had used all the profile water available in their soil 

profiles (LaMalfa, 2007).   

 
Soil moisture grids 
 

Working in the temperate, semi-arid, rain dominated Wagga Wagga and 

Tarrawarra catchments of Australia, Grayson et al. (1997) identified two states in soil 

moisture, a dry state and a wet state.  In the dry state evapotranspiration exceeded surface 

water inputs and soil moisture was controlled by local factors, such as vegetation, local 

topography, and infiltration capacity.  No hillslope scale pattern of soil moisture was seen 

while soil was in the dry state.  In a wet state, water inputs exceeded evapotranspiration 

and saturated zones expanded to meet one another, hydraulically connecting the hillslope.  

In a wet state, non-local factors controlled soil moisture, such as hillslope scale 

topography and water inputs.  Patterns of soil moisture form as soil moisture content 

increased with upslope contributing area (Grayson et al., 1997).  Fitzjohn et al. (1998) 

noted that the dry state in soil moisture dominates in semi-arid regions and local controls 

create random patterns of soil moisture. The mosaic of different levels of soil moisture 

demonstrates a mosaic of the variables that control soil moisture including: organic 

matter, topography, soil texture and vegetation.  In a snow dominated, semi-arid 

catchment in Idaho, McNamara et al. (2005) used data from soil moisture profiles, stream 

and hillslope modeling to show that, in the transition from summer to fall, a balance of 

evapotranspiration and precipitation controlled the switch between soil moisture states.   
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Semi-variograms describe spatial organization, indicating a wet soil moisture 

state or even hillslope-stream connectivity.  As soil moisture increases, saturated zones 

grow to meet one another connecting the hillslope hydrologically.  This is usually 

reflected in an increase in range (or correlation length) of the semi-variogram.  In an arid 

catchment of central Spain, an increase (double or more) in correlation length in soil 

moisture indicated spatial continuity and greater hillslope connectivity (Fitzjohn et al., 

1998).  However, in the humid Panola catchment of Georgia, wet and dry periods saw no 

spatial organization of soil moisture, only transitional states, between 45 and 70% 

saturation, showed organization (longer correlation lengths) (Tromp-van Meerveld and 

McDonnell, 2006a).  Shume et al. (2003) used distinct changes in spatial correlation to 

decide when spatial continuity of soil moisture was found and what factors controlled it, 

in a beech and spruce forested catchment in Southern Austria.    

The transition between the dry and wet states of soil moisture has been described 

as abrupt, indicating a threshold being exceeded.  When enough isolated areas have 

saturated to the point of producing runoff, a wetness threshold value is reached and 

widespread runoff can occur (Fitzjohn et al., 1998).  There was a precipitation threshold 

of 55 mm to start hillslope-stream connectivity in the Panola Mountain Watershed in 

Georgia (Tromp-van Meerveld and McDonnell, 2006b).  Research at Reynolds Creek 

Experimental Watershed in the Owyhee Mountains of Idaho showed a soil moisture 

content threshold (field capacity) at which soil switched to a wet state, the hillslope water 

reached the stream and stream discharge became highly reactive to soil water inputs 

(Grant et al., 2004).  Finding a threshold that dictates at what point lateral flow begins, 

allows us to compare between hillslopes rather than gathering information on a single 
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hillslope whose behavior may not be representative of the area (Tromp-van Meerveld 

and McDonnell, 2006b).   

Shallow measurements of soil moisture in a grid have been used to capture spatial 

patterns, including hydraulic connectivity within a hillslope or catchment.  By focusing 

on shallow layers of soil, we are more likely to detect vegetation influences on soil water, 

since plant water uptake occurs mainly in the top layers where more water and nutrient 

rich organic matter is found.  According to Western et al. (2004), topography determines 

surface and to a lesser extent subsurface flowpaths, as well as hydraulic gradients driving 

flow.  Measuring shallow soil moisture is helpful because in many situations, runoff is 

often generated due to saturation of near surface horizons (Fitzjohn et al., 1998).   

 
METHODS 

 
 

Soil moisture patterns were compared between aspen and conifer hillslopes in a 

first order, montane catchment in Northern Utah.  Grids of surface soil moisture 

measurements were made on each hillslope and analyzed using semi-variograms.  Soil 

moisture at 6 fixed points and streamflow were continuously monitored to detect 

thresholds after which hillslope-stream connectivity begins.  Water inputs to the 

catchment were quantified using precipitation data from the Natural Resource 

Conservation Service (NRCS) Snow Telemetry (SNOTEL) sites as well as snow surveys 

at peak snow accumulation.  Infiltration and other soil physical properties were measured 

as possible explanatory variables for surface soil moisture patterns.   
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Site description 
 

The study site is located in Northern Utah in the headwaters of the Ogden River 

along the eastern edge of Weber County (Figure 2.1).  The study catchment lies roughly 

at UTMs 0461515, 4579126, inside a larger paired watershed study on the Deseret Land 

and Livestock Ranch.  These mountain headwaters, around 2500 meters in elevation, feed 

Pineview and Causey reservoirs, which are used for recreation, water storage and 

irrigation.  According to the SNOTEL data, the average annual temperature is 4.3 C, 

with an average annual maximum temperature of 29.3 C and an average annual 

minimum temperature of -21.0 C.  Average annual precipitation is 861 mm with 

approximately 74% falling as snow in the winter months.  

The study catchment is located in Frost Canyon and contains both aspen and 

conifer hillslopes adjacent to a first order perennial stream (Figure 2.2).  The catchment 

drains to the north with an area of approximately 1 km2 and elevations ranging from 2464 

to 2691 m.  The upper hillslopes are dominated by mature Quaking aspen, (Populus 

tremuloides), with a lush under story made up primarily of Snowberry (Symphoricarpos 

albus), Serviceberry (Amelanchier alnifolia), Ragwort (Senecio serra), Wild Geranium 

(Geranium richardsonii), Mountain Bluebells (Mertensia ciliata) and Horse Mint 

(Agastache urticifolia).  Average slope on the aspen hillside is 39%, with a confined V-

shaped riparian area and a northwest aspect.  Sagebrush grassland is found in a few 

patches of the upper hillslopes and on the lower eastern hillslope of the catchment.  The 

lower western hillslopes are dominated by mature conifer species consisting mainly of 

White fir (Albeis concolor), Douglas fir (Psuedodotsuga menziesii), and Engelmann 

Spruce (Picea, engelmannii).  The conifer under story is mainly sparse Goose Berry 
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(Ribes montigenum), Snowberry (Symphoricarpos albus) and grasses.  Average slope 

on the conifer hillslope is 40%, with a northern aspect.  The riparian zone is U-shaped 

and less confined than the upstream aspen section.  The aspen�’s under story is much 

denser than the conifer�’s and varies yearly depending on water availability.  It is common 

to find different soil characteristics under different tree species, in part because of the 

species ability to alter soil properties.  Since the aspen and conifer stands at the study site 

have very different soil profiles, this study addresses the combined influence of 

vegetation and soil on subsurface flow. The study area lies between the Rich and Weber 

County Soil Surveys and no soil survey information is available for the exact site.  

According to the nearby Rich County Soil Survey of 1982, soils in similar areas range 

from mollisols to entisols and inceptisols depending on slope and landscape position (Soil 

Conservation Service, 1982). 

 
Previous studies 
 

The study catchment is contained within a larger paired watershed study on the 

Deseret Land and Livestock Ranch.  Bear and Frost canyons are the two small, adjacent, 

paired watersheds with a combined area of 26.7 km2.  In 2005 and 2006, snow water 

equivalent (SWE), snow density, sublimation, condensation, soil moisture and sap flux in 

aspen and conifer stands on north facing slopes of Frost watershed were monitored 

(LaMalfa, 2007).  Though sublimation from the underlying snowpack was not 

significantly different between the vegetation types, aspen plots had 34 to 44% higher 
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Study Area

 

Figure 2.1.  The study site within the paired watersheds in the Weber River Basin in 
Northern Utah.  

 

 

 

Figure 2.2.  Map of the study site.  Dots indicate transects of soil moisture sensor nests 
rectangles the area of soil moisture grid measurements, diamonds the gauging points, and 
the blue line the stream.   

 



 20
SWE at the time of peak snow accumulation than adjacent conifer plots.  The greater 

SWE in aspen stands, combined with longer transpiration periods in conifers, lead to 42 

to 83% more potential runoff/groundwater recharge from aspen stands than from 

neighboring conifer stands (LaMalfa, 2007).  In Frost canyon, hillslope gradient was the 

most important factor for flow gains and was negatively correlated.  Steeper hillsides, 

with more exposed bedrock and less ability to retain water, yielded less water during low 

flows.  Water chemistry suggested that the primary source of baseflow in Frost canyon is 

deep groundwater and that Karst geology may contribute to heterogeneity of streamflow.  

Flow at the confluence of Bear and Frost canyons showed diel patterns after snow melt 

was complete, indicating vegetation influence on baseflow (Shakepeare, 2006). Other 

complementary research is ongoing in the watersheds, including a study to estimate 

residence times and flowpaths in Bear canyon.  To better understand the effects of conifer 

encroachment on water yield, Bear canyon will be treated by removal of conifers while 

Frost canyon will be left as a control. 

 
Instrumentation 
 

Bear and Frost catchments have been instrumented with weather and stream 

stations since 2004 and measurements are recorded each hour onto a data logger (CR10X, 

Campbell Scientific, Logan, UT, USA).  The streams are monitored just before their 

confluence for stage (PDCR 1830-8388, Druck, Melrose, MA, USA), temperature and 

electrical conductivity (CS547A, Campbell Scientific, Logan, UT, USA).  Weather 

stations at the top of Bear canyon and at the confluence of Bear and Frost monitor 

relative humidity, air temperature, snow depth, precipitation, solar radiation, wind speed, 
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and soil temperature at 10, 20 cm.  Data is also available from three nearby SNOTEL 

sites.  These three SNOTEL sites were chosen because of their proximity to the study 

catchment and their similar elevation.  Lightening ridge SNOTEL sits on the west ridge 

of Frost canyon, at 2504 m above sea level and has been installed since 2004.  Horse 

ridge SNOTEL is located 2 km south of Bear canyon, at 2487 m above sea level and has 

been collecting data since 1978.  Dry Bread Pond SNOTEL site is 7.4 km southwest of 

the study catchment, and 2545 m above sea level and has been recording data since 1978.  

All three stations measure air temperature, snow depth, and precipitation every hour.  

 
Water inputs 
 

To quantify snow accumulation within the study catchment and its variance with 

hillslope position and vegetation type, snow water equivalent (SWE) was measured in 

three transects starting at the stream and moving uphill in four meter increments.  Snow 

surveys data were supplemented with recent surveys in nearby aspen, conifer and open 

plots.  SWE was measured as close to peak snow accumulation as possible, on March 

16th, 2007 and April 6th through 12th, 2008.  Standard snow sampling tubes (Carpenter 

Machine and Supply, Seattle, WA, USA) were used to measure SWE and snow depth.  

Tared snow tubes were inserted vertically into the snowpack until soil was reached.  

Snow depth was recorded and the snow-filled tubes were weighed after any soil on the 

bottom of the sample was removed.  Daily snow pillow and rain gauge data were used 

from the three nearby SNOTEL sites with similar elevation to the study site.  Rain events 

on days with an average temperature below 0 C were considered invalid and 
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disregarded.  Since snow is not an immediate water input to the soil, snow ablation and 

rain were combined to make surface water inputs (SWI).  

 
Infiltration 
 

Infiltration capacity in both the aspen and conifer forest floor was measured using 

a double ring infiltrometer on June 27th and 28th, 2007 and again on June 14th, 2008. The 

infiltrometer was inserted into the ground until water added inside the rings could not 

leak out and was forced to infiltrate into the soil (a depth of approximately 5 to 10 cm).  

Water levels in the outer ring were kept constant so that water infiltrating in the inner ring 

was maintained as a one-dimensional infiltration process.  Water was added to the inner 

ring and the time the water took to drop 1 cm was recorded repeatedly until a constant 

rate was reached.  Measurement locations were chosen as randomly as possible though 

relatively flat areas were required for the infiltrometers to be used.  Two readings were 

taken in 2007 (four in aspen, two in conifer) and 10 were taken in 2008, five in each 

vegetation type.  Cumulative infiltration was graphed against time.  Infiltration capacities 

are considered the rate of infiltration once a constant rate had been reached. 

 
Soil physical properties 
 

Soil texture from 44 randomly chosen grid points (22 from each hillslope) was 

determined using hydrometers.  Samples were sieved to 2 mm and 50 g of each was 

suspended in deionized water.  The solutions were shaken with 50 ml of 10% Calgon for 

12 hours.  Deionized water was then added to each sample until there was a total volume 

of 1 liter in each graduated cylinder.  A hydrometer was placed in the cylinder and 
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readings were taken after the sand has settled at 70 seconds and after the silt had settled 

after 7 hours.   

To determine bulk density, between 150 and 600 cm3 of soil were collected, dried 

and weighed.  The subsequent holes were then filled with a known volume of sand.  Rock 

content by volume was measured from 21 bulk density samples from multiple depths.  To 

determine rock volume, particles greater than 2 mm from each sample were submerged in 

a partially filled graduated cylinder and the subsequent increase in volume was recorded.  

 
Stream gauging 
 

Stage was monitored continuously for the 2008 water year using WT-HR water 

level loggers (TruTrack, Christchurch, New Zealand), which were installed at three 

points in the stream (Figure 2.2).  The first level logger measured the stage of the stream 

just below the contributing area dominated by aspen.  The contributing area between the 

first and second level loggers is aspen/conifer mixed and encompassed a seep and a small 

tributary to the stream.  The portion of the catchment between the second and third level 

logger is dominated by conifer species.  The level loggers recorded hourly readings of 

water height in mm.  Contributing areas to each gauging point were calculated using Arc 

GIS and Image J software.   

The stream was gauged using slug injection dilution gauging.  This approach is 

well suited for small streams that cannot be otherwise accurately gauged with flow 

meters (Moore, 2005).  In this method, NaCl is used as a tracer and dumped as a slug 

injection into the stream.  Downstream, an electrical conductivity (EC) probe measures 
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the pulse of salt as an increase in EC.  The area under the break-through curve was 

calculated to estimate the flow in the stream.   

An injectate solution was mixed using 300 to 500 g NaCl dissolved into 2 to 3 L 

stream water.  More salt was used during high flows and less during baseflows.  Small 

amounts of the injectate were added to 1 L of stream water and its electrical conductivity 

(EC) was measured at each known concentration (YSI 85, Yellow Springs, OH, USA).  

In this way a calibration curve was made to calculate concentration of NaCl from EC 

using a calibration constant K.  The background EC was recorded both at the upstream 

and downstream reaches to be gauged before the slug of injectate was dumped.  Each of 

the reaches gauged was long enough for adequate mixing of the salt-water slug with the 

stream.  The slug was measured every two seconds as it passed at the downstream end of 

the reach by an EC probe (CS547A conductivity and temperature probe Campbell 

Scientific, Logan, UT, USA) and logged onto a data logger (CR 510, Campbell 

Scientific, Logan, UT, USA).  The resulting curve of EC was translated into 

concentration at each time step using the calibration previously made.  

C(t)=EC(t)*K  (g L-1) 

where C(t) is the concentration at time t, EC(t) is the electrical conductivity at time t and 

K is the calibration constant obtained from the calibration curve.  The background 

concentration was accounted for and the mass of salt passing at each time step was 

calculated:   

 Mass NaCl recovered (t) = (C(t)-Cb)*d(t)  (g L-1s-1) 

where Cb is the background concentration and d(t) is the time step (in this case two 

seconds).  The total mass of NaCl recovered from all time steps was calculated: 
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 Mass NaCl recovered = (C(t)-Cb)*d(t)  (g L-1s-1) 

Flow (Q) was calculated by: 

Q = (L injectate*Concentration injectate)/Mass of NaCl recovered  (L s-1) 

 Using the stage measurements from the times of stream gauging, a rating curve 

was made for each of the three stream gauging sites.  A hydrograph was made using this 

rating curve and continuous stream stage measurements.     

 
Continuous soil moisture 
 
 Soil moisture was continuously monitored at 16 locations in the study catchment 

(Figure 2.2).  Nested soil moisture probes were installed in the summer of 2006.  One 

transect of eight nests lies perpendicular to the stream in the aspen dominated stand and 

another in the conifer stand.  Nests consist of three probes at 5, 20 and 100 cm or as deep 

as the probe could be installed (45 to 110 cm). 

 
Grid measurements 
 

During the spring snow melts of 2007 and 2008 volumetric soil water content was 

measured to a depth of 12 cm in grids, one on the conifer and aspen hillslope (Figure 

2.2).  All measurements were taken between 10 am and 8 pm, while soil temperatures 

were above freezing.  Grid spacing was 20 meters in the uphill direction and 10 meters in 

the upstream direction, with a total of 90-100 points measured on each hillslope.  Grids 

were laid out using a meter tape and compass with each point being marked and surveyed 

with a total station (TopCon GTS-226, Monsen Engineering, Salt Lake City, UT, USA).  

On May 15th and 16th of 2007, three measurements were taken at each point with Time 

Domain Reflectometry (TDR) (TDR100, Campbell Scientific, Logan, UT, USA).  The 
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average of the three measurements was used as the soil water content at each point.  

The grids were measured again June 23rd through Jun 26th, 2007 but the dry soil made 

inserting the probe very difficult and only one measurement was taken per point.  In the 

rockier conifer soil, in June the probe could not be inserted and a soil sample was taken 

for gravimetric water content.  Volumetric water content was later calculated from 

gravimetric water content by multiplying by the bulk density of the soil.  

In the spring of 2008 new grids were lain since the previous points were under 

snow and too difficult to find.  The grids were measured on May 19th and 20th, June 14th 

and July 10th.  Each grid point was measured three times with a two-pronged, 12 cm time 

reflectometer (CS616 Campbell Scientific, Logan, UT, USA) instead of the three pronged 

TDR used in 2007.  CS616 sensors are transmission line oscillators, which operate 

similarly to time domain reflectometers but do not have a separate pulse and sampling 

units.  Instead, consecutive voltage pulses are generated inside the probe head, with each 

pulse being triggered by the arrival of the reflected previous pulse.  CS616 sensors 

function best with calibration curve for each soil being measured (Kelleners et al. 2005).  

In this study, a calibration curve was made for each of the two soil types, aspen and 

conifer, by packing a flower pot with soil to approximately the same bulk density as was 

found in the field (Appendix Figure A1).  The soil was then saturated and the CS616 

inserted.  As the soil dried it was repeatedly weighed and measured with the CS616.  The 

CS616, with a length of 12 cm as used here, has an accuracy of ± 3%.  Insertion error is 

possible if the prongs are inserted in such a way that void space is created around them.  

Because CS616 probes have exhibited some temperature dependence (Campbell 

Scientific, 2004), 14 temperature sensors (temperature pendants, HOBO, Pocasset, MA, 
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USA) were buried at a variety of hillslope positions.  Seven were buried in each 

vegetation type during the 2008 water year, four at 5 cm depth and two at 20 cm.  These 

sensors log temperature hourly and were installed to study freezing pattern of soils during 

fall-winter-spring months.  Other factors measured at each grid point were litter cover, 

litter depth, rock cover (%), time of day, vegetation cover (%), position as related to the 

canopy and snow depth (when applicable).  Litter cover, rock cover vegetation cover and 

each grid point�’s relation to canopy (under, outside, or on the edge of) were estimated 

through observation.    

 
Geostatistical analysis 
 

Geostatistics can be used to describe spatial organization of soil moisture.  Semi-

variograms depict the semi-variance between points as a function of the distance between 

them (Western et al., 2004).  This shows the range, or lag distance, over which soil 

moisture is spatially correlated (Fitzjohn et al., 1998).  The main features of a semi-

variogram are the sill, range and nugget.  The sill is the semi-variance at which the semi-

variogram levels off: the semi-variance of the more distantly separated measurement 

points.  The correlation length, is the lag distance at which the semi-variogram reaches its 

sill (Western et al., 2004).  The effective range is considered 3 times the correlation 

length.  With spatial soil moisture data, effective ranges should reflect the correlation 

length of a variable (or variables) controlling soil moisture (Fitzjohn et al., 1998).  Soil 

moisture correlations lengths typically vary between 1 and 600 m, with most small 

catchment studies having lengths between 20 and 300 m. The nugget is the semi-variance 

at which the semi-variograms begin: the semi-variance between closely spaced points.  It 
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reflects a combination of small scale variability and measurement error (Western et al., 

2004).   

Semi-variograms were made from the soil moisture grid data using R software for 

statistical computing version 2.5.1.  Exponential models were fit to the empirical semi-

variograms using weighted least squares and Cressie weights.  Nuggets were determined 

by the semi-variance of closely spaced measurements and were specified for each 

vegetation type.  Contour maps were made using Golden Software Surfer, which uses 

kriging to interpolate between measurements. 

 
RESULTS 

 
 
Water inputs 
 

Data from nearby SNOTEL sites showed that the area received more snow in the 

2008 water year than in 2007 (Figure 2.3).  The average precipitation since 1990 as 

measured by three nearby SNOTEL sites was 887 mm a year, with 74% falling as snow.  

In 2007 the catchment received only 84% of average precipitation: 743 mm, with 66% 

falling as snow.  In 2008 it received 889 mm, 100% of average precipitation, with 86% 

falling as snow.  Peak snow accumulation came on March 12th in 2007 and April 13th in 

2008.  The average day of peak SWE since 1979 is April 4th.  Figure 2.3 also shows peak 

SWE from snow survey measurements at the study site under aspen and conifer canopies.  

In both years the average SWE surveyed under forest canopies (Figure 2.3) was 

less than SWE recorded at the SNOTEL sites, which are in clearings.  SWE 

measurements in upslope transects are shown in Figure 2.4.  Though SWE varies, there is 

no accumulation of snowpack in the lower portions of the hillslopes; as of peak snow 
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accumulation, snowpack did not vary with hillslope position.  A comparison of peak 

SWE under aspen and conifer canopies (Figure 2.5) shows that on average, aspen 

accumulated more SWE than conifer and this difference was more pronounced in the 

wetter year (2008).  A two-sample t-test revealed that in 2007 the aspen stand had an 

average of 315 mm of peak SWE on and the conifer stand had 280 mm, an 11% 

difference (t = 2.22, df = 72.78, p-value = 0.029).  In 2008 aspen had 509 mm and conifer 

390 mm, a 23% difference (t = 5.55, df = 153.97, p-value = 1.18e-07).     

Under the conifer canopy there was a notable pattern of drifts forming between 

trees or groups of trees.  While areas under the densest part of the canopy were free of 

snow by May 20th, snow in drift areas lasted well into June (Figure 2.6).  Figure 2.7 

shows SWE measurements made under (n = 20), outside (n = 51) or on the edge (n = 19) 

of the conifer canopy at peak accumulation in 2008.   An analysis of variance (ANOVA) 

was used to assess the differences in accumulation among the locations relative to conifer 

canopy cover.  At the edge of the conifer canopy there was an average of 431.8 mm (SE 

= 25.18), which was not significantly different (p = 0.38) from the average outside of the 

canopy (401.2 mm, SE = 19.92).  The average snow accumulation under the conifer 

canopy was 323.85 mm, significantly less than both the edge (p = 0.010) and outside (p = 

0.025).   

Snow melt (considered SWE ablation) and rain measured by snow pillows and 

collection cans at the three SNOTEL sites were combined to estimate surface water 

inputs, shown in Figure 2.8.  These values should be taken as maximum possible surface 

water inputs since snow ablation could represent sublimation, evaporation and melt.  The 

spring pulse of inputs was greater and later in the 2008 water year than in 2007.  The 
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maximum daily surface water input in 2007 was 46 mm on April 25th and 85 mm on 

May 20th of 2008. 
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Figure 2.3.  Average snow survey measurements for each year (circles) and daily average 
SWE since 1990, in the 2007 and 2008 water years, as measured by Lightning Ridge, 
Horse Ridge and Dry Bread Pond SNOTEL stations (lines).   
 

 Infiltration 

 Infiltration capacities were measured at 16 points, 9 on the aspen hillslope and 7 

on the conifer.  The minimum infiltration rate found in the aspen stand was 0.9 mm min-1 

in the aspen stand and 0.42 mm min-1 in the conifer stand.  Infiltration rates are shown in 

Table 2.1 and a comparison of aspen to conifer average rates is shown in Figure 2.4.  A t-

test showed that there was no significant difference between average infiltration rates in 

the aspen (3.32 mm hour-1) and conifer (4.54 mm hour-1) sites (t = -0.49, df = 11.46, p-

value = 0.63). 
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Figure 2.4.  SWE measured in upslope transects during peak snow accumulation in 2007 
and 2008 on (a) aspen and (b) conifer hillslopes.  
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Figure 2.5.  SWE under aspen and conifer canopies for the two water years studied.  
Error bars represent one standard error.    
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a) b) 

 

    
 
 
Figure 2.6. On May 28th snow drifts in the conifer site (a) were deeper than in the aspen 
site (b). 
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Figure 2.7. SWE measured under, outside and at the edge of the conifer canopy during 
peak snow accumulation in 2008.  Error bars represent one standard error.    
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(a) 

 
 
(b) 

 
 
 
Figure 2.8.  Averaged surface water inputs measured at three SNOTEL sites in 2007 (a) 
and 2008 (b). 
 
 

 
 

Figure 2.9.  Boxplots of infiltration rates in conifer and aspen, median values (solid line), 
interquartile range (inside box), whiskers 1.5 times the interquartile range, circles 
represent outliers.   
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Table 2.1  Infiltration rates measured in each vegetation type. 
 
 

  
Infiltration 
(mm min-1) R2 

Aspen  0.90 1.00 
 0.96 1.00 
 1.80 1.00 
 1.80 1.00 
 2.22 0.99 
 2.28 1.00 
 2.28 0.99 
 2.82 1.00 
 14.82 1.00 

Conifer 0.42 0.99 
 1.50 1.00 
 1.68 1.00 
 1.98 0.99 
 2.16 1.00 
 9.36 0.97 
 14.70 1.00 

 
 

Soil physical properties 
 

   Soil textures at varying depths for both vegetation types are shown in Figure 

2.10 and Table 2.3.  For details on locations where the samples were taken, see 

Appendix, Table A2.  The average textural class for soils under both vegetation types was 

loam, though some lower horizons of the conifer soil were sandy loam.  There was a 

notable difference between the rock content and soil depth of the profiles.  The aspen soil 

had an average rock content by volume of 1% (n = 12)) and its depth was greater than 1 

m.  The conifer soil was very gravelly, with an average rock content of 46% by volume 

(n = 9).  The profile became increasingly rocky with depth, fading into fractured bedrock 
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between 45 and 60 cm.  Average bulk densities were higher in the conifer site, due to 

the greater rock content.  However if both the volume and weight of particles greater than 

2 mm were removed from the samples, conifer soil bulk density was considerably lower 

(Table 2.2).    

Average temperatures in the top 5 cm soils was just above freezing while the soil 

moisture grids were being measured under snow on May 19th and 20th of 2008.  The 

average temperature was 4.8°C in the aspen soil and 0.23°C in the conifer.  Soil 

temperatures were well above freezing during the other grid measurements.  Periods of 

subfreezing temperatures in the 2008 water year began as early as November 4th and 

lasted until April 14th in the conifer and to May 3rd in the aspen.  Soil temperatures from 

the three nearby SNOTEL sites show only one site briefly dropping below freezing in the 

fall of 2006.  While in the fall of 2007, all sites fell below freezing due to a drop in air 

temperatures before an insulating snowpack could accumulate.  Our study site 

experienced more shade than the SNOTEL sites and therefore had subfreezing 

temperatures in the soil for longer.        

  A t-test showed that percent cover of leaf litter was not significantly different 

between the conifer and aspen sites (t = 0.043, df = 170.29, p-value = 0.97).  Aspen had 

an average of 51.0% and conifer 50.9%.  Depth of leaf litter was significantly greater at 

the conifer site (average depth was 1.06 cm) than at the aspen site (average depth was 

0.10 cm) (t = -4.07, df = 89.97, p-value = 0.0001).   
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Table 2.2.  Average soil textures at multiple depths in both vegetation communities.  
 
  

Depth (cm)   n 
Sand 

% 
Silt 
% 

Clay 
% 

Texture 
Class 

0-5 Aspen 14 44.8 37.7 17.5 Loam 

 Conifer 13 41.5 41.6 16.9 Loam 

5-20 Aspen 4 38.9 39.5 21.6 Loam 

 Conifer 5 35.4 44.8 19.8 Loam 

20+ Aspen 4 40.3 38.0 21.7 Loam 

 Conifer 4 54.8 28.9 16.4 Sandy Loam 
 

 
Table 2.3.  Average bulk densities at multiple depths.  Bulk densities including all 
particle sizes (with rocks) are highlighted in grey.  Bulk densities with both the volume 
and weight of particles greater than 2 mm removed (without rocks) are also included.   
 
 

   
Depth  
(cm) 

Volume 
of 

rocks 
(%) n

Average 
Bulk 

Density 
with 

Rocks  
(g cm-3) n 

Average 
Bulk 

Density 
without 
Rocks  

(g cm-3) n 

Average 
Porosity 

with 
Rocks  

% 
n  

Average 
Porosity 
without 
Rocks  

% 
n

Conifer  0-5 35 3 1.19 52 0.76 3 55 52 71 3
 5-20 36 3 1.32 3 0.61 3 50 3 77 3
  20 + 68 3 1.91 3 0.67 3 27 3 74 3
Aspen  0-5 0.9 3 1.13 26 1.13 3 57 26 63 3
 5-20 1.1 4 1.13 4 1.13 4 57 4 57 4
  20 + 0.7 4 1.17 4 1.17 4 55 4 56 4
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Figure 2.10.  Percent sand silt and clay for soils (< 2 mm fraction) under aspen and 
conifer stands, error bars represent plus or minus 1 standard error.   
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Figure 2.11.  Soil temperatures at 5 cm for (a) water year 2007 measured three SNOTEL 
sites and (b) water year 2008 at three SNOTEL stations and at the study site.  
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Streamflow 
 

Streamflow, gauged at three points along the stream (Figure 2.2), showed two 

distinct hydrograph peaks during the spring snow melt.  The first peak below the aspen 

hillslope was 30.8 L s-1 on May 18th.  The conifer-gauging point peaked at 69.7 L s-1 on 

May 20th (Figure 2.12a).  Figure 2.12 also shows surface water inputs (SWI) measured at 

the three nearby SNOTEL sites.  Here SWI was a combination of rain and snow ablation 

(to represent snow melt).  The lull in streamflow between the two peaks can be attributed 

to a storm passing, which dropped temperatures from a daily average of 14 to 1 C and 

left 29 mm of SWE between May 21st and 23rd.  The second hydrograph peaks were 

greater for the middle and conifer gauging points, which peaked at 31.7 L s-1 on June 1st, 

and 82.3 L s-1 on June 2nd, respectively.  Streamflow below the aspen hillslope did not 

peak at this time, but sustained slightly raised flows (~12 L s-1) until sensors at all gauged 

points dropped off to baseflows in mid June (~12th).   

A hydrograph from the conifer dominated contributing area was isolated by 

subtracting flow from the middle section from flows at the conifer gauge (Figure 2.12b).  

The total estimated water yield for the 2008 water year from the conifer contributing area 

was 0.73 m m-2, with approximately 60% coming with the spring snow melt pulse (April 

6th to July 4th).  The 2008 annual water yield below the aspen hillslope was 0.64 m m-2.  

With a smaller and more upland contributing area, baseflow below the aspen hillslope 

was a mere trickle and 87% of all water flowing there comes during the spring pulse 

(February 13th to June 17th).  This demonstrates the importance of the spring snowmelt 

for water yield in this snow driven system.   
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Plots of soil moisture in the top 5 cm of soil measured at eight points along 

transects in each vegetation type, versus streamflow show a threshold behavior at both 

gauging points (Figure 2.13).  In this case, flow gains from the conifer site are isolated by 

subtracting the flow at the middle gauging point from that measured below the conifer 

hillslope.  The plots (Figure 2.13) show a break in slope, indicating a soil moisture 

threshold for increased streamflow.  Soil moisture thresholds, past which streamflow 

increased, were 0.34 cm3 cm-3 in the conifer and 0.22 cm3 cm-3 in the aspen.   
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Figure 2.12.  (a) Surface water inputs (SWI) and streamflow at three points in the stream, 
below the aspen hillslope, in the middle, dividing the aspen from the conifer source areas 
and below the conifer dominated area, in the 2008 water year.  (b) SWI and hydrographs 
from the aspen and conifer contributing areas. 
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Continuous soil moisture 
 

Continuous volumetric water content, measured in the top 5 cm of the soil profile, 

was averaged among all points in both the aspen and conifer plots.  Peak soil moisture in 

2008 came later and was lower than in 2007 (Figure 2.14).   Both sites peaked on April 

29th, 2007, with a water content of 0.57 in aspen and 0.29 in conifer.  In 2008, they 
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Figure 2.13.  Streamflow plotted with averaged soil moisture measured at 5 cm depth at 
(a) eight points in the aspen hillslope and (b) eight points in the conifer hillslope.  Red 
points represent measurements on the rising limb of the hydrograph, blue represent those 
on the falling limb.   
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peaked on May 19th, with a water content of 0.51 in the aspen and 0.21 in conifer.  It is 

worth noting that the 2008 water year received 20% more snow than the 2007 water year, 

yet soil moisture started 35% lower in the fall and peaked 10% lower in the spring.  This 

could have been an artifact of soil settling around the probes (reducing porosity) after the  

wetting and drying cycle of their first year of installation.  Another possible explanation 

is that in 2008 average soil temperatures in the top 5 cm of soil fell below 0 C, as early as 

November 4th before significant snow cover fell in early December (Figure 2.14b).  

Frozen soils may have impeded water from infiltrating into the soil or frozen water within 

the soil could reduce its permittivity.  In the fall of 2007, neither weather stations showed 

subfreezing temperatures (Figure 2.14a).  

Soil moisture grids 
 

Soil moisture grid measurements in 2007 showed no spatial organization in either 

hillslope.  It was a dry year, peak soil moisture had already passed by the time of 

measurement, and the soil moisture was too low to show any spatial organization.  Figure 

2.15 shows the relative timing of peak soil moisture, streamflow, surface water inputs and 

soil moisture grid measurements.  A hydrograph from the middle gauging station in 2008 

shows that coincidentally, both streamflow and soil moisture peaked on the same day as 

the first soil moisture grid measurements on May 19th and 20th.  The second time the 

grids were measured, the hydrograph peak had already receded and soil moisture was 

beginning to drop.  The third grid measurements were made at baseflow in the stream and 

after the soil moisture peak had passed.  

 



 42
(a) 

0.00

0.10

0.20

0.30

0.40

0.50

10
/1

11
/8

12
/16 1/2

3 3/2 4/9 5/1
7

6/2
4 8/1 9/8

VWC 
cm3 cm-3

-2

0

2

4

6

8

10

Degrees 
C

Aspen
Conifer
Soil Temperature
Freezing

 
 
(b) 

0.00

0.10

0.20

0.30

0.40

0.50

10
/1

11
/8

12
/16 1/2

3 3/2 4/9 5/1
7

6/2
4 8/1 9/8

VWC 
cm3 cm-3

-2

0

2

4

6

8

10

Degrees 
C

Aspen
Conifer
Soil Temperature
Freezing

 
 
Figure 2.14. Soil moisture in the top 5 cm of soil, averaged over eight points on transects 
in each vegetation types for (a) the 2007 water year and (b) the 2008 water year.  Plots 
include soil temperatures from three nearby SNOTEL sites.    
 

Surveyed points of the grids from both vegetation sites show slopes and elevation 

gains within the grids to be relatively equal (Figure 2.16).  Soil moisture measurements 

on the aspen grid during the dry down of 2008 show some spatial organization during the 

wettest measurements of the aspen grid (Figure 2.17).  Semi-variograms of the residuals 

are shown in Figure 2.18.  Exponential models fit to the empirical semi-variograms 

estimate sills and effective ranges shown in Table 2.4.  The semi-variogram of the aspen 

soil moisture in July had no logical sill; the average variance between points was smaller 

that the measurement error or nugget (Figure 2.18 and Table 2.4).    
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As both aspen and conifer hillslopes dried down, shallow soil moisture became 

more uniform (Figures 2.17 and 2.19).  The average aspen soil moisture dropped 7% 

between May 19th and June 14th and 11% by July 10th.  In the conifer site average soil 

moisture dropped 27% between May 20th and June 14th and 88% by July 10th.  The 

decreases in soil moisture variability accompanied by dry down are reflected in the sills 

of the semi-variograms in Figure 2.18 and Table 2.4.  The sills, or the semi-variance 

between distant points, decreased from 2.39 to 0.014 on the aspen hillslope.  The drastic 

decrease in soil moisture (88%) from May to July in the conifer hillslope coincides with 

the drastic decrease in sills (74 to 2.6). 

The aspen soil moisture measurements show organization in May and June, but 

by July soil moisture appears to have no spatial correlation.  The conifer hillslope showed 

some spatial correlation in May but did not show any in June or July.  The effective range 

or correlation length was the longest on the aspen hillslope in June (114 m).  

Other factors measured on grid as possible explanatory variables included litter 

cover, litter depth, rock cover (%), time of day, vegetation cover (%), position as related 

to the canopy and snow depth (when applicable).  While none of the variables measured 

appeared to have strong control on soil moisture, a few were found to be significant.  

Litter cover had a mild, positive correlation to soil water content in May (R2 = 0.14, F = 

14.34 on 1 and 88 df, p-value = 0.00028) and June on the aspen hillslope (R2 = 0.10, F= 

10.11 on 1, 88 df, p-value = 0.0020).  On the conifer hillslope litter cover and snow depth 

(measured in May) together were positively correlated with soil moisture in June (R2 = 

0.20, F = 11.25 on 2 and 87 df, p-value = 4.53e-05) and July (R2 = 0.20, F = 11.06 on 2 

and 87 df, p-value = 5.27e-05).  The time of day each measurement was taken had no 
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significant effect on soil moisture, indicating that our measurements were taken close 

enough together so as not to pick up diurnal melting patterns.   
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Figure 2.15.  Timing of three soil moisture grid measurements, and average soil moisture 
at 5 cm depth (red line) and streamflow (blue line) below (a) the aspen hillslope and (b) 
the conifer hillslope during spring snowmelt 2008. 
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Figure 2.16.  Topography of the aspen (a) and conifer (b) hillslopes. Contour lines are at 
5 m intervals. Dots indicate soil moisture grid points in 2008.   
 
 
Table 2.4.  Effective range, sill, and nuggets for all soil moisture grids measured in 2008.   
 

 Effective 
Range (m) Sill Nugget Mean Soil 

Moisture  (%) 
Minimised Weighted 

Sum of Squares 

Aspen      May 17.58 2.59 0.1983 35.47 67.67 
June 114.06 1.02 0.1983 20.67 112.72 
July 3.00 0.01 0.1983 5.85 778.44 

Conifer    May 12.93 74.47 9.00E-05 24.23 110.42 
June 9.21 65.60 9.00E-05 17.66 23.71 
July 0.93 2.58 9.00E-05 2.94 41.06 
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Figure 2.17.  Soil moisture measurements made during dry down in 2008 on (a) aspen 
and (b) conifer hillslopes.  
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Figure 2.18.  Semi-variograms of residuals from soil moisture grid measurements for (a) 
aspen and (b) conifer sites on May 20th, June 14th and July 10th.   
 
 

 
 
 
Figure 2.19.  Boxplots of volumetric soil moisture from grid measurements on 3 dates 
during spring snowmelt in 2008  
 
 
Overland flow 
 

Upon first arrival to the catchment in the spring, saturation overland flow was 

observed (but not quantified) in the lower portions of the catchment, on May 20th.  Thin 

films of surface water were observed at the aspen site on May 19th but had grown patchy 

(a)
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by May 28th.  Overland flow and return flow were observed at the conifer site on May 

20th, 28th and 31st but had subsided by June 7th (Figure 2.20).  Since snow still covered the 

soils surface, observations of overland flow on middle and upper portions of the 

hillslopes were limited to points that were dug to for soil moisture measurements.  

However, near the stream, sheet flow was seen on areas of exposed soil near the stream, 

routing water from the base of the snowpack to the stream.  Overland flow was observed 

on the rising limb of the hydrograph, after May 20th, the day of highest surface water 

input during for the 2008 water year.  However, since no one was there before May 20th, 

it is not known exactly when overland flow began.  
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Figure 2.20.  The dates of overland flow observed in each vegetation type plotted with 
the 2008 hydrograph gauged below (a) the aspen hillslope and (b) the conifer hillslope.   
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DISCUSSION 

 
 

This project focused on possible differences in water yield between aspen and 

conifer dominated stands, by concentrating on the soil moisture patterns on hillsides 

adjacent to a first order stream in Northern Utah. The goal of the study was to gain a clear 

understanding of soil moisture patterns and their relationship to vegetation types and 

runoff production.  

 
Canopy effects on snow accumulation 
 

Canopy effects on snow accumulation are important because they affect surface 

water input and soil moisture.  Student t-tests revealed that the aspen stand had an 

average 11 and 23% greater peak SWE than the conifer stand in 2007 and 2008 

respectively (Figure 2.5).  These differences reinforce conclusions from a study in a 

neighboring catchment, with similar slopes and aspect, in 2005 and 2006 (LaMalfa and 

Ryel, 2008).  They found that SWE under conifer plots was 34 to 44% less than in nearby 

aspen stands.  Differences in snow accumulation under aspen and conifer in the study 

area showed a linear increase with precipitation (R2 = 0.9876) (Figure 2.21).  The four 

years of SWE surveys SWE at the site span the interquartile range of annual precipitation 

measured at the three nearby SNOTEL sites measured since 1990 (the last 18 years).   

The significant difference between SWE accumulation in aspen and conifer stands 

indicates that the conifer canopy lessened the surrounding snowpack.  Whether or not this 
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Figure 2.21.  Percent less SWE in conifer stands than in aspen in the four years (2005-
2008).  Dashed vertical lines represent the interquartile range of all annual precipitation 
since 1990 measured at the three SNOTEL sites. 
 

difference in SWE translates into less hillslope runoff from the conifer site depends on if 

snow caught in the canopy is being re-distributed or sublimated (a true loss to the 

system).  Redistribution of snow within a hillslope has implications for snowpack 

duration since larger drifts will last longer into the year as seen in the conifer site but 

does not mean a water loss from the catchment.  Canopy shelter decreases redistribution 

and sublimation from the snowpack under the canopy, providing more soil water inputs 

(Hiemstra et al., 2002; Marks et al., 2002).  However, the shelter of a conifer canopy also 

comes with greater canopy interception.  Snow held in the canopy has greater surface 

area and more exposure to wind, leading to more sublimation than the underlying 

snowpack.  While sublimation from the snowpack in the Intermountain West has been 

shown to be relatively small in some cases (McNamara et al., 2005; LaMalfa and Ryel, 

2008), LaMalfa et al. (2007) used artificial branches in experiments to show that 

sublimation could explain most or all of the differences in SWE accumulation under 
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aspen and conifer canopies.  Sublimation losses from intercepted snow in conifer 

canopies warrant further investigation.   

Snow deposition and melt, which are largely a function of topography and 

vegetation, are typically responsible 80% or more of streamflow in the semi-arid West 

(Marks et al., 2002).  Runoff production in these systems is driven by infrequent and 

short spring melt events.  In order to understand runoff production in these systems we 

must understand their snow hydrology, including the timing, intensity and volume of 

snow melt and precipitation (Wilcox et al., 1997).  In a semi-arid catchment of New 

Mexico, receiving half of its precipitation as snow, Wilcox et al. (1997) list snow 

accumulation patterns as a major factor affecting fall and winter runoff.  Our catchment 

receives even a greater percentage of it precipitation as snow (74%), so snow 

accumulation and melt patterns are likely to be even more important.  A more detailed 

examination of snow hydrology, including redistribution of melt water within the 

snowpack and sublimation from conifer canopies, will help elucidate mechanisms of 

runoff production in the study catchment. 

 
Soil moisture and water inputs 
 

Grayson et al. (1997) defined a wet state of soil moisture as when water inputs 

exceeded evapotranspiration and saturated zones expanded to meet one another, 

hydraulically connecting the hillslope.  In a wet state, non-local factors controlled soil 

moisture, such as hillslope scale topography and water inputs.  Patterns of soil moisture 

form as soil moisture content increases with upslope contributing area.  In this study 

longer periods of a wet soil moisture state were found in the aspen hillslope than the 
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conifer, most likely due to greater water inputs in the aspen stand from its greater SWE 

accumulation (Figure 2.5).  However, providing a clear link between snow melt inputs 

and soil moisture patterns proved difficult.  Differences in peak SWE between the two 

vegetation types can be attributed to canopy effects in the conifer stand.  Even within the 

conifer stand there was greater peak SWE outside the canopy than at the edge or under 

the canopy (Figure 2.7).  Varied snow accumulation explained 20% of the variation in 

soil moisture measured on the conifer grid.  No other variable measured (litter depth, rock 

cover, and under story vegetation) had major control on surface soil moisture, there are 

other possible controlling factors that were not measured at each grid point.  Bulk 

density, soil texture and soil depth were not measured at each point and have potential for 

dictating soil moisture patterns.  Grant et al. (2004) measured landscape features, soil 

depth, soil physical properties, vegetation and SWE and found that only the clay and 

coarse fragment fractions of the soil were correlated to soil water content.  Soil texture at 

my site did not vary greatly between the vegetation types.  However, bulk density was 

higher in the conifer soils, where the profile was shallower.  Rock content in particular 

could be very significant in controlling soil moisture patterns on the conifer hillslope.  

The volume of subsurface occupied by rocks is essentially space that cannot be occupied 

by moisture; therefore it behaves and is measured as dry volume.  Root distribution was 

not examined but is assumed to differ between aspen and conifer.  Conifer root systems 

are deeper than deciduous and control the volume of soil from which plants harvest their 

water (Schume et al., 2003).  Bond et al. (2007) also pointed out that roots in dry climates 

may go as deep as bedrock in search of available water.  An investigation of root depths 
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and densities in each of the vegetation types would be helpful in understanding 

vegetation effects on soil moisture.  

The timing of surface water inputs and transpiration were different between the 

vegetation types.  Snow had disappeared from the aspen hillslope six days sooner than 

from the conifer site, making surface water inputs for the aspen shorter in duration and 

higher in intensity.  Previous studies at this site showed that conifers have longer annual 

transpiration activity periods, beginning earlier in the spring with the advantage of 

retaining their needles throughout the winter (LaMalfa, 2007).  Several studies found 

vegetation to be a leading control on soil moisture (Gomez-Plaza et al., 2001; Chaplot 

and Walter, 2003; Tromp-van Meerveld and McDonnell, 2006a), but McNamara et al. 

(2005) showed that the energy balance, evapotranspiration and water inputs control the 

switch between soil moisture states in a snow-driven system.   

Our findings support hypothesis (1), that soil moisture patterns will remain 

organized longer in the aspen hillslope.  This is seen in Figures 2.17 and 2.18 which show 

a longer duration of a wet state in the aspen soil.  Whether this can be attributed to greater 

snow melt inputs on the aspen slope alone remains unclear.  It is most likely due to 

synergistic relationships between snow-accumulation, melt rate, and soil physical 

properties.   

 
Soil moisture variability 
 

As both aspen and conifer hillslopes dried down, shallow soil moisture became 

more uniform as seen in Figures 2.17 and 2.19.  A similar positive relationship between 

mean soil moisture and soil moisture variability was found by Western et al. (2004) in a 
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dry catchment of Australia with well drained soils.  Seasonal evolution of soil moisture 

variability, as found in our catchment, has implications for erosional processes as 

demonstrated by Fitzjohn et al. (1998).  They showed that in a semi-arid catchment, 

increasing soil moisture variability across the landscape increased its ecological function 

as a buffer for erosion.  Drier, unsaturated areas acted as sinks by absorbing overland 

flow produced from neighboring patches of saturated surface soil.  In our study, the 

variability of soil moisture decreased as the soil dried out through the season (Figure 

2.19).     

 
Soil moisture correlation lengths 
 

Correlation lengths in the aspen hillslope increased from 17 m in May, to 114 m 

in June, and then decreased to 3 m when soil moisture was lowest in July.  The soil 

moisture grid measured in May, at peak soil moisture when hillslope connectivity is most 

probable, does not exhibit the longest correlation length.  These results are similar to 

those found in the humid Panola catchment by Tromp-van Meerveld and McDonnell 

(2006a), who saw no spatial organization during wet periods, when vertical percolation 

through bedrock presumably dominated, nor during dry periods, when local factors 

controlled soil moisture, but only in a brief transitional state between wet and dry.  Our 

study also implies that, because water inputs were highly concentrated during the spring 

melt pulse, soil moisture contents were at or near saturation across the hillslope and no 

hillslope scale spatial variation in soil moisture was detected.  Thus, during the wettest 

time, when subsurface lateral flow was most probable, no down-slope accumulation of     

soil moisture was seen. 
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 In the conifer site there was spatial structure in May, with an effective range of  

13 m.  By June 10th, the conifer soil moisture grid showed no spatial organization.  None 

of these correlation lengths are great enough to imply hillslope scale connectivity, though 

there is a positive relationship between mean soil moisture and the correlation length of 

spatial structure.   

In Australia and New Zealand, Western et al. (2004) found that the relationship 

between soil moisture and correlation length differed between sites and that correlation 

lengths of organized soil moisture reflect the scale of processes controlling soil moisture 

at a given time.  Shume et al. (2003) warned against over-interpreting semi-variograms, 

stating that conclusions should be drawn only from distinct changes in sills or ranges.  

Fitzjohn et al. (1998) state that an increase (double) in correlation length in soil moisture 

indicated spatial continuity and greater hillslope connectivity.  In this case, the long 

effective range of soil moisture patterns on the aspen hillslope in June shows that the 

aspen hillslope remained in a wet state longer than the conifer hillslope.  The conifer 

hillslope never exhibited hillslope scale correlation lengths and therefore did not show 

hillslope scale connectivity in shallow soil layers. The findings of this study agree with 

Fitzjohn et al. (1998), who showed that the dry state in soil moisture dominates in semi-

arid regions and local controls create random patterns of soil moisture with only rare 

events leading to hillslope scale organization.   

 
Hillslope-stream connectivity 
 

Since spatial organization of shallow soil moisture in the conifer hillslope never 

exhibited a correlation length representative of hillslope scale connectivity, I presume 
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that hillslope-stream connectivity was never made in the shallow soil horizons (12 cm) 

measured.  In the aspen hillslope the grid measurement in June had the longest 

correlation length and was the most likely to represent hillslope-stream connectivity.  

However, the stream below the aspen hillslope fell to baseflow at the same time as the 

June measurement.  Therefore spatial organization observed in the aspen hillslope did not 

indicate hillslope-stream connectivity.   

Although semi-variograms of soil moisture in the top 12 cm of soil do not appear 

to have detected hillslope-stream connectivity in either vegetation type, this is not to say 

connection did not happen in deeper layers.  Figure 2.13 shows a threshold response of 

streamflow to soil moisture.  Stream gauging below both hillslopes shows a sharp 

increase in flow after soil moisture thresholds of 0.34 cm3 cm-3 in the conifer and 0.22 

cm3 cm-3 in the aspen.  However, an increase in streamflow cannot be used as a surrogate 

for hillslope water contributions to the stream since other flowpaths have been observed 

in the catchment.  So, although Figure 2.13 shows streamflow reacting to a threshold in 

soil moisture, it is not practical to assume that the top layers of soil are providing stream 

water.  Though there is a clear relation between soil moisture and streamflow, most likely 

the stream is also receiving water from deeper layers within the soil profiles or along or 

within the underlying fractured bedrock.  Tromp-van Meerveld and McDonnell (2006a) 

note that many studies using shallow soil moisture patterns have not explained how these 

shallow patters represent the entire soil profile.  Several studies also recognize that 

subsurface lateral flow is more dependent on bedrock topography than surface 

topography (Freer et al., 1997; Chaplot and Walter, 2003; McDonnell, 2003; Tromp-van 

Meerveld and McDonnell, 2006a).  Though there is no bedrock topography available for 
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our site, it was clear that aspen soils are much deeper than their shallow and rocky 

conifer counterparts, leading to less storage volume in conifer soils.  While considering 

only the top 12 cm of soil, it quickly becomes clear that deeper soil horizons need to be 

investigated if we are to draw conclusions about water movement through the hillslope.  

Digital elevation models (DEMs) are a tempting source of hydrological data because they 

have become so readily available in recent years.  However, it is imperative to remember 

that soil moisture variability should be studied at all depths and not only the topmost 

horizon captured in remote sensing and often represented in DEMs (Hupet and 

Vanclooster, 2002). 

Hypothesis (2), that hillslope-stream connectivity will occur after a threshold of 

soil moisture content is reached and that this connection will last longer in the aspen 

hillslope due to greater snow melt inputs, cannot be upheld since no hillslope-stream 

connectivity was detected in the top 12 cm of soil.  However, it is clear that some 

relationship between soil moisture and streamflow is present.  Hypothesis (3) was upheld; 

subsurface lateral flow connected the stream and hillslope only during the wettest spring 

snow melt periods, while for the remainder of the year the hillslope and stream were 

disconnected and streamflow did not react to surface water inputs.  But one must look 

deeper within the soil horizons in order to understand the timing of hillslope-stream 

connectivity.  Our study site is consistent with others in dry climates, where shallow 

subsurface flow connects hillslope water to stream water for very short period of extreme 

wet conditions (Weiler et al., 2005; Newman et al., 2006).    
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Other pathways to the stream 
 

In the study catchment I observed soil moisture in both hillslopes reacting to 

water inputs after the stream has already begun to rise.  In the both hillslopes the soil 

moisture response lagged streamflow response by roughly 65 days.  In a Chilean 

mountain catchment, Blume et al. (2007) also found that soil moisture response lagged 

streamflow, noting that fast streamflow response indicates preferential flows.  This means 

that in our catchment, other pathways were contributing to streamflow before subsurface 

lateral flow within the top 5 cm of the soil matrix.  To understand woody vegetation 

effects on hillslope scale processes, subsurface flow through the root zone, a possible 

dominant pathway to the stream, must be understood (Huxman et al., 2005).  We must 

also understand what other flowpaths to the stream are possible, or significant.  Water 

arriving at the stream via overland flow is essentially ineligible for uptake by plants since 

it travels relatively quickly and does not pass through the root zone.  So changes in 

woody vegetation will have little influence on overland flow inputs to the stream.  

Overland flow also has implications for water quality and erosion (Fitzjohn et al., 1998).  

Though many researchers working in humid forested systems do not observe overland 

flow and consider it negligible (Hewlett and Hibbert, 1963; Freer et al., 2002; Uchida et 

al., 2005), it has been found to be a major contributor to runoff in semi-arid systems 

(Newman et al., 1998).   

Overland flow was observed (but not quantified) in the lower portions of the 

catchment on the rising limb of the hydrograph, May 20th through 31st, the period of 

highest surface water input during for the 2008 water year, but had subsided completely 

by June 7th (Figure 2.20).  By comparing the maximum rate of snow ablation to the 
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minimum infiltration rate for each soil type in this study, it is clear that infiltration 

excess overland flow is not likely.  Even combining the maximum daily surface water 

input of 85 mm (May 20th of 2008) with the minimum infiltration rate of 0.42 mm/min in 

the conifer stand, complete infiltration of a day�’s worth of water inputs would only take 

3.4 hours.  This is contrary to surface runoff at a snow-influenced, New Mexican 

Ponderosa Pine site where runoff was produced through infiltration (not saturation) 

excess overland flow, when surface water inputs quickly exceeded infiltration capacities 

of the soil.  Frozen soil runoff at the New Mexico site was also produced when 

temperatures dropped and soils froze before the snowpack could insulate them.  Frozen 

soils did not allow water inputs to infiltrate and surface flow was produced (Wilcox et al., 

1997).  In our catchment, periods of subfreezing temperatures in the top 5 cm of soil 

began as early as November 4th while significant snow cover was not present until early 

December (Figure 2.3).  This leaves overland flow due to frozen soils as a possibility but 

further investigations would be needed at our site before conclusions can be drawn about 

overland flow contributions to the stream.  

Overland flow is not the only other possible path for the stream to receive water 

from the landscape.  Lateral flow is also possible through the snowpack, leading to 

moisture accumulation down slope.  Using artificial snow profiles, dye tests, and 

moisture sensors, irregular melt water inputs (for example from the result of a tree 

crown), changed crystal sizes and formed ice layers, transformed the snowpack from 

homogeneous to heterogeneous, leading to paths of preferential flow (Waldner et al., 

2004).  These irregularities within the snowpack can lead to horizontal flow, an example 

of which is pipes of preferential flow near the base of the snowpack (Marsh, 1999).   
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Water chemistry suggests that deep groundwater sources are also contributing 

to baseflows in the study catchment (Shakespeare, 2006).  This is expected in 

dolomite/limestone geology where leaky bedrock will not confine flows within the soil 

profile but rather allow for percolation past the root zone, leading to groundwater 

recharge.  Bedrock permeability has the capacity to negate lateral flow on the time scale 

of a precipitation events (Weiler et al., 2005).  The effects of vegetation on water yield 

would then depend of how much water the plants can use before it has percolated out of 

the bottom of the root zone.    

 
CONCLUSIONS 

 
 

This study showed that soil moisture variability decreased as average soil 

moisture became drier.  Soil moisture patterns showed spatial organization lasting longer 

in the aspen hillslope.  This spatial organization was linked to higher water inputs in the 

aspen stand due to less canopy interception.  Snow surveys showed that SWE 

accumulation was greater in the aspen stand than in the conifer and supported previous 

observations that the difference in SWE accumulation between the vegetation types is 

greater in years of greater annual snowfall.   

Hypothesis (1), that soil moisture patterns will remain organized longer in the 

aspen hillslope due to greater snow melt inputs, was supported.  However, shallow soil 

layers from neither hillslope appeared to be contributing to the stream, since baseflows 

had resumed by of the spatial organization seen in the aspen hillslope.  Hillslope-stream 

connectivity was inferred from soil moisture thresholds, past which streamflow greatly 

increased.  Hypothesis (2), that hillslope-stream connectivity will occur after a soil 
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moisture threshold of some soil moisture content/soil water potential above and that 

this connection will last longer in the aspen hillslope due to greater snow melt inputs, was 

not supported because no hillslope-stream connectivity was detected in the top 12 cm of 

soil.  Hypothesis (3), that subsurface lateral flow will connect the stream and hillslope 

only during the wettest periods of the spring snow melt while for the remainder of the 

year the hillslope and stream will remain disconnected and streamflow will not react to 

surface water inputs, was confirmed.  Hydrograph peaks provided an average of 68% of 

total annual runoff.   

A full understanding of how this system cycles water is needed before more 

definitive conclusions can be drawn.  Overland flow was observed contributing to the 

hydrograph peak but needs to be quantified.  We also need to understand how much snow 

is sublimated from the conifer canopy, how much water is translocated downhill through 

the snowpack before the spring melt and how much water reaches the stream via other 

pathways such as overland flow and flow from deep groundwater sources.  To understand 

subsurface flow as a pathway, we cannot assume that shallow soil horizons are reflective 

of the entire soil profile and that vegetation effects on hydrological processed will be 

represented there.  Investigations into deeper layers of the soil are called for. 
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CHAPTER 2 

 
SUBSURFACE LATERAL FLOW AND HILLSLOPE-STREAM CONNECTIVITY IN  

 
ASPEN AND CONIFER-DOMINATED HILLSLOPES 

 
 

ABSTRACT 
 
 
 Conifer invasion is considered a significant factor in the declining extent of aspen 

cover in Utah.  A consequence of this change in vegetation may be lower water yields 

from headwater catchments.  This study was an effort to understand and compare 

subsurface flow through two hillslopes representing the end point communities of aspen 

and conifer.  Snow accumulation, temporal patterns of soil moisture profiles, trenchflow, 

and streamflow were compared between aspen and conifer stands on hillslopes feeding a 

first order stream in Northern Utah.  Peak snow water equivalent was measured along 

uphill transects in 2007 and 2008, under both vegetation types.  To capture temporal 

patterns in soil moisture profiles, transects of water content sensors were installed in each 

vegetation type.  Transects of eight nests extend uphill from the stream on each hillslope.  

Nests consist of three probes at 5, 20 and 100 cm or as deep as the probe could be 

installed (45 to 110 cm).  Trenches were dug at the base of each hillslope to quantify 

subsurface lateral flow leaving the hillslope.  Streamflow was monitored at three points in 

the stream to isolate contributing areas of each vegetation type.  Soil profiles under the 

two vegetation types were found to vary, with aspen having a deeper profile and conifer 

having a shallow and extremely rocky profile.  While snow accumulation was greater in 

2008 than 2007, surveys from both years revealed more snow on the aspen hillslope.  

Two years of hourly soil moisture showed that fall precipitation did not penetrate the 
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deeper layers of the aspen soil profile (60 to 100 cm).  Spring snow melt saturated 

profiles in both vegetation types and sensors at all depths reacted to melt water inputs.  

Soil moisture thresholds, beyond which streamflow greatly increased, were exceeded for 

longer duration in the aspen hillslope.  However, trenchflow revealed that subsurface 

flow at ~50 cm was sustained longer in the conifer hillslope.  This study showed that for 

most of the year, water inputs remain in the soil profile and only during the spring melt is 

there a chance for percolation to deeper groundwater storage or for lateral fluxes 

downslope.   

 
INTRODUCTION 

 
 

Mountain headwater catchments in the semi-arid Intermountain West are 

important sources of surface water because these high elevations receive more 

precipitation than neighboring lowlands (Grant et al., 2004).  The hydrology of these 

catchments is especially important as the region faces water shortages and conflicts.  

Snow melt typically makes up 80% or more of streamflow in the semi-arid West.  Snow 

deposition and melt in montane catchments are largely functions of topography and 

vegetation (Marks et al., 2002).  The snow-driven system of the semi-arid Intermountain 

West is understudied, leaving a gap in our knowledge of how watersheds function and 

how runoff is produced (Grant et al., 2004).   

Understanding how biotic and hydrologic components of an ecosystem affect one 

another will help with forecasting the nature and magnitude of environmental changes 

that affect natural resources (Newman et al., 2006).  In locations across the Intermountain 

West conifer species are encroaching on aspen stands (Bartos and Campbell, 1998).  
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Possible reasons for this encroachment include human alterations in disturbance 

regimes, such as fire suppression and grazing, as well as climate change (Bartos and 

Campbell, 1998; Brown et al., 2006; Shepperd et al., 2006).  Utah holds 25% of the aspen 

in the western United States but it was reported that, since European settlement, there has 

been at least a 59% decline in aspen domination in Utah and a 66% decline in the 

Wasatch Cache National Forest (Bartos, 2001).  Conifer encroachment into aspen stands 

results not only in a decline in the species diversity that accompanies aspen stands but 

also in alterations in water yield and nutrient cycling.  Though the exact mechanisms are 

not known and appear to be site specific, conifer encroachment is blamed for declining 

water yields and water quality (Shepperd et al., 2006).  Bartos and Campbell (1998) 

claim that for every 1,000 acres of aspen that are replaced by conifers, 250 to 500 acre 

feet of water is lost as transpiration.  The details of streamflow generation must be 

understood in order to comprehend the role of woody vegetation encroachment (Huxman 

et al., 2005).   

Subsurface flow is lateral movement of water through near surface soils, regolith 

and bedrock (Newman et al., 1998).  It is also called interflow, lateral flow and soil water 

flow.  In dry systems subsurface lateral flow occurs under only extremely wet conditions, 

when matric potential is above zero (Weiler et al., 2005).  Subsurface lateral flow is 

commonly initiated when water, percolating through a soil profile, meets an impeding 

layer of less conductive soil or bedrock and is diverted laterally, downslope.  Soil 

hydraulic conductivity decreases with depth, often shifting water fluxes from vertical to 

lateral (O'Loughlin, 1986).  Hillslope scale hydraulic connectivity is needed for the 

switch from vertical to lateral flow to happen at this scale, causing widespread lateral 
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flow (McNamara et al., 2005).  Commonly observed subsurface flow on steep, wet 

hillslopes has been through discrete soil pipes or macropores, most prevalent at the soil 

bedrock interface or above impeding layers (Sidle and Noguchi, 2001; Uchida et al., 

2005; Tromp-van Meerveld and McDonnell, 2006b).  Understanding water storage and 

the rate of water movement underlies all efforts to manage water yield (Hewlett and 

Hibbert, 1963).  Hillslopes are the fundamental units of landscape and their high degree 

of hydrologic complexity is due to many processes interacting at different scales, leading 

to a diversity of flowpaths and residence times (Lin et al., 2006).  Subsurface flow has 

water quality implications because flowpaths determine how long water remains in the 

subsurface and consequently what its chemical make up will be.  Subsurface lateral flow 

can also cause positive pore pressure within the soil, leading to an increased risk of 

landslides (Weiler et al., 2005).  When considering vegetation effects on streamflow 

generation, it is important to focus on subsurface lateral flow because this flowpath leads 

water through the root zone, where it is vulnerable to plant uptake.  The more dominant 

subsurface runoff paths are in a system, the greater the expected impact of woody plants 

on streamflow (Huxman et al., 2005).  Especially in water limited landscapes, the type 

and pattern of woody vegetation affects stream-water and groundwater recharge 

(Newman et al., 2006).  Subsurface storm flow controls runoff generation in many part of 

the world (Uchida et al., 2004).  Despite its importance, lateral subsurface flow in semi-

arid regions has been under studied (Newman et al., 2004).   
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Objectives and hypotheses 
 

The objective of this study was to determine the timing and quantity of subsurface 

flow within hillslopes or between hillslopes and their adjacent stream using hourly soil 

water contents measured in transects across conifer and aspen hillslopes, combined with 

streamflow, trenchflow and surface water inputs.  More specifically the objectives were 

to: 

1. Compare soil moisture and trenchflow to streamflow to assess when the hillslope 

is connected to the stream and compare the timing between soil/vegetation types. 

2.  Find any thresholds in the hillslope past which subsurface flow contributes to the 

stream and compare these between soil/vegetation types.  

Hypotheses: 

1.  Hydraulic connection within the hillslopes during the spring snow-melt will have 

longer duration in the aspen than the conifers hillslope because of greater surface 

water inputs.   

2.  A soil water content threshold for subsurface flow will be exceeded for greater 

time periods in the aspen stand due to greater surface water inputs.   

 
The influence of vegetation on the hydrologic cycle 
 

Vegetation influences the hydrologic cycle in multiple ways: by affecting soil 

properties and ground cover and therefore influencing infiltration capacity (Schume et al., 

2003; Williams et al., 2003), by creating macro-pores and altering subsurface flowpaths 

(Schume et al., 2003; Williams et al., 2003), by water use through transpiration (Williams 

et al., 2003; Huxman et al., 2005) and by holding precipitation in the canopy and altering 



 72
throughfall patterns (Schume et al., 2003; Western et al., 2004; Huxman et al., 2005). 

In water limited systems, the type and pattern of woody vegetation influences stream and 

groundwater recharge, nutrient cycles and biodiversity (Newman et al., 2006).  

Vegetation is, in turn, affected by hydrologic regimes, soil properties and climate 

(Tromp-van Meerveld and McDonnell, 2006a).   

Many factors control snow retention and loss by sublimation in snow-driven 

systems, including weather patterns and terrain.  Forest canopy characteristics are 

dominant factors affecting throughfall patterns and snow accumulation in mountain 

headwater catchments.  Snow in exposed regions of the semi-arid Owyhee mountains 

was more vulnerable to turbulent air currents (the primary source of melt energy during 

the winter) as well as solar radiation (the primary source of melt energy in the spring), 

melted sooner and provided less surface water inputs overall.  Drift and shelter areas 

provided much more water inputs and the snow lasted later in the season (Marks et al., 

2002).  Hiemstra et al. (2002) also found that trees helped retain snow in the high 

elevation tree line zone (3100-3300 m) of the Medicine Bow Mountains in Wyoming, 

where snow makes up 50 to 80% of precipitation.  However different canopy types, as in 

the case of comparing aspen to conifer stands, may also differ in their ability to retain 

precipitation.  In a rain-dominated, mixed stand in Southern Austria, interception loss by 

the coniferous spruce canopy was much greater than that of the deciduous beech canopy, 

causing uneven recharge patterns (Schume et al., 2003).   

Previous investigations in Northern Utah indicate that snow accumulation was 

greater under aspen stands compared to conifer stands (LaMalfa and Ryel, 2008).  

Conifer species retain their needles year round and thus are able to accumulate more 
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snow in their canopies, lessening the snowpack on the ground around them.  Snow held 

in the canopy is more susceptible to sublimation; a water loss to the system, or simply 

redistribution, possibly to nearby aspen stands.  LaMalfa (2007) also reported that aspen 

stands had a 40-70% greater potential for generating runoff and groundwater recharge.  

Vegetation changes are expected to have a greater impact on streamflow 

generated by subsurface lateral flow, which can only reach the stream if it is not first 

taken up by roots (Huxman et al., 2005).  The majority of water uptake by vegetation is 

performed by fine, young roots in the upper soil horizons where nutrients are more 

abundant.  However, roots can also be found in deep layers, even in bedrock, especially 

in water limited areas (Bond et al., 2007).  Patterns of water depletion from the soil 

profile indicate water uptake and root activity (Caldwell and Virginia, 1989).  Rooting 

depth determines the volume of soil from which trees access for water uptake (Schume et 

al., 2003).  Reproduction of aspen is primarily asexual, by means of root sprouts (Bartos, 

2001). These lateral roots are normally found within a foot of the soil surface and can be 

inhibited by subsurface rocks (Shepperd et al., 2006).  In contrast, conifer species have 

deeper roots, able to reach lower sources of groundwater compared to the relatively 

shallow rooted aspen.  Average maximum depth for temperate conifer roots was 3.9 m 

and only 2.9 m for temperate deciduous roots (Canadell et al., 1996). 

Evapotranspiration can have direct impacts on streamflow.  In a humid, Pacific 

Northwest fir catchment, Bond et al. (2002) demonstrated the link between streamflow 

and vegetation by comparing diel patterns of transpiration and streamflow.  According to 

Huxman et al. (2005), the effect of woody plants on streamflow generation will depend 

on whether the woody vegetation is found in riparian or hillslope areas, whether surface 
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water inputs are supplied during the growing season and whether or not there is a 

potential for bypass flow such as with fractured or Karst bedrock.  The more dominant 

subsurface runoff paths are, the greater the expected impacts on streamflow by woody 

plant encroachment.   

 Aspen and conifer have differences in water use through transpiration, therefore 

their effects on streamflow may be different.  Part of the competitive strategy of 

evergreen trees is to start water uptake as soon as climatic conditions allow (Schume et 

al., 2003).  This coincides with LaMalfa�’s (2007) findings that conifer stands in Northern 

Utah had longer transpiration activity periods relative to nearby aspen, starting 5 days 

before aspen and ending 24 to 31 days after aspen.  However, in terms of annual water 

use, this longer transpiration period in conifer seems to be offset by higher transpiration 

rates during leaf expansion of aspen or deciduous species.  Shume et al. (2003) found that 

when beech used water, they use more than nearby spruce, which were able to conserve 

water by closing their stomata during dry times.  Aspen showed less ability to regulate 

water loss through stomatal closure than neighboring pine and fir species in Wyoming, 

where aspen sap flux increased during the early season leaf-out period, leaf production 

continued well into the growing season (Pataki et al., 2000).  In Northern Utah, aspen 

evapotranspiration was 25% higher than conifer during leaf out, most likely due to more 

water in the aspen soil profile (LaMalfa, 2007).  Both Pataki et al. (2000) and LaMalfa 

(2007) found that soil moisture and water movements to both species regulate 

transpiration.  By the end of the water year, both aspen and conifer had used all the 

profile water available to them (LaMalfa, 2007).   
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Mechanisms of subsurface lateral flow 
 

How and when lateral subsurface flow occurs is a product of catchment 

characteristics and will affect the timing and quantity of water delivery to a stream via 

this pathway.  This flowpath is of interest because it shares space with the root zone, 

therefore a shift in vegetation type may affect how much water is contributed to the 

stream.  Factors controlling subsurface lateral flow include macropores and other 

preferential flowpaths (Newman et al., 1998; Sidle and Noguchi, 2001; Tromp-van 

Meerveld and McDonnell, 2006b; Blume et al., 2007), hillslope permeability (Uchida et 

al., 2004), bedrock topography (Freer et al., 1997; Chaplot and Walter, 2003; Tromp-van 

Meerveld and McDonnell, 2006b) and the amount and intensity of water inputs (Newman 

et al., 1998; McNamara et al., 2005; Tromp-van Meerveld and McDonnell, 2006b).   

Macropores, formed from decayed and live roots, subsurface erosion, bedrock 

fractures, and animal burrows are often the main sources of lateral preferential flow 

(Sidle and Noguchi, 2001).  At the Panola trench, subsurface flow was delivered through 

pipes and macropores sooner than it was through the soil matrix (Tromp-van Meerveld 

and McDonnell, 2006b).  In a humid Chilean catchment with high porosity, dye tracers 

showed preferential flowpaths leading from the surface to an approximate depth of 1 m.  

Heterogeneous throughfall, along with hydrophobic soils, caused fingers of saturation 

that acted as preferential flowpaths.  Soil moisture probes throughout the catchment 

confirmed that this point scale preferential flow was of importance for hillslope or 

catchment scale processes (Blume et al., 2007).  Though the hydrology, subsurface lateral 

flow in particular, of semi-arid systems is expected to be different from that in humid 



 76
regions, Newman et al. (1998) argued that macropores are important in both regimes.  

They collected lateral flow with PVC pipe collectors and a trench on a semi-arid 

Ponderosa pine hillslope in New Mexico to determine that lateral subsurface flow from 

the hillslope was episodic, with the largest events (90% of all flow) in the spring snow 

melt.  The majority of this flow (80%) came through the macropore ridden B-horizon.   

In two zero-order humid catchments in Japan, hillslope discharge was examined 

as a function of upslope pore pressure and upslope subsurface saturated area using 

tensiometers and a V-notch weir.  During stormflow periods, hillslope discharge at both 

sites was strongly related to both upslope pore pressure and upslope saturated area.  

However, between stormflow periods, this relationship only held true for the catchment 

with high hillslope permeability and not for the catchment with lower permeability 

(Uchida et al., 2004). 

After examining digital terrain maps, trenchflow and point scale soil moisture 

measurements at humid catchments in Georgia and New Zealand (Panola and Maimai), 

Freer et al. (1997) comment that, although many models assume that hillslope flow is 

controlled by surface topography, it is really subsurface topography, or bedrock 

topography that controls this flowpath.  In a first order catchment of Western France, 

digital elevation models of both surface and subsurface topography were considered and 

lateral subsurface flow was found to be more affected by subsurface than surface 

topography (Chaplot and Walter, 2003).  Subsurface stormflow, in the form of transient 

saturation at soil-bedrock interface, was studied using a hillslope trench and shallow 

groundwater wells at the humid Panola catchment in Georgia.  Bedrock depressions had 

to be filled before spilling over, causing subsurface saturation to become connected to the 
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trench face, where flow was observed to increase more than five-fold during these 

times of hillslope connectivity.  Subsurface lateral flow was therefore controlled by the 

amount of precipitation as well as the relatively shallow depth to bedrock (~1 m) (Tromp-

van Meerveld and McDonnell, 2006b). 

Water inputs must be great enough to satisfy soil water deficit, plants needs and 

overcome capillary forces holding the water in place before preferential flow is initiated, 

and/or subsurface saturation accumulates enough to cause lateral fluxes of hillslope water 

to the stream.  This is most common in areas with large or intense periods of rain or snow 

melt (Newman et al., 1998).  In a snow-driven watershed in Idaho, McNamara et al. 

(2005) found that zones of hydrophobicity, along the soil/bedrock interface, prevented 

hillslope connectivity until energy inputs were great enough to provide sufficient snow 

melt to overcome the dry zones, which only happened for a short time out of the year.  

Subsurface lateral flow was therefore driven by a combination of surface water inputs 

and bedrock topography.  In the humid Panola catchment, subsurface lateral flow was 

controlled by the relatively shallow depth to bedrock (~1 m) as well as by the amount of 

precipitation the hillslope received (Tromp-van Meerveld and McDonnell, 2006b).   

 
Subsurface lateral flow thresholds 
 

Rather than the initial variable source area concept, developed in the 1960�’s and 

1970�’s, in which a stream�’s source area gradually expands and contracts, it has been 

recognized that there is often a threshold, after which hillslopes �“turn on�” and subsurface 

lateral flow contributes hillslope water to the stream. This hillslope input to the stream, or 

hillslope-stream connectivity, is generally greater on the receding limb of the hydrograph 
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(McDonnell, 2003).  At Panola, Tromp-van Meerveld and McDonnell (2006b) found 

that 55 mm of rain were needed to fill bedrock depressions before significant subsurface 

storm flow began.  After this precipitation threshold, subsurface flow at the trench face 

increased more than 75 times that when the hillslope was not connected.  At Reynolds 

Mountain East in the Owyhee Mountains of Idaho, Grant et al. (2004) found a soil 

moisture threshold, around field capacity, over which streamflow became highly reactive 

to soil water inputs.  At soil water contents higher than 33%, major increases in lateral 

flow were seen in a semi-arid Ponderosa Pine hillslope in New Mexico studied by 

Newman et al. (1998).  Ninety percent of lateral flow, measured at a trench, happened 

beyond this threshold, mostly via macropores, which shunted water from the surface to 

the B-horizon, often bypassing the A-horizon.  Thresholds provide a simplified way of 

describing hillslopes and means for comparing them to one another, rather than 

describing a single hillslope, which may be an anomaly (Tromp-van Meerveld and 

McDonnell, 2006b).   

Individually describing the different mechanisms and thresholds leading to 

subsurface lateral flow is not meant to imply that they are mutually exclusive.  Multiple 

factors, on multiple scales, simultaneously affect subsurface lateral flow.  For example in 

Panola, Georgia, Freer et al. (2002) described how macropores pipe water quickly to the 

soil bedrock (or impeding layer) interface, where it forms a perched zone of saturation 

and is transported quickly to the stream.  Soil properties and vegetation also help dictate 

when subsurface lateral flow will happen and after what thresholds.   
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METHODS 

 
 
To compare hillslope connectivity and subsurface lateral flow between the aspen 

and conifer hillslopes, streamflow, soil moisture and trenchflow were continuously 

monitored.  Water inputs to the catchment were quantified using precipitation data from 

the Natural Resource Conservation Service (NRCS) Snow Telemetry (SNOTEL) sites as 

well as snow surveys at peak snow accumulation.  Infiltration and other soil physical 

properties were measured as possible explanatory variables for hillslope-stream 

connectivity timing and quantity.  

 
Site description 

 
The study site is located in Northern Utah in the headwaters of the Ogden River 

along the eastern edge of Weber County (Figure 2.1).  The study catchment lies roughly 

at UTMs 0461515, 4579126, inside a larger paired watershed study on the Deseret Land 

and Livestock Ranch.  These mountain headwaters, around 2500 meters in elevation, feed 

Pineview and Causey reservoirs, which are used for recreation, water storage and 

irrigation.  According to the SNOTEL data, the average annual temperature is 4.3 C, with 

an average annual maximum temperature of 29.3 C and an average annual minimum 

temperature of -21.0 C.  Average annual precipitation is 861 mm with approximately 

74% falling as snow in the winter months.  

 
Previous studies 

 
The study catchment in contained within a larger paired watershed study on the 

Deseret Land and Livestock Ranch.  Bear and Frost canyons are the two small, adjacent, 
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paired watersheds with a combined area of 26.7 km2.  In 2005 and 2006, snow water 

equivalents (SWE), snow density, sublimation, condensation, soil moisture and sap  

flux in aspen and conifer stands on north facing slopes of Frost watershed were 

monitored (LaMalfa, 2007).  Though sublimation was not significantly different from the 

ground under the two vegetation types, aspen plots had 34-44% higher SWE at the time 

of peak snow accumulation than adjacent conifer plots.  The greater SWE in aspen 

stands, combined with longer transpiration periods in Conifers, lead to 42-83% more 

potential runoff/groundwater recharge from aspen stands than from neighboring conifer 

stands (LaMalfa, 2007).  In Frost canyon, hillslope gradient was the most important 

factor for flow gains and was negatively correlated. Steeper hillsides, with more exposed 

bedrock and less ability to retain water, yielded less water during low flows.  Water 

chemistry suggested that the primary source of baseflow in Frost canyon is deep 

groundwater and that Karst geology may contribute to heterogeneity of streamflow.  

Flow at the confluence of Bear and Frost canyons showed diel patterns after snow melt 

was complete, indicating vegetation influence on baseflow (Shakespeare, 2006).  Other 

complementary research is ongoing in the watersheds including a study to estimate 

residence times and flowpaths in Bear canyon.  To better understand the effects of conifer 

encroachment on water yield, Bear canyon will be treated by removal of conifers while 

Frost canyon will be left as a control.  

 
Instrumentation 

 
Bear and Frost catchments have been instrumented with weather and stream 

stations since 2004 and measurements are recorded each hour onto a datalogger (CR10X, 
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Campbell Scientific, Logan, UT, USA).  The streams are monitored just before their 

confluence for stage (PDCR 1830-8388, Druck, Melrose, MA, USA), temperature and 

electrical conductivity (CS547A, Campbell Scientific, Logan, UT, USA).  Weather 

stations at the top of Bear canyon and at the confluence monitor relative humidity, air 

temperature, snow depth, precipitation, solar radiation, wind speed and soil temperature 

at 10, 20 cm.  Data is also available from nearby SNOTEL sites (Figure 2.1).  These three 

SNOTEL sites were chosen because of their proximity to the study catchment and their 

similar elevation.  Lightening ridge SNOTEL sits on the west ridge of Frost canyon, at 

2504 m above sea level and has been installed since 2004.  Horse ridge SNOTEL is 

located 2 km south of Bear canyon, at 2487 m and has been collecting data since 1978.  

Dry Bread Pond SNOTEL site is 7.4 km southwest of the study catchment, and 2545 m 

and has been recording data since 1978.  All three stations measure hourly air 

temperature, snow depth, and precipitation.  

 
Catchment/hillslope specifics 

 
The study catchment is located in Frost Canyon and contains both aspen and 

conifer hillslopes adjacent to a first order perennial stream (Figure 3.1).  The catchment 

drains to the north with an area of approximately 1 km2 and elevations ranging from 2464 

to 2691 m.  The upper hillslopes are dominated by mature Quaking aspen, (Populus 

tremuloides), with a lush under story made up primarily of Snowberry (Symphoricarpos 

albus), Serviceberry (Amelanchier alnifolia), Ragwort (Senecio serra), Wild Geranium 

(Geranium richardsonii), Mountain Bluebells (Mertensia ciliata) and Horse Mint 

(Agastache urticifolia).  Average slope on the aspen hillside is 39%, with a confined V-
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shaped riparian area and a northwest aspect.  Sagebrush grassland is found in patches 

of the upper hillslopes and on the lower eastern hillslope of the catchment.  The lower 

western hillslopes are dominated by mature conifer species consisting mainly of White fir 

(Albeis concolor), Douglas Fir (Psuedodotsuga menziesii), and Engelmann Spruce 

(Picea, engelmannii).  The conifer under story is mainly sparse Goose Berry (Ribes 

montigenum), Snowberry (Symphoricarpos albus) and grasses.  Average slope on the 

conifer hillslope is 40% with a northern aspect.  The riparian zone is U-shaped and less 

confined than the upstream aspen section.  The aspen�’s under story is much denser than 

the conifer�’s and varies yearly depending on water availability.  It is common to find 

different soil characteristics under different tree species, in part because of the species�’ 

ability to alter soil properties.  Since the aspen and conifer stands at the study site have 

very different soil profiles, this study addresses the combined influence of vegetation and 

soil on subsurface flow.  The study area lies between the Rich and Weber County Soil 

Surveys and no soil survey information is available for the exact site.  According to the 

nearby Rich County Soil Survey of 1982, soils in similar areas range from mollisols to 

entisols and inceptisols depending on slope and landscape position (Soil Conservation 

Service, 1982). 

Water inputs 
 
To understand snow accumulation within the study catchment and its variance 

with hillslope position and vegetation type, snow water equivalents (SWE) and snow 

depth were measured in transects starting at the stream and moving uphill from the 

stream in four meter increments.  Snow surveys were supplemented with recent surveys 

in nearby aspen, conifer and open plots.  SWE was measured as close to peak snow 
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a) b)

 

 

Figure 3.1.  Arial photographs of the study hillslopes (a) conifer, (b) aspen. Dots indicate 
location of transects of soil moisture sensor nests. The blue line indicates the stream. 
 
 
accumulation as possible, on March 16th, 2007 and April 6-12th, 2008.  Standard snow 

sampling tubes (Carpenter Machine and Supply, Seattle, WA, USA) were used to 

measure SWE and snow depth.  Tared snow tubes were inserted vertically into the 

snowpack until soil was reached.  Snow depth was recorded and the snow-filled tubes 

were weighed after any soil on the bottom of the sample was removed.  

Daily snow pillow and rain gauge data were used from the three nearby SNOTEL 

sites, chosen for their proximity and similar elevation to the study site.  Rain events on 

days with an average temperature below 0 C were considered invalid and disregarded. 

(a) (b) 
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Since snow is not an immediate water input to the soil, snow ablation (measured by the 

SNOTEL snow pillows) and rain were combined to make surface water inputs (SWI).  

 
Infiltration 
 

Infiltration capacity in both the aspen and conifer forest floor was measured using 

a double ring infiltrometer on June 27th and 28th, 2007 and again on June 14th, 2008. The 

infiltrometer was inserted into the ground until water added inside the rings could not 

leak out and was forced to infiltrate into the soil (a depth of approximately 5 to 10 cm).  

Water levels in the outer ring were kept constant so that water infiltrating in the inner ring 

was maintained as a one-dimensional infiltration process.  Water was added to the inner 

ring and the time the water took to drop 1 cm was recorded repeatedly until a constant 

rate was reached.  Measurement locations were chosen as randomly as possible though 

relatively flat areas were required for the infiltrometers to be used.  Two readings were 

taken in 2007 (four in aspen, two in conifer) and 10 were taken in 2008, five in each 

vegetation type.  Cumulative infiltration was graphed against time.  Infiltration capacities 

are considered the rate of infiltration once a constant rate had been reached. 

 
Soil physical properties 
 

Soil texture from 44 randomly chosen grid points (22 from each hillslope) was 

determined using the hydrometer method.  Samples were sieved to 2 mm and 50 g of 

each was suspended in deionized water.  The solutions were shaken with 50 ml of 10% 

Calgon (a dispersing agent) for 12 hours.  Deionized water was then added to each 

sample until there was a total volume of 1 L in each graduated cylinder.  A hydrometer 
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was placed in the cylinder and readings were taken after the sand has settled at 70 

seconds and after the silt had settled after 7 hours.   

To determine bulk density, between 150 and 600 ml of soil were collected, dried 

and weighed.  The subsequent holes were then filled with a known volume of sand.  Rock 

content by volume was measured from 21 bulk density samples from multiple depths.  To 

determine rock volume, particles greater than 2 mm from each sample were submerged in 

a partially filled graduated cylinder and the subsequent increase in volume was recorded.  

 
Soil moisture 

 
Soil moisture was continuously monitored at 16 locations in the study catchment 

(Figure 3.1).  Nests of 30 cm soil water content reflectometer probes (CS616, Campbell 

Scientific, Logan, UT, USA) were installed in the fall of 2006.  Two transects of 8 nests 

were installed, one transect across an aspen dominated portion of the catchment and the 

other across a conifer dominated portion as mapped in Figure 3.1.  Each nest consists of 3 

probes at depths of 5, 20 and 100 cm in aspen transect, and at 5, 20, 45-60 cm in the 

conifer transect.  A fractured rock layer underlying the conifer site prevented probe 

installation at greater depths.   

CS616 sensors are transmission line oscillators, which operate similarly to time 

domain reflectometers but do not have a separate pulse and sampling units.  Instead, 

consecutive voltage pulses are generated inside the probe head, with each pulse being 

triggered by the arrival of the reflected previous pulse.  CS616 sensors function best with 

calibration curve for each soil being measured (Kelleners et al., 2005).  In this study, a 

calibration curve was made for each of the two soil types, i.e. aspen and conifer, by 
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packing a soil column to approximately the same bulk density as was found in the 

field.  The soil was then saturated and the CS616 inserted.  As the soil dried, it was 

repeatedly weighed and measured with the CS616 (Figure A1, Appendix).  The 30 cm 

CS616 has an accuracy of ±3%, although insertion error is possible if the prongs are 

inserted in such a way that void space is created around them.   

Because CS616 probes have exhibited some temperature dependence (Campbell 

Scientific, 2004), 14 temperature sensors (temperature pendants, HOBO, Pocasset, MA) 

were buried at a variety of hillslope positions.  Seven were buried in each vegetation 

type, four at a depth of 5 cm and two at 20 cm.  These sensors log temperature hourly and 

were installed to find any freezing pattern of soils. 

 
Trenches 

 
Two hillslope trenches were dug in the summer of 2007, one in each the aspen 

and conifer stands (Figure 3.1).  The trenches were dug 7 m long, 1.5 m wide and 1 m 

deep.  The conifer trench reached fractured bedrock at a depth of ~50 cm.  The aspen 

trench did not reach bedrock even after a depth of 1.5 m.  In the aspen trench collection 

systems were inserted into the face of the trench at depths of 20 and 50 cm.  Sections of 

sheet metal and pipe, 15 cm long and inserted at least 5 cm into the upslope wall of the 

trench. The upper layer collection system collected water from a total cross-sectional area 

of ~6200 cm2.  While the lower collection system collected flow from a cross-sectional 

area of ~ 2100 cm2.  Water from each of the collection layers was routed into a tipping 

bucket (Rain Wise Inc., Bar Harbor, ME, USA) and logged onto a datalogger (HOBO 

Event Data Logger, Bourne, MA, USA). The tipping bucket recorded each time that 10 
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ml had accumulated in the bucket.  In this way water flowing down-slope through the 

subsurface was collected, quantified and the timing of its flow recorded. 

A similar system was installed in the conifer trench.  However, due to the 

extremely rocky soil, only one layer of collection system was installed at ~20 cm depth 

with a total cross-sectional area of ~900 cm2.  Each trench was covered with a sheet metal 

roof to keep snow and rain out.  Sheet metal was also inserted into the upslope soil 

surface so that any potential overland flow would be diverted over the roof and not down 

the trench face.  In the spring, the conifer trench was found full of water and the tipping 

bucket floating.  Once the water had receded, the underground flow was exposed and 

flow from the conifer trench face was measured by hand on May 31st.  A 6 cm wide, 

concave strip of sheet metal was pushed into trench wall, routing flow into a container.  

The volume of water collected in 15 seconds was used to calculate flow (L s-1) every 50 

cm for the length of the trench (12 points total).  Flow was collected at depths ranging 

from 45 to 70 cm, depending on where the highest water yield was found.  A water height 

sensor (Levelogger, Solinst, Georgetown, Ontario, Canada) was installed in the bottom of 

the conifer trench to monitor water height from June 14th to June 29th.  An atmospheric 

pressure logger (HOBO Pressure, Bourne, MA, USA) was also deployed at the trench to 

adjust the pressure logger for atmospheric pressure changes.    

 
Stream gauging 

 
Stage was monitored continuously for the 2008 water year using WT-HR water 

level loggers (TruTrack, Christchurch, New Zealand), which were installed at three 

points in the stream.  The first level logger measured the stage of the stream just below 
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the contributing area dominated by aspen.  The contributing area between the first and 

second level loggers was aspen/conifer mixed and encompassed a seep and a small 

tributary to the stream.  The portion of the catchment between the second and third level 

logger was dominated by conifer species.  The level loggers recorded hourly readings of 

water height in mm.   

The stream was gauged using slug injection dilution gauging.  This approach is 

well suited for small streams that cannot be otherwise gauged with flow meters (Moore, 

2005).  In this method, NaCl is used as a tracer and dumped as a slug injection into the 

stream.  Downstream, an electrical conductivity (EC) probe measures the pulse of salt as 

an increase in EC.  The area under the break-through curve represents was calculated to 

estimate the flow in the stream.   

An injectate solution was mixed using 300 to 500 g of NaCl dissolved into 2 to 3 

liters of stream water.  More salt was used during high flows and less during baseflows.  

Small amounts of the injectate were added to 1 L of stream water and its electrical 

conductivity (EC) was measured at each known concentration (YSI 85, Yellow Springs, 

OH, USA).  In this way a calibration curve was made to calculate concentration of NaCl 

from EC using a calibration constant K.  The background EC was recorded both at the 

upstream and downstream reaches to be gauged before the slug of injectate was dumped.  

Each of the reaches gauged was long enough for adequate mixing of the salt-water slug 

with the stream.  The slug was measured every two seconds as it passed at the 

downstream end of the reach by an EC probe (CS547A conductivity and temperature 

probe Campbell Scientific, Logan, UT, USA) and logged onto a datalogger (CR 510, 
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Campbell Scientific, Logan, UT, USA).  The resulting curve of EC was translated into 

concentration at each time step using the calibration previously made.  

C(t)=EC(t)*K  (g L-1) 

where C(t) is the concentration at time t, EC(t) is the electrical conductivity at time t and 

K is the calibration constant obtained from the calibration curve.  The background 

concentration was accounted for and the mass of salt passing at each time step was 

calculated:   

 Mass NaCl recovered (t) = (C(t)-Cb)*d(t)  (g L-1s-1) 

where Cb is the background concentration and d(t) is the time step (in this case two 

seconds).  The total mass of NaCl recovered from all time steps was calculated: 

 Mass NaCl recovered = (C(t)-Cb)*d(t)  (g L-1s-1) 

Flow (Q) was calculated by: 

Q = (L injectate*Concentration injectate)/Mass of NaCl recovered  (L s-1) 

 Using the stage measurements from the times of stream gauging, a rating curve 

was made for each of the three stream gauging sites.  Using this rating curve, a 

hydrograph was made from the continuous stream stage measurements.     

 
RESULTS 

 
 
Water inputs 

 
Data from nearby SNOTEL sites show that the area received more snow in the 

2008 water year than in 2007 (Figure 2.3).  The average precipitation since 1990 as 

measured by three nearby SNOTEL sites was 887 mm a year, with 74% falling as snow.  

In 2007 the catchment received only 84% of average precipitation: 743 mm, with 66% 
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falling as snow.  In 2008 it received 889 mm, 100% of average precipitation, with 86% 

falling as snow.  Peak snow accumulation came on March 12th in 2007 and April 13th in 

2008.  The average day of peak SWE since 1979 is April 4th.  Figure 2.3 also shows peak 

SWE from snow survey measurements at the study site under or near aspen and conifer 

canopies.  

In both years the average SWE surveyed under forest canopies was less than SWE 

recorded at the SNOTEL sites, which are in clearings (Figure 2.3).  A comparison of peak 

SWE under aspen and conifer canopies (Figure 2.5) shows that on average, aspen 

accumulated more SWE than conifer, and this difference was more pronounced in the 

wetter year (2008).  A two-sample t-test revealed that in 2007 the aspen stand had an 

average of 315 mm of peak SWE on and the conifer stand had 280 mm, an 11% 

difference (t = 2.22, df = 72.78, p-value = 0.0294).  In 2008 aspen had 509 mm and 

conifer 390 mm, a 23% difference (t = 5.55, df = 153.97, p-value = 1.178e-07).     

Under the conifer canopy there was a notable pattern of drifts forming between 

trees or groups of trees.  While areas under the densest part of the canopy were free of 

snow by May 20th, snow in drift areas lasted well into June (Figure 2.6).  Figure 2.7 

shows SWE measurements made under (n = 20), outside (n = 51) or on the edge (n = 19) 

of the conifer canopy at peak accumulation in 2008.   An analysis of variance (ANOVA) 

was used to assess the differences in accumulation among the locations relative to conifer 

canopy cover.  At the edge of the conifer canopy there was an average of 431.8 mm (SE 

= 25.18), which was not significantly different (p = 0.38) from the average outside of the 

canopy (401.2 mm, SE = 19.92).  The average snow accumulation under the conifer 
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canopy was 323.85, significantly less than both the edge (p = 0.010) and outside (p = 

0.025).   

Since snow is not a direct water input to the catchment, snow melt (considered 

snow ablation) and rain measured at the SNOTEL sites were combined to make surface 

water inputs (SWI), shown in Figure 2.8.  These values should be taken as maximum 

possible surface water inputs since snow ablation could represent sublimation, 

evaporation as well as melt.  The spring pulse of inputs was greater and later in the 2008 

water year than in 2007.  The maximum daily surface water input in 2007 was 46 mm on 

April 25th and 85 mm on May 20th of 2008. 

 
Infiltration 
 

Infiltration rates were measured at 16 points, 9 on the aspen hillslope and 7 on the 

conifer.  The minimum infiltration rate found in the aspen stand was 0.9 mm min-1 in the 

aspen stand and 0.42 mm min-1 in the conifer stand.  Infiltration rates are shown in table 

2.1 and a comparison of aspen to conifer average rates is shown in Figure 2.9.  A t-test 

showed that there was no significant difference between average infiltration rates in the 

aspen (3.32 mm hour-1) and conifer (4.54 mm hour-1) sites (t = -0.49, df = 11.46, p-value 

= 0.63).   

 
Soil physical properties 

 
Soil textures at varying depths for both vegetation types are shown in Figure 2.10 

and Table 2.3.  For details on locations where the samples were taken, see Appendix 

Table A2.  The average textural class for soils under both vegetation types was loam, 

though some lower horizons of the conifer soil were sandy loam.  There was a notable 
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difference between the rock content and soil depth of the profiles.  The aspen soil had 

an average rock content by volume of 1% (n = 12)) and its depth was greater than 1 m 

(bedrock was not reached at this site).  The conifer soil was very gravelly, with an 

average rock content of 46% by volume (n = 9).  The profile became increasingly rocky 

with depth, fading into fractured bedrock between 45 and 60 cm.  Average bulk densities 

show higher bulk densities in the conifer site, most likely due to the greater rock content 

(Table 2.3).    

A t-test showed that percent cover of leaf litter was not significantly different 

between the conifer and aspen sites (t = 0.043, df = 170.29, p-value = 0.97).  Aspen had 

an average of 51.0% and conifer 50.9%.  Depth of leaf litter was significantly greater at 

the conifer site (average depth was 1.06 cm) than at the aspen site (average depth was 

0.10 cm) (t = -4.068, df = 89.97, p-value = 0.0001).   

 
Continuous soil moisture 

 
Continuous soil moisture at three depths was averaged among all points on 

transects in both the aspen and conifer plots (Figure 3.2).  Shallower horizons were the 

most reactive while lower layers, especially in the aspen profile reacted slower to spring 

and fall wetting events.  Figure 3.3 shows shallow soil in the profiles reacting to fall 

precipitation, while lower horizons remain dry.  Peak soil moisture in 2007 came on April 

29th on both hillsides.  Maximum soil moisture measured by the deepest sensors was 0.35 

cm3 cm-3 under aspen and 0.38 cm3 cm-3 under conifer.  Peak soil moisture came later in 

2008, on May 19th.  Lower horizons showed roughly the same water contents (0.36 cm3 

cm-3 under aspen and 0.38 cm3 cm-3 under conifer).   
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Streamflow is plotted with the soil moisture records in Figure 3.2.  In the spring 

of both 2007 and 2008 water years soil moisture shows an abrupt increase.  These sudden 

soil moisture increases happen at soil water contents between 18 and 25%.  Streamflow 

recorded in the 2008 water year shows the stream beginning to peak shortly after these 

critical soil moisture levels are reached.   

There is only a brief window of time when high water contents are seen 

throughout all profiles on a given hillslope (Figure 3.3).  These brief periods represent the 

wettest and most likely times for soil water to contribute to streamflow or groundwater 

recharge.  Soils in the winter of 2008 were recorded as notably drier, especially under the 

aspen stand.  This is contrary to our observation that 2008 was a wetter year.  However, 

there is a chance that subzero temperatures in 2008 caused the sensors to record 

artificially lower moisture contents.  Or that frozen soil prevented water from infiltrating 

or percolating through the profiles.  Periods of subfreezing temperatures in the 2008 

water year began as early as November 4th and lasted until April 14th in the conifer and 

until May 3rd in the aspen (Figure 2.11).  Soil temperatures from the three nearby 

SNOTEL sites show only one site briefly dropping below freezing in the fall of 2006.  

While in the fall of 2007, all sites fell below freezing due to a drop in air temperatures 

before an insulating snowpack could accumulate.  Our study site experienced more shade 

than the SNOTEL sites and therefore had subfreezing temperatures in the soil for longer. 

 
Trenchflow 

 
The upper level collection system (20 cm deep) in the aspen trench recorded a 

very small amount of flow (Figure 3.4).  Tipping bucket records from the aspen trench  
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Figure 3.2.  Average soil moisture for two water years at three depths in the (a) aspen 
profile and (b) conifer profile. Blue lines indicate streamflow which was only recorded 
during the 2008 water year.   

 

collection system at 50 cm show significant flow from the trench face May 15th through 

May 21st.  Clear diel pulses were seen each day.  Flow started each day between 2:00 and 

3:00pm, peaked between 5:00 and 7:00pm and subsided between 1:00 and 4:00 the next 

morning (Figure 3.4). 

 The conifer trench was uncovered on May 28th and found to contain ~1 m of 

standing water.  Judging by when the tipping bucket started recording movement, I 

inferthat the trench contained a substantial amount of water by April 25th.  Once the water 
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receded, it was clear that the flow was coming from the lower portions of the soil 

profile, 45 to 70 cm and below.  Using flow data measured by hand from the trench face 

on May 31st, flow from the entire conifer hillslope was estimated at 3.5 L s-1.  A water 

height recorded placed in the bottom of the trench starting June 14th, shows the trench 

had drained completely by June 28th.  

By considering trenchflow initiation as an indicator of subsurface lateral flow, the 

soil water content threshold for hillslope connectivity can be identified from the 

continuous soil moisture measurements in the hillslope.  Trenchflow began with an 

average water content of 0.29 cm3 cm-3 in the deepest sensors of the aspen hillslope and 

0.22 cm3 cm-3 in the conifer hillslope.  

 
Streamflow  

 
  Streamflow, gauged at three points along the stream (Figure 2.2), showed two 

distinct hydrograph peaks during the spring snow melt.  The first peak below the aspen 

hillslope was 30.8 L s-1 on May 18th.  The conifer-gauging point peaked at 69.7 L s-1 on 

May 20th (Figure 2.12a).  Figure 2.12 also shows surface water inputs (SWI) measured at 

the three nearby SNOTEL sites.  Here SWI was a combination of rain and snow ablation 

(to represent snow melt).  The lull in streamflow between the two peaks can be attributed 

to a storm, which lowered temperatures from a daily average of 14 to 1 C and left 29 mm 

of SWE between May 21st and 23rd.  The second hydrograph peaks were greater for the 

middle and conifer gauging points, which peaked at 31.7 L s-1 on June 1st, and 82.3 L s-1 

on June 2nd, respectively.  Streamflow below the aspen hillslope did not peak at this time,  
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Figure 3.3.  Soil volumetric water contents (cm3 cm-3) from profiles on each of the 
hillslopes for both water years 2007 and 2008.   
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Figure 3.4.  Trenchflow from (a) the aspen trench at 20 cm depth, (b) the aspen trench at 
50 cm depth and (c) the level logger in the bottom of the conifer trench.  Note that time 
scales differ for each plot. 
 
 
but sustained slightly raised flows (~12 L s-1) until sensors at all gauged points dropped 

off to baseflows in mid June (~12th).   

(b) 

(c) 

(a) 
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A hydrograph from the conifer dominated contributing area was isolated by 

subtracting flow from the middle section from flows at the conifer gauge (Figure 2.12b).  

The total water yield for the 2008 water year from the conifer contributing area was 1.46 

m m-2, with approximately 53% coming with the spring snow melt pulse (April 6th to July 

4th).  The total estimated water yield for the 2008 water year from the conifer contributing 

area was 0.73 m m-2, with approximately 60% coming with the spring snow melt pulse.  

The 2008 annual water yield from the aspen dominated contributing area was 0.64 m m-2.  

With a smaller and more upland contributing area, baseflow below the aspen hillslope 

was a mere trickle and 87% of all water flowing there comes during the spring pulse 

(February 13th to June 17th).  This demonstrates the importance of the spring snowmelt 

for water yield in this snow driven system.   

Snow had disappeared from the aspen hillslope by June 14th and from the conifer 

hillslope by June 20th.  Therefore the diel fluctuations in streamflow after these dates 

(Figure 3.5) can be attributed to evapotranspiration, not snow melt.  On June 14th, the 

stream gauged below the aspen hillslope showed a weak diurnal signal on June 14th, 

becoming slightly more pronounced from June 20th to 25th, during the beginning of leaf 

out (Figure 3.5).  But after June 25th the streamflow was too low for consistent detection 

by the sensor, which requires at least 5 cm of water height.  Diurnal fluctuations in 

streamflow at the middle gauging point were faint during the steep descend of the falling 

limb of the hydrograph but became apparent by June 28th and continued until the sensor 

was removed on August 28th.  At the gauging point below the conifer hillslope diel fluxes 

were clearly seen throughout the spring melt and summer until the sensor malfunctioned 

in late June.    
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Plots of soil moisture measured at the deepest probes, versus streamflow show 

a threshold behavior at both gauging points (Figure 3.7).  Flow gains from below the 

conifer contributing area are isolated by subtracting the flow at the middle gauging point 

from flow below the conifer hillslope.  The soil moisture thresholds, past which 

streamflow increased, were 0.28 cm3 cm-3 in the aspen and 0.32 cm3 cm-3 in the conifer.  
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Figure 3.5.  Examples of diel fluctuation in streamflow after snow disappeared from the 
catchment in the 2008 water year.  (a) Streamflow gauged below the aspen hillslope, (b) 
streamflow gauged between the aspen and conifer contributing areas and (c) streamflow 
gauged below the conifer hillslope.   
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(c)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6.  Pictures of aspen leaf out (a) no leaves on June 15th, (b) the beginning of leaf 
out, June 20th, and (c) full leaf out on June 24th.     
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Figure 3.7.  Soil moisture at the deepest sensors versus streamflow for (a) the aspen 
contributing area and (b) the conifer contributing area. The aspen hillslope shows 
hysteresis.  
 
 
Overland flow 

 
Upon first arrival to the catchment in the spring, saturation excess overland flow 

was observed (but not quantified) in the lower portions of the catchment, on May 20th.  

Thin films of surface water were observed at the aspen site on May 19th but had grown 

patchy by May 28th.  Overland flow and return flow were observed at the conifer site on 

May 20th, 28th and 31st but had subsided by June 7th.  Since snow still covered the soils 
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surface, observations of overland flow on middle and upper portions of the hillslopes 

were limited to points that were dug to for soil moisture measurements.  Near the stream, 

sheet flow was seen on areas of exposed soil near the stream, routing water from the base 

of the snowpack to the stream.  Overland flow was observed after May 20th, the day of 

highest surface water input during for the 2008 water year.  However, since no one was 

there before May 20th, it is not known exactly when overland flow began.   

 
DISCUSSION 

 
 

To understand woody vegetation effects on hillslope scale hydrologic processes 

one needs to know if subsurface flow through the root zone is a dominant pathway to the 

stream (Huxman et al., 2005).  One must also understand what other flowpaths to the 

stream are possible, or significant.  In this study surface water inputs, soil moisture, 

trenchflow and streamflow were assessed to infer when the hillslopes of aspen and 

conifer were major contributors to streamflow.  The goal of the study was to detect 

differences in subsurface flow between aspen and conifer hillslopes.  

 
Soil moisture 
 

No downslope accumulation of moisture was seen on either hillslope; soil 

moisture was not greater, nor did it last longer in the profiles closest to the stream (Figure 

2.3).  This was no surprise because subsurface lateral flow is highly heterogeneous and 

may not be detected at a series of singe point measurements.  Using transect data to 

characterize an entire hillslope is difficult because flowpaths are spatially variable 

(Tromp-van Meerveld and McDonnell, 2006b).  There was a brief window of widespread 



 103
high soil moisture throughout all profiles in both the 2007 and 2008 water years.  This 

would be the most likely time for subsurface lateral flow to be contributing to the stream.   

By plotting soil moisture with streamflow, a soil moisture threshold beyond which 

streamflow greatly increased was estimated (Figure 2.7).  Comparing the number of days 

in 2008 that soil moisture in each hillslope was above its threshold, demonstrates that the 

aspen hillslope was above its threshold for longer than the conifer hillslope (57 versus 20 

days).  This result appears to support hypothesis (1), that hydraulic connection within the 

aspen hillslope will have longer duration in the aspen than the conifers hillslope because 

of greater surface water inputs.   

 
Trenchflow      

 
Trenchflow in the aspen stand showed the 20 cm deep collection system receiving 

very little, sporadic flow as early as December 31st, before any large amounts of surface 

water input (Figure 3.4).  Condensation was also observed on the roof of the trench and 

was considered the only cause of registered inputs at the upper collection system of the 

aspen trench.  The 50 cm deep collection system in the aspen trench flowed from May 

15th to 21st (six days).  Maximum flow from the seven-meter-long aspen trench was 0.38 

L s-1 on May 20th when streamflow below the hillslope was 15 L s-1.  The time of 

trenchflow in the aspen hillslope coincided with the highest rate of snow melt and clear 

diel pulses of trenchflow are attributed to daily fluctuations in melt rate.  By piecing 

together tipping bucket data and water height data from the conifer trench I estimate that 

the conifer trench flowed for approximately two months, April 25th to June 28th.  Flow 

from the conifer trench, measured by hand and extrapolated to represent flow from all 



 104
seven meters of the trench, was 4.79 L s-1 on May 31st.  Given that streamflow below 

the conifer hillslope was 60 L s-1 on May 31st, I assume that hillslope contributions made 

up a significant portion of streamflow at this time.  Trenchflow indicated the conifer 

hillslope connection was sustained much longer than the aspen.  Not only did flow in the 

conifer trench exceed the aspen trench in duration but in quantity as well.  Longer and 

greater subsurface flow from the conifer hillslope would lead me to reject both 

hypothesis (1) and (2), that hydraulic connection within the aspen hillslope will have 

longer duration in the aspen than the conifers hillslope because of greater surface water 

inputs.  

Preferential flow through macropores is often important in generating lateral flow 

(Lin et al., 2006).  Macropore flow was initiated before matrix flow on a trench face in 

the humid Panola catchment (Tromp-van Meerveld and McDonnell, 2006b).  Preferential 

flow on our conifer hillslope was observed between the shards of fracture bedrock 

observed in the conifer profiles.  Uchida et al. (2005) cite the most prevalent preferential 

flow as that at the soil bedrock interface or at impeding layers (Uchida et al., 2005) which 

appears to be the case at this study site as well.   

 
Hillslope-stream connectivity 

 
Using the soil moisture content at which streamflow becomes reactive (Figure 

3.7), we detect longer connectivity in the soil profile of the aspen hillslope.  This method 

of defining hillslope-stream connection was used by McNamara et al. (2005) but may be 

skewed at this study site by snow melt directly entering the stream via overland flow, 

causing a rise in the hydrograph unrelated to subsurface lateral flow.  Saturation excess 
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overland flow was observed (but not quantified) in the lower portions of the 

catchment, on May 20th, through 31st, the period of highest surface water input during for 

the 2008 water year, but had subsided completely by June 7th.   

Using information from the trenches, longer connectivity was detected at the soil 

bedrock interface of the conifer hillslope (Figure 3.4).  This method of defining hillslope-

stream connectivity was used by Tromp-van Meerveld and McDonnell (2006b) and by 

Newman et al. (1998).  While the two methods of identifying hillslope-stream 

connectivity appear to contradict each other, one must note that each are measuring 

hillslope processes at different depths and scales.  The soil moisture probes supplied 

information about moisture conditions at the point scale, within the soil profile where 

probe installation was possible.  The trenches collected water from a greater cross-section 

of hillslope that included macropores and the soil bedrock interface in the conifer trench.   

Uncertainties are associated with both methods.  In the soil moisture-streamflow 

relationship approach, soil moisture is used as a surrogate for soil water potential, which 

dictates water flow in soils.  Soil texture was relatively homogeneous at the study site, 

and thus the use of soil moisture was reasonable.  Aspen soils may have held more water 

but it could have been held with greater force.  Aspen soils did not have greater clay 

content or bulk density but the high rock content in the conifer soils most likely 

decreased its relative ability to retain water.  Uncertainty involved in trenchflow 

measurements may include the formation of a saturated wedge uphill from the trench face 

(Atkinson, 1978) and saturated flow around the trench (Tromp-van Meerveld et al., 

2007).  A saturated wedge is likely to have less of an effect on the conifer hillslope, 
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where rocky soils have higher hydraulic conductivities and offer less resistance at the 

soil-air interface of the trench face. 

 While the existence of a soil moisture-streamflow threshold relationship (Figure 

3.7) does not necessarily signify subsurface lateral flow, there is an obvious relationship 

between hillslope soil moisture and streamflow.  Figure 3.2 also shows both soil moisture 

and streamflow begin their spring pulses in an abrupt, threshold-like manner.  By 

combining the information from these two figures (3.2 and 3.7), I infer that these 

thresholds of soil water contents lie between 18 and 28% in aspen and 23 and 32% in 

conifer.  These thresholds most likely are due to soil pores reaching a moisture-content 

above field capacity, at which point hydraulic conductivity increased and soil water 

became drastically more mobile within the hillslope and more easily contributed to 

streamflow.  

 
Soil depth 
 

Soil depth or depth to bedrock was found to be a controlling factor for subsurface 

lateral flow in several study hillslopes, including the humid Panola catchment (Tromp-

van Meerveld and McDonnell, 2006b), a humid catchment in Pennsylvania (Lin et al., 

2006), and an agricultural catchment in Western France (Freer et al., 1997; Chaplot and 

Walter, 2003; Tromp-van Meerveld and McDonnell, 2006b).  In this study, the soil 

profile under conifers was shallow and fractured bedrock was reached within the top 

meter.  The aspen profile was very deep and though the deepest part of the aspen trench 

was nearly 1.5 m deep, true bedrock was never reached.  The approximate storage 

capacity of each profile was estimated using physical properties of the soil profiles.  Soil 
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depths were observed at eight soil pits dug for sensor installation as well as at the 

trenches.  For simplicity�’s sake I have rounded soil depths off to conservative estimates 

of 1 m in the aspen and 0.5 m in the conifer.  Porosity was considered the maximum soil 

moisture contents observed (100% saturation).  Values were averaged from all sensors on 

each hillslope and found to be 35% is aspen and 38% in conifer (Figure 3.2).  Rock 

contents were averaged from samples on each hillslope (Table 2.3), at 1% in aspen and 

46% in conifer.  The remaining profile volume was assumed to be soil, including mineral 

and organic particles smaller that 2 mm.  Comparisons of each profile water storage 

capacity (Figure 3.8) show that maximum storage capacities would be overcome after 35 

cm of water inputs in the aspen and after 19 cm water inputs in the conifer.  Therefore 

excess water would have been -4 and 16 cm from the aspen profile, in 2007 and 2008 

respectively and 7 and 20 cm from the conifer profile, in 2007 and 2008 water years 

respectively.   

Essentially the deeper aspen profile, with more void space, was able to absorb the 

majority of water inputs, leaving little water for possible subsurface flow (or other 

pathways to the stream or deep groundwater storage).  Whereas the shallow, rocky 

conifer profile, with less storage capacity, produced more water per area for subsurface 

lateral flow, overland flow or deep groundwater percolation.  This corresponds with 

calculated water yield from each of the contributing areas, the conifer yielding a greater 

amount (0.73m m-2 versus 0.64 m m-2). 

Plots of soil moisture with streamflow appears to support hypothesis (1), that 

hydraulic connection within the aspen hillslope will have longer duration in the aspen 

than the conifers hillslope because of greater surface water inputs.  However, a longer 
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Figure 3.8.  Scaled representations of accumulated snow water equivalent and estimated 
storage capacity for each profile.    
 

observed period of trenchflow in the conifer hillslope, together with greater storage 

capability in the aspen profile, lead me to reject hypothesis (1).  Though the conifer 

canopy lessened its surrounding snow-pack, the shallow soil profile yielded more water 

via subsurface lateral flow in the top meter of soil.   

 
Canopy effects on snow duration, soil moisture, and streamflow 

 
Differences in aspen and conifer canopy characteristics lead to differences in 

quantity and timing of input water inputs to the catchment   Figure 2.5 shows that the 

aspen hillslope accumulated 11 and 23% more SWE than the conifer hillslope in the 2007 

and 2008 water years.  Observations shown in Figure 2.6, demonstrate that snowdrifts 

lasted longer under the conifer stand.  Other studies in the snow-driven Intermountain 
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West have noted that tree canopies alter the delivery of surface water inputs 

(Hiemstra et al., 2002; Marks et al., 2002; LaMalfa and Ryel, 2008).  In this study 

catchment, the conifer canopy appears to attenuate spring snow melt water inputs, 

lessening the snowpack and storing drifts for longer.  However, soil moisture peaks in the 

hillslopes do not differ in their duration and streamflow contributions from the conifer 

dominated area appear to peak more intensely than those from the aspen area.  The 

attenuation of water inputs does not translate into attenuation of soil moisture or 

streamflow in the conifer hillslope. 

In this study, water yield appears to be affected by a combination of soil depth 

and canopy type.  The conifer canopy decreased the accumulated SWE available for run 

off yet the conifer soil profile held less water, therefore contributing more to the stream.  

The aspen hillslope received more SWE but held melt-water in the soil more efficiently, 

yielding less stream-water.  Changes in vegetation will bring about changes in the soil 

profile.  However, soil characteristics are much less dynamic than vegetation and 

significant changes in profile water storage capacity will lag changes in vegetation type 

(Shepperd et al., 2006).  Surface water yield might then be decreased most in an invasion 

scenario, where a conifer canopy would occupy an aspen soil profile.  This study 

therefore suggests that restoration efforts aimed at increases water yield through 

vegetation management should focus on conifer invasion into deep (aspen) soils.   

 
Deep groundwater sources 

 
The aspen contributing area includes a head-cut containing a spring from which 

the stream originates.  A previous study in the watershed found that stream water 
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chemistry suggests that groundwater is the source of baseflow in this system 

(Shakespeare, 2006).  While water surfacing at the head-cut is most likely a mix of 

subsurface flow and deeper groundwater, this is evidence that other flowpaths besides 

subsurface lateral are playing a role in runoff generation from the catchment.  It is known 

that deep groundwater sources supply the stream�’s baseflow but the magnitude of their 

contribution to peak flow in the spring snow melt is unknown.  Mechanisms of surface 

water generation must be known for the effects of woody plants on streamflow to be 

understood (Huxman et al., 2005; Weiler et al., 2005).  The more dominant subsurface 

flow is as a pathway, the more streamflow will be affected by a shift in woody vegetation 

types (Huxman et al., 2005).  However, even if deep groundwater is the primary source 

of streamflow, water inputs must still percolate past the root zone in order to recharge 

aquifers.   Vegetation affects streamflow in the study catchment, as seen through the diel 

fluctuations in stream discharge seen after snow was gone from the catchment (Figure 

3.5).   Using the same concept, Bond et al. (2002) linked streamflow and vegetation by 

comparing diel patterns of transpiration and streamflow after all snow had melted from 

the watershed.   Further investigations are needed in the study catchment to assess how 

much streamflow in the spring peak is supplied by deep groundwater sources and to what 

extent vegetation affects the recharge of these sources.   

 
CONCLUSIONS 

 
 

Using the soil-moisture threshold past which streamflow greatly increased, a 

comparison between the vegetation types reveals that the aspen hillslope was connected 

to the stream for longer than the conifer hillslope.  However, upon comparing trenchflow 
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between the sites, it becomes clear that the conifer hillslope was connected for longer 

and experienced more flow.  Hypothesis (1), that hydraulic connection within the 

hillslopes during the spring snow melt will have longer duration in the aspen than the 

conifers hillslope because of greater surface water inputs, is therefore rejected.  

Thresholds past which trenchflow began were exceeded for longer in the conifer 

hillslope.  This lead to also reject hypothesis (2), that a soil water content threshold for 

subsurface flow will be exceeded for longer time periods in the aspen stand due to greater 

surface water inputs. 

Soil depth was found to be a controlling factor on subsurface lateral flow since 

calculations indicate that conifer soils have much less capacity for storing water.  

Differences in snowpack duration were observed between the canopy types, but this did 

not translated into short but intense pulses of soil moisture or streamflow in the aspen 

stand where more SWE accumulated and melt time was less.   

Further investigations into other flowpaths in the catchment and their relative 

contributions are needed.  Deep groundwater sources and overland flow are contributing 

to streamflow but understanding their quantity and timing would help estimate vegetation 

effects on streamflow.  Soil depth is a likely control on subsurface lateral flow in this 

catchment and mapping bedrock topography would surely elucidate how the two 

hillslopes function in comparison to one another.   
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     CHAPTER 4 

 
CONCLUSIONS 

 
 

This study examined hillslope-stream connectivity in two end point communities 

of aspen and conifer.  Surface soil moisture is important for many components of 

ecohydrology and understanding how it differs between these vegetation types leads to 

how these different forest types will cycle water.  Subsurface lateral flow is greatly 

affected by vegetation therefore comparing this flowpath between vegetation types will 

help our understanding of vegetation effects on water yield.   

Canopy type at this site clearly affects water inputs.  But further research into 

sublimation of snow retained in the canopy is needed to clarify the extent to which this 

changes water yield.  Overland flow and deep groundwater have both been observed 

contributing streamflow.  Quantifying these inputs would greatly improve our knowledge 

of how streamflow generation mechanisms in this catchment are influenced by 

vegetation.  Soil depth or depth to bedrock was also found to control subsurface lateral 

flow and warrants further investigation. 

The complexity of hillslope hydrology is due to a multitude of processes 

interacting at different scales.  Because of diel fluctuations in streamflow after the 

disappearance of snow in our catchment, we know that transpiration is affecting 

streamflow below both aspen and conifer hillslopes.  Shallow soil moisture shows 

connectivity lasting longer in the aspen stand, but examination of the deeper trenchflow 

shows greater volumes and longer duration of subsurface lateral flow in the conifer site. 
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Similar to other semi-arid systems, subsurface lateral flow connected the stream and 

hillslope of this catchment only during the wettest periods of the spring snow melt.  For 

the remainder of the year the hillslope and stream were disconnected. 
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Figure A1.  Calibration Curves for soil water content probes (CS616) (a) 12 cm probe in 
aspen soils, (b) 12 cm probe in conifer soils, (c) 30 cm probe in aspen soils and (d) 30 cm 
probe in conifer soils. 
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(c) 

y = 0.0004x2 + 0.025x - 0.4732
R2 = 0.9608

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

15 20 25 30 35

period

Volumetric 
Water Content 

(cm3/cm3)

 
(d) 
 

y = 0.0007x2 - 0.0152x + 0.1495
R2 = 0.9916

0.0

0.1

0.2

0.3

0.4

0.5

15 20 25 30 35

period

Volumetric 
Water Content 

(cm3/cm3)

 
 
 
 
 
 
 
 
 
 
 
 



 121
 
Table A1. Soil texture for each point measured. 
 
 

Point on 
Apen  

Hillslope 
Depth 
(cm) Sand % Silt % Clay % Texture Class 

17 0-5 31.89 46.31 21.80 Loam 
24 0-5 46.22 33.47 20.32 Loam 
35 0-5 42.02 41.47 16.51 Loam 
47 0-5 43.33 46.13 10.55 Loam 
5 0-5 40.39 38.46 21.14 Loam 
54 0-5 52.70 37.95 9.35 Sandy Loam 
63 0-5 52.13 30.63 17.23 Sandy Loam 
76 0-5 53.54 30.24 16.21 Sandy Loam 
81 0-5 49.47 33.40 17.13 Loam 
96 0-5 53.28 29.18 17.55 Sandy Loam 
A1 0-5 36.90 42.32 20.78 Loam 
A4 0-5 41.11 41.42 17.47 Loam 
A3 0-5 41.44 38.40 20.16 Loam 
A7 0-5 43.23 38.27 18.50 Loam 
A7 5-20 42.43 37.62 19.96 Loam 
A4 5-20 38.40 40.55 21.06 Loam 
A3 5-20 40.92 37.95 21.13 Loam 
A1 5-20 33.84 42.00 24.16 Loam 
A1 20-88 37.53 38.38 24.09 Loam 
A3 20-96 41.85 36.65 21.50 Loam 
A4 20-126 39.57 39.02 21.41 Loam 
A7 20-80 42.34 38.02 19.64 Loam 

Average 
Aspen   42.93 38.08 18.98 Loam 

Standard 
Deviation   6.33 4.79 3.81   
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Table A1. (Continued) 
 
 

Point on 
Conifer  

Hillslope 
Depth 
(cm) Sand % Silt % Clay % Texture Class 

19 5 38.49 43.86 17.65 Loam 
25 5 32.29 48.19 19.52 Loam 
4 5 50.23 35.33 14.44 Loam 
47 5 41.21 48.93 9.86 Loam 
50 5 53.21 30.57 16.21 Sandy Loam 
63 5 42.33 39.16 18.51 Loam 
78 5 41.00 41.56 17.44 Loam 
87 5 33.56 50.00 16.44 Silt Loam 
95 5 35.51 44.93 19.56 Loam 
B3 5 43.82 40.90 15.29 Loam 
B3 5 44.48 38.05 17.47 Loam 
B5 5 27.96 54.85 17.20 Silt Loam 
B1 5 54.92 24.96 20.12 Sandy Clay Loam 
B1 5-20 54.56 28.00 17.44 Sandy Loam 
B3 5-20 37.23 43.33 19.44 Loam 
B4 5-20 25.89 52.67 21.44 Silt Loam 
B5 5-20 25.93 53.55 20.52 Silt Loam 
B7 5-20 33.29 46.39 20.32 Loam 
B1 20-75 55.23 26.79 17.98 Sandy Loam 
B3 20-93 56.02 25.90 18.09 Sandy Loam 
B5 20-95 53.87 32.49 13.64 Sandy Loam 
B7 20-85 53.96 30.34 15.71 Sandy Loam 

Average 
Conifer   41.46 41.64 16.90 Loam 

Standard 
Deviation   8.09 8.25 2.69   
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Table A2.  Bulk densities and location of soil measurement points.   

Aspen 
Point UTM N UTM E 

Depth 
(cm) 

Volume 
(cm3) 

Dry 
weight 

(g) 

Rock 
Volume 

(%) 

Bulk 
Density 
(g/cc) 

Porostity 
(%) 

5 461398 4579137 5 280 441.1   1.58 40.55 
6 461401 4579131 5 400 446   1.12 57.92 
10 461411 4579105 5 350 442.8   1.27 52.26 
16 461413 4579134 5 560 607.6   1.09 59.06 
17 461412 4579135 5 410 455.3   1.11 58.09 
24 461431 4579146 5 400 439   1.10 58.58 
35 461448 4579140 5 260 439.5   1.69 36.21 
36 461454 4579126 5 230 255.5   1.11 58.08 
47 461407 4579125 5 200 243.1   1.22 54.13 
52 461481 4579166 5 310 436.6   1.41 46.85 
54 461483 4579152 5 320 256   0.80 69.81 
55 461493 4579153 5 210 229.7   1.09 58.72 
63 461499 4579162 5 420 677.2   1.61 39.16 
66 461500 4579139 5 480 494.1   1.03 61.16 
70 461502 4579100 5 300 310.9   1.04 60.89 
73 461513 4579167 5 320 433.5   1.35 48.88 
76 461518 4579140 5 530 436   0.82 68.96 
79 461528 4579186 5 450 499.1   1.11 58.15 
81 461539 4579169 5 250 232.3   0.93 64.94 
85 461523 4579229 5 190 239.5   1.26 52.43 
90 461550 4579188 5 380 438.2   1.15 56.48 
91 461555 4579179 5 540 493.4   0.91 65.52 
93 461528 4579255 5 450 405.5   0.90 66.00 
96 461543 4579230 5 370 295.4   0.80 69.87 

nest 6 461436 4579152 5 150 146.8 1.33 0.98 63.07 
nest 6 461436 4579152 20 275 306.7 0.73 1.12 57.91 
nest 6 461436 4579152 65 195 223.5 0.51 1.15 56.75 
nest 5 461400 4579168 5 235 233.1 0.85 0.99 62.57 
nest 5 461400 4579168 20 265 308.5 0.38 1.16 56.07 
nest 5 461400 4579168 90 255 299.5 0.39 1.17 55.68 
nest 7 461466 4579147 5 330 330.5 0.61 1.00 62.21 
nest 7 461466 4579147 20 220 245.7 0.91 1.12 57.86 
Trench 461395 4579190 5 245 273.3 2.45 1.12 57.91 
Trench 461395 4579190 20 225 217.1 0.44 0.96 63.59 
Trench 461395 4579190 60 145 202.2 1.38 1.39 47.38 
nest 8 461501 4579132 20 275 298.7 0.55 1.09 59.01 

Average 
Aspen           0.88 1.13 57.30 

Standard 
Deviation           0.60 0.21 7.95 
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Table A2. (Continued)  

Conifer 
Point UTM N UTM E 

Depth 
(cm) 

Volume 
(cm3) 

Dry 
weight 

(g) 

Rock 
Volume 

(%) 

Bulk 
Density 
(g/cc) 

Porostity 
(%) 

1 461157 4579299 5 350 285.2   0.81 69.25 
3 461170 4579289 5 270 363.2   1.35 49.24 
4 461181 4579289 5 350 400.6   1.14 56.81 
8 461217 4579270 5 280 311.5   1.11 58.02 
9 461236 4579260 5 210 213.2   1.02 61.69 

14 461173 4579275 5 510 660.5   1.30 51.13 
15 461191 4579251 5 920 1636   1.78 32.90 
16 461203 4579273 5 310 446.6   1.44 45.64 
18 461202 4579302 5 570 119.8   0.21 92.07 
19 461213 4579262 5 330 370   1.12 57.69 
21 461159 4579275 5 390 610   1.56 40.98 
22 461159 4579268 5 490 415.6   0.85 67.99 
23 461172 4579254 5 400 393   0.98 62.92 
24 461175 4579253 5 340 529.7   1.56 41.21 
31 461144 4579259 5 400 549   1.37 48.21 
32 461160 4579239 5 370 477.2   1.29 51.33 
33 461151 4579232 5 440 736.9   1.67 36.80 
34 461175 4579226 5 390 641.3   1.64 37.95 
35 461166 4579236 5 510 494.1   0.97 63.44 
43 461154 4579222 5 400 315.2   0.79 70.26 
44 461164 4579219 5 520 417   0.80 69.74 
45 461178 4579211 5 460 562.8   1.22 53.83 
46 461178 4579210 5 260 298.7   1.15 56.65 
47 461184 4579207 5 210 379.4   1.81 31.82 
48 461193 4579204 5 210 305.5   1.45 45.10 
49 461209 4579192 5 250 399   1.60 39.77 
54 461176 4579190 5 360 441   1.23 53.77 
55 461180 4579186 5 430 138.4   0.32 87.85 
56 461188 4579182 5 320 458.2   1.43 45.97 
57 461199 4579177 5 500 531.7   1.06 59.87 
59 461217 4579168 5 330 323.5   0.98 63.01 
60 461217 4579158 5 450 630.1   1.40 47.16 
63 461151 4579176 5 360 325   0.90 65.93 
64 461157 4579162 5 290 350.9   1.21 54.34 
65 461171 4579172 5 300 511.9   1.71 35.61 
67 461185 4579154 5 350 552.8   1.58 40.40 
68 461200 4579148 5 570 645.8   1.13 57.25 
69 461204 4579147 5 400 588.2   1.47 44.51 
76 461177 4579156 5 220 208.4   0.95 64.25 
78 461198 4579141 5 330 343.1   1.04 60.77 
82 461147 4579150 5 280 57.2   0.20 92.29 
83 461153 4579146 5 400 661.5   1.65 37.59 
87 461184 4579119 5 350 594.8   1.70 35.87 
95 461174 4579125 5 270 337.7   1.25 52.80 
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Table A2. (Continued)  
 
       

96 461182 4579110 5 210 318.5   1.52 42.77 
nest 5 461193 4579267 5 235 357.9 46.81 1.52 42.53 
nest 5 461193 4579267 20 600 1139.5 61.67 1.90 28.33 
nest 5 461193 4579267 45 325 604.8 73.85 1.86 29.78 
nest 6 461188 4579276 5 240 253.4 25.00 1.06 60.16 
nest 6 461188 4579276 20 175 181.3 20.00 1.04 60.91 
nest 6 461188 4579276 45 315 623.7 60.32 1.98 25.28 
Trench 461157 4579299 20 270 273.1 25.93 1.01 61.83 
Trench 461157 4579299 40 380 721 69.74 1.90 28.40 
Trench 461157 4579299 5 275 308.3 32.73 1.12 57.69 

Average 
Aspen           46.23 1.28 51.88 

Standard 
Deviation           20.87 0.42 15.78 
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