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ABSTRACT 

 

 This dissertation studied the structural identification and damage detection of civil 

engineering structures. Several issues regarding structural health monitoring were 

addressed. 

 The data-driven subspace identification algorithm was investigated for modal 

identification of bridges using output-only data. This algorithm was tested through a 

numerical truss bridge with abrupt damage as well as a real concrete highway bridge with 

actual measurements. Stabilization diagrams were used to analyze the identified results 

and determine the modal characteristics. The identification results showed that this 

identification method is quite effective and accurate. 

 The influence of temperature fluctuation on the frequencies of a highway concrete 

bridge was investigated using ambient vibration data over a one-year period of a highway 

bridge under health monitoring. The data were fitted by nonlinear and linear regression 

models, which were then analyzed. 

 The substructure identification by using an adaptive Kalman filter was 

investigated by applying numerical studies of a shear building, a frame structure, and a 

truss structure. The stiffness and damping were identified successfully from limited 

acceleration responses, while the abrupt damages were identified as well. Wavelet 

analysis was also proposed for damage detection of substructures, and was shown to be 

able to approximately locate such damages.  

 Delamination detection of concrete slabs by modal identification from the output-

only data was proposed and carried out through numerical studies and experimental 

modal testing. It was concluded that the changes in modal characteristics can indicate the 
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presence and severity of delamination. Finite element models of concrete decks with 

different delamination sizes and locations were established and proven to be reasonable. 

 Pounding identification can provide useful early warning information regarding 

the potential damage of structures. This thesis proposed to use wavelet scalograms of 

dynamic response to identify the occurrence of pounding. Its applications in a numerical 

example as well as shaking table tests of a bridge showed that the scalograms can detect 

the occurrence of pounding very well. 

 These studies are very useful for vibration-based structural health monitoring. 

 

          (213 pages) 

  



v 

 

PUBLIC ABSTRACT 

 

 This dissertation addressed damage detection of civil engineering structure, such 

as, buildings and bridges, by using the measurements of vibration sensors that were 

instrumented on these structures. The damage detection and health monitoring of the 

infrastructures are essential to keep them working safely, thus to avoid loss of lives and 

wealth due to the disastrous damage. Several issues regarding the damage detection of 

civil engineering structures were addressed as follows. 

 A subspace-based method successfully obtained damage information of a truss 

bridge from simulated measurements as well as of a highway concrete girder bridge from 

actual vibration measurements. This method is recommended to be one choice of the 

methods to process vibration data. 

 The influence of temperature fluctuation on the natural frequencies of a highway 

concrete bridge was investigated using vibration data over a one-year period of a 

highway bridge under health monitoring. The data were analyzed through statistical 

method and the relationship between natural frequencies and temperatures were 

correlated. These correlations are useful for discriminating damage from normal changes. 

In reality, it is not possible to install sufficient sensors on the structures and it is also 

difficult to analyze for a large system due to numerical difficulty. A substructural 

approach with a filtering algorithm was used to address this issue and examined by their 

applications. It was proved to be quite effective and can obtain damage information 

accurately.  

 Delamination is of great concern for bridges and routine inspection is necessary. 

This dissertation proposed to detect delamination of concrete plates by modal 
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identification using measurements of vibration sensors. This new approach can reduce the 

costs significantly and could obtain real-time delamination information. 

 When subjected to earthquake, the pounding can occur between different 

structures, for example, the adjacent buildings, or the different parts of a structure, for 

example, two spans of a bridge, and can cause considerable damage or degradation to the 

structures. Therefore, the monitoring of the pounding is useful and can provide useful 

early warning. This dissertation proposed and investigated a wavelet-based approach to 

detect the occurrence of pounding through simulated as well as large shake table tests to a 

bridge model. The approach was proved to be effective. 

 These studies are very useful for the health monitoring and safe operation of 

bridges, buildings, and other engineering structures.  
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CHAPTER I  
 

INTRODUCTION 
 

 

 This chapter gives a general introduction on vibration-based structural health 

monitoring, which is the subject of this thesis. The structural identification and damage 

identification methods are discussed. The research topics and organization of this thesis 

are demonstrated. 

 

1.   Structural Health Monitoring Based on  

      Vibration Measurements 

 

 Structural health monitoring (SHM) is the process to implement a damage 

identification system for civil, mechanical, and aerospace engineering structures, which 

can reliably monitor the health and performance of the structures. SHM can be classified 

as local or global [1]. Local methods detect damages of the structural components using 

non-destructive examination methods, such as, acoustics, eddy current, emission 

spectroscopy, magnetic methods, radiography, ultrasonic, X-ray, and visual inspection.  

 Global methods are used to detect damage to the entire structure. Much research 

has been conducted on global methods based on the sensor system and vibration analysis. 

The vibration-based damage detection has been the routine method for mechanical and 

aerospace engineering structures. With the upgrading of instrumentation and better 

understanding of the dynamics of civil structures, the vibration-based SHM has received 

increased attention and has gone through rapid development in the past two decades. 

Doebling et al. [2-3] did a comprehensive technical literature review of vibration-based 

damage identification of structures. Sohn et al. [4] updated the literature review [2-3] 

with more recent advancement. Chang et al. [5] presented a review of research work on 
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health monitoring of civil infrastructures.  

 Among civil structures, the bridge is one of the most important infrastructures. In 

the U.S.A., around 50% of bridges were built before the 1940‟s and the Federal highway 

administration (FHWA) [6] stated that 24% bridges were structurally deficient in 2010, 

making it necessary to monitor their health for public safety and property protection. 

Long-term structural health monitoring systems for large-scale bridges has been 

implemented successfully worldwide; a list of them can be found in [7]. The long-term 

bridge performance assessment of representative highway bridges has been initiated by 

FHWA.  

 It is expected that the SHM systems can provide useful information to determine 

the damage extent of structures. As described by Rytter [8], damage identification can be 

characterized at four levels: 1. determining if the structure has any damage, 2. deciding 

the location of the damages, 3. quantifying the degree of the damage, 4. predicting the 

remaining service life of the structure. 

 This thesis contains research work related to Levels 1-3, that is damage detection 

in Level 1 and the inverse problems typically found in Levels 2 and 3 are studied in this 

dissertation. Belonging to the fields of fracture mechanics and structural design 

evaluation, level 4 is not included in this study.  

 

2.   System Identification and Damage  

      Identification Methods 

 

 The SHM system generates copious amounts of data; therefore, how to process 

these data and interpret the results becomes an important and challenging problem. The 

system identification algorithms are used to process the data while the vibration theories 
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are used to extract features of the structures.  

 System identification is the process of building and improving mathematical 

models of a dynamic system from experimental data which can be input-output data or 

output only data. The general theories and applied techniques can be found in [9-10]. The 

system identification in structures can be called structural identification. The basic routes 

for vibration analysis and structural identification are shown in Figure 1 and Figure 2. 

 Many system identification algorithms are available, such as, the least-square 

estimation (LSE), the extended Kalman filter (EKF), the subspace identification, the 

natural excitation technique combined with the eigensystem realization algorithm (NExT-

ERA), the neural networks, the genetic, and the wavelet based methods. All these 

methods have been used in system identification and damage identification of many types 

of civil engineering structures. 

 The application of system identification to vibrating objects is called modal 

analysis or experimental modal analysis. The experimental testing is referred to as modal 

testing in Ewins [11]. Modal analysis has two stages: 1) to choose the appropriate type of 

model and 2) to figure the appropriate parameters of the chosen model. Generally there 

are three models/phases in the typical progress of vibration analysis, which include the 

following: a) a description of the structure's physical characteristics, in terms of mass, 

stiffness and damping properties, which is referred to as the spatial model; b) description 

of the structure's behavior by modal frequencies, modal damping, and mode shapes of a 

set of vibration modes, which is referred to as the modal model; c) description of the 

structure's response under given excitation, which is referred to as the response model. 

These models are used extensively in modal testing and analysis.  
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Response System Identification  Structural Model 

Structural Model Vibration Analysis Response 

 The modal analysis from the measurements of modal testing can be used for 

updating the numerical (finite element) model. This is referred to as finite element model 

updating in Friswell and Mottershead [12]. The finite element model updating has been 

studied extensively in much of the literature.  

 To briefly summarize, in order to get correct judgment of the structure's health 

status or structural integrity from the SHM systems, it is essential to have an 

understanding of damage identification algorithms and vibration theories, as well as to 

gain insight into its structural behavior. 

 

3.   Focus of the Research 

 

 This thesis focuses on the identification of damage to structures using output-only 

data. The stochastic subspace identification, frequency domain decomposition, traditional 

peak-picking, extended Kalman filter, and wavelet transform methods were used in this 

study. Numerical studies involving finite element modeling, and experimental studies 

including experimental modal testing, real-time monitoring measurements, and shake 

table tests, were carried out. The main contributions are specified as follows. 

 

 

 

 

Figure 1. Vibration analysis 

 
 

 

Figure 2. Structural identification 
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 Data-driven stochastic subspace algorithms were applied in modal identification 

of a numerical bridge with abrupt damage and a real highway bridge from their 

acceleration responses. The stabilization diagrams combined with the subspace 

identification algorithms were used to keep physical modes and eliminate spurious modes. 

A subspace identification algorithm N4SID was also examined through its application to 

modal identification of the highway bridge.  

 The adaptive Kalman filter was proposed for use in identifying spatial models of 

substructures with abrupt damage. This use is to solve an inverse problem by identifying 

and tracking the stiffness and damping through the substructural approach. This approach 

was investigated by numerical studies on three types of structures. Wavelet transform was 

also proposed to be used for substructural damage identification and was examined more 

closely in later sections.  

 This thesis proposes to detect the delamination of concrete structures by modal 

identification from output-only vibration measurements. The method was investigated 

through numerical as well as experimental studies. Finite element models for the 

experimental models with various delamination scenarios were developed and validated. 

Some parameters of the finite element model (the contact model) were manually updated 

to match the modal characteristics from the experimental testing. 

 Statistical analysis was used to correlate the frequencies and temperature based on 

one-year monitoring data by nonlinear as well as linear curve fitting.  

 Identification of the occurrence of pounding was suggested and the wavelet 

scalogram was proposed to fulfill this objective. This method was examined through a 

numerical model and the experimental data from shake table tests.  
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4.   Organization of the Main Text 

 

 This dissertation has been made up of multiple papers. Chapters II-V cover one or 

two topics and are self-contained, consisting of the abstract, introduction, main contents, 

and the conclusion. All of these topics focus on vibration-based system identification and 

damage detection. Chapters II, III, and V mainly investigate the applicability and 

effectiveness of the structural identification algorithms. The goal of chapter IV is to solve 

practical problems by using the vibration-based method from the response measurements 

by sensors in the structures that are under normal operation. The chapter-by-chapter 

overview is given as follows: 

 Chapter I introduces the research background and the issues to be addressed. It 

provides the organization of the main topics and provides context for this thesis.  

 Chapter II investigates the effectiveness of stochastic subspace identification 

algorithms and stabilization diagrams in the modal identification of bridges using output-

only data. The simulated accelerations from a numerical truss bridge and recorded 

accelerations from a real concrete bridge are explored as the output data. It also deals 

with the relationship between temperature and frequencies based on one-year monitoring 

data of a highway bridge. 

 Chapter III identifies damage in substructures with the extended Kalman filter 

from the measurements in the substructures only. This method was investigated by 

numerical studies of shear building, frame, and truss structures. The stiffness and 

damping were clearly identified. This chapter also used wavelet transform to detect 

damages that were presented in substructures.  

 Chapter IV presents the delamination detection of concrete structures by modal 
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identification from output-only data, which are, acceleration or velocity measurements. 

The applicability was first studied through simulations by finite element modeling. Then 

the experimental studies were carried out to test the proposed method of delamination 

detection and useful results were found. 

 Chapter V proposes to detect the occurrence of structural pounding by using 

wavelet scalograms of acceleration responses. The methods were examined by their 

applications in a numerical example as well as in shake table tests of a scale model of a 

steel bridge subjected to earthquake ground motion.  

 Chapter VI integrates the conclusions of the main work. Additionally, it gives 

suggestions for further studies.  
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CHAPTER II  
 

APPLICATION OF STOCHASTIC SUBSPACE IDENTIFICATION IN BRIDGE 

HEALTH MONITORING, AND STATISTICAL ANALYSIS OF INFLUENCES OF 

TEMPERATURE FLUCTUATIONS ON FREQUENCIES 

 

ABSTRACT 

 Forced vibration tests of civil engineering structures is not economical, and in 

many cases impractical or even impossible. As an alternative, ambient vibration tests and 

real-time monitoring have become more accepted. Both time and frequency domain 

system identification algorithms can be used for these output-only systems. This study 

used the data-driven subspace identification algorithms, which directly use the output 

time histories and don't need to compute the covariances. The purpose was to investigate 

the effectiveness and applicability of this type of algorithm in modal analysis of bridges 

by using output-only measurements. 

 The stochastic subspace identification (SSI) algorithm was examined through a 

numerical truss bridge as well as a real concrete girder bridge. In the modal 

identifications, the simulated dynamic responses of the truss bridge with abrupt damages 

during the excitation and the actual acceleration measurements by the real-time health 

monitoring system were used as the output data for the numerical truss bridge and the 

real highway bridge respectively. Stabilization diagrams with a range of model orders 

were used to determine the modal frequencies, damping ratios, and mode shapes.  

 As one of the environmental conditions, temperature fluctuations can have a great 

effect on the dynamic characteristics of a bridge. It is useful to learn the pattern of 

changes in frequencies due to temperature fluctuations. The variation of frequencies with 
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respect to temperature was investigated using one-year ambient vibration data of a 

highway bridge. The data were sufficient for statistical analysis with a large range of 

temperatures. The modal frequencies and temperatures were correlated, which shows that 

such correlations for most modes can be represented by single or bilinear lines, which are 

summarized later in the document. 

 

1.   Introduction 

 

 For structural health monitoring, the system identification methods are vital as 

well as challenging and are still in the development stage. Both frequency-domain and 

time-domain methods are used in this dissertation. Frequency-domain methods use either 

frequency response functions (FRFs) or output spectra as primary data. Time-domain 

methods use the input/output data directly or indirectly. Some time-domain methods use 

impulse response functions (IRFs) or directly input and output time histories as primary 

data. Output-only time-domain methods use output covariances or directly output time 

histories as primary data [1].  

 Brincker et al. [2] introduced the frequency domain decomposition method (FDD), 

which is user friendly as simple peak-picking method but is also capable of identifying 

even the closed modes using strong noise contaminated signals. This method has been 

used frequently as shown in literature, as we will see as we examine case studies in later 

sections. 

 Among time-domain methods, the subspace based identification method 

originally proposed in [3] has emerged and gained much attention over the past twenty 

years where, it has been applied effectively for various types of civil and mechanical 

structures. These algorithms are based on the concepts of system theory, linear algebra, 



11 

 

and statistics. The subspace methods can obtain linear models from column and row 

spaces of the matrices calculated from the input-output data. Normally, the column and 

row spaces contain the model information and Kalman filter (state sequence) information 

[4]. Subspace identification can be used to compute state space models for either 

deterministic system from input-output data or stochastic system from output only data. 

The deterministic and stochastic subspace identification can be treated as special cases 

and unified as a combined deterministic-stochastic identification to compute state space 

models from given input-output data. For the theorems and derivations of these 

algorithms, refer to Van Overschee and De Moor [4]. In this study, stochastic subspace 

identification (SSI) is used and investigated. 

 Peeters and Ventura [1] reviewed the benchmark work on evaluating the dynamic 

characteristics of a three-span reinforced concrete bridge in Switzerland, the Z240 bridge 

from forced, free and ambient vibration tests data. Both time and frequency domain 

modal analysis techniques were applied and compared. The frequency domain methods 

used were the peak-picking, the complex mode indication function and rational fraction 

polynomial. The time domain methods used were two-stage least squares, Ibrahim time-

domain, IRF-driven/covariance-driven subspace identification, and data-driven stochastic 

identification methods. It concluded that the subspace methods applied to all data sets 

produced the most complete and consistent modal parameter estimations.  

 The advantages of the subspace based identification algorithms are that the user 

has simple and few design variables, and that the methods are numerically robust and 

computationally simple [5]. Van Overschee and De Moor [6] derived two N4SID 

algorithms for identifying mixed deterministic-stochastic systems. These algorithms 
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determine state sequences using the projection of input and output data. These state 

sequences were outputs of non-steady state Kalman filter banks. Therefore it was easy to 

determine the state space system matrices. The authors found that because N4SID only 

use QR decomposition and singular value decomposition (SVD), they were convergent 

and numerically stable. Abdelghani et al. [7] compared three of the following subspace 

identification methods: the eigensystem realization algorithm with observer/Kalman filter 

Markov parameters (ERA/OM), the numerical algorithms for subspace state space system 

identification (N4SID) that has been implemented in MATLAB, and a refined multiple-

output error state space (MOESP) family of algorithms and concluded that 

N4SID/MOESP obtained better results than ERA/OM.  

 This study examined the applicability and effectiveness of stochastic subspace 

identification in modal identification of a numerical truss bridge, and a real bridge in 

section 3. The simulated acceleration response and actual acceleration measurements 

were used as output-only data for the identification of numerical model truss bridge and 

the real bridge respectively. The SSI identified frequencies of the real bridge from the 

measurements were compared with those by FDD algorithm. The effectiveness of the 

N4SID was investigated as a specific subspace algorithm in obtaining modal 

characteristics for the bridge under health monitoring.  

 This chapter also studies the environmental effects on the modal parameters based 

on one-year monitoring data of a highway bridge. The background and results are 

discussed in section 4. This section may be a stand-alone paper after further extensive 

work. 
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2.   Introduction of Subspace Based Identification 

 

 This section briefly summarizes the computational steps of using SSI algorithm to 

extract the modal characteristics of structures.  

 

2.1   State-space models of the vibrating structures 

 

 The equation of motion of the structure can be written as 

2( ) ( ) ( ) ( , ) ( )MU t C U t KU t F U t u t      (1) 

where 1 1

2M, C , K n n  are the mass, damping, and stiffness matrices respectively, 

  1 1U t n  is the displacement vector at time t, the superscript dot denotes the 

derivative with respect to time,   1 1U,t nF   is the external force applied at time t, 

which can be expressed as a multiplication of an influence matrix 1n m   and a vector 

  1u t m  denoting the time series of input data. 

 The state-space equations are a set of algebraic equations that describe the linear 

system internally [8]. They originate from control theory, and are also used in structural 

identification of civil/mechanical structures. Most of the state-space equations in this 

chapter are classical and extensive descriptions of them can be found in [9].  

 The Eq. (1) can be written as 

1 1 1 1 1, ,

1 1 1
2

0 0( )( )
( )

( )( )

n n n n nI U tU t
u t

U tU t M K M C M   

      
       

          




 (2) 

let 

1 1 1 1 1, ,

1 1 1
2

0 0( )
( ) , ,

( )

n n n n n

c c

IU t
x t A B

U t M K M C M   

    
      

        
  (3) 

where 1( ) nx t   (n = 2n1) is the state vector, 
n n

cA   is the state matrix, 
n m

cB   is 
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the input matrix. 

Eq. (1) thus can simplified as 

( ) ( ) ( )c cx t A x t B u t    (4) 

 Assume the output vector 1( ) ly t   composed of accelerations, velocities, and 

displacements, it can be expressed as 

( ) ( ) ( ) ( )a v dy t C U t C U t C U t     (5) 

Combing Eq. (5) and Eq. (1), it gives 

1
2( ) ( ) ( ) ( ) ( ) ( )a v dy t C M u t C U t KU t C U t C U t       
   (6) 

or in a simplified form 

( ) ( ) ( )c cy t C x t D u t    (7) 

where 1 1 1
2 ,c d a v a c aC C C M K C C M C D C M         , the 

l n
cC   is the output 

influence matrix, 
l m

cD   is the direct transmission matrix. 

 Equations (4) and (7) are the state-space equations of the dynamic system, which 

constitute the continuous-time state-space model. The order of the system is the 

dimension of the state matrix Ac. In most studies including this one, the accelerations are 

the only measurements, thus, output vector y(t) can be changed accordingly in the 

computation. 

 In reality, the vibration measurements are in discrete fashion. Suppose the 

constant time interval is t , the discrete-time model can be derived as 

     

     

1x k Ax k Bu k

y k Cx k Du k

  

 
  (8) 

where the elements in the Eq. (8) are defined as 
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'

0
; '; ;

( 1) [( 1) ]; ( ) ( )

c c
tA t A

c c cA e B B e d C C D D

x k x k t u k u k t

 
   

     

   (9) 

If Ac is asymptotically stable, i.e., the real parts of the eigenvalues are all negative, the A 

and B in Eq. (9) can be expanded into Taylor series and the series can converge. If all the 

eigenvalues Ac are non-zero values, B can be computed by   1
c cB A I A B  . The zero 

eigenvalues in the continuous-time dynamic model means rigid body modes. 

 The process noise w(k) due to disturbance and modeling inaccuracies, as well as 

observation noise v(k) due to device inaccuracies can be included into Eq. (8) 

     

     

1 ( )

( )

x k Ax k Bu k w k

y k Cx k Du k v k

   

  
 (10) 

The noise cannot be measured, but is assumed to be zero mean white vector sequence 

with covariance 

 p T T
q q pqT

p

Q Sw
E w v

v S R


   
   

     

 (11) 

where E denotes the expected values pq  denotes the Kronecker delta. 

 Equations (8) and (9) are the state-space discrete-time model for the deterministic 

system. Equation (10) is the state-space model for the combined deterministic-stochastic 

system. The subspace identification algorithms for these systems can be found in [4]. It 

must be stated that in this study, the focus is on the stochastic system. 

 For the ambient vibration tests or real-time monitoring of structures, the u(k) is 

unknown and omitted, therefore the input are modeled implicitly by noise only. However, 

the white noise assumption is still needed. The state-space equations of stochastic system 

are 
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   

   

1 ( )

( )

x k Ax k w k

y k Cx k v k

  

 
  (12) 

The wk and vk are zero mean white noise vector with covariances as in Eq. (11), 

independent of xk, 

[ ( )] 0; [ ( )] 0; [ ( ) ( )] 0; [ ( ) ( )] 0T TE w k E v k E x k w k E x k v k      (13) 

The stochastic process is assumed to be stationary, i.e., 

[ ( )] 0

[ ( ) ( )]T STY

E x k

E x k x k



 
  (14) 

Here the covariance matrix STY  is independent of the time k, which implies that A is 

stable. The output covariances can be defined as 

[ ( ) ( )] ( )TE y k i y k i     (15) 

The cross covariance of state and output is defined as 

[ ( 1) ( )]TE x k y k G    (16) 

It is easy to derive the following properties 

1

;

(0) ; ( )

STY STY T STY T

STY T i

A A Q G A C S

C C R i CA G

      

     
  (17) 

Equation (17) conveys that the output covariances can be treated as Markov parameters 

of the deterministic linear time-invariant system, which are A, G, C, Λ(0). More 

stochastic state-space models are displayed in [4]. All of these models are equivalent in 

nature. 

 Some notations used for the subspace algorithms are introduced here. The block 

Hankel matrices are vital in the algorithm; they are constructed using the output data. 
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
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  

  
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 
 
 
 
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      
          
 
 
 
 
 

   
fY 

 
 
  

 (18) 

The number of block rows (i) should be large enough to obtain sufficient information, 

which at least needs to be greater than the order of the system that is expected to be 

identified. Let s denote the number of time samples. The number of columns (j) is usually  

s-2i+1.  

The extended observability matrix is defined as 

(i) 



 
 
 
  
 
   

 
  

 2

1

li n

i

C

CA

CA

CA


  (19) 

The {A,C} is assumed to be observable, which indicates that all the modes of the system 

can be observed. The reversed extended stochastic controllability matrix is defined as 

1 2i i n li(i) A G A G AG G        (20) 

The pair {A,Q
1/2

} is assumed to be observable, which indicates that all the modes of the 

system can be excited by noise. The block Toeplitz matrices Ti can be obtained from the 

output covariance matrices 
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( ) ( 1) (2) (1)

( 1) ( ) (3) (2)

( ) ( 2) ( 1) (4) (3)

(2 1) (2 2) ( 1) ( )

li li

i i

i i

T i i i

i i i i



      
      
 

        
 

              
         

   (21) 

 

2.2   Covariance-driven based stochastic 

        subspace identification 

 

 Based on equations (15) and (21), and the assumption of ergodicity, the block 

Toeplitz matrix can be written as the output function 

( ) T
f pT i Y Y   (22) 

From equations (17)-(21) , the block Toeplitz matrix Ti can be decomposed into 

( )T i (i) (i)    (23) 

Decomposing the block Toeplitz matrix by singular value decomposition (SVD)  

  11
1 2 1 1 1

2

0
( )

0 0

T
T T

T

VS
T i USV U U U S V

V

  
    

    

 (24) 

where li liU   and li liV   are orthonormal matrices, S is a diagonal matrix, S1 is a 

diagonal matrix with the zero diagonal values omitted. In the real world application, the 

values that are essentially small are treated as zeros and omitted. From equations (23) and 

(24), the extended observability and reversed extended observability matrices are 

obtained as 

1/2 1/2
1 1 1 1; T(i)=U S (i)= S V    (25) 

From the definitions of the (i)  and (i) , it is clear that the first l  rows of (i)  are 

equal to the matrix C, and the last l  columns of (i)  are equal to the matrix G. 

Define T(i+1) to be 



19 

 

 

( 1) ( ) (3) (2)

( 2) ( 1) (4) (3)

( 1) ( 3) ( 2) (5) (4)

(2 ) (2 1) ( 2) ( 1)

li li

i i

i i

T i i i

i i i i



      
       
 

         
 

              
         



 

then  

( 1)T i (i)A (i)     (26) 

Matrix A is obtained by solving Eq. (26) 

† †( ) ( 1) ( )A i T i i     (27) 

The (∙)
† 

here denotes Moore-Penrose pseudoinverse.  

 

2.3   Data-driven based stochastic subspace  

        identification 

 

 The principles and computational steps of the data-driven SSI method are 

introduced briefly and used in processing the ambient vibration data in this study.  

 The Kalman filter plays a vital role in deriving the algorithms for stochastic 

subspace identification. It is used to optimally predict the state vector, and can be defined 

by the following recursive formulas 

1

1

ˆ ˆ ˆ( ) ( 1) ( 1)( ( 1) ( 1))

( 1) ( ( 1) )( (0) ( 1) )

( ) ( 1) ( ( 1) )

( (0) ( 1) ) ( ( 1) )

T T

T T

T T T

x k Ax k K k y k Cx k

K k G AP k C CP k C

P k AP k A G AP k C

CP k C G AP k C





      

      

    

     

  (28) 

where hat (^) denotes the prediction, and the other symbols are same as those in section 

2.1.  

 The forward Kalman filter state sequence is defined as  

ˆ ˆ ˆ ˆ( ) [ ( ) ( 1) ( 1)] n jX i x i x i x i j        (29) 
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This sequence can be recovered from the observation data by the SSI algorithm. The 

backward Kalman filter can be found in [4], which is beyond the scope of this study. 

 Using the terms of Eq. (18), the projection of row space of future outputs on row 

space of past outputs is defined as 

†( ) / ( )T T
f p f p p p pi Y Y Y Y Y Y Y P  (30) 

and the SVD of the projection is 

  11
1 2 1 1 1

2

0
( )

0 0

T
T

T

VS
i U U U S V

V

  
   

    

P  (31) 

The main theorem for stochastic subspace identification algorithm in [4] clarifies that  

ˆ( ) ( )i (i)X iP   (32) 

Because rank ( ( )iP ) = n, 1 1 1; ;li n n n j nU S V       . From equations (31) and 

(32), the following extended observability and Kalman filter state sequence are given as 

1/2
1 1

†ˆ ( ) ( )

(i)=U S

X i (i) i



 P
  (33) 

The order of the system n can be determined as the number of non-zero singular values of 

S1 or the singular values greater than a user-defined small value. Let (i - 1)  denote 

(i)  without the last l  rows, thus the following equations can be derived 

1
ˆ/f p i(i - 1) Y Y (i - 1)X 
 P   (34) 

†
1

ˆ
iX (i - 1) (i - 1)  P   (35) 

The following equation can now be obtained below 

 
ˆ ( 1) ˆ ( )

( | )

w

v

AX i
X i

CY i i





 
  
    

  (36) 
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where Y(i|i) is a block Hankel matrix with one row of output data, the Kalman filter state 

and the output are known, ρw and ρv are the Kalman filter residuals uncorrelated with 

ˆ ( )X i , The matrices A and C can therefore be solved by least square method as  

 †
ˆ ( 1) ˆ ( )

( | )

A X i
X i

C Y i i

 
 

   
  (37) 

Solving the Lyapunov equation results in 

STY STY TA A Q      (38) 

and then using Eq. (17) to compute G and (0)  

(0)

STY T

STY T

G A C S

C C R

  

   
  (39) 

Now the matrices A, C, G, and (0)  are all available for modal analysis. 

 The above computation is based on all the available output data. Peeters and De 

Roeck [10] proposed an extension of the SSI algorithm called reference-based stochastic 

identification for output only modal analysis that used reduced output data.  

 

2.4   Extraction of modal characteristics 

 

 The modal characteristics include modal frequencies and damping ratios, mode 

shapes, and modal participation factors. In the output only system identification, the last 

term cannot be identified, while all the other parameters can be determined from the 

discrete state matrices A and C.  

 The matrix A can be decomposed as  

1A D      (40) 

where ( ) n n

rD diag    , r = 1, 2,∙∙∙, n, is a diagonal matrix containing the discrete time 
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complex eigenvalues, columns of n n contains the corresponding eigenvectors. For 

a continuous time system, the continuous state matrix Ac can be decomposed as 

1
C C C CA D     (41) 

where ,( ) n n

c c rD diag    , r = 1, 2, ∙∙∙, n, is a diagonal matrix containing the 

continuous time complex eigenvalues, columns of n n

c

  contains the corresponding 

eigenvectors. These eigenvalues and eigenvectors for the continuous-time state matrix are 

the same as those for the equation of motion of the structure in Eq. (1).  

Recall the relationship in Eq. (9) 

;CA t
cA e C C    (42) 

It is easy to derive that  

,

ln( )
;r

c r c
t


    


  (43) 

The eigenvalues of Ac can be expressed as the following pairs 

* 2

, ,, 1c r c r r r r rj           (44) 

where 
r  is the circular modal frequency of mode r, and 

r  is the modal damping ratio of 

mode r. 

The mode shapes can be computed from the eigenvectors and observation matrix 

c cC C       (45) 

 Analyzing the real measurements usually results in complex modes, whereas for 

light damping system, we use the amplitudes of complex mode shape with signs of the 

corresponding real parts to draw them as real mode shapes. 
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2.5   Stabilization diagrams 

 

 Based on the practice of subspace identification algorithms for processing real 

measurements, the results are not satisfactory using only one or a few estimated model 

orders. To improve accuracy and reliability, it is essential to specify excessive model 

orders and to separate the numerical modes later. The stabilization diagram was 

developed to address this issue, and has been widely used in structural identification [1, 

10-12] and other fields. In the diagram, the estimated frequencies, damping ratios, and 

modal vectors associated with the increasing model orders are plotted. 

 Distinguishing the physical (true) modes from the numerical (spurious) modes is 

the most important step. The non-physical modes present only at certain model orders 

and should be excluded. If the differences in the frequencies, damping ratios, and mode 

shapes associated with a range of model orders don't exceed specified criteria, the poles 

under inspection are regarded as stable; otherwise, they will be eliminated. The criteria 

are typically 1%, for frequencies, 5%~10% for damping ratios, and 1%~5% for mode 

shape correlations by modal assurance criteria (MAC). In order to exclude the 

incidentally stable modes, the poles with q (q>1) times stable will be considered as 

physical poles. The value of q is flexible, while it is taken as 5 in some literature [12].  

 Experienced engineers are needed to analyze the diagrams, and to eliminate the 

numerical modes and keep the physical modes. The method is very expensive and time 

consuming due to large number of poles, and the accuracy of results by the stabilization 

diagrams highly depends on the analyst. To address this issue, efforts have been made to 

develop automated procedures to analyze stabilization diagrams [11, 13-14]. For the 

current study in this chapter, the stabilization diagrams have been assessed manually.  
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3.   The Application of Subspace Identification 

       in Modal Identification of Bridge Structures 

       by Using Ambient Vibration Measurements  

 

 The effectiveness of the SSI method was investigated by the application in the 

modal identification of a numerical bridge truss example and an actual highway bridge 

from output only measurements. 

 

3.1   Numerical example: The use of the SSI 

        method on a plane truss bridge 

 

 In the numerical example, a plane truss bridge model is supported at two ends as 

illustrated in Figure 3, where the node and element numbers are exhibited. Each node has 

2 degrees of freedom, i.e., horizontal (x) and vertical (y) translations. 

 The equation of motion of the system can be written as 

MX CX KX F      (46) 

where M, C, K stand for mass, damping, and stiffness matrices, respectively, X is the 

displacement vector, and dot (∙) denotes the derivative respect to time and F is the vector 

for external excitation. The stiffness and mass matrices of the entire truss structure may 

be obtained from  

1 1 1 1

( ) ; ( )
n n n n

e e e e T e e e e T

e e e e

K K L k L M M L m L
   

        (47) 

where L
e 
is position vector, and the global stiffness and mass matrices are 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

c 2c 2

2 2
/ ; / 6

2 2

2 2

e e

i i i i

cs c cs cs c cs

cs s cs s cs s cs s
k E A l m

c cs c cs c cs c cs

cs s cs s cs s cs s



    
   

     
    
   
    

  (48) 

where c = cosθi, s = sinθi, and θ represents the angles between members as shown in 

Figure 3, E denotes Young's modulus, A denotes cross-sectional area, and ρ is mass 
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density. The Rayleigh damping is used to obtain the damping matrix C = αM+ βK. The 

two damping coefficients are chosen as α = 0.566; β = 8.62 ×10
-4

. The structural 

properties are the same as those of the truss bridge model in [15] and listed in section 5.3 

of Chapter III. 

 Sinusoidal force 
1

( ) sin(2 )
n

i i

i

F t a f t


  was applied at node 3 in the y direction. 

The sinusoidal force F(t) consisted of a range of excitation frequencies from 2 Hz to 20 

Hz, and some values were chosen for the amplitudes and phases. This sinusoidal 

excitation may not excite all modes. If white noise is applied as excitation, all the modes 

may be excited. The sampling rate was 1000 Hz, and the time duration 20 seconds. 

Damage was simulated by abruptly reducing the stiffness of the symmetrical members 3 

and 9: E3A3/l3  and E9A9/l9  from 16617 to 6000 kN/m at t = 10 seconds. All the other 

values were assumed to be constants all the time. The modal frequencies were 

consequently reduced, and the damping and mode shapes were also changed as a result. 

The modal frequencies and damping ratios for the truss in both undamaged and damaged 

states were denoted as exact values and listed in Table 1. 

 The dynamic responses, i.e., the displacements, velocities, and accelerations, of 

the truss bridge were obtained by solving Eq. (46) using Newmark-beta method. The SSI 

method was then used to extract the modal characteristics from the acceleration responses. 

In this study, no output noise was added to the acceleration responses. So the following 

discussions regarding this numerical example were suitable for signals with high signal-

to-noise-ratio (SNR). 
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Figure 3. Truss bridge model: the circled numbers denote node numbers and the numbers 

without circles denote the element number. 

 

 The stabilization diagrams with stable frequency and damping ratio for the truss 

bridge before damage and after damage are shown in Figures 4 and 5, respectively. For 

both cases, the number of block rows is 400 and the order is from 80 to 100.  

 For convenience, we can define the difference between the identified values 

associated with the same mode but different modal orders as uncertainty. It can be 

observed from these figures that the uncertainties of frequencies are exceptionally low. 

And the uncertain degree of damping ratio is also very low, but greater than that of 

frequencies. It is straightforward to determine the modal frequencies and damping ratios 

from these stabilization diagrams. There were only two numerical (spurious) modes in the 

stabilization diagrams for damping ratios, and they are eliminated in Figure 4 and Figure 

5. These illustrations demonstrate that the frequencies can be identified very well with 

model order of 80 or even lower. The damping ratios can be determined very well too, 

but only five damping ratios were determined accurately. An interesting thing is that there 

are spurious modes with stable frequencies and damping ratios, this may be due to the 

excitation inputs are deterministic sinusoidal force instead of white noise. So when the 

SSI and stabilization diagrams are used to process response data due to deterministic 

input, the identified values associated with stable poles should also be analyzed to 

determine if they are numerical ones. 
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Figure 4. Stabilization diagrams for the truss bridge before damage: upper is for poles 

with stable frequencies and damping, and lower is for stable damping ratios. The symbols 

are: '○' for a pole with stable frequency, '+' for a pole with stable damping, and O+ for a 

pole with stable frequency and damping, curve for a PSD of the response. 
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Figure 5. Stabilization diagrams for the truss bridge after damage: upper is for poles with 

stable frequencies and damping, and lower is for stable damping ratios. The symbols are: 

'○' for a pole with stable frequency, '+' for a pole with stable damping, and O+ for a pole 

with stable frequency and damping, curve for a PSD of the response. 

 

 The frequencies and damping ratios can be determined from the stabilization 

diagrams. The comparison of the actual and identified frequencies and damping ratios for 

the truss bridge before damage are listed in Table 1, and those for after damage are listed 

in Table 2. Note that the percentage differences are based on values with more significant 

digits than those listed in the tables. For the frequencies before damage, the errors of the 

2nd and 3rd modal frequencies were up to 17%, but all the other frequencies were 

accurate with errors less than 4%, the identified error of 1st modal frequency was only 
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0.16%. For the frequencies after damage, the errors of the 2nd, 3rd, 5th, and 7th modal 

frequencies ranged from 7% to 16% while the identified error of 1st, 4th, 6th, 8th, and 9th 

modal frequencies were less than 0.15%. For both cases of before damage and after 

damage, 5 modal damping ratios were identified, which have errors of less than 2.5%. 

This SSI shows its ability to identify the closely spaced modes, e.g., mode 5 and mode 6 

of the truss before damage were identified and separated very well as shown in Figure 4 

and Table 1. One frequency was not identified; this may be because that this mode was 

not excited by the sinusoidal excitation.  

 

Table 1. Comparison of the exact and the SSI identified frequencies and damping ratios 

for the truss before damage. 

Mode 

Exact values Identified values 
Freq 

Difference 

Damping 

Difference 
Freq. 

(Hz) 

Damping 

ratio 

Freq. 

(Hz) 

Damping 

ratio 

1 1.92 2.86% 1.92 2.86% 0.16% 0.09% 

2 4.43 2.22% 4.00 - -9.71% - 

3 6.29 2.42% 5.25 - -16.53% - 

4 9.05 2.95% 9.05 2.95% 0.02% -0.06% 

5 12.59 3.77% 12.50 - -0.71% - 

6 12.75 3.81% 12.58 3.76% -1.31% -1.20% 

7 15.28 4.43% 15.27 4.43% -0.06% -0.09% 

8 16.43 4.72% - - - - 

9 20.85 5.86% 20.00 - -4.08% - 

10 21.39 6.00% 20.82 5.85% -2.68% -2.48% 
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 Table 2. Comparisons of the exact and the SSI identified frequencies and damping ratios 

for the truss after damage. 

Mode 

Exact values Identified values 
Freq 

Difference 

Damping 

Difference 
Freq. 

(Hz) 

Damping 

ratio 

Freq. 

(Hz) 

Damping 

ratio 

1 1.73 3.07% 1.73 3.07% 0.15% -0.04% 

2 4.32 2.21% 4.00 - -7.41% - 

3 5.82 2.35% 5.25 - -9.79% - 

4 8.29 2.79% 8.28 2.79% -0.07% -0.13% 

5 10.73 3.33% 9.00 - -16.12% - 

6 11.36 3.47% 11.35 3.47% -0.05% -0.01% 

7 13.45 3.98% 12.50 - -7.06% - 

8 13.80 4.06% 13.79 4.06% -0.06% -0.04% 

9 18.64 5.29% 18.62 5.28% -0.09% -0.21% 

10 20.66 5.81% 20.00 - -3.19% - 

 

 The SSI method obtained the mode shape information from the acceleration 

responses, and pseudo mode shapes of the 1st mode for the truss bridge before and after 

damage are plotted in Figure 6. The relative amplitudes of each DOF were available after 

applying the SSI method. If they were plotted with respect to their real locations they 

would correspond to real mode shapes. For convenience, the relative amplitudes of each 

DOF were normalized and plotted with respect to the numbers of DOF.  

 

 
   (a)      (b) 

Figure 6. Pseudo mode shapes for the truss bridge identified by the SSI method: (a) 

before damage corresponding to mode 1 with frequency = 1.92 Hz (b) after damage 

corresponding to mode 1 with frequency = 1.73 Hz 
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 It can be found in Figure 6 that for both the mode shapes for the truss before and 

after damage there are: x1 = -x5, y1 = y5, x2 = -x4, and y2 = y4. These are consistent with 

the fact that node 1 and node 5 are symmetric about the line of y3, and node 2 and node 4 

are also symmetric about the line of y3. When the two mode shapes in Figure 6 are 

compared, it is obvious that the magnitude of y3 increases significantly after damage; this 

results from the symmetric damage of members 5 and 7. Also y2 = y4  becomes larger 

than y1 = y5. It can be concluded that the changes of the mode shapes can indicate the 

damage. This verified that the mode shapes extracted by the SSI method are correct and 

can be used as damage indicator. 

 

3.2   The use of the SSI algorithm in the modal identification 

      of real vibration measurements of a highway bridge 

 

 In this section, the SSI method was used for modal identification of a highway 

bridge C846 flyover from actual ambient vibration measurements. The C846 flyover 

bridge is located in Salt Lake City and serves as a connector from westbound I-80 to SR-

201 as shown in Figure 7. It sits on soft deep Lake Bonneville sediments and is located 

just 6 km away from the Wasatch Fault, a large normal fault capable of up to a magnitude 

7.5 earthquake event. The bridge is 1.14 km long with 25 spans and is made up of four 

individual structures. The superstructure consists of a reinforced concrete deck supported 

by three steel I girders, and the substructure contains tall columns. The bridge has 

expansion joints to fill gaps between the superstructure and substructure. 

 A strong motion system was installed by Utah State University to measure the 

accelerations and transfer them to the Kinematrics Altus K2 digital recorders. The system 

consists of 18 accelerometers located on the bents and decks of the bridge. These 
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channels were used to measure the transverse, longitudinal, and vertical accelerations. 

The data were first transferred to three K2 data loggers called K1656, K2011, and K2650. 

Basically, K1656 are connected to 1 transverse, 3 longitudinal, and 2 vertical channels; 

K2011 are connected to 2 transverse, 1 longitudinal, and 3 vertical channels; and K2650 

are connected to 3 transverse, and 3 vertical channels. For the layout of the sensors and 

details of the system, refer to [16]. Since 2007, the data has been streamed to the Utah 

State University and stored in the MySQL database and can be exported for further 

analysis. 

 This section discusses how the SSI method was applied for 150 seconds of` 

acceleration measurements on June 1st, 2007 to determine modal characteristics of the 

bridge. The sampling frequency was 200 Hz. The acceleration data from all 18 channels 

were detrended before modal identification, one typical detrended vertical acceleration 

response is shown in Figure 8. The forced vibration tests was conducted by Dye [17] on 

June 2001, an eccentric mass shaker was used to generate sinusoidal forces to the bridge. 

The environmental conditions for the ambient tests of this section and the forced 

vibration tests were all in June and similar, therefore the difference between the modal 

characteristics of these two cases due to the influence of environmental conditions was 

minimized. The modal frequencies obtained from the forced vibration data by frequency 

domain decomposition method were used as baseline modal properties to caliber the 

identified values from the ambient vibration data by the SSI method.  

 The number of block rows used was 550, and the model orders tested were from 

140 to 160. Due to the limitation of the available PC, the 18 channels were separated into 

7 for each SSI identification procedure, which is the 6 channels of K1656 with 1 channel 
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of K2011, the 6 channels of K2011 with 1 channel of K2650, and the 6 channels of 

K2650 with 1 channel of K1656. The overlap of one channel was done to act as a 

reference sensor for identification of mode shape. Additionally, because the vertical 

accelerations are very concerned for the performance evaluation of bridges, the 6 

channels of vertical channels were grouped together for SSI identification purposes. 

 

 

Figure 7. The aerial view of the bridge under monitoring 

 

 

 

Figure 8. Typical vertical acceleration response measured on the bridge deck (the 3rd 

channel recorded by K2011). 

 

 

The flyover 

under monitoring 
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 The stabilization diagram from the vertical accelerations that does not eliminate 

the spurious modes is illustrated in Figure 9. Both the physical and spurious (numerical) 

modes are shown in this diagram, which also contains the PSD curve of the acceleration 

response. It shows that stabilization diagram is able to identify frequencies more clearly 

and accurate that the PSD plot. The stable frequencies and the damping ratios were 

combined to determine and keep the physical models, and eliminate the numerical modes. 

The stabilization diagrams that keep only the physical modes with stable frequencies and 

damping ratios are shown in Figure 10-Figure 13. The identified values of frequencies 

and damping ratios are listed in Table 3 and compared with the frequencies obtained from 

the forced vibration tests in [17]. 

 It can be observed from the stabilization diagrams that the data from K2011 and 

K2650 provided more stable and accurate identification results than the data from K1656. 

This is probably because the K1656 have more longitudinal sensors, while the K2011 and 

K2650 contain more vertical and transverse sensors and most modes are vertical and 

transverse. Therefore in the bridge health monitoring, vertical and transverse sensors may 

provide more accurate modal identification results, while the longitudinal sensors are also 

essential.  

 The frequencies were clearly identified from the real measurements of the 

highway bridge as shown in the Figures 10-13. The difference between identified values 

associated with same mode but different model orders are larger than those in the 

numerical truss bridge example; this may be due to output noise in the real measurements. 

Compared with frequencies, the damping ratios carry much more uncertainty than the 

frequencies do. The identified damping rations are accurate within 3% ratios and many 
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values of them scatter randomly outside the range of 0%~3%.  

 Table 3 presents the identified results of frequencies and damping ratios. In this 

table, the SSI identified frequencies are compared with those identified from force 

vibration tests, which are closest to the exact values. The errors of the first 18 SSI 

identified modal frequencies are between 0.00% and 5.34%, which verifies the extreme 

accuracy of the SSI identified frequencies. The SSI identified damping ratios are also 

listed in Table 3, most of which (1.34%~5.94%) are within normal range of damping 

ratios for bridge, which are typically between 2% and 7% for concrete bridges and can be 

higher values in cases where the bridge is heavily influenced by soil-structure interaction 

or energy dissipation [18]. Thus the damping ratios obtained in this study by the SSI 

algorithms and stabilization diagrams were validated to be reasonable values. Since 

damping ratios were not obtained from the forced vibration tests in [17], the damping 

ratios obtained from the ambient vibration data in this study did not have baseline data to 

be compared, and further studies may be conducted to obtain these ratios from the forced 

vibration test data to verify the corresponding values from the ambient vibration data.  

 The mode shapes were also obtained from the acceleration measurements by the 

SSI method. Since the sensors are sparse in this bridge, the mode shape information is not 

considered in the stabilization diagrams in this dissertation. The mode shape information 

is available for the ongoing research. 
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Figure 9. Stabilization diagrams obtained from the measurements of the 6 vertical 

channels before elimination of spurious modes. The symbols are: '○' for a pole with 

frequency, '+' for a pole with stable damping, curve for a PSD of acceleration response. 

 

 

Figure 10. Stabilization diagrams obtained from the measurements of the 6 vertical 

channels: upper is for poles with stable frequencies and damping, and lower is for 

damping ratios. The symbols are: '○' for a pole with stable frequency, '+' for a pole with 

stable damping, and O+ for a pole with stable frequency and damping. 
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Figure 11. Stabilization diagrams obtained from the measurements of K1656 and a 

K2011 channel: upper is for poles with stable frequencies and damping, and lower is for 

damping ratios. The symbols are: '○' for a pole with stable frequency, '+' for a pole with 

stable damping, and O+ for a pole with stable frequency and damping. 

 

3.3   The application of the subspace identification  

        method N4SID in the modal identification of  

        the highway bridge from ambient vibration  

        measurements 

 

 Numerical algorithms for subspace state space system identification (N4SID) [6] 

has some advantages over other SSI algorithms because it does not require most of the a 

priori parameters; only the modal order is needed. It is non-iterative and is without 

nonlinear optimization part; therefore, it is numerically robust. N4SID can be used for 

output-only systems as well as input-output systems. By using N4SID, Skolnik et al. [19] 
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acquired frequencies, mode shapes, and damping ratios of a 15-story steel-frame building 

from the Parkfield earthquake as well as ambient vibration measurements. This section 

utilizes N4SID to investigate its effectiveness in obtaining modal characteristics of the 

highway bridge C846 flyover described in section 7.2 from its ambient vibration 

measurements. 

 

 

 

Figure 12. Stabilization diagrams obtained from the measurements of K2011 and a 

K2650 channel: upper is for poles with stable frequencies and damping, and lower is for 

damping ratios. The symbols are: '○' for a pole with stable frequency, '+' for a pole with 

stable damping, and O+ for a pole with stable frequency and damping. 

 

 

 

0 5 10 15 20

140

145

150

155

160

M
o
d
el

 O
rd

er

Frequency (Hz)

0 2 4 6 8 10

140

145

150

155

160

M
o
d
el

 O
rd

er

Damping Ratio (%)



39 

 

 

 

Figure 13. Stabilization diagrams obtained from the measurements of K2650 and a 

K1656 channel: upper is for poles with stable frequencies and damping, and lower is for 

damping ratios. The symbols are: '○' for a pole with stable frequency, '+' for a pole with 

stable damping, and O+ for a pole with stable frequency and damping. 

 

 Basic formulations of modal analysis using N4SID are described below. In the 

case of ambient vibration, the input is implicitly accounted for by unknown noise w; a 

linear time-invariant structural model can be described by the discrete 1st order 

difference equation  

 

x(k+1) = Ax(k) + w(k)  (49) 

y(k) = Cx(k) + v(k)  (50) 

 

where k is the sampling instant (t = k∆t), x is state vector and A is the state matrix, C is 
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the output matrix, w is the process noise and v is the measurement noise, w and v are 

assumed as uncorrelated zero-mean stationary white noise vector sequences [20]. 

 

Table 3. Identified frequencies and damping ratios from the ambient vibrations and the 

comparison of them with the results identified from forced vibrations.  

Frequency identified from 

forced vibration tests (Hz) in 

[17] 

Frequency 

identified  

from ambient 

vibration data by 

SSI (Hz) 

Damping ratio identified 

from ambient vibration by 

SSI 

Frequency 

differences 

1.11 1.13 2.87% 1.71% 

1.31 1.38 2.72% 5.34% 

1.49 1.49 1.34% 0.00% 

1.58 1.58 2.01% -0.18% 

1.76 1.72 5.94% -2.27% 

2.25 2.24 2.75% -0.33% 

2.37 2.35 1.92% -0.81% 

2.70 2.72 4.46% 0.66% 

3.07 3.13 - 2.05% 

3.49 3.46 2.97% -0.77% 

4.25 4.26 3.73% 0.20% 

4.72 4.78 1.17% 1.24% 

5.17 4.91 0.69% -4.99% 

5.58 5.72 7.97% 2.47% 

6.15 6.11 1.06% 0.65% 

7.30 7.13 7.44% -2.33% 

8.97 9.35 0.89% 4.23% 

10.70 10.80 2.79% 0.89% 

11.75 10.96 5.27% -6.72% 

13.00 12.70 1.31% -2.31% 

14.29 14.30 1.01% 0.13% 

15.59 15.64 4.41% 0.31% 

17.08 17.06 1.10% -0.14% 
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 The complex eigenvalues (λ) and eigenvectors (ψ) of the damped system can be 

calculated from the system matrix A. The natural frequency fk  and the damping ratio ςk 

are 

k k k
k k k

k

ln(λ ) ω Re[ln(λ )]
ω ; f ; ς

Δt 2π ω Δt


     (51) 

The k
th

 complex mode shape ϕk  sampled at sensor locations can be evaluated using the 

following expression 

k kCψ    (52) 

If the damping is assumed to be small and nearly classical, then the modal properties of 

the undamped structure can be approximated as [21] 

 

k k
k k k k k

k

λ Re(λ )
f ; ς ; Cψ sign[Re(Cψ )]

2π 2πf
     (53) 

 N4SID was applied to the ambient vibration data of one accelerometer on 

February 21, 2008. The duration of the dataset was 300 seconds, and the sampled 

frequency was 200 Hz. The data had been detrended to remove the mean shift from zero 

due to sensor inaccuracies before modal analysis. The frequencies, mode shapes, and 

damping ratios were determined, while the frequencies were presented in this study to be 

examined. 

 Determination of the order of the state-space model, i.e., dimension of the state 

vector x(k), is an important step for implementation of the subspace method. 

Theoretically, an N-DOF system will have an order of 2N. The N4SID has been 

conducted with an order number from 60 to 540 with step of 40, and the representative 

results are demonstrated in the stabilization diagram shown in Figure 14. It can be 
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determined that N4SID needs a much larger order number than the theoretical value of 

2N, greater than 140 in this study, to achieve accurate results and obtain modal 

characteristics of sufficient modes. This figure also shows that most mode frequencies 

can be identified; the larger the order, the more modal frequencies can be identified, but 

this also means that more spurious modes will be created. As the order number increased, 

the computational time also increased rapidly; this is a disadvantage of N4SID found in 

this study. 

 Table 4 lists the identified frequencies based on the stabilization diagram, which 

is compared with those frequencies identified from forced vibration data described in 

section 3.2, which are identified by frequency domain decomposition method. The 

frequencies obtained from the forced vibration data can be understood as values that are 

closest to the actual values. The two sets of frequencies in Table 4 correspond with 

differences of 0.16%~7.59%. The variation between them is due to many factors besides 

the modal analysis methods. The previous results are from forced vibration data from all 

the 18 channels in 2002, and the N4SID results from this study only processed the data 

from 1 channel only in 2008. Further studies are needed to examine the effectiveness of 

N4SID using same sets of data as those for forced vibration test. 
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Figure 14. Stabilization diagram of frequencies by N4SID from ambient vibration 

measurements. 

 

Table 4. Comparison of frequencies identified by N4SID from ambient vibration data 

with those from forced vibration tests in Dye [17].  

Identified from  

forced vibration (Hz) 
1.11 1.48 1.58 1.76 2.70 3.07 3.49 

Identified from  

ambient vibration by N4SID (Hz) 
1.19 1.50 1.59 1.85 2.64 3.03 3.47 

Difference (%) 7.59 1.01 0.63 5.11 -2.22 -1.30 -0.57 

Identified from  

forced vibration (Hz) 
5.58 6.15 7.30 8.97 10.7 11.75 13.00 

Identified from  

ambient vibration by N4SID (Hz) 
5.50 6.16 7.30 9.28 10.80 11.70 13.00 

Difference (%) -1.43 0.16 0.00 3.46 0.93 -0.43 0.00 

 

4.   Effects of Temperature on the Modal Frequencies 

 

 Much research has concluded that environmental conditions can affect the 

dynamic behavior of structures. These environmental conditions include temperature, 

humidity, wind, and excitation amplitudes. The change in temperature can have a great 
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effect on material properties and boundary conditions, which consequently has an impact 

on the stiffness and frequencies.  Young's moduli of concrete and asphalt decrease when 

the temperate increases. The frequencies are proportional to the square root of Young's 

modulus, f ~ E
1/2

 [12]. Also,, when the temperature is lower than 0 ºC, the soil may be 

frozen, which changes the boundary conditions and consequently the frequencies [22]. 

The normal changes in frequencies due to the variations in temperature should not be 

alarming. But the changes in frequencies due to damage can be masked by their normal 

changes associated with variation of temperature and other environmental conditions. In 

order to provide correct information for decision making regarding the stability of bridges, 

it is vital to distinguish between the changes in modal characteristics due to damage and 

those due to normal temperature fluctuations. It is very hard to measure and quantify this 

physical phenomenon even when all aspects have been considered. At this point in the 

research, it is very useful to study the correlation between frequency and temperature 

changes. It is certain that such knowledge about the pattern of changes in frequencies due 

to temperature is valuable in finding a solution to this problem. Study of environmental 

effects on a classical post-tensioned concrete box girder bridge with a total length of 63.4 

m was presented based on a one-year monitoring period in [12]. 

 

4.1   The modal frequencies and temperatures obtained 

       from the one-year ambient vibration data  

       of a highway bridge 

 

 In this section, the variation of modal frequencies with respect to the changes in 

temperature is investigated statistically using ambient vibration data of C846 Flyover 

Bridge described in section 7.2. This was a much longer and larger bridge than the one 

pictured in [12]. The frequency domain decomposition (FDD) method was employed to 
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identify the modal characteristics of the bridge. It performs well for the identification of 

undamaged structures. For more details and references regarding FDD, refer to Chapter 

IV. The subspace identification algorithm will be used to obtain all modal characteristics 

in future studies.  

 Each dataset consisted of 200 seconds of acceleration measurements selected 

every 6 hours from February 2007 to February 2008. The recording system was down 

occasionally, so the data were not recorded each day, but all four seasons were 

represented with temperate ranges of -10.8 ºC ~ 39ºC as listed in Table 5. Therefore, the 

data were sufficient with a large enough range of temperatures to be useful for statistical 

analysis. 

 Table 6 lists the basic statistics of the identified frequencies at times specified 

above, the maximum differences were 6~18%, which were close to those (14%~18%) 

presented in [12]. The standard deviations ranged from 0.018 Hz to 0.088 Hz for the 

1st~17th frequencies and from 0.119 Hz to 0.294 Hz for the 18th~26th frequencies. This 

indicates that the identified results for the first 17 modes were more stable. Note that the 

temperatures were recorded from a weather station UT23 at the U.S. National Weather 

Service near the bridge; thus, their temperature records were very close to the real 

temperatures of the bridge, but were different from the actual temperatures where the 

sensors were instrumented. It is recommended to install temperature sensors near the 

accelerometers on bridges to record the actual temperatures of various locations on the 

bridge for future studies.  
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4.2   Using nonlinear and linear regression models 

        to correlate the modal frequencies  

        and temperatures 

 

 Both nonlinear and linear regression models were used to correlate the 

frequencies and the corresponding temperatures. Nonlinear regression is an essential 

statistical tool to analyze data. Gauss fit model is a non-linear least-squares fit to a 

function with generally four unknown parameters [23]. The Gauss fit was used in this 

study. A sample curve of the Gauss function is illustrated in Figure 15, in which 

1
0;

2ln 2 / 2
c

w A
w y y

w 
     (54) 

The Gauss fit function is 

2

2

0
/ 2

cx x

wA
y y e

w 

 
  
     (55) 

where y is a vector of dependent variables, which represent frequency in this study, and x 

is a vector of independent variables, which represent temperature in this study, y0 means 

offset, xc means center, w means width, A means area.  

 Some other parameters were also shown in the results. The height of the Gaussian 

is computed as 
/ 2

A

w 
. The full width at half maximum (FWHM) of the Gaussian can 

me computed as 2ln2w . The σ represents the 1-sigma error estimates of the returned 

parameters and it can be computed as w/2. Adjusted R
2
 is a modification of R

2
 that 

measure the goodness-of-fit. The standard error is a method of estimation of the standard 

deviation of the sampling distribution associated with the estimation method [24].  

 

 

 

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Sampling_distribution
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Table 5. Basic statistics of the temperature corresponding to the selected data. 

 
Mean 

Standard 

Deviation 
Minimum Median Maximum 

Temperature (ºC ) 10.19 12.25 -10.8 6.9 39 

 

 

Table 6. Basic statistics of the estimated frequencies.  

Mode 
Mean  

(Hz) 

Standard Deviation  

(Hz) 

Minimum  

(Hz) 

Median  

(Hz) 

Maximum  

(Hz) 

Maximum 

Difference 

(%) 

1 1.14 0.018 1.08 1.14 1.18 9 

2 1.34 0.031 1.25 1.34 1.40 12 

3 1.48 0.018 1.41 1.48 1.52 8 

4 1.58 0.023 1.53 1.58 1.69 10 

5 1.75 0.029 1.70 1.75 1.85 9 

6 1.93 0.029 1.86 1.93 2.00 8 

7 2.24 0.054 2.00 2.26 2.32 16 

8 2.40 0.030 2.32 2.40 2.47 6 

9 2.71 0.064 2.50 2.71 2.90 16 

10 3.06 0.057 2.90 3.07 3.20 10 

11 3.30 0.040 3.20 3.30 3.40 6 

12 3.48 0.039 3.40 3.48 3.59 6 

13 3.83 0.082 3.60 3.84 4.00 11 

14 4.20 0.080 4.01 4.20 4.49 12 

15 4.75 0.083 4.57 4.74 5.00 9 

16 5.18 0.088 5.00 5.20 5.39 8 

17 5.57 0.071 5.40 5.57 5.80 7 

18 6.25 0.158 5.82 6.25 6.89 18 

19 7.42 0.208 6.91 7.38 8.00 16 

20 9.51 0.161 8.80 9.55 9.84 12 

21 10.71 0.119 10.32 10.72 11.13 8 

22 11.64 0.269 11.20 11.64 12.30 10 

23 13.07 0.205 12.57 13.09 13.71 9 

24 14.40 0.214 13.81 14.40 14.99 9 

25 15.64 0.294 15.00 15.63 16.50 10 

26 17.19 0.268 16.50 17.21 17.99 9 

 

 

 Linear regression can be viewed as a special case of nonlinear regression. When 

the nonlinear regression analysis indicates that the data can be fitted by linear models, the 



48 

 

linear regression can be used for its simplicity in explanation. The equation of linear 

model can be written in slope-intercept form as follows: 

y = mx + b  (56) 

where y and x have the same meaning as in Eq. (55), m is the slope and, b is the y-

intercept. A sample line of linear fit model is illustrated in Figure 16. 

 The nonlinear Gauss model was used to fit to each data set between frequency and 

temperature for the data gathered. The parameters of the nonlinear fit models for the 

typical data are listed in Table 7. It is apparently that the standard errors are low, 

especially for the lower order modes. So the nonlinear models fit well to the data. The 

correlation plots are shown in Figure 17(a), 18(a), 18(c), 19-22. Each figure contains 

frequency-temperature plots for one mode or two modes with similar relationship.  

 By analyzing the nonlinear curves, it can be deduced that generally all the curves 

are able to be simplified and represented by multiple lines. Most of the curves can be 

replaced by two lines or one line effectively. Linear regression was used to correlate the 

1st, 5th, and 12th frequencies and temperatures as shown in Figures 17 (b), 18 (b) and (d). 

The parameters for the linear models are listed in Table 8. 

 

(y
c
 - y

0
)/2

w
1

y = y
0

x
c
, y

c

 

Figure 15. A sample curve of the Gauss function. 

http://www.purplemath.com/modules/slope.htm
http://www.purplemath.com/modules/intrcept.htm
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Figure 16. A sample line of linear fit model. 

 

 By comparing the adjusted R
2 

values listed in Table 8 of the linear regression with 

those of the nonlinear regression listed in Table 7, it is seen that for the 1st line of mode 1 

and the two lines of mode 5, the linear regression lines fit the data better, and for the 2nd 

line of mode 1 and the lines of mode 12, the nonlinear fit the data better. So it can be 

drawn that whether nonlinear or linear curve fitting is better depends on the data, the 

nonlinear regression is not always better than linear regression.  

 Based on the nonlinear and linear regression analysis, the relationship between 

frequencies and temperatures and the trends are briefly summarized in Table 9. It is clear 

that the trends of different modes vary. The relationship for the 1st frequency in Figure 17 

is in accordance with the expectation that the lines exhibit a downward trend throughout 

the temperature range. This shows that the frequency increases as the temperature drops. 

The reason for this may be the partial fixity at the girder supports, which is caused by 

freezing of accumulated dust and moisture. The degree of frequency increase for partial 

fixity support due to freezing compared to non-frozen simple supports was evaluated 

using vibration theory in [22]. Another reason may be that the asphalt does not have any 

effect during warm times, but becomes very stiff during cold times. These factors can 

also explain the significant increase of frequency with decrease of temperature in Figure 
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18 and Figure 20. The upward trends in Figure 18 and Figure 22 may be caused by the 

expansion of joints due to the increase in temperature. The flat trends in Figure 19 and 

Figure 21 may be caused by the combination of all the factors mentioned above when 

they reached a balance leading to unchanged frequencies. In short, there are different 

effects leading to either an increase or decrease of the frequencies at specific temperature 

ranges. Weighting the effects of these factors for the different modal frequencies results 

in a unique relationship between frequency and temperature for each mode. 

 Further studies on this topic to obtain more accurate and extensive results are 

necessary for establishing statistical model of frequency-temperature relationship and 

discriminating changes in frequencies due to damage from those normal changes due to 

temperature variation. 

 

5.   Conclusion 

 

5.1   The applications of subspace identification 

        algorithms 

 

 This study investigated the effectiveness and applicability of the data-driven 

subspace identification algorithms in modal identification of bridges using output-only 

measurements. It was examined through a numerical truss bridge and a real concrete 

girder bridge. Stabilization diagrams with a range of model orders were used to determine 

the modal frequencies, damping ratios, and mode shapes. The stabilization diagrams with 

stable frequencies and damping ratios were used to determine and preserve the physical 

models, and eliminate the numerical modes. The mode shapes of the numerical example 

were presented and shown to be correct.  

 In the numerical example, a sinusoidal force (with a range of frequencies) was 
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applied to the truss. At a time when the excitation was applied, abrupt damages occurred. 

The responses were computed as the output measurements for identification. No noises 

were considered in this numerical study. 

 

Table 7. The parameters for the nonlinear fit models for the selected modes. 

  Value Standard Error 

Mode 1 

 

Adjusted R
2
 0.0811 - 

y0 1.133 0.0007 

xc -8.4718 1.5281 

w 8.3935 2.0966 

A 0.2318 0.0733 

σ 4.1968  - 

FWHM 9.8826  - 

Height 0.0220  - 

Mode 5 

 

Adjusted R
2
 0.0599 - 

y0 1.7642 0.0040 

xc 11.7117 0.9065 

w 18.1694 3.8814 

A -0.5288 0.1811 

σ 9.0847  - 

FWHM 21.3928  - 

Height -0.0232  - 

Mode 12 

 

Adjusted R
2
 0.03907 - 

y0 3.4947 0.0038 

xc 9.6593 1.1095 

w 15.7049 3.6892 

A -0.4666 0.1601 

σ 7.8524  - 

FWHM 18.4911  - 

Height -0.0237  - 

Mode 3 

 

Adjusted R
2
 0.0151 - 

y0 1.4780 0.0007 

xc -0.5065 0.4967 

w 2.9402 1.0437 

A 0.0293 0.0102 

σ 1.4701  - 

FWHM 3.4618  - 

Height 0.0080  - 
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Table 7. Cont'd 

  Value Standard Error 

Mode 8 

 

Adjusted R
2
 0.0222 - 

y0 2.3985 0.0012 

xc -0.7240 0.3828 

w 2.7040 0.8039 

A 0.0568 0.0164 

σ 1.3520  - 

FWHM 3.1838  - 

Height 0.0168  - 

Mode 24 

 

Adjusted R
2
 0.1365 - 

y0 14.2075 0.0935 

xc -14.8931 17.0390 

W 50.3989 32.1611 

A 19.7915 22.0246 

σ 25.1994  - 

FWHM 59.3401  - 

Height 0.3133  - 

Mode 2 

 

Adjusted R
2
 0 - 

y0 1.3281 - 

xc 4.9000 - 

W -0.0535 - 

A 0.6530 - 

Σ -0.0268 - 

FWHM -0.0630 - 

Height -9.7330  - 

Mode 10 

 

Adjusted R
2 

-0.0035 - 

y0 3.0605 0.0019 

xc 65.1958 - 

w 0.2866 - 

A 0.0622 - 

σ 0.1433  - 

FWHM 0.3374  - 

Height 0.1733  - 

Mode 22 

 

Adjusted R
2
 0.1999 - 

y0 11.9197 0.0708 

xc -4.4906 3.6195 

w 37.9905 10.5332 

A -19.1461 8.7244 

σ 18.9953  - 

FWHM 44.7304  - 

Height -0.4021  - 
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Table 8. The parameters for the linear regression models for modes 1, 5, and 12. 

  Value Standard Error 

Mode 1: 

the line before 

0ºC 

Adjusted R
2
 0.0886 - 

Slope -0.0025 0.0006 

Intercept 1.1353 0.0024 

Mode 1: 

the line after 0ºC 

Adjusted R
2
 0.0025 - 

Slope -0.0001 0.0001 

Intercept 1.1348 0.0010 

Mode 5: 

the line before 

12ºC 

Adjusted R
2
 0.0609 - 

Slope -0.0014 0.0002 

Intercept 1.7541 0.0013 

Mode 5: 

the line after 12ºC 

Adjusted R
2
 0.0629 - 

Slope 0.0009 0.0002 

Intercept 1.7303 0.0049 

Mode 12: 

the line after 12ºC 

Adjusted R
2
 0.0070 - 

Slope -0.0007 0.0003 

Intercept 3.4817 0.0018 

Mode 12: 

the line after 12ºC 

Adjusted R
2
 0.0647 - 

Slope 0.0014 0.0003 

Intercept 3.4524 0.0078 

 

 

 The frequencies and damping ratios of the truss before damage and after damage 

were obtained from the stabilization diagrams. It was observed that the uncertainties were 

exceptionally low. There were two spurious modes in the stabilization diagrams for 

damping ratios. The identified frequencies and damping ratios corresponded well with the 

exact values. For the frequencies before damage, the error of 1st modal frequency was 

only 0.16%, and most other frequencies had an error of less than 4%. For the frequencies 

after damage, the identified errors of frequencies were also low. For both cases of before 

damage and after damage, only five modal damping ratios were identified, but the 

identified values were accurate with errors less than 2.5%. The algorithm also showed its 
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ability to identify the closely spaced modes, e.g., modes 5 and 6 of the truss before 

damage was detected. The SSI method obtained the mode shapes information. The 1st 

mode shapes of the truss bridge before and after damage were investigated and found to 

be able to indicate the damage. 

 It must be noted that if the excitation is white noise instead of the sinusoidal force, 

all the modes can be excited and identified, and therefore the identified modal 

characteristics should be more accurate. 

 As for the application of actual vibration measurements, the algorithm was used 

in modal identification of a concrete highway bridge. The monitoring system consisted of 

18 accelerometers installed on the bridge to measure the transverse, longitudinal, and 

vertical accelerations.  

 In the stabilization diagrams, the frequencies identified from the real 

measurements were also very clear, while they are not as certain as those obtained from 

the numerical example. The damping ratios were even more uncertain than the 

frequencies, and they were certain within the range of 2~3%. Many spurious modes were 

generated and they are eliminated based on the criteria for the stabilization diagrams. The 

identified frequencies were compared with those from forced vibration tests. The errors 

of the first 18 frequencies were between 0.12% and 5%, this shows that the SSI can 

estimate frequencies very well for real measurements. The SSI also obtained reasonable 

damping ratios for the bridges. 
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Figure 17. Modal frequency vs. temperature for the 1st frequency, and the data fitting: (a) 

nonlinear fit model; (b) linear fit model. 
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Figure 18. Modal frequency vs. temperature for the 5th and 12th frequencies, and the data 

fitting: (a) nonlinear fit model for the 5th frequency; (b) linear fit model for the 5th 

frequency; (c) nonlinear fit model for the 12th frequency; (d) linear fit model for the 12th 

frequency. 
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Figure 18. Cont'd 



58 

 

-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

1.4

1.6

1.4

1.6

 

 

F
re

q
u

e
n

c
y

 (
H

z
)

Temperature ( 
o
C )

 Nonlinear fit of the data

 Data for February 2007 - February 2008

 
     (a) 

 

-15 -10 -5 0 5 10 15 20 25 30 35 40 45
2.2

2.4

2.6

2.2

2.4

2.6

 

 

F
re

q
u

e
n

c
y

 (
H

z
)

Temperature ( 
o
C )

 Nonlinear fit of the data

 Data for February 2007 - February 2008

 
     (b) 

Figure 19. Modal frequency vs. temperature for the 3rd and 8th frequencies, and the 

nonlinear fit models: (a) nonlinear fit model for the 3rd frequency; (b) nonlinear fit model 

for the 8th frequency. 
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Figure 20. Modal frequency vs. temperature for the 24th frequency, and the nonlinear fit 

model. 
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      (a) 

Figure 21. Modal frequency vs. temperature for the 2nd and 10th frequencies, and the 

nonlinear fit models: (a) nonlinear fit model for the 2nd frequency; (b) linear fit model 

for the 10th frequency. 
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Figure 21. Cont'd. 
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Figure 22. Modal frequency vs. temperature for the 22nd frequency, and the nonlinear fit 

model. 
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Table 9. Summary of the trends of modal frequency vs. temperature 

Figure 17. Modal frequency vs. temperature for 

the 1st frequency, and the data fitting 

 

2 lines intersect at 0ºC: both with a downward 

trend. The slope is larger before 0ºC. 

Figure 18. Modal frequency vs. temperature for 

the 5th and 12th frequencies, and the data 

fitting. 

 

2 lines intersecting at10ºC; Downward trend 

before 10ºC, upward trend after 10ºC. 

Figure 19. Modal frequency vs. temperature for 

the 3rd and 8th frequencies, and the nonlinear 

fit model. 

 

1 line with constant 0 slope, but with abrupt 

upward and downward around 0ºC. 

Figure 20. Modal frequency vs. temperature for 

the 24th frequency, and the nonlinear fit model. 

 

1 line with downward trend.  

Figure 21. Modal frequency vs. temperature for 

the 2nd and 10th frequencies, and the nonlinear 

fit models. 

 

1 line with flat trend. 

Figure 22. Modal frequency vs. temperature for 

the 22nd frequency, and the nonlinear fit 

model. 

1 line with upward trend. 9th has a small slope, 

and 22nd has a large slope after 0ºC. 

 

 

 N4SID is one of the subspace identification algorithms that can be used for both 

output-only and input-output systems. This study examined the effectiveness of N4SID in 

modal identification of the C846 highway bridge using ambient vibration measurements. 

The frequencies, mode shapes, and damping ratios were able to be determined. The 

frequencies obtained from the stabilization diagram corresponded with the values from 

the force vibration tests with differences of 0.16%~7.59%. It was observed from the 

stabilization diagrams that N4SID needs a much larger order than its theoretical value. 

When the system order number increases, the computation time also increases 

significantly, therefore, this algorithm is not recommended for large systems before 

significant improvement of its performance. 

 The mode shapes need further analysis. A denser layout of sensors on the highway 

bridge is needed to obtain complete mode shapes. The information for the mode shapes 
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based on the modal assurance criteria can be included in the stabilization diagrams. The 

final objective is to incorporate the subspace-based identification algorithms with the 

stabilization diagrams into the real-time bridge health monitoring system. 

 

5.2   Statistical analysis of the influence 

        of temperature on frequencies 

 

 A statistical analysis was conducted to study the influence of temperature on the 

dynamic properties of the C846 concrete highway bridge by using one-year ambient 

vibration data with a temperature range of -10.8 ºC ~ 39ºC. The difference between 

minimum and maximum identified frequencies ranged from 6% to 12% for the first 15 

modes.  

 The modal frequencies and temperatures were correlated by nonlinear and linear 

regression curve fitting, which demonstrated that correlations for most modes can be 

represented by a single or a bilinear line. Downward, upward, and flat trends of the 

frequencies at specific temperature ranges were exhibited at different modes. For 

example, at the fundamental mode, both lines show a downward trend, and the line had a 

bigger slope when the temperature was below 0ºC, that means the frequency increased 

with a decrease in temperature. This can be explained as: a) the decrease of Young's 

moduli of concrete and asphalt with the increase of temperature resulting in a decrease of 

frequencies; b) when the temperature drops below 0ºC, the frozen accumulated dust and 

moisture may cause partial fixity at the girder supports that can lead to the increase of 

frequencies; c) the asphalt may not be affected during the warm times and contribute 

negligible stiffness, but become very stiff during cold times; d) some higher modes 

exhibited upward trends, which may be caused by the expansion of joints. In a word, 
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different weights of these effects on each modal frequency resulted in unique correlations 

for each mode.  

 The variations of damping ratios and mode shapes need to be investigated in 

future studies. Also, temperature sensors are recommended to be installed on the bridge 

to provide exact temperatures.  
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CHAPTER III  
 

DAMAGE IDENTIFICATION OF SUBSTRUCTURES BY USING ADAPTIVE 

KALMAN FILTER AND WAVELET TRANSFORM 

 

ABSTRACT 

 Substructure identification is a method to address the numerical difficulty and 

insufficient sensors involved in structural identification of a large system. This method 

divides the structure into many small substructures and identifies them separately. 

Various structural identification algorithms have been applied in substructure 

identification that includes the extended Kalman filter, which has been used for 

identifying constant structural parameters. This study proposes to use the adaptive 

Kalman filter to identify varying properties of substructures. To investigate the 

effectiveness of the substructure identification by using adaptive Kalman filter, numerical 

studies were performed on a shear building, a plane frame, and a plane truss bridge. It 

was demonstrated that the stiffness and damping of substructures can be identified 

successfully from the limited acceleration responses and abrupt changes of these 

properties can be identified as well. Wavelet analysis was also proposed for damage 

detection of substructures and applied to the frame structure to show the ability of 

scalograms of acceleration responses in detecting and approximately locating changes of 

structural properties or damages. These studies can be very useful for structural health 

monitoring and structural model updating.  

 

1.   Review of the Applications of Substructural 

      Approach 

 

 For structural health monitoring of large structures, it is impractical to obtain 
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complete measurements due to the limited number of sensors and the difficulty of 

conducting field tests. In addition, it is inconvenient to identify a large number of 

unknown parameters in a full system because of numerical difficulty in convergence and 

accuracy [1]. Adopting the strategy of "divide-and-conquer," substructural identification 

is formulated to address this issue and assess localized damage. The purpose is to reduce 

a seemingly insurmountable problem into many smaller problems of manageable size, 

thereby improving numerical convergence and accuracy [2-3]. The effect of excitation 

can be expressed in terms of the responses at the interfaces, and therefore substructural 

identification may be carried out without measuring the actual input excitation to the 

structure [4]. 

 Efforts have been made to develop methods to eliminate the need for interface 

measurements and thus to reduce the computational costs. Koh and Shankar [2] proposed 

a method for parameter identification of substructures without the interface 

measurements. Tee et al. [1] presented a novel substructure strategy involving model 

condensation for stiffness matrix identification and damage assessment with incomplete 

measurement. Likewise, Sandesh [5] and Shankar  presented a method that requires only 

the acceleration measurement at the interior DOFs of the substructure. In [6], the 

equations of motion of the complete system were derived and the dimension was reduced 

considerably. In [7-8], the procedures of a dynamic stiffness method that reduce the 

global matrix dimension were proposed and improved. Weng et al. [9] proposed the 

modal truncation approximation in a substructuring method that only needs to calculate 

the lowest eigensolutions of the substructures.  

 The substructural identification has been used to determine the localized structural 
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damage. Park et al. [10], Sandesh and Shankar [5], and Skjaeraek et al. [11] also 

investigated methods for damage localization of structures. Okuma et al. [12], and Su and 

Juang [13] explored the possibility of performing system identification at the 

substructural level and then synthesizing the results to obtain an analysis model for the 

assembled structure.  

 The probabilistic approaches have been studied in [14-16] for substructure 

identification, by which the probability of different damage levels in each substructure 

can be computed. 

 To identify the dynamic properties of substructures, various system identification 

algorithms have been employed and discussed in the literature. Oreta and Tanabe [17] 

and Koh et al. [18] used the extended Kalman filter (EKF) with a weighted global 

iteration algorithm to formulate and solve state and observation equations. Tee et al. [19] 

employed the eigensystem realization algorithm (ERA) and the observer/Kalman filter 

identification (OKID). Huang and Yang [20] employed an adaptive damage tracking 

technique, the sequential nonlinear least-square estimation to identify damage to a 

complex structure. Bakhary et al. [21], Wu et al. [22], Xu [23], and Yun et al. [24] used 

the neural networks for identification. Rothwell et al. [25] used a short-time Fourier 

transform with an adaptive window width to analyze the transient response of radar 

targets. Koh et al. [3] used a non-classical approach of genetic algorithms. Ma and 

Vakakis [26] performed system identification of the dynamics using Karhunen-Loeve (K-

L) decomposition. Yun and Lee [4] derived an autoregressive moving average with a 

stochastic input (ARMAX) model for a substructure to process the noise-polluted 

measurement data.  
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 The substructural identification methods have been applied to damage 

identification of numerous types of structures. Some of the applications are briefly 

summarized here. The numerical/experimental studies using substructural identification 

methods were performed for shear buildings in [1, 3, 5, 15, 18, 23] and other lumped 

mass systems under different excitations [27]. The localized substructure identification of 

a shear building involving soil-structure interaction effects was presented in [28]. 

Substructuring approaches were applied for the parameterization of multi-story buildings 

in [10, 15-16]. The applicability and effectiveness of substructure identification methods 

in beam structures were investigated in [7-8, 29-31]. The substructure approaches were 

employed in estimating and tracking the stiffness and damping of truss structures [4, 18, 

20, 26, 32]. The use of the substructure methods to identify dynamic properties of plane 

frame structures were presented in [17-18, 27], and the use for multi-storey frames were 

studied in [1, 9, 12, 19, 21, 33]. The effectiveness of substructure approaches in plates 

and continuous concrete slabs were addressed in [34] and [21], respectively. The 

identification of linear and non-linear joint properties involving substructure methods can 

be found in [31, 34-38]. It was stated in [39] that in engineering dynamics, substructuring 

technique was first choice in solving large numerical systems and performing 

experimental analyses on large structures, and the technique has been applied to both 

civil  and mechanical structures. 

 The above literature review shows that the methodology of substructure was able 

to locate and quantify damage accurately for various types of structures from incomplete 

dynamic measurements by using different damage identification algorithms.  
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2.   Objective of this Study 

 

 The purpose of this study is to investigate the effectiveness of substructural 

identification of shear building, truss bridge and frame structure with abrupt degradation 

in stiffness and damping. The extended Kalman filter was used to identify dynamic 

properties and detect damage. Furthermore, the effectiveness of wavelets in damage 

detection of substructures was also investigated. The vibration-based damage 

identification by wavelet transform has been used for frame structures [40], beams and 

plates [41-42], and it has been studied extensively in the literature. The motivation for 

using wavelets in substructure identification is to provide immediate useful information 

for decision-making regarding maintenance of the structures based on damage assessment 

using wavelet analysis of the measurements from sparsely deployed sensors. 

 

3.   Formulation of Substructure 

 

 Without loss of generality, a linear elastic plane frame structure was used to 

illustrate the formulation of substructure identification. Figure 23 illustrates the frame and 

a substructure of it. The equation of motion of the entire structure can be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )M t U t C t U t K t U t F t   

  

(57) 

where M, C, K are the mass, damping and stiffness matrices of the entire structure, 

respectively, U is the displacement vector, the dot (∙) denotes derivative respect to time, 

and  F is the external excitation on the structures and can represent force or motion. 

 The equation of motion for the substructure can be extracted from the partitioned 

matrices of Eq. (57) as  
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Substructure 

ur 

us 

ud 

D 

uR 

uD 

R 

rr rs r rr rs r rr rs r r

sr ss sd s sr ss sd s sr ss sd s s

ds dd d ds dd d ds dd d d

M M O u C C O u K K O u F

M M M u C C C u K K K u F

O M M u O C C u O K K u F

          
                          
                      

 

 

 

(58) 

where U is replaced by u to denote displacement of substructures, O is zero block matrix, 

subscript „s‟ denotes internal DOFs of the substructure, subscripts „r‟ and „d‟ denote 

interface DOFs between the substructure and its neighboring structures, subscripts „R‟ 

and „D‟ denote the neighboring substructures shown in Figure 23(a).  

 To identify the structural parameters within the substructure, the second block 

matrix of Eq. (58) is taken to formulate a state equation as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

ss s ss s ss s s sr r sd d sr r

sd d sr r sd d

M u t C u t K u t F t M u t M u t C u t

C u t K u t K u t

     

  

    


  (59) 

The right hand side of Eq. (59) is treated as an input excitation to the substructure, the su , 

su , and su  are output responses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (a)      (b) 

Figure 23. Illustration of substructure: (a) Frame structure (b) A Substructure of the frame 

structure. 
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 The displacement, velocity and acceleration responses of all degrees of freedom 

within the substructure and at the interfaces of the substructure can be used for structural 

identification. In the structural identification by the adaptive Kalman filter algorithm in 

this study, not all these measurements are required. 

 The following state vectors are introduced into the state equation as 

1 ,1 ,2 ,

T

s s s nX u u u    ; 2 ,1 ,2 ,

T

s s s nX u u u      ;  3 1 2

T

mX      (60) 

where 1X  is the state for displacements, 2X  is the state for velocities, the array 3X

contains the unknown parameters to be determined, such as those in the M, C and K 

matrices. For convenience, more vectors, such as 4X , can be added for more unknown 

parameters. The state-space equations of the system may be expressed as  

1 2

1

2 3 3 2 3 1

3

( )[ ( ) ( ) ( ) ( ) ( )]

0

ss ss ss sr sd s

X X
d

X M X C X X K X X F t F t F t
dt

X



  
  

       
  

 

 (61) 

where 

3 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )sr sr r sr r sr rF t M X u t C X u t K X u t        

3 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )sd sd d sd d sd dF t M X u t C X u t K X u t        

The observation (measurement) equation is written as 

( ) ( ) ( ) ( )Y k H k X k v k    (62) 

where Y(k) is the discrete observation vector that contains the measurements, H(k) is the 

observation (measurement) matrix, v(k) is the noise vector with covariance R, k denotes 

time tk. Since acceleration is the most frequently used on-line dynamic response 

measurement, acceleration signals were investigated for structural identification in this 

study. 
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 Depending on whether overlapping reference measurements (sensors) were used 

or not, the application of the substructural identification procedure usually can be 

classified in one of two ways, namely identification with or without a reference 

measurement. In addition to the two common ways, Koh et al. [3] also developed a new 

substructural procedure, the so-called progressive substructural identification. The 

different identification forms are illustrated in Figure 24, among which, Figure 24 (a) 

shows the form without reference measurements, by which no overlap exists between 

adjacent substructures, Figure 24 (b) shows the form with overlapping reference 

measurements, and Figure 24 (c) shows a progressive form developed by Koh et al. [3]. 

 Substructure identification without overlapping references needs the interface 

responses as input excitation to the substructure. Since interface masses are not included, 

they cannot be identified. This method converges fast and it does not have the problem of 

error propagation. Since interface response can be computed from a previous identified 

substructure and be used in the identification of subsequent substructure, substructure 

identification with overlap requires less response measurements. But the substructure 

identification with overlap has the problem of error propagation and accumulation, and it 

converges slower. Because all masses are included in the substructures, identification of 

all the unknown masses is theoretically achievable. 

 The progressively substructural identification proposed in [3] is an alternative 

method. It takes advantage of all the available measurements by progressively extending 

substructures with few unknowns at each stage. It identifies the unknown masses very 

well. However, the computational cost is increased for this method. 
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Figure 24. Illustration of substructural approaches: (a) Substructural identification w/o 

overlapping references; (b) Substructural identification with overlapping references; (c) 

Progressive substructural identification. 

 

 This study focused on investigating the effectiveness of the adaptive Kalman filter 

and wavelets on substructure identification, the identification without overlapping 

reference measurements was used. 

 Accelerometer is a reliable and most frequently used sensor for structural health 

monitoring. It is essential to develop methods that can identify substructure using only 

acceleration response. The Eq. (59) may be rewritten as  

( ) ( ) ( ) ( ) ( ) ( ) ( )ss s ss s ss s s sc c sc c sc cM u t C u t K u t F t M u t C u t K u t           (63) 

where subscript "c" is use to denote all the interface degrees of freedom, which are 

represented by "r" and "d" in Eq. (59). 

 To remove the input displacement and velocity on the right-hand-side of Eq. (63), 

Koh et al. [3] proposed that the displacements of internal degrees of freedom can be 

represented by the sum of a “quasi-static displacement” and a relative displacement, 

which can be expressed as 
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( ) ( ) ( )s r

s s su t u t u t    (64) 

where ( )s

su t is „quasi-static displacement‟ and ( )r

su t is „relative displacement‟. Suppose 

the external excitation and the time-derivative terms Eq. (63) to be zero, it yields 

1( )s

s ss sc c cu t K K u u     (65) 

where   is the influence matrix to correlate the interface DOFs to internal DOFs of the 

substructure. Substitute equations (64) and (65) into (63), it yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r r r

ss s ss s ss s s sc ss c sc ss cM u t C u t K u t F t M M u t C C u t           (66) 

Damping force is usually a very small value compared to the inertial force, so the 

damping force may be ignored and Eq. (66) becomes 

( ) ( ) ( ) ( ) ( ) ( )r r r

ss s ss s ss s s sc ss cM u t C u t K u t F t M M u t         (67) 

If M represents a lumped mass system, then M is a diagonal matrix and 
scM vanishes, 

then equation (67) becomes 

( ) ( ) ( ) ( ) ( )r r r

ss s ss s ss s s ss cM u t C u t K u t F t M u t        (68) 

If the substructure has free ends, then the influence matrix [1 1...1]T  , and if there is 

no external excitation on the substructure, the governing equation of motion becomes 

simplified to an output only system, 

( ) ( ) ( ) [1 1...1] ( )r r r T

ss s ss s ss s ss cM u t C u t K u t M u t        (69) 

 

4.   Brief Review of Kalman Filter Algorithms 

 

 A Kalman filter is an optimal recursive data processing algorithm that can 

estimate the past, present, and future states of process even if the modeled system is not 

completely known. It is widely used, for example, in the area of autonomous or assisted 
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navigation [43], and it has been used in structural identification in recent years [19, 44-

46].  

 This section gives a brief summary of the Kalman filter, extended Kalman filter, 

and adaptive Kalman filter. The adaptive Kalman filter algorithm is used in the 

substructural identification of the three numerical examples. 

 

4.1   Kalman filter algorithm 

 

 The general computations involved in the Kalman filter are outlined in this 

subsection. More extensive references include [43, 47-49]. 

 The discrete line dynamic system is governed by the vector difference equation 

1 1 1 1( , 1)k k k k kx k k x B u w        (70) 

with the discrete observation 

k k k ky H x     (71) 

where xk is the state vector at tk, ( , 1)k k   is the nonsingular state transition matrix 

(from tk-1 to tk), uk is the optional control input, Bk is the matrix that relates the input u to 

the state x, yk is the observation (measurement) at tk, Hk is the observation matrix, wk and 

νk represent the system and measurement noises, respectively. It is assumed wk and νk are 

white Gaussian sequences and independent of each other with   

1( ) 0kE w   ;      1 1( )T

k l k klE w w Q    ;            1 1~ (0, )k kw N Q     

( ) 0kE   ;         ( )T

k l k klE R   ; 0kR  ;     ~ (0, )k kN R    

where kl is the Kronecker delta. 

 Generally, the Kalman filtering consists of two procedures: the prediction (time 

update) and updating (measurement update). The predicted state estimate and the 
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improved estimate via updating are termed the a priori and a posteriori, respectively. The 

main equations are 

Prediction  

| 1 1| 1 1 1
ˆ ˆ( , 1)k k k k k kx k k x B u      

 (72) 

| 1 1| 1 1( , 1) ( , 1)T

k k k k kP k k P k k Q         (73) 

Updating 

1

| 1 | 1[ ]T T

k k k k k k k k kK P H H P H R 

  
 (74) 

| | 1 | 1
ˆ ˆ ˆ[ ]k k k k k k k k kx x K y H x      (75) 

| | 1( )k k k k k kP I K H P     (76) 

where |
ˆ

k kx
 denotes state estimate at kt  given ky , | 1k kP   denotes a covariance matrix of the 

error in | 1
ˆ

k kx  , namely | 1 | 1 | 1
ˆ ˆ{( )( ) | }T

k k k k k k k k kP E x x x x y    
, kK  is the Kalman gain 

matrix at kt .  

 After each prediction and updating pair, the process is repeated with the previous 

a posteriori estimates used to predict the new a priori estimates. It must be noted that the 

formulas for the updated estimates and covariance in (72)-(76) are only for the optimal 

Kalman gain. For the usage of other Kalman gain values, the equations need to be 

changed accordingly. 

 

4.2   Extended Kalman filter 

 

 In practice, most problems are nonlinear rather than the linear models as in 

equations (70)-(71). Before applying the Kalman filter, the system must be linearized. 

The Kalman filter that linearizes the current mean and the covariance is termed as 
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extended Kalman filter (EKF). A nonlinear continuous system and nonlinear discrete 

observations may be expresses as 

0 0 00
ˆ/ ( , , ) ( ) , , ~ ( , )t t t t t t tdx dt f x u t G t w t t x N x P    (77) 

( , )
k kt t k ky h x t v     (78) 

where ( )G t  is the system noise coefficient matrix, the other symbols are similar to those 

in section 4.1. 

 The state and the error covariance may be updated by the prediction equations (79) 

and (80), and by the updating at the observation equations (81)-(83). 

Prediction 

1

1| | |
ˆ ˆ ˆ( , , )

k

k k k k k
k

t

t t t t t t t
t

x x f x u t dt



     (79) 

1 1| 1 | | 1 |
ˆ ˆ[ , ; ] [ , ; ]

k k k k k k k k k

T

t t k k t t t t k k t t tP t t x P t t x Q
      (80) 

Updating 

1 1 1 1 1 1| | 1 | | 1
ˆ ˆ ˆ ˆ[ ; ] [ ( , )]

k k k k k k k k kt t t t k t t t t t kx x K t x y h x t
           (81) 

1 1 1 1 1 1 1

1 1

| 1 | 1 | | 1 | 1 |

1 | 1 1 |

ˆ ˆ ˆ ˆ[ ( ; ) ( ; )] [ ( ; ) ( ; )]

ˆ ˆ( ; ) ( ; )

k k k k k k k k k k k k

k k k k

T

t t k t t k t t t t k t t k t t

T

k t t k k t t

P I K t x H t x P I K t x H t x

K t x R K t x

      

 

   

  

   


 (82) 

The Kalman gain matrix 

1 1 1 1 1 1

1

1 | | 1 | 1 | | 1 | 1
ˆ ˆ ˆ ˆ( ; ) ( ; )[ ( ; ) ( ; ) ]

k k k k k k k k k k k k

T T

k t t t t k t t k t t t t k t t kK t x P H t x H t x P H t x R
     



       (83) 

where 
| |

( , )
ˆ ˆ[ ; ] k

k k k k k

i t k

k t t t t t

j

h x t
H t x at x x

x

 
  

  

; the state transition matrix   is obtained 

from Taylor's series of first order as 
|

( , , )
ˆ[ ; ] k k

k k

i t t k

k t t

j

f x u t
F t x

x

 
  

  

 at |
ˆ

k k kt t tx x , 

1 | |
ˆ ˆ[ , ; ] [ ; ]

k k k kk k t t k t tt t x I tF t x   , in which t  is a sampling interval of measurements; 
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the denotations of the other terms in equations (79)-(83) are similar to those in section 4.1. 

 The EKF may be iterated globally as well as locally. For more details see [46-47]. 

When used for system identification, the unknown parameters to be determined may be 

contained in the state vector. 

 

4.3   Adaptive Extended Kalman Filter and its 

        application in structural identification 

 

 Despite the successful use of the Kalman filter, sometimes it is not the optimal 

choice and even leads to divergence due to the inaccuracy of the system models. To keep 

the filter stable, researchers have proposed to limit the memory of the Kalman filter by 

applying fading factors on the past data.  

 Fagin [50] used a constant fading factor 
k  to apply exponential fading on the 

past data, so the memory of the filter would be limited. The fading Kalman filter is 

identical to the one seen in section 4.1, except for the introduction of the forgetting factor 

into the error covariance Eq. (73) as the following 

| 1 1| 1 1( , 1) ( , 1)T

k k k k k kP k k P k k Q          (84) 

with 1k  , where the most recent observation is overweighed and subsequently 

divergence has been avoided. 

 The constant fading factor is not satisfactory for the systems with uncertainty, and 

it is necessary to vary the factor when there are unpredictable jumps and drifts. For this 

reason, many adaptive Kalman filter algorithms have been developed to estimate the 

fading factors. Xia et al. [51] proposed algorithms to adaptively adjust the forgetting 

factor using the predicted residuals. The value of the forgetting factor is computed by 

minimizing  
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2

1 1

( ; ) 1/ 2 ( )
n m

ij

i j

f k S k
 

    (85) 

where 
ijS  is the (i, j)th element of S(k),  

| 1 0( ) ( )T

k k k kS k P H K C k    (86) 

where 0 ( )C k is the covariance of the predicted observation residuals. 

0 | 1 | 1
ˆ ˆ( ) [( )( ) ]T

k k k k k k k kC k E y H x y H x      (87) 

As ( ; )f k  is minimized, ( )S k  is closest to zero and the filter is optimized. k  may be 

computed by 

1

0 1 1| 1

1
max{1, {[ ( ) ][ ( , 1) ( , 1) ] }}T T T

k k k k k k k k ktrace C k H Q H R H k k P k k H
m

 

         (88) 

 The single-variable forgetting factor cannot guarantee complete stability and 

optimality of the system estimation. The multiple forgetting factor Kalman filter was 

proposed to increase the predicted variance components by researchers [45, 48]. 

| 1 1| 1 1( ) ( , 1) ( , 1) ( )T T

k k k k kP k k k P k k k Q            (89) 

where  1 2( ) ( ), ( ), , ( )nk diag k k k      contains the forgetting factors to be 

determined.  

 In [48], the forgetting factors in ( )k are computed separately based on the 

statistical evaluations of the predicted residuals using a Chi-square test. In [45], the 

adaptive forgetting factors were used in EKF and applied to structural identification with 

abrupt changes of properties. The states to be estimated are similar as those in Eq. (60), 

1 2 3, ,
T

T T T

k k
x X X X    , where 3X  contains the unknown dynamic parameters to be 

identified. The objective function to be minimized for calculation of forgetting factors of 
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EKF is  

3, 3,

3

3,

ˆ ˆ[ | ] [ 1| 1]
ˆ( [ | ; ( )])

ˆ [ 1| 1]

l l

l l

X k k X k k
f X k k k

X k k

  
 

 
  (90) 

subjected to constraint of  

1 1

0 1( ) k k kC k M R M  

     

where 

1 1 11 | | 1 | 1
ˆ ˆ( ; ) ( ; )

k k k k k k

T

k k t t t t k t t kM H t x P H t x R
        

 The basic idea of using the fading Kalman filter to detect structural damages is 

that the sudden changes of structural parameters result in jumps of the state, while the 

forgetting factors are able to limit the memory of the past data and outweigh the current 

data, therefore the changed parameters can be identified correctly. 

 

5.   Numerical Studies  

 

 Numerical studies were conducted to test the performance and feasibility of using 

the adaptive Kalman filter and wavelet analysis for substructure identification. The 

substructure identification without overlapping measurements as discussed in section 3 

was performed on a 10 DOFs shear building, a 5-story plane frame structure, and a plane 

truss bridge. All the numerical examples were assumed to be linear elastic structures. The 

shear building underwent stiffness-proportional damping while the frame and truss 

endured Rayleigh damping. The external excitations on these structures were ground 

motion or forces. The El Centro earthquake wave was applied as the input excitation for 

shear building. 

 All the exact values of the structural properties were known and used for 
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establishing the finite element models for the structures. Then the dynamic responses 

were computed from the equations of motion of the finite element models by the 

Newmark-beta method. More details of this method can be referred to [52-54]. The 

Newmark-beta method, used in this study, where γ=0.5, β=0.25, is actually same to the 

constant average acceleration method.  

 In the identification process, the adaptive Kalman filter was used to track the 

damage quantitatively, and the wavelet scalogram was examined to identify damage 

qualitatively. In this study, all the masses were assumed to be known, and the stiffness 

and damping were the unknown parameters to be identified. The acceleration responses 

calculated by the Newmark-beta method were used as the observation measurements. The 

stiffness and damping of some elements of these structures were abruptly reduced during 

excitation to simulate actual damage in order to study the effectiveness of the structural 

identification algorithms in tracking the damage of substructures. 

 

5.1   Example 1: 10-DOF shear building 

        under ground motion 

 

 The 10-DOF is shown in Figure 25, the element numbers 1~10 begin from the 

lowest to the highest nodes. In the identification process, the masses m1~m10 and 

acceleration responses are known parameters. The stiffness represented by k1~ k10 and the 

damping coefficients represented by c1~ c10 were the unknown parameters to be 

identified.  

 

5.1.1   State space equations for the substructures 

 The entire structure was divided into two substructures, namely substructure 1 and 

substructure 2 as illustrated in Figure 25.  
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 The equation of motion for substructure 1 can be written as  

1 1 1 1 1 1 1 1 1 5( ) ( ) ( ) ( ) ( )r r r

s s s s s s s s sM u t C u t K u t F t M u t       (91) 

where ( )r

iu t  denotes the i-th relative displacement with respect to u5, and the structural 

matrices are 

6

7

81

9

10

s

m

m

mM

m

m

 
 
 

  
 
 
  

;

6 7 7

7 7 8 8

8 7 8 91

9 8 9 10

10 10

s

c c c

c c c c

c c c cC

c c c c

c c

  
   
 

    
 

   
  

; 

6 7 7

7 7 8 8

8 7 8 91

9 8 9 10

10 10

s

k k k

k k k k

k k k kK

k k k k

k k

  
   
 

    
 

   
  

; 1 [1 1 1 1 1]T

s 
    

 

Since only ground motion was applied, Fs1 = 0.  

The state variables are 

1 6 7 8 9 10 2 6 7 8 9 10[ ] ; [ ]r r r r r T r r r r r TX u u u u u X u u u u u        

3 6 7 8 9 10 4 6 7 8 9 10[ ] ; [ ]T TX k k k k k X c c c c c    

1 2 3 4[ ]T T T T TX X X X X    

The state equation can be expressed as 

1 2

1

2 1 1 4 2 1 3 1 1 5

3

4

( ( ) ( ) ) ( )

0

0

s s s s

X X

X M C X X K X X u td

Xdt

X



   
        

   
   
     


 (92) 
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Figure 25. 10-DOF shear building for Example 1. 

 

The discrete observation equation is 

6 7 8 9 10[ ]TY u u u u u        (93) 

 The equation of motion for substructure 2 can be expressed as  

2 2 2 2 2 2 2 2 6 2 2( ) ( ) ( ) ( ) ( )r r r

s s s s s s s s s s gM u t C u t K u t M u t M u t           (94) 

where gu  is the ground acceleration, superscript r means the parameter is relative respect 

to that of element 6, and the structural matrices are 

1

2

32

4

5

s

m

m

mM

m

m

 
 
 

  
 
 
  

; 

1 2 2

2 2 3 3

3 3 4 42

4 4 5 5

5 5 6

s

c c c

c c c c

c c c cC

c c c c

c c c

  
   
 

    
 

   
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1 2 2

2 2 3 3

3 3 4 42 2

4 4 5 5

5 5 6

; [1 1 1 1 1]T

s s

k k k

k k k k

k k k kK

k k k k

k k k



  
   
 

    
 

   
   

    

The state vectors are given as 

1 1 2 3 4 5[ ]TX u u u u u ; 2 1 2 3 4 5[ ]TX u u u u u     
 

 

3 1 2 3 4 5[ ]TX k k k k k ; 4 1 2 3 4 5[ ]TX c c c c c
 

 

1 2 3 4[ ]T T T T TX X X X X   (95) 

The state equation can be expressed as 

1 2

1

2 2 2 4 2 2 3 1 2 6 2

3

4

( ( ) ( ) ) ( ) ( )

0

0

s s s s s g

X X

X M C X X K X X u t u td

Xdt

X

 

   
         

   
   
     

 

  

(96) 

The discrete observation equation is 

1 2 3 4 5[ ]TY u u u u u     
  

(97) 

The previous results identified from substructure 1 can be used to identify substructure 2. 

For example, the damping force can be added to the RHS of Eq. (94). And the state 

variables can be changed accordingly. These are beyond the scope of this study, only the 

results of Eq. (94) were discussed in this paper. 

 The structural parameters used in this study are the same as those of the 5-DOF 

system in [45]. The values of lumped masses are: m1 = m2 = m3 = m4 = m5 = m6 = m7 = 

m8 = m9 = m10 = 125.53 kg. The values of stiffness are: k1 = k2 = k3 = k4 = k5 = k6 = k7 = 

k8 = k9 = k10 = 24.49 kN/m. The stiffness-proportional damping coefficients are assumed 

to be: c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 = c10 = 0.175 kN s/m. The k8 and c8 reduced 
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abruptly after damage at t = 10 seconds new values: k8,after damage = 15.0 kN/m, c8,after damage  

= 0.12 kN.s/m. It must be pointed out that the values for each DOF are identical and this 

is acceptable for examination of identification algorithm, while they can differ from each 

other and more practical values can be used in future studies. Initial estimate for values of 

the stiffness and damping are 20 kN/m and 0.15 kN.s/m, respectively.  

 The ground motion applied to the shear building was El Centro earthquake 

acceleration as illustrated in Figure 26. The PGA = 3.08 g, time duration = 30 seconds, 

and time interval = 0.001 seconds. The responses for each DOF due to the El Centro 

ground acceleration are shown in Figure 27. The random excitation by means of Gaussian 

white noise at the 3
rd

, 6
th

, 9
th

 nodes had also been tried, however, the identified results 

were not as effective as applying the El Centro ground motion, therefore, the identified 

results for this case need further examination and are not shown in this paper.  

 In the identification process, the masses and acceleration responses were known, 

while the stiffness and damping were the unknown parameters to be determined. The 

output noises were not considered in the numerical studies. The identified results by 

using adaptive Kalman filter are illustrated in the following figures and tables. 

 

5.1.2   Numerical results and discussion 

 In the application of the adaptive Kalman filter, due to numerical issues, the 

values of R and Q should be selected and finely tuned in order to get satisfactory results; 

they should be assigned small values instead of zeros for the case without noise. These 

values can have significant influence on the final estimated tracking results. The weight 

values may also have significant effects and further studies are needed in order to 

determine these values. Some identification results are demonstrated in this section to 
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show the ability of the adaptive Kalman filter. In the identification process, the masses 

and acceleration responses are known, while the stiffness and damping are the unknown 

parameters to be determined.  

 Three identification cases were analyzed: a) the identification of substructure 1 

without output noise; b) the identification of substructure 2 without output noise; c) the 

identification of substructure 2 with 2% root-mean-square (RMS) output noise.  

 For the identification of substructure 1 without output noise, the parameters 

k6~k10, and c6~c10 were to be determined. The initial estimate of the stiffness and 

damping values were 20 kN/m and 0.15 kN.s/m, respectively. Figure 28 plots the 

identified values and the exact values with respect to time. Table 10 lists the errors of 

final identified values compared to the exact values for substructure 1 from Example 1. It 

was observed that the stiffness can be identified very well with errors less than 3%, and 

the abrupt change of stiffness can also be effectively tracked. The damping can be 

identified well, but the identified values of damping converge more slowly and are less 

stable than the identification of stiffness. 

 

 
 

Figure 26. The ground acceleration applied to the 10-DOF shear building.  
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Figure 27. The acceleration responses due to the El Centro ground acceleration in m/s
2
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 For the identification of substructure 2 without output noise, the parameters k1~k5, 

and c1~c5 were to be determined. The initial guess of the stiffness and damping values 

were 20 kN/m and 0.15 kN.s/m, respectively. Figure 29 plots the identified values and the 

exact values with respect to time. Table 11 lists the errors of final identified values 

compared to the exact values for substructure 2 from Example 1. It was found that 

stiffness can be identified effectively with errors less than 5%, and the abrupt change of 

stiffness can be tracked well. The damping can be identified within 15% error, and the 

identified values of damping converge much more slowly.  

 As for the identification of substructure 2 with 2% RMS output noise, the 

parameters to be determined and the initial hypothesis of the unknown parameters are 

same as the case without noise. Figure 30 plots the identified values and the exact values 

with respect to time. Table 12 lists the errors of final identified values compared to the 

exact values for substructure 2 of Example 1 with 2% noise. Our research determined that 

stiffness can be identified effectively with errors of less than 9%, and the abrupt change 

of stiffness can be tracked well. The damping can be identified within a 29% error, and 

the identified values of damping converge much slower. Comparing the results of the 

same substructure, i.e. substructure 2 here, with and without output noise, it can be 

concluded that the added noise can reduce the accuracy of the identified results, while if 

the noise is at a low level, the identified results are still reasonable and can converge 

within a short time.  

 

5.2   Example 2: 6-story plane frame structure 

        with 18 DOFs 

 

 The frame used here was similar to but not exactly the same as the frame in [18]. 
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The 6-story plane frame is shown in Figure 31(a), the element numbers are illustrated. 

The axial deformations have been ignored, therefore each story was modeled by 3 DOFs, 

i.e., 1 horizontal translation and 2 rotations as demonstrated in Figure 31(b). The height 

of each story was 4m and the length of each beam was 9m. The linear mass densities of 

the column and beam were 33 kg/m and 0.058 kg/m respectively. The flexural stiffness 

for the 18 members is listed in Table 13. For convenience, the EiIi/li will be denoted by ki 

in the following discussion. The finite element model is constructed by using these 

structural properties, the mass and stiffness matrices of the entire structure can be denoted 

by M and C. The Rayleigh damping was used to obtain the damping matrix, namely       

C = αM + βK. The two damping coefficients are α = 0.6344, β = 0.002061.  

 A sinusoidal force f(t) was applied horizontally on the roof floor as shown in 

Figure 31. The sampling rate was 1000 Hz. After some trial tests, to get good 

identification results, a range of different frequencies rather than a single frequency were 

used as follows: 

1

( ) sin(2 )
Nf

i i i

i

f t A f 


    (98) 

where Ai, fi, and φi are the amplitude, frequency, and phase angle, respectively, of the i-th 

sinusoidal component. The frequencies fi ranging from 1.75 Hz to 55 Hz were used for 

the force and some values were chosen for amplitudes and phases.  
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Figure 28. Comparison of the identified results with the exact values for substructure 1of 

Example 1 w/o noise (unit for stiffness: N/m; unit for damping: N.s/m).  
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Figure 29. Comparison of the identified results with the exact values for substructure 2 of 

Example 1 w/o noise (unit for stiffness: N/m; unit for damping: N.s/m).  
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Figure 30. Comparison of the identified results with the exact values for substructure 2 of 

Example 1 w/ 2% noise (unit for stiffness: N/m; unit for damping: N.s/m).  
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Table 10. The errors of identified results for substructure 1 of Example 1, w/o noise 

Stiffness 

parameter 
k6 k7 

k8 

before 

damage 

k8 

after 

damage 

k9 k10 

Error 

(%) 
-0.06 -0.03 -0.01 0.29 0.19 -2.94 

Damping 

parameter 
c6 c7 

c8 

before 

damage 

c8 

after 

damage 

c9 c10 

Error 

(%) 
-2.23 0.19 2.59 1.14 -2.66 2.54 

 

 

Table 11. The errors of identified results for substructure 2 of Example 1, w/o noise 

Stiffness 

Parameter 
k1 k2 k3 k4 k5 

Error (%) 0.57 2.70 5.63 4.92 -0.15 

Damping 

parameter 
c1 c2 c3 c4 c5 

Error (%) -4.01 14.96 7.97 0.65 1.04 

 

 

Table 12. The errors of identified results for substructure 2 of Example 1, w/ 2% noise 

Stiffness 

Parameter 
k1 k2 k3 k4 k5 

Error (%) 0.37 3.01 8.29 6.64 2.23 

Damping 

parameter 
c1 c2 c3 c4 c5 

Error (%) 1.98 29.02 10.71 1.95 5.15 

 

 

 The damage was simulated by reducing both k7 and k8 to the values 600 kN/m, 

which occurred at t = 15 seconds after the excitation was applied. The modal frequencies 

and damping ratios for the frame structure before and after damage are listed in Table 14, 

which shows that the frequencies of the damaged model were lower than those of the 

undamaged model.  
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   (a)    (b) 

Figure 31. Frame structure: (a) structural model; (b) degrees of freedom 

 

Table 13. Flexural stiffness of the frame members. 

Element No. 1 2 3 4 5 6 7 8 9 

EiIi/li (kN/m) 2730 2880 2870 2750 2770 2811 1800 1820 1760 

Element No. 10 11 12 13 14 15 16 17 18 

EiIi/li (kN/m) 1890 1860 1830 1730 1760 1900 1920 1876 1892 

 

 

 For the identification of substructure 1, the masses and accelerations of the 

substructure were known, and the parameters k1, k7, k8, α, and β associated with 

substructure 1 were to be determined. The initial estimates of these values were 2500 

kN/m, 1200 kN/m, 1200 kN/m, 0.7, and 1.8, respectively. Figure 32 shows the identified 

and exact values. Table 15 lists the errors of final identified values compared to the exact 

values for substructure 1 of Example 2. It is observed that with reasonable initial guess of 

unknown parameters, the stiffness can be identified very well with an error of less than 

4%, and the abrupt change of stiffness can also be tracked well. The identified values of 

damping converged adequately, but the errors of converged values were large up to 29%. 

Hence, damping can be a reference but is not recommended as a damage indicator alone. 
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Table 14. The modal frequencies and damping ratios of the frame before and after 

damage 

 

Modal No. 

Before damage After damage 

Frequency 

(Hz) 

Damping ratio 

(%) 

Frequency 

(Hz) 

Damping ratio 

(%) 

1 1.63 4.15 1.62 4.17 

2 5.03 4.26 4.68 4.11 

3 8.64 6.18 7.52 5.54 

4 12.60 8.56 11.18 7.69 

5 16.49 10.99 15.52 10.37 

6 19.31 12.76 16.27 10.84 

7 19.46 12.86 19.13 12.65 

8 21.63 14.24 20.69 13.64 

9 24.05 15.78 22.54 14.82 

10 26.73 17.50 25.41 16.65 

11 29.18 19.07 28.54 18.66 

12 30.64 20.01 30.43 19.87 

13 61.06 39.62 59.21 38.42 

14 65.23 42.31 63.38 41.12 

15 72.09 46.75 68.71 44.56 

16 80.10 51.93 76.07 49.32 

17 87.37 56.63 85.19 55.22 

18 92.28 59.81 91.42 59.25 

 

 

Table 15. The errors of identified results for substructure 1 of Example 2, w/o noise. 

 k1 k7  

before 

damage 

k7  

after 

damage 

k8 

before 

damage 

k8 

after 

damage 

α β 

Error 

(%) 
3.71 -1.39 0.86 -1.30 0.92 -29.14 16.08 
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Figure 32. Comparison of the identified results with the exact values for substructure 1 of 

Example 2 (unit for stiffness: kN/m). 

 

5.3   Example 3: 10-DOF plane truss bridge 

 

 The plane truss bridge model supported at two ends is as illustrated in Figure 33, 

where the node and element numbers are shown. Each node has two degrees of freedom, 

i.e., horizontal (x) and vertical (y) translations. The structural properties are the same as 
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those of the truss bridge model in [55] and listed in Table 16. The stiffness and mass 

matrices of the entire truss structure may be obtained from  

1 1 1 1

( ) ; ( )
n n n n

e e e e T e e e e T

e e e e

K K L k L M M L m L
   

        (99) 

where L
e 
is the position vector, and the global stiffness and mass matrices are 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

c 2c 2

2 2
/ ; / 6

2 2

2 2

e e

i i i i

cs c cs cs c cs

cs s cs s cs s cs s
k E A l m

c cs c cs c cs c cs

cs s cs s cs s cs s



    
   

     
    
   
    

   

where c = cosθi, s = sinθi, θ is the angles between members as shown in Figure 33, E is 

Young's modulus, A is cross-sectional area, and ρ is mass density. 

 The Rayleigh damping was used to obtain the damping matrix C = αM+ βK. The 

two damping coefficients were chosen as α = 0.566; β = 8.62 ×10
-4

. The sinusoidal force 

was acted upon node 3 along the y direction. The sinusoidal force consisted of a range of 

excitation frequencies, and can be expressed in Eq. (98). The frequency fi used for the 

force on the truss range from 2 Hz to 20 Hz, and some values were chosen for amplitudes 

and phases. The sampling rate was 1000 Hz. 

 The truss bridge was divided into substructure 1 and the remaining substructure. 

The axial stiffness E1A1/l1 ~ E6A6/l6, and the damping coefficients α and β were to be 

determined. For convenience, the EiAi/li will be denoted by ki in the following discussion. 

The damage occurred at t = 10 seconds counted from the start of excitation. The k3 and k9 

reduced abruptly from 16617 to 6000 kN/m, all the other values were assumed to be 

constants. The modal frequencies and damping ratios for the truss in both undamaged and 

damaged states are listed in Table 17. 
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Figure 33. Truss bridge model for Example 3: the circled numbers denote node numbers 

and the numbers w/o circles denote the element number. 

 

Table 16. Structural properties of the truss bridge 

Element No. EiAi/li (kN/m) ρili/6 (kg/m
2
) θ (radian) 

1 14142 540 π/4 

2 11000 520 0 

3 16617 530 3π/4 

4 11500 510 0 

5 15627 550 π/4 

6 10000 560 0 

7 15627 550 3π/4 

8 11500 510 0 

9 16617 530 π/4 

10 11000 520 0 

11 14142 540 3π/4 

 

 

Table 17. The modal frequencies and damping ratios of the truss before and after damage 

 

Modal No. 

Before damage After damage 

Frequency 

(Hz) 

Damping ratio 

(%) 

Frequency 

(Hz) 

Damping ratio 

(%) 

1 1.92 2.86 1.73 3.07 

2 4.43 2.22 4.32 2.21 

3 6.29 2.42 5.82 2.35 

4 9.05 2.95 8.29 2.79 

5 12.59 3.77 10.73 3.33 

6 12.75 3.81 11.36 3.47 

7 15.28 4.43 13.45 3.98 

8 16.43 4.72 13.80 4.06 

9 20.85 5.86 18.64 5.29 

10 21.39 6.00 20.66 5.81 
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 For the identification of substructure 1, the masses and the acceleration responses 

of the substructure were known, and the parameters k1~k6, α, and β associated with 

substructure 1 were yet to be determined. The initial estimate of these values was 16000 

kN/m, 8000 kN/m, 11000 kN/m, 15000 kN/m, 18000 kN/m, 8000 kN/m, 5, and 8, 

respectively. Figure 34 plots the identified values and the exact values with respect to 

time. Table 18 lists the errors of final identified values compared to the exact values for 

substructures 1 found in Example 3. It was observed that the stiffness could be identified 

very well with an percent error of less than 5%, and the abrupt change of stiffness could 

also be tracked efficiently. The identified values of damping converged almost completely, 

the errors of the final identified values were approximately 6%, which are better than 

those of the frame in Example 2, and this may be because the DOFs of the truss were less 

than those of Example 2. Hence the identified damping can be a reference indicator for 

structural health monitoring.  

 

Table 18. The errors of identified results for substructure 1 of Example 3, w/o noise. 

 k1 k2 k3 before damage k3 after damage k4 

Error 

(%) 
0.05 6.31 -0.17 0.06 -0.09 

 k5 k6 α β  

Error 

(%) 
0.40 -4.52 -4.95 6.17  
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Figure 34. Comparison of the identified results with the exact values for substructure 1 of 

Example 3 (unit for stiffness: kN/m). 
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6.   Wavelet Scalogram in Damage Identification 

       of Substructures 

 

 Wavelet theory has emerged over the past twenty years as one of the best signal 

processing tools and is known for its many advantages. Wavelets can be used for multi-

scale analysis of signals and extraction of time-frequency features, and therefore is 

suitable to process non-stationary signals. Wavelet analysis was applied in fault 

diagnostics, structural performance testing, and ground motion analysis [56-57]. It was 

used in damage detection of various structures, e.g., beam [58-60], plate [61-62], and 

frame structures [63]. The occurrence of either abrupt or accumulative damage of 

structures can be determined by the wavelet analysis of response measurement, e.g., 

abrupt stiffness degradation [64]. This study makes use of the wavelet in determining the 

presence of abrupt stiffness degradation in the substructures of a frame structure. 

 

6.1   Brief introduction of wavelet transform 

 

 The wavelet ψa,b(t) generated by dilation and translation from the analyzing 

wavelet ψ(t) is defined as 

1/2

, ( )a b

t b
t a

a
 

  
  

 
  (100) 

where a is a scale parameter and b is a translation parameter. ψ(t) is called the mother 

wavelet, and ψa,b(t) is called the son wavelet.  

 It is supposed that 2( ) ( )t L    and it satisfies the admissibility condition, 

1 2
( )C d    


  


  (101) 

where ( ) ( ) i tt e dt    


is the Fourier transform. It can be derived that, 
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( ) 0t dt    (102) 

 The wavelet transform of a function is a linear transform that correlates a finite-

energy function x(t) with a series of oscillating functions ψa,b(t) as 

1/2 *

,( , ) ( ) ( ) 0a bWx a b a x t t dt


   (103) 

where the asterisk denotes complex conjugate.  

The function can be reconstructed by the inverse wavelet transform  

21

2
( ) ( , )

da db
x t C Wx a b

a


 


 
     (104) 

The modulus is defined as 

2 2 1/2( , ) (Re [ ( , )] Im [ ( , )])Wx a b Wx a b Wx a b   (105) 

The phase is defined as 

Im[ ( , )]
( , ) arctan

Re[ ( , )]

Wx a b
a b

Wx a b
    (106) 

 Wavelet scalogram is defined as the square of the modulus of the wavelet 

transform and represents energy density that measures the energy of x(t) in the 

Heisenberg box of each wavelet ψa,b(t) centered at ( , )a
b


   [65]: 

2

2
( , ) ( , ) ( , )WP x a Wx a b Wx a





   (107) 

It can be regarded as a spectrum with constant relative bandwidth. Wavelet scalograms 

were employed in this study to determine the occurrence of abrupt damage of structures. 

 A variety of mother wavelets, which include Haar, Morlet, Mexican Hat, 

Hermitian, and Daubechies wavelets, have been developed to meet different criteria. The 

Morlet wavelet consists of a Fourier wave modulated by a Gaussian envelope. It has a 



104 

 

good time-frequency localization feature, and has been applied in seismic signal detection 

[66]. It has also been proven to be a strong tool for feature extraction for mechanical 

vibration signals and fault diagnosis [67-68]. Based on these research, the complex 

Morlet wavelet was chosen for this study, which is defined as in [69]: 

2

21
( ) c b

x

i f x f

b

x e e
f






   (108) 

where bf  is a bandwidth parameter, cf  is a wavelet center frequency. fb = 1.5, fc = 1 were 

used in this study. 

 

6.2   Application of wavelet scalogram of acceleration 

        in damage detection 

 

 To investigate the feasibility of the wavelet method in damage identification and 

localization of structures, wavelet analyses were conducted on the frame structure of 

Example 2 in section 5. Cases of damage as well as cases where no damage occurred 

were considered. The external excitation was El Centro acceleration instead of the sine 

waves in section 5, and the stiffness of members 7 and 8 abruptly reduced at 15 seconds 

for the damaged case. The acceleration responses and their wavelet scalograms were used 

to determine the occurrence and location of damage qualitatively in the current research 

stage.  

 Although accelerations were examined, we were unable to determine if any 

degradation was present. The structural degradation can be detected by comparing the 

energy of the vibration signals before and after damage, which are represented by wavelet 

scalograms. To examine the ability of wavelets in detection of the structural damage, the 

wavelet scalograms of accelerations were plotted. Figures 35 and 36 show the scalograms 
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of accelerations 3u , 4u , 7u , and 13u  for both undamaged and damaged scenarios. It was 

observed that the scalograms of DOFs that were within or near the damaged areas, e.g. 

3u  and 4u , showed significant changes when damage occurred. Generally there was 

much less high frequency energy after damage. The scalograms of DOFs that were 

farther away from damage locations indicated much fewer changes, As for the DOFs that 

were far enough, e.g., 13u , it was found that the changes in scalograms were negligible.  

 It can be concluded that the abrupt reduction of stiffness can have considerable 

effects on the scalogram. For DOFs of the area that were further away from the damage, 

the acceleration scalograms changed less compared to those of the undamaged structure 

for the same DOFs. This may be useful for initial determination and location of damage. 

 

7.   Summary and Conclusions 

 

 In this study, an adaptive Kalman filter was used to identify varying substructural 

parameters under external excitations. Identification of structural properties can be very 

useful for structural health monitoring and structural model updating. The effectiveness 

of the adaptive Kalman filter in substructure identification was investigated by 

performing numerical studies on three types of linear structures: a shear building, a plane 

frame building, and a plane truss bridge. In the numerical studies, the masses and the 

acceleration responses were known and used for identification of the unknown stiffness 

and damping. 

 Conclusions from these numerical studies can be briefly summarized. The 

estimation of the initial state parameters should be in a reasonable range to obtain faster 

convergence. The weight values in the algorithm should be selected properly to obtain 
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convergence. The results showed that if given proper initial estimates of the state and 

weight values, the stiffness can be accurately determined and the abrupt changes of 

stiffness can be tracked quite well. The damping can also be identified but with slower 

convergence and more significant errors. Comparing the identifications of substructure 2 

without output noise and with 2% RMS output noise showed that the method can still 

identify the stiffness and damping effectively. However, the added noise can reduce the 

accuracy of the identified values and extend convergence time. 

 This study proposed use of wavelet transform for substructural damage 

identification. Wavelet scalograms of acceleration responses of the frame structure with 

damage during external excitation were examined. The scalograms of the damaged 

scenario were significantly different from those of the undamaged case, the further from 

the damage location, the greater the differences. It can be concluded that the scalograms 

can indicate changes of structural parameters and approximately locate damage. 

 Use of the actual measurements of real structures is desired for substructure 

identification with the adaptive Kalman filter algorithm. The accuracy and robustness of 

the methods need to be improved, and the convergence time should be reduced for large 

structures. With regard to substructural damage identification with wavelet analysis, 

further study is necessary for obtaining quantitative results and a clearer interpretation 

with results based on actual measurements. 
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Figure 35. Wavelet scalograms of 3u  and 4u  (left column is for 3u , right column is for 4u ; 

upper row is for undamaged; lower row is for damaged) 

 

 
Figure 36. Wavelet scalograms of 7u  and 13u  (left column is for 7u , right column is for 

13u ; upper row is for undamaged; lower row is for damaged)  
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CHAPTER IV 1 
 

DELAMINATION DETECTION IN REINFORCED CONCRETE DECKS BY MODAL 

IDENTIFICATION FROM OUTPUT-ONLY VIBRATION DATA 

 

ABSTRACT 

 To study the feasibility of delamination detection by using structural health 

monitoring system, this study addresses delamination detection of concrete slabs by 

analyzing the global dynamic responses measured by vibration sensors. Numerical as 

well as experimental studies are carried out. In the numerical examples, delaminations 

with different sizes and locations are introduced into a concrete slab, the effects of 

presence, sizes, and locations of delaminations on the modal frequencies and mode 

shapes of the concrete slab are studied. In the experimental portion of the study, four 

concrete deck specimens with different delamination sizes were constructed and 

experimental tests were conducted in the laboratory. Traditional peak-picking (PP), 

frequency domain decomposition (FDD), and stochastic subspace identification (SSI) 

methods were applied to the modal identification from real measurements of dynamic 

velocity responses. The modal parameters identified by these three methods correlated 

well. The changes in modal frequencies, damping ratios and mode shapes that were 

extracted from the dynamic measurements were investigated and correlated to the actual 

delaminations and can indicate presence and severity of delamination. Finite element (FE) 

models of reinforced concrete decks with different delamination sizes and locations were 

established. The modal parameters computed from the FE models were compared to 

those obtained from the laboratory specimens and the FE models were validated. 

                                                 
1 Coauthored by Shutao Xing, Marvin W. Halling, and Paul J. Barr 
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1.   Introduction 

 

 Delamination in concrete bridge decks decouples the concrete from its 

surrounding rebar, resulting in the loss of structural strength and facilitates a rapid 

deterioration of the deck [1]. The delamination impairs both the appearance and the 

serviceability of the structure, and repairs can be very costly. It is estimated that annual 

corrosion related maintenance and repair costs for concrete infrastructure approaches 

$100 billion worldwide [2-3]. Corrosion and delamination are of great concern for 

bridges and routine inspection is necessary. Many methods have been developed to detect 

concrete delamination. These methods include the conventional chain drag method, 

impact-echo, ultra-sonic tests, ground penetrating radar, imaging radar and infrared 

thermography [1, 4]. Efforts have been made to expand, improve, and combine currently 

available techniques. These inspection and detection methods require the deployment of 

professional people with devices to field sites and can be very costly. With the expansion 

of structural health monitoring systems, increasing numbers of real-time monitoring 

systems are being deployed on actual bridges and buildings. Taking advantage of 

permanently installed sensors could be useful in delamination detection. Vibration 

sensors can be flexibly deployed and located in-situ for long term monitoring applications 

that include delamination detection. 

 Various analytical, numerical, and experimental studies have addressed 

delamination detection in composite structures from the measurements by vibration 

sensors through vibration-based identification methods. Zhou et al. [5] provided a review 

of vibration based model-dependent delamination identification for composite structures. 

Valdes and Soutis [6] conducted experiments to study the effects of delamination in 
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laminated beams on the changes in modal frequencies. Ratcliffe and Bagaria [7] used 

curvature mode shapes to locate delaminations in a composite beam. Wei et al. [8] 

evaluated delamination of multilayer composite plates using model-based neural 

networks. When the delaminated-induced changes in modal characteristics are too small 

to be identified, the wavelets methods are considered, which have been used effectively 

[9-11] to detect small damages. Yan and Yam [12] employed energy distribution of 

dynamic responses decomposed by wavelet analysis to detect the delaminations in 

composite plates and reported that this method is capable of detecting localized damage. 

Among these studies, most are on simple composite structures such as beams, with very 

few, if any, studies performed on plates.  

 For civil engineering concrete structures, studies on delamination detection by 

using vibration sensors are very rare. Xing et al. [13] investigated delamination detection 

by using vibration measurements for civil engineering concrete plates through numerical 

studies. In this numerical study, finite element models of the concrete plates were 

modeled using ANSYS. The modal analyses and dynamic analyses were performed for 

examination of the delamination parameters on the modal characteristics of the models. 

The effectiveness of using changes in modal frequencies and mode shapes as damage 

indicators of the delamination were studied. 

 The current study presents an expansion of the previous numerical studies [14] 

with a more complete parameter study. Additionally, experimental studies of four 

reinforced concrete slabs with different delamination areas were tested dynamically to 

verify the numerical results. Delaminations were simulated by embedding plexiglass 

inside the concrete plates during casting. The dynamic tests were conducted 
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approximately four months after placement of the concrete. The experiments were 

original and significant since the models were relatively large scale concrete plates 

(bridge deck). Initial experimental results were discussed in [14] and a more 

comprehensive study is addressed in this paper. No similar experimental testing was 

encountered in the literature. 

 The primary purpose of this study is to investigate the applicability of 

delamination detection of concrete plates by modal identification using output-only 

measurements. The fundamental principle is that the delaminations decrease the stiffness 

and consequently the modal frequencies. Additionally, the damping is changed and mode 

shapes become irregular, the amplitude of the delamination area is changed. Taking 

advantage of the changes in modal characteristics can avoid dealing with the complicated 

delamination mechanism, such as the random development and irregular patterns. 

 After numerical studies of several finite element models, the experiments were 

conducted. The experimental testing consisted of dynamic tests using random, swept sine, 

and impact excitation sources. The dynamic response results due to these excitations are 

presented to provide reference for output only systems (ambient vibration). Modal 

frequencies, modal damping ratios, and mode shapes were extracted from the measured 

velocity responses. The differences in modal characteristics between the various 

delaminated models were compared and indicated presence and severity of delaminations. 

Finite element models of the concrete slabs were also established using ANSYS software. 

It must be pointed out that the modeling included the effects of non-ideal boundary 

conditions. The concrete, steel reinforcement, wood supports, delaminations and 

boundary conditions were included in the model. The modal characteristics computed 
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from the finite element models were compared with those from dynamic tests for 

validation. The finite element results could be used as reference for modal identification 

from dynamic response measurements. 

 

2.   Modal Identification Methods used in 

      this Study 

 

 Three identification methods are used in this study. They are classical peak-

picking, frequency domain decomposition and stochastic subspace identification methods. 

In the classical peak-picking method (PP), the simple signal processing technique 

computes the power spectra of time histories measurements by discrete Fourier transform 

and directly uses the peaks of the spectra to determine modal frequencies. Frequency 

Domain Decomposition (FDD) and Stochastic Subspace Identification (SSI) methods 

were also adopted to extract modal characteristics from measurements of the dynamic 

tests. These identification methods were compared with each other. 

 For the cases of lightly damped structures, Brincker et al. [15] derived a 

relationship between response spectral density and modal parameters, which provide a 

basis for FDD method. In application of FDD identification algorithm [15], first the 

power spectral density (PSD) of the output measurements )(ˆ jGyy  
are estimated and 

then decomposed at ω = ωi by taking the Singular Value Decomposition (SVD) of the 

PSD matrix.  

H

iiiiyy USUjG )(ˆ    (109) 

where the unitary matrix U i = [u i1,u i2,...,u im] holds the singular vectors u ij and the 

diagonal matrix Si holds the singular values s ij. If only a kth mode is dominating at the 

selected frequency ωi, there will be only one singular value in Eq. (109) and therefore the 
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first singular vector ui1 would be an estimate of the kth mode shape, 
i1uˆ  . Damping 

can be obtained from the correlation function of the SDOF system [16]. 

 Stochastic subspace identification (SSI) method is a time-domain identification 

method originally proposed in [17] and has been applied effectively in various types of 

civil and mechanical structures. This method can obtain linear models from column and 

row spaces of the matrices computed from the input-output data [18]. This study used 

Data-driven SSI that does not need the computation of output covariance. The key idea of 

data-driven SSI is to project the row space of future outputs into the row space of the past 

outputs. An extension of the SSI method, called reference-based SSI, was developed in 

[19].  

 The discrete-time stochastic state-space model is defined as the normal model 

without input terms [20], 

xk+1 = Axk + wk; yk = Cxk +vk  (110) 

where w and v are plant and observation noise vectors respectively, both of them are zero 

mean Gaussian white noise vectors. The SSI is used to identify A and C from the output-

only measurements yk. The identification steps in this study are concisely summarized in 

the following, for details refer to the literature [18-19]. 

(a) Construct Hankel matrix Y from the output measurements: 
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 The Hankel matrix is a matrix that has the same elements in every antidiagonal. It 

has 2i block rows and j columns and is divided into two parts, the past output Yp and the 

future output Yf, each part has i block rows, i must be greater than the system order n. 

The system order n is equal to the number of modes identified by the SSI method. Let ny 

denote the number of time samples of output yk, to guarantee yk populate Hankel matrix, 

use j = ny-2i+1. If the measurements used in the SSI method contain l degrees of freedom, 

then yk has l  rows. 

(b) Orthogonally project the row space of future outputs Yf on the row space of past 

outputs Yp: 

†( )
p p

T T

i f p pT Y Y Y Y Y   (112) 

where 
T, † 

denote transpose and pseudoinverse respectively.  

(c) Then apply SVD to the orthogonal projection: 

  1 1

1 2 1 1 1

2 2

0

0
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S V
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S V


  

  
  (113) 

where U and V are orthonormal matrices, S is a diagonal matrix containing singular 

values in descending order, among which S2 is a block containing small neglected values.  

(d) Calculate the extended observability matrix from the reduced SVD from Eq. (113) 

1/2

i 1 1O  = U S    (114) 

The definition of this observability matrix Oi is: 

 1
T

i

iO C CA CA     (115) 

Then the discrete-time system matrices A and C can be calculated from Eq. (114) - (115). 

(e) Post-processing to extract modal parameters. 

 Calculate the eigenvalues and eigenvectors of matrix A. 
1A     , where 
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( )qdiag    is a diagonal matrix containing the discrete time complex eigenvalues and 

columns of  are the corresponding eigenvectors. For continuous time system, the state 

matrices
1

 CCCCA  , after some derivations, it gives, 

tACeA


 ;  C ;  
t

q

Cq 


)ln(
 ; 

* 2, 1
q qC C q q q qj         ; C  (116) 

where t is time step, 
q is modal frequency, 

q is modal damping ratio, the columns of 

 are mode shapes. 

 In processing the real measurements, it usually results in complex frequencies and 

mode shapes, for light damping, we use the amplitudes of complex mode shape with 

signs of the corresponding real parts to draw them as real mode shapes. 

 

3.   Numerical Studies 

 

 In this section, a finite element model of a reinforced concrete plate was created 

and then several delaminations of various sizes and locations were introduced into the 

model, separately. The modal and dynamic analyses were performed on the model and 

the effects of delamination on modal characteristics of the reinforced concrete finite 

element model were studied to provide useful reference for further numerical studies as 

well as for the future laboratory experiments to be presented in section 4. 

 

3.1   Description of the numerical examples 

 

 The reinforced concrete plate of the numerical studies is illustrated in Figure 37. 

The width a = 4 m along the X direction, the length b = 6 m along the Z direction and 

thickness h =0.2 m along the Y direction, the origin is defined at the bottom corner node; 

the coordinate system is shown in Figure 37(a). The concrete‟s elastic modulus is Ec = 
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33,000 MPa, Poisson's ratio νc = 0.2, ultimate uniaxial compressive strength σc = 25.5 

MPa, ultimate uniaxial tensile strength σt = 2.56 MPa, and density ρc = 2450 kg/m
3
. The 

steel rebar‟s size is #6, nominal diameter d = 19 mm, elastic modulus Es = 200 GPa, yield 

stress fy = 410 MPa; Poisson's ratio νs = 0.3; and the density ρs = 7850 kg/m
3
. Two layers 

of steel rebar are placed in the concrete plate at the horizontal planes of Y = 0.05 m and Y 

= 0.15 m and rebar are along both X and Z directions as exhibited in Figure 37 (b). The 

space between all adjacent rebar is 0.2 m on center. The concrete plate is simply 

supported at the two opposite edges X = 0 m and X = 4 m and free at the other two 

opposite edges Z = 0 m and Z = 6 m. 

 

3.2   Finite element modeling  

 

 The finite element software package, ANSYS, was used to perform the finite 

element modeling. Solid65 and link8 elements were selected to represent concrete and 

steel rebar, respectively. Solid65 elements have eight nodes with three translational 

degrees of freedom at each node. The 3-D spar, Link8, element is a uniaxial tension-

compression element with three translational degrees of freedom at each node [21]. In 

this paper, all analyses were restricted to linear elastic response and the elements were 

configured accordingly. 

 Delamination was modeled using a similar method to [22]. First, two separate 

decks that were located above and below the delamination plane were attached together. 

The nodes in the undelaminated area were declared as coupled nodes utilizing 

coupling/constraint equations and the nodes in delaminated area were uncoupled. The 

delamination locations and areas were adjusted for different damage degrees. All the 

delaminations were on the XZ plane at a vertical elevation of Y equal to 0.15 m, which 
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was purposely to simulate a bridge deck in which delamination often occurs in a 

horizontal plane at the top layer of steel reinforcement. In the following sections, the ratio 

of delamination area over total area Adelam/Atot is used to denote severity of delamination. 

 

3.3   Modal frequencies validation of the finite 

        element models 

 

 The analytical solutions for the natural frequencies were computed to validate the 

modeling. For convenience of using the analytical formula from [23], the Poisson's ratio 

of the concrete was changed to νc = 0.3. The other parameters have same meanings and 

take same values as those in section 3.2. In order to use the analytical solution, the 

equivalent elastic modulus and density was used, which were computed as follows 

( )c s c c s sE A A E A E A     (117) 

( )c s c c s sV V V V       (118) 

where E is the equivalent elastic modulus, ρ is the equivalent density, Vc is volume of 

concrete, Vs is volume of steel rebar. 

 Since minimum of (a, b)/h is equal to 1/20, it can be analyzed as thin plate and 

Kirchhoff assumptions are applicable. The analytical method follows [23]. The governing 

equation is, 

2
4

2
0

w
D w

t



  


  (119) 

where w is transverse deflection, ∇4  is biharmonic differential operator in rectangular 

coordinates, D = Eh3/12(1 − ν2)  
3 2/12(1 )D Eh    is the flexural rigidity. The 

boundary conditions for the simply-supported and free edges are Eq. (120) and (121) 

accordingly 



126 

 

2 2

2 2
0; 0

w w
w

x z


 
  

 
  (120)  

2 2 3 3

2 2 3 2
0; (2 ) 0

w w w w

x z x x z
 

   
    

    
 (121) 

Combining Eq. (119)-(121), characteristic equations that can numerically solved by 

Newton's method to yield the frequency parameter can be written as 

2 /a D     (122) 

Eq. (122) can be used to calculate the natural frequencies.  

 The comparison results are listed in Table 19. The percent differences are within 

3.4% for the first five frequencies, the difference for the first frequency is only 0.18%, 

and the difference for the seventh and eighth frequencies are also very small. It is shown 

that most frequencies by analytical solution were a little larger than those by modeling. 

This is reasonable, because thin plate theory usually overestimates the natural frequencies 

[24], and Mindlin plate theory would be more accurate for a thick plate. Therefore, based 

on the results, it was concluded that the finite element model accurately produced the 

correct modal frequencies. 

 

3.4   Modal analysis of the finite element models 

 

 The modal analysis was carried out to correlate the delamination with modal 

characteristics. The analysis was confined to the first six modes. Table 20 provides the 

sizes and locations for the delamination cases of this study, and they are illustrated in 

Figure 38. 

 Table 21 shows the comparisons of modal frequencies of the undamaged model 

and those of different delaminated models. Figure 39 graphically shows the comparisons 
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of the mode shapes of the undelaminated model with those of delaminated models, the 

amplitudes in all the figures have been scaled using the same factor. The modal order is 

the sub number in the figures plus one for this analysis. More plots of mode shape can be 

found in the Appendix. 

Z

X

 
(a)     (b) 

Figure 37. The concrete slab model for the numerical examples: (a) isometric view the 

concrete model (b)  plan view of the steel rebar in the concrete. 

 

Table 19. Comparison of frequencies by analytical and finite element model for 

numerical example. 

Mode 1 2 3 4 5 6 7 8 

Analytical Solution 20.87 27.94 49.40 84.16 86.86 91.87 116.74 142.54 

ANSYS Solution 20.91 27.06 50.22 81.31 85.55 86.16 116.69 139.50 

Difference (%) 0.18 -3.14 1.65 -3.39 -1.50 -6.21 -0.04 -2.13 

 

 

Table 20. The locations and sizes of the delaminated areas for numerical example. 

Delamination 1/12 1/6 1/4 1/3 (unsymmetrical) 1/3 (symmetrical) 1/2 

X range (m) 2.5~3.5 0~4 1.5~3.5 0~2 1~3 1~3 

Z range (m) 1~3 1~2 1~4 1~5 1~5 0~6 

Y coordinate (m) 0.15 0.15 0.15 0.15 0.15 0.15 
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    (c)     (d) 
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    (e)     (f) 

Figure 38. The locations of delamination areas for the numerical examples: (a) 1/12-

delaminated; (b) 1/6-delaminated; (c) 1/4-delaminated; (d) 1/3-unsymmetrical-

delaminated; (e) 1/3-unsymmetrical-delaminatedl; (f) 1/2-delaminated models.  
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Table 21. Comparison of natural frequencies of the un-delaminated and delaminated 

concrete decks for numerical example. 

Mode 

Un-delaminated 
1/12 

Delaminated 

1/6  

Delaminated 

1/4  

Delaminated 

Freq 

(HZ) 

Freq 

(HZ) 

Difference 

(%) 

Freq 

(HZ) 

Difference 

(%) 

Freq 

(HZ) 

Difference 

(%) 

1 20.60 20.53 -0.30 20.42 -0.86 20.34 -1.23 

2 27.16 27.09 -0.25 26.80 -1.31 26.58 -2.11 

3 50.12 49.75 -0.73 49.12 -2.00 44.33 -11.55 

4 79.85 79.45 -0.49 76.87 -3.73 53.75 -32.68 

5 84.55 83.50 -1.24 82.51 -2.41 70.45 -16.68 

6 85.35 84.94 -0.48 83.36 -2.33 75.53 -11.50 

 

The difference in this table is: 
delaminatedfrequency-undelaminatedfrequency

×100%
undelaminatedfrequency

 
 

Table 21. Cont'd 

Mode 

1/3 

Delaminated 

unsymmetrical 

1/3 

Delaminated 

symmetrical 

1/2 Delamination 

Freq 

(HZ) 

Difference 

(%) 

Freq 

(HZ) 

Difference 

(%) 

Freq 

(HZ) 

Difference 

(%) 

1 14.78 -28.24 20.35 -1.18 20.04 -2.70 

2 19.43 -28.43 26.22 -3.44 25.08 -7.65 

3 25.92 -48.29 41.37 -17.46 38.31 -23.56 

4 34.24 -57.11 53.55 -32.93 42.42 -46.87 

5 44.53 -47.33 56.12 -33.63 44.40 -47.49 

6 52.64 -38.32 67.94 -20.39 49.00 -42.58 

 

 

 Based on the frequency variation listed in Table 21, it is noted that the higher the 

modal order is, the larger the reduction of the modal frequency is. The changes in the 4
th

 

modal frequency are more apparent than their neighboring modes, which indicate that 

specific modes are more sensitive to delamination than other modes. Table 21 shows that 

the bigger the delamination areas, the bigger percentage reduction of the corresponding 
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frequencies. It is also concluded that if Adelam/Atot > 1/6, the first two natural frequencies 

can indicate the delamination quite well with frequency difference from 1.18% to 28.43% 

between undelaminated and the delaminated models. For Adelam/Atot =1/6, the 2% 

frequency difference of 3
rd

 mode can indicate delamination. However, when Adelam/Atot = 

1/12, even higher frequencies are not sensitive to delamination, e.g., frequency variation 

of the 4
th

 order is only 0.49%.  

 

 
(a) 

 
(b) 

Figure 39. Typical comparisons of the mode shapes: (a) the 4
th 

mode shapes for the un-

delaminated (left) and 1/6 delaminated models (right); (b) The 3rd mode shapes for the 

un-delaminated (left) and 1/4 delaminated (right). 
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 Similar trends were found to be present in the mode shapes shown in Figure 39 

and Figure 40. While the mode shapes are more sensitive to the delamination and are able 

to show the location from the irregular curves of those delaminated mode shapes. 

Comparing the delamination locations in Table 20 with the mode shapes in Figure 39 and 

Figure 40, the irregular parts correspond almost exactly to the delamination.  

 In Table 21, the comparisons of frequencies of 1/3 delaminated models at 

unsymmetrical and symmetrical locations indicate that unsymmetrical delamination 

reduces the modal frequencies more significantly than the symmetrical delamination, e.g., 

the difference between the 1
st
 frequencies of 1/3 symmetrical delaminated and un-

delaminated models is only 1.18% and it increases to 28.24% between 1/3 unsymmetrical 

and un-delaminated models. This is also demonstrated by the mode shapes in Figure 40, 

in which the 1
st
 mode shape of the 1/3 unsymmetrical delaminated model is more 

irregular and has larger magnitude than that of the 1/3 symmetrical delaminated model.  

 

 

 
 

Figure 40. Comparison of the 1st mode shapes of the 1/3-delaminated models with 

unsymmetrical (left) and symmetrical (right) locations with respect to the total area. 
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3.5   Modal identification from dynamic responses 

        (numerical study) 

 

 In the numerical study, the modal characteristics were extracted from the dynamic 

responses. To identify the delamination from the acceleration response, the modeled 

concrete slab was excited with three types of excitations. Swept sine excitation, impulse 

excitation and random excitation were applied to a point at the top surface of the 

reinforced concrete plate to generate dynamic responses. Modal frequencies were then 

identified from the ambient vibrations by using the peak-picking method. Figure 41 

shows the time histories of acceleration responses and the corresponding single-Sided 

amplitude spectra computed by FFT for the undelaminated and 1/4 delaminated models 

respectively. The inputs are the same swept sine for both undelaminated and 1/4 

delaminated model. A comparison of Figure 41 (a) and Figure 41 (b) shows that the 

amplitudes of the acceleration for the delaminated model is about 2 times that of the 

undelaminated one. The time histories of the acceleration response and the corresponding 

single-sided amplitude spectrum due to impulse and random excitation are also obtained 

and they provide useful information in identifying delamination, though they are not as 

accurate as those from swept sine excitation case. Table 22 provides a comparison of the 

undelaminated and delaminated models‟ frequencies identified from the responses due to 

the swept sine excitation. The identified frequencies are close to those from modal 

analysis based on properties within 1.5%. The difference in undelaminated and 

delaminated models‟ frequencies listed in this table demonstrates that the delamination 

can be detected using frequencies identified from the vibration data. 
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(a) 

 
(b) 

Figure 41. Acceleration and single-sided amplitude spectra of the models due to random 

excitation: (a) undelaminated model: upper row is the response history and lower row is 

the spectrum of the response; (b) 1/4 delaminated model: upper row is the response 

history and lower row is the spectrum of the response. 
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Table 22. Natural frequencies identified from the responses due to swept sine excitation 

for numerical example. 

Mode Undelaminatd (HZ) 1/4 Delaminated (HZ) Difference (%) 

1 20.56 19.57 -4.82 

2 27.40 26.30 -4.01 

3 50.88 45.01 -11.54 

 

4.   Experimental Studies 

 

 The objective of the experimental studies is to investigate the feasibility of 

delamination detection of concrete structures from real vibration measurements. The 

general conclusions from this section can be used to verify the previous numerical studies. 

In the experimental studies, four reinforced concrete plates with simulated delaminations 

were constructed in the Systems, Materials, and Structural Health (SMASH) lab at Utah 

State University (USU). Modal characteristics were extracted from the dynamic test data 

using three modal identification methods. The changes in modal characteristics were used 

for delamination detection. The finite element models, in this section, were developed for 

the experimental concrete slabs and the modal analyses based on the structural properties 

were carried out. Some useful conclusions were drawn from the studies.  

 

4.1   Experimental setup and dynamic tests 

 

 Four reinforced concrete plates were constructed in the SMASH lab. Each 

concrete plate has the same size 1.83 m × 2.74 m × 0.14 m and same layout of #6 steel 

rebar as illustrated in Figure 42. All the concrete was placed from the same ready mix 

concrete batch in order to achieve similar concrete strength between test specimens. The 

only differences between the models were the different delamination scenarios that were 

introduced into the concrete plates. 
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 In the delamination detection studies of composites [6-7], to generate the effects 

of delamination, Teflon films were inserted into the composite beams/plates to prevent 

layers from bonding together. In this study, plexiglass sheets (1.57 mm thick) were used 

to simulate the effect of a delamination. Plexiglass is unaffected by moisture and offers a 

high strength-to-weight ratio. One layer of plexiglass was placed into the horizontal plane 

of each delaminated concrete plate that was 0.09 m (5 1/2 inches) from the bottom of the 

plate during the concrete pouring. The horizontal areas of the delaminations were 

adjusted in each specimen. The first specimen had no delamination and is referred to as 

un-delaminated. The other three specimens had delamination sizes of 0.91 m × 1.22 m 

(22.2% delamination), 1.22 m × 2.13 m (51.9% delamination) and 1.52 m × 2.44 m (74.1% 

delamination) respectively. Figure 43 shows the plan and elevation views of the 

undelaminated and all delaminated specimens. Figure 44 shows the concrete pouring for 

the 22.2% and 74.1% delaminated specimens. Four months after concrete placing, the 

dynamic tests were performed. During the tests, two opposite longer edges of each 

concrete plate were placed on two timber supports and the other two opposite edges were 

free. All of the concrete slabs were tested with the same boundary conditions.  

 Based on the 28-day concrete compression and tensile tests as shown in Figure 45, 

the concrete‟s elastic modulus is Ec = 24,000 MPa (3481.0 ksi), ultimate uniaxial 

compressive strength σc = 27.5 MPa (4.0 ksi), ultimate uniaxial tensile strength σt = 14.69 

MPa (2.1 ksi). The concrete density ρc = 2300 kg/m
3
. Poisson's ratio of concrete νc = 0.15. 

The steel rebar‟s size is #6, its nominal diameter d = 19 mm, elastic modulus is Es = 200 

GPa, yield stress fy = 410 MPa, Poisson's ratio νs = 0.3, and the density ρs = 7850 kg/m
3
. 

It needs to be noted that Poisson‟s ratios of wood are difficult to be measured accurately 
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for they vary within and between species and are affected by moisture content and 

specific gravity [21]. According to the literature [21, 25-27] and finite element model 

updating in section 4, the ply wood anisotropic properties are as follows. The wood‟s 

density is 430 kg/m
3
. The elastic moduli along the longitudinal, radial, and tangential 

axes of wood are denoted by EL, ER, and ET, they are EL = 8 GPa, ER =0.068 × EL and ET 

= 0.05× EL. The values of νLR = 0.496, νTL = 0.274 and νRT = 0.56 were used in this study. 
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(a) Drawing of the plan view of steel reinforcement 

 

(b) Formwork 

Figure 42. Plan view of steel reinforcement. 
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  (c) 51.9%-delaminated model  (d) 74.1%-delaminated model 

Figure 43. The locations of delamination areas (plexiglass) for the experimental concrete 

plates. 

 

 The same dynamics tests were performed on the four specimens for convenience 

of comparisons. Figure 46 illustrates the layout of excitation sources and sensors. An 

electromagnetic shaker and an instrumented hammer were employed to generate 

excitations. Six vertical velocity transducers (V1~V6) were used to measure the vertical 

velocity responses and one horizontal velocity transducer (V7) was used to measure the 

horizontal responses. An accelerometer was attached to the shaker to measure the real 

excitation inputs and the input acceleration of the instrumented hammer was also 
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measured. These measurements were recorded by a data physics vibration 

controller/signal analyzer. For the dynamic tests, the APS shaker generated swept sine, 

random, and impulse excitations on the specimens in sequence. Then the instrumented 

hammer applied impact excitations a few times on two locations. The typical random and 

swept sine acceleration inputs are shown in Figure 47 for the 74.1%-delaminated 

specimen, the inputs for the other specimens are similar. The velocity responses and the 

acceleration inputs were recorded for subsequent analyses. The recorded duration for 

each input by the shaker and hammer was 32 seconds. The sampling frequency was 1024 

Hz, theoretically modal frequencies as high as 512 Hz could be identified; in reality the 

lower frequencies are critical. 

 

 

(a) 22.2%-delaminated model   (b) 74.1%-delaminated model 

Figure 44. Pouring concrete on the plexiglass. 
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Figure 45 Cylinder compression tests. 

 

4.2   Modal identification of the dynamic 

        measurements 

 

 Classical peak-picking, frequency domain decomposition and stochastic subspace 

identification methods were used to obtain the modal parameters from the velocity 

responses. Typical time signals and amplitude spectra of them for the PP method are 

shown in Figure 48 for the vertical responses due to impact, swept sine, and random 

excitations, respectively. Figure 49 shows a similar plot for a horizontal response due to 

random excitation. Typical singular value plots by FDD for the undelaminated model are 

shown in Figure 50. Applying the SSI method in this study, the system order was n = 60 

and the number of block rows was i = 400; however, when taking n = 30 and i = 150 

there was an insignificant change in the results. The issue on how to select the system 

order is not studied deeply in this chapter; the stabilization diagram introduced in Chapter 

II is a good approach. The modal frequencies extracted by using PP, FDD and SSI 

methods are shown in Table 23 and the damping ratios identified by the SSI method are 

listed in Table 24. Figure 53 includes comparisons of the mode shapes of a specified 

mode for all the concrete slabs obtained by the FDD and SSI methods. For the purpose of 
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convenient comparison, the so-called mode shapes in Figure 53 are plotted with respect 

to the velocity transducer numbers V1~V6 instead of the real locations of the V1~V6 in 

three dimensions. 
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(a) Layout of excitation sources and sensors (length unit: m) 

 

(b) One model for dynamic test 

Figure 46. Layout of excitation sources and sensors for dynamic tests. 
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Figure 47. The random (upper) and swept sine (lower) excitations applied on the 74.1%-

delaminated model. 

 

Table 23. Modal frequencies identified by PP, FDD and SSI (i = 400, n = 60) methods 

from experimental specimens under random excitation. 

0%- 

Delaminated 

PP (HZ) 15.94 20.69 31.60 68.88 84.66 165.95 

FDD (HZ) 15.76 20.76 31.52 68.03 83.04 166.08 

SSI (HZ) 15.84 20.67 31.61 67.62(impact loc2) 82.60 166.37 

22.2%- 

Delaminated 

PP (HZ) 14.72 - 26.69 51.00 - - 

FDD (HZ) 14.76 - 27.01 50.77 - - 

SSI (HZ) 14.57 - 26.83 50.67 - - 

51.9%- 

Delaminated 

PP (HZ) 14.66 - 27.60 - - - 

FDD (HZ) 14.01 17.51 27.51 49.47 - - 

SSI (HZ) 13.99 - 27.56 - - - 

74.1%- 

Delaminated 

PP (HZ) 9.09 - 24.41 44.69 - 84.38 

FDD (HZ) 9.00 - 24.01 44.77 - 84.54 

SSI (HZ) 8.93 - 24.31 44.37 - 84.63 
 

 

 

 

 

 

 

0 5 10 15 20 25 30
-50

0

50

Time (s)

A
c
c
el

e
ra

ti
o

n
 (

c
m

/s
2
)

 

 

0 5 10 15 20 25 30
-500

0

500

Time (s)

A
c
c
el

e
ra

ti
o

n
 (

c
m

/s
2
)

 

 



142 

 

Table 24. The damping ratios identified by using SSI method from experimental 

specimens under random excitation. 

- 
Un- 

delaminated 

22.2%- 

delaminated 

51.9%- 

delaminated 

74.1%- 

delaminated 

From random  

responses 

Frequency (HZ) 31.61 26.83 27.56 24.31 

ξ (%)  1.05 1.34 1.68 1.71 

From impact  

responses 

Frequency (HZ) 31.62` 26.87 27.44 9.15 

ξ (%)  1.25 1.46 1.32 1.43 

 

 

 The modal frequencies extracted from transducers V1-V6 vary by a maximum of 

only 2% for the presented results, only the results from V4 and V7 are shown in the 

figures for illustration. The frequencies listed in the Tables are also identified from these 

selected sensors. In Table 23, the frequencies identified by the three methods agree very 

well for most modes, the differences between the 1
st
 frequencies by these methods for all 

the specimens are less than 4.8%. From the comparisons in Figure 53, it is evident that 

the mode shapes extracted by the FDD and SSI methods yield identical or at least 

consistent results. While this paper mainly demonstrates analyses on the responses due to 

random excitations, the modal characteristics obtained from response measurements due 

to impact and swept sine excitations agree very well with those obtained from the random 

excitation cases, e.g., for all the specimens, the differences between the corresponding 1
st
 

frequencies by the SSI method due to random and impact excitations are within 2.5%. In 

other word, excellent agreements are obtained for modal frequencies and mode shapes 

regardless of the different identification methods and different excitation inputs, and this 

validates the extracted modal characteristics are correct for the dynamic test data. For the 

results due to impact and swept sine excitation, refer to Appendix A. 
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(a) Due to impact excitations.

 

(b) Due to swept sine excitations. 

Figure 48. Typical time signals of vertical sensor V4 and single-sided amplitude spectra 

of them (left column is time signal, right column is spectrum; upper row is for 

undelaminated model, lower row is for 22.2%-delaminated model) (cont.). 
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(c) Due to random excitations 

 

Figure 48. Cont'd 

 

 
 

Figure 49. Typical time signals of horizontal sensor V7 and single-sided amplitude 

spectra of them for two models due to random excitations (left column is time signal, 

right column is spectrum, upper row is for undelaminated model, lower row is for 22.2%-

delaminated model). 
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(a) undelaminated model 

 

 (b) 22.2%-delaminated model 

Figure 50. Singular values of PSD of the responses (V1~V6) due to random excitation for 

the tested models. 
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(c) 51.9%-delaminated model 

 

(d) 74.1%-delaminated model 

Figure 50. Cont'd 
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 The effectiveness of using changes in modal frequencies and mode shapes as 

damage indicators of delaminations is examined in Figure 48-Figure 50 and Figure 53 

and Table 23-Table 24. Figure 48 shows that the fundamental frequencies of the 

delaminated specimens are decreased compared with that of the un-delaminated specimen. 

It can also be observed that vibration energy of the response of the un-delaminated 

specimen is concentrated in the first few modes; however, the delaminated specimens 

exhibit a relatively higher level of response in the higher modes. The same conclusions 

can be drawn from the results for the 51.9% and 74.1% delaminated specimens. Figure 

49 shows the time signal and single-sided amplitude spectrum of the horizontal sensor. 

This figure is used to help evaluate the modal characteristics, e.g., the 1
st
 modal 

frequency in Table 23 can be determined as a horizontal mode by referring to Figure 49 

and the finite element models in section 4.3. From Table 23, It can be seen that the 

corresponding frequencies decrease with the increase of delamination size, among which 

the 1
st
 frequency decreases from 15.76 HZ to 9.00 HZ. The 22.2%-delaminated model 

was supposed to have higher frequencies than the corresponding ones of 51.9%-

delaminated, while they are slightly lower than expected. From Table 24, it is observed 

that generally the listed damping ratios of the corresponding mode show a trend of 

increase with the increase of delamination size from 1.05% (1.25%) to 1.71% (1.43%). 

The damping ratios can assist in identifying delamination, but it is not recommended to 

rely on damping alone due to the complexity of damping mechanism and difficulty in 

obtaining accurate damping values in experimental studies. Figure 53 displays the 

changes in corresponding mode shapes for different delaminated models. It demonstrates 

that when the delaminated areas become larger and develop to a previous undelaminated 
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area, the responses of this area will then become relatively higher than its former state. 

Because of the use of very few sensors in this study, detailed results are not accurate 

regarding the use of mode shapes for the detection of delaminations. Figure 53 shows 

some of the scarce modal shape data. It is highly recommended that additional work be 

performed with a much denser array of sensors in order to obtain more conclusive results 

regarding mode shapes. 

 

4.3   Finite element modeling of the experimental 

        models 

 

 The finite element models of the reinforced concrete specimen were created using 

ANSYS software. The origin of the coordinate system is at the left bottom corner as 

shown in Figure 37 and Figure 51 exhibits an isometric view and a front view of the 

entities. The longitudinal steel rebar were placed in the model at the plane of Y=0.05 m. 

The transversal rebar were placed immediately above the longitudinal rebar. The two 

opposite edges with X = 0 m and X = 1.83 m of concrete plates are supported on two ply 

woods, the other two edges Z = 0 m and Z = 2.74 m are free. Solid65, link8 and solid45 

elements were selected to represent concrete, steel rebar, and wood, respectively. The 

laboratory floor was modeled using solid65 elements with infinite strength. Dynamic 

characteristics are sensitive to the boundary conditions, so the wood supports were 

modeled delicately instead of as ideal simple supports. Contact and target elements were 

used to model the contact between the concrete and wood, and between the wood and the 

floor of the lab. The properties of the contact elements were updated during the modal 

analysis to match the results from real measurements. The delaminations were modeled 

by reducing the elastic modulus of the corresponding areas to very small numbers. 
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 Modal analyses of all of the four reinforced concrete slab specimens were 

performed. The computed modal frequencies and mode shapes were compared with those 

from experimental tests. Comparisons of frequencies are listed in Table 25 and one mode 

shape of the undelaminated and delaminated models are shown in Figure 52. Table 25 

demonstrates that the lowest and even relatively high order modal frequencies calculated 

by ANSYS model match those from dynamic testing well, the difference between the 

ANSYS model and FDD method from test data for the first three frequencies are 

maximally 7%. Figure 52 shows that the frequencies of the delaminated models decrease 

and the mode shapes have abrupt changes at the delaminated areas. Figure 53 compares 

the mode shapes for the same mode by the FDD, SSI methods, and ANSYS modeling. It 

is observed that the mode shapes of the ANSYS models are not same as those identified 

from test measurements, but they are consistent with those obtained from the 

measurements to a certain degree; this could validate the ANSYS models to be 

approximate models instead of exact ones. It is hard to establish finite element models 

with same modal characteristics as those of test specimens due to the complex boundary 

conditions for these tests. However, the finite element modeling is still very useful for 

initial investigations. 

 It is concluded that the finite element modeling can approximately simulate the 

undelaminated and delaminated concrete slabs for these experimental studies modal 

analysis. The results computed by the finite element analysis can be used as supplements 

for modal identification of the dynamic test data to determine the modal characteristics. 

The finite element modeling can provide initial investigation for further experimental 

tests and can also be used effectively for parameter studies. 
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Table 25. Comparison of modal frequencies (unit: Hz) by ANSYS modeling and FDD of 

the responses of experimental specimens under random excitation 

 
- Horizontal Horizontal 

Vertical Y+ 

 bending along Z  

Bending  

along X 

Torsion  

in XY 

Bending  

along X 

0%- 

Delaminated 

ANSYS  15.52 20.90 31.46 69.13 81.68 165.80 

FDD  15.76 20.76 31.77 68.03 83.04 166.08 

22.2%- 

Delaminated 

ANSYS  14.70 - 27.38 51.99 - - 

FDD  14.76 - 27.01 50.77 - - 

51.9%- 

Delaminated 

ANSYS  14.73 16.26 26.98 50.81 - - 

FDD  14.01 17.51 27.51 49.47 - - 

74.1%- 

Delaminated 

ANSYS  9.41 - 24.91 42.78 - 81.39 

FDD  9.00 - 24.01 44.77 - 84.54 

 

 

Figure 51. The coordinate system of the finite element model (left is isometric view, right 

is front view) 

 

5.   Conclusions 

 

 This paper presents a study on delamination detection of concrete plates by modal 

identification of output only data measured by vibration sensors. The feasibility is 

examined through numerical as well as experimental studies. 
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   (a)     (b)  

Figure 52. The mode shapes for the undelaminated model and the 22.2%-delaminated 

model: (a) undelaminated model, frequency is 31.46 HZ; (b) 22.2%-delaminated model, 

frequency is 27.38 HZ. 

 

 

(a) undelaminated model   (b) 22.2%-delaminated model 

  

(c) 51.9%-delaminated model   (d) 74.1%-delaminated model 

Figure 53. Comparison of mode shapes by FDD, SSI from the response measurements 

due to random excitation and ANSYS model. 
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 Parameter studies on the effects of delamination on modal characteristics were 

performed through finite element modeling. The delaminations with different sizes and 

locations were introduced into the concrete plates separately, which were simply 

supported on two opposite edges and free on the others. 

 1) For the concrete slabs, modal characteristics are dependent on the size of the 

delamination. The changes in mode shapes were sensitive to delaminations and can 

indicate and locate the development of delamination. For the symmetrically located 

delaminations, it can be summarized as follows. When 1/12 ≤ Adelam/Atot < 1/6, the 

changes in the 3
rd 

or 4
th

 mode shape may indicate the presence of delamination. When 1/6 

≤ Adelam/Atot ≤ 1/3, the reductions in the 3
rd

 frequency range from 2% to 17.5%, they can 

be used to indicate the presence of delamination and the corresponding mode shapes can 

be used to locate the delaminations. When Adelam/Atot > 1/3, the reduction in the 1
st
 

frequency was greater than 3%, so the changes in the 1
st
 frequency and mode shape can 

indicate delamination. 

 2) From the results of the 1/3-delaminated models at unsymmetrical and 

symmetrical locations, it is observed that the location of the delamination can have 

significant effect on modal parameters. The more unsymmetrical the delamination area 

was with respect to the total area, the bigger the changes in the frequencies and mode 

shapes. For example, the changes in the 1
st
 frequencies are 28.24% and 1.18% for the 

unsymmetrical and symmetrical delaminated 1/3 models, respectively. 

 3) Some specific modes were more sensitive to delamination than their adjacent 

modes and are shown to be excellent indicators of delamination. For example, the 

changes in the 4
th

 modal frequencies of the Adelam/Atot =1/6, 1/4, 1/3 delaminated models, 
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are bigger than their neighboring modes. 

 4) The dynamic analyses illustrated that the acceleration amplitudes of the 

delaminated model were obviously larger than those of the un-delaminated model. The 

modal frequencies extracted from the acceleration responses were effective for detecting 

delamination for the1/4 model with 4.8% change in the 1
st
 frequency. Both the dynamic 

response itself and the modal parameters identified from the response can be used for 

delamination identification.  

 Experimental studies were conducted on reinforced concrete plates with different 

delamination sizes. The modal characteristics were extracted from the dynamic responses 

and analyzed. Finite element models of concrete slabs were developed using ANSYS. 

Conclusions are drawn as follows.  

 1) Changes in frequencies and mode shapes can indicate the occurrence and 

extent of delamination. The frequencies decrease with the increase of delamination sizes.  

The 1
st
 modal frequency decreased 43% for the 74.1%-delaminated specimen when 

compared to the undamaged specimen. The changes in higher modal frequencies are 

larger. The experimental results show that the damping ratios increase with the increase 

of delamination sizes. Damping can assist in the delamination identification, but it alone 

is not suitable as a delamination indicator. It is demonstrated that the mode shapes have 

abrupt changes in the delamination areas of the specimens.  

 2) It is beneficial to use multiple identification methods to ensure correct 

identification results. The frequencies identified by the PP, FDD and SSI methods agree 

well, the maximum difference between the 1
st
 frequencies by these methods is less than 

4.8%. The mode shapes extracted by FDD and SSI are shown to be identical. 
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 3) In the finite element modeling, it was determined that the wood supports must 

be modeled properly instead of using idealized simply supported conditions in order to 

achieve accurate results. The frequencies for lower order modes calculated by the FE 

models agreed well with those identified from test data, among which the differences 

between the first three modal frequencies by ANSYS model and FDD method from test 

data are within 7%. The mode shapes obtained by ANSYS model are only approximately 

similar to those identified from tests due to the complex boundary conditions for the test 

specimens, but they are consistent to a certain degree. Therefore finite element models 

can approximately model delaminated concrete slabs for modal analysis, while they are 

not exact for these experiments. 

 This study provides useful information for practical delamination detection of 

bridge decks by vibration-based health monitoring systems. For the future work, 

experimental modal testing with more stable and practical boundary conditions are 

needed. Stabilization diagrams are suggested to be used for obtaining more accurate 

modal characteristics. Further work is necessary for developing more sensitive 

delamination indicators and more accurate finite element models. Additionally, field tests 

utilizing actual delaminations are highly recommended.  
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CHAPTER V  
 

STRUCTURAL POUNDING IDENTIFICATION BY USING WAVELET 

SCALOGRAM 

 

ABSTRACT 

 Structural pounding can cause considerable damage and even lead to collapse of 

structures. Most pounding research focuses on modeling, parameter investigation and 

mitigation approaches. With the development of structural heath monitoring, the on-line 

detection of pounding and parameter determination is possible. The detection of 

pounding can provide useful early information about the potential damage of structures. 

This paper proposed using wavelet scalograms of dynamic response to identify pounding 

and examined the feasibility of this method. Numerical investigations were performed on 

a pounding system that consists of a damped single-degree-of-freedom (SDOF) elastic 

structure and a rigid barrier. The Hertz contact model was employed to simulate nonlinear 

pounding behavior. The responses and pounding forces of the pounding system under 

harmonic and earthquake excitations separately were numerically solved. The wavelet 

scalograms of the acceleration responses were then used to identify the poundings. It was 

found that the scalograms can recognize the presence of the poundings and indicate the 

time of their occurrence very well The approximate severity of the poundings were also 

demonstrated. Experimental studies were carried out as well, in which the shake table 

tests were conducted on a steel bridge model that underwent pounding between its 

different components during ground motion excitation. The wavelet scalograms of the 

bridge responses were analyzed, and they were able to indicate pounding occurrence 

quite well. Hence the conclusions from the numerical studies were verified 
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experimentally. 

 

1.   Introduction 

 

 The different phase vibrations of neighboring buildings or adjacent parts of the 

same building or bridge can result in pounding under earthquake excitation if the 

separation distance between them is not sufficient. The pounding can cause considerable 

damage and even lead to collapse of structures, especially bridges with columns of 

unequal heights [1-2]. Damage of buildings and bridges due to pounding have been 

documented in the reports of many earthquakes by researchers. The pounding research 

mostly focused on modeling of pounding systems, parameter investigations and 

mitigation approaches. 

 Most mathematical pounding modeling methods fall into two categories: a) 

stereomechanical impact approach, which is primarily based on impulse-momentum law 

and b) contact element approach, a force-based approach. The first approach was used in 

[3] and other literature. Hertz contact model, a contact element approach, has been 

extensively used to model impact [4-7]. The numerical study portion of this paper also 

uses this model. 

 With the development of structural health monitoring systems in bridges and other 

civil structures, the on-line detection of the presence of pounding and parameter 

determination of the pounding system becomes possible. Valuable information about 

pounding can be extracted from the analyzed on-line data to provide early warning about 

damage to the structures. There is very little research on this useful topic based on the 

author‟s knowledge. Wavelets allow for  powerful and flexible methods for dealing with 

fundamental engineering problems and have been used within a broader scope [8]. This 
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paper proposes to use wavelet scalograms to detect the occurrence of pounding. 

 Wavelet scalogram is the square of the modulus of the wavelet transform. It can 

uncover previously concealed information about the nature of non-stationary processes. It 

has been widely used in vibration signal analysis, which includes denoising, fault 

diagnostics, structural performance testing, ground motion analysis, bridge response due 

to vortex shedding and many other forms of analysis [9-10]. 

 The primary objective of this paper is to investigate the applicability of wavelet 

scalograms in seismic pounding identification. Numerical and experimental studies were 

conducted to achieve this aim. In the numerical study, the Hertz contact model was 

introduced into the pounding modeling and the properties of a large-scale bridge segment 

were used for a SDOF concrete structure while the appropriate value of an impact 

stiffness parameter was calculated. The responses of the pounding system between the 

SDOF structure subjected to harmonic and earthquake excitations and a stationary rigid 

structure were computed and processed to obtain wavelet scalograms. In the experimental 

studies, the dynamic measurements from shake table tests on pounding of different units 

of a steel bridge were used to obtain wavelet scalograms. These results were analyzed to 

evaluate the effectiveness of scalogram in identifying seismic pounding. 

 

2.   Investigation of the Pounding Model 

 

2.1   Pounding model 

 

 In the numerical study, pounding is simulated by an impact oscillator, which was 

proposed by Davis [5] and later adopted in the literature [4, 6-7]. An SDOF damped 

oscillator subjected to ground motion as illustrated in Figure 54, was studied. The 

pounding occurred between the oscillator and a neighboring stationary rigid structure. 
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The neighboring structure can also be flexible structures; however, for the sake of 

simplicity, this paper investigates the rigid case only. 

 The equation of motion for the nonlinear pounding model of the SDOF system 

subjected to ground motion ( )gx t in Figure 54 is 

( ) ( ) ( , ) ( ) ( )gmx t cx t R x t F t mx t        (123) 

where m and c denote the system mass and damping coefficient, and x , x , x  symbolize 

the relative acceleration, velocity and displacement relative to the ground while the 

superimposed dot denotes differentiation with respect to time, and R(x, t) is the restoring 

force. 

 This study was focused on an elastic structure. For this case, the damping 

coefficient and restoring force can be expressed as 

2 ; ( , ) ( )ec km R x t k x t    (124) 

where  and ek denote the damping ratio and initial stiffness respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54. The impact oscillator for one-sided pounding. 
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 F(t) in Eq. (123) is the impact force between the colliding structures. Using the 

Hertz contact model, the impact force is represented by a non-linear spring of stiffness β 

and can be expresses as 

3/2 ( )[ ( ) ]
( )

( )0

for x t ax t a
F t

for x t a

  



  (125) 

where a is the separation distance between the colliding structures. The Hertz exponent 

3/2 is a typical value to render the Eq. (123) as nonlinear, while pounding in the real 

world may have different values, but alternative values will have little effect on the 

system‟s response [5-6]. β is the impact stiffness parameter, which is dependent on the 

material properties and geometric surfaces of the contact bodies [11]. The calculation of 

values β for some special cases can be found in [12]. For the pounding between concrete 

bodies, the values of β typically range from 2 ~ 80 kN/mm
3/2

 as demonstrated in [11]. 

However, these values are based on small scale experiments, and are not suitable for 

large-scale situations [7]. 

 In the numerical examples used in this paper, the impact between a sphere of 

radius R1 and massive plane surface of R2 = ∞ was considered. The appropriate impact 

stiffness parameter is calculated as 

1

1 2

4 1

3
R

  



   (126) 

where 
2 2

1 2
1 2

1 2

1 1
;

E E

 
 

 
  , R1 is the radius of the flexible structure in Figure 54, E1, E2, 

ν1, and ν2 are the elastic modulus and Poisson‟s ratios of the contact structures 

respectively. For the neighboring rigid barrier, assume 2E  , then 2 0  , Eq. (126) 

becomes 
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1
1 2

1

4

3 1

E
R

 



  (127) 

Eq. (127) is used in Section 4 to calculate β. 

 

2.2   Solution of the equation of motion 

 

 The equation of motion (123) was solved by using the Dormand-Prince 4th-order-

runge-kutta method with adaptive size as well as the Dormand-Prince 8th-order-runge-

kutta method. When the results of these two methods were compared, it was found that 

the 8
th

 order method was no better than the earlier method. Therefore, the 4th-order 

method is recommended and only these results are presented in this paper.  

 The solution method for the pounding system was verified by using a numerical 

model from [4]. The SDOF elastic system with mass m = 350 Mg, elastic stiffness ke = 

10.5 MN/m, damping ratio  =0.02, separation gap a = 0.025 m and impact stiffness 

parameter β = 80 kN/mm
3/2

 was used as a verification example. Two cases of sine 

excitations with 2 HZ and 0.67 HZ sharing a common magnitude of 0.1 g were each 

applied separately. The displacement and acceleration responses, and pounding force 

results calculated in this paper are same as those found in [4]. The results in this literature 

are not shown in this paper due to limited space. 

 

3.   Wavelet Transform and Scalogram 

 

 The wavelets , ( )a b t generated by dilation and translation from the analyzing 

wavelet ( )t  are defined below 

1/2

, ( )a b

t b
t a

a
 

  
  

 
  (128) 

where a is a scale parameter and b is a translation parameter. 
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 ( )t and 
, ( )a b t are usually called mother and son wavelets, respectively. It is 

supposed that 2( ) ( )t L   and the analyzing wavelet also satisfy the admissibility 

condition, 

1 2
( )C d    


  


  (129) 

where ( ) ( ) i tt e dt    


is the Fourier transform. It can be derived from the above 

conditions that, 

( ) 0t dt    (130) 

 Various wavelets have been developed, which include Haar, Morlet, Mexican Hat, 

Hermitian, and Daubechies wavelets. To select a proper mother wavelet is an important 

step. The Morlet wavelet is a complex function that can be considered as modulated 

Gaussian function by sinusoidal wave; it is a cosine signal decaying exponentially on 

both sides. It has the advantage of allowing trade between time and frequency resolution. 

It was  proved to be an effective tool for feature extraction for mechanical vibration 

signals diagnosis [13-14]. It has also been applied in seismic signal detection [15]. Morlet 

wavelet is very similar to impulse component, which is symptom of damage in many 

dynamic signals. Because of these properties, the complex Morlet wavelet was chosen for 

this research, which is defined as 

2

21
( ) c b

x

i f x f

b

x e e
f






   (131) 

where bf is a bandwidth parameter and cf  is a wavelet center frequency [16]. fb = 1.5,     

fc = 1 are used for the wavelet scalograms in sections 4 and 5 of this paper. 

 The wavelet transform is a linear transform that correlates a finite-energy function 

http://en.wikipedia.org/wiki/Hermitian_wavelet
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x(t) with a series of oscillating functions ψa,b(t), it is defined as 

1/2 *

,( , ) ( ) ( ) 0a bWx a b a x t t dt


   (132) 

where the asterisk denotes a complex conjugate. The modulus is defined as 

2 2 1/2( , ) (Re [ ( , )] Im [ ( , )])Wx a b Wx a b Wx a b   (133) 

The phase is defined as 

Im[ ( , )]
( , ) arctan

Re[ ( , )]

Wx a b
a b

Wx a b
    (134) 

The modulus and phase were used in [17] to investigate nonlinear and chaotic behavior of 

structural systems. 

 The wavelet scalogram is defined as the square of the modulus of the wavelet 

transform and represents energy density that measures the energy of x(t) in the 

Heisenberg box of each wavelet 
,a b centered in [18]:  

2

2
( , ) ( , ) ( , )WP x a Wx a b Wx a





   (135) 

 It is used for analysis of non-stationary signals and can be understood as a 

spectrum with a constant relative bandwidth. The scalogram is employed in this study to 

determine the occurrence of pounding for both numerical and experimental data. 

 

4.   Numerical Investigations 

 

 The results of pounding of an impact oscillator on its neighboring rigid barrier, as 

illustrated in Figure 54 , were investigated. The properties of the shorter concrete bridge 

segment in [3] were used for the SDOF structure: mass m = 1.2 × 10
6
 kg, elastic stiffness 

ke = 107 MN/m, damping ratio  =0.05, and a natural period T = 0.67 seconds. Also used 
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were R1 = 4.92 m from [7], Poisson ratio ν1 = 0.15, compressive strength ' 4000cf  psi 

(27.58 MPa), and consequently concrete strength 1 57000 4000E  = 3.605 × 10
6
 psi = 

24.856 GPa. Substitute the above values into Eq. (127) to calculate the impact stiffness 

parameter, and it was found that β = 757 kN/mm
3/2

. The separation distance a = 12.5 mm 

was used. The structure was excited by two single frequency sinusoidal ground motions 

with frequencies f1 = 4 Hz and f2 = 0.8 Hz, respectively: gx  = - 0.1g × sin (2πf1t); gx  = - 

0.1g × sin (2πf2t). El Centro 1940 North-South component scaled to peak ground motion 

(PGA) of 0.1g and 0.05g, respectively, were also employed as ground excitations. All the 

sessions have durations of 31.14 seconds. 

 The responses of the pounding system were computed by the procedures 

discussed in section 2. The wavelet scalograms of the acceleration responses were 

calculated by the method expanded upon in section 3. The frequency axes of the 

scalograms are in log scale. The objective was to find a method to identify the presence 

of pounding from the time history signals, i.e., the displacement/velocity/acceleration. 

Both the amplitude spectra and scalogram were calculated from acceleration responses. 

The pounding forces computed numerically address the actual condition but were treated 

as unknown throughout the identification process.  

 The results of responses due to stationary sinusoidal excitation will be discussed 

first. Figure 55 shows the responses, single-sided amplitude spectra and scalogram for the 

case f1 = 4 Hz, at which pounding forces were all computed to zero during this session, 

thus indicating no pounding presence. The displacement and acceleration were able to 

maintain the approximately sinusoidal shapes after the first few seconds of oscillation. 

The single-sided amplitude spectrum showed the predominant frequency is 
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approximately same to the excitation frequency of 4 Hz. The scalogram was able to 

register a clear picture of energy distribution with respect to time and frequency. 

 Figure 56 shows the responses, pounding forces, single-sided amplitude spectra 

and scalogram for the case f1 = 0.8 Hz, which is closer to the natural frequency of the 

SDOF structure, and consequently generates larger displacement and acceleration 

responses. From Figure 56(a-b), the displacement and acceleration became periodical 

signals after about 5 seconds. Although the responses were not normal, as expected from 

the non-pounding responses, there were no acceleration spikes found and it was uncertain 

whether pounding had occurred at that time. The pounding forces as shown in Figure 56 

(c) indicate the exact time and duration of the poundings. The spectrum in Figure 56 (d) 

shows many prominent frequencies instead of only the excitation frequency, and in 

addition the predominant frequency is 1.6 Hz instead of the excitation frequency 0.8 Hz, 

which indicates that pounding might have occurred at this time. But this judgment needs 

a priori knowledge of the structure and the excitation, and even in this case, it is not 

convincing and clear. Compared with the non-pounding scalogram shown in Figure 55 

(d), the scalogram in Figure 56 (e) has many abrupt changes of energy with respect to the 

frequency. When Figure 56 (e) and Figure 56(c) are compared, it is obvious that these 

changes occur at the time of pounding. Further, the changes of frequency contents 

indicate the magnitude of the pounding force. Therefore, the scalogram is able to indicate 

the presence of pounding, the time and relative magnitude of the pounding occurrence 

from the acceleration response without a priori information.  
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  (a)      (b) 

  

   (c)     (d) 

Figure 55. The responses of the SDOF structure during sinusoidal excitation f1 = 4 Hz, no 

pounding occurred: (a) Displacement; (b) Acceleration; (c) Single-sided amplitude 

spectrum of acceleration. (d)) Wavelet scalogram of acceleration response.  

 

 The results of responses due to non-stationary earthquake excitation were also 

analyzed. Figure 57 and Figure 58 show the results due to earthquake excitation with 

different PGAs. The earthquake record of 1940 El Centro north-south component scaled 

to PGA of 0.1g is illustrated in Figure 57 (a), which contains its most energy 

approximately in the frequency range of 0.2~10 Hz. It was observed that there are spikes 

in the acceleration histories shown in Figure 57 (c), which indicates that the pounding 

may have occurred. The pounding forces shown in Figure 57 (d) illustrate the pounding 

present for this excitation. Unfortunately, the pounding cannot be identified by amplitude 

spectra very well. The wavelet scalogram for PGA = 0.1g is illustrated in Figure 57 (f) 

and the scalogram for PGA =0.05g that does not generate pounding is shown in Figure 58 
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(f). When Figure 58 (a) and Figure 57(d) are compared, it is clear the higher frequencies 

determined by the scalogram are associated with the times of most intense pounding. The 

scalogram in Figure 58 (b) used in the non-pounding portion of the experiment does not 

show these types of changes, which additionally proves that the scalogram is capable of 

detecting pounding. It can be concluded that acceleration spikes and wavelet scalogram 

can in fact identify pounding effectively. 

 

  
   (a)     (b)

 
   (c)     (d) 

 
   (e) 

Figure 56. The responses of the SDOF structure during sinusoidal excitation f2 = 0.8 Hz: 

(a) Displacement; (b) Acceleration; (c)Pounding force; (d) single-sided amplitude 

spectrum of acceleration; (e) Wavelet scalogram of acceleration. 
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   (a)      (b) 

  
   (c)      (d) 

 
   (e)       (f) 

 

Figure 57. The El Centro earthquake excitation and responses of the SDOF structure: (a) 

Ground acceleration, PGA = 0.1g (b) Displacement response; (c) Acceleration response; 

(d)Pounding force; (e) single-sided amplitude spectrum of the acceleration; (f) Wavelet 

scalogram of acceleration. 
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   (a)      (b) 

  
   (c)      (d) 

 
   (e)      (f) 

Figure 58. The El Centro earthquake excitation and responses of the SDOF structure: (a) 

Ground acceleration, PGA = 0.05g (b) Displacement response; (c) Acceleration response; 

(d)Pounding force; (e) single-sided amplitude spectrum of the acceleration; (f) Wavelet 

scalogram of acceleration. 

 

5.   Experimental Data Analysis 

 

 A series of shaking table tests were conducted on seismic pounding of high-pier 

bridge by Meng et al. [19] at Institute of Engineering Mechanics, China Earthquake 

Administration in 2009. The measured accelerations were analyzed in this paper by using 

a wavelet scalogram to verify the ability of scalograms to identify pounding. 
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5.1   Shake table tests on seismic pounding 

        of high-pier bridge models 

 

 A high-pier bridge model with one main span and two approach spans was 

constructed as illustrated in Figure 59, the prototype of it is a high-pier bridge in Yunan, 

China. The superstructures and the 1.50 m tall piers were built with steel plates and pipes 

respectively. The main span and approach spans have different sizes and different ballast 

masses were added to satisfy the similitude laws. Consequently they have different 

natural frequencies. The gaps betwwen the main span and the approach spans are 0.01m. 

 The bridge model was placed on the 5m × 5m three-dimensional shake table. 

Seven accelerometers, 11 displacement sensors, and 20 strain gauges were  attached to 

the bridge model. Two sets of dynamic tests were conducted on this model. The first tests 

were performed on the above described bridge model, and the second tests were 

implemented on the above model installed with shape memory alloy metal rubber 

dampers (SMAMRD). The SMAMRD reduced the pounding effects significantly. The 

applied ground motions simulated the El Centro, Taft earthquake and artificial ground 

motions for both test sets with same PGAs. In this study, the accelerations a4 from the El 

Centro ground motion tests were analyzed. The PGA of the El Centro table motion was 

0.22g for both the test sets with and without SMAMRD. A typical table acceleration is 

shown in Figure 60. 

 

5.2   Pounding identification by wavelet scalogram 

 

 The responses of accelerations recorded by accelerometer a4 for both the test sets 

with and without SMAMRD were analyzed by wavelet scalograms. The results of the 

two tests are shown in Figure 61 and Figure 62 respectively. The analysis methods were 
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the same as those used in numrical investigations. 

 From the acceleration response, single-sided amplitude spectra and the scalogram 

in Figure 61 for the test set with SMAMRD, it was observed that in the ranges near 3 and 

around 18 seconds, the peak acceleration was doubled, and the scalogram frequencies 

were 3 times as high as other ranges. The changes in the scalogram together with the 

acceleration spikes indicated clearly that the pounding occurs at the time ranges around 3 

and 18 seconds. However, no clear pounding information can be drawn from the spectra. 

 From the response results shown in Figure 62 for the test set without SMAMRD, 

it was observed that in the time ranges between 3.5~9.2, 15.0, 18.5~22, and 24.0 seconds, 

the peak values of acceleration became about 3 times as those of other time ranges and 

the scalograms extended to higher frequencies about 5 times those of other time ranges. 

Therefore, it can be concluded that the pounding occurs at the above time ranges by 

analyzing the acceleration spikes and wavelet scalograms. However, the pounding 

information from the spectrum was inconclusive. 

 Both test sets in Figure 61 and Figure 62 refer to the same El Centro ground 

motion with the same PGA, Comparing the times of pounding and the scalogram that 

represented the energy density in Figure 61 (c) and Figure 62 (c), the times of pounding 

occurrence and the scalogram magnitudes in Figure 62 (c) are more frequent and larger 

than those of Figure 61 (c). The scalogram in Figure 62 is extended to much higher 

frequencies of 100 Hz compared to about 37 Hz in Figure 61. These results are consistent 

with the conclusion in [19] that the SMAMRD can decrease pounding effects 

substantially.  
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Figure 59. The pounding models of high-pier Bridge under shaking table tests. 
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Figure 60. A typical table acceleration for the shake table tests. 

 

Accelerometer a4 
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   (a)      (b) 

 
   (c) 

Figure 61. The response of the main bridge at Accelerometer a4 with SMAMRD: (a) 

Acceleration response a4; (b) single-sided amplitude spectrum of the acceleration a4; (c) 

Wavelet scalogram of a4. 

 

6.   Conclusions 

 

 In this paper, the pounding identification by wavelet scalogram was examined by 

numerical studies as well as experimental studies.  

 In the numerical studies, the Hertz contact model was carefully integrated into the 

one-sided pounding system between an elastic SDOF concrete structure and a rigid 

barrier. The pounding forces, displacement, and acceleration of the pounding system were 

solved from the numerical models for both stationary sinusoidal and non-stationary 

earthquake excitations. Acceleration spikes were present in the earthquake excitation case, 

but not in the harmonic one. The wavelet scalogram proved its ability to identify 

pounding occurrences in both cases. It can also be used to indicate the time of pounding 

occurrence and the approximate severity of each pounding session. 
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(a)      (b) 

 

   (c) 

Figure 62. The response of the main bridge at Accelerometer a4 without SMAMRD: (a) 

Acceleration response a4; (b) single-sided amplitude spectrum of the acceleration a4; (c) 

Wavelet scalogram of a4.  

 

 In the experimental studies, the acceleration data from two sets of shake table 

tests on a steel bridge model with and without SMAMRD were analyzed. These tests 

included pounding sessions between the different components of the bridge for both sets 

of tests. The wavelet scalogram of the accelerations identified the pounding very 

effectively, which verified the conclusions from the numerical studies. The acceleration 

spikes were also able to indicate the pounding in this case. 

 We can come to the conclusion that the wavelet scalogram is capable of indicating 

the presence of structural pounding quite well. The acceleration spikes can be used 

together with the wavelet scalogram for pounding identification. Further analytical and 

experimental studies on more practical cases are underway.  
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CHAPTER VI  
 

CONCLUSION AND FUTURE STUDY 

 

1.   Conclusion 

 

 This thesis studied the structural identification and damage detection for civil 

engineering structures. Various structural identification and damage detection methods 

were explored. Experimental as well as numerical studies have been carried out to solve 

several practical engineering problems, e.g., the delamination of a concrete bridge deck. 

The research work throughout this thesis can be highlighted as follows: 

 (a) Various state-of- the-art identification methods were explored, which included 

classical peak-picking, frequency domain decomposition, stochastic subspace 

identification, extended Kalman filter, and wavelet transform. These methods were 

investigated at length and compared in Chapters II - V.  

 (b) Finite element models of concrete slabs with delamination damage were 

constructed by ANSYS software to simulate real ones. The modeling was justified by 

comparing the modal characteristics with those identified from the experimental models 

(see Chapter IV). Finite element models for shear building, truss, and frame structures 

were established by programming and the dynamic responses were computed using 

numerical methods (see Chapter II and III). Numerical studies were also conducted to 

integrate the Hertz Impact Model in the modeling of pounding systems (see Chapter V). 

 (c) The experimental studies were carried out specifically for the research while 

actual acceleration measurements were obtained from a real-time monitoring system on a 

highway bridge and used in this study (see Chapter II). Experimental modal testing was 

conducted upon four concrete models with delamination damage in the laboratory (see 
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Chapter IV). The real measurements from shake table tests on a steel bridge were used 

(see Chapter V). 

 The main conclusions of the thematic research for this thesis are summarized 

below: 

 (1) Data-driven stochastic subspace algorithms were used for modal identification 

of a numerical truss bridge with abrupt damage and a real girder highway bridge without 

damage by using acceleration responses of these bridges. The algorithm was combined 

with stabilization diagrams to determine the physical modes and exclude the spurious 

modes (see Chapter II).  

 It was observed from the stabilization diagrams of frequencies and damping ratios 

for the truss that the uncertainties are very low and the identified frequencies correspond 

well with the exact values with only 0.16% error for the 1st frequency, and most errors of 

other frequencies are less than 4%. For damping ratios, 5 values were identified with 

percent errors less than 2.5%, but another 5 were lost. The mode shapes were also 

obtained and shown to be correct and able to indicate the damage. 

 In the application to the real bridge, observed from the stabilization diagrams, 

there are many spurious modes. The identified frequencies corresponded with the exact 

values; the errors for the first 18 frequencies were less than 5%. 

 Generally, the SSI combined with stabilization diagrams is quite effective in 

identifying the frequencies, damping coefficients, and mode shapes. The algorithm is also 

effective in identifying closely-spaced modes. 

 A subspace identification algorithm, N4SID, was also examined through its 

application to the modal identification of the highway bridge using output only data. It 
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extracted frequencies well with a percent error of less than 8%. Since it is not 

computational efficient, N4SID is not recommended for identification of large systems. 

 (2) The performance of the adaptive Kalman filter in substructure identification 

was investigated by performing numerical studies on a shear building, a plane frame 

building, and a plane truss bridge (see Chapter III). These structures endured abrupt 

damages during the external excitation. The masses and the simulated acceleration 

responses were known and used to identify the unknown parameters, such as, stiffness 

and damping. The results revealed that, if given a close initial estimate, the stiffness can 

be identified quite accurately and the abrupt changes of stiffness can be tracked very well; 

the damping can also be identified but with a larger error. When output noise was added, 

the method was still effective for identifying the stiffness and damping, though with 

lower accuracy. 

 Wavelet transform was proposed as a method for identifying substructural damage. 

The results showed that the wavelet scalograms of accelerations can detect the changes of 

structural parameters and also approximately locate the damage. 

 (3) This thesis researched the delamination detection of concrete structures by 

modal identification from output-only vibration measurements (see Chapter IV). The 

feasibility of this was investigated through numerical as well as experimental studies.

 The delaminations with different sizes and locations were introduced into the 

concrete slab, and the parameter studies on the effects of delamination on modal 

characteristics were performed through finite element modeling. It can be concluded from 

the results that the delamination sizes and locations can have significant influence on 

modal characteristics; consequently changes in the modal characteristics can indicate and 
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locate the development of delamination well.   

 Experimental modal testing on reinforced concrete slabs with different 

delaminations was conducted. The modal characteristics were extracted from the dynamic 

responses by peak-picking, frequency domain decomposition, and stochastic subspace 

identification methods. From the analyses of the results, it was found that the experiments 

verified the findings of the numerical studies. Finite element models for the experimental 

models were developed using ANSYS. These modeling were validated to be able to 

approximately simulate the real models, while the exact models are not obtained due to 

the complex and unpredictable boundary conditions of the experimental tests.  

 The research provided an efficient way for delamination detection of bridge decks 

using vibration-based real-time health monitoring systems. 

 (4) A statistical analysis was done to study the influence of temperatures on 

frequencies based on one-year ambient vibration data from a concrete bridge. The 

frequencies and temperatures were correlated by nonlinear as well as linear curve fitting. 

The multiline regression models exhibited a specific trend for each mode, which is useful 

for separating changes in frequencies that are normal due to temperature changes from 

those due to damage to the structure. 

 (5) A pounding system was modeled using the Hertz contact model. Shake table 

tests of a steel bridge with pounding was conducted by a collaborator and the test data 

was investigated (Chapter V). The wavelet scalogram was applied to the simulated 

response from the numerical model and the experimental data from the shake table tests. 

The results showed that wavelet scalogram can indicate the occurrence of structural 

pounding well. 



183 

2.   Future Study 

 

 Further research is necessary in order to improve damage detection methods and 

more experimental tests are needed. Some suggestions for future study are discussed 

below. 

 (i) It was found that the subspace identification algorithm needs a larger model 

order number than the theoretical value (2N for an N-DOF system). While the increase of 

system order can improve the identification ability, the computation time also would 

increase significantly, which may become an issue for a large system. In this study, only 

the 1st mode shapes of the truss bridge before and after damage were investigated and 

found to be reasonable, the other mode shapes have yet to be surveyed. To obtain better 

results, a denser layout of sensors is necessary. 

 (ii) For substructure identification, the experiments in the laboratory and field 

tests are necessary. The accuracy and robustness of the methods need to be improved. For 

example, the results should not depend so much on the initial hypothesis, and the 

convergence times should be reduced. As for the substructural damage identification 

using wavelet analysis, further study is necessary for obtaining quantitative results and 

clearer interpretations with physical meanings. 

 (iii) For the study on delamination detection by modal identification, further study 

is needed to develop more sensitive damage indicators. More controllable and ideal 

boundary conditions should be enforced for the experimental models. And bridge decks 

with actual delaminations would be ideal for tests. For finite element modeling, more 

accurate simulations of delamination need to be developed. 

 (iv) Along with frequencies, the variations of damping ratios and mode shapes 
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due to the changes in temperature should be investigated. Installations of temperature 

sensors on bridges are highly recommended to measure exact temperatures. 

 (v) Further analysis on pounding modeling is needed to develop more practical 

and complex pounding systems, which can be used for real world scenarios. 
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APPENDIX 
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Appendix A. Supplemental Results for the Modal Analysis of the Numerical Delaminated 

Concrete Models and the Experimental Delaminated Concrete Specimens 
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 This section shows additional results of modal analysis of the delamination 

models to Chapter IV.  

 

A.1 Numerical Study  

 

 The 1st - 6th mode shapes for the undelaminated concrete models and those with 

1/12, 1/6, 1/4, 1/3 symmetrical, 1/3 unsymmetrical and 1/2 delaminations are illustrated 

in Figure 69. The following results provide more in depth results of modal analysis of 

numerical studies to verify the conclusions presented in Chapter IV.  The modal order 

number is the sub number minus 1. 

 

 

 
 

Figure 63. The 1st - 6th mode shapes for the non-delaminated model. 
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Figure 63. Cont'd 

 

 
 

Figure 64. The 1st - 6th mode shapes for the 1/12 delaminated model. 
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Figure 65. The 1st to 6th mode shapes for the 1/6 delaminated model. 

 

 
 

Figure 66. The 1st - 6th mode shapes for the 1/4 delaminated model. 
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Figure 66. Cont'd. 

 

 
 

Figure 67. The 1st - 6th mode shapes for the 1/3 symmetrical delaminated model. 
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Figure 67. Cont'd. 

 

 
 

Figure 68. The 1st - 6th mode shapes for the 1/3 unsymmetrical delaminated model. 
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Figure 69. The 1st - 6th mode shapes for the 1/2 delaminated model. 

 

A.2  Experimental Study 

 

 This section presents additional results of the dynamic tests of undelaminated and 

delaminated concrete slabs due to impact and swept sine excitations. The modal 

frequencies identified by the three identification methods from dynamic tests due to 

impact and swept sine excitations are listed in Table 26 and Table 27 respectively. Figure 

70 and Figure 71 show the comparisons of mode shapes by FDD and SSI identification 
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methods from the response measurements due to impact excitation and swept sine 

excitation by instrumented hammer respectively.  

 The results extracted from the response measurements due to impact and swept 

sine excitations are consistent with those from random excitation shown in Chapter IV. 

Thus the conclusions in Chapter IV are further verified. 

 

Table 26. Modal frequencies identified by PP, FDD and SSI (i = 400, n = 60) methods 

from experimental specimens under impact excitation. 

0%- 

Delaminated 

PP (HZ) 15.75 20.75 31.47 68.47 83.63 165.73 

FDD (HZ) 15.76 20.76 31.52 67.53 82.54 165.08 

SSI (HZ) 15.78 20.70 31.62 67.62 82.71 165.78 

22.2%- 

Delaminated 

PP (HZ) 14.75 - 26.91 50.97 - - 

FDD (HZ) 14.76 - 27.01 50.77 - - 

SSI (HZ) 14.66 - 26.87 50.58 - - 

51.9%-  

Delaminated 

PP (HZ) 14.09 - 27.35 - - - 

FDD (HZ) 14.01 - 27.26 - - - 

SSI (HZ) 14.05 - 27.44 - - - 

74.1%-  

Delaminated 

PP (HZ) 9.16 - 24.16 45.22 - 86.97 

FDD (HZ) 9.25 - 24.26 44.52 - 84.54 

SSI (HZ) 9.15 - 24.15 44.56 - 84.69 
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Table 27. Modal frequencies identified by PP, FDD and SSI (i = 400, n = 60) methods 

from experimental specimens under swept sine excitation (0~400 Hz). 

0%- 

Delaminated 

PP (HZ) 15.53 20.41 31.31 68.22 84.32 165.73 

FDD (HZ) 15.51 20.51 31.02 68.78 82.54 165.83 

SSI (HZ) 15.45 20.35 31.20 - 82.52 165.76 

22.2%- 

Delaminated 

PP (HZ) 14.66 - 26.78 50.69 - - 

FDD (HZ) 14.51 - 26.51 50.52 - - 

SSI (HZ) 14.52 - 27.03 50.40 - - 

51.9%- 

Delaminated 

PP (HZ) 13.81 - 27.00 - - - 

FDD (HZ) 13.76 - 26.76 - - - 

SSI (HZ) 14.05 - 27.44 - - - 

74.1%- 

Delaminated 

PP (HZ) 8.97 - 24.06 43.94 - 85.35 

FDD (HZ) 9.00 - 24.01 44.02 - 84.54 

SSI (HZ) 8.98 - 24.40 44.56 - 84.37 

 

 

 
 

  (a) 0%-delaminated specimen  (b) 22.2%-delaminated specimen 

 
 

  (c) 51.9%-delaminated specimen (b) 74.1%-delaminated specimen 

 

Figure 70. Comparison of mode shapes by FDD and SSI identification methods from the 

response measurements due to impact excitation. 
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  (a) 0%-delaminated specimen  (b) 22.2%-delaminated specimen 

 
  (c) 51.9%-delaminated specimen (b) 74.1%-delaminated specimen 

 

Figure 71. Comparison of mode shapes by FDD and SSI identification methods from the 

response measurements due to swept sine excitation. 
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