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Abstract

Automatic Particle Image Velocimetry Uncertainty Quantification

by

Benjamin H. Timmins, Master of Science

Utah State University, 2011

Major Professor: Dr. Barton L. Smith
Department: Mechanical and Aerospace Engineering

The uncertainty of any measurement is the interval in which one believes the actual

error lies. Particle Image Velocimetry (PIV) measurement error depends on the PIV algo-

rithm used, a wide range of user inputs, flow characteristics, and the experimental setup.

Since these factors vary in time and space, they lead to nonuniform error throughout the flow

field. As such, a universal PIV uncertainty estimate is not adequate and can be misleading.

This is of particular interest when PIV data are used for comparison with computational

or experimental data.

A method to estimate the uncertainty due to the PIV calculation of each individual

velocity measurement is presented. The relationship between four error sources and their

contribution to PIV error is first determined. The sources, or parameters, considered are

particle image diameter, particle density, particle displacement, and velocity gradient, al-

though this choice in parameters is arbitrary and may not be complete. This information

provides a four-dimensional “uncertainty surface” for the PIV algorithm used. After PIV

processing, our code “measures” the value of each of these parameters and estimates the

velocity uncertainty for each vector in the flow field. The reliability of the methodology is

validated using known flow fields so the actual error can be determined. Analysis shows that,
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for most flows, the uncertainty distribution obtained using this method fits the confidence

interval. The method is general and can be adapted to any PIV analysis.

(82 pages)
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Chapter 1

Problem Statement

Numerical simulations, including Computational Fluid Dynamics (CFD), are used ex-

tensively in engineering for aerodynamics of aircraft and vehicles, hydrodynamics of ships,

power plant modeling, turbomachinery, cooling of equipment, modeling blood flow through

veins and arteries, and more [2]. Before these simulation results can be used, they must first

be validated by comparison to experimental data or analytic solutions. With the exception

of a few simple flows, analytic solutions are not available. The full-field velocity data pro-

vided by Particle Image Velocimetry (PIV) makes it an obvious choice for velocity validation

measurements. PIV has the ability to provide instantaneous two- or three-component ve-

locity fields which point measurement techniques, such as hot wire anemometry or Laser

Doppler Velocimetry, can not. In numerical simulation validation, it is crucial to know the

uncertainty for both the experimental and numerical data. A failure to do so can result

in inaccurate models, flawed test results, and inefficient designs. In addition to CFD val-

idation, PIV data are used to study flows by computing parameters such as drag and lift

coefficients in addition to the velocity magnitude and direction. Like all experimental mea-

surement techniques an understanding of the measurement uncertainty should be a high

priority. The general practice of PIV is to ignore uncertainty, quote an unrelated study, or

report a global uncertainty value which can be a gross overestimation is some regions and

an underestimate in others.

The uncertainty of a PIV measurement is a very complex function of several parameters

[1]. These parameters include, but are not limited to, particle image diameter, particle

displacement, density, and velocity gradients. While there has been extensive study of the

impact of these parameters on PIV uncertainty, it is exceedingly rare to see them employed

in a PIV uncertainty analysis. The nature and impact of these parameters is such that the
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uncertainty varies in space and time, so any attempt to determine the global uncertainty of

data set post-priory is either impossible or is doomed to be very conservative.
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Chapter 2

Literature Review

Before an attempt can be made to estimate the uncertainty of a PIV measurement a

thorough understanding of both PIV algorithms and methods must be known. Once a base

understanding of PIV algorithms are known, parameters can be identified which contribute

to the uncertainty of the measurement technique.

2.1 Particle Image Velocimetry

PIV is a non-invasive optical measurement technique used to measure field velocities in

a fluid flow. The velocity measurements are considered near instantaneous, as they average

the velocity over very short period of time [3]. PIV measurements are limited to optically

homogeneous fluids, meaning that the fluid has no significant interactions with the light,

such as reflections. Optical homogeneity is also a requirement for transparency. Examples

of optically homogeneous fluids include air and water. Small tracer particles, referred to

as seeds, are added to the flow which are either the same density as the flow or are very

small such that their motion is as close as possible to the actual flow motion. This gives the

particles a drag force which is significantly higher than their gravitational force. Seeds are

considered ideal when they exactly follow the fluid motion, do not alter the flow properties,

and do not interact with each other. The tracer particles are required to have different

optical properties than the fluids which they are added to so they reflect the light passing

through the fluid. The position of these tracer particles are recorded at two instances in time

and the flow velocity can then be inferred from their displacement [3]. The tracer particles

are generally recorded using digital cameras and stored as intensity arrays. It is important

to note that PIV does not track individual particles, but uses a numerical cross correlation

to give an estimate of the most probable displacement of the particle image pattern (PIP).
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Current PIV technology allows for the acquisition of particle image intensity arrays at rates

up to 5000 or more times per second. From collections of these velocity measurements over

time, average flow velocities and other parameters such as turbulent kinetic energy may be

computed. General PIV techniques, methods and algorithms can be found in [1, 3–6].

2.2 PIV Algorithms

The PIV images are stored in pairs which have a specific time step between acquisition,

dt. Transforming the recorded particle image pairs to a velocity vector field first involves

dividing the images up into small sections called interrogation regions or windows. The cross

correlation is calculated from each interrogation region in image 1 and its corresponding

region in image 2 which gives the most likely displacement of the particles within that

region. The PIV cross correlation can be computed directly from

C (r, s) =

M∑
i=1

N∑
j=1

IA1 (i, j) IA2 (i+ r, j + s) (2.1)

where IA1 and IA2 are the intensity arrays for the interrogation regions of image 1 and 2

and M and N represent the interrogation region size (in pixels) [6].

Alternatively, a frequency domain method may be used to compute the cross corre-

lation. According to the Wiener-Kinchin theorem, the cross correlation can be calculated

as the product of the complex conjugates of the Fourier transforms of the interrogation

regions [1]. To decrease computation time a Fast Fourier Transform (FFT) is used allowing

us to replace Eqn. 2.1 with

C(r, s) = Re
[
FFT−1 {FFT ∗ (IA1)FFT (IA2)}

]
(2.2)

where ∗ denotes the complex conjugate and Re operator returns on the real part of the

complex number. When using the FFT computation the interrogation regions IA1 and

IA2 must be the same size, square, and have a length of 2n where n is an integer [6].

Computation time is usually the deciding factor on which method is used to compute the
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Fig. 2.1: Plot of the computational time order of magnitude against the interrogation
window size (N). This plot assumes that the interrogation regions are square (N ×N).

cross correlation. If an interrogation window is used that is N ×N pixels, the computation

time needed by the FFT method goes as O(N2log2(N)) while the direct computation goes

as O(N4) [1, 7, 8]. The difference in computation time can be seen in Fig. 2.1.

The cross correlation C(r, s) (see Fig. 2.2) outputs an array of values. The center

of the region is used as a reference as it corresponds to zero displacement. The location

of the maximum value of the C(r, s) when referenced to the center gives the most likely

pixel displacement of the region. The pixel displacement divided by dt gives the velocity

estimation for that interrogation region. The particle velocity estimate from the cross

correlation between two images is a low-pass filtered representation of the instantaneous

particle velocities [9]; the velocity computed is the average velocity over dt, thus filtering out

high velocity fluctuations which take place at time scales less than dt. This velocity will also

lie between the average and median values of each particle velocity within the interrogation

region. It should be noted that for the direct calculation of the cross correlation (Eqn. 2.1)

the center of the region is located at DI/2, but if the FFT method (Eqn. 2.2) is used, the

center is located at (DI/2) + 1. This subtle difference must be accounted for when a PIV

algorithm is written.
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Fig. 2.2: A correlation map C(r, s) example which can be calculated from either Eqn. 2.1
or Eqn. 2.2.

The cross correlation relies on the assumption that some of the particles from image

1 will remain in image 2. Theoretically the largest particle displacements that can result

in a correlation computed from Eqn. 2.1 or Eqn. 2.2 is 1/2 of the interrogation region

size. Practically it has been shown that a maximum particle displacement of 1/4 of the

interrogation window will result in better correlations but limits the maximum displacement

a particle can have [4].

Adaptive Local Window Shifting

Adaptive local window shifting is the processes of offsetting the interrogation windows

by an integer displacement based on a priori knowledge of the local velocity. By offsetting

the interrogation windows, the most likely displacement computed by the cross correlation

will be less than one pixel. This method increases the probability that the interrogation

window from image 2 will contain the same particles as the interrogation window from

image 1, thus producing a stronger correlation.

To implement adaptive local window shifting, the velocity needs to be known before

the computation may be preformed. This leads to multipass algorithms. The first pass is

usually preformed with a large interrogation window (large enough to resolve the largest

velocities) and no window shifting. This first pass gives an estimate of the velocity for

each interrogation region in the flow. The second pass uses the estimated velocity from
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the first pass as the integer displacements in the adaptive local window shifting method.

An arbitrary number of passes may be used, each one providing a better estimate of the

true particle displacement. Often in multipass algorithms, the interrogation window size is

halved successively. By reducing the interrogation window size, it becomes possible to have

large displacements but process with a small interrogation window on the final pass, decou-

pling dynamic range from spacial resolution [6,10]. According to [6] the maximum particle

displacement that should be used is still 1/4 of the size of the largest interrogation region,

but should not exceed the final interrogation window size. Depending on the algorithm used

and user inputs the spatial resolution of the vectors may change each pass. When a vector

value is not available to offset the interrogation region of a pass interpolation methods are

used to give a likely displacement at that location from neighboring values.

Subpixel Displacement Estimation

If the PIV algorithm stopped at the computation of the cross correlation described by

Eqn. 2.1 or Eqn. 2.2, the displacement resolution would be limited to 1 pixel. To increase

displacement resolution, subpixel displacement estimation methods are used. A common

method fits a three point curve to the correlation peak along each axis, then the location

of the curve maximum is computed. Gaussian (see Eqn. 2.3 and 2.4) and Parabolic (see

Eqn. 2.5 and 2.6) curve fits use the maximum value of C(r, s) and the points on either side

to determine the peak maximum value to subpixel accuracy.

xo = i+
ln(C(i− 1, j))− ln(C(i+ 1, j))

2ln(C(i− 1, j))− 4ln(C(i, j)) + 2ln(C(i+ 1, j))
(2.3)

yo = j +
ln(C(i, j − 1))− ln(C(i, j + 1))

2ln(C(i, j − 1))− 4ln(C(i, j)) + 2ln(C(i, j + 1))
(2.4)

where the maximum value is located at C(i, j).

xo = i+
C(i− 1, j)− C(i+ 1, j)

2C(i− 1, j)− 4C(i, j) + 2C(i+ 1, j)
(2.5)
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yo = j +
C(i, j − 1)− C(i, j + 1)

2C(i, j − 1)− 4C(i, j) + 2C(i, j + 1)
(2.6)

Another prominent method is to use the maximum value of C(r, s) and the surrounding

values to compute a centroid of the peak (see Eqn. 2.7 and 2.8).

xo =
(i− 1)C(i− 1, j) + iC(i, j) + (i+ 1)C(i+ 1, j)

C(i− 1, j) + C(i, j) + C(i+ 1, j)
(2.7)

yo =
(j − 1)C(i, j − 1) + iC(i, j) + (j + 1)C(i, j + 1)

C(i, j − 1) + C(i, j) + C(i, j + 1)
(2.8)

The relative location of the centroid is then used as the subpixel displacement [1]. The

gaussian curve fit is generally used when the particle image diameters range between 2 and

4 pixels [6]. The centroid method has shown to be more accurate when the particle image

diameters are greater than 4 pixels. None of the mentioned methods are very good at

estimating subpixel displacements below particle image diameters of 2 pixels, and become

completely useless when particle diameters are less than 1 pixel.

Window Deformation

Spurious vectors (vectors which do not represent to the true fluid velocity) will arise if

the PIV algorithm is unable to match the PIP when computing the cross correlation. To

compensate for loss of particle image pairs the second interrogation region is often deformed,

allowing a stronger correlation to be computed in areas of high shear [11]. The direct cross

correlation becomes

C (r, s) =

M∑
i=1

N∑
j=1

IA1 (i, j) IA2 (i+ r + ∆x, j + s+ ∆y) . (2.9)

The interrogation region’s deformation, or window deformation, is usually based on a con-

tinuous image assumption. Because PIV images are stored digitally, interpolation schemes

are needed to deform the region based on a continuous image. Interpolation schemes used

to deform the interrogation region include linear, sinc, spline, third-order Lagrange, fourth-

order Lagrange, and quadratic interpolation. The interpolation scheme is used to compute
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∆x and ∆y in Eqn. 2.9. The exact method to accomplish this varies depending on the in-

terpolation scheme chosen. For example a linear interpolation will deform the interrogation

region according to the truncated Taylor series

∆x = ∆x(x, y) = ∆x(x0, y0) +
∂∆x

∂x
(x− x0) +

∂∆x

∂y
(y − y0), (2.10)

∆y = ∆y(x, y) = ∆y(x0, y0) +
∂∆y

∂x
(x− x0) +

∂∆y

∂y
(y − y0). (2.11)

Window deformation begins with a standard cross correlation computation using a

fairly large grid [11, 12] to predict a displacement field. From the predicted displacement

field each interrogation region is deformed based on the interpolation scheme selected and a

new velocity field is computed. This process can be repeated until the velocity field solution

converges to an acceptable value. During each iteration the interrogation region size may

be reduced to increase spatial resolution.

Windowing

To increase PIV accuracy, it is often useful to weight each interrogation region with a

mask. The most popular weighting mask is the gaussian, although linear sloped mask are

also used. The first step, if a gaussian mask is to be used, is to create a two-dimensional

gaussian surface that is the same size as the interrogation window (M ×N)

ω(i, j) = e
−4

(
(i−M/2)2

(M/2)2
+

(j−N/2)2

(N/2)2

)
. (2.12)

The cross correlation calculation then becomes

C (r, s) =
M∑
i=1

N∑
j=1

ω(i, j)IA1 (i, j) IA2 (i+ r, j + s) (2.13)

replacing Eqn. 2.1 [13]. This will produce a 1 : 1 gaussian mask. If weights are desired

of different aspect ratios, one simply changes M and N to give the desired ratio, then

adds zeros to the mask perimeter to make it the same size and shape as the interrogation
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window (this is not the same as zero padding an interrogation region as it does not add

high frequency noise if an FFT is used). If a non-unity aspect ratio is desired at a specific

angle, a rotation matrix can be applied to the mask to rotate it to the desired angle.

2.3 Sources of Uncertainty in PIV

PIV uncertainty analysis is difficult because errors arise from both the experimental

setup and the algorithm used to process data. Three forms of error are described by [14]

and named as outlier, bias, and precision error. Bias error impacts every vector, while

precision error impacts the mean velocity and statistics based on the mean. Outlier error

may impact both bias and precision error.

2.3.1 Outlier Error

Outlier error is the result of a poor correlation [14] or when the highest magnitude

peak in the correlation map does not correspond to the true displacement [6]. A good

correlation (see Fig. 2.2) contains one large peak with low background noise while a bad

correlation can take many forms but is generally defined by multiple peaks of the same

order of magnitude and high background noise (see Fig. 2.3(a)) or may contain a single

peak with a high magnitude ridge (see Fig. 2.3(b)). A poor correlation can be a result

of many sources including improper particle density, strong velocity gradients, intensity

value variations, and out of plane fluid motion [14,15]. These sources all have one thing in

common: they effect the PIV algorithm’s ability to accurately match the PIP.

Outlier errors are generally larger then 1 pixel [14] which makes them easy to identify.

Vectors affected by outlier error are called spurious vectors. Methods of identification for

these spurious vectors include a global mean, local mean, local median, and the detectability

(ratio of the highest magnitude peak to the second highest magnitude peak). The most

efficient method of identification of these spurious vectors was found to be a local median

filter [15]. If the spurious vectors are not removed they can easily dwarf other bias sources

on an individual vector in time by offsetting its result from the true value. This large bias

from the true velocity also affects precision error by mimicking a large velocity fluctuation
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(a) (b)

Fig. 2.3: The cross correlation function C(r, s) of: (a) a weak cross correlation with multiple
peaks and high amplitude background noise and, (b) a weak cross correlation with a single
peak and high magnitude ridge.

that doesn’t exist.

The median filter first computes the spatial median and root mean square (RMS) ve-

locity component values from the eight vectors surrounding the vector under consideration.

The median is the middle value of the velocity values when they are arranged from smallest

to largest magnitude. If the number of samples is even, then the median becomes the mean

of the two middle values. The RMS is computed from

VRMS =

√√√√ 1

N − 1

N∑
i=1

(Vi − Vmedian)2 (2.14)

where N is the number of samples, Vmedian is the median velocity component, and Vi is one

of the neighboring velocity components. The RMS is computed from the median velocity

rather than the mean so if spurious vectors are contained within the data set they don’t

have a significant impact. The vector is identified as spurious if it does not satisfy for each

velocity component

Vmedian − aVRMS ≤ V ≤ Vmedian + aVRMS (2.15)

where V is the velocity component under consideration, and a is a user defined scale factor

typically between 1 and 3.
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The median filter can be used iteratively in a multiple pass scheme to remove a higher

percentage of the spurious vectors. The first pass uses the local median filter as described

above and identifies spurious vectors. Further passes then use the same local median filter

as the first pass except all vectors that have been identified as spurious by previous passes

are left out of the median and RMS calculations.

2.3.2 Bias Error

If a single measured value of velocity differs from the true velocity at that point and time

then the difference is bias error. PIV velocity measurements are based on two parameters:

computed particle displacement dm and dt. The average velocity of the interrogation region

over the time interval dt is then computed as

V =
dm
dt
. (2.16)

The dt value is orders of magnitude more accurately known then the displacement estima-

tion from the cross correlation, therefore the uncertainty on the velocity measurement is

assumed to be only a function of the displacement estimation [6]. Sources of uncertainty on

the displacement include dynamic range issues, non-uniform interrogation regions, particle

image diameter, particle seed density, shear, and more.

Dynamic Range and Spatial Resolution

Dynamic range is the maximum allowable displacement relative to the smallest displace-

ments that can be measured. The minimum particle displacement that can be measured

is a function of particle image diameter and the subpixel estimation method used. The

maximum displacement that can be measured is limited by the interrogation window size

because of the loss of correlation [1, 6] or “out-of-pattern” effect [14]. Loss of correlation

reduces the number of particle image pairs contained within an interrogation region due to

excessive in and out of plane motion, particles moving out of the interrogation region or

out of the light sheet. The loss of particle image pairs in the interrogation region leads to
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weak and false correlations. The maximum displacement is limited to 1/4 of the original

interrogation region size [4] to minimize the loss of correlation. To increase dynamic range

interrogation region size needs to be increased. This poses problems in flows where both

high and low velocity values are expected, such as boundary layers. The time between im-

age pairs must be short enough that the largest particle displacements do not exceed 1/4 of

the interrogation region, without taking away our ability to resolve particles that move less

than the minimum distance we can resolve. This resolution hinderance will create differing

bias errors between high and low velocity regions of flow.

Spatial resolution can be thought of as the number of vectors contained within the

vector field. The maximum theoretical spatial resolution possible that can be achieved is

half the mean distance between particles [9] based on the Nyquist criterion. Higher spatial

resolution can be achieved with smaller interrogation regions or, to an extent, the use of

overlapping interrogation regions. Having high spatial resolution is especially important

when velocity gradient information needs to be estimated.

Non-Uniform Interrogation Regions

Non-uniform flow conditions such as rotation and shear can be a large source of un-

certainty in PIV measurements. PIV assumes that the interrogation windows have been

resolved enough that the flow within the region is purely translational. Shear and rotation

have the effect of making non-uniform flow within an interrogation window which violates

the assumption of translational flow [1]. For these cases the cross correlation algorithm

should give the spacial average particle velocity within the interrogation region. If shear or

rotation is present within this region and the seed is not uniformly distributed, the predicted

particle displacement will be biased toward areas of higher seed density. In regions of high

shear, high velocity particles may leave the interrogation region, biasing the velocity result

toward the lower velocity particles which remain in the region [1, 3, 16].

Large interrogation regions are less likely to produce spurious vectors due to a larger

number of particles in the region but can preform very poorly when high shear is present in

the region [17]. Smaller interrogation regions can more accurately resolve shear but contain
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less information so are more prone to result in a spurious vector.

Reflections within the interrogation region from stationary objects, or streaks and

sudden changes of the laser sheet intensity will correlate with itself. This usually results in

a zero displacement measurement from the region [16].

Particle Image Diameter

The particle image diameter in PIV image pairs directly affects the algorithm’s ability

to estimate subpixel displacements. Optimum particle image diameters have been given

by many authors which ranging from 2 pixels [1] to over 6 pixels [16]. The reason that

more than one optimum particle image diameter are reported is that it is dependent on

the sub pixel estimation method used. The 2 pixel optimum reported by [1] is based on

a three point gaussian estimate method while the 6 pixel optimum from [16] uses a thin

shell smoothed spline technique and claims that other researches haven’t accounted for high

shear within an interrogation region. Other subpixel estimation methods such as centroid

techniques require larger particles (> 4 pixels) for increased accuracy [6].

It is recommended by [16] to have a distribution of particle image diameters in the image

pair. The distribution of particle image diameters increases the probability of a unique PIP

within the interrogation region. Larger particles have been shown to reduce error when high

levels of shear are present within a flow. As particle image diameters decrease in size the

ability to predict subpixel displacements diminish. Particle images that are too small (≤ 1

pixel) result in an effect known as peak locking. Peak locking is characterized by particle

displacements being biased toward integer pixel values [1] producing sometimes periodic

displacement counts when a histogram is made of interrogation region displacements [16].

Peak locking also contributes to precision error and its effects are discussed later.

Particle Density

The ability of a PIV algorithm to correctly match the PIP for an interrogation region

of an image pair is dependent on the information available. As more particle images are

contained within an image pair this information increases, resulting in a higher probability
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of a valid velocity vector [1]. The number of particle image pairs contained within an

interrogation region is dependent on the number of particles, in plane motion, and out of

plane motion. The number of particles in the flow is controlled via the experimental set up

while in plane and out of plane motion is controlled by the dt as discussed in the dynamic

range section. The number of particles divided by pixel area is known as particle density.

According to [1] a minimum of 3 to 4 particle images should be contained within an

interrogation region. For flows with strong regions of shear, [16] recommends a high seed

density and found that in flows with low shear the seed density was not critical. Because

PIV algorithms match patterns rather than track particles, the background of an image

is just as important as the particle images [16], thus high seed densities which result in

overlapping particle images can hinder the algorithms ability to match the PIP uniquely. If

the seed density within the flow is too high the seed may also affect the flow characteristics

of the fluid being studied or begin to interact with each other [3, 6].

Other Sources of Bias

According to [3,13], the maximum correlation value (most likely displacement) always

deviates from the true value toward smaller displacements. This effect is proportional to

the width of the correlation peak and particle image diameter. A typical bias for a 32× 32

interrogation window suffering from this is about 0.1 pixels [3]. This bias is caused by the

cross correlation method. For detailed analysis of this error see [13].

A source of error that doesn’t fit into the specific types of error previously listed involves

the type of PIV algorithm used. When computing the cross correlation two dominate

methods are used, a direct calculation and a method utilizing a FFT. The FFT method

assumes that the intensity profile within the interrogation region is periodic making it

susceptible to aliasing problems, a phenomena which makes high frequencies show up as

low frequencies. Since the FFT method limits the size and shape of the interrogation regions

they are often padded with zeros to change the shape and size. Zero padding can create high

frequency noise in the interrogation region due to sharp discontinuities between the pixel

intensity values and the added zeros [1]. Using the direct calculation allows repositioning
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of the second interrogation region for each displacement [7] as well as increasing the size of

the second interrogation region to reduce loss of correlation [14]. The error associated with

these differences can manifest as outliers or mean bias errors and effect precision uncertainty.

Errors stemming from the PIV algorithm will be considered as a bias error for this analysis

as it effects each individual vector.

2.3.3 Precision Error

It is important to note that precision error is an error on the mean velocity, not an

individual measurement. Sources of precision error include: camera “dark current” noise,

non-linear and non-uniform camera response, non-uniform illumination, non-uniform reflec-

tion, camera cable noise, and digitization error [14]. These sources all produce noise in the

PIV images. Noise in a PIV image produces error in pixel intensities, which lead to errors

in particle locations. Other sources include peak locking, and velocity fluctuations present

in the flow [18]. These sources of precision error indicate that the mean velocity is not being

sampled accurately.

Precision error is not necessarily bad and may be used to determine if a fluid flow is

laminar or turbulent. The previously stated sources of precision error can be summed up

into two main sources, noise and velocity fluctuations. For turbulent flows the velocity fluc-

tuations will generally be significantly higher in magnitude than the noise, thus dominating

the precision uncertainty [18]. For laminar steady flows however image noise becomes the

substantial component of precision error. Examples of velocity fluctuations and noise can

be seen in Fig. 2.4.

Precision uncertainty has been observed to appear spatially correlated, which is due to

interrogation regions sampling the same flow structures as neighboring regions, non-random

samples [18]. This can be especially evident in turbulent flows, of which the precision error

is often far greater than the bias.

Peak locking can make precision error appear to be smaller than it actually is. This is

because all displacements are biased toward integer pixel values, creating a high number of

similar displacements in steady regions of flow [9]. If particle displacements are too large,
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(a)

(b)

Fig. 2.4: PIV velocity over time (a) for low frequency sinusoidal turbulent velocity fluctu-
ations data with high frequency sinusoidal noise and, (b) constant laminar velocity data
with high frequency sinusoidal noise.
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then the precision uncertainty returned can also misrepresent the true error. This is due to

the low-pass filter nature of the cross correlation. High frequency velocity fluctuations at

time scales less than dt are averaged out.
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Chapter 3

Objectives

The objectives of this thesis are as follows:

1. Identify and select contributors to PIV error. Based on [1], the following contributors

have been selected:

• Particle image size

• Particle seeding density

• Shear rate

• Displacement

2. Generate synthetic images for flows that contain various particle image sizes, seeding

densities, shear rates and displacements.

3. Compute vector fields from the synthetic images and compare them to the known

solutions to find the errors as a function of each of the parameters.

4. Compute uncertainty estimates from the distribution of errors (step 3) and formed

into the Uncertainty Surface.

5. Estimate particle displacements, size, and density as well as flow shear.

6. Combine the estimates (step 5) with the uncertainty surface (step 4) to determine the

uncertainty for each vector.

7. Verify the method’s effectiveness by comparing the true solution of known flows to

the calculated velocities and their uncertainty band widths.
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Chapter 4

Procedures

An effort to develop a framework to estimate the uncertainty of every PIV vector based

on the measured flow as well as the raw image data is given. I begin by estimating the un-

certainty of a publicly-available PIV code (PRANA, developed at Virginia Tech, [19–21]),

using the Standard Cross Correlation (SCC) and Robust Phase Correlation (RPC) algo-

rithms as a function of several well-accepted error sources. The method (which is integrated

into the PIV code) measures the parameters that are known to influence uncertainty. Once

these parameters have been quantified, an estimate of the velocity uncertainty is made for

each velocity vector in space and time. The influence of these parameters on uncertainty is

determined from error analysis generated using synthetic images of known flow fields.

4.1 PIV Algorithms

It is important to make the distinction between PIV software and a PIV algorithm.

The PIV algorithm consists of a specific series of operations which are carried out on arrays

of discretized pixel intensities. These pixel arrays are a representation of an area of fluid

flow which contain seed particles that are illuminated by a light source. Examples of

these operations include Fourier-based cross correlation, gaussian subpixel displacement

estimators, windowing, multipass, etc. The logistics of data storage, manipulation, and

implementation of the specific operations in specified order describe PIV software. If two

instances of PIV software use the same algorithm, they must produce identical results.

An understanding of the distinction between PIV algorithms and software is vital when

considering the application of the results from any PIV study. When duplicating a published

PIV result with a different algorithm, one will not be able to identically match the results.

Also note that PIV processing with nearly any software requires the user to make dozens
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of choices on the algorithm features as well as the order in which they are executed. As a

result, even with the same software, it is unlikely that two users will use identical algorithms.

4.2 Uncertainty Estimates for Specific PIV Algorithms

It is first important to make a distinction between error and uncertainty, since, while

there have been many studies of PIV error (or accuracy), there have been few on PIV

uncertainty. According to [22], “An error δ is a quantity that has a particular sign and

magnitude, and a specific error δi is the difference caused by error source i between a

quantity ... and its true value....Uncertainty U is thus an estimate: a ±U interval is an

estimate of a range within which we believe the actual (but unknown) value of an error δ

lies.”

This study attempts to quantify the uncertainty of PIV-computed velocity vectors au-

tomatically. It is not the intent of this study to prove the superiority of one PIV algorithm

over another. The original intent of this study was to produce a universal uncertainty

model which could be distributed with any PIV software. By looking at the PIV Challenge

results [23–25] it is clear that this cannot be accomplished. These studies show that various

PIV algorithms have different errors for identical input. It is also apparent that different al-

gorithms are more sensitive to certain image parameters than others, such as shear, particle

diameter, and density. Because of this, a single PIV uncertainty model for all algorithms

cannot provide realistic results.

To further demonstrate the need for individualized uncertainty values for each PIV

algorithm, synthetic images are processed using LaVision’s DaVis 7.2.2 and PRANA, which

was developed at Virginia Tech [19–21]. The average error of velocity vectors from a uniform

flow based on subpixel displacement only was computed for flows processed by the two PIV

algorithms and are shown in Fig. 4.1. The images processed with DaVis used three passes

with the first pass interrogation regions 64 pixels square and the final pass 16 pixels square.

A circular window was applied to each pass. The images are processed with PRANA using

a Multigrid Standard Cross Correlation routine with gaussian windowing and three passes

similar to the one ones used by DaVis. Not only do the velocity error values differ, but the
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Fig. 4.1: Average subpixel displacement error as computed by DaVis 7.2.2 and PRANA for
different diameters, dτ , at a particle image density of 0.0293 particles/pixel2.

shape and sign of the error curves are significantly different between the different algorithms.

4.3 Uncertainty Estimation

Using a 1-D equation for clarity, the calculation of velocity in PIV measurements comes

from the approximation

u =
dx

dt
≈ ∆x

∆t
. (4.1)

The uncertainty of u can come from both the displacement ∆x and the time increment ∆t.

Using the Taylor Series Method for uncertainty propagation [22], the combined uncertainty
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estimate for the velocity, assuming that the uncertainty of ∆x and ∆t are not correlated, is

uu =

√(
∂u

∂∆x
b∆x

)2

+

(
∂u

∂∆t
b∆t

)2

(4.2)

where b∆x and b∆t are the uncertainty estimates of ∆x and ∆t. The uncertainty of ∆t is

small enough that it is assumed negligible, so the uncertainty of u becomes proportional to

the displacement uncertainty b∆x. Eqn. 4.2 simplifies to

uu =

(
1

∆t

)
b∆x. (4.3)

The Monte Carlo Method (MCM) for determining the combined uncertainty assumes

a Probability Density Function (PDF) for each input variable. The values of these variables

are randomly chosen according to the assumed distribution, and the solution is computed

from the data reduction equation. The calculation is repeated until the standard deviation

is converged [22], which is the uncertainty estimate that includes all correlation effects.

The data reduction equation for PIV is given by its algorithm. The inputs to the data

reduction equation are arrays of pixel intensities, and the output is a vector. Pixel intensities

in a single image are correlated with each other through particle image diameter and density.

The pixel intensities between image pairs are correlated with each other through particle

displacement, shear, and rotation. For most PIV algorithms, it is not beneficial to develop

an analytic expression of the data reduction equation. If an interrogation region were

only 8 pixels square, the data reduction equation becomes a function of 2(8)2 = 128 pixel

intensity values. Because the data reduction equation is a function of many variables, all

of which are correlated, a MCM to determine a combined uncertainty estimate is selected.

The random variable in the MCM simulation is particle location, which is selected from a

uniform distribution.

4.3.1 Synthetic Images

“Synthetic images” are computer generated PIV image pairs, sometime called Monte
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Fig. 4.2: Volume showing particles and gaussian laser sheet profile [1].

Carlo simulations [1,4,6]. Using synthetic images based on known flow data (from analytical

solutions or numerically computed flow fields) makes it possible to know the exact solution,

and true error, for specific cases. Synthetic images also allow for control of the particle

displacement, image background noise, particle size, particle density, and particle intensity.

In creating synthetic images, a random number generator (based in a uniform distribu-

tion) is used to populate a volume with particles (see Fig. 4.2), the random numbers giving

the particle locations. A simulated laser sheet passes through the center of the volume

which has a gaussian intensity profile. The purpose of the laser sheet in the simulation is

the give the particles a peak intensity. Once the volume is populated with enough particles

to reach the desired particle density a second volume is created in which all particles are

displaced according to the desired velocity field. It is important that the volume being

populated is larger than the desired image. This allows for particles to move in and out of

the image pair as shown in Fig. 4.3. Each volume is then digitized (particles are changed

into pixel intensities).
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Fig. 4.3: Two images of the same space as shown as particles move through a volume. It is
illustrated that the volume containing particles needs to be larger than the images desired.

The digitization process starts with the apparent particle diameter as seen by the

camera. This is found from

dτ =
(
M2d2

p + d2
s

)1/2
(4.4)

ds = 2.44 (1 +M) f#λ (4.5)

where f# is the lens aperture number, λ is the laser wave length, M is the magnification,

and dp is the actual particle diameter [6]. Then the particle intensity can be computed

based on the gaussian laser sheet

Ipp(z) = Ilpe
−8z2/d2l (4.6)

where Ilp is the peak intensity and dl is the sheet thickness. As a result of using a gaussian

laser sheet with finite thickness, particles moving in the z-direction (see Fig. 4.2) change

peak intensity. Once the peak particle intensity has been calculated the particle intensity

profile can be computed. The particles are assumed to produce a gaussian light profile
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Fig. 4.4: A syntectic image that is 256×256 pixels with 3 pixel diameter gaussian particles,
and a 1mm thick light sheet.

according to

Ip(x, y) = Ippe
−8[(x−x0)2+(y−y0)2]/d2τ (4.7)

where x0 and y0 are coordinates of the particle center. Eqn. 4.7 can be used to define the

intensity contribution of a particle to the entire image, however for this work, any values

of Ip < 1 × 10−8 will be neglected. This simplification saves considerable computational

time to generate the synthetic images. Now that the particle intensity profile is defined

(Eqn. 4.7), it can be integrated over the area of a pixel to determine that specific pixel’s

intensity

I =

∫ y2

y1

∫ x2

x1

Ip(x, y)dxdy. (4.8)

The images then become the sum of all the particle intensity profiles. A finished image

frame without background noise can be seen in Fig. 4.4. Background noise can be included
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to the images by adding to the image

IN (i, j) = Imean + Ifluctrand(−1, 1) (4.9)

where Imean is a constant background noise level, Ifluct is a fluctuation noise amplitude

that multiplies rand(−1, 1) which returns a random number between −1 and 1 [6].

Five flows are studied ranging from simple to complex: uniform flow, constant gradient,

Couette-Poiseuille flow between plates, Burger’s Vortex flow, and Direct Numerical Solution

(DNS) for a laminar separation bubble from the 2005 PIV challenge [25].

A uniform velocity flow can be created by displacing all particles by the same specified

magnitude for each velocity component. Mathematically it can be expressed as

v =


u

v

0

 . (4.10)

The uniform velocity flow field allows for study of PIV errors without gradients, rotation,

and no out of plane loss.

The linear velocity profile (constant gradient) is defined as

v =


u+ y

(
du
dy

)
0

0

 . (4.11)

The linear velocity profile allows the study of velocity calculations in the presence of constant

shear without rotation and out of plane loss.

The combined Couette-Poiseuille flow is a laminar one-dimensional flow driven by a

constant pressure gradient and moving upper wall with no slip boundary conditions at each
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Fig. 4.5: Combined Couette-Poiseuille flow velocity profiles for varying pressure gradients.

wall. The flow field can be expressed as

u

U
=

1

2

(
1 +

y

h

)
+ P

(
1− y2

h2

)
, P =

(
−dp
dx

)
h2

2µU
(4.12)

where U is the velocity of the upper wall, and h is the half distance between plates [26].

The velocity vector then becomes

v =


u

0

0

 . (4.13)

The Couette-Poiseuille flow maintains a constant profile in the x and z direction. Velocity

profiles for the combined Couette-Poiseuille flow can be seen in Fig. 4.5. By generating

synthetic images from this flow field, the effects of non-constant shear can be examined

without out-of-plane motion of the PIV algorithm.

A Burger’s Vortex is a vortex model which assumes the fluid is steady, axis-symmetric,

with small axial gradients of physical quantities. The flow velocity is described by

Vθ
Vθb

=
Reb

2
(
1− e−Reb/2

) r
b
, Reb = −bVrb

νt
(4.14)

Vr
Vrb

=
r

b
(4.15)
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where b is the radius of the vortex, and Vrb and Vθb are cylindrical components of velocity

at r = b [27]. Converting to cartesian coordinates

v =


Vrcos(θ)− Vθsin(θ)

Vrsin(θ) + Vθcos(θ)

0

 . (4.16)

Producing synthetic images that follow this flow field allow for the study of the effects of a

rotational flow field without out-of-plane motion on the PIV algorithm.

The final flow field produced is that of a DNS for a laminar separation bubble from the

2005 PIV challenge case B [25]. Rather than computing the flow velocity at each particle

location, a table look up was used based on the DNS results for the flow.

Background noise was added to each image at three different levels. The first level is

zero noise, which is intended to give a best case scenario. The second noise level is meant

to approximate the actual noise level in the PCO sensicam QE 12 bit CCD camera. To

approximate the noise produced when recording images with this camera 100 image pairs

are taken of air with no seed particles illuminated by a New Wave Research Solo PIV III

ND-Yag Laser dual cavity laser. A histogram of the pixel intensities is generated to show

the noise distribution. The histogram x-axis is normalized by the maximum pixel intensity

(4095), and the y-axis is normalized by the total number of pixels recorded. The normalized

histogram is fitted with a normal distribution,

y(x) = Ae−
(x−µ)2

2σ2 , (4.17)

with average µ = 1.011e−2 and standard deviation σ = 5.96e− 4. Random samples are then

taken from this normal distribution and added to each image to simulate the background

noise of the PCO sensicam camera. The third noise level is meant to approximate the

actual noise of the Photron FastCam APX RS 10 bit CMOS camera. Following the same

procedure that was used for the second noise level, 100 image pairs are taken of air with

no seed illuminated by a Photonics ND-YLF single cavity laser. A histogram is made and
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Fig. 4.6: Normalized histogram of background noise from PCO sensicam QE CCD and
Photron FastCam APX RS CMOS cameras.

normalized in the same manner as the second noise case and fitted with a normal distribution

of mean µ = 2.834e−3 and standard deviation σ = 3.55e−3. This normal distribution is

then randomly sampled to produce background noise for the third case. The normalized

histograms from these cameras are seen in Fig. 4.6.

4.3.2 Generating the Uncertainty Surface

According to [1], the main sources of error in PIV are particle image density, in-plane

loss, out-of-plane loss, particle diameter, particle displacement, and shear. In-plane loss

and out-of-plane loss will be considered as criteria to exclude data and are not considered

in this thesis. The others sources of error will be the focus of the current study to estimate

uncertainty values. A multipass PIV algorithm is used so only the subpixel displacement

will be considered as contributing to the uncertainty value. This assumption was tested

and found true 97% of the time. The effects of background noise are not included in the

uncertainty surface because they are considered negligible compared to noise created by the

FFT correlation [1]. The uncertainty data given by [1] is not used since it is specific to the
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algorithm that was used to generate it.

For interrogation regions experiencing identical true displacements (made from syn-

thetic images) the same vector is not always computed from interrogation region to in-

terrogation region. Even though the data reduction equation is the same for each region,

the inputs of pixel intensities differ. The pixel intensity arrays vary because particles are

randomly distributed throughout the flow. Another difference arises because the Fourier-

Based Cross-Correlation computation introduces noise into the correlation map [1], which

is dependent on the input pixel intensity arrays. The distribution of these displacements is

used to compute a 95% confidence interval (see Fig. 4.7).

There exist unique upper, rhigh, and lower, rlow, values of the precision uncertainty

(since the distribution of PIV error is, in general, not symmetric) for each data point and a

systematic uncertainty value bk. The systematic uncertainty is computed as the difference

between the true displacement Dtrue and the average computed displacement rave. The
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precision uncertainty values are calculated by computing the area under the probability

curve, since the curve is a histogram, integration is accomplished by summing the number

of samples. The lower limit rlow is the difference between rave and the point at which the

area under the curve is 2.5% of total area under the histogram. Similarly, the upper bound

rhigh is the difference between the point in which the area under the curve is 97.5% of the

total area and rave [22].

The combined uncertainty estimate for the lower uncertainty bar limit can be computed

as Eqn. 4.18 and the upper bound as Eqn. 4.19.

U−
r =

√
r2

low + b2k (4.18)

U+
r =

√
r2

high + b2k (4.19)

It should be noted that no assumptions have been made about the shape (PDF) or location

of the displacement distributions. Although the bk is considered a symmetric uncertainty

value, it is represented as having a unique upper and lower bound with magnitudes that

are identical.

It is often desired to compute time statistics for PIV velocity measurements. An

estimate of the uncertainty on the mean of a velocity vector can be computed as

Ū−
r =

√√√√(1.96
sx√
N

)2

+
1

N

N∑
i=1

(
U−
ri

)2
(4.20)

Ū+
r =

√√√√(1.96
sx√
N

)2

+
1

N

N∑
i=1

(
U+
ri

)2
(4.21)

where sx is the standard deviation of the velocity at a point in space and U−
ri and U+

ri are

the uncertainty values for each velocity measurement used to compute sx.

The data are recorded for multiple particle image diameters, densities, displacements,

and velocity gradients creating an input parameter space which is defined in Table 4.1.

The number of data points to be used was determined after a convergence study was
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Table 4.1: Range of the Computed Uncertainty Estimates

Input Parameter Lower Limit Upper Limit Step size

Particle Image Diameter (pixels) 0.5 5.0 0.5
Particle Image Density (particles/pixels2) 0.0098 0.0391 0.0098

Particle Image Displacement (pixels) -1.0 1.0 0.1
Gradient (pixels/pixel) 0.00 0.20 0.02

Table 4.2: PIV Processing Parameters Used to Compute the Uncertainty Surface

Pass Grid Resolution Grid Buffer Window Resolution Window Size Validation
x,y (pixels) x,y (pixels) x,y (pixels) x,y (pixels)

1 8,8 8,8 64,64 128,128 none
2 8,8 8,8 32,32 64,64 none
3 8,8 8,8 16,16 32,32 7,7;7,7

performed. The results are shown in Fig. 4.8. The images are all proceed using the same

inputs (the same PIV algorithm). Three passes are used in a Multipass (DWO) routine.

The parameters of each pass are summarized in Table 4.2. The median filter version of the

universal outlier detection method [28] was used as the validation method to post process

the data. No filtering was performed based on the correlation peak magnitude. Note that

validation was only preformed on the final pass, however this is not technically correct.

The DWO routine uses validation steps between each pass, they are not listed as the user

is not required to specify them. Vectors that are identified as outliers are removed. The

interrogation regions were spaced far enough apart that even with window shifting there

was no interrogation region overlap. Thus, the particles in each image pair are only sampled

once creating independent vectors. It was surmised that 10, 000 vectors for each point in

the uncertainty surface were sufficient for statistical convergence.

Using the statistics of the 10,000 samples along with Eqn. 4.18-4.19, a 4-D uncertainty

surface was generated. Some of the results are presented by holding two variables constant

and varying the other two. Figure 4.9 shows U+
r for no gradient and 0.8 pixel displace-

ment. Figure 4.9 illustrates that the uncertainty estimate is almost constant with diameter

and density with the exception of small particle image diameters and low particle density.
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Figure 4.10 shows U+
r for 2.50 pixel particle image diameter and 0.0195 particle/pixel2

density and shows that the uncertainty estimate is a weak function of displacement (with

maximum uncertainties near ±0.05 pixels) but is sensitive to shear.

4.3.3 Computational Cost

At this point the resource cost should be mentioned, although computational perfor-

mance is not a concern at this time. The computational time to generate the uncertainty

surface is large; nearly 100,000,000 vectors were computed to generate the surface. The

synthetic images are generated from a parallel FORTRAN code which utilized MPI, and

an image file writing library. The images were made such that they are large enough that

10, 000 vectors can be computed from each image pair. The interrogation regions are spaced

far enough apart that even with window shifting there is no interrogation region overlap,

the particles in each image pair are only sampled once creating independent vectors. The

images were generated on a 24 client cluster which took approximately 7 days. The process-

ing of the images using PRANA, which is written in MATLAB, took approximately 4 days
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to complete using 40 clients. For each PIV algorithm, the uncertainty surface only needs

to be computed once, unless changes to the algorithm are made. Once implemented within

the PIV software the uncertainty estimate for each interrogation region takes an amount of

time on the same order as the PIV correlation step computation.

4.4 Uncertainty Comparison

Several earlier studies have examined the error of PIV as a function of various pa-

rameters. Some of these results [1] will now be compared to our uncertainty surface to

demonstrate that the present uncertainty surfaces are unique, but have similar magnitudes

to previously published studies. The RMS error reported by [1] is never defined, but using a

common definition, it is essentially a 1−σ uncertainty. Therefore, to make a comparison to

the current results, εrms should be multiplied by 1.96 to obtain a 95% uncertainty. In most

cases, Raffel did not report the bias uncertainty and only very limited data are available

for direct comparison. Since both PRANA algorithms had similar behavior, only the SCC

results are compared.

The accuracy of PIV has been widely reported as being maximized for a particle image

diameter near 2 pixels, as shown in Fig. 4.11. The PRANA algorithm is somewhat more

accurate for this case than Raffel’s code and did not show the same increase in noise with

particle image size beyond 2 pixels. Having a rhigh value larger than rlow indicates that the

distribution is skewed to the high side. Note that these uncertainty values are very small.

The uncertainties stemming from displacement are also small as shown in Fig. 4.12. The

random distribution is skewed toward the low side for smaller displacements, but switches

to the high side for displacements larger than 0.5 pixels. Raffel’s results did not employ

window shifting, which is the reason for the non-periodic behavior of the uncertainty. The

PRANA displacement uncertainties as a function of displacement are similar (accounting

for the factor of 1.96 difference between the definition of εrms and r), and are periodic.

These results are not shown, but like Raffel’s result, increasing particle density decreases

the fluctuations. This is likely due to increased correlation strength for increased particles.

Also, the bias uncertainty grows with increasing particle density. For the low density shown,
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Fig. 4.11: A comparison between the rms uncertainty reported by Raffel and the bias, upper
random and lower random uncertainty from this study due to particle image diameter. The
SCC method is used with interrogation regions of 16 × 16 pixels with NI = 5. All images
have 8 bit resolution, no noise, and particle image diameters of 2.0 pixels.

the bias is very small.

The uncertainties due to shear are much larger for any PIV code compared to uniform

displacements . Figure 4.13 shows that even small amounts of shear dramatically increase

the uncertainty, while the floor uncertainty for Raffel’s result is larger. Both algorithms

improved with seeding density in a similar manner.

4.5 Image Parameter Quantification

To use these uncertainty estimates, image parameters need to be quantified for non-

synthetic data. The easiest parameter to quantify is displacement since the PIV algorithm

already calculates this. Since it is the value of the subpixel displacement that creates error

(assuming it is not a spurious vector), this quantity is stored for each vector. Depending on

the algorithm used, this value can be determined by multiplying the velocity by ∆t, then

rounding the displacement to the neared integer pixel value, and taking the difference from
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Fig. 4.12: A comparison between the rms uncertainty reported by Raffel and the bias,
upper random and lower random uncertainty from this study due to displacement. The
SCC method is used with interrogation regions of 32×32 pixels with NI = 10.2. All images
have 8 bit resolution, no noise, and particle image diameters of 2.2 pixels.

the unrounded value.

The average particle image diameter and the average density are not as straight forward

to determine. A preliminary method to automatically estimate the particle image diameter

and density has been developed. Rows (or columns) of pixel intensities are selected from each

PIV image pair. Each row is then averaged with the preceding and following rows. A plot of

this is shown in Fig. 4.14. Because real images will have background noise, a threshold value

must be set such that background noise has a minimal impact on the diameter estimate.

The peaks that extend above the threshold level are assumed to represent a particle image or

cluster of multiple particle images. Peaks corresponding to multiple particle image clusters

will be generally larger in magnitude and wider than those of single particle images. A

gaussian curve is then fit to each peak above the threshold. The standard deviation, sx, of

the gaussian curve is computed for each assumed particle. The particle diameter is then

estimated to be 2(1.6)(sx), where the value 1.6 was empirically determined. An average



39

0.001

0.01

0.1

1

0 0.05 0.1 0.15 0.2

Raffel ε
rms

SCC |b
k
|

SCC |r
low

|

SCC |r
high

|

U
nc

er
ta

in
ty

 (p
ix

el
s)

Gradient (pixels/pixel)

Fig. 4.13: A comparison between the rms uncertainty reported by Raffel and the bias, upper
random and lower random uncertainty from this study due to shear. The SCC method is
used with interrogation regions of 16 × 16 pixels with NI = 5. All images have 8 bit
resolution, no noise, and particle image diameters of 2.0 pixels.

Fig. 4.14: A singe row added to the preceding and following rows of pixel intensity. Based
on this singe row the algorithm computed the particle image diameter such that the relative
error [abs(dτtrue − dτ )/dτtrue]100% = 3.7%. The particle image density relative error was
computed the same way to be 8.8%.
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Fig. 4.15: Particle image diameter, dτ , is estimated with varying number of rows sampled.
The noise threshold is set to 10%, 30%, and 50% of the maximum intensity.

particle image diameter is then found from all the gaussian fits. Other methods such as

those used in Particle Tracking Velocimetry measurements may be used.

Using the gaussian fit for each assumed particle reduces the effect that the selected

noise threshold has on the estimated dτ which is seen in Fig. 4.15. It is also seen that an

average particle image predicted after sampling 30 rows becomes fairly constant. The exact

values of each estimated particle image diameter varies randomly about a mean value. This

is due to the random distribution of particles within each image. This scheme produces a

very accurate estimate of the particle diameter for particles larger than 1 pixel, as shown

in Fig. 4.16.

As a first approximation of the background noise for an image, the threshold is set to

the sum of the average pixel intensity of the image, x̄, and the standard deviation of the

pixel intensities sx. To estimate the particle image density the image intensity values are

filtered such that only pixel intensities larger than the threshold remain. The number of

particles in the image is then estimated as the number of pixels in the filtered image divided
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Fig. 4.16: Particle image size algorithm results as a function of particle size.

by the projected area of a particle, which is approximated by that of a circle

Ap =
π (dτ )2

4
. (4.22)

The particle density can then be estimated by dividing the number of particles by the

pixel area of the image. Experimental results indicate that this method tends to underesti-

mate the particle image density. A correction factor of 1.32 is multiplied to the estimated

particle image density estimate to provide a better estimate.

The fourth parameter that is needed for the uncertainty estimate is the velocity gra-

dient. The method used to estimate the velocity gradient is the Robust Gradient Estimate

Method described in [29] which has shown improvement in derivative estimates over other

methods such as finite difference.

Effects of Noise on Parameter Quantification

The effects of noise on gradient estimation can be found in [29], and the effects of noise

on displacement estimation can be found in [19–21]. To see the effects of noise on particle

image diameter and density, three levels of background noise are investigated which are
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created from a normal distribution with zero mean and variance equal to 0%, 10%, and

20% of the maximum intensity value. Sample images corresponding to these noise levels

are seen in Fig. 4.17. A plot of the estimated diameter and density for the three noise levels

is seen in Fig. 4.18 and Fig. 4.19. The uncertainty bars on the data points are based on a

Student’s t distribution with sample size of 4. As we can see the estimate of the particle

image diameter remains accurate for the three levels of noise while the estimated particle

image density rises with increased noise. The estimation of particle image density will be

an area of future study.

From Fig. 4.9 and Fig. 4.10 it is concluded that the accuracy with which this method

finds the particle image diameter and density will have little effect on the uncertainty

estimate. The ability to accurately predict the uncertainty is most directly related to the

accuracy with which the gradient can be estimated.
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(a)

(b)

(c)

Fig. 4.17: A section of an image with particle image diameters of 2.5 pixels, density 0.0192
particles/pixel2 and (a) 0.0% background noise, (b) 10.0% background noise, (c) and 20.0%
background noise.
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Fig. 4.18: The effect of image background noise on the estimated particle image diameter.
The actual value is 2.5 pixels. Uncertainty band width is computed from a Student’s t
distribution of 4 samples and a 95% confidence interval.
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Fig. 4.19: The effect of image background noise on the estimated particle image density. The
actual value is 0.02. Uncertainty band width is computed from a Student’s t distribution
of 4 samples a 95% confidence interval.
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Chapter 5

Results

The estimated uncertainty based on the uncertainty surface was computed from flows

having a uniform profile, a linear profile, a Couette-Poiseuille flow, a Burger’s Vortex, and

a laminar separation bubble [25]. Information on how these were generated can be found in

chapter 4. Given the synthetic images based on “known” flows, it is possible to determine

how often the “true” value lies within the uncertainty bands. Note that the Liner Profile,

and Couette-Poiseuille flow have zero mean in the cross stream direction (v = 0).

5.1 Assessing the Appropriateness of the Uncertainty Band

The appropriateness of the estimated uncertainty is determined by examining the per-

centage of calculated vectors which contain the true value within their error bounds. If all

error sources have been taken into account, the uncertainty bands on 95% of the computed

vectors should contain the true value. This percentage will be refereed to as the “Un-

certainty Effectiveness.” The uncertainty effectiveness is computed for all flows and three

background noise levels (for cases for which images were generated) including no noise, and

noise levels corresponding to two common cameras. Differing levels of background noise are

included to test the results of [1], that it is negligible, and to make the synthetic images

more realistic. The results are tabulated in Table 5.1 for both the standard cross corre-

lation (SCC) and robust phase correlation (RPC) methods. The same inputs to PRANA

were used as when the uncertainty surface was generated and can be found in Table 4.2.

Note that the PIV Challenger 2005 case B was not processed with noise added, because the

images were given for the challenge, not produced for this study.

Each flow analyzed contained 16, 129 vectors with the exception of the PIV Challenge

2005 case B which has 3608 vectors. Each image was post-processed using a median filter
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Table 5.1: Uncertainty Effectiveness (u − U−
r < utrue < u + U+

r ) for Both the u and v
Velocity Components

Flow Type and Correlation no noise PCO Sensicam QE FastCam
(u/v) noise (u/v) noise (u/v)

Uniform Flow SCC 78.0% / 66.4% 61.5% / 56.7% 71.0% / 61.9%
RPC 94.1% / 87.9% 89.6% / 83.0% 87.3% / 77.0%

Linear Profile SCC 93.0% / 44.5% 92.8% / 44.7% 93.0% / 41.0%
RPC 95.5% / 41.8% 96.1% / 42.7% 95.6% / 39.4%

Couette-Poiseuille SCC 93.3% / 42.8% 92.5% / 45.1% 92.8% / 39.6%
RPC 95.9% / 44.5% 97.4% / 49.6% 95.8% / 41.4%

Burger’s Vortex SCC 78.5% / 77.4% 78.4% / 77.5% 78.1% / 77.0%
RPC 86.2% / 83.5% 88.2% / 85.4% 86.0% / 83.1%

PIV Challenge 2005 case B SCC 72.3% / 33.6% - / - - / -
RPC 89.9% / 69.0% - / - - / -

to remove spurious vectors. In all cases, no more than 0.6% of the vectors were removed by

the median filter.

Table 5.1 shows that background noise plays an insignificant role for these flow cases.

Also, noise in the raw data can be mitigated through image pre-processing if the levels

are significantly high relative to the particle intensities. Numbers significantly lower than

95% indicate that either 1) an error source parameter, such as shear, has been estimated

incorrectly or 2) an error source has been neglected.

5.2 Uncertainty Field Computations Compared with Error

The first flow analyzed is that of a uniform velocity field. The data was created

with particle image diameters equal to 2.5 pixels, and a particle image density of 0.0293

particles/pixel2. This case serves as a base line of a simple flow with two significant ve-

locity components and no gradient. The uniform displacement is set such that there is

a 3.268 pixel displacement along the x-axis, and a 5.876 pixel displacement along the

y-axis. A plot of the velocity field and the computed width of the uncertainty bars,√(
U−
rx

)2
+
(
U−
ry

)2
+

√(
U+
rx

)2
+
(
U+
ry

)2
, is shown in Fig. 5.1. Figure 5.2 shows that the

uncertainty levels are generally small for a flow with zero gradient but that regions of larger



47

X (pixels)

Y
(p

ix
el

s)

200 250 300 350 400 450 500 550 600
200

250

300

350

400

450

500

550

600
Mag

(pixels)

10
9
8
7
6
5
4
3
2
1
0

Fig. 5.1: Plot of the calculated displacement of the uniform profile velocity field with no
background noise computed with the RPC method.

uncertainty do exist due to other factors. It is also clear that these regions, in most cases,

correspond to regions of larger error. This is the desired performance of the method.

For a linear velocity profile (constant gradient of 0.02 pixels/pixel) with particle image

diameter equal to 2.5 pixels and particle image density of 0.0293 particls/pixel2, the velocity

field and the width of the uncertainty bars are shown in Fig. 5.3 and 5.4. The majority of

the uncertainty bars have the same size, since shear will dominate the uncertainty estimate.

The fluctuations in the uncertainty bar width are most likely due to errors in the estimate

of the velocity gradients ∂u/∂y and ∂v/∂x. An error in the computed velocity vector will

be amplified during numerical differentiation. Again, however, note the strong correlation

between regions of large uncertainty and regions of large error.

Combined Couette-Poiseuille flow, which has a varying gradient, is also analyzed with a

particle image diameter equal to 2.5 pixels and a particle image density of 0.0293 particls/pixel2.

The velocity field and the width of the uncertainty bars are shown in Fig. 5.5 and 5.6. As

expected, the width of uncertainty bars increased in areas of higher shear and decrease in

areas of low shear when the uncertainty due to displacement becomes significant. A plot
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0.05, and 0.1 pixels.
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Fig. 5.3: Plot of the calculated displacement of the linear profile velocity field with no
background noise as computed with the RPC method.
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Fig. 5.4: Plot of the width of the uncertainty bar associated with each displacement vector
and superimposed error contour for the linear profile case. The error level contours are set
at 0.0, 0.1, and 0.2 pixels.

showing the u velocity profile is shown in Fig. 5.7 with 95% confidence uncertainty bars

and the true value of u.

A Burger’s Vortex, which is a rotating flow, is also analyzed. The particle image

diameter is 2.5 pixels, and particle image density is 0.0195 particls/pixel2. A plot of the

velocity field, and the computed width of the uncertainty bars are shown in Fig. 5.8 and

5.9. The gradients (∂u/∂y and ∂v/∂x) in this flow are small and constant. Because of the

small gradients, the uncertainty due to the subpixel displacement, which is sinusoidal, is

significant.

For the PIV Challenge 2005 case B data the major source of error comes from shear,

the effects of which dominate the uncertainty estimates. A plot of the velocity field, and

the computed width of the uncertainty bars are shown in Fig. 5.10 and 5.11. It is seen that

the predicted uncertainty values are higher in areas of larger error.

The importance of individual uncertainty estimates can easily be seen when a plot is

made showing the uncertainty bar width as a percentage of the local velocity. This was
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Fig. 5.5: Plot of the calculated Couette-Poiseuille flow field displacement with no back-
ground noise as computed by the RPC method.

0.4
0.37
0.34
0.31
0.28
0.25
0.22
0.19
0.16
0.13
0.1

X (pixels)

Y
(p

ix
el

s)

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 Uncertainty
Band Width

(pixels)

Fig. 5.6: Plot of the width of the uncertainty bar associated with each displacement vec-
tor and superimposed error contour for the Couette-Poiseuille flow case. The error level
contours are 0.0, 0.1, and 0.2 pixels.
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Fig. 5.7: Comparison of the computed value of u and its 95% uncertainty bar at constant
x = 31mm for a Couette-Poiseuille �ow which has 10% background noise.
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Fig. 5.8: Plot of the calculated Burger� s Vortex �ow �eld displacement with no background
noise as computed by the RPC method.



52

0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1

X (pixels)

Y
(p

ix
el

s)

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 Uncertainty
Band Width

(pixels)

Fig. 5.9: Plot of the width of the uncertainty bar associated with each displacement vector
and superimposed error contour for the Burger Vortex case. The error level contours are
0.0, 0.1, and 0.2 pixels.
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the RPC method.
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Fig. 5.11: Plot of the width of the uncertainty bar associated with each displacement vector
in the DNS flow field with superimposed error contours. The error level contours are set at
0.0, 0.1, 0.2, and 0.3 pixels.

done for the combined Couette-Poiseuille flow (Fig. 5.12) and the PIV Challenge 2005 case

B flow (Fig. 5.13). Channel flow is often thought of as having high uncertainty near the

wall. Some of this velocity field may have an acceptable level of uncertainty. Using a single

uncertainty value for the entire flow (which is common) obscures the fact that some of the

data are much better that others.

It is seen in Fig. 5.13 that for a flow which appears to have a reasonable velocity

profile (Fig. 5.10), the uncertainty for local velocity values can reach unacceptable levels.

If a single uncertainty value were defined for the entire flow region, it would need to be

large enough to capture the vectors with the largest uncertainty. Such an approach often

would label PIV velocity fields with an uncertainty high enough to cause the case to be

discarded. If individual uncertainty values are assigned to each local vector, then each

vector can be individually assessed based on its uncertainty level. Since the uncertainty

estimates generated do not capture 95% of the true values, the uncertainty estimate as a

percentage of local velocity is an underestimation. Because of this Fig. 5.12 and Fig. 5.13
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Fig. 5.12: A plot of the local uncertainty estimate as a percentage of local velocity for the
combined Couette-Poiseuille flow.

are expected to overestimate the local accuracy of PIV.

5.3 Correction of Uncertainty Estimates

All three cases with small (PIV 2005) or zero (Linear Profile and Couette-Poiseuille) v

have very poor coverage for the v component of velocity. Since the two cases with v = 0 have

inappropriate uncertainty bars on the v components, 1-D flow was further investigated to see

if the u and v velocity components within the same interrelation region are correlated with

each other. To do this, 50 synthetic image pairs were created with displacements ranging

from 0.2 pixels to 10.0 pixels along the x-axis with v = 0. Background noise was added to

each to approximate that of the PCO CCD camera. Each image pair produced 3969 vectors

and was processed according to Table 4.2 Less than 1.5% of vectors were removed in post-

processing. Figure 5.14 shows the standard deviation of the y displacement component

(which should be zero) for both the SCC and RPC methods.

The periodic behavior appears similar to displacement peak locking. By removing all

integer displacements from the data in Fig. 5.14, the same data are shown as a function of
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Fig. 5.13: A plot of the local uncertainty estimate as a percentage of local velocity for PIV
Challenge 2005 case B �ow �eld.

Fig. 5.14: The computed standard deviation of the y velocity component for varying x
velocity component particle image displacement for both the standard cross correlation and
robust phase correlation methods.
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Fig. 5.15: The computed standard deviation of the y velocity component for varying x
velocity component particle image subpixel pixel displacements.

subpixel displacement only in Fig. 5.15.

It is apparent that the for the SCC method, there is noise induced on a velocity

component proportional to the subpixel displacement on the other component. For the

RPC method the amount of noise induced on a velocity component is less than that of

the SCC method, but it is still present and actually increases as the displacement of the

orthogonal component increases. The uncertainty surface produced for this study did not

account for this e�ect. This may explain the poor uncertainty estimate on the zero v cases.

In fact, this e�ect will degrade performance in any case where all other error sources are

insigni�cant. This also explains why the RPC method, which su�ers from this problem to

a much smaller extent than the SCC method, provides better uncertainty results than the

SCC method even though they each have their own unique uncertainty surface.

5.3.1 Implementation of an Uncertainty Floor

In these cases, the uncertainty is very small and the vector value is close to zero.

In these situations, e�ects that are not considered in the uncertainty surface can become

important, thus leading to poor coverage from the uncertainty bands. The following solution
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Fig. 5.16: The effects of a floor minimum uncertainty value for the uniform flow, linear
profile, Couette-Poiseuille, and Burger’s vortex flows when processed with the SCC method.

to this issue: the uncertainty should have a floor or minimum value. Figure 5.16 shows the

uncertainty effectiveness as a result of minimum floor value chosen. The floor effects of

the RPC method are not shown here as they follow as similar trend. From Fig. 5.16

it is observed that the flow cases, with the exception of the Burger Vortex, reach 95%

uncertainty effectiveness with a similar floor value. Based on Fig. 5.16, we have chosen a

value of 0.050pixels for the SCC method floor, and 0.023pixels for the RPC method floor.

Using this minimum uncertainty value the new results are show in Table 5.2 (background

noise cases are not shown as the effect of background noise was shown to be insignificant).

These floor values are as expected based on the peak values observed in Fig. 5.15. By

comparing Table 5.2 to the original results in Table 5.1 it is seen that the floor provides

an adequate correction for all tested flows with the exception of the Burger vortex. The

location of uncertainty values which are set to the minimum floor value are confined to

areas of the flow which has low, if any shear, and very small displacement. Because of this,

we still maintain local uncertainty values, rather than defining a global value. The floor

can be though of as the uncertainty level generated by PIV when nothing else significant
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Table 5.2: Uncertainty Effectiveness after a Floor of 0.050 Pixels for the SCC Method, and
0.023 Pixels for the RPC Method Was Used

Flow Type and Correlation Uncertainty Effectiveness (u/v)

Uniform Flow SCC 97.9% / 95.3%
RPC 96.5% / 97.3%

Linear Profile SCC 93.3% / 95.2%
RPC 95.8% / 94.7%

Couette-Poiseuille SCC 96.2% / 95.1%
RPC 96.5% / 92.8%

Burger’s Vortex SCC 79.3% / 78.2%
RPC 86.5% / 83.8%

PIV Challenge 2005 case B SCC 94.1% / 94.9%
RPC 93.7% / 90.7%

in the flow is present. It is determined that an important parameter is not accounted for

which adds to the uncertainty for the Burger vortex but is not present in the other flows.

5.3.2 Burger Vortex Investigation

In an effort to determine the cause of the underpredicted uncertainty values of the

Burger vortex, three Burger vortexes were created which different strengths. From Fig. 5.17

it is seen that the strength, or level of rotation present in the flow effects the uncertainty

effectiveness for a given floor value. Figure 5.17 is a good example of what the uncertainty

effectiveness will look like when one or more important flow parameters are not accounted

for in the local uncertainty estimates. While both the SCC and RPC methods are evaluated,

only the SCC results are shown as the RPC results are very similar.

To determine where the true values are not being contained within the uncertainty

bounds contours are made showing their location (Fig. 5.18 and 5.19). As expected,

these locations also correspond to regions of larger error. The periodic nature of the large

error suggests an error source which is periodic. A histogram was used to determine if peak

locking might be the cause, or if certain velocity magnitudes are favored over others. It

was determined that all velocity magnitudes are effected equally and peak locking is not

present in the Burger vortex flows. The correlation surfaces (C(i, j)) are also inspected to
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Fig. 5.17: Uncertainty effectiveness shown as a function of the floor value for three Burger
vortex cases, each with different strengths.
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Fig. 5.18: u velocity locations where the true value is not contained within the uncertainty
bounds.
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Fig. 5.19: v velocity locations where the true value is not contained within the uncertainty
bounds.

determine if something significant was present, and found to appear valid, containing only

one large peak similar to Fig. 2.2.

It is proposed that a possible cause of the underprediction uncertainty values is rotation.

To determine if rotation is the missing parameter a Rankine vortex is created and tested

which contains regions of rotational and irrotational flow. The Rankine vortex velocity is

defined as

Vθ =

∣∣∣∣∣∣∣
ωr if r < R

K
r if r > R

(5.1)

Vr = 0 (5.2)

where K and ω are constants and R is the radius where the rotation goes to zero [30]. To

solve for K and ω such that there is not a discontinuity a maximum velocity is defined as

Vmax and they can be solved for as

K = VmaxR, (5.3)
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Fig. 5.20: Velocity field of the Rankine vortex.

ω =
Vmax
R

. (5.4)

Converting to cartesian coordinates is identical to that used when generating the Burger

vortex and can be found in Eqn. 4.16. The velocity field is shown in Fig. 5.20 for the

Rankine vortex.

The results from the Rankine vortex mimicked those of the Burger vortex. In the

Rankine vortex, areas of underpredicted uncertainty which do not contain the true value

were found to be periodic, and are prevalent in both the rotational and irrotational regions

of the flow. The regions in the Burger vortex which also did not contain the true value

within the error bounds are also found to be periodic. Because the uncertainty effectiveness

of the Rankine vortex is low in areas of irrotational flow as well as rotational flow it cannot

be concluded that rotation is the missing parameter.

To determine the cause of the periodic pattern to the Burger and Rankine vortex

underpredicted uncertainties the locations of vectors which did not contain the true value are

plotted against the subpixel displacement for that location. Figure 5.21 and 5.22 correspond

to the u and v component of the Burger vortex, and Fig. 5.23 and 5.23 correspond to u and



62

0.5
0

-0.5

Subpixel
Displacement

(pixels)

X (pixels)

Y
(p

ix
el

s)

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Fig. 5.21: Flood contour of the subpixel displacement estimates for the u velocity component
of the Burger vortex case. Line contours are overlaid showing regions where the true value
was not captured by computed uncertainty bounds.

v of the Rankine vortex. It is noted that for both the Burger and Rankine vortex that an

underpredicted uncertainty is correlated to the velocity subpixel component of displacement

and the magnitude of the orthogonal component. For example, where v is large and negative,

and the subpixel displacement of u is positive, the uncertainty is underpredicted for u. The

reverse of this is also true for the v component.

A second cause is proposed for the underpredicted uncertainty, the displacement of

the orthogonal velocity component adds to the uncertainty of the velocity component. A

correction factor is desired to scale the predicted uncertainty values based on the orthogonal

velocity component magnitude. The correction factor (Cf ) scales the uncertainty according

to

Urnew =

√
U2
r + (CfUr)

2 (5.5)

where Ur represents either U+
r or U−

r and Urnew is the new uncertainty estimate. To compute

Cf additional flow cases are produced. Three flow cases are made which have a constant

shear level for the u component (0.02, 0.04, and 0.06pixels/pixel), and the v component
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Fig. 5.22: Flood contour of the subpixel displacement estimates for the v velocity component
of the Burger vortex case. Line contours are overlaid showing regions where the true value
was not captured by computed uncertainty bounds.
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Fig. 5.23: Flood contour of the subpixel displacement estimates for the u velocity component
of the Rankine vortex case. Line contours are overlaid showing regions where the true value
was not captured by computed uncertainty bounds.
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Fig. 5.24: Flood contour of the subpixel displacement estimates for the v velocity component
of the Rankine vortex case. Line contours are overlaid showing regions where the true value
was not captured by computed uncertainty bounds.

is uniform (varied from 0.00 − 10.75pixels for each shear level). The shear and orthogonal

velocity component magnitudes for the generated flows are comparable to those found in

the Burger and Rankine vortex cases. Since the flow fields have uniform shear, and uniform

orthogonal velocity component magnitudes a global uncertainty value is assumed sufficient.

The global value is defined as the average local predicted uncertainty value. The global

value assumption is validated by computing the standard deviation for the mean local value

and found to be only a few percent. This is because even though displacement effects

uncertainty, the shear will dominate these cases. The uncertainty floor is raised for each

case until the uncertainty effectiveness for each case reaches 95%. This floor value is take

as the needed uncertainty bound for the flow (UN ). From this value Cf is calculated as

Cf =

√
U2
N − U2

r

Ur
(5.6)
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again, where Ur represents either U+
r or U−

r . The results from the flows is seen in Fig. 5.25.

A linear curve fit was used to determine the correction factor as a percent and is

Cfu = −49.844 + 29.744v R2 = 0.95929, (5.7)

Cfv = −49.55 + 22.402u R2 = 0.97821. (5.8)

It was verified that the predicted uncertainty levels for these flows could be scaled by

a correction factor based on the orthogonal component magnitude to bring the uncertainty

effectiveness to 95% for all shear cases tested. This correction was then used on the Burger

vortex cases. The correction applied to the high strength Burger vortex is shown in Fig. 5.26.

From Fig. 5.26 it is shown that while the taking into account the uncertainty increase

due to the magnitude of the orthogonal velocity component did increase the uncertainty

effectiveness, the 95% desired value is not reached.

It is determined that an additional parameter is needed, or the effect of the orthogonal
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Fig. 5.26: Uncertainty effectiveness shown as a function of the floor value for the high
strength Burger vortex case. Both the original results and the corrected results using the
uncertainty scaling based on the orthogonal velocity component magnitude are shown.

velocity component on the uncertainty of the desired velocity component is more complex

than the magnitude alone. The determination of these effects, both the cause and mecha-

nism, are thus left to a future indepth study. These results were only tested for the specific

setting used in PRANA, and it us unknown if they are present in other PIV algorithms.
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Chapter 6

Conclusion

A method to compute local PIV velocity vector uncertainty is demonstrated. The

method focused on traditionally accepted image parameters which are thought to produce

error in PIV measurements, namely: particle image diameter, particle density, particle

displacement, and local shear. It is shown that an estimate of the velocity uncertainty can

be made for every velocity vector in a flow field. The results shown are specific to the

PRANA algorithm, although similar results could be made with other algorithms. The

uncertainty estimate is less sensitive to particle image diameter, density, and displacement

(with some exceptions) but highly sensitive to shear.

This method tended to grossly under predict the uncertainty levels for one dimensional

flows for the component with no displacement. It is suggested that this is because motion

in one direction introduces noise in the orthogonal direction. The method generally under

predicts the the uncertainty levels for all two dimensional flows analyzed. Motion induced

noise is different from dynamic range in that it affects accuracy even when particle dis-

placements are very small or of similar magnitudes. The level of uncertainty caused by the

motion induced noise is dependent on the PIV algorithm chosen. Further work is needed

to better understand and quantify the effect of motion induced noise.

The importance of local velocity uncertainty estimation has been demonstrated. For

flows which have “good” looking velocity fields, the local uncertainty can reach unacceptable

levels. With local uncertainty values, areas of the flow can be assessed and removed when

uncertainty levels are too high, while other sections of flow may be retained and used. This

is a significant improvement over global uncertainty estimates.

While the method presented has flaws that need to be addressed and is probably not

yet general enough for wide spread use, the potential and importance of local uncertainty
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estimates for PIV has been amply demonstrated.
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