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ABSTRACT

Estimating Total Phosphorus and Total Suspended Solids

from High Frequency Data

by

Amber Spackman Jones, Master of Science
Utah State University, 2008

Major Professor: Dr. David K. Stevens
Department: Civil and Environmental Engineering

Frequently measured turbidity was examined as a surrogate for total phosphorus
(TP) and total suspended solids (TSS) loads at two locations in the Little Bear River,
Utah, USA. Using regression techniques, equations were developed for TP and TSS as
functions of turbidity. The equations accounted for censored data, and additional
explanatory variables to represent hydrological conditions were considered for inclusion
in the equations. By using the resulting surrogate relationships with high frequency
turbidity measurements, high frequency estimates of TP and TSS concentrations were
calculated. To examine the effect of sampling frequency, reference loads were
determined from the concentration records for two water years. The concentration
records were artificially decimated to represent various frequencies of manual grab

sampling from which annual loads were calculated and compared to the reference loads.

(127 pages)
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CHAPTER 1

INTRODUCTION

Traditional water quality monitoring programs typically rely on the analysis of
grab samples, and the frequency of sample collection is dependent on limitations in
resources such as personnel, budget for sample analysis, and supplies. As a result,
sample collection often happens on a weekly to monthly basis, which, depending on the
variable and the location, may not provide an adequate representation of the behavior of
most water quality constituents. Concentrations of many water quality constituents can
vary at scales of minutes to hours. In general, even if resources were unlimited, it would
be logistically infeasible to collect samples at these high frequencies over extended time
periods. In order to estimate constituent transport over time, grab sampled concentration
data are paired with discharge (often measured more frequently than concentration) to
calculate loads. If sampling is conducted infrequently, these estimates may grossly over
or under estimate the true constituent loads. An additional drawback is that a
complicated calculation method is often necessary to estimate loads from infrequently
collected concentration data to account for averaging over those periods and for discharge
collected more frequently than concentration.

For some constituents, in situ sensors can be used for high frequency monitoring
returning large datasets over relatively long time periods. Variables commonly measured
in situ include physical parameters such as water level, pH, specific conductance,
dissolved oxygen, and turbidity. Additionally, UV-VIS spectroscopy and ion-specific
sensors can be used in situ to quantify constituents such as nitrate, nitrite, chlorophyll,

and chemical oxygen demand. Despite developments in sensor technology, there are still



important water quality constituents that cannot practically be measured in situ or in real
time over an extended period of time. For example, total phosphorus samples must be
digested and analyzed in the lab. Consequently, the number of available measurements is
limited in most watersheds. As total phosphorus is often associated with particulates
including soils, animal waste, and vegetation, its loading, along with total suspended
sediment loading, is likely to increase during storm events and times of high runoff when
erosion occurs. These are periods when representative grab sampling can be especially
difficult and may not often be conducted. As an alternative to grab sampling, high
frequency, in situ measurements can be used as surrogates to estimate properties such as
contaminant concentration. A common surrogate measure is turbidity, an optical
measure of the scattering of light passing through a sample of water due to colloidal and
suspended matter.

This research examines turbidity as a surrogate measure for total phosphorus (TP)
and total suspended solids (TSS) on the Little Bear River, Utah, USA and uses the results
to assess the effects of sampling frequency on load calculations. Historically, TP and
TSS have been constituents of concern on the Little Bear River, and the Utah Department
of Environmental Quality (DEQ) included the river on its 303(d) list of impaired water
bodies for total phosphorus. Additionally, the Little Bear is one of 11 test beds in the
Water and Environmental Research (WATERS) Network designated to research
environmental observatory design and methods for improved understanding of instream

processes including high frequency data collection and surrogate measures.



Using high frequency turbidity data and intermittently sampled TP and TSS,
equations were developed to estimate TP and TSS as functions of turbidity from which
high frequency estimates of concentration were generated. The relationships account for
censored data, and additional categorical variables representing hydrological conditions
were considered. The continuous concentration estimates, used in conjunction with high
frequency discharge data, were used to calculate annual loads. In order to examine the
effect of sampling frequency on load estimates, the continuous concentration and
discharge series were artificially decimated to represent periodic, less frequent grab
sampling. This subsampling was conducted at hourly, daily, weekly, and monthly
frequencies, from which annual loads were calculated. Multiple realizations of daily,
weekly, and monthly sampling were generated by randomizing the selection of
concentration and discharge values. The results were compared to the reference loads
calculated from the high frequency discharge and concentration data. Additionally,
consistently sampling at the same time of the day and the same day of the week were
examined in order to examine the effect of timing of sample collection on load estimates.

Chapter 2 provides a review of literature establishing a background for this
research and descriptions of related work. Chapter 3 describes the procedures used to
develop the surrogate relationships for TSS and TP at both locations. The continuous
concentration datasets and reference loads are presented in Chapter 4, which also
examines the loads calculated by subsampling at different frequencies. Chapter 5
summarizes the results of the analyses, Chapter 6 details the engineering significance of

this research, and Chapter 7 suggests topics of future research stemming from this work.



CHAPTER 2

LITERATURE REVIEW

2.1 Study area: Little Bear River

The site of this research is the Little Bear River in northern Utah, USA, which
drains a semi-arid watershed with hydrologic behavior dominated by spring snowmelt
runoff. The Little Bear River watershed encompasses an area of approximately 740 km?,
the headwaters are in the Bear River Mountain Range, and elevations range from 1340 m
to 2700 m. The river has two principal subdrainages, the East Fork and the South Fork.
There are two reservoirs within the drainage: one in the upper watershed on the East Fork
(Porcupine Reservoir) and another in the lower watershed (Hyrum Reservoir). Both
reservoirs are operated by canal companies and store water for the summer irrigation
season. Below the reservoirs and at other locations along the river are agricultural
diversions that greatly influence the hydrology of the Little Bear River. The land use
within the watershed is primarily agricultural with a general distribution of 70 percent
grazing land and forest, 19 percent irrigated cropland, and 7 percent dry cropland. There
are a number of small towns within the watershed, and the area has exhibited population
growth of 32 percent between 1990 and 2000 (US Census Bureau, 2000).

The geologic material surrounding and underlying the Little Bear River is
primarily limestone and dolomite rocks (Schaefer et al., 2006). In the upper watershed,
most of the underlying soils consist of high slope (30-50 percent) silty 4olluviums
deposits, and the depth to the water table is generally greater than 2 meters. In contrast,

in the lower watershed, the soils are primarily loamy lacustrine deposits of low slopes (0-



3 percent) with a depth to the water table of 0.75-1.5 meters or less (Soil Survey Staff,
2008)

The Little Bear drains into an arm of Cutler Reservoir, a shallow eutrophic
reservoir on the Bear River, a tributary to the Great Salt Lake. Cutler Reservoir has been
listed as impaired with respect to low dissolved oxygen concentrations driven by algae
growth due to high phosphorus levels (Utah DEQ, 2006b). Consequently, a Total
Maximum Daily Load (TMDL) is currently under development for Cutler Reservoir.
TMDLs have already been developed on many of the reservoir’s tributaries, including the
Little Bear River. The State of Utah has applied a guideline of 0.05 mg/L for maximum
instream total phosphorus concentrations, which has not been met in the Little Bear River
(Utah DEQ, 2000a, 2006a), and a TMDL was completed in 2000 (Utah DEQ, 2000b). A
TMDL was also completed for Hyrum Reservoir, which often has algal blooms, that
requires an in-lake total phosphorus concentration to meet an endpoint of 0.025 mg/L
(Utah DEQ, 2002). According to the TMDL studies, the reduction in phosphorus loading
must be achieved through best management practices implemented by landowners and

community members.

2.2 Project funding and context

To address deficiencies in the current state of understanding of hydrologic
systems, the Water and Environmental Research Systems (WATERS) Network was
created consisting of 11 environmental observatory test bed sites across the United States.
The test beds are examining techniques and technologies for larger scale environmental

observatory design and operation. Research topics include innovative methods for



constituent estimation, deployment of environmental sensor networks, development of
modeling tools, and standardization of data storage and publication (WATERS Network,
2006; Montgomery et al., 2007). The Little Bear River was selected as a test bed site
with the following objectives: 1. Develop an integrated monitoring system of data
collection and surrogate measurements, 2. Assess high frequency nutrient loading in
relation to flow regime, watershed characteristics, and management practices, and 3.
Develop two-way linkages between field sensors and a central database including
modeling tools or software for data access and watershed management (Utah Water
Research Laboratory, 2007). Additional funding was provided by the United States
Department of Agriculture through the Conservation Effects Assessment Program, a
national study evaluating the results of conservation practices implemented by private

landowners.

2.3 Phosphorus and suspended solids

Phosphorus is an essential nutrient in aquatic systems as it is required for most
forms of life. However, over-enrichment of phosphorus in water bodies can cause
increased algal growth leading to eutrophication in lakes and reservoirs and excessive
periphyton growth in rivers (Hem, 1985; US EPA, 1986; Mueller and Helsel, 1996).
Concerns with eutrophic water bodies include aesthetics for natural waters and drinking
water sources as well as reduced dissolved oxygen levels, which adversely affect fish and
other forms of aquatic life. Phosphorus is found naturally in some soils, but significant
amounts may also be contributed to aquatic systems by anthropogenic sources such as

fertilized fields, animal waste, wastewater treatment plants, and industries that use
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phosphorus in cleaning processes (Hem, 1985; Mueller and Helsel, 1996). Depending on
the source, phosphorus is frequently associated with suspended sediments, which may
also be a water quality concern (Kronvang et al., 1997; Heimlich, 2003). Not only do
suspended sediments transport contaminants such as nutrients, pesticides, and metals,
high levels of suspended sediment can be detrimental to aquatic life, decrease the
recreational quality of a water body, complicate water treatment, and interfere with the

operation of hydraulic structures (US EPA, 1986).

2.4 Water quality monitoring

Literature regarding the design of water quality sampling programs and
monitoring networks is widely available (Ward et al., 1990; Harmancioglu et al., 1999),
and networks have been established at varying scales. On a national scale, for example,
the National Stream Quality Accounting Network (NASQAN) was implemented in 1974
by the United States Geological Survey (USGS) to study the water quality of the nation’s
five largest rivers (Mississippi, Rio Grande, Yukon, Colorado, and Columbia). There are
only a few stations on each river that are generally sampled 5 to 15 times annually. The
program examines chemical and sediment transport on relatively large scales, both
temporally and spatially (Hooper et al., 1997). Sampling programs are often initiated on
a smaller watershed scale to meet various objectives such as assessment of the
effectiveness of management practices, providing data for modeling efforts, and for
determination of compliance with water quality standards (Oblinger, 2004). These
traditional water quality monitoring programs rely on grab samples that typically are

collected with a frequency too low to fully characterize the range in ambient



concentrations and to accurately calculate loads of water quality constituents over time
(Ferguson, 1987; de Vries and Klavers, 1994; Coynel et al., 2004; Etchells et al., 2005;
Johnes, 2007).

Traditional grab sampling at weekly or monthly intervals often misses storm
events, periods when loading of solids, nutrients, and bacteria are increased due to non-
point source runoff. Croke and Jakeman (2001) discuss streams with rapid hydrological
response that are especially subject to erosion resulting in increased transport of sediment
and associated nutrients during storm events. Nolan et al. (1995) showed that increases
in concentration of the various species of phosphorus were closely associated with the
occurrence of precipitation. Kronvang et al. (1997) compared intensive storm sampling
with fortnightly sampling and found that the infrequent sampling significantly
underestimated the transport of sediments and phosphorus. Gray and Glysson (2002)
make the generalization that approximately 90 percent of the sediment transport in

smaller streams occurs in 10 percent of the time.

2.5 High frequency monitoring

Important periods in constituent transport are usually missed or underrepresented
by traditional grab sampling (Richards and Holloway, 1987; Christensen et al., 2002;
Jordan et al., 2007), but can be captured by high frequency water quality monitoring.
Continuous, high frequency monitoring also elucidates seasonal and diurnal trends that
may be overlooked by traditional periodic grab sampling (Grayson et al., 1997,
Christensen, 2001; Tomlinson and De Carlo, 2003; Kirchner et al., 2004; Scholefield et

al., 2005). Automating high frequency monitoring reduces the logistics and personnel



required for grab sampling that is representative (Grayson et al., 1997), minimizes errors
in transcription and improves the turnaround between the collection and the use of field
data (Vivoni and Camilli, 2003), and provides data at increased temporal and spatial
scales for extended time periods (Kirchner et al., 2004).

Tomlinson and De Carlo (2003) collected high frequency water quality data on
three Hawaiian streams, illustrating patterns that could not be captured by sampling
monthly, weekly, or even daily. Some of their findings included multiple discharge
peaks within 24-hour periods, 60-fold increases in turbidity within 15 minutes, and 30-
fold increases of turbidity within 5 minutes. Their data collection also demonstrated
cyclical fluctuations in temperature, pH, and dissolved oxygen and helped reveal tidal
influence.

Kirchner et al. (2004) assert the importance of collecting high frequency data over
extended time periods. The authors make the analogy that drawing conclusions based on
infrequent measurements is like looking through a blurry telescope where only the most
prominent features of the watershed are visible. On the other hand, if intensive sampling
is conducted only during certain events, it is like viewing the watershed through a pinhole
where fine details are visible, but the entire picture is obscured.

Pressl et al. (2004) describe benefits of automated water quality measurements
including the ability for quick action in response to negative water quality changes, a
reduction in overall monitoring costs, and higher resolution data for better identification
of trends. The authors conducted a study employing automated monitoring using one

station with real time, in situ equipment. Challenges encountered in this study included



10
the need for in situ calibration, river stratification, low water levels, and faulty probes, but
overall, the data collection was deemed successful.

High frequency data collection is enhanced by the real time acquisition of water
quality data. Vivoni and Richards (2005) describe the benefit of closely linking data
collected in real time with a water quality model that can be run continuously. The
results of model simulations can be used to better direct sampling, and the field data can
be used to more frequently refine model parameters and results.

Additionally, when water quality criteria are exceeded, real time data allows
immediate action to be taken. Christensen et al. (2002) explain that if violations of
bacteriological criteria are identified in real time, managers can act to insure that human
and animal contact with the water is prevented. Real time control of drinking water
sources and the prevention of eutrophication can also be facilitated by a more rapid
response. Fleischmann et al. (2002) installed a real time sensor network to serve as a
warning system for drinking source water protection, which is accessed and remotely
controlled through a web interface.

In situ sensors have been installed in sewer systems in order to consistently
quantify pollutant loads discharged from combined sewer networks. Parameters
commonly measured are water level, ammonia, nitrate, pH, conductivity, carbonaceous
oxygen demand, total organic carbon, and dissolved and suspended solids. In the system
described by Gruber et al. (2005), observations were made every three minutes with more
frequent (one-minute) observations made when the channel water level exceeded a

threshold corresponding to overflow conditions. Most of the monitoring methods



11
employed in this study were based on UV-VIS-absorption, which requires frequent
calibration. Vanrolleghem et al. (2005) describe a system of sensors in receiving water
bodies that used real time, in situ data to trigger flow controls within the wastewater
treatment system if pollutant levels were exceeded.

In situ sensors are commonly used for physical parameters such as water level and
temperature and some water quality constituents such as pH, conductivity, dissolved
oxygen, and turbidity. More recent technological advances allow the measurement of
some chemical species such as the ions of metals and nutrients. As mentioned, UV-VIS
spectroscopy has been used to measure constituents such as nitrate, nitrite, chlorophyll,
and chemical oxygen demand (Fleischmann et al., 2002; Pressl et al., 2004; Gruber et al.,
2005), and Winkler et al. (2004) describe the use of ion-sensitive sensors for the real time
measurement of instream nitrate concentration. Additionally, sampling equipment that
automatically collects grab samples and conducts analyses that are traditionally done in
the laboratory are increasing in availability and popularity (WET Labs, 2006; YSI, 2006;
Jordan et al., 2007). Despite these developments, there are no current methods for the in
situ, real time analysis of total phosphorus and total suspended solids for long term

monitoring, so available data will remain spatially and temporally limited.

2.6 Surrogate measures

A surrogate is a measure that can be used to estimate another property such as
contaminant concentration. A common surrogate measure in water bodies is turbidity, an
optical measure of the scattering of light passing through a sample of water due to

colloidal and suspended matter. Gray and Glysson (2002) report that in the United
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States, turbidity is the most common measurement of water clarity and the most common
surrogate of suspended sediment concentrations. Considerable research is available
demonstrating the potential for accurately relating suspended sediment concentrations to
turbidity measurements, some of which is subsequently described. In addition to using
turbidity as a surrogate for suspended sediment, several studies have used in situ
measurements as surrogates for other constituents that require laboratory analysis. As
phosphorus is often closely associated with suspended solids, turbidity has been used as a
surrogate for total phosphorus. Additional examples of in situ surrogates include
turbidity as a surrogate for total nitrogen and fecal coliform and specific conductance as a
surrogate for dissolved solids, alkalinity, sulfate, and chloride, as well as other ions.

Gray and Glysson (2002) asserted that suspended sediment loading and transport
is more accurately calculated using the high frequency, continuous measurement of
turbidity as a surrogate than by using sporadic measurements of concentration.
Additional benefits of using surrogates to estimate suspended sediment loading include a
decrease in the count of necessary grab samples, the potential for identifying sediment
variability at a higher temporal resolution, and the ability to trigger automatic pumping
samplers for the collection of samples for laboratory analysis (Gray and Glysson, 2002).

Through analyses of laboratory and field data, Gippel (1989, 1995) concludes that
an acceptable correlation between field turbidity and suspended solids can generally be
obtained, although the author warns that there can be confounding factors that influence
the relationship. Specifically, turbidity is affected by the scattering properties of

suspended particles, which are a function of particle size and composition. As a result,
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the relationship between turbidity and suspended sediment will change with the source of
sediment. Source material often varies from site to site and can fluctuate seasonally and
even between storm events. Additionally, Gippel (1989) recommends the use of infrared
turbidity sensors to eliminate the effects of water color on turbidity measurements.

Brasington and Richards (2000) used turbidity to monitor suspended sediment
loads in five small catchments within the Likhu Khola basin in Nepal. The researchers
examined both field and laboratory procedures to calibrate turbidity readings to
suspended sediment concentrations, and then estimated sediment flux using both
methods. The correlation using the field calibration was strong (r*= 0.75). One
complication encountered by this study was the exceedence of the turbidity monitor’s
upper limit due to burial of the instrument by heavy sediment loads.

Christensen et al. (2000) used real time monitoring of turbidity, specific
conductance, and discharge in conjunction with stepwise regression analyses to develop
high frequency records of alkalinity, dissolved solids, total suspended solids, chloride,
sulfate, atrazine, triazine, and fecal coliform for two sites on the Little Arkansas River in
Kansas. A strong correlation between turbidity and total suspended solids was found at
both sites throughout the four years of the study (correlation coefficients of 0.88-0.91). It
was determined that two years of data consisting of 35 to 55 samples provided a
sufficient sample size to correlate a constituent to its surrogate variables at these sites.

Uhrich and Bragg (2003) used turbidity as a surrogate for suspended sediment on
three streams in northwestern Oregon. The relationship between turbidity and suspended

sediment was strong at all sites (correlation coefficients of 0.90-0.93), and the
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correlations were better than those observed between discharge and suspended sediment
(correlation coefficients of 0.56-0.68).

Tomlinson and De Carlo (2003) used regression to relate continuous, high
frequency turbidity with total suspended solids samples collected by automated samplers
in three Hawaiian streams. Pooling all samples resulted in a correlation coefficient of
0.84, and separating the data by site improved the relationships (> = 0.90-0.93). Several
outlying points were attributed to non-uniformity between the sample collected and the
water measured by the turbidity sensor. This could be because the automated sampler
requires one full minute to collect a sample while the turbidity sensor measures
instantaneously, or it could be due to distance between the sampler and sensor along the
stream.

Grayson et al. (1996) conducted a study including data from multiple sites on the
Latrobe River in Australia to determine if turbidity could reliably be used as a surrogate
measurement for total phosphorus (TP) and total suspended sediments (TSS). The
correlations developed were linear, and the correlation coefficients were 0.86 and 0.90
for TSS and TP, respectively. As the correlations were not site specific, error was
introduced by spatial variability. The authors recognized that the preferred approach is to
develop a relationship for each site that could be checked and adjusted after the initial
period of sampling. The study concludes that turbidity is a more accurate estimator of
TSS and TP than discharge alone and recommends that it be included in routine

monitoring.
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Kronvang et al. (1997) collected measurements of turbidity with TSS and
particulate phosphorus over two years at two stations on Gelbaek Stream in Denmark. A
strong correlation (r* = 0.70) between turbidity and TSS was observed during storm
events, and the authors suggest that the correlation could be improved by developing
seasonal relationships. Additionally, particulate phosphorus measured by this study was
strongly correlated with suspended sediment concentrations (r* = 0.87) independent of
seasonal variations.

Christensen (2001) used in situ measurements to estimate alkalinity, dissolved
solids, TSS, suspended sediment, sodium, chloride, fluoride, sulfate, nitrate, total organic
nitrogen, TP, and fecal coliform at one site on Rattlesnake Creek in Kansas. For both
suspended sediment concentration and TSS, turbidity was the only explanatory variable,
and the correlation coefficients were 0.825 and 0.926 respectively. For TP, the important
surrogates were turbidity, specific conductance, and water temperature, and the
correlation coefficient of the regression was 0.96. The authors suggest that water
temperature provides a representation of season, and that the TP and turbidity
relationship might vary between seasons. Specific conductance may be representative of
changes in discharge, indicating that TP can depend on discharge as well as turbidity.

In a related study, Christensen et al. (2002) measured conductivity, pH, water
temperature, dissolved oxygen, turbidity, and total chlorophyll using in situ monitoring
equipment at four sites on three different Kansas rivers. Statistical regression was used to
correlate the surrogates, or explanatory variables, to manually collected and measured

concentrations of total nitrogen, TP, and fecal coliform. The authors point out that the
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relationships developed for each constituent are site specific and may include different
explanatory variables, although turbidity was common to all relationships. For TP,
turbidity was the only important surrogate for three of the four stations while the
regression at one station also included specific conductance and water temperature.
Again, water temperature is probably important as it relates to seasonal variations in TP
and specific conductance is likely related to discharge. Correlation coefficients for TP
ranged from 0.51 to 0.96. Additionally, the authors tried to explain the relationship
between an explanatory variable and the estimated constituent based on the hydrological
characteristics and land use above each station.

Ryberg (2006) measured conductivity, water temperature, pH, turbidity, and
dissolved oxygen in situ at one station on the Red River of the North in North Dakota.
Manual water quality samples were collected and analyzed for alkalinity, dissolved
solids, sulfate, chloride, nitrate/nitrite, total nitrogen, TP, and suspended sediment over
three years. The study found that for suspended sediment, the important explanatory
variables were turbidity and discharge, and the resulting correlation coefficient was
0.873. For TP, turbidity, discharge, and day of the year were the significant surrogates
returning a correlation coefficient of 0.771. Ryberg suggests that the relationships are not
consistent throughout seasons and that distinct relationships should be developed on a
seasonal basis.

Stubblefield et al. (2007) examined turbidity as a surrogate for TSS, TP, and
soluble reactive phosphorus at four locations on two low turbidity streams (0-50 NTU) in

the Lake Tahoe Basin. Correlations were strong for the TSS and turbidity relationships
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(correlation coefficients of 0.95 and 0.91), and not as strong, but still significant between
TP and turbidity (correlation coefficients of 0.62 and 0.83). There was no significant
correlation between turbidity and soluble reactive phosphorus. Due to the overestimation
of TSS loads by discharge rating curves examined in this study, the authors determined
that turbidity is a more accurate surrogate of TSS than is discharge. This is consistent
with the findings of Phillips et al. (1999), who report that suspended sediment is subject
to limitations in supply that are not reflected in the variability of discharge. Other studies
have shown discharge to be an unsatisfactory surrogate for TP, as it can be affected by
processes that are independent of hydrology such as biological uptake and incorporation
into bottom sediments (Robertson and Roerish, 1999; Quilbe et al., 2006; Johnes, 2007;

Jordan et al., 2007).

2.7 Sampling frequency

As mentioned, constraints on resources and logistics limit the frequency of grab
sampling, and resulting concentration measurements are typically made at a frequency
too low to accurately characterize constituent behavior that can change at time scales of
less than one day (Kronvang and Bruhn, 1996; Horowitz, 2003; Tomlinson and De Carlo,
2003; Coynel et al., 2004). A number of studies have examined the effect of sampling
frequency on load calculations, which are subsequently described. Richards and
Holloway (1987), Kronvang and Bruhn (1996), Phillips et al. (1999), and Coynel et al.
(2004) affirm that results from all methods of load estimation improve as sampling
frequency increases. Several authors recommend continuous, high frequency monitoring

in order to overcome uncertainty in load calculation resulting from infrequent sampling
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and biased estimation methods (Ferguson, 1987; de Vries and Klavers, 1994; Johnes,
2007).

Richards and Holloway (1987) combined data to simulate a year of frequently
collected data of TSS, TP, soluble reactive phosphorus, nitrate, and specific conductance.
These data were subsampled to achieve sampling frequencies of four times per day, daily,
weekly, semi-weekly, and monthly from which loads were calculated using two different
equations for load estimation. Stratified sampling with additional samples collected
during high flow periods was also examined. The correlation of the estimated load with
the theoretical true load improved dramatically (* > 0.9) with a sampling frequency of at
least daily or with heavily stratified sampling regimes. The authors conclude that load
estimates improve with increased sampling frequency, and that calculation method,
watershed characteristics, and constituent behavior, as well as interactions between these
factors, have a considerable effect on the results.

de Vries and Klavers (1994) found that sampling frequency was more important
than load calculation equation for ammonium, chloride, and suspended matter for two
different Dutch rivers using simulated time series with frequencies of 6, 12, 24, 52, 100,
and 200 samples per year. For the smaller of the two rivers, none of the load estimation
equations were deemed acceptable, even at the highest sampling frequencies (errors of
+25 percent). The authors recommend the investigation of alternative monitoring
strategies such as automated samplers or in situ surrogate measures to achieve better load

estimates.
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Kronvang and Bruhn (1996) identify that there is no clear best load estimation
method and that guidance is needed on sampling frequency and strategy. The authors
used records of frequently (4 hour to one week intervals) sampled concentrations of
nitrogen and phosphorus, which were subsampled to develop series of varying sampling
frequencies. Reference loads were determined by linearly interpolating the concentration
and discharge data to one minute to one day intervals. The subsampled time series were
compared to the reference loads, and were also used to evaluate 13 load estimation
equations. The authors conclude that the best method overall is a simple interpolation
equation; however the most appropriate method depends on sampling frequency,
constituent, and catchment. Although error was reduced as sampling frequency
increased, the authors recommend fortnightly sampling in order to provide the greatest
reduction in error while not being cost and resource prohibitive.

Phillips et al. (1999) examined the accuracy and precision of 22 load estimation
procedures by applying each to weekly, fortnightly, and monthly datasets that were
created by decimating 15-min records of discharge and suspended sediment as estimated
from turbidity. The authors found significant variance between the results of each
sampling method: for one site, the median value for weekly sampling varied between
21.3 and 105 percent of the reference load. The results indicate that for all sampling
methods, precision consistently improves with increased sampling frequency.
Additionally, no distinct estimation method was found to provide the most accurate

results for all sampling locations and sampling frequencies. The authors conclude that
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sampling at intervals of one week or greater does not provide sufficient accuracy or
precision, regardless of the equation used to estimate the load.

Robertson and Roerish (1999) used annual loads calculated by interpolation as the
reference to which they compared annual loads of TSS and TP estimated by discharge
rating curves at sampling frequencies ranging from semi-monthly to sampling every six
weeks. Increased sampling during periods of high flow was also examined. Using three
different measures of error, the smallest bias was approximately 30 percent, and the range
of the errors was greater than the typical interannual variability in the loads. This study
concluded that for loads calculated by regression with discharge, a stratified sampling
approach adds to bias rather than providing a better representation of constituent behavior
at high flows. The goal of this research was to find a method for load calculation for
streams where samples cannot be collected frequently, but a discharge rating curve
method was deemed unacceptable. This study also found that load estimates depend not
only on sampling frequency but on the length of the study and the hydrological
conditions during the period of study.

Webb et al. (2000) developed seasonal synthetic concentration records using
discharge rating curves for various constituents and watersheds. These records were then
subsampled according to the frequency at which grab samples were actually collected,
and loads were calculated by nine estimation equations. The equation which
demonstrated the least amount of bias for each watershed and constituent was selected on
a case by case basis to calculate resulting loads from which larger scale loads and yields

were determined.
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Coynel et al. (2004) simulated a range of sampling frequencies (four hour to one
month intervals) of TSS and discharge based on a reference record of frequently (two
hour to daily intervals) sampled TSS data. The authors found that the range of flux
estimates decreased significantly as sampling frequency increased and reported that the
error in monthly sampling can exceed the interannual variability in loads for extreme
hydrological conditions. Using a threshold of £20 percent, the authors determined that
sampling at frequencies less than semi-weekly was unacceptable and that the required
sampling frequencies were 7 hours for one watershed and 3 days for another.

Johnes (2007) used paired measurements of discharge and phosphorus at daily
intervals in a variety of catchments as reference time series from which weekly and
monthly records were derived. Eight equations for load estimation were applied to each
subset of data, and the results were compared to the reference loads calculated from the
reference series. For weekly sampling, the best method could only provide a “fuzzy
estimate of TP load,” and monthly sampling returned results biased by 50-450 percent,
depending on the watershed and the calculation method. The author advocates further

analysis using data at higher frequencies than daily.

2.8 Synopsis and objectives

Because TP is a constituent of concern on the Little Bear River, this study is
examining high frequency surrogate measures as methods to estimate TP concentrations
and loads with more certainty. High frequency monitoring with in situ sensors captures
important periods in constituent transport and reveals short term variability as well as

diurnal and seasonal trends typically omitted by intermittent sampling (Grayson et al.,
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1997; Kronvang et al., 1997; Christensen et al., 2002; Tomlinson and De Carlo, 2003;
Kirchner et al., 2004). Additional advantages to high frequency monitoring include
overall reductions in costs, personnel, and logistics, increased spatial scales, and the
potential to automate data collection (Grayson et al., 1997; Vivoni and Camilli, 2003;
Kirchner et al., 2004; Pressl et al., 2004; Vivoni and Richards, 2005). As technology to
measure TP in situ for extended time periods has not been developed, in situ turbidity can
be used as a surrogate measure for TP.

Phosphorus is often associated with suspended solids, which are commonly
estimated using in situ turbidity (Gray and Glysson, 2002). Several studies have also
developed relationships between TP and turbidity (Grayson et al., 1996; Kronvang et al.,
1997; Christensen, 2001; Christensen et al., 2002; Ryberg, 2006; Stubblefield et al.,
2007). Although these studies have been conducted in watersheds of differing
characteristics exhibiting a range of turbidity values, the relationships are site specific
and are limited to a handful of streams. Furthermore, the authors advocate the
development and implementation of surrogate relationships as a component of regular
water quality monitoring programs.

High frequency sampling also eliminates that need to employ a complex equation
to estimate loads. A number of studies have examined the various averaging methods
used to calculate loads from infrequently sampled data (Richards and Holloway, 1987; de
Vries and Klavers, 1994; Kronvang and Bruhn, 1996; Phillips et al., 1999; Robertson and
Roerish, 1999; Webb et al., 2000; Coynel et al., 2004; Johnes, 2007). Many authors

affirm the frequency of sampling is more important than the estimation method, and
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recommend increased sampling frequency to avoid uncertainty introduced by calculation
method, watershed characteristics, water quality constituent, and interaction between
these factors (Ferguson, 1987; de Vries and Klavers, 1994; Kronvang and Bruhn, 1996;
Phillips et al., 1999; Coynel et al., 2004; Johnes, 2007). Load estimates for larger rivers
were generally found to be less biased than those of smaller rivers, for which increased
sampling frequency is more important (Ferguson, 1987; Richards and Holloway, 1987;
de Vries and Klavers, 1994; Kronvang and Bruhn, 1996; Phillips et al., 1999; Coynel,
2004; Johnes, 2007). The effect of timing of sample collection on load estimates was not
explicitly addressed by any of these studies.

This study uses data from two sites in the Little Bear River to examine whether
high frequency measures can be used to better understand constituent transport, what
high frequency concentrations can reveal about the timing, sources, and pathways of TP
and TSS transport, and whether the frequency and the timing of sample collection have
an impact on load calculations. Based on the literature reviewed and described, the
specific objectives of this research are:

1. Examine turbidity as a potential surrogate for TP and TSS.

2. Develop site specific equations to describe the relationship between turbidity

and TP and TSS.

3. Examine other potential explanatory variables for significance in describing

TP and TSS.
4. Generate high frequency estimates of TP and TSS concentrations using the

relationships and high frequency turbidity data.
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5. Using the high frequency TP and TSS concentrations along with associated
discharge, calculate reference loads on an annual basis.
6. Subsample the high frequency concentrations and discharges to represent
decreasing sampling frequencies and the timing of sample collection, calculate

annual loads, and compare to the reference loads.
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CHAPTER 3
SURROGATE MEASURES FOR PROVIDING HIGH FREQUENCY
ESTIMATES OF TOTAL SUSPENDED SOLIDS AND

TOTAL PHOSPHORUS CONCENTRATIONS'

Abstract

Surrogate measures, like turbidity, which can be measured with high frequency in
situ, have potential for generating high frequency estimates of total suspended solids
(TSS) and total phosphorus (TP) concentrations. In the Little Bear River, a semi-arid,
snowmelt driven, and irrigation regulated watershed in northern Utah, USA, high
frequency, in situ water quality measurements (turbidity, water level, and water
temperature) were recorded in conjunction with periodic chemistry sampling conducted
over a range of hydrologic conditions. Site-specific relationships were developed using
turbidity as a surrogate for TP and TSS at two monitoring locations. Methods are
presented for employing censored data in the regressions and for investigating
explanatory variables in addition to the surrogate variables such as discharge conditions
and storm events. Turbidity was a significant explanatory variable for TP and TSS at
both the upper and lower watershed sites, which are characteristically different and have
varying sources of discharge as well as phosphorus. At both sites, the relationships
between TP and turbidity varied between spring runoff and baseflow conditions while the

relationships between TSS and turbidity were consistent across hydrological conditions.

' Coauthored by Amber Spackman Jones, David K. Stevens, Jeffrey S. Horsburgh, and
Nancy O. Mesner.
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The methods developed in this paper enable the calculation of continuous, high frequency
time series of TP and TSS concentrations that have previously been unavailable using
traditional monitoring approaches. These methods have broad application for situations
that require accurate characterization of the fluxes of these constituents over a range of

hydrologic conditions.

3.1 Introduction

Traditional water quality monitoring programs rely on the analysis of grab
samples that are typically collected at a frequency too low to fully characterize water
quality constituent concentrations and to calculate loads of those constituents over time
(Etchells et al., 2005; Scholefield et al., 2005). Additionally, concentrations of solids and
nutrients are often greater during storm events due to non-point source runoff (Nolan et
al., 1995; Kronvang et al., 1997, Correll et al., 1999; Croke and Jakeman, 2001; Houser
et al., 2006; Jordan et al., 2007), periods that routine sampling often misses. High
frequency monitoring with in situ sensors offers a number of enhancements to traditional
water quality monitoring methods. High frequency monitoring can capture time periods
and characterize seasonal trends that may be omitted or overlooked by traditional
periodic grab sampling (Grayson et al., 1997; Christensen, 2001; Christensen et al., 2002;
Tomlinson and De Carlo, 2003; Kirchner et al., 2004; Jordan et al., 2007). Monitoring
equipment that measures continuously can reduce the logistics and personnel required for
grab sampling to be representative (Grayson et al., 1997), can eliminate errors in
transcription and delays in obtaining data (Vivoni and Camilli, 2003), and can be closely

linked with a water quality model to better refine parameters and results (Vivoni and
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Richards, 2005). Variables commonly measured in situ include physical parameters such
as water level, pH, specific conductance, dissolved oxygen, and turbidity. Additionally,
UV-VIS spectroscopy and ion-specific sensors can be used in situ to quantify constituents
such as nitrate, nitrite, chlorophyll, and chemical oxygen demand.

Despite developments in sensor technology, there are still important water quality
constituents that are either impossible or impractical to measure in situ or in real time for
extended periods (e.g., total phosphorus samples are most often digested and analyzed in
the lab). High frequency measurements have the powerful potential to be used as
surrogates to estimate other properties such as pollutant concentrations. A common
surrogate used for this purpose is turbidity, which is an optical measure of the scattering
of light passing through a sample of water due to colloidal and suspended matter. This
paper examines turbidity as a surrogate measure for total phosphorus (TP) and total
suspended solids (TSS) at two locations on the Little Bear River, Utah, USA. We use the
linear relationships between turbidity and TSS and TP to obtain equations for TP and
TSS concentrations as functions of turbidity, enabling the generation of high frequency,
long term estimates of their concentration.

Phosphorus is an essential nutrient in aquatic systems. However, over-enrichment
of water bodies with phosphorus can cause increased primary productivity leading to
eutrophication in lakes and reservoirs and excessive periphyton growth in rivers (Hem,
1985; US EPA, 1986; Mueller and Helsel, 1996). Concerns with eutrophic water bodies
include aesthetics for natural waters and drinking water sources and reduced dissolved

oxygen levels, which adversely affect fish and other forms of aquatic life. Phosphorus is
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found naturally in some soils, but significant amounts are contributed to aquatic systems
by anthropogenic sources such as fertilized fields, animal waste, wastewater treatment
plants, and industries (Hem, 1985; Mueller and Helsel, 1996). Depending on the source,
phosphorus is frequently associated with suspended sediments, which may also be a
water quality concern (Kronvang et al., 1997; Heimlich, 2003). Not only do suspended
sediments transport contaminants such as nutrients, pesticides, and metals, high levels of
suspended sediment can be detrimental to aquatic life, decrease the recreational quality of
a water body, complicate water treatment, and interfere with the operation of hydraulic
structures (US EPA, 1986).

Considerable research is available demonstrating the potential for accurately
relating suspended sediment concentrations to turbidity measurements (Gippel 1989,
1995; Kronvang et al., 1997; Brasington and Richards, 2000; Uhrich and Bragg, 2003;
Christensen et al., 2000; Christensen, 2001; Lewis, 2002; Tomlinson and De Carlo,
2003). There is also evidence that turbidity can be used as a surrogate for phosphorus.
Grayson et al. (1996), Christensen (2001), Christensen et al. (2002), Ryberg (2006), and
Stubblefield et al. (2007) found statistically significant correlations between turbidity and
TP in watersheds of differing characteristics exhibiting a range of turbidity values. In
these studies, turbidity was the principle explanatory variable for TP and TSS, although
the relationships at a few locations included discharge and a temporal variable (e.g., day
of the year) in the final surrogate relationship. As the nature of turbidity depends greatly

on the source of sediment (Gippel, 1995), the surrogate relationships are generally site
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specific (Grayson et al., 1996; Christensen et al., 2002; Tomlinson and De Carlo, 2003),
which limits the applicability of previous studies to other locations.

Surrogate relationships for estimating water quality constituent concentrations
such as those presented in this paper allow for the generation of concentration estimates
at a much higher temporal resolution than most traditional water quality monitoring
programs have achieved. Although many aspects of water quality monitoring have
improved, sampling frequency remains a limiting factor in the estimation of water quality
constituent loads (de Vries and Klavers, 1994; Johnes, 2007). High frequency estimates
of concentration can overcome some problems encountered when constituent loads are
calculated (e.g., complicated load estimation equations and situations where discharge is
measured more frequently than concentration). Water quality models also suffer from the
paucity of concentration observations and would be improved by high frequency
estimates of concentration (Neilson and Chapra, 2003; Kirchner et al., 2004; Johnes,
2007). As aresult, compliance with water quality standards and regulations that are
based on concentration and load estimates can be determined with more certainty.

Surrogate measures can be an important component of water quality monitoring
programs and environmental observatory design as a relatively inexpensive method for
producing high frequency time series of water quality constituent concentrations over
extended time periods. The Little Bear River is one of 11 environmental observatory test
bed projects developing techniques and technologies for environmental observatory
design ranging from innovative application of environmental sensors to publishing

observations data in common formats and making it widely accessible (Montgomery et
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al., 2007). Specific objectives of the Little Bear River Test Bed include the estimation of
water quality fluxes from surrogate data, relation of the fluxes to watershed attributes and
management practices, examination of high frequency hydrologic and hydrochemical
responses, and development of cyberinfrastructure supporting these analyses.

In this paper, we describe the development of surrogate relationships for TP and
TSS at two locations in the Little Bear River. Section 2 describes the Little Bear River
watershed where this study was conducted. Section 3 details the data collection and
statistical procedures used to obtain the surrogate relationships. Section 4 includes the

final surrogate models and a comparison of the two sites.

3.2 Study area

The Little Bear River watershed is located in northern Utah, USA and is a major
tributary of the Bear River, which flows into the Great Salt Lake. The Little Bear
watershed encompasses an area of approximately 740 km® the headwaters are in the Bear
River Mountain Range, and elevations range from 1,340 m to 2,700 m. The river has two
principal subdrainages, the East Fork and the South Fork. The South Fork and its major
tributary, Davenport Creek, flow northward through forest and range land before the
confluence with the East Fork. The East Fork originates in higher elevation, forested
land, and flows northwest until it is contained by Porcupine Reservoir, which is used to
store water for summer agricultural irrigation. A few miles downstream of Porcupine
dam, the East Fork is diverted for irrigation purposes, and for several months of the year,
portions of the natural channel are dry. The confluence of the two forks is near the town

of Avon, after which the river flows northward through the towns of Paradise and Hyrum.
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Most of the land adjacent to the river is agricultural including crops and livestock
grazing. Near the town of Hyrum, the river is contained in Hyrum Reservoir, which is
also operated to supply summer irrigation water. Below Hyrum dam, the river flows
northwest through lower gradient agricultural land. The river passes through the towns of
Wellsville and Mendon before draining into an arm of Cutler Reservoir and ultimately to
the Bear River. The watershed and local towns are shown in Fig. 3-1.

Over the past 15 years (1993-2007), the average annual precipitation in the lower
watershed was 432 mm, while the average annual precipitation in the upper watershed
was 4,465 mm, demonstrating significant variability in annual precipitation with
elevation. Most of the precipitation occurs as snowfall, and the flow regime in the
watershed is driven by snowmelt with hydrograph peaks occurring in late spring. The
magnitude, timing, and duration of the peak are dictated by the winter snowpack and
spring weather conditions. In the upper watershed, where an active United States
Geological Survey (USGS) gage is located, the average annual discharge is 2.5 cms
(based on 15 years of data), and within a year, the discharge ranges from 0.50 to 12 cms

on average.

3.3 Methods
3.3.1 Instrumentation and monitoring

Seven sites have been instrumented within the Little Bear River for the collection
of high frequency water quality monitoring data. General characteristics and data
collected at these locations are described in detail by Horsburgh et al. (2008). Two of

these sites were chosen for analysis in this paper and are indicated in Fig. 3-1. The first
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site is the Little Bear River at Paradise, located in the upper watershed below the
confluence of the East and South Forks and above Hyrum Reservoir. The second site is
the Little Bear River at Mendon, located in the lower watershed near the river’s terminus
at Cutler Reservoir. The two sites were selected for their distinct characteristics. Above
Paradise, there are agricultural diversions and the river passes through some agricultural
land, but relative to Mendon, the river is less regulated, higher gradient, and less
impacted. In contrast, above Mendon, the river is controlled by Hyrum reservoir releases
and influenced by agricultural return flows, a wastewater treatment plant, and an
increasingly agriculturally developed landscape. Approximately 4 percent of the land
above Paradise is agricultural whereas between Paradise and Mendon, the portion of land
used for agriculture is about 50 percent. Additionally, at Mendon, the river is lower
gradient and groundwater levels in this portion of the watershed are higher than at
Paradise. Another difference between the two sites is characteristics of the soils and
resulting suspended sediments. Mendon is located in a lacustrine valley with finer soils
that remain in suspension while the suspended matter at Paradise is coarser and more
likely to settle (Soil Survey Staff, 2008).

The water quality monitoring equipment installed at both sites includes a Forest
Technology Systems DTS-12 SDI-12 Turbidity Sensor. The turbidity sensor uses an
infrared light beam and optical backscatter with a detector at 90 degrees to the emitted
light to determine turbidity (Forest Technology Systems Ltd., 2007), and the sensor also
measures water temperature. Turbidity and water temperature measurements were

recorded at half hour intervals. At Paradise, there is an active USGS gage (USGS
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10105900 Little Bear River at Paradise, UT) adjacent to the real time water quality
sensors from which records of 15-minute instantaneous and daily average discharge were
obtained. At Mendon, water level is measured continuously by a KWK Technologies
SPXD-600 SDI-12 Pressure Transducer. Water level readings were coupled with
periodic manual discharge measurements to obtain a stage-discharge relationship. The
stage-discharge relationship was then used to generate continuous, half hourly estimates
of discharge at Mendon.

Water quality samples were collected at the two sites either by grab sampling
conducted by a field crew or by automated samplers. The samplers operate by pumping
water from the river through tubing into sample bottles held within the main chamber,
allowing for the collection of multiple samples during an event such as a storm or a
period of snowmelt. In general, samplers were deployed when precipitation was
expected. Each sample was split for TSS and TP analysis with a portion of the sample
filtered using a 0.45 um filter for the analysis of dissolved total phosphorus (DTP).

Laboratory analyses were performed externally by labs affiliated with Utah State
University and with the State of Utah Division of Water Quality. This study uses historic
data, so labs and their associated methods changed over the time period examined. The
results from the labs should produce consistent results, and a small number of samples
sent to multiple labs confirmed this assumption. For TSS analyses, some samples were
analyzed under EPA method 340.2, Total Suspended Solids, Mass Balance while the
remaining samples were analyzed according to EPA method 160.2, Residue Nonfilterable

Total Suspended Solids. For TP and DTP analyses, some samples were analyzed
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according to EPA method 200.8, Determination of Trace Elements in Water and Waste
by Inductively Coupled Mass Spectroscopy, and the remaining samples were analyzed as
directed by EPA method 365.2, Orthophosphate Ascorbic Acid Manual Single Reagent

preceded by an acid digestion of the sample.

3.3.2 Database procedures
All of the mentioned datasets were stored and managed using a database at the

Utah Water Research Laboratory (http://littlebearriver.usu.edu/). The turbidity, water

temperature, and water level data were transmitted and accessed via a spread spectrum
radio network, the USGS discharge data were obtained from the USGS National Water
Information System (NWIS) and incorporated into the database, and the lab results were
entered into the database by hand. The time period under examination extended from the
installation of in situ sensors in August 2005 through April 2008 resulting in datasets of
150-180 samples of TP, DTP, and TSS collected at each site. For each observation of
TP, DTP, and TSS, associated continuous measurements were extracted from the
database and matched in time with the lab results. When the timing of a sample did not
exactly correspond to the timing of continuous measurements, the values of turbidity,
water temperature, and discharge that bracketed the manual sample were interpolated

accordingly.

3.3.3 Statistical methods
Our objective was to develop correlations to estimate TP and TSS as functions of

turbidity using simple regression, following the general form given in Equation 3.1.
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Yi=ayt+axi+te i=12,..n (3.1)
where y; represents the ith observation of the response variable, ay and a;are parameters
estimated by regression, x; is the ith observation of the explanatory variable, e; represents
the error for the ith observation, and # is the number of samples. Using techniques
subsequently described, regression parameters unique to each response variable were
estimated based on the observations datasets. The errors, or residuals, should be
independent, demonstrate constant variance, have a mean of zero, and be normally
distributed. Examining the residuals for these qualities helps in assessing the
appropriateness of the developed equation.

In order to assess the potential of turbidity as a surrogate for TP and TSS, we
initially examined plots of turbidity against the response variables. This allowed for the
visual identification and subsequent removal of several extreme data points (no more than
3.5 percent of a single dataset). The outliers consisted of high turbidity measurements
corresponding to low TP or TSS measurements, as well as low turbidity measurements
corresponding to high TP or TSS measurements, relative to the majority of data points. It
is assumed that these outliers are a consequence of inconsistency between grab samples
and the water that passes in the range of the turbidity sensor. Although efforts were made
to collect samples near the turbidity sensors, there could still be discrepancy between the
collected sample and the water measured by the turbidity sensor. This is consistent with
the findings of Christensen et al. (2000) and Tomlinson and De Carlo (2003).

While turbidity was thought to be a significant explanatory variable, other

variables (discharge, water temperature, day of year, and hour of day) were considered
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for inclusion in the regression equations and were tested for significance in describing
some of the variability in the response variables. In addition to these parameters,
categorical variables associated with the hydrological conditions at the time of sample
collection were examined.

Categorical variables are qualitative descriptors of the data that can be used in
regression models. For each data point, a categorical variable is assigned a value of 1 or
0 to designate whether or not the observation falls into a particular category (e.g.,
seasons, laboratory methods). By adding categories as explanatory variables to the
regression equation, this technique permits the inclusion of multiple categories while
developing a single model that describes the entire dataset. The alternative of splitting
the data into subsets according to categories and developing multiple models is less
statistically powerful as resolution is lost with a reduced number of observations
(Berthouex and Brown, 2002). Equation 3.2 shows the form of a regression equation
with the inclusion of a categorical variable.

yVi=ag+ a1 x;+Z(Bo+ Bix) +e i=12,..n (3.2)
where Z represents a categorical variable (Z = 0 if data are in the first category, Z= 1 if
data are in the second category), 5, and f; are parameters estimated by regression, and y;,
Qy, a4, X;, e;and n are as defined previously.

In this study, we investigated two categorical variables associated with
hydrological conditions: one to represent spring runoff versus baseflow and one to
represent the occurrence of a storm. Because the flow regime of the Little Bear is

primarily snowmelt driven, we hypothesized that the behavior of TP and TSS might be
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significantly different during spring runoff versus baseflow conditions. Seasonal
differences in surrogate relationships have been suggested by Grayson et al. (1996),
Christensen et al. (2002), and Ryberg (2006). As a result, the first categorical variable
that was examined was whether the sample was collected during baseflow conditions or
during spring runoff. Observations identified to occur during the period of spring runoff
were assigned a value of 1 for this variable while the remaining observations, collected
during baseflow conditions, were assigned a value of 0. Since runoff resulting from
precipitation events also has the potential to carry significant amounts of sediment and
associated phosphorus into the river, the other categorical variable that was hypothesized
to be significant was whether or not a sample was collected during a storm event.
Observations identified as occurring during a storm event were assigned a value of 1 for
this variable, and all other observations, collected during non-storm periods, were
assigned a value of 0.

Initially, storms were defined as any time appreciable precipitation occurred
based on a record of daily precipitation in the lower watershed. However, even though
efforts were made to sample during precipitation events, rainfall often occurred without a
significant discharge response, especially during the summer months when antecedent
soil conditions were not conducive to runoff generation. As a result, alternative methods
were employed to determine whether a sample was collected during a storm event. One
technique examined was baseflow separation. Baseflow separation refers to the
partitioning of a hydrograph into baseflow (i.e., discharge due to groundwater sources)

and runoff (i.e., discharge that is a response to an external event such as a storm or
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snowmelt). There are many methods for baseflow separation ranging from simple to
complex (McCuen, 1998; Chapman, 1999). We needed to identify runoff that was a
response to precipitation and not a result of spring snowmelt, so the local-minimum
method was selected because it delineates more of the discharge as baseflow relative to
other baseflow separation techniques, making it more appropriate for separating storms
from other sources of discharge. This method was used as part of a publicly available
program known as the Web-based Hydrograph Analysis Tool (WHAT) to perform
baseflow separation (Lim et al., 2005).

Storm identification is somewhat subjective, and because we wanted to explore
simple methods, additional techniques were developed to designate samples collected
during a storm. One method was based on a visual examination of the discharge and
precipitation records. Another method was based on a reference distribution for averages
of sets of consecutive observations, which can reveal the significance of change in a
serially correlated data series (Berthouex and Brown, 2002). Table 3.1 details the
methods used for storm identification. Storms were identified separately for each site,
and both high frequency and daily average discharge data were employed to assess
whether higher resolution provides a superior method of identification or if lower
resolution better represents the period of the river’s response to a precipitation event.
Each sample was assigned a value (0 or 1) for storm category for each method, and the
resulting datasets were tested for significance as an explanatory variable in the regression

equation for each response variable.
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A significant portion of the TP concentrations were reported as non-detects (30
percent at Paradise and 13 percent at Mendon), so we needed a regression method with
the capability to include censored data. Historically, censored data have either been
omitted from analyses or substituted with some value at or below the detection limit.
These methods introduce bias and variability into descriptive statistics that are calculated
from datasets with censored values (Helsel, 2005). In order to preserve the censored
values in the dataset without using substitution, regression with maximum likelihood
estimation (MLE) was performed on the matched datasets within the framework of the

statistical program R (http://www.r-project.org/) using techniques developed and

described by Helsel and Lee (2006). MLE assumes a distribution for the response
variable and estimates a mean and standard deviation for that dataset that are most likely
to result in the values above the detection limit and the proportion of values below the
detection limit (Helsel, 2005). The mean and standard deviation are then used to produce
values for the regression parameters (e.g., @y, ;) that account for censored data. The
TSS datasets do not suffer from a large amount of censored data, so associated models
were developed using standard least squares regression within the R framework.

In order to determine which variables were important predictors, regression was
performed multiple times for each response variable by adding and removing potential
explanatory variables. A number of techniques were employed to address the
appropriateness of each resulting model and to compare one model to another. For each
explanatory variable in the regression, a p-value was calculated, indicating the probability

that the value of the regression parameter is not different from 0, so a p-value greater than
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a specified threshold (commonly 0.05) indicates that the relationship between the
explanatory variable and response variable is not statistically significant. If a p-value was
less than 0.05, the associated variable was considered significant. For MLE regression,
overall log-likelihood tests assist in determining whether the model is better than no
model at all, and a parallel test, the partial log-likelihood, was used to discern whether the
addition of a variable improved the regression as compared to the equation without that
variable (Helsel, 2005). The partial log-likelihood was then compared to a chi-square
distribution with the associated degrees of freedom to determine the p-value, the
probability that the model with the additional variable was different than without it.
Again, 0.05 was used as the criteria for significance. Finally, residuals were examined to
assess the error in each model. The root mean square error (RMSE) as given by Equation

3.3 was used to compare models as a lower RMSE indicates a reduction in overall error.

RMSE = |2~ (3.3)
v

where RMSE is the root mean square error, r represents each residual value, and v
corresponds to the degrees of freedom. A variable was included in the final equation if it
provided a significant reduction in the RMSE, had a p-value less than 0.05, and was
significant according to the partial log-likelihood test. Plots of the residuals were also
examined to verify randomness and independence from other factors as well as to assess
whether the residuals exhibited constant variance and approached a normal distribution.
Transformations are often used on datasets to achieve constant variance, a linear
relationship between independent and dependent variables, or a normal distribution in the

residuals (Berthouex and Brown, 2002). A log transformation of the dependent variable
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alone as well as a log transformation of both the dependent and independent variables
were examined. Transformations did not provide any significant improvement in the
models for any of the response variables, so untransformed datasets were used in all

cascs.

3.4 Results and discussion
3.4.1 Simple correlations

Plots of the relationships between TP and TSS and potential explanatory variables
are shown as matrices of correlation plots in Fig. 3.2, 3.3, 3.4, and 3.5. At Paradise, there
is a strong correlation between turbidity and both TP and TSS (correlation coefficients of
0.95). Both response variables exhibit some correlation with discharge (TP correlation
coefficient of 0.80 and TSS correlation coefficient of 0.70) and water temperature (TP
correlation coefficient of 0.48 and TSS correlation coefficient of 0.30). Additionally,
there appears to be some relationship with the day of the year on which the sample was
collected for both TP (correlation coefficient of 0.57) and TSS (correlation coefficient of
0.46).

At Mendon, TP appears to have a significant correlation with turbidity
(correlation coefficient of 0.70), though not as strong as that at Paradise nor as strong as
the correlation between turbidity and TSS at Mendon (correlation coefficient of 0.84).
Like Paradise, TP and TSS at Mendon have some correlation with day of year (TP
correlation coefficient of 0.67 and TSS correlation coefficient of 0.56). In addition, TSS

at Mendon is correlated with discharge (correlation coefficient of 0.41).
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3.4.2 Paradise: Total phosphorus

The final model for TP at Paradise is given by Equation 3.4:

TP =0.0209 + 0.000798 * Turb + 0.0386 * Z 34
where TP is total phosphorus concentration in mg/L, Turb is turbidity in NTU, and Z
represents the categorical variable for spring runoff (Z = 1) versus baseflow (Z=0). The
p-value for turbidity was less than 10 and for Z was 8.71*10, both within the 0.05
threshold. Excluding the residuals of the censored data, the RMSE for this model was
0.069 mg/L TP, which is about a fourth of the MLE mean of the observed dataset, 0.26
mg/L TP. This value is within the range of RMSE values resulting from the turbidity and
TP correlations reported by Christensen et al. (2002) over a similar range of turbidity
values.

Of all the explanatory variables examined, only turbidity and the spring runoff
categorical variable were significant. Including discharge or water temperature did not
improve the equation’s ability to predict TP concentrations. This is likely due to
colinearity with turbidity, as shown in Fig. 3.2. The relationships between TP and
discharge and water temperature are very similar to the relationships between turbidity
and discharge and water temperature. The categorical variable indicating whether
observations were collected during a storm event was not significant regardless of which
storm identification method was used. This implies that the relationship between
turbidity and TP is consistent throughout storm events, though there is a distinction

during periods of spring runoff and periods of baseflow. Correlation with season or
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hydrologic regime is consistent with the results of Christensen et al. (2002) and Ryberg
(2006).

Fig. 3.6 contains plots of observed TP and modeled TP using Equation 3.4. Fig.
3.6(a) shows a time series of modeled TP along with points of observed TP for the entire
period used to generate Equation 3.4. However, this plot does not permit direct
comparison between each point as does Fig. 3.6(b), which indicates corresponding
modeled and observed results connected by vertical lines. Fig. 3.6(b) shows that the
differences between the regression results and the observations are generally greater at
higher values of TP, but there are exceptions to this pattern.

Fig. 3.7 and 3.8 show plots of the residuals of this model. Fig. 3.9 is a matrix of
correlation plots showing relationships between the residuals and measured
physical/chemical properties. These plots and the associated correlation coefficients do
not demonstrate a strong relationship between the residuals and any measured properties.
Additionally, the residuals did not show any correlation with temporal variables such as
day of the year or hour of the day. In the interest of space, residual plots for the other
equations in this paper are found in Appendix A.

Although the other criteria for residuals are met (independence, constant variance,
and mean of zero), the probability plot indicates that the residuals of this model are not
normally distributed. Non-normal residuals suggest that the assumed parametric
distribution (in this case, a normal distribution) in the regression is incorrect. However,
normality in the residuals was not achieved through logarithmic transformations of TP or

turbidity, and the un-transformed model returned the smallest RMSE. The incorporation
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of any additional explanatory variables did not provide a significant increase in the
normality of the residuals. Because of the non-normality of the residuals, techniques that
assume normality (e.g., confidence limits on the slope) cannot be conducted on this data.
In order to verify that using MLE parametric regression was valid, Kendall’s tau and the
associated Akritas-Thiel-Sen (ATS) line were calculated. These methods can be used to
non-parametrically determine the slope between an independent and dependent variable
(Helsel and Lee, 2006). For TP at Paradise, the ATS slope corroborated the coefficient

between turbidity and TP determined by MLE regression.

3.4.3 Paradise: Total suspended solids
The final model for TSS at Paradise is given by Equation 3.5:

TSS =3.58+ 1.31 «Turb (3.5)
where 7SS is total suspended solids in mg/L and Turb is turbidity in NTU. The p-value
for turbidity was less than 107, within the criteria for significance. Turbidity was the
only explanatory variable that was a significant descriptor of TSS, suggesting that
turbidity alone is sufficient to predict TSS across hydrologic conditions at this site. As
with TP, although there appears to be a correlation between TSS and discharge and water
temperature, the correlation between turbidity and these variables is similar (see Fig. 3.3),
so the relationship with turbidity provides an adequate estimate.

The resulting RMSE was 117 mg/L TSS, which is about half of the dataset mean
of 240 mg/L TSS. Plots of the modeled and the observed datasets are found in Fig. 3.6.
Plots of the residuals, a histogram of the residuals, the residual probability plot, and a

matrix of correlation plots of the residuals and physical/chemical variables are found in



45
Appendix A (Fig. A.1, A.2, and A.3). Fig. 3.6(d) shows results similar to those of TP at
Paradise with greater errors at higher values of TSS. Like the TP model at Paradise, the
distribution of the residuals deviates from the normal at the tails, but the ATS slope
verified the regression parameters. Significant correlation is not observed between the

residuals and any additional variables.

3.4.4 Mendon: Total phosphorus
The final model for TP at Mendon is given in Equation 3.6:

TP = —0.0341 + 0.0053  Turb + 0.0949 * Z — 0.00404 x Turb = Z +
0.0832 %Y — 0.00871 % Y * Turb (3.6)

where TP is total phosphorus concentration in mg/L, Turb is turbidity in NTU, Z
represents the categorical variable for spring runoff (Z = 1) versus baseflow (Z = 0), and
Y is a categorical variable for Turb <10 (Y = 1) versus Turb>10 (Y =0). The p-values for
turbidity, Z, and the interaction between turbidity and Z were all less than 10 and all
within the criteria for significance. This equation differs from that for the Paradise site in
that the interaction between turbidity and Z was found to improve the model significantly,
indicating that the combined effect of the two variables is different from the sum of their
individual contributions. In this case, TP is decreased during spring runoff periods by a
factor of 0.00404*turbidity. This reduction, however, resulted in some negative
predicted concentrations, so an additional categorical variable, Y, was included to
distinguish the relationship at low versus high levels of turbidity. The p-value for ¥ was
1.38*107, and the p-value for the interaction between Y and turbidity was 5.24*107, both
within the 0.05 threshold. The inclusion of this variable suggests that the relationship

between turbidity and TP is different at low values of turbidity, corresponding to low TP
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measurements. Distinctions in surrogate relationships at low turbidity levels have been
suggested by Grayson et al. (1996) and Stubblefield et al. (2007).

As with TP at Paradise, turbidity and the spring runoff/baseflow categorical
variable were the only explanatory variables that were found to be significant. In Fig.
3.4, TP at Mendon shows little correlation with water temperature or discharge, although
there is correspondence with day of the year, which is corroborated by the inclusion of Z
in the final equation. Similar to Paradise, none of the storm event variables resulted in
improvement in the model, demonstrating that at this site, the relationship between
turbidity and TP varies between the spring runoff and baseflow periods, but is consistent
through storm events.

Without using the residuals of the censored values, the RMSE for this model was
0.027 mg/L TP, which is about a third of the MLE mean of the observed values (0.074
mg/L TP). This value is less than the range of RMSE values determined for turbidity and
TP relationships by Christensen et al. (2002) for a similar range of turbidity values. Fig.
3.10 includes plots of the modeled results with the observations, which, unlike the results
at Paradise show a wide range of errors at the low and high values of TP. Residual plots
are found in Appendix A (Fig. A.4, A.5, and A.6). The residuals appear to be
independent from other variables, and the probability plot indicates that the distribution

of the residuals closely approximates the normal distribution.

3.4.5 Mendon: Total suspended solids
The final model for TSS at Mendon is given by Equation 3.7:

TSS = 0.341 + 1.41 * Turb (3.7



47
where 7SS is total suspended solids in mg/L and 7urb is turbidity in NTU. The p-value
for turbidity was less than 10, which surpasses the criteria for significance. In parallel
with the TSS model at Paradise, the Mendon model was not significantly improved by
the inclusion of any explanatory variables other than turbidity. Although there was some
correlation between TSS and discharge at this site, it is reflected in the relationship
between turbidity and discharge, so no new information is gained by including discharge
in the equation. Additionally, neither of the categorical variables was significant,
implying that the relationship between TSS and turbidity is consistent through
hydrological conditions at this site.

The RMSE of the model was 10.8 mg/L TSS, which is about a third of the mean
of observed values (30.4 mg/L TSS). Plots of the modeled and observed data are
presented in Fig. 3.10. Like both TP and TSS at Paradise, Fig. 3.10(d) shows a greater
difference in modeled and observed values at higher values of TSS, though there are
exceptions to this generalization. Plots of the residuals are found in Appendix A (Fig.
A.7, A.8, and A.9). The residuals demonstrate randomness in relation to explored
independent variables, and the probability plot shows that the residuals closely

approximate the normal distribution although there is some deviation at the tails.

3.4.6 Site Comparison

Paradise and Mendon were selected as sampling sites for analyses in this paper
due to their differing characteristics, which are reflected somewhat in the variations in the
surrogate relationships. The final equations are summarized in Table 3.2. The RMSEs

for both TP and TSS are greater at Paradise than Mendon, a result of the larger range of
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observed values at that site. The simple correlations indicate stronger correlations at
Paradise than Mendon between turbidity and both TP and TSS, and the final TP equation
at Paradise appears to better track trends through a greater range than does the Mendon
model. Also, the Mendon TP regression is more complex as it includes the interaction
between turbidity and the spring runoff/baseflow categorical variable and requires an
additional variable to account for different behavior between turbidity and TP at low
concentrations.

We hypothesize that these differences are a result of the varying composition of
TP between the two sites. Of the TP measurements with corresponding DTP
measurements, at Mendon, an overall average of 60 percent of the TP was dissolved,
leaving 40 percent as particulate. The average composition of TP measured at Paradise
was 40 percent dissolved and 60 percent particulate, the opposite of the ratio at Mendon.
These ratios are comparable to those reported by Johnes (2007) for sites with higher
baseflow and more groundwater influence (65-75 percent dissolved) versus those with
lower baseflow (40-50 percent dissolved). Since dissolved phosphorus is not associated
with any particles, the correlation between TP and turbidity at Mendon would not be as
strong as the correlation at Paradise where the TP is primarily comprised of particulate
phosphorus. This is corroborated by Stubblefield et al. (2007) who found no correlation
between soluble reactive phosphorus and turbidity.

It is inferred that the variations in the speciation of phosphorus at the two sites is a
reflection of the different sources of phosphorus and differing stream dynamics. Factors

that may increase the amount of DTP at Mendon include more concentrated agricultural
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activity than above Paradise, impact from a wastewater treatment plant, and manure or
fertilizer that flows into canals and into the river before being incorporated by plants or
adsorbed to the soil. In contrast, it is hypothesized that the phosphorus entering the river
above Paradise is primarily related to soil erosion and particulate matter. Additionally,
between the two sites is Hyrum Reservoir. Phosphorus (primarily particulate) enters the
reservoir from the upper watershed and accumulates in the lake bed. Over time, the
phosphorus can dissolve and then be carried out of the reservoir in its dissolved form
through reservoir releases (Utah DEQ, 2000b). Reservoir releases might also carry algae
that contain phosphorus. Other than releases from Hyrum Reservoir, the sources of
discharge at Mendon include agricultural return flows, which have the potential to
contribute dissolved phosphorus from crop runoff, and there is some groundwater
influence at Mendon as well. It is possible that dissolved phosphorus enters the river via
the groundwater (Burkart et al., 2004), however we have no specific evidence that this is
occurring in the Little Bear River.

Patterns of dissolved phosphorus were further examined in order to address the
possibility of relating the portion of TP that was dissolved to model results. No trends
were found with respect to season, and there was no relationship with TP model residuals
at either site. During runoff periods at both sites, the fraction of dissolved phosphorus
was slightly higher than during baseflow periods, but more data is necessary to confirm
that these differences are significant.

At Mendon, the TP surrogate relationship might be improved by the inclusion of

variables in addition to turbidity, discharge, and water temperature. Part way into this
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study, in situ sensors were installed to measure pH, specific conductance, and dissolved
oxygen. Because specific conductance and pH are related to dissolved species, they may
help to refine the regression where the majority of TP is dissolved. A method for using
surrogate measures to estimate dissolved phosphorus would be valuable because,
although TP is the form of phosphorus that is generally regulated, dissolved phosphorus
is the form that is actually available for biological uptake.

Despite the differing characteristics of the two sites, aspects of the surrogate
relationships were consistent between Paradise and Mendon. At both sites, the TSS
surrogate relationships were functions only of turbidity with similar coefficients (1.31 at
Paradise and 1.41 at Mendon) although the suspended matter differs between the two
locations. At Paradise, the soils and resulting suspended solids are coarser and more
likely to settle than the finer material that is more likely to stay suspended found at
Mendon. For both sites, turbidity was the only explanatory variable for TSS while the TP
relationship included a variable to account for baseflow versus spring runoff. This is
similar to the differences between the suspended sediment and TP surrogate relationships
determined by Ryberg (2006). Another similarity is the lack of significance of storm
event in all of the regressions. Although storms are often important periods for TSS and
TP transport and despite significant investment into the identification of storm periods, in
this watershed, the relationships between turbidity and TP and TSS do not vary during

storms.
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3.5 Conclusions

Physical (turbidity, discharge, water temperature) and temporal (day of year, hour
of day) variables were matched with TP and TSS observations at two sites in the Little
Bear River to assess the potential for using continuously measured turbidity as a
surrogate for estimating TP and TSS. Regression equations were developed for TP and
TSS as functions of turbidity at both sites. In developing the surrogate relationships,
censored data were employed using MLE regression, and categorical variables
representing hydrological conditions were investigated. We found that the relationships
between turbidity and the response variables were not significantly improved by the use
of a categorical variable indicating storm events versus no storm. At both locations,
however, there was a distinction in the relationship between turbidity and TP during
periods of spring runoff versus periods of baseflow. For TSS, the relationship with
turbidity was consistent across hydrological conditions at both locations. At the lower
watershed site, the TP model included a distinction between low and high levels of
turbidity. The overall error in the models, as estimated by the RMSE, was between one
fourth and one half of the mean of the observed data, and visual examinations of the
observed and estimated concentrations indicate that the equations generally track
observed trends.

The differences in the surrogate relationships at the upper and lower watershed
sites allude to differences in the sources of phosphorus as well as sources of discharge.
Turbidity was the only physical variable that was a significant surrogate, although, since

the inception of this study, additional variables (pH, specific conductance, dissolved
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oxygen) have been measured that may improve the relationships. Furthermore, as new
data are collected, the regression equations may be modified, or calibrated, to improve
the fit with observations.

Coupled with high frequency measurements of explanatory variables, surrogate
relationships can be used to calculate high frequency estimates of concentration for
extended time periods. Loads derived from high frequency, continuous concentration
records provide a number of advantages to loads calculated from traditionally sampled
concentration. One benefit is that increased loading during events such as storms or
spring runoff, which are often missed by routine sampling programs, are considered
without skewing the estimate high as collecting samples disproportionately during storm
events can do. Also, there is no need to use complicated load estimation equations that
allow for long periods between concentration measurements or discharge measured more
frequently than concentration.

Surrogate measures to estimate water quality constituents have widespread
implications for water quality monitoring programs and the design of environmental
observatories. Until viable in situ sensors for TP and TSS are developed, surrogate
measures allow the characterization of fluxes at varying time scales (e.g., seasonally or in
response to an individual event) and also provide a better means for comparison between
monitoring sites. High frequency concentration estimates and resulting loads will allow
the determination of compliance based on a concentration or load threshold to be made
with more certainty. For water quality models, improved quantification of constituent

concentrations will facilitate the estimation of parameters representing pollutant loading
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drivers such as land use, management practices, and hydrologic characteristics and can
also permit the testing of underlying model assumptions. For large scale environmental
observatories, the use of surrogate measures will be necessary as a logistically and
economically feasible means to characterize the variability in constituent fluxes on high

temporal and spatial resolutions over extended time periods and at many locations.
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Methods used for storm identification

Method

Description

Baseflow High Frequency Baseflow separation was performed with the highest frequency discharge. If runoff was greater than 5%* of the
baseflow for that time increment, the observation was identified as having occurred during a storm.

Baseflow Daily Average Baseflow separation was performed with the daily average discharge. If runoff was greater than 5%%* of the

baseflow for that day, the observations were identified as having occurred during a storm.

Visual High Frequency — Samples were identified as having been collected during a storm where precipitation occurred and where there
was a visibly notable change in the hydrograph of the highest frequency discharge data.

Visual Daily Average  Samples were identified as having been collected during a storm where precipitation occurred and where there
was a visibly notable change in the hydrograph of daily average discharge data.

Reference Distribution  If the increase in three day average discharge was greater than 5% of the change in average discharge of the
previous three days, then observations on that day was identified as having occurred during a storm.

* Five percent was selected as a threshold to provide a reasonable amount of change from baseflow to represent a true

response to a precipitation event.

Table 3.2
Final surrogate equations

Site Constituent

Equation

Paradise | Total Phosphorus

Total Suspended Solids

Mendon | Total Phosphorus

Total Suspended Solids

TP =0.209+0.000798 * Turb +0.0386 * Z

7SS =3.58+1.31*%Turb

TP =—-0.0341+0.0053* Turb 4+ 0.0949* Z — 0.00404* Turb * Z
+0.0832%Y —0.00871% ¥ * Turb

7SS =0341+1.41%Turb

Variable Description

P Total Phosphorus, mg/L

AN Total Suspended Solids, mg/L

Turb Turbidity, NTU

4 categorical variable for spring runoff (Z = 1) versus baseflow (Z = 0)
Y categorical variable for Turb <10 NTU (¥ = 1) versus Turb =10 NTU (¥ =0)
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to the 0.01 level, and one star is significant to the 0.05 level.)
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Fig. 3.6. Plot of observed and modeled TP (a and b) and TSS (c and d) at Paradise. For
censored data, points are plotted at the detection limit. As many of the observation in the
full time series (a and c) are obscured, panels b and d only contain modeled results with a
corresponding observation. Observed and modeled values are connected by vertical lines.
The x-axis is an index that represents the order in which observations were made.
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Fig. 3.8. Statistical plots for the TP model at Paradise. Observed versus modeled TP (a),
a histogram (b) and a probability plot (c) of residuals.
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CHAPTER 4
IMPACT OF SAMPLING FREQUENCY ON ANNUAL LOAD ESTIMATION OF

TOTAL PHOSPHORUS AND TOTAL SUSPENDED SOLIDS?

Abstract

Compliance with water quality standards for sediment and nutrients is typically
based on the collection and analysis of grab samples. These data generally are not
collected with enough frequency or regularity to provide representation of the constituent
loading, yet regulatory decisions and the investment of significant resources for water
quality improvement are routinely based upon these numbers. In the Little Bear River
watershed in northern Utah, USA, continuous, high frequency measurements of turbidity
were used to generate high frequency estimates of instream total phosphorus (TP) and
total suspended solids (TSS) concentrations through surrogate relationships. The
concentration estimates were paired with discharge data to estimate TP and TSS loading
(reference loads). The high frequency records were then subsampled to create random
subsets representing hourly, daily, weekly, and monthly sampling frequencies.
Additionally, subsets were created to examine the effects of randomizing the time of day
and the day of week of sampling. The annual load estimates resulting from the decimated
subsets were compared to the reference loads. Results show that high frequency
surrogate measures generally improved estimates of TP and TSS loads in comparison to
grab sampling. Overall, higher frequency sampling resulted in load estimates that better

approximated the reference loads, although the amount of bias varied between sites.

? Coauthored by Amber Spackman Jones, Jeffrey S. Horsburgh, Nancy O. Mesner,
Ronald J. Ryel, and David K. Stevens.
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Additionally, the hour of the day and the day of the week on which sampling is
conducted can have an impact on load estimation, depending on sampling location and

hydrologic conditions.

4.1 Introduction

Water quality constituent loadings are generally determined through the collection
and analysis of concentration grab samples along with instantaneous estimates of
discharge. For most water quality monitoring programs, the frequency of grab sampling
requires a balance between the necessary resolution to estimate accurate loads and the
resource costs of increased sampling (Kronvang and Bruhn, 1996; Horowitz, 2003;
Coynel et al., 2004). Furthermore, the frequency required for grab sampling to be
representative of constituent behavior may be logistically infeasible due to the number of
samples that will have to be collected and analyzed (Coynel et al., 2004). Water quality
models require concentration observations for calibration and also suffer from sparse
concentration datasets (Neilson and Chapra, 2003). Compliance with water quality
regulations is often determined by grab sampled concentrations and resulting loads, even
when important periods for constituent transport may be omitted (Jordan et al., 2007).
Although many aspects of water quality monitoring and modeling have improved,
sampling frequency is and is likely to remain a limiting factor in load estimation and
water quality modeling (de Vries and Klavers, 1994; Kirchner et al., 2004; Johnes, 2007).

Various equations have been proposed for the calculation of loads given discrete
measurements of concentration and discharge. de Vries and Klavers (1994), Kronvang

and Bruhn (1996), Phillips et al. (1999), Etchells et al. (2005), and Johnes (2007)
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compared results from various estimation equations and provide direction on equation
selection. These studies, among others, conclude that the most appropriate equation for
load calculation depends on watershed characteristics, hydrological behavior, the nature
of the constituent, the frequency of sample collection, and interactions between these
factors (Richards and Holloway, 1987; Kronvang and Bruhn, 1996; Robertson and
Roerish, 1999; Webb et al., 2000; Johnes, 2007). Additionally, discharge is commonly
measured at higher frequency than concentration, adding complexity to load calculations
because concentration cannot be discretely paired with discharge (de Vries and Klavers,
1994; Robertson and Roerish, 1999; Kirchner et al., 2004).

No single equation for load estimation has been found to provide acceptably
unbiased and precise results across a range of conditions (Kronvang and Bruhn, 1996;
Phillips et al., 1999); furthermore, uncertainty can be introduced by virtue of the equation
selected (Johnes, 2007). However, Richards and Holloway (1987), Kronvang and Bruhn
(1996), Phillips et al. (1999), and Coynel et al. (2004) affirm that results from all
equations improve as sampling frequency increases.

Several authors recommend high frequency, continuous monitoring in order to
overcome uncertainty in load calculation resulting from infrequent sampling and biased
estimation methods (Ferguson, 1987; de Vries and Klavers, 1994; Quilbe et al., 2006;
Johnes, 2007). In addition to eliminating the need to select one of many complex load
estimation equations, high frequency monitoring provides a number of advantages over
traditional grab sampling. High frequency monitoring captures periods that are often

overlooked by routine sampling and overcomes the logistic challenges required for
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representative sampling (Grayson et al., 1997; Christensen, 2001; Christensen et al.,
2002; Tomlinson and De Carlo, 2003; Kirchner et al., 2004; Jordan et al., 2007).

This paper examines the effect of sampling frequency on load calculations using
random subsets of high frequency concentration estimates to simulate periodic grab
sampling at different frequencies. For two sites in the Little Bear River in northern Utah,
USA, regression relationships were developed using turbidity as an explanatory variable
for total phosphorus (TP) and total suspended solids (TSS) that consider censored data as
well as hydrological conditions (Spackman Jones et al., 2008). These relationships were
used to construct continuous, high frequency (half hour interval) time series of estimated
TP and TSS concentrations at two sites. In this paper, we describe the results of
decimating the synthetic concentration records at varying intervals to create time series
subsets that simulate periodic grab sampling. Each resulting subset was used to calculate
associated annual loads for two years of data. These loads are compared to the reference
loads calculated from the original synthetic concentration record. Section 2 describes the
Little Bear River watershed and the sites at which loads were calculated. Section 3
describes the methods that were used in deriving the concentration time series,
decimating the datasets, calculating loads, and evaluating the results. Section 4 relates
the results of the load calculations for each scenario, compares them to the reference

loads, and compares results between the two sites.
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4.2 Study area

The Little Bear River watershed is located in northern Utah, USA and is a major
tributary of the Bear River, which flows into the Great Salt Lake. The Little Bear
watershed encompasses an area of approximately 740 km?, with headwaters in the Bear
River Mountain Range, and elevations in the watershed that range from 1,340 m to 2,700
m. The river has two principal subdrainages, the East Fork and the South Fork. The
South Fork and its major tributary, Davenport Creek, flow northward through forest and
range land before the confluence with the East Fork. The East Fork originates in higher
elevation, forested land, and flows northwest until it is contained by Porcupine Reservoir,
which is used to store water for summer agricultural irrigation. A few miles downstream
of Porcupine dam, the East Fork is diverted for irrigation purposes, and for several
months of the year, portions of the natural channel are dry. The confluence of the two
forks is near the town of Avon, after which the river flows northward through the towns
of Paradise and Hyrum. Most of the land adjacent to the river is agricultural including
crops and livestock grazing. At Hyrum, the river is contained in Hyrum Reservoir, which
is also operated to supply summer irrigation water. Below Hyrum dam, the river flows
northwest through lower gradient agricultural land, passing through the towns of
Wellsville and Mendon before draining into an arm of Cutler Reservoir. The watershed
and local towns are shown in Fig. 4.1.

Over the past 15 years (1993-2007), the average annual precipitation in the lower
watershed was 432 mm, while the average annual precipitation in the upper watershed

was 4,465 mm, demonstrating significant variability in annual precipitation with
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elevation. Most of the precipitation occurs as snowfall, and the flow regime in the
watershed is driven by snowmelt with hydrograph peaks occurring in late spring. The
magnitude, timing, and duration of the peak are dictated by the winter snowpack and
spring weather conditions.

This paper examines loads calculated at two locations on the Little Bear River,
which are indicated on Fig. 4.1. The first site is the Little Bear River at Paradise, which
is located in the upper watershed below the confluence of the East and South Forks and
above Hyrum Reservoir. The second site is the Little Bear River at Mendon, which is
located in the lower watershed near the river’s terminus at Cutler Reservoir. The two
sites were selected for their distinct characteristics. Above Paradise, there are agricultural
diversions, and the river passes through some agricultural land, but relative to Mendon,
the river is less regulated, higher gradient, and less impacted by human activity. In
contrast, above Mendon, the river is controlled by Hyrum reservoir releases and
influenced by agricultural return flows, a wastewater treatment lagoon, and an
increasingly agriculturally developed landscape. Approximately 4 percent of the land
above Paradise is agricultural whereas between Paradise and Mendon, agriculture
accounts for about 50 percent of total land use. Additionally, at Mendon, the river is
lower gradient and groundwater levels in this portion of the watershed are higher than at
Paradise. The characteristics of the soils and resulting suspended sediments also differ
between the two sites. Mendon is located in a lacustrine valley with finer soils that
remain in suspension whereas the suspended matter at Paradise is coarser and more likely

to settle (Soil Survey Staff, 2008). Differences between the two sites are also evident in
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discharge records. Mendon generally has higher baseflow discharge with attenuated
peaks while the discharge at Paradise is flashier. For the two years that comprise the
period of this study, the mean discharge at Paradise was 2.5 cms with a maximum of 29

cms, and at Mendon the average discharge was 3.5 cms with a maximum of 11 cms.

4.3 Methods

A number of studies have artificially decimated reference datasets in order to
compare the effect of sampling frequency on load estimates. The reference datasets for
TP and TSS in these studies are generally based on infrequently sampled data (Johnes,
2007), although some authors generated higher frequency data through interpolation
(Kronvang and Bruhn, 1996) or discharge rating curves (Webb et al., 2000), which have
been shown to be an unsatisfactory estimator of TP and TSS (Phillips et al., 1999;
Robertson and Roerish, 1999; Quilbe et al., 2006; Johnes, 2007; Jordan et al., 2007).
Stubblefield et al. (2007) found turbidity to be a more accurate surrogate for TSS than
discharge. In this papter, the reference datasets are high frequency estimates of TP and
TSS concentrations calculated from turbidity, which are subsampled to examine the
effects of sampling frequency on load estimates. The timing of sampling, which few

studies have addressed, is also investigated.

4.3.1 Discharge and concentration time series
For both sites, high frequency discharge records were matched in time with
concentration estimates to calculate loads. At Paradise, an active United States

Geological Survey gage (USGS 10105900 Little Bear River at Paradise, UT) measures
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instantaneous discharge at 15-minute increments. There were a number of time periods
with gaps in the data that were filled by interpolation (if the period was less than 48
hours) or by substituting the daily average discharge (as obtained from the USGS record)
for all values on that day. As the concentration time series consist of values every 30
minutes, only the discharge observations on the hour and the half hour were used to
calculate loads. The time series of discharge at Paradise is shown in Fig. 4.2(a).

At Mendon, water level is measured every half hour by a KWK Technologies
SPXD-600 SDI-12 Pressure Transducer. The water level measurements were paired with
manually measured discharges in order to develop a stage-discharge relationship, which
was then used to calculate a half hourly time series of discharge estimates. There were a
few periods of missing data at this site as well, though none of them exceeded 48 hours,
and values were interpolated accordingly. The time series of discharge at Mendon is
shown in Fig. 4.3(a).

Concentrations of TP and TSS were estimated using site specific relationships
with turbidity. Intermittently sampled, laboratory analyzed concentrations of TP and TSS
were matched with corresponding turbidity values. The turbidity was measured every
half hour at each site using a Forest Technology Systems DTS-12 SDI-12 Turbidity

Sensor. The statistical program R (http://www.r-project.org/) was used to perform

regression analysis on these data, returning functions that use turbidity to estimate each
response variable (TP and TSS) at each site. As a significant portion of the TP data were
reported as non-detects, maximum likelihood regression, which accounts for censored

data, was used to generate the TP relationships (Helsel and Lee, 2006). The final
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regression equations are presented in Table 4.1, and more details can be found in
Spackman Jones et al. (2008). A small number of gaps in the turbidity data were filled
by interpolation. At one site, there was a period of approximately six weeks in the
summer missing turbidity data due to probe malfunction. Because turbidity is low and
relatively constant during the summer, this gap was filled with data from the same dates
of an adjacent year. The resulting turbidity data series, shown in Fig. 4.2(b) and 4.3(b)
were used as input in the equations in Table 4.1 to generate high frequency time series of
concentration estimates. Time series of the concentrations of TP and TSS at Paradise are
shown in Fig. 4.2 and plots of the concentrations at Mendon are shown in Fig. 4.3.

Fig. 4.2 and 4.3 help demonstrate the differences between the two sampling
locations. The upper watershed site (Paradise) is more heavily influenced by snowmelt,
as indicated by significant peaks in discharge, turbidity, and concentration in late spring.
In contrast, at the lower watershed site (Mendon) the sources of discharge include
reservoir releases and agricultural return flows, and the peaks in discharge, turbidity, and
concentration are more attenuated than at Paradise. Additionally, concentration does not
track discharge at Mendon as closely as it does at Paradise, indicating that sources of
phosphorus at Mendon are not as closely related to discharge. The speciation of TP
differs between the two sites. At Paradise, approximately 60 percent of the total
phosphorus is in particulate form and 40 percent is dissolved whereas at Mendon, the
ratio is reversed. Overall, there is more absolute variability in turbidity and resulting TP
and TSS concentrations at Paradise than at Mendon, but there is greater short term

variability at Mendon. The differing scales of Fig. 4.2 and 4.3 make it difficult to
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compare short term variability between the two sites, but Fig. 4.4 shows turbidity at both
sites for a three month period in late summer and early fall. For this time period,
turbidity regularly fluctuates by 10-12 NTU within a day at Mendon while variations
within a day at Paradise are on the order of 1.5-2 NTU.

The difference between the two water years (WY) examined in this paper should
also be noted. WY 2006 was a relatively high flow year in the Little Bear due to a
considerable snowpack and favorable conditions during runoff, while precipitation and

discharge were both low in WY 2007.

4.3.2 Scenario generation and load estimation

The datasets of matched discharge and concentration at half hour intervals were
decimated at varying frequencies to create subsets of paired discharge and concentration
estimates from which annual loads were calculated. Equation 4.1 was used to calculate
the load estimates for all of the subsets. This is a simple linear interpolation method, and
is the most straightforward and accurate equation of the methods researched (de Vries

and Klavers, 1994; Kronvang and Bruhn, 1996; Webb et al., 2000).

- (4.1)
W= ; QiCix

where W is the total annual load (kg), O, represents the incremental discharge (cms), C;
represents the incremental concentration of TP or TSS (mg/L), x is a factor to convert to
kg per appropriate time period, and # is the total number of paired discharge and

concentration estimates in one year (17520 for half hourly, 8760 for hourly, 365 for daily,
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52 for weekly, and 12 for monthly). For all sampling frequencies, annual loads were

calculated for WY 2006 and WY 2007. The subsets of data are described in Table 4.2.

4.3.2.1 High frequency

Using the complete sets of discharge and concentration data (half hourly), annual
loads were calculated according to Equation 4.1. These values are the reference loads
used for comparison with the other sampling frequencies. In order to test how much
information was lost by sampling hourly instead of half hourly, a subset of discharge and

concentration measured every hour was created, and annual loads were calculated.

4.3.2.2 Daily frequency

To represent sampling at a daily frequency, two types of subsets were generated.
The first type was created by randomly selecting an instance of corresponding discharge
and concentration within each day, resulting in 365 values per year. Equation 4.1 was
then used to calculate annual loads. To achieve a distribution of load estimates using this
method, random sampling and load calculation was conducted 10,000 times. The second
type of daily subset was created to examine the effects of sampling time on load
estimates. To simulate consistently sampling at the same hour of the day, corresponding
discharge and concentration were selected for each hour of the day on every day of the
year resulting in 24 subsets (one for each hour of the day) from which annual loads were

calculated.
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4.3.2.3 Weekly frequency
Two types of subsets were also generated to simulate weekly sampling. The first type
was created by randomly selecting a single instance of corresponding discharge and
concentration from within each week resulting in a decimated dataset with one discharge
and concentration for each week (52 values for each year). This was conducted 10,000
times, and 10,000 annual loads were subsequently calculated. The second type of weekly
sampling was designed to assess the impact of consistently sampling on a particular day
of the week. Corresponding values of discharge and concentration were randomly
selected from one day of the week for an entire year, resulting in 52 values of paired
concentration and discharge (one for each week of the year) from which an annual load
was calculated. In order to obtain a distribution of results using this method, random
selection and load calculation was conducted 10,000 times. This procedure was repeated

for each day of the week, resulting in a total of 70,000 annual load calculations.

4.3.2.4 Monthly frequency

Monthly sampling was simulated by randomly selecting a discharge and
corresponding concentration within each calendar month resulting in 12 values for each
year, from which annual loads were calculated. Ten thousand annual load calculations

were realized.
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4.4 Results
4.4.1 Frequency comparison

To illustrate the effects of sampling frequency, Fig. 4.5 shows series of TSS
estimates at Paradise during spring runoff (February-May) of 2006. Conclusions can be
extended to TP, both sites, and for longer time periods. The half hourly concentration
time series is shown, along with subsets of the half hourly concentrations decimated at
decreasing sampling frequency. The hourly series consists of concentrations on the hour,
while the daily, weekly, and monthly series are randomly selected concentrations from
the half hourly record. The hourly record shows little divergence from the half hourly
dataset. The daily concentration record appears to capture the general trend of TSS
concentration, but it fails to portray the fine resolution variability. The weekly and
monthly series completely miss the peaks in concentration, which are the periods of
greatest contribution to total annual load. On the other hand, under a monthly or weekly
sampling routine, a sample could be collected during a peak in concentration leading to a
significant overestimation of annual load.

Scholefield et al. (2005) recommend that the sampling frequency should match
the scale of the processes involved. Kirchner et al. (2004) assert that the measurement
frequency of chemical constituents should be often enough that no new information is
gained by sampling more frequently. In this case, the half hourly concentrations do not
reveal any pattern that is not observed in the hourly data, but the daily concentrations
overlook behavior that is occurring within the day. For other watersheds or other

constituents, making measurements more frequently than hourly or half hourly may be
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necessary. For example, Tomlinson and De Carlo (2003) used in situ measures at five
minute intervals to demonstrate the high variability in Hawaiian streams.

Table 4.3 and Fig. 4.6 and 4.7 summarize the results of load calculations for TP
and TSS at Paradise and Mendon for WY 2006 and WY 2007. Fig. 4.6 and 4.7 include
boxplots for all variables and years at Paradise and Mendon, respectively. The categories
in the plots correspond to simulated sampling frequency including the reference loads
(half hourly), hourly, randomized daily, randomized weekly, and randomized monthly.
The boxes represent the first and third quartiles (25th and 75" percentiles) and the
whiskers correspond to the lower and upper adjacent levels of the 10,000 realizations of
annual load calculations. The medians of the 10,000 realizations of the randomized daily,
weekly, and monthly subsets are also indicated. The percentage above the whisker
represents the fraction of 10,000 realizations that fall above the upper adjacent level.
There were no values below the lower adjacent levels. Table 4.3 summarizes the plots in
Fig. 4.6 and 4.7 by reporting the bias, calculated with respect to the reference loads, of
the lower and upper adjacent levels, the 1* and 3" quartiles, and the median for each of
the sampling frequencies.

At Paradise, for both variables and years, the median loads decrease as sampling
frequency decreases, indicating that less frequent sampling typically omits periods of
significant constituent loading and thus underestimates annual loads. This is consistent
with the findings of Richards and Holloway (1987) and Phillips et al. (1999). In contrast,
at Mendon, the median loads for all sampling frequencies are within 5 percent of the

reference loads. Sampling frequency also affects the range of load estimates. For all
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variables, sites, and years, the variability in the load increases as sampling frequency
decreases because a single sample is assumed to be representative of a longer time
period. The discharge and concentration at that point might not be characteristic of that
time period (e.g., a sample collected during a rain on snowmelt event is assumed to
represent an entire month), and the resulting annual load can be skewed.

Overall, hourly sampling frequency provides a very close approximation of the
reference load at these sites, so little resolution is lost by decreasing sampling frequency
to hourly. The departure of the load estimates from the reference load, as indicated by
the bias calculations, varies between site and variable. In general, the loads at Mendon
are closer to the reference loads than are those at Paradise. At a daily frequency for both
variables and both years at Mendon, even the lower and upper adjacent levels are within
5 percent of the reference load. Additionally, at Mendon, the percentages of values
falling above the upper adjacent level are all less than those observed at Paradise. At
Paradise, TSS concentrations were more variable than TP as the medians for weekly and
monthly sampling are all greater than 15 percent of the reference loads and the 1 and 3™
quartiles are not within 10 percent of the reference load for daily sampling. Richards and
Holloway (1987) also found TSS to be more volatile than TP. No prominent difference
between the two water years is observed apart from the differing scales as TP and TSS

transport was greater in 2006 than in 2007.
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4.4.2 Probability of achieving the reference loads

Although 10,000 load estimates were generated by randomly subsampling at
daily, weekly, and monthly time scales, in reality, only one annual load estimate could be
made using real sampling data, regardless of its frequency. Using the 10,000 load
estimates for daily, weekly, and monthly frequencies, we examined the likelihood of a
single load estimate falling within certain thresholds of the reference load. In other
words, we asked how probable it is that we will be close to the true loading if we sample
at the given frequency. Thresholds of 5 percent and 50 percent were selected to represent
being very close to the reference load and being “within the ballpark™ of the reference
load, respectively. A few studies used 20 percent as an acceptable error from the
reference load (Richards and Holloway, 1987; Coynel et al., 2004), but we think that
more accurate loads are achievable. The results (reported in Table 4.4) further reveal
differences between the two sampling sites. At Mendon, the probability of being within 5
percent of the reference load is 1.0 for sampling at a daily frequency, 0.50-0.75 for a
weekly frequency, and 0.20-0.31 for monthly sampling. At Paradise, on the other hand,
daily sampling only has a probability of 0.19-0.46 of achieving a load estimate within 5
percent of the reference load. At Mendon, it is very probable (0.98-1.0) that loads will be
within 50 percent of the reference load, regardless of sampling frequency. In contrast,
with monthly sampling at Paradise, the probability of being within 50 percent of the

reference load is only 0.52-0.89.
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4.4.3 Daily by hour loads

The variability in loads calculated by simulating consistently sampling at the
same time each day is shown in Fig. 4.8. Though the trends are distinct for each site,
they are similar across variables and years. At Paradise, loads calculated from
concentrations and discharges at the end of the day (hours 16-24) are higher than those
calculated for hours earlier in the day, although the increase is less dramatic for both TP
and TSS in WY 2007. At the most extreme, the loads vary by 50 percent from sampling
at one hour as opposed to another hour of the day. At Mendon, the highest loads are in
the early hours of the morning (hours 2-6), but overall, there is less variability throughout
the day than at Paradise.

We believe that the differences in loads throughout the day are due to diurnal
fluctuations in turbidity (and resulting TP and TSS), as shown in Fig. 4.4. Limited grab
sampling at Paradise reveals a broad range of TP and TSS values within a single day.
During the height of spring runoff, 24-hour sampling was conducted returning TP
concentrations ranging from 0.066 and 0.954 mg/L and TSS ranging from 108 to 2450
mg/L.

The site specific hydrologic conditions are probable causes of the differing
patterns between the two sites. For example, the timing of the response to events such as
snowmelt or storms varies between the upper and lower watersheds. The timing of
reservoir releases may also affect the timing of loads at Mendon. Additional factors that
could cause varying behavior within a day include changes in water temperature,

evapotranspiration, and the timing of agricultural withdrawals. Scholefied et al. (2005)
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suggest that diurnal fluctuations in phosphorus concentrations may be a result of
enrichment or depletion by instream biological processes or physical processes that are a
response to temperature. The authors point out that if the diurnal variations are a result of
physical processes, the intensity of variation will decrease in a downstream direction,
which is the case with Paradise and Mendon. Jordan et al. (2007) attribute diurnal
phosphorus fluctuations to rural point sources upstream of the sampling site, which may

also explain some of the diurnal variability at both locations.

4.4.4 Weekly by day loads

Fig. 4.9 is a collection of boxplots representing annual loads that simulate
sampling once a week on the same day each week but randomizing the time of day of
sampling. The trends vary between sites as well as between water years. At Paradise, in
WY 2006, both TP and TSS loads calculated from sampling on Tuesdays and
Wednesdays were consistently higher and exhibited greater variability than other days of
the week. In contrast, loads for WY 2007 at Paradise were more consistent and exhibited
less variability for all days of the week. At Mendon, there is no obvious pattern in loads
or variability based on day of the week, water year, or variable. Although no trend is
observed, the ranges of loads are still notably different between different days of the
week. These results indicate the day of the week that sampling is conducted impacts the
load estimate, but we have little rationale for the observed patterns. One possibility is
that the differences between days of the week are related to the days on which diversions

are opened or closed.
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4.4.5 Site comparison

These results demonstrate differences between Paradise, the upper watershed site,
and Mendon, the lower watershed site. As mentioned, at Mendon, the river generally has
higher discharge, is lower gradient, and has more interaction with groundwater. Paradise,
on the other hand, has lower baseflow and higher peaks in discharge due to the higher
gradient of the river as well as the surrounding land. In general, the results show that
high frequency sampling is essential for load calculation at Paradise, but that, depending
on the level of acceptable error, less frequent sampling can be conducted at Mendon.
This is consistent with the findings of a number of studies comparing sampling frequency
on different rivers. As smaller rivers are more responsive to precipitation and snowmelt
while the responses of larger rivers are more attenuated with a slower rise in discharge
and higher baseflow levels (Richards and Holloway, 1987), there is a greater decrease in
precision of load estimate with reduced sampling frequency for smaller rivers (Richards
and Holloway, 1987; de Vries and Klavers, 1994; Kronvang and Bruhn, 1996; Phillips et
al., 1999; Coynel et al., 2004). Also, rivers with high baseflow in permeable lowlands
have less variable TP and TSS, so a lower sampling frequency is acceptable compared to
rivers with low baseflow that transport more TP and TSS in high discharge events and
require more frequent sampling (Ferguson, 1987; Johnes, 2007). In addition to a greater
bias in load estimates at Paradise than Mendon, there was a greater degree of
underestimation of loads at Paradise than at Mendon. This is consistent with studies that
found that smaller rivers tend to underestimate loads more so than larger rivers

(Kronvang and Bruhn, 1996; Phillips et al., 1999). Although Paradise and Mendon are
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located on the same river, the behavior of the river changes dramatically between the two
sites and Paradise can be seen as a small river site while the attributes of a larger river

could be ascribed to the Little Bear River at Mendon.

4.5 Conclusions

This paper used high frequency records of TSS and TP concentrations, which
were estimated using surrogate relationships with turbidity, along with matched series of
discharge to calculate reference loads for two sites on the Little Bear River. Two water
years (2006 and 2007) of data were used. WY 2006 had high discharge (and high
constituent transport) relative to WY 2007, which was a low discharge year.

In order to simulate decreasing sampling frequencies, the continuous records were
decimated at hourly, daily, weekly, and monthly intervals, and annual loads were
calculated from the resulting subsets. For the daily, weekly, and monthly frequency
subsets, a single value of discharge and a corresponding concentration were selected at
random from within the sampling period and subsequently used to calculate annual loads.
At each sampling frequency for each variable and each water year at each site, 10,000
realizations of annual load were generated for the purpose of examining the potential
variability in annual load estimates.

The hourly loads were a close approximation of the reference loads across sites,
variables, and years. At the upper site, sampling with decreased frequency resulted in
median annual loads that were increasingly less than the reference loads as important
periods in TP and TSS transport were overlooked. For both sites, decreasing sampling

frequency increased the variability in the load calculations as there is a high probability
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of using a set of discharge and concentration records that are not representative of the
entire time period. The distribution of annual loads varied between sites as well as
variables. There was a much greater variation in loads at Paradise than at Mendon, which
may be attributed to the different hydrologic characteristics of the two sites as well as
differences in TP and TSS sources and behavior.

In addition to annual loads determined by randomly sampling at daily, weekly and
monthly frequencies, loads were also calculated to simulate sampling at the same time
every day and the same day every week. Overall, the results show that the time of day
and the day of week that sampling is conducted have a substantial impact on annual load
calculations, although in this case, the level of impact varies between site and year.

We conclude that periodic grab sampling, even at a daily frequency, is not a
suitable substitute for loads calculated from continuously estimated concentrations.
Although loads calculated from subsampling at a daily frequency may have low
variability from the reference loads, depending on the site, the hour of the day on which
sampling is collected has a significant impact on load estimates. Additionally, daily
sampling for extended time periods is cost prohibitive and logistically difficult. Hourly
or half hourly measurements capture the fluctuations that occur in concentration and
discharge at a finer scale than daily data can achieve. Furthermore, the loads calculated
from weekly and monthly subsampling do not adequately approximate the reference
loads, and caution should be taken in calculating loads from data at this sampling

frequency. However, the degree of variability depends on the site and the variable.
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Using high frequency surrogates to calculate constituent loads overcomes many of
the inadequacies of loads estimated from periodic grab sampling as it provides increased
resolution and accuracy while remaining logistically and economically feasible. High
frequency, in situ monitoring with surrogate relationships for concentration should be
considered as a representative and economically feasible alternative to periodic grab
sampling for load calculations. High frequency measurements will provide water quality
monitoring programs, regulatory agencies, and environmental observatories with an

improved view of constituent behavior.
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Table 4.1
Relationships used to derive continuous concentration time series
Site Constituent Equation
Paradise | Total Phosphorus TP =0.209+0.000798 * Turb + 0.0386 * Z

Total Suspended Solids 7SS =358 +131*%Turb

Mendon | Total Phosphorus TP = —0.0341+0.0053 * Turb +0.0949 * Z — 0.00404 * Turb * Z
+0.0832*%Y —0.00871*Y * Turb

Total Suspended Solids 7SS =0341+1.41* Turb

Variable Description
P Total Phosphorus, mg/L
7588 Total Suspended Solids, mg/L
Turb | Turbidity, NTU
4 categorical variable for spring runoff (£ = 1) versus baseflow (Z = 0)
Y categorical variable for Turb <10 NTU (¥ = 1) versus Turb =10 NTU (¥ = 0)
Table 4.2
Summary of decimated datasets
Subset Frequency Realizations
Complete Half Hourly 1
Hourly Hourly |
Daily by Hour Daily 24*
Randomized Daily Daily 10,000
Weekly by Day Weekly 70,000%*
Randomized Weekly Weekly 10,000
Randomized Monthly Monthly 10,000

*one realization was generated for each hour of the day
**10,000 realizations were generated for each day of the week
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Table 4.3
Biases (percentages) of the ranges of load estimates based on reference loads. Biases
within 5 percent of the reference load are highlighted

: : Lower Ist : 3rd Upper
Site  Variable Year Frequency Adjacent Quartile Median Ouariile Adj!aF::ent
Paradise = TP 2006  Hourly 0.003
Daily -24 -8.2 -1.2 6.7 29
Weekly -43 -24 -11 10 61
Monthly -59 -37 -25 -1.8 50

TP 2007  Hourly -0.01
Daily -16 -6.1 -1.2 4.6 21
Weekly -27 -15 -8.6 6.3 38
Monthly -59 -26 -13 5.1 50

TSS 2006  Hourly -0.008
Daily -40 -14 -1.6 12 51
Weekly -69 -41 -19 14 97
Monthly -81 -60 -46 -13 57

TSS 2007  Hourly -0.04
Daily -40 -15 -2.7 12 53
Weekly -57 -38 -22 13 90
Monthly -76 -55 -40 -6.0 65

Mendon TP 2006  Hourly -0.004
Daily -3.7 -0.88 -0.17 0.64 29
Weekly -14 -35 -0.43 2.7 12
Monthly -27 -10 -3.1 5.0 27

TP 2007 Hourly 0.04
Daily -4.6 -1.1 -0.18 0.75 5
Weekly -14 -4.1 -0.77 2.8 13
Monthly -38 -11 -1.4 9.99 40

TSS 2006  Hourly 0.01
Daily -4.6 -1.2 -0.22 0.75 3.6
Weekly -15 -3.9 -0.23 g8 14
Monthly -36 -12 -3.0 8.26 39

TSS 2007 Hourly 0.04
Daily -5.63 -1.7 -0.43 0.98 5.0
Weekly -24 -53 -0.60 4.69 20

Monthly -49 -14 -1.8 12 47
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Table 4.4
Probabilities of falling within a certain threshold of the reference load. Probabilities are
determined by using the 10,000 realizations of random load calculations

Probability of being within | Probability of being within
5% of the reference load | 50% of the reference load

Sampling Frequency
Daily ~ Weekly Monthly| Daily Weekly Monthly
Paradise TP 2006 0.33 0.12 0.056 1.0 0.90 0.85
TP 2007 0.46 0.15 0.14 1.0 0.95 0.89
TSS 2006 0.19 0.071 0.022 0.99 012 0.43
TSS 2007 0.19 0.057 0.044 0.99 0.82 0.52

Site Variable Year

Mendon TP 2006 1.0 0.72 0.31 1.0 1.0 0.99
TP 2007 1.0 0.67 0.25 1.0 1.0 0.99
TSS 2006 1.0 0.66 0.23 1.0 1.0 0.99

TSS 2007 1.0 0.50 0.20 1.0 1.0 0.98
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The uncertainty in concentration trends and associated load calculations resulting
from low sampling frequency is a pressing challenge for water quality monitoring
programs. Various researchers have investigated techniques to address deficiencies
presented by the sparse datasets generated by traditional water quality monitoring. One
of these approaches involves complex equations for load calculation to account for
sporadic sample collection, but no single estimation method has been deemed appropriate
for all watersheds, constituents, hydrologic patterns, and sampling frequencies. Another
approach to overcoming the limitations of sampling frequency is using in situ sensors to
continuously measure water quality constituents. This research presented in situ turbidity
as a surrogate measure for total phosphorus (TP) and total suspended solids (TSS) as an
alternative to intermittent grab sampling. To examine the effects of sampling frequency
on load calculations, high frequency concentration estimates were generated from the
surrogate relationships and subsampled to simulate decreasing sampling frequency.

The surrogate relationships were generated at two locations on the Little Bear
River using two years of high frequency turbidity data and intermittently sampled TP and
TSS. In order to account for the number of censored data points within the TP datasets,
maximum likelihood regression within the statistical program R was used to generate the
parameters for regression equations for TP. The basic linear regression function in R was
used to generate the parameters for TSS. Additional explanatory variables examined

were discharge, water temperature, day of year, hour of day, and categorical variables
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representing spring snowmelt runoff versus baseflow conditions and the occurrence of
storm events. At both sites, turbidity and the categorical variable representing
runoff/baseflow were the only significant explanatory variables for TP, indicating that the
relationships between turbidity and TP are consistent throughout storm events. However,
the regression at the lower site was greatly improved by the inclusion of the interaction
between turbidity and the runoff/baseflow categorical variable, and an additional
categorical variable was necessary for low turbidity conditions. For TSS, turbidity was
the only significant explanatory variable at both sites, indicating that the relationship
between turbidity and TSS is consistent across hydrological conditions. Logarithmic
transformations of the datasets did not provide any improvement in the models.

Using the root mean square error as an estimation of overall error in the
regression equations, all of the relationships had error values of one-fourth to one-half of
the mean of the observed data. Visual examinations of the observed and estimated
concentrations indicate that the equations adequately track observed trends.

The surrogate relationships were used with the continuously collected turbidity
data to generate high frequency estimates of TP and TSS concentration. Along with high
frequency estimates of discharge, the concentration data were used to calculate annual
loads of TP and TSS for two water years, creating reference loads. In order to examine
the effect of sampling frequency on load estimation, the concentration and discharge
records were decimated at hourly, daily, weekly, and monthly intervals to represent grab
sampling at those frequencies. Annual loads were calculated from the decimated datasets

and compared to the reference loads. For the daily, weekly, and monthly datasets,
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concentration and corresponding discharge were randomly selected 10,000 times to
generate a distribution of annual load estimates.

Loads calculated from the hourly concentration and discharge closely
approximated the reference loads. For both TP and TSS, at both sites, and for both water
years, the variability in annual load estimates increased as sampling frequency decreased
because a single point of concentration and discharge was assumed to represent an
extended time period. At the upper watershed site, however, the variability was greater.
Also, at the upper site, the median loads consistently decreased as sampling frequency
decreased, verifying that intermittent sampling omits important periods of constituent
transport and generally underestimates annual loads at this location. The levels of bias
from the reference load differed between sites and variables, but were fairly consistent for
the two water years examined. There was more bias and variability in loads estimated at
the upper watershed site than the lower watershed site, and at the upper site, TSS loads
were more biased than TP loads. The probability of calculating loads within certain
thresholds of the reference loads was also examined. The results show a greater
probability of approaching the reference load at higher sampling frequencies.
Furthermore, the probability of approximating the reference loads was greater at the
lower watershed site. The differences in hydrologic response as well as TSS and TP
behavior at the two sites are thought to explain the differing results.

The timing of sample collection was also examined. Annual loads were
calculated by subsampling at the same time each day as well as subsampling on the same

day of the week. Results indicate the time of day of sample collection has an impact on
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resulting loads. The pattern differed from one site to another, reflecting diurnal
fluctuation in turbidity and TP and TSS concentrations likely due to the timing of
hydrologic response. The degree of variability in loads calculated at different times of
the day was different between two water years. Consistently sampling on the same day
of the week also affects load estimates, depending on the site, the variable, and the water
year.

This research has demonstrated the powerful potential of surrogate measures for
generating high frequency concentration estimates from which loads can be calculated.
The datasets generated by surrogate relationships provide information showing the high
resolution dynamics of constituents that could not be attained using monthly, weekly, or
even daily grab sampled concentration. Conventional grab sampling is also insufficient
for load calculations as it can severely under or over estimate annual loads. Surrogate
measures can provide high frequency estimates of concentration over extended periods of
time and at multiple locations, allowing for better understanding of constituent fluxes
throughout the watershed and throughout hydrological conditions. For some sites and
some variables, daily sampling may provide a reasonable estimate of annual load, but
daily grab sampling for extended periods of time and at many sites is generally
impractical. Until in situ technology is developed to viably measure important
constituents such as TP and TSS, surrogate measures provide an economically and
logistically feasible method for quantifying constituent flux at a high frequency over

large temporal and spatial scales.
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CHAPTER 6

ENGINEERING SIGNIFICANCE

In the fields of environmental engineering and water resources, there is a need for
improved understanding and prediction of short and long term behavior of instream
processes. For many constituents at many locations, instream variability occurs on a time
scale of minutes or hours, not weeks or months, the frequency at which traditional water
quality programs have conducted monitoring. This research demonstrates the value of
surrogate measures to estimate water quality constituents. Surrogate measures can
significantly increase the resolution of available concentration data over multiple years
and at multiple locations throughout a study area.

Surrogate measures have implications for water quality monitoring and
compliance, watershed studies, water quality modeling, and environmental observatory
design. Additional benefits to in situ sensors that monitor continuously include
automated data collection, the ability to connect data to a water quality model or to the
Internet, the minimization of human errors and time delays, and an overall reduction in
the cost of monitoring.

The widespread incorporation of surrogate measures into water quality
monitoring programs will allow for the characterization of fluxes from one site to another
along a river or between tributaries to a common lake or reservoir or from one type of
terrain to another. Additionally, comparisons can be made between varying time scales

such as the response to two different storm events, different behavior during spring
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snowmelt in a high discharge year opposed to a drought year, or the daily or annual
effects of reservoir releases.

Compliance with water quality standards is often based on a concentration or a
load threshold. Loads determined by high frequency concentrations calculated from
surrogate measures will allow for the determination of compliance with increased
certainty. Additionally, the high resolution of concentrations estimated by surrogate
measures will assist in the determination of compliance based on peaks and duration of
concentration. Sensors for making surrogate measures can be installed at locations other
than rivers and streams where water quality is a concern such as beaches, lakes, and
wastewater treatment plants.

Many hydrologic and water quality models require extensive parameterization in
order to predict water quality given changes in land use, management practices, or
hydrological conditions. These parameters are calibrated for streams and watersheds
using water quality observations. Concentrations from surrogate measures will provide
an increased number of observations so that model parameters can be determined with
more certainty.

Environmental observatories have received attention as settings where improved
understanding of hydrologic and water quality processes can occur as they generate data
at high temporal frequencies and high spatial densities. Surrogate measures are necessary
to the design of environmental observatories because they provide a relatively
inexpensive and logistically viable method for determining concentrations of constituents

that cannot be measured in situ.
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CHAPTER 7

RECOMMENDATIONS FOR FUTURE RESEARCH

A number of ideas that were identified as additional topics of research stemming
from the generation of surrogate relationships and examination of sampling frequency of
total phosphorus (TP) and total suspended solids (TSS) on the Little Bear River.

1. Since the beginning of this study, five sites in addition to Paradise and Mendon
have been instrumented with continuous monitoring equipment. When a
sufficient number of concentration measurements have been made at these sites
(the current number of observations is on the order of 50 at each site over a period
of 6-8 months), techniques similar to those described in Chapter 3 should be used
to generate surrogate relationships for TP and TSS for each monitoring site.
Relationships at additional sites may provide increased understanding of the
behavior of the constituents throughout the watershed.

2. In addition to turbidity, water level, and water temperature, all of the sites have
been instrumented with sensors to monitor pH, specific conductance, and
dissolved oxygen. These variables should be investigated as potential explanatory
variables for TP and TSS. Because specific conductance and pH are related to
dissolved species, they may be especially valuable at Mendon where the majority
of TP is dissolved. These variables could also be explored as potential
explanatory variables for dissolved total phosphorus at all sites since dissolved

phosphorus is biologically important.
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3. Since the development of the surrogate relationships described in Chapter 3,
additional TP and TSS samples have been collected and analyzed. These data
should be used to corroborate the current models and to further refine the
equations.

4. To this point, phosphorus has been considered the limiting nutrient in Cutler
Reservoir and the Little Bear River. If nitrogen is determined to be a limiting
nutrient, then sample analysis should include species of nitrogen, and surrogate
relationships should be developed for nitrogen species.

5. The distinction between spring runoff and baseflow was important for the TP
surrogate relationships, however, in the resulting concentration estimates, there
are distinct steps when the transitions between baseflow and spring runoff occur.
Instead of a categorical variable with a value of 0 or 1, a continuous variable
could be incorporated that represents the percent of discharge that is runoff. The
values of the variable could be determined using baseflow separation techniques.

6. In addition to in situ measures and variables representing hydrological conditions,
variables corresponding to land use and watershed attributes could be more
directly incorporated into the surrogate relationships. For example, if one of the
variables was percent agricultural land above the monitoring site, this variable
could be adjusted to simulate a management practice. Other variables that could
be examined include average slope, contributing area, soil moisture capacity, and

percent area of various land uses.
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7. This research presented surrogate measures as an economical alternative to
conventional grab sampling. It would be valuable to do a complete cost-benefit
analysis comparing continuous monitoring to periodic grab sampling at multiple
sampling frequencies. The expenditures of continuous monitoring include
sensors, telemetry equipment, materials needed for installation, supplies for
sample collection, sample analysis, and the cost of personnel for site maintenance
and sample collection. The expenses of periodic grab sampling include supplies
for sample collection, sample analysis, and the cost of personnel for sample
collection.

8. Chapter 4 compared continuous monitoring to less frequent grab sampling, but
there is little guidance regarding the amount, timing, and frequency of samples
that should be collected in order to develop and maintain surrogate relationships.
Investigation into this question would assist in environmental observatory

planning.
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Appendix A. Plots of Residuals and Statistics of Surrogate Relationships
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Fig. A-1. Residuals of the TSS model at Paradise.
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Fig. A-2. Statistical plots for the TSS model at Paradise. Observed versus modeled TSS
(a), a histogram (b) and a probability plot (c) of residuals.
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Fig. A-3. Residuals of the Paradise TSS model compared with measured variables. See
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Fig. A-5. Statistical plots for the TP model at Mendon. Observed versus modeled TP (a),

a histogram (b) and a probability plot (c) of residuals.
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Fig. A-8. Statistical plots for the TSS at Mendon model. Observed versus modeled TSS
(a), a histogram (b) and a probability plot (c¢) of residuals.
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