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ABSTRACT 
 
 

Estimating Total Phosphorus and Total Suspended Solids 
 

from High Frequency Data 
 
 

by 
 
 

Amber Spackman Jones, Master of Science 
 

Utah State University, 2008 
 

 
Major Professor:  Dr. David K. Stevens 
Department:  Civil and Environmental Engineering 
 
 
 Frequently measured turbidity was examined as a surrogate for total phosphorus 

(TP) and total suspended solids (TSS) loads at two locations in the Little Bear River, 

Utah, USA.  Using regression techniques, equations were developed for TP and TSS as 

functions of turbidity.   The equations accounted for censored data, and additional 

explanatory variables to represent hydrological conditions were considered for inclusion 

in the equations.  By using the resulting surrogate relationships with high frequency 

turbidity measurements, high frequency estimates of TP and TSS concentrations were 

calculated.  To examine the effect of sampling frequency, reference loads were 

determined from the concentration records for two water years.  The concentration 

records were artificially decimated to represent various frequencies of manual grab 

sampling from which annual loads were calculated and compared to the reference loads. 

(127 pages) 
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CHAPTER 1 
 

INTRODUCTION 
 
 

Traditional water quality monitoring programs typically rely on the analysis of 

grab samples, and the frequency of sample collection is dependent on limitations in 

resources such as personnel, budget for sample analysis, and supplies.  As a result, 

sample collection often happens on a weekly to monthly basis, which, depending on the 

variable and the location, may not provide an adequate representation of the behavior of 

most water quality constituents.  Concentrations of many water quality constituents can 

vary at scales of minutes to hours.  In general, even if resources were unlimited, it would 

be logistically infeasible to collect samples at these high frequencies over extended time 

periods.  In order to estimate constituent transport over time, grab sampled concentration 

data are paired with discharge (often measured more frequently than concentration) to 

calculate loads.  If sampling is conducted infrequently, these estimates may grossly over 

or under estimate the true constituent loads.  An additional drawback is that a 

complicated calculation method is often necessary to estimate loads from infrequently 

collected concentration data to account for averaging over those periods and for discharge 

collected more frequently than concentration. 

For some constituents, in situ sensors can be used for high frequency monitoring 

returning large datasets over relatively long time periods.  Variables commonly measured 

in situ include physical parameters such as water level, pH, specific conductance, 

dissolved oxygen, and turbidity.  Additionally, UV-VIS spectroscopy and ion-specific 

sensors can be used in situ to quantify constituents such as nitrate, nitrite, chlorophyll, 

and chemical oxygen demand.  Despite developments in sensor technology, there are still 
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important water quality constituents that cannot practically be measured in situ or in real 

time over an extended period of time.  For example, total phosphorus samples must be 

digested and analyzed in the lab.  Consequently, the number of available measurements is 

limited in most watersheds.  As total phosphorus is often associated with particulates 

including soils, animal waste, and vegetation, its loading, along with total suspended 

sediment loading, is likely to increase during storm events and times of high runoff when 

erosion occurs.  These are periods when representative grab sampling can be especially 

difficult and may not often be conducted.  As an alternative to grab sampling, high 

frequency, in situ measurements can be used as surrogates to estimate properties such as 

contaminant concentration.  A common surrogate measure is turbidity, an optical 

measure of the scattering of light passing through a sample of water due to colloidal and 

suspended matter.   

This research examines turbidity as a surrogate measure for total phosphorus (TP) 

and total suspended solids (TSS) on the Little Bear River, Utah, USA and uses the results 

to assess the effects of sampling frequency on load calculations.  Historically, TP and 

TSS have been constituents of concern on the Little Bear River, and the Utah Department 

of Environmental Quality (DEQ) included the river on its 303(d) list of impaired water 

bodies for total phosphorus.  Additionally, the Little Bear is one of 11 test beds in the 

Water and Environmental Research (WATERS) Network designated to research 

environmental observatory design and methods for improved understanding of instream 

processes including high frequency data collection and surrogate measures.    
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Using high frequency turbidity data and intermittently sampled TP and TSS, 

equations were developed to estimate TP and TSS as functions of turbidity from which 

high frequency estimates of concentration were generated.  The relationships account for 

censored data, and additional categorical variables representing hydrological conditions 

were considered.  The continuous concentration estimates, used in conjunction with high 

frequency discharge data, were used to calculate annual loads.  In order to examine the 

effect of sampling frequency on load estimates, the continuous concentration and 

discharge series were artificially decimated to represent periodic, less frequent grab 

sampling.  This subsampling was conducted at hourly, daily, weekly, and monthly 

frequencies, from which annual loads were calculated.  Multiple realizations of daily, 

weekly, and monthly sampling were generated by randomizing the selection of 

concentration and discharge values.  The results were compared to the reference loads 

calculated from the high frequency discharge and concentration data.  Additionally, 

consistently sampling at the same time of the day and the same day of the week were 

examined in order to examine the effect of timing of sample collection on load estimates. 

Chapter 2 provides a review of literature establishing a background for this 

research and descriptions of related work.  Chapter 3 describes the procedures used to 

develop the surrogate relationships for TSS and TP at both locations.  The continuous 

concentration datasets and reference loads are presented in Chapter 4, which also 

examines the loads calculated by subsampling at different frequencies.  Chapter 5 

summarizes the results of the analyses, Chapter 6 details the engineering significance of 

this research, and Chapter 7 suggests topics of future research stemming from this work.



4 
!

CHAPTER 2 
 

LITERATURE REVIEW 
 
 

2.1 Study area: Little Bear River 

The site of this research is the Little Bear River in northern Utah, USA, which 

drains a semi-arid watershed with hydrologic behavior dominated by spring snowmelt 

runoff.  The Little Bear River watershed encompasses an area of approximately 740 km2, 

the headwaters are in the Bear River Mountain Range, and elevations range from 1340 m 

to 2700 m.  The river has two principal subdrainages, the East Fork and the South Fork.  

There are two reservoirs within the drainage: one in the upper watershed on the East Fork 

(Porcupine Reservoir) and another in the lower watershed (Hyrum Reservoir).  Both 

reservoirs are operated by canal companies and store water for the summer irrigation 

season.  Below the reservoirs and at other locations along the river are agricultural 

diversions that greatly influence the hydrology of the Little Bear River.  The land use 

within the watershed is primarily agricultural with a general distribution of 70 percent 

grazing land and forest, 19 percent irrigated cropland, and 7 percent dry cropland.  There 

are a number of small towns within the watershed, and the area has exhibited population 

growth of 32 percent between 1990 and 2000 (US Census Bureau, 2000). 

The geologic material surrounding and underlying the Little Bear River is 

primarily limestone and dolomite rocks (Schaefer et al., 2006).  In the upper watershed, 

most of the underlying soils consist of high slope (30-50 percent) silty 4olluviums 

deposits, and the depth to the water table is generally greater than 2 meters.  In contrast, 

in the lower watershed, the soils are primarily loamy lacustrine deposits of low slopes (0-
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3 percent) with a depth to the water table of 0.75-1.5 meters or less (Soil Survey Staff, 

2008) 

 The Little Bear drains into an arm of Cutler Reservoir, a shallow eutrophic 

reservoir on the Bear River, a tributary to the Great Salt Lake.  Cutler Reservoir has been 

listed as impaired with respect to low dissolved oxygen concentrations driven by algae 

growth due to high phosphorus levels (Utah DEQ, 2006b).  Consequently, a Total 

Maximum Daily Load (TMDL) is currently under development for Cutler Reservoir.  

TMDLs have already been developed on many of the reservoir’s tributaries, including the 

Little Bear River.  The State of Utah has applied a guideline of 0.05 mg/L for maximum 

instream total phosphorus concentrations, which has not been met in the Little Bear River 

(Utah DEQ, 2000a, 2006a), and a TMDL was completed in 2000 (Utah DEQ, 2000b).  A 

TMDL was also completed for Hyrum Reservoir, which often has algal blooms, that 

requires an in-lake total phosphorus concentration to meet an endpoint of 0.025 mg/L 

(Utah DEQ, 2002).  According to the TMDL studies, the reduction in phosphorus loading 

must be achieved through best management practices implemented by landowners and 

community members. 

 
2.2 Project funding and context 

To address deficiencies in the current state of understanding of hydrologic 

systems, the Water and Environmental Research Systems (WATERS) Network was 

created consisting of 11 environmental observatory test bed sites across the United States.  

The test beds are examining techniques and technologies for larger scale environmental 

observatory design and operation.  Research topics include innovative methods for 
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constituent estimation, deployment of environmental sensor networks, development of 

modeling tools, and standardization of data storage and publication (WATERS Network, 

2006; Montgomery et al., 2007).  The Little Bear River was selected as a test bed site 

with the following objectives:  1. Develop an integrated monitoring system of data 

collection and surrogate measurements, 2. Assess high frequency nutrient loading in 

relation to flow regime, watershed characteristics, and management practices, and 3. 

Develop two-way linkages between field sensors and a central database including 

modeling tools or software for data access and watershed management (Utah Water 

Research Laboratory, 2007).  Additional funding was provided by the United States 

Department of Agriculture through the Conservation Effects Assessment Program, a 

national study evaluating the results of conservation practices implemented by private 

landowners. 

 
2.3 Phosphorus and suspended solids 

Phosphorus is an essential nutrient in aquatic systems as it is required for most 

forms of life.  However, over-enrichment of phosphorus in water bodies can cause 

increased algal growth leading to eutrophication in lakes and reservoirs and excessive 

periphyton growth in rivers (Hem, 1985; US EPA, 1986; Mueller and Helsel, 1996).  

Concerns with eutrophic water bodies include aesthetics for natural waters and drinking 

water sources as well as reduced dissolved oxygen levels, which adversely affect fish and 

other forms of aquatic life.  Phosphorus is found naturally in some soils, but significant 

amounts may also be contributed to aquatic systems by anthropogenic sources such as 

fertilized fields, animal waste, wastewater treatment plants, and industries that use 
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phosphorus in cleaning processes (Hem, 1985; Mueller and Helsel, 1996).  Depending on 

the source, phosphorus is frequently associated with suspended sediments, which may 

also be a water quality concern (Kronvang et al., 1997; Heimlich, 2003).  Not only do 

suspended sediments transport contaminants such as nutrients, pesticides, and metals, 

high levels of suspended sediment can be detrimental to aquatic life, decrease the 

recreational quality of a water body, complicate water treatment, and interfere with the 

operation of hydraulic structures (US EPA, 1986).  

 
2.4 Water quality monitoring 
 

Literature regarding the design of water quality sampling programs and 

monitoring networks is widely available (Ward et al., 1990; Harmancioglu et al., 1999), 

and networks have been established at varying scales.  On a national scale, for example, 

the National Stream Quality Accounting Network (NASQAN) was implemented in 1974 

by the United States Geological Survey (USGS) to study the water quality of the nation’s 

five largest rivers (Mississippi, Rio Grande, Yukon, Colorado, and Columbia).  There are 

only a few stations on each river that are generally sampled 5 to 15 times annually.  The 

program examines chemical and sediment transport on relatively large scales, both 

temporally and spatially (Hooper et al., 1997).  Sampling programs are often initiated on 

a smaller watershed scale to meet various objectives such as assessment of the 

effectiveness of management practices, providing data for modeling efforts, and for 

determination of compliance with water quality standards (Oblinger, 2004).  These 

traditional water quality monitoring programs rely on grab samples that typically are 

collected with a frequency too low to fully characterize the range in ambient 
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concentrations and to accurately calculate loads of water quality constituents over time 

(Ferguson, 1987; de Vries and Klavers, 1994; Coynel et al., 2004; Etchells et al., 2005; 

Johnes, 2007). 

Traditional grab sampling at weekly or monthly intervals often misses storm 

events, periods when loading of solids, nutrients, and bacteria are increased due to non-

point source runoff.  Croke and Jakeman (2001) discuss streams with rapid hydrological 

response that are especially subject to erosion resulting in increased transport of sediment 

and associated nutrients during storm events.  Nolan et al. (1995) showed that increases 

in concentration of the various species of phosphorus were closely associated with the 

occurrence of precipitation.  Kronvang et al. (1997) compared intensive storm sampling 

with fortnightly sampling and found that the infrequent sampling significantly 

underestimated the transport of sediments and phosphorus.  Gray and Glysson (2002) 

make the generalization that approximately 90 percent of the sediment transport in 

smaller streams occurs in 10 percent of the time. 

 
2.5 High frequency monitoring 

Important periods in constituent transport are usually missed or underrepresented 

by traditional grab sampling (Richards and Holloway, 1987; Christensen et al., 2002; 

Jordan et al., 2007), but can be captured by high frequency water quality monitoring.  

Continuous, high frequency monitoring also elucidates seasonal and diurnal trends that 

may be overlooked by traditional periodic grab sampling (Grayson et al., 1997; 

Christensen, 2001; Tomlinson and De Carlo, 2003; Kirchner et al., 2004; Scholefield et 

al., 2005).  Automating high frequency monitoring reduces the logistics and personnel 
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required for grab sampling that is representative (Grayson et al., 1997), minimizes errors 

in transcription and improves the turnaround between the collection and the use of field 

data (Vivoni and Camilli, 2003), and provides data at increased temporal and spatial 

scales for extended time periods (Kirchner et al., 2004). 

Tomlinson and De Carlo (2003) collected high frequency water quality data on 

three Hawaiian streams, illustrating patterns that could not be captured by sampling 

monthly, weekly, or even daily.  Some of their findings included multiple discharge 

peaks within 24-hour periods, 60-fold increases in turbidity within 15 minutes, and 30- 

fold increases of turbidity within 5 minutes.  Their data collection also demonstrated 

cyclical fluctuations in temperature, pH, and dissolved oxygen and helped reveal tidal 

influence. 

Kirchner et al. (2004) assert the importance of collecting high frequency data over 

extended time periods.  The authors make the analogy that drawing conclusions based on 

infrequent measurements is like looking through a blurry telescope where only the most 

prominent features of the watershed are visible.  On the other hand, if intensive sampling 

is conducted only during certain events, it is like viewing the watershed through a pinhole 

where fine details are visible, but the entire picture is obscured. 

Pressl et al. (2004) describe benefits of automated water quality measurements 

including the ability for quick action in response to negative water quality changes, a 

reduction in overall monitoring costs, and higher resolution data for better identification 

of trends.  The authors conducted a study employing automated monitoring using one 

station with real time, in situ equipment.  Challenges encountered in this study included 
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the need for in situ calibration, river stratification, low water levels, and faulty probes, but 

overall, the data collection was deemed successful. 

High frequency data collection is enhanced by the real time acquisition of water 

quality data.  Vivoni and Richards (2005) describe the benefit of closely linking data 

collected in real time with a water quality model that can be run continuously.  The 

results of model simulations can be used to better direct sampling, and the field data can 

be used to more frequently refine model parameters and results. 

Additionally, when water quality criteria are exceeded, real time data allows 

immediate action to be taken.  Christensen et al. (2002) explain that if violations of 

bacteriological criteria are identified in real time, managers can act to insure that human 

and animal contact with the water is prevented.  Real time control of drinking water 

sources and the prevention of eutrophication can also be facilitated by a more rapid 

response.  Fleischmann et al. (2002) installed a real time sensor network to serve as a 

warning system for drinking source water protection, which is accessed and remotely 

controlled through a web interface.   

In situ sensors have been installed in sewer systems in order to consistently 

quantify pollutant loads discharged from combined sewer networks.  Parameters 

commonly measured are water level, ammonia, nitrate, pH, conductivity, carbonaceous 

oxygen demand, total organic carbon, and dissolved and suspended solids.  In the system 

described by Gruber et al. (2005), observations were made every three minutes with more 

frequent (one-minute) observations made when the channel water level exceeded a 

threshold corresponding to overflow conditions.  Most of the monitoring methods 
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employed in this study were based on UV-VIS-absorption, which requires frequent 

calibration.  Vanrolleghem et al. (2005) describe a system of sensors in receiving water 

bodies that used real time, in situ data to trigger flow controls within the wastewater 

treatment system if pollutant levels were exceeded.  

In situ sensors are commonly used for physical parameters such as water level and 

temperature and some water quality constituents such as pH, conductivity, dissolved 

oxygen, and turbidity.  More recent technological advances allow the measurement of 

some chemical species such as the ions of metals and nutrients.  As mentioned, UV-VIS 

spectroscopy has been used to measure constituents such as nitrate, nitrite, chlorophyll, 

and chemical oxygen demand (Fleischmann et al., 2002; Pressl et al., 2004; Gruber et al., 

2005), and Winkler et al. (2004) describe the use of ion-sensitive sensors for the real time 

measurement of instream nitrate concentration.  Additionally, sampling equipment that 

automatically collects grab samples and conducts analyses that are traditionally done in 

the laboratory are increasing in availability and popularity (WET Labs, 2006; YSI, 2006; 

Jordan et al., 2007).  Despite these developments, there are no current methods for the in 

situ, real time analysis of total phosphorus and total suspended solids for long term 

monitoring, so available data will remain spatially and temporally limited. 

 
2.6 Surrogate measures 

A surrogate is a measure that can be used to estimate another property such as 

contaminant concentration.  A common surrogate measure in water bodies is turbidity, an 

optical measure of the scattering of light passing through a sample of water due to 

colloidal and suspended matter.  Gray and Glysson (2002) report that in the United 
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States, turbidity is the most common measurement of water clarity and the most common 

surrogate of suspended sediment concentrations.  Considerable research is available 

demonstrating the potential for accurately relating suspended sediment concentrations to 

turbidity measurements, some of which is subsequently described.  In addition to using 

turbidity as a surrogate for suspended sediment, several studies have used in situ 

measurements as surrogates for other constituents that require laboratory analysis.  As 

phosphorus is often closely associated with suspended solids, turbidity has been used as a 

surrogate for total phosphorus.  Additional examples of in situ surrogates include 

turbidity as a surrogate for total nitrogen and fecal coliform and specific conductance as a 

surrogate for dissolved solids, alkalinity, sulfate, and chloride, as well as other ions. 

Gray and Glysson (2002) asserted that suspended sediment loading and transport 

is more accurately calculated using the high frequency, continuous measurement of 

turbidity as a surrogate than by using sporadic measurements of concentration.  

Additional benefits of using surrogates to estimate suspended sediment loading include a 

decrease in the count of necessary grab samples, the potential for identifying sediment 

variability at a higher temporal resolution, and the ability to trigger automatic pumping 

samplers for the collection of samples for laboratory analysis (Gray and Glysson, 2002). 

Through analyses of laboratory and field data, Gippel (1989, 1995) concludes that 

an acceptable correlation between field turbidity and suspended solids can generally be 

obtained, although the author warns that there can be confounding factors that influence 

the relationship.  Specifically, turbidity is affected by the scattering properties of 

suspended particles, which are a function of particle size and composition.  As a result, 
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the relationship between turbidity and suspended sediment will change with the source of 

sediment.  Source material often varies from site to site and can fluctuate seasonally and 

even between storm events.  Additionally, Gippel (1989) recommends the use of infrared 

turbidity sensors to eliminate the effects of water color on turbidity measurements. 

Brasington and Richards (2000) used turbidity to monitor suspended sediment 

loads in five small catchments within the Likhu Khola basin in Nepal.  The researchers 

examined both field and laboratory procedures to calibrate turbidity readings to 

suspended sediment concentrations, and then estimated sediment flux using both 

methods.  The correlation using the field calibration was strong (r2 = 0.75).  One 

complication encountered by this study was the exceedence of the turbidity monitor’s 

upper limit due to burial of the instrument by heavy sediment loads.   

Christensen et al. (2000) used real time monitoring of turbidity, specific 

conductance, and discharge in conjunction with stepwise regression analyses to develop 

high frequency records of alkalinity, dissolved solids, total suspended solids, chloride, 

sulfate, atrazine, triazine, and fecal coliform for two sites on the Little Arkansas River in 

Kansas.  A strong correlation between turbidity and total suspended solids was found at 

both sites throughout the four years of the study (correlation coefficients of 0.88-0.91).  It 

was determined that two years of data consisting of 35 to 55 samples provided a 

sufficient sample size to correlate a constituent to its surrogate variables at these sites. 

Uhrich and Bragg (2003) used turbidity as a surrogate for suspended sediment on 

three streams in northwestern Oregon.  The relationship between turbidity and suspended 

sediment was strong at all sites (correlation coefficients of 0.90-0.93), and the 
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correlations were better than those observed between discharge and suspended sediment 

(correlation coefficients of 0.56-0.68). 

Tomlinson and De Carlo (2003) used regression to relate continuous, high 

frequency turbidity with total suspended solids samples collected by automated samplers 

in three Hawaiian streams.  Pooling all samples resulted in a correlation coefficient of 

0.84, and separating the data by site improved the relationships (r2 = 0.90-0.93).  Several 

outlying points were attributed to non-uniformity between the sample collected and the 

water measured by the turbidity sensor.  This could be because the automated sampler 

requires one full minute to collect a sample while the turbidity sensor measures 

instantaneously, or it could be due to distance between the sampler and sensor along the 

stream. 

Grayson et al. (1996) conducted a study including data from multiple sites on the 

Latrobe River in Australia to determine if turbidity could reliably be used as a surrogate 

measurement for total phosphorus (TP) and total suspended sediments (TSS).  The 

correlations developed were linear, and the correlation coefficients were 0.86 and 0.90 

for TSS and TP, respectively.  As the correlations were not site specific, error was 

introduced by spatial variability.  The authors recognized that the preferred approach is to 

develop a relationship for each site that could be checked and adjusted after the initial 

period of sampling.  The study concludes that turbidity is a more accurate estimator of 

TSS and TP than discharge alone and recommends that it be included in routine 

monitoring. 



15 
!

Kronvang et al. (1997) collected measurements of turbidity with TSS and 

particulate phosphorus over two years at two stations on Gelbaek Stream in Denmark.  A 

strong correlation (r2 = 0.70) between turbidity and TSS was observed during storm 

events, and the authors suggest that the correlation could be improved by developing 

seasonal relationships.  Additionally, particulate phosphorus measured by this study was 

strongly correlated with suspended sediment concentrations (r2 = 0.87) independent of 

seasonal variations.  

Christensen (2001) used in situ measurements to estimate alkalinity, dissolved 

solids, TSS, suspended sediment, sodium, chloride, fluoride, sulfate, nitrate, total organic 

nitrogen, TP, and fecal coliform at one site on Rattlesnake Creek in Kansas.  For both 

suspended sediment concentration and TSS, turbidity was the only explanatory variable, 

and the correlation coefficients were 0.825 and 0.926 respectively.  For TP, the important 

surrogates were turbidity, specific conductance, and water temperature, and the 

correlation coefficient of the regression was 0.96.  The authors suggest that water 

temperature provides a representation of season, and that the TP and turbidity 

relationship might vary between seasons.  Specific conductance may be representative of 

changes in discharge, indicating that TP can depend on discharge as well as turbidity.   

In a related study, Christensen et al. (2002) measured conductivity, pH, water 

temperature, dissolved oxygen, turbidity, and total chlorophyll using in situ monitoring 

equipment at four sites on three different Kansas rivers.  Statistical regression was used to 

correlate the surrogates, or explanatory variables, to manually collected and measured 

concentrations of total nitrogen, TP, and fecal coliform.  The authors point out that the 
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relationships developed for each constituent are site specific and may include different 

explanatory variables, although turbidity was common to all relationships.  For TP, 

turbidity was the only important surrogate for three of the four stations while the 

regression at one station also included specific conductance and water temperature.  

Again, water temperature is probably important as it relates to seasonal variations in TP 

and specific conductance is likely related to discharge.  Correlation coefficients for TP 

ranged from 0.51 to 0.96.  Additionally, the authors tried to explain the relationship 

between an explanatory variable and the estimated constituent based on the hydrological 

characteristics and land use above each station.   

Ryberg (2006) measured conductivity, water temperature, pH, turbidity, and 

dissolved oxygen in situ at one station on the Red River of the North in North Dakota.  

Manual water quality samples were collected and analyzed for alkalinity, dissolved 

solids, sulfate, chloride, nitrate/nitrite, total nitrogen, TP, and suspended sediment over 

three years.  The study found that for suspended sediment, the important explanatory 

variables were turbidity and discharge, and the resulting correlation coefficient was 

0.873.  For TP, turbidity, discharge, and day of the year were the significant surrogates 

returning a correlation coefficient of 0.771.  Ryberg suggests that the relationships are not 

consistent throughout seasons and that distinct relationships should be developed on a 

seasonal basis. 

Stubblefield et al. (2007) examined turbidity as a surrogate for TSS, TP, and 

soluble reactive phosphorus at four locations on two low turbidity streams (0-50 NTU) in 

the Lake Tahoe Basin.  Correlations were strong for the TSS and turbidity relationships 



17 
!
(correlation coefficients of 0.95 and 0.91), and not as strong, but still significant between 

TP and turbidity (correlation coefficients of 0.62 and 0.83).  There was no significant 

correlation between turbidity and soluble reactive phosphorus.  Due to the overestimation 

of TSS loads by discharge rating curves examined in this study, the authors determined 

that turbidity is a more accurate surrogate of TSS than is discharge.  This is consistent 

with the findings of Phillips et al. (1999), who report that suspended sediment is subject 

to limitations in supply that are not reflected in the variability of discharge.  Other studies 

have shown discharge to be an unsatisfactory surrogate for TP, as it can be affected by 

processes that are independent of hydrology such as biological uptake and incorporation 

into bottom sediments (Robertson and Roerish, 1999; Quilbe et al., 2006; Johnes, 2007; 

Jordan et al., 2007). 

 
2.7 Sampling frequency 

As mentioned, constraints on resources and logistics limit the frequency of grab 

sampling, and resulting concentration measurements are typically made at a frequency 

too low to accurately characterize constituent behavior that can change at time scales of 

less than one day (Kronvang and Bruhn, 1996; Horowitz, 2003; Tomlinson and De Carlo, 

2003; Coynel et al., 2004).  A number of studies have examined the effect of sampling 

frequency on load calculations, which are subsequently described.  Richards and 

Holloway (1987), Kronvang and Bruhn (1996), Phillips et al. (1999), and Coynel et al. 

(2004) affirm that results from all methods of load estimation improve as sampling 

frequency increases.  Several authors recommend continuous, high frequency monitoring 

in order to overcome uncertainty in load calculation resulting from infrequent sampling 
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and biased estimation methods (Ferguson, 1987; de Vries and Klavers, 1994; Johnes, 

2007). 

Richards and Holloway (1987) combined data to simulate a year of frequently 

collected data of TSS, TP, soluble reactive phosphorus, nitrate, and specific conductance.  

These data were subsampled to achieve sampling frequencies of four times per day, daily, 

weekly, semi-weekly, and monthly from which loads were calculated using two different 

equations for load estimation.  Stratified sampling with additional samples collected 

during high flow periods was also examined. The correlation of the estimated load with 

the theoretical true load improved dramatically (r2 > 0.9) with a sampling frequency of at 

least daily or with heavily stratified sampling regimes.  The authors conclude that load 

estimates improve with increased sampling frequency, and that calculation method, 

watershed characteristics, and constituent behavior, as well as interactions between these 

factors, have a considerable effect on the results.   

de Vries and Klavers (1994) found that sampling frequency was more important 

than load calculation equation for ammonium, chloride, and suspended matter for two 

different Dutch rivers using simulated time series with frequencies of 6, 12, 24, 52, 100, 

and 200 samples per year.  For the smaller of the two rivers, none of the load estimation 

equations were deemed acceptable, even at the highest sampling frequencies (errors of 

±25 percent).  The authors recommend the investigation of alternative monitoring 

strategies such as automated samplers or in situ surrogate measures to achieve better load 

estimates.   
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Kronvang and Bruhn (1996) identify that there is no clear best load estimation 

method and that guidance is needed on sampling frequency and strategy.  The authors 

used records of frequently (4 hour to one week intervals) sampled concentrations of 

nitrogen and phosphorus, which were subsampled to develop series of varying sampling 

frequencies.  Reference loads were determined by linearly interpolating the concentration 

and discharge data to one minute to one day intervals.  The subsampled time series were 

compared to the reference loads, and were also used to evaluate 13 load estimation 

equations.  The authors conclude that the best method overall is a simple interpolation 

equation; however the most appropriate method depends on sampling frequency, 

constituent, and catchment.  Although error was reduced as sampling frequency 

increased, the authors recommend fortnightly sampling in order to provide the greatest 

reduction in error while not being cost and resource prohibitive.   

Phillips et al. (1999) examined the accuracy and precision of 22 load estimation 

procedures by applying each to weekly, fortnightly, and monthly datasets that were 

created by decimating 15-min records of discharge and suspended sediment as estimated 

from turbidity.  The authors found significant variance between the results of each 

sampling method: for one site, the median value for weekly sampling varied between 

21.3 and 105 percent of the reference load.  The results indicate that for all sampling 

methods, precision consistently improves with increased sampling frequency.  

Additionally, no distinct estimation method was found to provide the most accurate 

results for all sampling locations and sampling frequencies.  The authors conclude that 
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sampling at intervals of one week or greater does not provide sufficient accuracy or 

precision, regardless of the equation used to estimate the load. 

Robertson and Roerish (1999) used annual loads calculated by interpolation as the 

reference to which they compared annual loads of TSS and TP estimated by discharge 

rating curves at sampling frequencies ranging from semi-monthly to sampling every six 

weeks.  Increased sampling during periods of high flow was also examined.  Using three 

different measures of error, the smallest bias was approximately 30 percent, and the range 

of the errors was greater than the typical interannual variability in the loads.  This study 

concluded that for loads calculated by regression with discharge, a stratified sampling 

approach adds to bias rather than providing a better representation of constituent behavior 

at high flows.  The goal of this research was to find a method for load calculation for 

streams where samples cannot be collected frequently, but a discharge rating curve 

method was deemed unacceptable.  This study also found that load estimates depend not 

only on sampling frequency but on the length of the study and the hydrological 

conditions during the period of study.   

Webb et al. (2000) developed seasonal synthetic concentration records using 

discharge rating curves for various constituents and watersheds.  These records were then 

subsampled according to the frequency at which grab samples were actually collected, 

and loads were calculated by nine estimation equations.  The equation which 

demonstrated the least amount of bias for each watershed and constituent was selected on 

a case by case basis to calculate resulting loads from which larger scale loads and yields 

were determined.  
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Coynel et al. (2004) simulated a range of sampling frequencies (four hour to one 

month intervals) of TSS and discharge based on a reference record of frequently (two 

hour to daily intervals) sampled TSS data.  The authors found that the range of flux 

estimates decreased significantly as sampling frequency increased and reported that the 

error in monthly sampling can exceed the interannual variability in loads for extreme 

hydrological conditions. Using a threshold of ±20 percent, the authors determined that 

sampling at frequencies less than semi-weekly was unacceptable and that the required 

sampling frequencies were 7 hours for one watershed and 3 days for another.   

Johnes (2007) used paired measurements of discharge and phosphorus at daily 

intervals in a variety of catchments as reference time series from which weekly and 

monthly records were derived.  Eight equations for load estimation were applied to each 

subset of data, and the results were compared to the reference loads calculated from the 

reference series.  For weekly sampling, the best method could only provide a “fuzzy 

estimate of TP load,” and monthly sampling returned results biased by 50-450 percent, 

depending on the watershed and the calculation method. The author advocates further 

analysis using data at higher frequencies than daily.   

 
2.8 Synopsis and objectives 

  Because TP is a constituent of concern on the Little Bear River, this study is 

examining high frequency surrogate measures as methods to estimate TP concentrations 

and loads with more certainty.  High frequency monitoring with in situ sensors captures 

important periods in constituent transport and reveals short term variability as well as 

diurnal and seasonal trends typically omitted by intermittent sampling (Grayson et al., 
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1997; Kronvang et al., 1997; Christensen et al., 2002; Tomlinson and De Carlo, 2003; 

Kirchner et al., 2004).  Additional advantages to high frequency monitoring include 

overall reductions in costs, personnel, and logistics, increased spatial scales, and the 

potential to automate data collection (Grayson et al., 1997; Vivoni and Camilli, 2003; 

Kirchner et al., 2004; Pressl et al., 2004; Vivoni and Richards, 2005).  As technology to 

measure TP in situ for extended time periods has not been developed, in situ turbidity can 

be used as a surrogate measure for TP. 

 Phosphorus is often associated with suspended solids, which are commonly 

estimated using in situ turbidity (Gray and Glysson, 2002).  Several studies have also 

developed relationships between TP and turbidity (Grayson et al., 1996; Kronvang et al., 

1997; Christensen, 2001; Christensen et al., 2002; Ryberg, 2006; Stubblefield et al., 

2007).  Although these studies have been conducted in watersheds of differing 

characteristics exhibiting a range of turbidity values, the relationships are site specific 

and are limited to a handful of streams.  Furthermore, the authors advocate the 

development and implementation of surrogate relationships as a component of regular 

water quality monitoring programs.  

High frequency sampling also eliminates that need to employ a complex equation 

to estimate loads.  A number of studies have examined the various averaging methods 

used to calculate loads from infrequently sampled data (Richards and Holloway, 1987; de 

Vries and Klavers, 1994; Kronvang and Bruhn, 1996; Phillips et al., 1999; Robertson and 

Roerish, 1999; Webb et al., 2000; Coynel et al., 2004; Johnes, 2007).  Many authors 

affirm the frequency of sampling is more important than the estimation method, and 
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recommend increased sampling frequency to avoid uncertainty introduced by calculation 

method, watershed characteristics, water quality constituent, and interaction between 

these factors (Ferguson, 1987; de Vries and Klavers, 1994; Kronvang and Bruhn, 1996; 

Phillips et al., 1999; Coynel et al., 2004; Johnes, 2007). Load estimates for larger rivers 

were generally found to be less biased than those of smaller rivers, for which increased 

sampling frequency is more important (Ferguson, 1987; Richards and Holloway, 1987; 

de Vries and Klavers, 1994; Kronvang and Bruhn, 1996; Phillips et al., 1999; Coynel, 

2004; Johnes, 2007).  The effect of timing of sample collection on load estimates was not 

explicitly addressed by any of these studies. 

 This study uses data from two sites in the Little Bear River to examine whether 

high frequency measures can be used to better understand constituent transport, what 

high frequency concentrations can reveal about the timing, sources, and pathways of TP 

and TSS transport, and whether the frequency and the timing of sample collection have 

an impact on load calculations.  Based on the literature reviewed and described, the 

specific objectives of this research are: 

1. Examine turbidity as a potential surrogate for TP and TSS. 

2. Develop site specific equations to describe the relationship between turbidity 

and TP and TSS. 

3. Examine other potential explanatory variables for significance in describing 

TP and TSS. 

4. Generate high frequency estimates of TP and TSS concentrations using the 

relationships and high frequency turbidity data. 
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5. Using the high frequency TP and TSS concentrations along with associated 

discharge, calculate reference loads on an annual basis. 

6. Subsample the high frequency concentrations and discharges to represent 

decreasing sampling frequencies and the timing of sample collection, calculate 

annual loads, and compare to the reference loads. 
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CHAPTER 3 

SURROGATE MEASURES FOR PROVIDING HIGH FREQUENCY  

ESTIMATES OF TOTAL SUSPENDED SOLIDS AND  

TOTAL PHOSPHORUS CONCENTRATIONS1 

 
Abstract 

Surrogate measures, like turbidity, which can be measured with high frequency in 

situ, have potential for generating high frequency estimates of total suspended solids 

(TSS) and total phosphorus (TP) concentrations.  In the Little Bear River, a semi-arid, 

snowmelt driven, and irrigation regulated watershed in northern Utah, USA, high 

frequency, in situ water quality measurements (turbidity, water level, and water 

temperature) were recorded in conjunction with periodic chemistry sampling conducted 

over a range of hydrologic conditions.  Site-specific relationships were developed using 

turbidity as a surrogate for TP and TSS at two monitoring locations.  Methods are 

presented for employing censored data in the regressions and for investigating 

explanatory variables in addition to the surrogate variables such as discharge conditions 

and storm events.  Turbidity was a significant explanatory variable for TP and TSS at 

both the upper and lower watershed sites, which are characteristically different and have 

varying sources of discharge as well as phosphorus.  At both sites, the relationships 

between TP and turbidity varied between spring runoff and baseflow conditions while the 

relationships between TSS and turbidity were consistent across hydrological conditions.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Coauthored by Amber Spackman Jones, David K. Stevens, Jeffrey S. Horsburgh, and 
Nancy O. Mesner. 
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The methods developed in this paper enable the calculation of continuous, high frequency 

time series of TP and TSS concentrations that have previously been unavailable using 

traditional monitoring approaches.  These methods have broad application for situations 

that require accurate characterization of the fluxes of these constituents over a range of 

hydrologic conditions.   

 
3.1 Introduction 

Traditional water quality monitoring programs rely on the analysis of grab 

samples that are typically collected at a frequency too low to fully characterize water 

quality constituent concentrations and to calculate loads of those constituents over time 

(Etchells et al., 2005; Scholefield et al., 2005).  Additionally, concentrations of solids and 

nutrients are often greater during storm events due to non-point source runoff (Nolan et 

al., 1995; Kronvang et al., 1997, Correll et al., 1999; Croke and Jakeman, 2001; Houser 

et al., 2006; Jordan et al., 2007), periods that routine sampling often misses.  High 

frequency monitoring with in situ sensors offers a number of enhancements to traditional 

water quality monitoring methods.  High frequency monitoring can capture time periods 

and characterize seasonal trends that may be omitted or overlooked by traditional 

periodic grab sampling (Grayson et al., 1997; Christensen, 2001; Christensen et al., 2002; 

Tomlinson and De Carlo, 2003; Kirchner et al., 2004; Jordan et al., 2007).  Monitoring 

equipment that measures continuously can reduce the logistics and personnel required for 

grab sampling to be representative (Grayson et al., 1997), can eliminate errors in 

transcription and delays in obtaining data (Vivoni and Camilli, 2003), and can be closely 

linked with a water quality model to better refine parameters and results (Vivoni and 
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Richards, 2005).  Variables commonly measured in situ include physical parameters such 

as water level, pH, specific conductance, dissolved oxygen, and turbidity.  Additionally, 

UV-VIS spectroscopy and ion-specific sensors can be used in situ to quantify constituents 

such as nitrate, nitrite, chlorophyll, and chemical oxygen demand.  

Despite developments in sensor technology, there are still important water quality 

constituents that are either impossible or impractical to measure in situ or in real time for 

extended periods (e.g., total phosphorus samples are most often digested and analyzed in 

the lab).  High frequency measurements have the powerful potential to be used as 

surrogates to estimate other properties such as pollutant concentrations.  A common 

surrogate used for this purpose is turbidity, which is an optical measure of the scattering 

of light passing through a sample of water due to colloidal and suspended matter.  This 

paper examines turbidity as a surrogate measure for total phosphorus (TP) and total 

suspended solids (TSS) at two locations on the Little Bear River, Utah, USA.  We use the 

linear relationships between turbidity and TSS and TP to obtain equations for TP and 

TSS concentrations as functions of turbidity, enabling the generation of high frequency, 

long term estimates of their concentration.   

Phosphorus is an essential nutrient in aquatic systems.  However, over-enrichment 

of water bodies with phosphorus can cause increased primary productivity leading to 

eutrophication in lakes and reservoirs and excessive periphyton growth in rivers (Hem, 

1985; US EPA, 1986; Mueller and Helsel, 1996).  Concerns with eutrophic water bodies 

include aesthetics for natural waters and drinking water sources and reduced dissolved 

oxygen levels, which adversely affect fish and other forms of aquatic life.  Phosphorus is 
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found naturally in some soils, but significant amounts are contributed to aquatic systems 

by anthropogenic sources such as fertilized fields, animal waste, wastewater treatment 

plants, and industries (Hem, 1985; Mueller and Helsel, 1996).  Depending on the source, 

phosphorus is frequently associated with suspended sediments, which may also be a 

water quality concern (Kronvang et al., 1997; Heimlich, 2003).  Not only do suspended 

sediments transport contaminants such as nutrients, pesticides, and metals, high levels of 

suspended sediment can be detrimental to aquatic life, decrease the recreational quality of 

a water body, complicate water treatment, and interfere with the operation of hydraulic 

structures (US EPA, 1986). 

Considerable research is available demonstrating the potential for accurately 

relating suspended sediment concentrations to turbidity measurements (Gippel 1989, 

1995; Kronvang et al., 1997; Brasington and Richards, 2000; Uhrich and Bragg, 2003; 

Christensen et al., 2000; Christensen, 2001; Lewis, 2002; Tomlinson and De Carlo, 

2003).  There is also evidence that turbidity can be used as a surrogate for phosphorus.  

Grayson et al. (1996), Christensen (2001), Christensen et al. (2002), Ryberg (2006), and 

Stubblefield et al. (2007) found statistically significant correlations between turbidity and 

TP in watersheds of differing characteristics exhibiting a range of turbidity values.  In 

these studies, turbidity was the principle explanatory variable for TP and TSS, although 

the relationships at a few locations included discharge and a temporal variable (e.g., day 

of the year) in the final surrogate relationship.  As the nature of turbidity depends greatly 

on the source of sediment (Gippel, 1995), the surrogate relationships are generally site 
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specific (Grayson et al., 1996; Christensen et al., 2002; Tomlinson and De Carlo, 2003), 

which limits the applicability of previous studies to other locations. 

Surrogate relationships for estimating water quality constituent concentrations 

such as those presented in this paper allow for the generation of concentration estimates 

at a much higher temporal resolution than most traditional water quality monitoring 

programs have achieved.  Although many aspects of water quality monitoring have 

improved, sampling frequency remains a limiting factor in the estimation of water quality 

constituent loads (de Vries and Klavers, 1994; Johnes, 2007).  High frequency estimates 

of concentration can overcome some problems encountered when constituent loads are 

calculated (e.g., complicated load estimation equations and situations where discharge is 

measured more frequently than concentration).  Water quality models also suffer from the 

paucity of concentration observations and would be improved by high frequency 

estimates of concentration (Neilson and Chapra, 2003; Kirchner et al., 2004; Johnes, 

2007).  As a result, compliance with water quality standards and regulations that are 

based on concentration and load estimates can be determined with more certainty.   

Surrogate measures can be an important component of water quality monitoring 

programs and environmental observatory design as a relatively inexpensive method for 

producing high frequency time series of water quality constituent concentrations over 

extended time periods.  The Little Bear River is one of 11 environmental observatory test 

bed projects developing techniques and technologies for environmental observatory 

design ranging from innovative application of environmental sensors to publishing 

observations data in common formats and making it widely accessible (Montgomery et 
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al., 2007).  Specific objectives of the Little Bear River Test Bed include the estimation of 

water quality fluxes from surrogate data, relation of the fluxes to watershed attributes and 

management practices, examination of high frequency hydrologic and hydrochemical 

responses, and development of cyberinfrastructure supporting these analyses. 

In this paper, we describe the development of surrogate relationships for TP and 

TSS at two locations in the Little Bear River.  Section 2 describes the Little Bear River 

watershed where this study was conducted.  Section 3 details the data collection and 

statistical procedures used to obtain the surrogate relationships.  Section 4 includes the 

final surrogate models and a comparison of the two sites. 

 
3.2 Study area 

The Little Bear River watershed is located in northern Utah, USA and is a major 

tributary of the Bear River, which flows into the Great Salt Lake.  The Little Bear 

watershed encompasses an area of approximately 740 km2, the headwaters are in the Bear 

River Mountain Range, and elevations range from 1,340 m to 2,700 m.  The river has two 

principal subdrainages, the East Fork and the South Fork.  The South Fork and its major 

tributary, Davenport Creek, flow northward through forest and range land before the 

confluence with the East Fork.  The East Fork originates in higher elevation, forested 

land, and flows northwest until it is contained by Porcupine Reservoir, which is used to 

store water for summer agricultural irrigation.  A few miles downstream of Porcupine 

dam, the East Fork is diverted for irrigation purposes, and for several months of the year, 

portions of the natural channel are dry.  The confluence of the two forks is near the town 

of Avon, after which the river flows northward through the towns of Paradise and Hyrum.  
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Most of the land adjacent to the river is agricultural including crops and livestock 

grazing.  Near the town of Hyrum, the river is contained in Hyrum Reservoir, which is 

also operated to supply summer irrigation water.  Below Hyrum dam, the river flows 

northwest through lower gradient agricultural land.  The river passes through the towns of 

Wellsville and Mendon before draining into an arm of Cutler Reservoir and ultimately to 

the Bear River.  The watershed and local towns are shown in Fig. 3-1. 

Over the past 15 years (1993-2007), the average annual precipitation in the lower 

watershed was 432 mm, while the average annual precipitation in the upper watershed 

was 4,465 mm, demonstrating significant variability in annual precipitation with 

elevation.  Most of the precipitation occurs as snowfall, and the flow regime in the 

watershed is driven by snowmelt with hydrograph peaks occurring in late spring.  The 

magnitude, timing, and duration of the peak are dictated by the winter snowpack and 

spring weather conditions.  In the upper watershed, where an active United States 

Geological Survey (USGS) gage is located, the average annual discharge is 2.5 cms 

(based on 15 years of data), and within a year, the discharge ranges from 0.50 to 12 cms 

on average. 

 
3.3 Methods 

3.3.1 Instrumentation and monitoring 

Seven sites have been instrumented within the Little Bear River for the collection 

of high frequency water quality monitoring data.  General characteristics and data 

collected at these locations are described in detail by Horsburgh et al. (2008).  Two of 

these sites were chosen for analysis in this paper and are indicated in Fig. 3-1.  The first 
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site is the Little Bear River at Paradise, located in the upper watershed below the 

confluence of the East and South Forks and above Hyrum Reservoir.  The second site is 

the Little Bear River at Mendon, located in the lower watershed near the river’s terminus 

at Cutler Reservoir.  The two sites were selected for their distinct characteristics.  Above 

Paradise, there are agricultural diversions and the river passes through some agricultural 

land, but relative to Mendon, the river is less regulated, higher gradient, and less 

impacted.  In contrast, above Mendon, the river is controlled by Hyrum reservoir releases 

and influenced by agricultural return flows, a wastewater treatment plant, and an 

increasingly agriculturally developed landscape.  Approximately 4 percent of the land 

above Paradise is agricultural whereas between Paradise and Mendon, the portion of land 

used for agriculture is about 50 percent.  Additionally, at Mendon, the river is lower 

gradient and groundwater levels in this portion of the watershed are higher than at 

Paradise.  Another difference between the two sites is characteristics of the soils and 

resulting suspended sediments.  Mendon is located in a lacustrine valley with finer soils 

that remain in suspension while the suspended matter at Paradise is coarser and more 

likely to settle (Soil Survey Staff, 2008). 

The water quality monitoring equipment installed at both sites includes a Forest 

Technology Systems DTS-12 SDI-12 Turbidity Sensor.  The turbidity sensor uses an 

infrared light beam and optical backscatter with a detector at 90 degrees to the emitted 

light to determine turbidity (Forest Technology Systems Ltd., 2007), and the sensor also 

measures water temperature.  Turbidity and water temperature measurements were 

recorded at half hour intervals.  At Paradise, there is an active USGS gage (USGS 
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10105900 Little Bear River at Paradise, UT) adjacent to the real time water quality 

sensors from which records of 15-minute instantaneous and daily average discharge were 

obtained.  At Mendon, water level is measured continuously by a KWK Technologies 

SPXD-600 SDI-12 Pressure Transducer.  Water level readings were coupled with 

periodic manual discharge measurements to obtain a stage-discharge relationship.  The 

stage-discharge relationship was then used to generate continuous, half hourly estimates 

of discharge at Mendon.   

Water quality samples were collected at the two sites either by grab sampling 

conducted by a field crew or by automated samplers.  The samplers operate by pumping 

water from the river through tubing into sample bottles held within the main chamber, 

allowing for the collection of multiple samples during an event such as a storm or a 

period of snowmelt.  In general, samplers were deployed when precipitation was 

expected.  Each sample was split for TSS and TP analysis with a portion of the sample 

filtered using a 0.45 µm filter for the analysis of dissolved total phosphorus (DTP). 

Laboratory analyses were performed externally by labs affiliated with Utah State 

University and with the State of Utah Division of Water Quality.  This study uses historic 

data, so labs and their associated methods changed over the time period examined.  The 

results from the labs should produce consistent results, and a small number of samples 

sent to multiple labs confirmed this assumption.  For TSS analyses, some samples were 

analyzed under EPA method 340.2, Total Suspended Solids, Mass Balance while the 

remaining samples were analyzed according to EPA method 160.2, Residue Nonfilterable 

Total Suspended Solids.  For TP and DTP analyses, some samples were analyzed 
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according to EPA method 200.8, Determination of Trace Elements in Water and Waste 

by Inductively Coupled Mass Spectroscopy, and the remaining samples were analyzed as 

directed by EPA method 365.2, Orthophosphate Ascorbic Acid Manual Single Reagent 

preceded by an acid digestion of the sample.  

 
3.3.2 Database procedures 

All of the mentioned datasets were stored and managed using a database at the 

Utah Water Research Laboratory (http://littlebearriver.usu.edu/).  The turbidity, water 

temperature, and water level data were transmitted and accessed via a spread spectrum 

radio network, the USGS discharge data were obtained from the USGS National Water 

Information System (NWIS) and incorporated into the database, and the lab results were 

entered into the database by hand.  The time period under examination extended from the 

installation of in situ sensors in August 2005 through April 2008 resulting in datasets of 

150-180 samples of TP, DTP, and TSS collected at each site.  For each observation of 

TP, DTP, and TSS, associated continuous measurements were extracted from the 

database and matched in time with the lab results.  When the timing of a sample did not 

exactly correspond to the timing of continuous measurements, the values of turbidity, 

water temperature, and discharge that bracketed the manual sample were interpolated 

accordingly. 

 
3.3.3 Statistical methods 

Our objective was to develop correlations to estimate TP and TSS as functions of 

turbidity using simple regression, following the general form given in Equation 3.1. 
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!" # $% & $'(" & )"***+ # ,-.-/ 0     (3.1) 

where yi represents the ith observation of the response variable, $% and $'are parameters 

estimated by regression, xi is the ith observation of the explanatory variable, ei represents 

the error for the ith observation, and n is the number of samples.  Using techniques 

subsequently described, regression parameters unique to each response variable were 

estimated based on the observations datasets.  The errors, or residuals, should be 

independent, demonstrate constant variance, have a mean of zero, and be normally 

distributed.  Examining the residuals for these qualities helps in assessing the 

appropriateness of the developed equation. 

 In order to assess the potential of turbidity as a surrogate for TP and TSS, we 

initially examined plots of turbidity against the response variables.  This allowed for the 

visual identification and subsequent removal of several extreme data points (no more than 

3.5 percent of a single dataset).  The outliers consisted of high turbidity measurements 

corresponding to low TP or TSS measurements, as well as low turbidity measurements 

corresponding to high TP or TSS measurements, relative to the majority of data points.  It 

is assumed that these outliers are a consequence of inconsistency between grab samples 

and the water that passes in the range of the turbidity sensor.  Although efforts were made 

to collect samples near the turbidity sensors, there could still be discrepancy between the 

collected sample and the water measured by the turbidity sensor.  This is consistent with 

the findings of Christensen et al. (2000) and Tomlinson and De Carlo (2003). 

While turbidity was thought to be a significant explanatory variable, other 

variables (discharge, water temperature, day of year, and hour of day) were considered 
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for inclusion in the regression equations and were tested for significance in describing 

some of the variability in the response variables.  In addition to these parameters, 

categorical variables associated with the hydrological conditions at the time of sample 

collection were examined. 

Categorical variables are qualitative descriptors of the data that can be used in 

regression models.  For each data point, a categorical variable is assigned a value of 1 or 

0 to designate whether or not the observation falls into a particular category (e.g., 

seasons, laboratory methods).  By adding categories as explanatory variables to the 

regression equation, this technique permits the inclusion of multiple categories while 

developing a single model that describes the entire dataset.  The alternative of splitting 

the data into subsets according to categories and developing multiple models is less 

statistically powerful as resolution is lost with a reduced number of observations 

(Berthouex and Brown, 2002).  Equation 3.2 shows the form of a regression equation 

with the inclusion of a categorical variable. 

!" # $% & $'(" & 123% & 3'("4 & )"***+ # ,-.- /0    (3.2) 

where Z represents a categorical variable (Z = 0 if data are in the first category, Z = 1 if 

data are in the second category), 3% and 3' are parameters estimated by regression, and yi, 

$%, $', xi, ei and n are as defined previously.   

In this study, we investigated two categorical variables associated with 

hydrological conditions: one to represent spring runoff versus baseflow and one to 

represent the occurrence of a storm.  Because the flow regime of the Little Bear is 

primarily snowmelt driven, we hypothesized that the behavior of TP and TSS might be 



37 
!
significantly different during spring runoff versus baseflow conditions.  Seasonal 

differences in surrogate relationships have been suggested by Grayson et al. (1996), 

Christensen et al. (2002), and Ryberg (2006).  As a result, the first categorical variable 

that was examined was whether the sample was collected during baseflow conditions or 

during spring runoff.  Observations identified to occur during the period of spring runoff 

were assigned a value of 1 for this variable while the remaining observations, collected 

during baseflow conditions, were assigned a value of 0.  Since runoff resulting from 

precipitation events also has the potential to carry significant amounts of sediment and 

associated phosphorus into the river, the other categorical variable that was hypothesized 

to be significant was whether or not a sample was collected during a storm event.  

Observations identified as occurring during a storm event were assigned a value of 1 for 

this variable, and all other observations, collected during non-storm periods, were 

assigned a value of 0.   

Initially, storms were defined as any time appreciable precipitation occurred 

based on a record of daily precipitation in the lower watershed.  However, even though 

efforts were made to sample during precipitation events, rainfall often occurred without a 

significant discharge response, especially during the summer months when antecedent 

soil conditions were not conducive to runoff generation.  As a result, alternative methods 

were employed to determine whether a sample was collected during a storm event.  One 

technique examined was baseflow separation.  Baseflow separation refers to the 

partitioning of a hydrograph into baseflow (i.e., discharge due to groundwater sources) 

and runoff (i.e., discharge that is a response to an external event such as a storm or 
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snowmelt).  There are many methods for baseflow separation ranging from simple to 

complex (McCuen, 1998; Chapman, 1999).  We needed to identify runoff that was a 

response to precipitation and not a result of spring snowmelt, so the local-minimum 

method was selected because it delineates more of the discharge as baseflow relative to 

other baseflow separation techniques, making it more appropriate for separating storms 

from other sources of discharge.  This method was used as part of a publicly available 

program known as the Web-based Hydrograph Analysis Tool (WHAT) to perform 

baseflow separation (Lim et al., 2005).   

Storm identification is somewhat subjective, and because we wanted to explore 

simple methods, additional techniques were developed to designate samples collected 

during a storm.  One method was based on a visual examination of the discharge and 

precipitation records.  Another method was based on a reference distribution for averages 

of sets of consecutive observations, which can reveal the significance of change in a 

serially correlated data series (Berthouex and Brown, 2002).   Table 3.1 details the 

methods used for storm identification.  Storms were identified separately for each site, 

and both high frequency and daily average discharge data were employed to assess 

whether higher resolution provides a superior method of identification or if lower 

resolution better represents the period of the river’s response to a precipitation event.  

Each sample was assigned a value (0 or 1) for storm category for each method, and the 

resulting datasets were tested for significance as an explanatory variable in the regression 

equation for each response variable.  
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A significant portion of the TP concentrations were reported as non-detects (30 

percent at Paradise and 13 percent at Mendon), so we needed a regression method with 

the capability to include censored data.  Historically, censored data have either been 

omitted from analyses or substituted with some value at or below the detection limit.  

These methods introduce bias and variability into descriptive statistics that are calculated 

from datasets with censored values (Helsel, 2005).  In order to preserve the censored 

values in the dataset without using substitution, regression with maximum likelihood 

estimation (MLE) was performed on the matched datasets within the framework of the 

statistical program R (http://www.r-project.org/) using techniques developed and 

described by Helsel and Lee (2006).  MLE assumes a distribution for the response 

variable and estimates a mean and standard deviation for that dataset that are most likely 

to result in the values above the detection limit and the proportion of values below the 

detection limit (Helsel, 2005).  The mean and standard deviation are then used to produce 

values for the regression parameters (e.g., $%, $') that account for censored data.  The 

TSS datasets do not suffer from a large amount of censored data, so associated models 

were developed using standard least squares regression within the R framework.   

In order to determine which variables were important predictors, regression was 

performed multiple times for each response variable by adding and removing potential 

explanatory variables.  A number of techniques were employed to address the 

appropriateness of each resulting model and to compare one model to another.  For each 

explanatory variable in the regression, a p-value was calculated, indicating the probability 

that the value of the regression parameter is not different from 0, so a p-value greater than 
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a specified threshold (commonly 0.05) indicates that the relationship between the 

explanatory variable and response variable is not statistically significant.  If a p-value was 

less than 0.05, the associated variable was considered significant.  For MLE regression, 

overall log-likelihood tests assist in determining whether the model is better than no 

model at all, and a parallel test, the partial log-likelihood, was used to discern whether the 

addition of a variable improved the regression as compared to the equation without that 

variable (Helsel, 2005).  The partial log-likelihood was then compared to a chi-square 

distribution with the associated degrees of freedom to determine the p-value, the 

probability that the model with the additional variable was different than without it.  

Again, 0.05 was used as the criteria for significance.  Finally, residuals were examined to 

assess the error in each model.  The root mean square error (RMSE) as given by Equation 

3.3 was used to compare models as a lower RMSE indicates a reduction in overall error.   

 5678 # 9:;<
=      (3.3) 

where RMSE is the root mean square error, r represents each residual value, and ! 

corresponds to the degrees of freedom.  A variable was included in the final equation if it 

provided a significant reduction in the RMSE, had a p-value less than 0.05, and was 

significant according to the partial log-likelihood test.  Plots of the residuals were also 

examined to verify randomness and independence from other factors as well as to assess 

whether the residuals exhibited constant variance and approached a normal distribution.   

 Transformations are often used on datasets to achieve constant variance, a linear 

relationship between independent and dependent variables, or a normal distribution in the 

residuals (Berthouex and Brown, 2002).  A log transformation of the dependent variable 
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alone as well as a log transformation of both the dependent and independent variables 

were examined.  Transformations did not provide any significant improvement in the 

models for any of the response variables, so untransformed datasets were used in all 

cases. 

 
3.4 Results and discussion 

3.4.1 Simple correlations 

Plots of the relationships between TP and TSS and potential explanatory variables 

are shown as matrices of correlation plots in Fig. 3.2, 3.3, 3.4, and 3.5.  At Paradise, there 

is a strong correlation between turbidity and both TP and TSS (correlation coefficients of 

0.95).  Both response variables exhibit some correlation with discharge (TP correlation 

coefficient of 0.80 and TSS correlation coefficient of 0.70) and water temperature (TP 

correlation coefficient of 0.48 and TSS correlation coefficient of 0.30).  Additionally, 

there appears to be some relationship with the day of the year on which the sample was 

collected for both TP (correlation coefficient of 0.57) and TSS (correlation coefficient of 

0.46).   

At Mendon, TP appears to have a significant correlation with turbidity 

(correlation coefficient of 0.70), though not as strong as that at Paradise nor as strong as 

the correlation between turbidity and TSS at Mendon (correlation coefficient of 0.84).  

Like Paradise, TP and TSS at Mendon have some correlation with day of year (TP 

correlation coefficient of 0.67 and TSS correlation coefficient of 0.56).  In addition, TSS 

at Mendon is correlated with discharge (correlation coefficient of 0.41).   
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3.4.2 Paradise: Total phosphorus 

The final model for TP at Paradise is given by Equation 3.4: 

>? # @A@.@B & @A@@@CBD E >FGH & @A@IDJ E 1                      (3.4) 

where TP is total phosphorus concentration in mg/L, Turb is turbidity in NTU, and Z 

represents the categorical variable for spring runoff (Z = 1) versus baseflow (Z = 0).  The 

p-value for turbidity was less than 10-6 and for Z was 8.71*10-4, both within the 0.05 

threshold.  Excluding the residuals of the censored data, the RMSE for this model was 

0.069 mg/L TP, which is about a fourth of the MLE mean of the observed dataset, 0.26 

mg/L TP.  This value is within the range of RMSE values resulting from the turbidity and 

TP correlations reported by Christensen et al. (2002) over a similar range of turbidity 

values.   

Of all the explanatory variables examined, only turbidity and the spring runoff 

categorical variable were significant.  Including discharge or water temperature did not 

improve the equation’s ability to predict TP concentrations.  This is likely due to 

colinearity with turbidity, as shown in Fig. 3.2.  The relationships between TP and 

discharge and water temperature are very similar to the relationships between turbidity 

and discharge and water temperature. The categorical variable indicating whether 

observations were collected during a storm event was not significant regardless of which 

storm identification method was used.  This implies that the relationship between 

turbidity and TP is consistent throughout storm events, though there is a distinction 

during periods of spring runoff and periods of baseflow.  Correlation with season or 
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hydrologic regime is consistent with the results of Christensen et al. (2002) and Ryberg 

(2006).   

Fig. 3.6 contains plots of observed TP and modeled TP using Equation 3.4.  Fig. 

3.6(a) shows a time series of modeled TP along with points of observed TP for the entire 

period used to generate Equation 3.4.  However, this plot does not permit direct 

comparison between each point as does Fig. 3.6(b), which indicates corresponding 

modeled and observed results connected by vertical lines.  Fig. 3.6(b) shows that the 

differences between the regression results and the observations are generally greater at 

higher values of TP, but there are exceptions to this pattern. 

Fig. 3.7 and 3.8 show plots of the residuals of this model.  Fig. 3.9 is a matrix of 

correlation plots showing relationships between the residuals and measured 

physical/chemical properties.  These plots and the associated correlation coefficients do 

not demonstrate a strong relationship between the residuals and any measured properties.  

Additionally, the residuals did not show any correlation with temporal variables such as 

day of the year or hour of the day.  In the interest of space, residual plots for the other 

equations in this paper are found in Appendix A.   

Although the other criteria for residuals are met (independence, constant variance, 

and mean of zero), the probability plot indicates that the residuals of this model are not 

normally distributed.  Non-normal residuals suggest that the assumed parametric 

distribution (in this case, a normal distribution) in the regression is incorrect. However, 

normality in the residuals was not achieved through logarithmic transformations of TP or 

turbidity, and the un-transformed model returned the smallest RMSE.  The incorporation 
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of any additional explanatory variables did not provide a significant increase in the 

normality of the residuals.  Because of the non-normality of the residuals, techniques that 

assume normality (e.g., confidence limits on the slope) cannot be conducted on this data.  

In order to verify that using MLE parametric regression was valid, Kendall’s tau and the 

associated Akritas-Thiel-Sen (ATS) line were calculated.  These methods can be used to 

non-parametrically determine the slope between an independent and dependent variable 

(Helsel and Lee, 2006).  For TP at Paradise, the ATS slope corroborated the coefficient 

between turbidity and TP determined by MLE regression.     

 
3.4.3 Paradise: Total suspended solids 

The final model for TSS at Paradise is given by Equation 3.5: 

>77 # IAKD & ,AI, E >FGH    (3.5) 

where TSS is total suspended solids in mg/L and Turb is turbidity in NTU.  The p-value 

for turbidity was less than 10-6, within the criteria for significance.  Turbidity was the 

only explanatory variable that was a significant descriptor of TSS, suggesting that 

turbidity alone is sufficient to predict TSS across hydrologic conditions at this site.  As 

with TP, although there appears to be a correlation between TSS and discharge and water 

temperature, the correlation between turbidity and these variables is similar (see Fig. 3.3), 

so the relationship with turbidity provides an adequate estimate.   

The resulting RMSE was 117 mg/L TSS, which is about half of the dataset mean 

of 240 mg/L TSS.  Plots of the modeled and the observed datasets are found in Fig. 3.6.  

Plots of the residuals, a histogram of the residuals, the residual probability plot, and a 

matrix of correlation plots of the residuals and physical/chemical variables are found in 
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Appendix A (Fig. A.1, A.2, and A.3).  Fig. 3.6(d) shows results similar to those of TP at 

Paradise with greater errors at higher values of TSS.  Like the TP model at Paradise, the 

distribution of the residuals deviates from the normal at the tails, but the ATS slope 

verified the regression parameters.  Significant correlation is not observed between the 

residuals and any additional variables. 

 
3.4.4 Mendon: Total phosphorus 

The final model for TP at Mendon is given in Equation 3.6: 

>? # L@A@IM, & @A@@KI E >FGH & @A@BMB E 1 L @A@@M@M E >FGH E 1 &*
***************************@A@DI. E N L @A@@DC, E N E >FGH     (3.6) 

 
where TP is total phosphorus concentration in mg/L, Turb is turbidity in NTU, Z 

represents the categorical variable for spring runoff (Z = 1) versus baseflow (Z = 0), and 

Y is a categorical variable for Turb <10 (Y = 1) versus Turb>10 (Y = 0).  The p-values for 

turbidity, Z, and the interaction between turbidity and Z were all less than 10-6 and all 

within the criteria for significance. This equation differs from that for the Paradise site in 

that the interaction between turbidity and Z was found to improve the model significantly, 

indicating that the combined effect of the two variables is different from the sum of their 

individual contributions.  In this case, TP is decreased during spring runoff periods by a 

factor of 0.00404*turbidity.  This reduction, however, resulted in some negative 

predicted concentrations, so an additional categorical variable, Y, was included to 

distinguish the relationship at low versus high levels of turbidity.  The p-value for Y was 

1.38*10-3, and the p-value for the interaction between Y and turbidity was 5.24*10-3, both 

within the 0.05 threshold.  The inclusion of this variable suggests that the relationship 

between turbidity and TP is different at low values of turbidity, corresponding to low TP 
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measurements.  Distinctions in surrogate relationships at low turbidity levels have been 

suggested by Grayson et al. (1996) and Stubblefield et al. (2007). 

As with TP at Paradise, turbidity and the spring runoff/baseflow categorical 

variable were the only explanatory variables that were found to be significant.  In Fig. 

3.4, TP at Mendon shows little correlation with water temperature or discharge, although 

there is correspondence with day of the year, which is corroborated by the inclusion of Z 

in the final equation.  Similar to Paradise, none of the storm event variables resulted in 

improvement in the model, demonstrating that at this site, the relationship between 

turbidity and TP varies between the spring runoff and baseflow periods, but is consistent 

through storm events.   

Without using the residuals of the censored values, the RMSE for this model was 

0.027 mg/L TP, which is about a third of the MLE mean of the observed values (0.074 

mg/L TP).  This value is less than the range of RMSE values determined for turbidity and 

TP relationships by Christensen et al. (2002) for a similar range of turbidity values.  Fig. 

3.10 includes plots of the modeled results with the observations, which, unlike the results 

at Paradise show a wide range of errors at the low and high values of TP.  Residual plots 

are found in Appendix A (Fig. A.4, A.5, and A.6).  The residuals appear to be 

independent from other variables, and the probability plot indicates that the distribution 

of the residuals closely approximates the normal distribution. 

 
3.4.5 Mendon:  Total suspended solids 

The final model for TSS at Mendon is given by Equation 3.7: 

***>77 # @AIM, & ,AM, E >FGH**    (3.7) 
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where TSS is total suspended solids in mg/L and Turb is turbidity in NTU.  The p-value 

for turbidity was less than 10-6, which surpasses the criteria for significance.  In parallel 

with the TSS model at Paradise, the Mendon model was not significantly improved by 

the inclusion of any explanatory variables other than turbidity.  Although there was some 

correlation between TSS and discharge at this site, it is reflected in the relationship 

between turbidity and discharge, so no new information is gained by including discharge 

in the equation.  Additionally, neither of the categorical variables was significant, 

implying that the relationship between TSS and turbidity is consistent through 

hydrological conditions at this site.   

The RMSE of the model was 10.8 mg/L TSS, which is about a third of the mean 

of observed values (30.4 mg/L TSS).  Plots of the modeled and observed data are 

presented in Fig. 3.10.  Like both TP and TSS at Paradise, Fig. 3.10(d) shows a greater 

difference in modeled and observed values at higher values of TSS, though there are 

exceptions to this generalization.  Plots of the residuals are found in Appendix A (Fig. 

A.7, A.8, and A.9).  The residuals demonstrate randomness in relation to explored 

independent variables, and the probability plot shows that the residuals closely 

approximate the normal distribution although there is some deviation at the tails.  

 
3.4.6 Site Comparison 

Paradise and Mendon were selected as sampling sites for analyses in this paper 

due to their differing characteristics, which are reflected somewhat in the variations in the 

surrogate relationships.  The final equations are summarized in Table 3.2.  The RMSEs 

for both TP and TSS are greater at Paradise than Mendon, a result of the larger range of 
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observed values at that site.  The simple correlations indicate stronger correlations at 

Paradise than Mendon between turbidity and both TP and TSS, and the final TP equation 

at Paradise appears to better track trends through a greater range than does the Mendon 

model.  Also, the Mendon TP regression is more complex as it includes the interaction 

between turbidity and the spring runoff/baseflow categorical variable and requires an 

additional variable to account for different behavior between turbidity and TP at low 

concentrations.   

We hypothesize that these differences are a result of the varying composition of 

TP between the two sites.  Of the TP measurements with corresponding DTP 

measurements, at Mendon, an overall average of 60 percent of the TP was dissolved, 

leaving 40 percent as particulate.  The average composition of TP measured at Paradise 

was 40 percent dissolved and 60 percent particulate, the opposite of the ratio at Mendon.  

These ratios are comparable to those reported by Johnes (2007) for sites with higher 

baseflow and more groundwater influence (65-75 percent dissolved) versus those with 

lower baseflow (40-50 percent dissolved).  Since dissolved phosphorus is not associated 

with any particles, the correlation between TP and turbidity at Mendon would not be as 

strong as the correlation at Paradise where the TP is primarily comprised of particulate 

phosphorus.  This is corroborated by Stubblefield et al. (2007) who found no correlation 

between soluble reactive phosphorus and turbidity.   

It is inferred that the variations in the speciation of phosphorus at the two sites is a 

reflection of the different sources of phosphorus and differing stream dynamics.  Factors 

that may increase the amount of DTP at Mendon include more concentrated agricultural 
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activity than above Paradise, impact from a wastewater treatment plant, and manure or 

fertilizer that flows into canals and into the river before being incorporated by plants or 

adsorbed to the soil.  In contrast, it is hypothesized that the phosphorus entering the river 

above Paradise is primarily related to soil erosion and particulate matter.  Additionally, 

between the two sites is Hyrum Reservoir.  Phosphorus (primarily particulate) enters the 

reservoir from the upper watershed and accumulates in the lake bed.  Over time, the 

phosphorus can dissolve and then be carried out of the reservoir in its dissolved form 

through reservoir releases (Utah DEQ, 2000b).  Reservoir releases might also carry algae 

that contain phosphorus.  Other than releases from Hyrum Reservoir, the sources of 

discharge at Mendon include agricultural return flows, which have the potential to 

contribute dissolved phosphorus from crop runoff, and there is some groundwater 

influence at Mendon as well.  It is possible that dissolved phosphorus enters the river via 

the groundwater (Burkart et al., 2004), however we have no specific evidence that this is 

occurring in the Little Bear River.   

Patterns of dissolved phosphorus were further examined in order to address the 

possibility of relating the portion of TP that was dissolved to model results.  No trends 

were found with respect to season, and there was no relationship with TP model residuals 

at either site.  During runoff periods at both sites, the fraction of dissolved phosphorus 

was slightly higher than during baseflow periods, but more data is necessary to confirm 

that these differences are significant.  

At Mendon, the TP surrogate relationship might be improved by the inclusion of 

variables in addition to turbidity, discharge, and water temperature.  Part way into this 
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study, in situ sensors were installed to measure pH, specific conductance, and dissolved 

oxygen.  Because specific conductance and pH are related to dissolved species, they may 

help to refine the regression where the majority of TP is dissolved.  A method for using 

surrogate measures to estimate dissolved phosphorus would be valuable because, 

although TP is the form of phosphorus that is generally regulated, dissolved phosphorus 

is the form that is actually available for biological uptake. 

Despite the differing characteristics of the two sites, aspects of the surrogate 

relationships were consistent between Paradise and Mendon. At both sites, the TSS 

surrogate relationships were functions only of turbidity with similar coefficients (1.31 at 

Paradise and 1.41 at Mendon) although the suspended matter differs between the two 

locations.  At Paradise, the soils and resulting suspended solids are coarser and more 

likely to settle than the finer material that is more likely to stay suspended found at 

Mendon.  For both sites, turbidity was the only explanatory variable for TSS while the TP 

relationship included a variable to account for baseflow versus spring runoff.  This is 

similar to the differences between the suspended sediment and TP surrogate relationships 

determined by Ryberg (2006).  Another similarity is the lack of significance of storm 

event in all of the regressions.  Although storms are often important periods for TSS and 

TP transport and despite significant investment into the identification of storm periods, in 

this watershed, the relationships between turbidity and TP and TSS do not vary during 

storms. 

 
 

 



51 
!
3.5  Conclusions 

Physical (turbidity, discharge, water temperature) and temporal (day of year, hour 

of day) variables were matched with TP and TSS observations at two sites in the Little 

Bear River to assess the potential for using continuously measured turbidity as a 

surrogate for estimating TP and TSS.  Regression equations were developed for TP and 

TSS as functions of turbidity at both sites.  In developing the surrogate relationships, 

censored data were employed using MLE regression, and categorical variables 

representing hydrological conditions were investigated.  We found that the relationships 

between turbidity and the response variables were not significantly improved by the use 

of a categorical variable indicating storm events versus no storm.  At both locations, 

however, there was a distinction in the relationship between turbidity and TP during 

periods of spring runoff versus periods of baseflow.  For TSS, the relationship with 

turbidity was consistent across hydrological conditions at both locations.  At the lower 

watershed site, the TP model included a distinction between low and high levels of 

turbidity.  The overall error in the models, as estimated by the RMSE, was between one 

fourth and one half of the mean of the observed data, and visual examinations of the 

observed and estimated concentrations indicate that the equations generally track 

observed trends. 

The differences in the surrogate relationships at the upper and lower watershed 

sites allude to differences in the sources of phosphorus as well as sources of discharge.  

Turbidity was the only physical variable that was a significant surrogate, although, since 

the inception of this study, additional variables (pH, specific conductance, dissolved 
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oxygen) have been measured that may improve the relationships.  Furthermore, as new 

data are collected, the regression equations may be modified, or calibrated, to improve 

the fit with observations. 

Coupled with high frequency measurements of explanatory variables, surrogate 

relationships can be used to calculate high frequency estimates of concentration for 

extended time periods.  Loads derived from high frequency, continuous concentration 

records provide a number of advantages to loads calculated from traditionally sampled 

concentration.  One benefit is that increased loading during events such as storms or 

spring runoff, which are often missed by routine sampling programs, are considered 

without skewing the estimate high as collecting samples disproportionately during storm 

events can do.  Also, there is no need to use complicated load estimation equations that 

allow for long periods between concentration measurements or discharge measured more 

frequently than concentration.   

Surrogate measures to estimate water quality constituents have widespread 

implications for water quality monitoring programs and the design of environmental 

observatories.  Until viable in situ sensors for TP and TSS are developed, surrogate 

measures allow the characterization of fluxes at varying time scales (e.g., seasonally or in 

response to an individual event) and also provide a better means for comparison between 

monitoring sites.  High frequency concentration estimates and resulting loads will allow 

the determination of compliance based on a concentration or load threshold to be made 

with more certainty.  For water quality models, improved quantification of constituent 

concentrations will facilitate the estimation of parameters representing pollutant loading 
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drivers such as land use, management practices, and hydrologic characteristics and can 

also permit the testing of underlying model assumptions.  For large scale environmental 

observatories, the use of surrogate measures will be necessary as a logistically and 

economically feasible means to characterize the variability in constituent fluxes on high 

temporal and spatial resolutions over extended time periods and at many locations.   
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Table 3.1 
Methods used for storm identification

* Five percent was selected as a threshold to provide a reasonable amount of change from baseflow to represent a true 
response to a precipitation event. 

 
 
Table 3.2 
Final surrogate equations
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Fig. 3.1.  Little Bear River watershed. 
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Fig. 3.2.  Paradise TP correlation matrix.  Stars indicate the significance of the Pearson’s 
correlation coefficient (Three stars is significant to the 0.001 level, two stars is significant 
to the 0.01 level, and one star is significant to the 0.05 level.) 

 

!
Fig. 3.3.  Paradise TSS correlation matrix.  See Fig. 3.2 for interpretation of stars. 
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Fig. 3.4.  Mendon TP correlation matrix.  See Fig. 3.2 for interpretation of stars. 

 

!
Fig. 3.5.  Mendon TSS correlation matrix.  See Fig. 3.2 for interpretation of stars. 
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Fig. 3.6. Plot of observed and modeled TP (a and b) and TSS (c and d) at Paradise. For 
censored data, points are plotted at the detection limit. As many of the observation in the 
full time series (a and c) are obscured, panels b and d only contain modeled results with a 
corresponding observation. Observed and modeled values are connected by vertical lines. 
The x-axis is an index that represents the order in which observations were made. 
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Fig. 3.7.  Residuals of the Paradise TP model. 

 

 
Fig. 3.8.  Statistical plots for the TP model at Paradise.  Observed versus modeled TP (a), 
a histogram (b) and a probability plot (c) of residuals. 

 

 
Fig. 3.9.  Residuals of the Paradise TP model compared with measured variables.  See 
Fig. 3.2 for interpretation of stars. 
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Fig. 3.10. Plot of observed and modeled TP (a and b) and TSS (c and d) at Mendon.  For 
censored data, points are plotted at the detection limit. As many of the observation in the 
full time series (a and c) are obscured, panels b and d only contain modeled results with a 
corresponding observation. Observed and modeled values are connected by vertical lines. 
The x-axis is an index that represents the order in which observations were made. 
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CHAPTER 4 

IMPACT OF SAMPLING FREQUENCY ON ANNUAL LOAD ESTIMATION OF 

TOTAL PHOSPHORUS AND TOTAL SUSPENDED SOLIDS2 

 
Abstract 

Compliance with water quality standards for sediment and nutrients is typically 

based on the collection and analysis of grab samples.  These data generally are not 

collected with enough frequency or regularity to provide representation of the constituent 

loading, yet regulatory decisions and the investment of significant resources for water 

quality improvement are routinely based upon these numbers.  In the Little Bear River 

watershed in northern Utah, USA, continuous, high frequency measurements of turbidity 

were used to generate high frequency estimates of instream total phosphorus (TP) and 

total suspended solids (TSS) concentrations through surrogate relationships.  The 

concentration estimates were paired with discharge data to estimate TP and TSS loading 

(reference loads).  The high frequency records were then subsampled to create random 

subsets representing hourly, daily, weekly, and monthly sampling frequencies.  

Additionally, subsets were created to examine the effects of randomizing the time of day 

and the day of week of sampling.  The annual load estimates resulting from the decimated 

subsets were compared to the reference loads.  Results show that high frequency 

surrogate measures generally improved estimates of TP and TSS loads in comparison to 

grab sampling.  Overall, higher frequency sampling resulted in load estimates that better 

approximated the reference loads, although the amount of bias varied between sites.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Coauthored by Amber Spackman Jones, Jeffrey S. Horsburgh, Nancy O. Mesner, 
Ronald J. Ryel, and David K. Stevens. 



62 
!
Additionally, the hour of the day and the day of the week on which sampling is 

conducted can have an impact on load estimation, depending on sampling location and 

hydrologic conditions. 

 
4.1 Introduction 

Water quality constituent loadings are generally determined through the collection 

and analysis of concentration grab samples along with instantaneous estimates of 

discharge.  For most water quality monitoring programs, the frequency of grab sampling 

requires a balance between the necessary resolution to estimate accurate loads and the 

resource costs of increased sampling (Kronvang and Bruhn, 1996; Horowitz, 2003; 

Coynel et al., 2004).  Furthermore, the frequency required for grab sampling to be 

representative of constituent behavior may be logistically infeasible due to the number of 

samples that will have to be collected and analyzed (Coynel et al., 2004).  Water quality 

models require concentration observations for calibration and also suffer from sparse 

concentration datasets (Neilson and Chapra, 2003).  Compliance with water quality 

regulations is often determined by grab sampled concentrations and resulting loads, even 

when important periods for constituent transport may be omitted (Jordan et al., 2007).  

Although many aspects of water quality monitoring and modeling have improved, 

sampling frequency is and is likely to remain a limiting factor in load estimation and 

water quality modeling (de Vries and Klavers, 1994; Kirchner et al., 2004; Johnes, 2007). 

Various equations have been proposed for the calculation of loads given discrete 

measurements of concentration and discharge.  de Vries and Klavers (1994), Kronvang 

and Bruhn (1996), Phillips et al. (1999), Etchells et al. (2005), and Johnes (2007) 
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compared results from various estimation equations and provide direction on equation 

selection.  These studies, among others, conclude that the most appropriate equation for 

load calculation depends on watershed characteristics, hydrological behavior, the nature 

of the constituent, the frequency of sample collection, and interactions between these 

factors (Richards and Holloway, 1987; Kronvang and Bruhn, 1996; Robertson and 

Roerish, 1999; Webb et al., 2000; Johnes, 2007).  Additionally, discharge is commonly 

measured at higher frequency than concentration, adding complexity to load calculations 

because concentration cannot be discretely paired with discharge (de Vries and Klavers, 

1994; Robertson and Roerish, 1999; Kirchner et al., 2004).  

No single equation for load estimation has been found to provide acceptably 

unbiased and precise results across a range of conditions (Kronvang and Bruhn, 1996; 

Phillips et al., 1999); furthermore, uncertainty can be introduced by virtue of the equation 

selected (Johnes, 2007).  However, Richards and Holloway (1987), Kronvang and Bruhn 

(1996), Phillips et al. (1999), and Coynel et al. (2004) affirm that results from all 

equations improve as sampling frequency increases.   

Several authors recommend high frequency, continuous monitoring in order to 

overcome uncertainty in load calculation resulting from infrequent sampling and biased 

estimation methods (Ferguson, 1987; de Vries and Klavers, 1994; Quilbe et al., 2006; 

Johnes, 2007).  In addition to eliminating the need to select one of many complex load 

estimation equations, high frequency monitoring provides a number of advantages over 

traditional grab sampling.  High frequency monitoring captures periods that are often 

overlooked by routine sampling and overcomes the logistic challenges required for 
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representative sampling (Grayson et al., 1997; Christensen, 2001; Christensen et al., 

2002; Tomlinson and De Carlo, 2003; Kirchner et al., 2004; Jordan et al., 2007).   

This paper examines the effect of sampling frequency on load calculations using 

random subsets of high frequency concentration estimates to simulate periodic grab 

sampling at different frequencies.  For two sites in the Little Bear River in northern Utah, 

USA, regression relationships were developed using turbidity as an explanatory variable 

for total phosphorus (TP) and total suspended solids (TSS) that consider censored data as 

well as hydrological conditions (Spackman Jones et al., 2008).  These relationships were 

used to construct continuous, high frequency (half hour interval) time series of estimated 

TP and TSS concentrations at two sites.  In this paper, we describe the results of 

decimating the synthetic concentration records at varying intervals to create time series 

subsets that simulate periodic grab sampling.  Each resulting subset was used to calculate 

associated annual loads for two years of data.  These loads are compared to the reference 

loads calculated from the original synthetic concentration record.  Section 2 describes the 

Little Bear River watershed and the sites at which loads were calculated.  Section 3 

describes the methods that were used in deriving the concentration time series, 

decimating the datasets, calculating loads, and evaluating the results.  Section 4 relates 

the results of the load calculations for each scenario, compares them to the reference  

loads, and compares results between the two sites. 
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4.2 Study area 

The Little Bear River watershed is located in northern Utah, USA and is a major 

tributary of the Bear River, which flows into the Great Salt Lake.  The Little Bear 

watershed encompasses an area of approximately 740 km2, with headwaters in the Bear 

River Mountain Range, and elevations in the watershed that range from 1,340 m to 2,700 

m.  The river has two principal subdrainages, the East Fork and the South Fork.  The 

South Fork and its major tributary, Davenport Creek, flow northward through forest and 

range land before the confluence with the East Fork.  The East Fork originates in higher 

elevation, forested land, and flows northwest until it is contained by Porcupine Reservoir, 

which is used to store water for summer agricultural irrigation.  A few miles downstream 

of Porcupine dam, the East Fork is diverted for irrigation purposes, and for several 

months of the year, portions of the natural channel are dry.  The confluence of the two 

forks is near the town of Avon, after which the river flows northward through the towns 

of Paradise and Hyrum.  Most of the land adjacent to the river is agricultural including 

crops and livestock grazing.  At Hyrum, the river is contained in Hyrum Reservoir, which 

is also operated to supply summer irrigation water.  Below Hyrum dam, the river flows 

northwest through lower gradient agricultural land, passing through the towns of 

Wellsville and Mendon before draining into an arm of Cutler Reservoir.  The watershed 

and local towns are shown in Fig. 4.1. 

Over the past 15 years (1993-2007), the average annual precipitation in the lower 

watershed was 432 mm, while the average annual precipitation in the upper watershed 

was 4,465 mm, demonstrating significant variability in annual precipitation with 
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elevation.  Most of the precipitation occurs as snowfall, and the flow regime in the 

watershed is driven by snowmelt with hydrograph peaks occurring in late spring.  The 

magnitude, timing, and duration of the peak are dictated by the winter snowpack and 

spring weather conditions.   

This paper examines loads calculated at two locations on the Little Bear River, 

which are indicated on Fig. 4.1.  The first site is the Little Bear River at Paradise, which 

is located in the upper watershed below the confluence of the East and South Forks and 

above Hyrum Reservoir.  The second site is the Little Bear River at Mendon, which is 

located in the lower watershed near the river’s terminus at Cutler Reservoir.  The two 

sites were selected for their distinct characteristics.  Above Paradise, there are agricultural 

diversions, and the river passes through some agricultural land, but relative to Mendon, 

the river is less regulated, higher gradient, and less impacted by human activity.  In 

contrast, above Mendon, the river is controlled by Hyrum reservoir releases and 

influenced by agricultural return flows, a wastewater treatment lagoon, and an 

increasingly agriculturally developed landscape.  Approximately 4 percent of the land 

above Paradise is agricultural whereas between Paradise and Mendon, agriculture 

accounts for about 50 percent of total land use.  Additionally, at Mendon, the river is 

lower gradient and groundwater levels in this portion of the watershed are higher than at 

Paradise.  The characteristics of the soils and resulting suspended sediments also differ 

between the two sites.  Mendon is located in a lacustrine valley with finer soils that 

remain in suspension whereas the suspended matter at Paradise is coarser and more likely 

to settle (Soil Survey Staff, 2008).  Differences between the two sites are also evident in 
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discharge records.  Mendon generally has higher baseflow discharge with attenuated 

peaks while the discharge at Paradise is flashier.  For the two years that comprise the 

period of this study, the mean discharge at Paradise was 2.5 cms with a maximum of 29 

cms, and at Mendon the average discharge was 3.5 cms with a maximum of 11 cms.  

  
4.3 Methods 

A number of studies have artificially decimated reference datasets in order to 

compare the effect of sampling frequency on load estimates.  The reference datasets for 

TP and TSS in these studies are generally based on infrequently sampled data (Johnes, 

2007), although some authors generated higher frequency data through interpolation 

(Kronvang and Bruhn, 1996) or discharge rating curves (Webb et al., 2000), which have 

been shown to be an unsatisfactory estimator of TP and TSS (Phillips et al., 1999; 

Robertson and Roerish, 1999; Quilbe et al., 2006; Johnes, 2007; Jordan et al., 2007).  

Stubblefield et al. (2007) found turbidity to be a more accurate surrogate for TSS than 

discharge.  In this papter, the reference datasets are high frequency estimates of TP and 

TSS concentrations calculated from turbidity, which are subsampled to examine the 

effects of sampling frequency on load estimates.  The timing of sampling, which few 

studies have addressed, is also investigated. 

 
4.3.1 Discharge and concentration time series 

For both sites, high frequency discharge records were matched in time with 

concentration estimates to calculate loads.  At Paradise, an active United States 

Geological Survey gage (USGS 10105900 Little Bear River at Paradise, UT) measures 
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instantaneous discharge at 15-minute increments.  There were a number of time periods 

with gaps in the data that were filled by interpolation (if the period was less than 48 

hours) or by substituting the daily average discharge (as obtained from the USGS record) 

for all values on that day.  As the concentration time series consist of values every 30 

minutes, only the discharge observations on the hour and the half hour were used to 

calculate loads.  The time series of discharge at Paradise is shown in Fig. 4.2(a). 

    At Mendon, water level is measured every half hour by a KWK Technologies 

SPXD-600 SDI-12 Pressure Transducer.  The water level measurements were paired with 

manually measured discharges in order to develop a stage-discharge relationship, which 

was then used to calculate a half hourly time series of discharge estimates.  There were a 

few periods of missing data at this site as well, though none of them exceeded 48 hours, 

and values were interpolated accordingly.  The time series of discharge at Mendon is 

shown in Fig. 4.3(a). 

Concentrations of TP and TSS were estimated using site specific relationships 

with turbidity.  Intermittently sampled, laboratory analyzed concentrations of TP and TSS 

were matched with corresponding turbidity values.  The turbidity was measured every 

half hour at each site using a Forest Technology Systems DTS-12 SDI-12 Turbidity 

Sensor.  The statistical program R (http://www.r-project.org/) was used to perform 

regression analysis on these data, returning functions that use turbidity to estimate each 

response variable (TP and TSS) at each site.  As a significant portion of the TP data were 

reported as non-detects, maximum likelihood regression, which accounts for censored 

data, was used to generate the TP relationships (Helsel and Lee, 2006).  The final 
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regression equations are presented in Table 4.1, and more details can be found in 

Spackman Jones et al. (2008).  A small number of gaps in the turbidity data were filled 

by interpolation.  At one site, there was a period of approximately six weeks in the 

summer missing turbidity data due to probe malfunction.  Because turbidity is low and 

relatively constant during the summer, this gap was filled with data from the same dates 

of an adjacent year.  The resulting turbidity data series, shown in Fig. 4.2(b) and 4.3(b) 

were used as input in the equations in Table 4.1 to generate high frequency time series of 

concentration estimates.  Time series of the concentrations of TP and TSS at Paradise are 

shown in Fig. 4.2 and plots of the concentrations at Mendon are shown in Fig. 4.3. 

 Fig. 4.2 and 4.3 help demonstrate the differences between the two sampling 

locations.  The upper watershed site (Paradise) is more heavily influenced by snowmelt, 

as indicated by significant peaks in discharge, turbidity, and concentration in late spring.  

In contrast, at the lower watershed site (Mendon) the sources of discharge include 

reservoir releases and agricultural return flows, and the peaks in discharge, turbidity, and 

concentration are more attenuated than at Paradise.  Additionally, concentration does not 

track discharge at Mendon as closely as it does at Paradise, indicating that sources of 

phosphorus at Mendon are not as closely related to discharge.  The speciation of TP 

differs between the two sites.  At Paradise, approximately 60 percent of the total 

phosphorus is in particulate form and 40 percent is dissolved whereas at Mendon, the 

ratio is reversed.  Overall, there is more absolute variability in turbidity and resulting TP 

and TSS concentrations at Paradise than at Mendon, but there is greater short term 

variability at Mendon.  The differing scales of Fig. 4.2 and 4.3 make it difficult to 
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(4.1)

compare short term variability between the two sites, but Fig. 4.4 shows turbidity at both 

sites for a three month period in late summer and early fall.  For this time period, 

turbidity regularly fluctuates by 10-12 NTU within a day at Mendon while variations 

within a day at Paradise are on the order of 1.5-2 NTU. 

The difference between the two water years (WY) examined in this paper should 

also be noted.  WY 2006 was a relatively high flow year in the Little Bear due to a 

considerable snowpack and favorable conditions during runoff, while precipitation and 

discharge were both low in WY 2007. 

 
4.3.2 Scenario generation and load estimation 

The datasets of matched discharge and concentration at half hour intervals were 

decimated at varying frequencies to create subsets of paired discharge and concentration 

estimates from which annual loads were calculated.  Equation 4.1 was used to calculate 

the load estimates for all of the subsets.  This is a simple linear interpolation method, and 

is the most straightforward and accurate equation of the methods researched (de Vries 

and Klavers, 1994; Kronvang and Bruhn, 1996; Webb et al., 2000). 

O #PQ"R"
S

"T%
( 

where W is the total annual load (kg), Qi represents the incremental discharge (cms), Ci 

represents the incremental concentration of TP or TSS (mg/L), x is a factor to convert to 

kg per appropriate time period, and n is the total number of paired discharge and 

concentration estimates in one year (17520 for half hourly, 8760 for hourly, 365 for daily, 
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52 for weekly, and 12 for monthly).  For all sampling frequencies, annual loads were 

calculated for WY 2006 and WY 2007.  The subsets of data are described in Table 4.2. 

 
4.3.2.1 High frequency 

Using the complete sets of discharge and concentration data (half hourly), annual 

loads were calculated according to Equation 4.1.  These values are the reference loads 

used for comparison with the other sampling frequencies.  In order to test how much 

information was lost by sampling hourly instead of half hourly, a subset of discharge and 

concentration measured every hour was created, and annual loads were calculated. 

 
4.3.2.2 Daily frequency 

To represent sampling at a daily frequency, two types of subsets were generated.  

The first type was created by randomly selecting an instance of corresponding discharge 

and concentration within each day, resulting in 365 values per year.  Equation 4.1 was 

then used to calculate annual loads.  To achieve a distribution of load estimates using this 

method, random sampling and load calculation was conducted 10,000 times.  The second 

type of daily subset was created to examine the effects of sampling time on load 

estimates. To simulate consistently sampling at the same hour of the day, corresponding 

discharge and concentration were selected for each hour of the day on every day of the 

year resulting in 24 subsets (one for each hour of the day) from which annual loads were 

calculated.  
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4.3.2.3 Weekly frequency 

Two types of subsets were also generated to simulate weekly sampling.  The first type 

was created by randomly selecting a single instance of corresponding discharge and 

concentration from within each week resulting in a decimated dataset with one discharge 

and concentration for each week (52 values for each year).  This was conducted 10,000 

times, and 10,000 annual loads were subsequently calculated.  The second type of weekly 

sampling was designed to assess the impact of consistently sampling on a particular day 

of the week.  Corresponding values of discharge and concentration were randomly 

selected from one day of the week for an entire year, resulting in 52 values of paired 

concentration and discharge (one for each week of the year) from which an annual load 

was calculated.  In order to obtain a distribution of results using this method, random 

selection and load calculation was conducted 10,000 times.  This procedure was repeated 

for each day of the week, resulting in a total of 70,000 annual load calculations.  

 
4.3.2.4 Monthly frequency 

Monthly sampling was simulated by randomly selecting a discharge and 

corresponding concentration within each calendar month resulting in 12 values for each 

year, from which annual loads were calculated.  Ten thousand annual load calculations 

were realized. 
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4.4 Results 

4.4.1 Frequency comparison 

To illustrate the effects of sampling frequency, Fig. 4.5 shows series of TSS 

estimates at Paradise during spring runoff (February-May) of 2006.  Conclusions can be 

extended to TP, both sites, and for longer time periods.  The half hourly concentration 

time series is shown, along with subsets of the half hourly concentrations decimated at 

decreasing sampling frequency.  The hourly series consists of concentrations on the hour, 

while the daily, weekly, and monthly series are randomly selected concentrations from 

the half hourly record.  The hourly record shows little divergence from the half hourly 

dataset.  The daily concentration record appears to capture the general trend of TSS 

concentration, but it fails to portray the fine resolution variability.  The weekly and 

monthly series completely miss the peaks in concentration, which are the periods of 

greatest contribution to total annual load.  On the other hand, under a monthly or weekly 

sampling routine, a sample could be collected during a peak in concentration leading to a 

significant overestimation of annual load.   

Scholefield et al. (2005) recommend that the sampling frequency should match 

the scale of the processes involved.  Kirchner et al. (2004) assert that the measurement 

frequency of chemical constituents should be often enough that no new information is 

gained by sampling more frequently.  In this case, the half hourly concentrations do not 

reveal any pattern that is not observed in the hourly data, but the daily concentrations 

overlook behavior that is occurring within the day.  For other watersheds or other 

constituents, making measurements more frequently than hourly or half hourly may be 
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necessary.  For example, Tomlinson and De Carlo (2003) used in situ measures at five 

minute intervals to demonstrate the high variability in Hawaiian streams. 

Table 4.3 and Fig. 4.6 and 4.7 summarize the results of load calculations for TP 

and TSS at Paradise and Mendon for WY 2006 and WY 2007.  Fig. 4.6 and 4.7 include 

boxplots for all variables and years at Paradise and Mendon, respectively.  The categories 

in the plots correspond to simulated sampling frequency including the reference loads 

(half hourly), hourly, randomized daily, randomized weekly, and randomized monthly.   

The boxes represent the first and third quartiles (25th and 75th percentiles) and the 

whiskers correspond to the lower and upper adjacent levels of the 10,000 realizations of 

annual load calculations.  The medians of the 10,000 realizations of the randomized daily, 

weekly, and monthly subsets are also indicated.  The percentage above the whisker 

represents the fraction of 10,000 realizations that fall above the upper adjacent level.  

There were no values below the lower adjacent levels.  Table 4.3 summarizes the plots in 

Fig. 4.6 and 4.7 by reporting the bias, calculated with respect to the reference loads, of 

the lower and upper adjacent levels, the 1st and 3rd quartiles, and the median for each of 

the sampling frequencies.  

At Paradise, for both variables and years, the median loads decrease as sampling 

frequency decreases, indicating that less frequent sampling typically omits periods of 

significant constituent loading and thus underestimates annual loads.  This is consistent 

with the findings of Richards and Holloway (1987) and Phillips et al. (1999).  In contrast, 

at Mendon, the median loads for all sampling frequencies are within 5 percent of the 

reference loads.  Sampling frequency also affects the range of load estimates.  For all 
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variables, sites, and years, the variability in the load increases as sampling frequency 

decreases because a single sample is assumed to be representative of a longer time 

period.  The discharge and concentration at that point might not be characteristic of that 

time period (e.g., a sample collected during a rain on snowmelt event is assumed to 

represent an entire month), and the resulting annual load can be skewed.   

Overall, hourly sampling frequency provides a very close approximation of the 

reference load at these sites, so little resolution is lost by decreasing sampling frequency 

to hourly.  The departure of the load estimates from the reference load, as indicated by 

the bias calculations, varies between site and variable.  In general, the loads at Mendon 

are closer to the reference loads than are those at Paradise.  At a daily frequency for both 

variables and both years at Mendon, even the lower and upper adjacent levels are within 

5 percent of the reference load.  Additionally, at Mendon, the percentages of values 

falling above the upper adjacent level are all less than those observed at Paradise.  At 

Paradise, TSS concentrations were more variable than TP as the medians for weekly and 

monthly sampling are all greater than 15 percent of the reference loads and the 1st and 3rd 

quartiles are not within 10 percent of the reference load for daily sampling.  Richards and 

Holloway (1987) also found TSS to be more volatile than TP.  No prominent difference 

between the two water years is observed apart from the differing scales as TP and TSS 

transport was greater in 2006 than in 2007. 

 

 

 



76 
!
4.4.2 Probability of achieving the reference loads 

 Although 10,000 load estimates were generated by randomly subsampling at 

daily, weekly, and monthly time scales, in reality, only one annual load estimate could be 

made using real sampling data, regardless of its frequency.  Using the 10,000 load 

estimates for daily, weekly, and monthly frequencies, we examined the likelihood of a 

single load estimate falling within certain thresholds of the reference load.  In other 

words, we asked how probable it is that we will be close to the true loading if we sample 

at the given frequency.  Thresholds of 5 percent and 50 percent were selected to represent 

being very close to the reference load and being “within the ballpark” of the reference 

load, respectively.  A few studies used 20 percent as an acceptable error from the 

reference load (Richards and Holloway, 1987; Coynel et al., 2004), but we think that 

more accurate loads are achievable.  The results (reported in Table 4.4) further reveal 

differences between the two sampling sites.  At Mendon, the probability of being within 5 

percent of the reference load is 1.0 for sampling at a daily frequency, 0.50-0.75 for a 

weekly frequency, and 0.20-0.31 for monthly sampling.  At Paradise, on the other hand, 

daily sampling only has a probability of 0.19-0.46 of achieving a load estimate within 5 

percent of the reference load.  At Mendon, it is very probable (0.98-1.0) that loads will be 

within 50 percent of the reference load, regardless of sampling frequency.  In contrast, 

with monthly sampling at Paradise, the probability of being within 50 percent of the 

reference load is only 0.52-0.89. 
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4.4.3 Daily by hour loads 

 The variability in loads calculated by simulating consistently sampling at the 

same time each day is shown in Fig. 4.8.  Though the trends are distinct for each site, 

they are similar across variables and years.  At Paradise, loads calculated from 

concentrations and discharges at the end of the day (hours 16-24) are higher than those 

calculated for hours earlier in the day, although the increase is less dramatic for both TP 

and TSS in WY 2007.  At the most extreme, the loads vary by 50 percent from sampling 

at one hour as opposed to another hour of the day.  At Mendon, the highest loads are in 

the early hours of the morning (hours 2-6), but overall, there is less variability throughout 

the day than at Paradise.  

   We believe that the differences in loads throughout the day are due to diurnal 

fluctuations in turbidity (and resulting TP and TSS), as shown in Fig. 4.4.  Limited grab 

sampling at Paradise reveals a broad range of TP and TSS values within a single day.  

During the height of spring runoff, 24-hour sampling was conducted returning TP 

concentrations ranging from 0.066 and 0.954 mg/L and TSS ranging from 108 to 2450 

mg/L.   

The site specific hydrologic conditions are probable causes of the differing 

patterns between the two sites.  For example, the timing of the response to events such as 

snowmelt or storms varies between the upper and lower watersheds.  The timing of 

reservoir releases may also affect the timing of loads at Mendon.  Additional factors that 

could cause varying behavior within a day include changes in water temperature, 

evapotranspiration, and the timing of agricultural withdrawals.  Scholefied et al. (2005) 
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suggest that diurnal fluctuations in phosphorus concentrations may be a result of 

enrichment or depletion by instream biological processes or physical processes that are a 

response to temperature.  The authors point out that if the diurnal variations are a result of 

physical processes, the intensity of variation will decrease in a downstream direction, 

which is the case with Paradise and Mendon.  Jordan et al. (2007) attribute diurnal 

phosphorus fluctuations to rural point sources upstream of the sampling site, which may 

also explain some of the diurnal variability at both locations. 

 
4.4.4 Weekly by day loads 

 Fig. 4.9 is a collection of boxplots representing annual loads that simulate 

sampling once a week on the same day each week but randomizing the time of day of 

sampling.  The trends vary between sites as well as between water years.  At Paradise, in 

WY 2006, both TP and TSS loads calculated from sampling on Tuesdays and 

Wednesdays were consistently higher and exhibited greater variability than other days of 

the week.  In contrast, loads for WY 2007 at Paradise were more consistent and exhibited 

less variability for all days of the week.  At Mendon, there is no obvious pattern in loads 

or variability based on day of the week, water year, or variable.  Although no trend is 

observed, the ranges of loads are still notably different between different days of the 

week.  These results indicate the day of the week that sampling is conducted impacts the 

load estimate, but we have little rationale for the observed patterns.  One possibility is 

that the differences between days of the week are related to the days on which diversions 

are opened or closed. 
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4.4.5 Site comparison 

 These results demonstrate differences between Paradise, the upper watershed site, 

and Mendon, the lower watershed site.  As mentioned, at Mendon, the river generally has 

higher discharge, is lower gradient, and has more interaction with groundwater.  Paradise, 

on the other hand, has lower baseflow and higher peaks in discharge due to the higher 

gradient of the river as well as the surrounding land.  In general, the results show that 

high frequency sampling is essential for load calculation at Paradise, but that, depending 

on the level of acceptable error, less frequent sampling can be conducted at Mendon.  

This is consistent with the findings of a number of studies comparing sampling frequency 

on different rivers.  As smaller rivers are more responsive to precipitation and snowmelt 

while the responses of larger rivers are more attenuated with a slower rise in discharge 

and higher baseflow levels (Richards and Holloway, 1987), there is a greater decrease in 

precision of load estimate with reduced sampling frequency for smaller rivers (Richards 

and Holloway, 1987; de Vries and Klavers, 1994; Kronvang and Bruhn, 1996; Phillips et 

al., 1999; Coynel et al., 2004).  Also, rivers with high baseflow in permeable lowlands 

have less variable TP and TSS, so a lower sampling frequency is acceptable compared to 

rivers with low baseflow that transport more TP and TSS in high discharge events and 

require more frequent sampling (Ferguson, 1987; Johnes, 2007).  In addition to a greater 

bias in load estimates at Paradise than Mendon, there was a greater degree of 

underestimation of loads at Paradise than at Mendon.  This is consistent with studies that 

found that smaller rivers tend to underestimate loads more so than larger rivers 

(Kronvang and Bruhn, 1996; Phillips et al., 1999).  Although Paradise and Mendon are 
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located on the same river, the behavior of the river changes dramatically between the two 

sites and Paradise can be seen as a small river site while the attributes of a larger river 

could be ascribed to the Little Bear River at Mendon.   

  
4.5 Conclusions 

This paper used high frequency records of TSS and TP concentrations, which 

were estimated using surrogate relationships with turbidity, along with matched series of 

discharge to calculate reference loads for two sites on the Little Bear River.  Two water 

years (2006 and 2007) of data were used.  WY 2006 had high discharge (and high 

constituent transport) relative to WY 2007, which was a low discharge year.  

In order to simulate decreasing sampling frequencies, the continuous records were 

decimated at hourly, daily, weekly, and monthly intervals, and annual loads were 

calculated from the resulting subsets.  For the daily, weekly, and monthly frequency 

subsets, a single value of discharge and a corresponding concentration were selected at 

random from within the sampling period and subsequently used to calculate annual loads.  

At each sampling frequency for each variable and each water year at each site, 10,000 

realizations of annual load were generated for the purpose of examining the potential 

variability in annual load estimates.   

The hourly loads were a close approximation of the reference loads across sites, 

variables, and years.  At the upper site, sampling with decreased frequency resulted in 

median annual loads that were increasingly less than the reference loads as important 

periods in TP and TSS transport were overlooked.  For both sites, decreasing sampling 

frequency increased the variability in the load calculations as there is a high probability 
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of using a set of discharge and concentration records that are not representative of the 

entire time period.  The distribution of annual loads varied between sites as well as 

variables.  There was a much greater variation in loads at Paradise than at Mendon, which 

may be attributed to the different hydrologic characteristics of the two sites as well as 

differences in TP and TSS sources and behavior. 

In addition to annual loads determined by randomly sampling at daily, weekly and 

monthly frequencies, loads were also calculated to simulate sampling at the same time 

every day and the same day every week.  Overall, the results show that the time of day 

and the day of week that sampling is conducted have a substantial impact on annual load 

calculations, although in this case, the level of impact varies between site and year.    

We conclude that periodic grab sampling, even at a daily frequency, is not a 

suitable substitute for loads calculated from continuously estimated concentrations.  

Although loads calculated from subsampling at a daily frequency may have low 

variability from the reference loads, depending on the site, the hour of the day on which 

sampling is collected has a significant impact on load estimates.  Additionally, daily 

sampling for extended time periods is cost prohibitive and logistically difficult.  Hourly 

or half hourly measurements capture the fluctuations that occur in concentration and 

discharge at a finer scale than daily data can achieve.  Furthermore, the loads calculated 

from weekly and monthly subsampling do not adequately approximate the reference 

loads, and caution should be taken in calculating loads from data at this sampling 

frequency.  However, the degree of variability depends on the site and the variable.   



82 
!

Using high frequency surrogates to calculate constituent loads overcomes many of 

the inadequacies of loads estimated from periodic grab sampling as it provides increased 

resolution and accuracy while remaining logistically and economically feasible.  High 

frequency, in situ monitoring with surrogate relationships for concentration should be 

considered as a representative and economically feasible alternative to periodic grab 

sampling for load calculations.  High frequency measurements will provide water quality 

monitoring programs, regulatory agencies, and environmental observatories with an 

improved view of constituent behavior.  
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Table 4.1 
Relationships used to derive continuous concentration time series

 

 

 

Table 4.2 
Summary of decimated datasets

 
*one realization was generated for each hour of the day 
**10,000 realizations were generated for each day of the week 

 

 

 

 

 
 



84 
!
Table 4.3 
Biases (percentages) of the ranges of load estimates based on reference loads.  Biases 
within 5 percent of the reference load are highlighted

!

!
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Table 4.4 
Probabilities of falling within a certain threshold of the reference load.  Probabilities are 
determined by using the 10,000 realizations of random load calculations

!

!
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Fig. 4.1.  Little Bear River watershed. 
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Fig. 4.2.  Half hourly discharge (a), turbidity (b), TP concentration (c), and TSS 
concentration (d) at Paradise. 
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Fig. 4.3.  Half hourly discharge (a), turbidity (b), TP concentration (c), and TSS 
concentration (d) at Mendon. 
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Fig. 4.4.  Turbidity at Paradise and Mendon. 
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Fig. 4.5.  TSS concentrations at varying sampling frequencies as subsampled from the 
half hourly concentration estimates (a).  The hourly time series (b) consists of estimates 
made on the hour while the daily (c), weekly (d), and monthly (e) are randomly selected 
points. 
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Fig. 4.6.  Box and whisker plots of the results of varying sampling frequencies at 
Paradise.  Half hourly represents the reference load, hourly represents the value from 
subsampling on the hour, and daily, hourly, and monthly represent 10,000 realizations of 
randomly selected points within each day, week or month.  The boxes represent the first 
and third quartiles and the whiskers represent the lower and upper adjacent levels.  The 
medians of each of the sets of realizations are also indicated.  The percentages above the 
upper whisker represent the portion of calculated loads that fell above the upper adjacent 
level.  There were no values below the lower adjacent levels.!
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Fig. 4.7.  Box and whisker plots of the results of varying sampling frequencies at 
Mendon.  See Fig. 4.6 for a description of the boxes and whiskers 
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Fig. 4.8.  Annual loads calculated by subsampling daily at the same hour each day. 
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Fig. 4.9.  Box and whisker plots of annual loads calculated by consistently subsampling 
on the same day of the week.  Sampling frequency is weekly using a randomly selected 
point within a single day.  Statistics are based on 10,000 realizations of annual load for 
each day, each site, each variable, and each water year.  See Fig. 4.6 for a description of 
the boxes and whiskers. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 
The uncertainty in concentration trends and associated load calculations resulting 

from low sampling frequency is a pressing challenge for water quality monitoring 

programs.  Various researchers have investigated techniques to address deficiencies 

presented by the sparse datasets generated by traditional water quality monitoring.  One 

of these approaches involves complex equations for load calculation to account for 

sporadic sample collection, but no single estimation method has been deemed appropriate 

for all watersheds, constituents, hydrologic patterns, and sampling frequencies.  Another 

approach to overcoming the limitations of sampling frequency is using in situ sensors to 

continuously measure water quality constituents.  This research presented in situ turbidity 

as a surrogate measure for total phosphorus (TP) and total suspended solids (TSS) as an 

alternative to intermittent grab sampling.  To examine the effects of sampling frequency 

on load calculations, high frequency concentration estimates were generated from the 

surrogate relationships and subsampled to simulate decreasing sampling frequency.  

The surrogate relationships were generated at two locations on the Little Bear 

River using two years of high frequency turbidity data and intermittently sampled TP and 

TSS.  In order to account for the number of censored data points within the TP datasets, 

maximum likelihood regression within the statistical program R was used to generate the 

parameters for regression equations for TP.  The basic linear regression function in R was 

used to generate the parameters for TSS.  Additional explanatory variables examined 

were discharge, water temperature, day of year, hour of day, and categorical variables 
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representing spring snowmelt runoff versus baseflow conditions and the occurrence of 

storm events.   At both sites, turbidity and the categorical variable representing 

runoff/baseflow were the only significant explanatory variables for TP, indicating that the 

relationships between turbidity and TP are consistent throughout storm events.  However, 

the regression at the lower site was greatly improved by the inclusion of the interaction 

between turbidity and the runoff/baseflow categorical variable, and an additional 

categorical variable was necessary for low turbidity conditions.  For TSS, turbidity was 

the only significant explanatory variable at both sites, indicating that the relationship 

between turbidity and TSS is consistent across hydrological conditions.  Logarithmic 

transformations of the datasets did not provide any improvement in the models. 

Using the root mean square error as an estimation of overall error in the 

regression equations, all of the relationships had error values of one-fourth to one-half of 

the mean of the observed data.  Visual examinations of the observed and estimated 

concentrations indicate that the equations adequately track observed trends. 

The surrogate relationships were used with the continuously collected turbidity 

data to generate high frequency estimates of TP and TSS concentration.  Along with high 

frequency estimates of discharge, the concentration data were used to calculate annual 

loads of TP and TSS for two water years, creating reference loads.  In order to examine 

the effect of sampling frequency on load estimation, the concentration and discharge 

records were decimated at hourly, daily, weekly, and monthly intervals to represent grab 

sampling at those frequencies.  Annual loads were calculated from the decimated datasets 

and compared to the reference loads.  For the daily, weekly, and monthly datasets, 
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concentration and corresponding discharge were randomly selected 10,000 times to 

generate a distribution of annual load estimates.   

Loads calculated from the hourly concentration and discharge closely 

approximated the reference loads.  For both TP and TSS, at both sites, and for both water 

years, the variability in annual load estimates increased as sampling frequency decreased 

because a single point of concentration and discharge was assumed to represent an 

extended time period.  At the upper watershed site, however, the variability was greater.  

Also, at the upper site, the median loads consistently decreased as sampling frequency 

decreased, verifying that intermittent sampling omits important periods of constituent 

transport and generally underestimates annual loads at this location.  The levels of bias 

from the reference load differed between sites and variables, but were fairly consistent for 

the two water years examined.  There was more bias and variability in loads estimated at 

the upper watershed site than the lower watershed site, and at the upper site, TSS loads 

were more biased than TP loads.  The probability of calculating loads within certain 

thresholds of the reference loads was also examined.  The results show a greater 

probability of approaching the reference load at higher sampling frequencies.  

Furthermore, the probability of approximating the reference loads was greater at the 

lower watershed site.  The differences in hydrologic response as well as TSS and TP 

behavior at the two sites are thought to explain the differing results. 

The timing of sample collection was also examined.  Annual loads were 

calculated by subsampling at the same time each day as well as subsampling on the same 

day of the week.  Results indicate the time of day of sample collection has an impact on 
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resulting loads.  The pattern differed from one site to another, reflecting diurnal 

fluctuation in turbidity and TP and TSS concentrations likely due to the timing of 

hydrologic response.  The degree of variability in loads calculated at different times of 

the day was different between two water years.  Consistently sampling on the same day 

of the week also affects load estimates, depending on the site, the variable, and the water 

year. 

This research has demonstrated the powerful potential of surrogate measures for 

generating high frequency concentration estimates from which loads can be calculated.  

The datasets generated by surrogate relationships provide information showing the high 

resolution dynamics of constituents that could not be attained using monthly, weekly, or 

even daily grab sampled concentration.  Conventional grab sampling is also insufficient 

for load calculations as it can severely under or over estimate annual loads.  Surrogate 

measures can provide high frequency estimates of concentration over extended periods of 

time and at multiple locations, allowing for better understanding of constituent fluxes 

throughout the watershed and throughout hydrological conditions.  For some sites and 

some variables, daily sampling may provide a reasonable estimate of annual load, but 

daily grab sampling for extended periods of time and at many sites is generally 

impractical.  Until in situ technology is developed to viably measure important 

constituents such as TP and TSS, surrogate measures provide an economically and 

logistically feasible method for quantifying constituent flux at a high frequency over 

large temporal and spatial scales.  
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CHAPTER 6 

ENGINEERING SIGNIFICANCE 

 
In the fields of environmental engineering and water resources, there is a need for 

improved understanding and prediction of short and long term behavior of instream 

processes.  For many constituents at many locations, instream variability occurs on a time 

scale of minutes or hours, not weeks or months, the frequency at which traditional water 

quality programs have conducted monitoring.  This research demonstrates the value of 

surrogate measures to estimate water quality constituents.  Surrogate measures can 

significantly increase the resolution of available concentration data over multiple years 

and at multiple locations throughout a study area. 

Surrogate measures have implications for water quality monitoring and 

compliance, watershed studies, water quality modeling, and environmental observatory 

design.  Additional benefits to in situ sensors that monitor continuously include 

automated data collection, the ability to connect data to a water quality model or to the 

Internet, the minimization of human errors and time delays, and an overall reduction in 

the cost of monitoring.!!

The widespread incorporation of surrogate measures into water quality 

monitoring programs will allow for the characterization of fluxes from one site to another 

along a river or between tributaries to a common lake or reservoir or from one type of 

terrain to another.  Additionally, comparisons can be made between varying time scales 

such as the response to two different storm events, different behavior during spring 
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snowmelt in a high discharge year opposed to a drought year, or the daily or annual 

effects of reservoir releases. 

Compliance with water quality standards is often based on a concentration or a 

load threshold.  Loads determined by high frequency concentrations calculated from 

surrogate measures will allow for the determination of compliance with increased 

certainty.  Additionally, the high resolution of concentrations estimated by surrogate 

measures will assist in the determination of compliance based on peaks and duration of 

concentration.  Sensors for making surrogate measures can be installed at locations other 

than rivers and streams where water quality is a concern such as beaches, lakes, and 

wastewater treatment plants. 

Many hydrologic and water quality models require extensive parameterization in 

order to predict water quality given changes in land use, management practices, or 

hydrological conditions.  These parameters are calibrated for streams and watersheds 

using water quality observations.  Concentrations from surrogate measures will provide 

an increased number of observations so that model parameters can be determined with 

more certainty. 

Environmental observatories have received attention as settings where improved 

understanding of hydrologic and water quality processes can occur as they generate data 

at high temporal frequencies and high spatial densities.  Surrogate measures are necessary 

to the design of environmental observatories because they provide a relatively 

inexpensive and logistically viable method for determining concentrations of constituents 

that cannot be measured in situ.!  
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CHAPTER 7 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 
 A number of ideas that were identified as additional topics of research stemming 

from the generation of surrogate relationships and examination of sampling frequency of 

total phosphorus (TP) and total suspended solids (TSS) on the Little Bear River. 

1. Since the beginning of this study, five sites in addition to Paradise and Mendon 

have been instrumented with continuous monitoring equipment.  When a 

sufficient number of concentration measurements have been made at these sites 

(the current number of observations is on the order of 50 at each site over a period 

of 6-8 months), techniques similar to those described in Chapter 3 should be used 

to generate surrogate relationships for TP and TSS for each monitoring site.  

Relationships at additional sites may provide increased understanding of the 

behavior of the constituents throughout the watershed. 

2. In addition to turbidity, water level, and water temperature, all of the sites have 

been instrumented with sensors to monitor pH, specific conductance, and 

dissolved oxygen.  These variables should be investigated as potential explanatory 

variables for TP and TSS.  Because specific conductance and pH are related to 

dissolved species, they may be especially valuable at Mendon where the majority 

of TP is dissolved.  These variables could also be explored as potential 

explanatory variables for dissolved total phosphorus at all sites since dissolved 

phosphorus is biologically important. 
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3. Since the development of the surrogate relationships described in Chapter 3, 

additional TP and TSS samples have been collected and analyzed.  These data 

should be used to corroborate the current models and to further refine the 

equations. 

4. To this point, phosphorus has been considered the limiting nutrient in Cutler 

Reservoir and the Little Bear River.  If nitrogen is determined to be a limiting 

nutrient, then sample analysis should include species of nitrogen, and surrogate 

relationships should be developed for nitrogen species. 

5. The distinction between spring runoff and baseflow was important for the TP 

surrogate relationships, however, in the resulting concentration estimates, there 

are distinct steps when the transitions between baseflow and spring runoff occur.  

Instead of a categorical variable with a value of 0 or 1, a continuous variable 

could be incorporated that represents the percent of discharge that is runoff.   The 

values of the variable could be determined using baseflow separation techniques. 

6. In addition to in situ measures and variables representing hydrological conditions, 

variables corresponding to land use and watershed attributes could be more 

directly incorporated into the surrogate relationships.  For example, if one of the 

variables was percent agricultural land above the monitoring site, this variable 

could be adjusted to simulate a management practice.  Other variables that could 

be examined include average slope, contributing area, soil moisture capacity, and 

percent area of various land uses. 
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7. This research presented surrogate measures as an economical alternative to 

conventional grab sampling.  It would be valuable to do a complete cost-benefit 

analysis comparing continuous monitoring to periodic grab sampling at multiple 

sampling frequencies.  The expenditures of continuous monitoring include 

sensors, telemetry equipment, materials needed for installation, supplies for 

sample collection, sample analysis, and the cost of personnel for site maintenance 

and sample collection.  The expenses of periodic grab sampling include supplies 

for sample collection, sample analysis, and the cost of personnel for sample 

collection. 

8. Chapter 4 compared continuous monitoring to less frequent grab sampling, but 

there is little guidance regarding the amount, timing, and frequency of samples 

that should be collected in order to develop and maintain surrogate relationships.   

Investigation into this question would assist in environmental observatory 

planning. 

! !
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Fig. A-1. Residuals of the TSS model at Paradise. 
 
 

Fig. A-2. Statistical plots for the TSS model at Paradise.  Observed versus modeled TSS 
(a), a histogram (b) and a probability plot (c) of residuals. 
 
 

 
Fig. A-3.  Residuals of the Paradise TSS model compared with measured variables.  See 
Fig. 3-2 for interpretation of stars. 
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Fig. A-4.  Residuals of the TP model at Mendon. 
 
 

Fig. A-5.  Statistical plots for the TP model at Mendon.  Observed versus modeled TP (a), 
a histogram (b) and a probability plot (c) of residuals. 
 
 

 
Fig. A-6. Residuals of the Mendon TP model compared with measured variables.  See 
Fig. 3-2 for interpretation of stars. 
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Fig. A-7.  Plot of the residuals of the TSS model at Mendon. 
 
 

Fig. A-8. Statistical plots for the TSS at Mendon model.  Observed versus modeled TSS 
(a), a histogram (b) and a probability plot (c) of residuals. 
 
 

 
Fig. A-9. Residuals of the Mendon TSS model compared with measured variables.  See 
Fig. 3-2 for interpretation of stars. 
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