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Abstract

Methodology to Derive Resource Aware Context Adaptable Architectures for Field

Programmable Gate Arrays

by

Harikrishna Samala, Master of Science

Utah State University, 2009

Major Professor: Dr. Aravind Dasu
Department: Electrical and Computer Engineering

The design of a common architecture that can support multiple data-flow patterns

(or contexts) embedded in complex control flow structures, in applications like multimedia

processing, is particularly challenging when the target platform is a Field Programmable

Gate Array (FPGA) with a heterogeneous mixture of device primitives. This thesis presents

scheduling and mapping algorithms that use a novel area cost metric to generate resource

aware context adaptable architectures. Results of a rigorous analysis of the methodology

on multiple test cases are presented. Results are compared against published techniques

and show an area savings and execution time savings of 46% each.

(60 pages)
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Chapter 1

Introduction

In this introductory chapter, the motivation for developing a methodology to create

context adaptable architectures for Field Programmable Gate Arrays (FPGAs) is discussed,

together with the issues of using FPGAs as the target hardware. The principal contributions

of this thesis are presented next followed by an overview of the content presented in this

thesis.

1.1 Motivation

The malleable logic and routing fabric of FPGAs have always held an attraction to

Very Large Scale Integration (VLSI) architecture designers, since they allow for highly

customized designs to be created in Register Transfer Level (RTL), synthesized, mapped,

placed, routed, and tested. In a sense, the use of FPGAs offers instant feedback to the ar-

chitect when compared with the traditional Application Specific Integrated Circuit (ASIC)

design process. While designers have always taken advantage of creating custom architec-

tures on FPGAs for Data-Flow Graphs (DFGs), more recently there have been a variety of

investigations published to explore rapidly adaptable designs running on an FPGA. These

efforts can be broadly classified into two categories: (i) polymorphic designs which are soft

configurable (i.e., do not need a change in the underlying bit-stream, hence allowing for

rapid adaptability), and (ii) Partial and Dynamic Reconfiguration (PDR) methods, which

require reconfiguration of the bit-stream and are relatively much slower than configuring

polymorphic designs.

In this thesis, the discussion is restricted to efforts carried out in the first category.

The domain of generating polymorphic designs for a Control-Data Flow Graph (CDFG)

composed of multiple DFGs is still not completely explored. The heterogeneous nature
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of FPGA architectures adds a new dimension to the existing problem. As FPGAs offer

multiple options to implement a circuit, it is no longer possible to find one single solution

which is superior to all others. As such, this thesis develops a methodology for creating

efficient context adaptable architectures targeting FPGAs using a combination of high-level

synthesis techniques, including resource allocation, scheduling, and binding algorithms.

1.2 Principal Contributions

The principal contributions of this thesis are:

1. Context adaptable architecture template that can support context switching within a

CDFG,

2. Methodology to derive the components of the data-path,

3. Heuristic-based resource selection algorithm targeting FPGAs, and

4. Heuristic-based resource binding algorithm (mapper).

1.3 Thesis Overview

Following this introductory section, in Chapter 2 basics of FPGAs are discussed along

with existing techniques for generating data-paths for control and data-flow applications,

and some techniques for area estimation on FPGAs. Chapter 3 presents some prelimaries.

In Chapter 4 the proposed methodology, including scheduling and mapping algorithms, is

presented. Complexity analysis of the proposed algorithm is derived in Chapter 5. Results of

the proposed approach in comparison with few prior algorithms are presented in Chapter 6,

and conclusions are presented in Chapter 7.
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Chapter 2

Background and Related Work

2.1 Field Programmable Gate Arrays

An FPGA is a silicon device with a tightly interconnected matrix of user-programmable

logic blocks, and a number of Input/Output Blocks (IOBs) to communicate with external

devices as shown in fig. 2.1. Both the logic blocks and the interconnect structure are repro-

grammable and are based on Static Random Access Memory (SRAM) cells. SRAM-based

FPGAs hold their configurations in a static memory. Hence, FPGAs can be reconfigured

multiple times to support any complex design. Xilinx [1] and Altera [2] are the two major

players in today’s reconfigurable market.

A Configurable Logic Block (CLB) has Look Up Tables (LUTs) and Flip-Flops (FFs).

LUTs have multiple inputs and a single output, which can be programmed to represent any

boolean function. As an example, consider a boolean function described by

f = a(b + c) + d, (2.1)

and a Xilinx virtex-4 FPGA, which has four-to-one LUTs. Table 2.1 shows the truth table

Fig. 2.1: General structure of an FPGA.
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Table 2.1: Truth table.
Inputs Output

a b c d f
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

for the boolean function and fig. 2.2(a) shows the corresponding combinatorial logic. The

internal structure of an LUT for the current example is shown in fig. 2.2(b). It can be

seen that LUT has 16 1-bit wide memory elements each of which stores the output of

the boolean function and a multiplexer is used to select a value depending on the input

combination. The inputs to the LUT act as the select lines for the multiplexer. During

FPGA configuration, the values of function f are written in the memory elements of the

LUT through the Din port. It can be seen that all the memory elements are connected in

a chained fashion, which decreases the number of input ports required but it takes 16 clock

cycles to configure an LUT.

Though FPGAs are more power hungry and slower than custom designed ASICs, they

save a significant amount of design cycle time as there is no wait time between complet-

ing the design and having a working chip. To increase the performance, modern FPGAs

include embedded ASICs like Digital Signal Processors (DSPs) and Block Random Access

Memories (BRAMs). For many years FPGAs were used only for prototyping, but today

they are used inside digital systems.
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(a)

(b)

Fig. 2.2: (a) LUT combinatorial circuit, (b) LUT internal structure.
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FPGA Design Flow: Designing architectures for FPGAs starts with the designer de-

scribing the digital system using hardware description languages (HDLs) like Verilog and

VHDL (Very high speed integrated circuit Hardware Description Language). Schematics are

rarely used to describe logic, but are used at higher levels of system hierarchy to instantiate

and connect lower-level modules. The FPGA design flow is shown in fig. 2.3. The design in

HDL is synthesized to generate a netlist, which is then simulated for functional validation.

A netlist is a collection of gates along with their attributes and their interconnections. The

design is then implemented which includes the following steps: (i) translate: merge multiple

design files into a single netlist; (ii) map: group logical symbols from the netlist (gates) into

physical components (CLBs and IOBs); (iii) place and route: place components onto the

chip, connect them, and extract timing data into reports.

Now that the timing data is available after place and route, the design is simulated for

timing information and is analyzed for correctness. Once the design is implemented and

meets the timing requirements, a bit stream is generated which can be understood by the

target FPGA. As the last step, the FPGA is configured with the bit stream data.

2.2 Scheduling Techniques

A CDFG representation of an application is a commonly used intermediate format

in high-level synthesis (HLS) tools. A CDFG consists of basic blocks (BBs) embedded

in different forms of control structures. A DFG is a graphical representation of a set of

operations and their data dependencies. It is denoted as G(V,E), where V is the set of

operations (nodes) and E is the set of edges that represents data-flow among the set of

nodes. In this thesis, a DFG is referred to as a “context.” The derivation of an architecture

(at the RTL level) for a given CDFG involves three well known tasks in the area of HLS:

(i) scheduling, (ii) allocation, and (iii) binding/mapping. Scheduling assigns operations to

particular time steps of execution. Allocation determines the number and types of functional

units to be used in the design. Binding maps the operations in the scheduled CDFG to

functional units. Binding is also responsible for determining the resources for data routing.
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Fig. 2.3: FPGA design flow.

While some scheduling algorithms just deal with assigning operations to time steps, other

scheduling algorithms include all the above three tasks (i - iii). Also, note that the above

three tasks are not always done in the order they are listed. As scheduling provides multiple

architectural options, there is a need to estimate FPGA resources for each option and select

the best one. In this chapter, background and related work are presented in the following

three categories: (a) DFG scheduling techniques, (b) CDFG scheduling techniques, and (c)

FPGA resource estimation techniques.

2.2.1 DFG Scheduling Techniques

The two classes of DFG scheduling algorithms are: (i) time-constrained scheduling

(TCS) and (ii) resource-constrained scheduling (RCS). TCS algorithms try to reduce the

number of resources required to schedule a DFG within the specified execution time (time

constraint), whereas RCS algorithms attempt to minimize the execution time by finding the
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best possible schedule using the given set of resources (resource constraint). Integer linear

programming (ILP) techniques have been proposed for both TCS and RCS algorithms [3] to

generate optimal solutions, but the only downside of these techniques is their large execution

times (exponential in the worst case). Alternately, heuristic techniques have been developed.

Such techniques include, but not limited to, as soon as possible (ASAP) scheduling [4], as

late as possible (ALAP) scheduling [5], list scheduling (LS) [6] and force-directed scheduling

(FDS) [7]. The limitation of ASAP and ALAP algorithms is that they do not give priority

to critical path nodes. Hence, they result in a set with number of resources which is larger

than the number of resources in a set obtained from other scheduling techniques (like FDS).

The LS algorithm is a RCS algorithm, which prioritizes the nodes based on urgency and

generates a schedule satisfying the input constraints specified as the number of resources of

each type (i.e., mul, add, div, etc.). FPGAs are heterogeneous mixture of look-up tables

(LUTs), flip-flops (FFs), digital signal processor units (DSPs), and embedded block RAMs

(BRAMs), which are collectively termed as device primitives. A resource to be mapped

on an FPGA can have multiple flavors of implementations and each flavor can consume a

different mix of device primitives. A resource constraint for a design targeting an FPGA

will be specified in terms of its device primitives. Therefore, there is a need to convert the

input resource constraint that is specified in terms of device primitives to a set of possible

resource constraints in terms of the number of resources of each type, before using the LS

algorithm for FPGAs.

The FDS algorithm is a TCS algorithm which relies on ASAP and ALAP algorithms.

This algorithm tries to reduce the number of resources by uniformly distributing operations

of the same type. For designs targeting FPGAs, the output resource set from the FDS

algorithm needs to be converted to the number of device primitives, to see if the design can

be accommodated in the available FPGA area. The criterion used in FDS algorithm is the

force associated with each node (calculated using the probabilities of scheduling predecessor

and successor nodes) and this criterion is updated dynamically, whereas in the LS algorithm,

the criterion used is the critical path length which is not updated. Hence, FDS results in a
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better schedule than LS, and therefore, FDS is preferred over LS in the algorithm proposed

in this thesis. Although work has been carried out to improve FDS algorithm and new

algorithms were proposed for scheduling DFGs ( [8–10]), the classical FDS algorithm [7] is

used in this thesis.

2.2.2 CDFG Scheduling Techniques

As the major contribution of this paper is to generate architectures for applications

involving different forms of control structures, this section evaluates some of the existing

techniques that address this issue.

For applications involving control flow, the algorithms discussed in the previous section

cannot be used directly to generate schedules. Attempts were made by Camposano [11],

Al-Sukhni et al. [12], and Bergamaschi et al. [13] to schedule a control flow graph (CFG) by

using path-based scheduling (PBS) method and its variations. PBS tries to minimize the

number of control states under given timing and area constraints. CFG is first converted

to a directed acyclic graph (DAG) by removing the feedback edges of loops. All paths in

the DAG are scheduled using as-fast-as-possible schedule. All the schedules are combined

(by overlapping) to obtain a finite state machine with least number of control states that

can support the execution of the CFG. In PBS, the concurrency of operations and data

dependency among operations is ignored, the execution time of the CFG is not addressed,

and the order in which operations are executed in the DAG is fixed (same as the order in

which operations are present in the input description). This results in slower and inefficient

schedules.

A conditional resource-sharing algorithm using hierarchical reduction is proposed by

Kim et al. [14]. In this approach, a CDFG (not containing loops) is transformed to a DFG

by replacing conditional blocks by equivalent nonconditional blocks. This is achieved by first

determining the time frame of operations using ASAP and ALAP algorithms. Operations

from the conditional branches are paired, only if their time frames overlap. A ratio is

associated with each node and pairing is done in the decreasing order of these ratios. The

resulting DFG is scheduled using the force-directed list scheduling (FDLS) algorithm [8].
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The schedule of the original CDFG with conditional branches is obtained by transforming

the schedule information of the DFG. Kim et al. assume unit latency for all the operation

nodes and fork nodes. Though this algorithm was proven to perform better than the PBS

algorithm [11] in terms of number of control steps, there is no support for handling loops

and complex control structures.

Lakshminarayana et al. [15] propose a more comprehensive scheduling algorithm, called

Wavesched-spec, which can support branches and loops. Their algorithm is a RCS algo-

rithm that simultaneously speculates branches and loops (by performing loop unrolling) in

order to minimize the number of clock cycles. All the speculated values are stored in regis-

ters. The downside of this approach is the excessive use of registers to store the speculated

values of all the unrolled loops.

Moreano et al. [16] propose a datapath merging approach to synthesize a single data-

path that can be partially reconfigured (through multiplexers) to support multiple DFGs

in a CDFG. Their algorithm merges only those DFGs that are present inside loops, as they

are the major candidates for hardware acceleration. The remaining DFGs are executed on

a SPARC-v8 microprocessor. Their approach first builds a compatibility graph and then

uses maximum weighted clique partitioning to find the common data-path. They do not

support sharing of a resource among multiple operations within the same DFG. Though

sharing of resources across DFGs is achieved by adding MUX trees, the edge conectivity

when multiple DFGs are merged makes the interconnect and the MUX tree very complex.

Guo et al. [17], Kastner et al. [18], and Cong et al. [19] propose to accelerate control

and data-flow applications by extracting hardware templates for configurable processors.

All three works try to minimize the number of distinct templates and the total number of

templates. A template here refers to a set of connected nodes. Guo et al. [17], first generate

a set of sub-graphs of varying sizes, from size one to a predefined size (maxsize), using

the process of node growing. These sub-graphs are then used to cover the input CDFG,

and a set of templates is generated such that the number of distinct templates and the

total number of sub-graphs are minimized. As the template selection is computationally
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intensive, the authors propose a heuristic method. They associate an objective function for

each template which is based on the number of nodes present in a template and the number

of nonoverlapped matches of the template in the original CDFG. The objective function

is used as the heuristic and a set of templates is selected such that the objective function

is maximized. However, they do not provide the exact representation for the objective

function.

Kastner et al. [18] propose a template generation algorithm for hybrid reconfigurable

architectures. Their algorithm starts by profiling the graph for frequency of edge types

(ex., mul-mul, add-mul, mul-add, etc.). Based on the frequency of edge types, nodes are

clustered to form super nodes. The resulting graph is again profiled and nodes are clustered.

This algorithm is repeated until sufficient number of super nodes (templates) are generated

to cover the graph. These templates are then used to cover the graph such that both the

number of distinct templates and the number of instances of each template are minimized.

Also, each edge is clustered in a locally optimal manner, which results in global sub-optimal

solution.

Cong et al. [19] propose an algorithm for generating application-specific instructions to

improve the performance of configurable processors. Patterns (templates) are first generated

by a node clustering algorithm. Such patterns can have multiple inputs (|IN(pi)| ≤ Nin

∀ i) but only a single output (|OUT (pi)| ≤ 1 ∀ i) and are subject to the area constraint

(
∑

area(pi) ≤ A). IN(pi) and OUT (pi) are the input set and output set of pattern pi

and A is the input area constraint. The value of Nin limits the number of parallel nodes

present in the pattern. Each pattern is then characterized by gain and area. For a pattern,

the hardware execution time (Thw) is calculated to be its critical path length, and software

execution time (Tsw) is calculated as the summation of the software execution times of all

nodes. The speedup of a pattern is calculated as the ratio of Tsw and Thw. Finally, the

gain of the pattern is calculated as the product of the speedup and the occurrence of that

pattern. From the set of templates generated so far, a set of templates is obtained such that

the overall gain is maximized and the area constraint is satisfied. This set of templates is
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then used to cover the input graph while minimizing the execution time. This step is carried

out using a 0-1 Knapsack problem [20]. In all three template-based approaches ( [17–19]),

the objective to minimize the total number of templates results in architectures with longer

execution times. Also, the number of templates generated can be exponentially large for

CDFGs with large number of nodes, thereby increasing the computational complexity of

the algorithm. The complexity analysis of the algorithm is provided by Phillips et al. [21].

Bilavarn et al. [22] propose an algorithm to generate FPGA based architectures for CD-

FGs using area and delay estimations. They perform design space exploration for a specific

RTL architecture template (bus-based architecture), by defining a parameterized architec-

ture, rather than building one. They use a time-constrained list-scheduling algorithm [8]

for scheduling DFGs with multiple time constraints to generate multiple schedules. The

schedules of the DFGs are combined hierarchically based on the control structure resulting

in a set of solutions. Nonoptimal solutions are then eliminated through Pareto optimal-

ity [23]. They categorize FPGA resources into (i) logic cells and (ii) dedicated cells. Logic

cells include LUTs and FFs, and dedicated cells include DSP48s and BRAMs. The output

of the algorithm is a set of architectures with different area-delay trade-offs for each type of

FPGA resource. It is up to the designer to choose a common architecture from the solution

sets of each FPGA resource that best fits the FPGA. After all the DFGs are processed, area

estimation for each type of FPGA resource is computed separately for each solution. Un-

like Bilavarn et al. [22], in the proposed methodology area estimation was performed during

architecture exploration offering instant feedback to the scheduling algorithm, which might

yield better results.

None of the algorithms discussed in this section (excluding Bilavarn et al. [22]) consider

FPGAs as the target architectures, and none of them consider the possibility of different

implementations of a resource mapped on an FPGA. The algorithm proposed in this thesis

takes advantage of these facts to generate architectures for a CDFG. A quantitative compar-

ison of Moreano et al. [16], Guo et al. [17], Kastner et al. [18], and Cong et al. [19], in terms

of resource utilization and execution time, relative to each other and the proposed algorithm
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is provided in the results chapter. Results for Bilavarn et al. [22] were not presented in this

paper because sufficient information was not available in the publication.

2.3 FPGA Resource Estimation Techniques

One of the most important constraints required when designing architectures for FP-

GAs is that the design fits inside the specified FPGA area. When exploring multiple

architectures for a design, there is a need for early area estimations. This section discusses

three approaches ( [22, 24, 25]) towards generating FPGA architectures using some form of

area estimation.

Nayak et al. [24] perform design space exploration on the input behavioral specification

in MATLAB and pessimistically estimate the number of configurable logic blocks (CLBs)

utilized by the generated hardware architecture. The MATLAB code is first converted to

VHDL, which is scheduled using FDS [8] to obtain concurrency of operations, from which the

number of function generators are determined. Register allocation is performed to calculate

the total number of registers. The number of CLBs is then estimated using the number of

function generators and number of registers. Their estimation is targeted specifically at the

Xilinx XC4010 device and they do not include memory units.

Kulkarni et al. [25] propose an iterative compilation-based algorithm that translates

high-level single-assignment code (SA-C) into hardware using quick estimations. The objec-

tive of their estimation tool is to reduce the development time by quick estimations rather

than to increase the accuracy. The SA-C code is first translated to a DFG representation

whose nodes are associated with approximation formulae. Their estimation does not incor-

porate scheduling, resource allocation, and binding algorithms, but it takes into account

some synthesis optimizations. In Nayak et al. [24] only one type of FPGA resource (LUT

in this case) is considered for implementing arithmetic/logic units. Also, memory units are

not handled.

Bilavarn et al. [22] propose area estimation of RTL architectures in terms of logic

cells (lc) and dedicated cells (dc) computed separately. The total number of logic cells is

estimated using
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Nlc =
∑

k

(nk ∗Nk
lc), (2.2)

where nk is the number of operations of type k and Nk
lc is the number of logic cells to

implement a resource on FPGA that supports execution of operation of type k. The total

number of dedicated cells is estimated in a similar manner. Unlike Nayak et al. [24] and

Kulkarni et al. [25], Bilavarn et al. estimate the resources for memory units. A comparison

of the above approaches is provided in the results section in Table 6.2.
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Chapter 3

Preliminaries

This chapter presents some preliminaries on area estimation of architectures imple-

mented on an FPGA and architecture representation, necessary to understand the archi-

tecture exploration algorithm which will be explained in the next chapter.

As FPGAs have fixed logic and routing resources, certain designs might not fit on a

given FPGA. For CDFGs involving multiple DFGs and control structures, the designer has

to explore multiple designs which satisfy latency constraints and that fit on the chip with

satisfactory area requirements. A heuristic algorithm is presented in this thesis for resource

selection, which is based on resource estimations, without having to go through the time-

consuming synthesis, map, and Place and Route (P&R) tools. As mentioned in Chapter 2,

FPGAs are heterogeneous mixture of device primitives (LUTs, FFs, DSP48s, and BRAMs).

A resource to be mapped on an FPGA can have multiple flavors of implementations, and

each flavor can consume a different mix of device primitives. Therefore, a Weighted Sum of

Device Primitives (WSDP), a metric to evaluate the relative area cost of resources mapped

onto FPGAs, is presented here. Work related to this metric was presented by Phillips [26].

WSDP for a resource r is calculated using

Wr =
∑

i

(ki

ai

)
∀ i ∈ {LUT, FF, DSP48, BRAM}, (3.1)

where ki is the number of device primitives of type i required to implement the resource

r and ai is the number of available device primitives on the FPGA. If any two resources

have the same value of WSDP, then the standard deviation for that resource r is calculated

using
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SDr =

√√√√√∑
i

(
ki

ai
− Wr

4

)2

4
∀ i ∈ {LUT, FF, DSP48, BRAM}. (3.2)

The final area cost of a circuit can then be calculated using

Wcumulative =
(∑

r∈R

nrWr

)
+ Wmux + Wreg, (3.3)

where R represents the set of distinct resources, R = {add, mul, div, etc.}, and nr is the

number of resources of type r ∈ R, obtained from the scheduling algorithm (explained later

in sec. 4.4). SDr can be used in the place of Wr whenever the WSDP of a resource is

calculated using (3.2). Wcumulative represents the relative area cost and hence can be used

to compare area cost of two different circuits. The WSDPs for multiplexers (Wmux) and

delay registers (Wreg), necessary for routing data among functional units (FUs) based on

the scheduled DFG, are calculated by using (3.1) in the mapping algorithm (explained later

in sec. 4.5).

A solution (architecture for a CDFG) is represented as a 4-tuple (S, W, A, T ) calculated

using (3.3), (3.4), (3.5), and (3.6). A resource set S (shown in (3.4)), represents the set

of number of resources obtained after scheduling a DFG/CDFG using a time constraint.

W represents the cumulative WSDP of the circuit (from (3.3)). A is the set of available

device primitives. T represents the execution time of the CDFG (shown in (3.6)). An

estimate of the execution time of a CDFG (TCDFG) can be calculated as a summation of

product of execution time (Ti), weighting factor (fi), and total number of effective iterations

(Ni) of DFG i, over all the DFGs. The weighting factor (fi) of a DFG can be either

probabilistic (i.e., when the branch conditions and loop terminating conditions surrounding

a DFG depend on the input data set), or deterministic if they can be determined at compile

time. The probability values can be obtained by profiling the application on various input

data sets.

S = {nr | r ∈ R} (3.4)
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A = {ai | i ∈ {LUT, FF, DSP48, BRAM}} (3.5)

TCDFG =
nDFG∑
i=1

TifiNi (3.6)
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Chapter 4

Proposed Methodology

This chapter presents the architecture template, algorithm overview, heuristic resource

selection, the resource aware scheduling algorithm, and the mapping algorithm.

4.1 Context Adaptable Architecture Template

The architecture template used in the proposed approach is composed of a data path

and a controller. The RTL model of this template is shown in fig. 4.1. The data path

consists of a set of functional units (FUs) and data routing network (i.e., delay registers

and multiplexers). The outputs of FUs can be connected to the inputs of other FUs directly

or through multiplexers and/or through delay registers, governed by the data dependencies

present in the scheduled DFGs. FUs are determined by the number, type, and implementa-

tions of the resources obtained through the scheduling algorithm. FUs are generated using

the Xilinx CORE generator, whose characteristics are classified in an architecture library

file and used by the scheduling and mapping algorithms. Characteristics here refer to the

latency, implementation type, and area usage in terms of FPGA device primitives.

The multiplexers that are used to select the input data for the FUs are controlled by

the schedule information (control words) stored inside the schedule table of the respective

DFGs, which are controlled by the Global Controller depending on which DFG (context)

of the CDFG is currently being executed. The Global Controller is a simple finite state

machine, which uses the FU outputs (for conditional branches in the input CDFG). The

delay registers used are SRL16 shift register look-up-tables present on the Xilinx Virtex 4

FPGAs and are also generated using the Xilinx CORE generator. This template is used

to represent a custom architecture, defining the number of FUs, number of delay registers,

number and size of multiplexers, and bus connections among all the blocks.
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Fig. 4.1: Context adaptable architecture (CAA) template.

4.2 Algorithm Overview

The purpose of the architecture exploration algorithm (explained in sec. 4.4) is to

generate an architecture that can support the execution of a CDFG and that can fit in

the given FPGA area (area constraint). Given the heterogeneous nature of FPGAs and

their flexibility to support multiple implementations of resources, the proposed algorithm

explores multiple designs and generates a set of architectures with different area-time trade-

offs which can support execution of the given CDFG.

Key features of the algorithm:

1. Updates available FPGA device primitives after resource allocation,

2. Updates relative area cost (WSDP) of multiple implementations of all resources,

3. Calculates the area cost of architectures implemented for FPGAs,

4. Uses Pareto optimality criterion [23] to retain optimal solutions.

Now, we present a high-level overview of the algorithm. Individual DFGs of a CDFG
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are scheduled using FDS with different latencies (time constraints) and different resource

sets are obtained. These resource sets are merged exhaustively across all DFGs (one-by-

one) to obtain common resource sets (explained in sec. 4.4), each of which can support all

the DFGs. During the merge process, resource selection is done by evaluating WSDPs for

all resource implementations. The number of available device primitives is updated after

resources are allocated for the implementation with the least WSDP. As the resource sets

associated with individual DFGs have different latencies, the merged resource sets have

different latencies (CDFG execution time) and different relative area costs. A common

resource set represented by its area cost (WSDP) and CDFG execution time (calculated

using (3.6)) is termed as a partial solution. A partial solution set is obtained after resource

sets of two DFGs are merged. Pareto optimality criterion [23] is used to retain the set

of local optimal resource sets from partial solution set, before merging the resource sets of

another DFG. Note that the resource sets obtained here are not global optimal resource sets,

as the algorithm used to schedule individual DFGs is FDS, which is a heuristic technique.

The common resource sets obtained after all the DFGs are processed are passed to a

mapping algorithm (explained in sec. 4.5). The mapping algorithm, which is also a heuristic

algorithm, calculates the resources required to route the data among FUs in order to support

all the DFGs. Data routing resources refer to multiplexers and delay registers. A resource

set along with the data routing information and the corresponding CDFG execution time

is termed as a solution. The relative area cost of the resource sets is updated with the area

cost of data routing resources and again sub-optimal solutions are removed using pareto

optimality criterion. The final set of pareto optimal solutions represent the final set of

context adaptable architectures.

Pareto optimality criterion: For a two-objective minimization problem (in my case area

and execution time), it is desirable that the solutions have small values for each objective.

Multiple solutions can be obtained for a problem (by changing the values of the input

variables) which are evaluated for the two objectives and plotted in a 2D space as shown

in fig. 4.2. The circles represent solutions evaluated for execution time and area. As we
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Fig. 4.2: Illustration of Pareto optimality criterion.

can see, there exists some solutions (shown in white circles) that are not entirely better or

worse when compared to each other. These solutions are said to dominate the rest of the

solutions (shown in black circles), which have higher values for both the objectives. The set

of nondominant solutions (white circles) which are better in at least one objective, when

compared to the others in the same set represet the Pareto optimal set. The criterion used

to find the set of solutions which are the members of the Pareto set is called the Pareto

optimality criterion.

4.3 Evaluate Algorithm

The Evaluate algorithm (Algorithm 4.1) takes in as inputs, a DFG, its corresponding

resource sets, and an input solution. It returns a set of partial solutions with their associated

area cost and execution time. In step 1, an empty solution set (X) is created. In step

2b, for each new additional resource present in Sj over Sin, the following three steps are

repeated: (i) WSDPs of all resource implementations are recomputed based on the current

available device primitives, (ii) the implementation with the smallest WSDP is selected for

the current resource (i.e., resource selection) and resources are allocated, and (iii) WSDP of

the current resource set and the number of available device primitives are updated. During
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resource selection, if two implementations of a resource have the same WSDP, then the

implementation that has the least standard deviation (3.2) is considered. The execution

time (T ) of the CDFG is estimated next using (3.6) for each set Sj . Execution times of

individual DFGs corresponding to the input solution are used except for the current DFG,

for which j is taken as the execution time. If the available device primitives are sufficient

for the current DFG (i.e., if its value is nonnegative at the end of all resource allocations),

the current set Sj , its corresponding WSDP, the updated available device primitives, and

the execution time represent a solution and is appended to the solution set X (step 2d).

The resulting solution set X (which represents a set of partial solutions) is returned to the

CAAE algorithm. If the available device primitives are not sufficient to accommodate at

least one resource set of the input DFG, the Evaluate algorithm returns an empty set to

the CAAE algorithm indicating insufficient FPGA resources.

4.4 Context Adaptable Architecture Exploration (CAAE) Algorithm

The proposed CAAE algorithm (Algorithm 4.2), which includes resource selection,

scheduling and mapping algorithms, generates a set of context adaptable architectures for

a given CDFG. It takes as inputs, a CDFG to be synthesized, weighting factors of DFGs,

number of iterations of all loops, and a set of available FPGA device primitives for use. The

only constraint to the scheduling algorithm is that the design should fit in the given area

(A) and there is no hard constraint on the execution time. Hence, the algorithm generates

a set of best possible solutions with different execution times and area tradeoffs. It is then

left to the designer to choose a solution with desirable execution time.

The algorithm starts by calculating the critical path latencies, in clock cycles, of all the

DFGs using ASAP algorithm (step 1). In step 2, the lower bound on the execution time of

the CDFG (Tmin) is estimated using critical path latencies and (3.6). Steps 3 through 7 of

the algorithm generate an initial partial solution set using one DFG, and then iteratively

update the solution set using the remaining DFGs one-by-one.

In step 3, an initial solution (Sin, Win, Ain, Tin) is created, where Sin is an empty set

of resources, initial WSDP Win is zero, Ain is the input available device primitives, and
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Algorithm 4.1 Evaluate
Input: Data-flow graph (G), resource sets of G, and input solution (Sin, Win, Ain, Tin).

Output: Set of partial solutions (X).
Notations:

1) Let Sj represent the set of number of resources of a DFG scheduled with latency j.
Sj = {n′

r | r ∈ R}.
2) Let Sin represent the set of number of resources of the input solution.

Sin = {nr | r ∈ R}.

1. X ← Empty solution set.
2. For each resource set (Sj) of G, do

a. W ← Win, A ← Ain

b. For each r ∈ R, do
If (n

′
r > nr)

Loop (n
′
r − nr) times

i. For the available device primitives (A), recompute WSDPs of all
implementations of the resource r and select the least one (w

′
r).

If any two implementations have the same WSDP, then select the
implementation with the least standard deviation.

ii. W ←W + w
′
r

iii. Update available device primitives (A) by subtracting from A, the number
of device primitives required by the implementation of resource r.

End Loop
End If

End Loop
c. Calculate the execution time (T ) of the CDFG, using latency j for the current

DFG.
d. If the number of available device primitives (A) is non-negative, add the current

solution (Sj , W , A, T ) to the solution set X.
End Loop

3. Return solution set X.
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Algorithm 4.2 CAAE
Input: CDFG, Weighting factors (f), Number of loop iterations (N), Available device

primitives (A).
Output: Set of context adaptable architectures.
Notation: Let nDFG be the number of DFGs present in the CDFG.

Let Gi represent the ith DFG in the CDFG.

1. Determine critical path latencies of all the DFGs. CP (Gi) ∀ i ∈ {1, 2, ...nDFG}.
2. Estimate the lower bound of execution time (Tmin).
3. Create empty solution (Sin, Win, Ain, Tin).
4. Using FDS find all schedules and sets of number of resources G1.
5. For all resource sets, evaluate G1 for WSDPs, CDFG execution time (using Evaluate

algorithm) and generate a set of partial solutions (Pcurrent).
6. If Pcurrent is an empty set, the algorithm is terminated.
7. For i ← 2 to nDFG, do

a. Using FDS, find all schedules of Gi.
b. Xnew ← Empty solution set.
c. For a solution m in the set Pcurrent, do

i. For all resource sets obtained in step-7a, evaluate Gi for WSDPs, CDFG
execution time, and generate a set of partial solutions (Xm).

ii. Append solutions in set Xm to set Xnew.
End For loop

d. If Xnew is an empty set, the algorithm is terminated.
e. Retain set of partial Pareto optimal solutions (Pcurrent) from set Xnew.

End For loop
8. Calculate Wmux and Wreg using a mapping algorithm for each solution in the

Pareto optimal solution set (Pcurrent), and add them to the WSDP of each solution,
resulting in a new set P

′
current.

9. Retain Pareto optimal solutions from P
′
current, resulting in a new set Pfinal.

10.The final set of Pareto optimal solutions (Pfinal) along with their corresponding
schedules represent the set of context adaptable architectures.
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Tin is the lower bound of the execution time (Tmin). In step 4, DFG G1 is scheduled using

FDS with different latency constraints and multiple resource sets are obtained. The latency

constraint is relaxed starting from critical path latency until the resource set obtained

from FDS contains one resource for each operation type. This terminating condition is

chosen because relaxing the latency constraint beyond this point does not result in a smaller

resource set. The resource set corresponding to the critical path latency supports the most

parallel schedule (fastest execution - in terms of clock cycles) that can be achieved for G1.

Similarly, the resource set corresponding to the terminating latency constraint supports the

most sequential schedule (slowest execution) that can be achieved for G1. In step 5, each

resource set of G1 is evaluated for area cost (WSDP) and execution time of the CDFG using

the Evaluate algorithm.

The solution set obtained from the Evaluate algorithm is represented as Pcurrent in

the CAAE algorithm. In step 7 of the CAAE algorithm, another DFG is selected and

multiple resource sets are obtained as explained before. For each partial solution in the

set Pcurrent, resource sets of the new DFG are evaluated for WSDPs and CDFG execution

times, resulting in a new set of partial solutions represented by Xnew. As Xnew can have

nonoptimal solutions with a new DFG added, Pareto optimality criterion [23] is used to

retain local optimal solutions in the current partial solution set. The optimal solution set

is again represented as Pcurrent. The above process (steps 7a through 7e) is repeated for all

the remaining DFGs.

After all the DFGs are processed in step 7, each solution in the set Pcurrent represents

a resource set that can support all the DFGs. In step 8, the area cost of data routing

resources (i.e., multiplexers and delay registers) is estimated using the mapping algorithm

(explained later in sec. 4.5) for each solution in Pcurrent and added to the area cost of the

solution itself resulting in a new solution set P
′
current. All invalid solutions, which require

more device primitives than those available, are pruned in the mapping algorithm. The final

step is to retain the Pareto optimal solutions from the set of updated solutions (P
′
current)

resulting in the final set of context adaptable architectures represented as Pfinal.
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4.5 The Mapping Algorithm

The mapping algorithm is used to calculate the resources required to route the data

among FUs, in order to support all the DFGs of a CDFG using the schedule information

obtained from the CAAE algorithm. Data routing resources refer to the multiplexers, which

steer data from one FU to another, and delay registers, which delay the output data of an

FU for an appropriate number of clock cycles before it is consumed by another FU. In

step 8 of the CAAE algorithm, the mapping algorithm is invoked for each solution in the

Pareto optimal solution set (Pcurrent). The mapping algorithm takes as inputs, schedules

of all the DFGs, a set of number of resources of a solution and initial available device

primitives (before the CAAE algorithm is invoked). It outputs the estimated WSDP values

for multiplexers and delay registers.

Before presenting my mapping algorithm, I will briefly discuss a couple of works already

published for register and functional unit binding/mapping. Chen et al. [27] build a global

compatibility graph for each type of operation present in the input CDFG. Each node

in this graph represents an operation and the edge between two nodes represents if the

two operations are compatible. All the compatible nodes can be mapped on to the same

resource. As a first step, register mapping is performed such that each dataflow occupies

its own register. Then, FU mapping is carried out. Their mapping algorithm iterates for

as many times as the number of nodes present in the CDFG. In each iteration, the current

node is mapped to all the possible FUs to create multiple solution points. The number of

solutions at the end of each iteration keeps on growing, so only a fixed number of solution

points (10) are retained for the next iteration. Solution points are pruned based on power

consumption and not on area. Also, they have no way to guide the mappings such that the

number and size of multiplexers is reduced.

Cromar et al. [28] iteratively constructs weighted bipartite graphs for the given sched-

uled CDFG. Each node in this graph represents an operation or operations. Edges are

created between compatible nodes. All the compatible nodes can be mapped on to the

same resource. Edge weights are assigned based on the difference of multiplexer widths
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obtained as a result of mapping the two compatible nodes to the same FU. Nodes are com-

bined based on maximum matching and the bipartite graph is reconstructed. Their method

considers multiplexer balancing such that the size of multiplexers is reduced. However,

their approach has no consideration for reusing the existing bus connections among the

FUs which will potentially reduce the size and number of multiplexers.

A heuristic algorithm for mapping is therefore proposed in this section to overcome

the deficiencies of the above approaches. The algorithm is based on creating and iteratively

updating (i) a weighted bipartite graph for the scheduled CDFG like Cromar et al. [28]

and (ii) FU mapping list (FUList). The weight of the edges in the bipartite graph depend

on whether there exists a bus connection in the current FU mapping and the size of the

multiplexer already present on an FU. FUList stores the information regarding the node

to FU mapping, FU-to-FU bus connections and the size of multiplexer at each input of the

FU.

In order to perform efficient register mappings (i.e., reuse existing registers), register

nodes (with latency equal to the number of delay cycles required) are first inserted between

the data nodes of the scheduled CDFG where ever delay is required. Unlike Chen et al. [27],

register nodes are mapped to delay registers during (and not before) FU mapping such that

the number of delay registers is minimized. As a CDFG has multiple DFGs, FU mapping is

performed for each DFG indivudually, but the weighted bipartite graph is used across the

DFGs as the main goal is to find the mapping for the entire CDFG.

Mapping of a scheduled DFG is carried out using a matrix called the reservation table

with the number of rows equal to the latency of the DFG and the number of columns equal

to the total number of available resources present in the final resource set corresponding

to the input solution. This table holds the associations of data nodes present in the DFG

to the hardware resources. In order to reduce the number and size of multiplexers, when a

node is mapped to a specific resource, the mappings of its parents’ nodes are compared with

the mappings of the parent nodes of the nodes mapped to the current resource. If a match

is found, then the existing bus connections can be reused, and hence the current node is
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mapped to the current resource. If a match is not found, the current node is mapped to a

resource with the lowest number of node mappings to distribute resource mappings. Since

the parent node mappings are used during child node mappings, data nodes are processed

in increasing order of their schedules. Once the reservation table is populated with the

mapping information of a DFG, a functional unit list (FUList) is generated. As a resource

has two input ports, for each entry, FUList maintains two lists - one for the left port

and one for the right port. Each port list is populated with only distinct node and/or

register mappings. The reservation table along with the FUList is the manifestation of

the weighted bipartite graph. As there are multiple DFGs, the reservation table is cleared

and reused for each DFG and the port lists inside FUList are updated. After all the DFGs

are processed, the number of entries in each port list indicates the size of multiplexers

required. The optimal order in which the DFGs should be processed in order to obtain an

optimal mapping, is not explored in this algorithm.

As multiplexers are pure combinational circuits, they will be mapped only to LUTs

on the FPGA. Xilinx Virtex-4 FPGAs have 4-input LUTs, so the problem is to find the

number of 4-input LUTs to realize an n input multiplexer. A simple intuitive pseudo-code

for obtaining a rough estimate on the number of LUTs required for a multiplexer is shown

in fig. 4.3. The LUT usage for all the multiplexers is then accumulated as MuxLUT .

Register entries in each port list of the FUList indicate the number and depth (number

of delay cycles) of the delay registers used in the architecture. To obtain an estimate of

the resource utilization of delay registers, several 32-bit delay registers were created with

various depths using the Xilinx CORE generator and the post P&R area requirements are

observed. These values are tabulated in Table 4.1. By analyzing columns 2 and 3 in this

table, formulae for LUT and FF usage can be derived as a function of number of delay

cycles as

RegLUT =
⌈number of delay cycles

16

⌉
∗ dataWidth, (4.1)
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Table 4.1: Post P&R vs. estimated values of resources used for delay registers.
Number of delay Post P&R Estimated

cycles LUT FF LUT FF

8 32 32 32 32

16 32 32 32 32

24 64 32 64 32

32 64 32 64 32

40 96 32 96 32

48 96 32 96 32

56 128 32 128 32

64 128 32 128 32

96 192 64 192 64

128 256 64 256 64

160 320 96 320 96

192 384 96 384 96

RegFF =
⌈number of delay cycles

64

⌉
∗ dataWidth. (4.2)

For the purpose of comparison, the LUT and FF usage is estimated using (4.1) and (4.2)

and is shown in Table 4.1 (columns 4 and 5). WSDPs of multiplexers and delay registers

are returned to the CAAE algorithm which are calculated using

Wmux =
MuxLUT

aLUT
, (4.3)

Wreg =
(RegLUT

aLUT

)
+
(RegFF

aFF

)
. (4.4)
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Estimate LUT MUX(Number of inputs (n), dataWidth)
Let p, L be two integer variables
If(n ≤ 1)

return 0
Else
{

p = n + ceil(log2n)
L = 0
while(p

4 6= 0)
{

L = L + p
4

p = p
4 + p%4

}

If(p > 1)
L = L + 1

}
return(L ∗ dataWidth)

Fig. 4.3: Pseudo code for estimating number of LUTs for a multiplexer.
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Chapter 5

Complexity Analysis

This chapter presents the complexity analysis of the proposed CAAE algorithm shown

in Algorithm 4.2. The complexity of an algorithm is a theoretical measure of the running

time of the algorithm for a given input problem size. For an input problem size of n, the

algorithm is associated with a function f(n) that characterizes the running time in terms

of n using assymptotic notation or Big-Oh notation as

f(n) = O
(
g(n)

)
. (5.1)

Formal definition: Let f(n) and g(n) be functions mapping nonnegative integers to real

numbers. If there is a real constant c > 0 and an integer constant n0 ≥ 1 such that

f(n) ≤ cg(n) for every integer n > n0, then we say that f(n) is O
(
g(n)

)
[20]. The input

problem size cannot always be specified using only one variable. For multiple variables

(represented as ~x), the complexity of an algorithm can be associated with the function

shown in (5.2).

f(~x) = O
(
g(~x)

)
(5.2)

For example, f(n, m) = O
(
g(n, m)

)
.

To simplify the complexity computation of large examples, few rules have been pro-

posed by Goodrich and Tamassia [20], which are repeated here for the sake of clarity. Let

d(n), e(n), f(n), and g(n) be functions mapping nonnegative integers to nonnegative reals.

Rule 1: If d(n) is O
(
f(n)

)
, then ad(n) is O

(
f(n)

)
, for any constant a > 0.

Rule 2: If d(n) is O
(
f(n)

)
and e(n) is O

(
g(n)

)
, then d(n) + e(n) is O

(
f(n) + g(n)

)
.
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Rule 3: If d(n) is O
(
f(n)

)
and e(n) is O

(
g(n)

)
, then d(n)e(n) is O

(
f(n)g(n)

)
.

Rule 4: If d(n) is O
(
f(n)

)
and f(n) is O

(
g(n)

)
, then d(n) is O

(
g(n)

)
.

Rule 5: If f(n) is a polynomial of degree d (that is f(n) = a0 +a1n+ · · ·+adn
d), then f(n)

is O
(
nd
)
.

Rule 6: nx is O
(
an
)

for any fixed x > 0 and a > 1.

Rule 7: lognx is O
(
logn

)
for any fixed x > 0.

Rule 8: logxn is O
(
ny
)

for any fixed constants x > 0 and y > 0.

For the CAAE algorithm, the input problem has two variables N and M, where N rep-

resents the number of nodes in a DFG and M represents the number of DFGs in a CDFG.

The total complexity of the algorithm can be calculated by determining the complexity of

individual steps and then adding them up according to Rule 2.

Step 1. Determine critical path latencies of all the DFGs. CP (Gi) ∀ i ∈ {1, 2, ...nDFG}.

Complexity to find critical path of one DFG (using Rules 2 and 1)

= (Complexity of ASAP algorithm) + (# of nodes in the DFG)

= (# of edges in the DFG) + (# of nodes in the DFG)

= (2N) + (N)

' O(N)

Complexity of Step 1 (using Rule 3)

= (# of DFGs) * (Complexity to find CP of one DFG)

= (M)*(N)

= O(MN)

Step 2. Calculate Tmin

Complexity of Step 2 = O(k) ; k represents constant.

Step 3. Create empty solution (Sin, Win, Ain, Tin)

Complexity of Step 3 = O(k)
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Step 4. Using FDS find all schedules and resource sets of G1.

In the CAAE algorithm, the FDS algorithm is invoked N times with different timing

constraints (relaxed from critical path latency untill the resource set obtained from FDS

has only one resource of each type). So, N is the worst case number of schedules and worst

case number of resource sets generated for G1.

Complexity of Step 4 (using Rules 3 and 5)

= (# of times FDS is called) * (Complexity of FDS)

= (N) * (N3)

' O(N4)

Step 5. For all resource sets, evaluate G1 for WSDPs, CDFG execution time (using

Evaluate algorithm) and generate a set of partial solutions (Pcurrent).

Complexity of Step 5 (using Rules 3 and 5)

= Complexity of Evaluate algorithm

= (# of resource sets of G1) * (# of nodes in G1)

= (N) * (N)

' O(N2)

Step 6. Complexity of Step 6 = O(k)

Step 7.

Complexity of Step 7a = Complexity of Step 4 = O(N4)

Complexity of Step 7b = O(k)

Complexity of Step 7c (using Rules 3 and 5)

= (worst case # of solutions after Gi−1) * (Complexity of Evaluate algorithm)

= (N) * (N2)

' O(N3)
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Complexity of Step 7d = O(k)

Complexity of Step 7e (using Rules 2 and 5)

= (Complexity of Merge Sort algorithm) + (worst case # of solutions)

= O(NlogN) + N

' O(NlogN)

Complexity of Step 7 (using Rules 2, 3, and 5)

= (# of DFGs - 1) * complexity of Steps (7a + 7b + 7c + 7d + 7e)

= (M − 1)*(N4 + k + N3 + k + NlogN)

' O(MN4)

Step 8. Calculate Wmux and Wreg using a mapping algorithm for each solution in the Pareto

optimal solution set (Pcurrent), and add them to the WSDP of each solution, resulting in a

new set P
′
current.

Complexity of Step 8 (using Rules 3 and 5)

= (# of solutions after Step 7) * (# of DFGs in the CDFG) *

(Complexity of the Mapping algorithm)

= (N) * (M) * (# of nodes in each DFG)

= (N) * (M) * (N)

' O(MN2)

Step 9. Retain Pareto optimal solutions from P
′
current, resulting in a new set Pfinal.

Complexity of Step 9 = Complexity of Step 7e = O(NlogN)

Step 10. Complexity of Step 10 = O(k)

The total complexity of the algorithm can be calculated using Rule 2, by combining

the complexities of all the steps (listed in Table 5.1) and then removing the lower order

terms using Rule 5.
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∴ Total Complexity of the algorithm = O(MN4)

Table 5.1: Computation complexities of all steps.
Step O

(
f
(
M, N

))
1 MN

2 k

3 k

4 N4

5 N2

6 k

7 MN4

8 MN2

9 NlogN

10 k
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Chapter 6

Results

This chapter presents and analyzes the results generated by the proposed methodology

in comparison with the prior work for various benchmarks taken from multiple application

domains. Table 6.1 presents the test cases taken from applications including GNU scientific

library (GSL), MPEG-2 video codec, MPEG-4 audio decoder, and H.264 video encoder.

The control structures of these test cases are shown in fig. 6.1. Each test case represents

a CDFG with BBs embedded in different types of control structures. BBs shaded in gray

are composed of nontrivial DFGs (multiple nodes), which are major candidates for the

architecture generation process and BBs shown in white are composed of trivial DFGs

(single node). The weighting factors of the BBs are calculated wherever the information is

known at compile time; otherwise random values (in the range 0 and 1.0) are assumed.

Section 6.1 discusses the accuracy of the proposed area estimation technique. Section

6.2 provides analysis of the proposed methodology. Sections 6.3 and 6.4 present a com-

parison with prior work including a datapath merging approach [16], and template-based

algorithms [17–19]. Results are provided for architectures in terms of (i) relative area cost

(in WSDP units), (ii) execution time (in clock cycles), and (iii) resource utilization (in terms

of number of individual device primitives). As FPGAs are composed of four types of device

primitives, the resource utilization is provided for each of the four device primitives for all

the test cases. For all test cases, the Xilinx Virtex 4 family of FPGAs is considered as the

target device and Microblaze (v7.10) [29] as the soft core processor wherever used. As the

proposed methodology generates, a set of solutions with different execution times and area

costs, during comparison, only one solution is chosen which is at least as good as or better

than architectures generated by other approaches.
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Table 6.1: Test cases.
Test case Notation Data type Source code # of non-trivial DFGs

1 Absolute Difference Error ADE Integer MPEG-2 encoder 3

2 2D-Inverse Discrete Cosine Transform IDCT Integer MPEG-2 encoder 2

3 Search One Pixel SOP Integer H.264 encoder 4

4 Sub Sampling SS Integer MPEG-2 decoder 4

5 Cylindrical Bessel CB Floating point GSL 5

6 Audio Synthesizer AS Floating point MPEG-4 audio decoder 2

7 Wavelet Transform WT Floating point GSL 3

Note: All floating point data types are single precision.

Fig. 6.1: CDFGs of test cases shown in Table 6.1. (T : true branch, F : false branch, A:
always taken branch).

6.1 Accuracy of the Proposed Area Estimation Technique

The context adaptable architectures derived using the proposed methodology are im-

plemented in Verilog, synthesized and post P&R resource utilizations are obtained using

Xilinx ISE 10.1. The Xilinx Virtex-4 SX35 FPGA [30] is used as the target device to realize

the hardware architectures.

An estimation technique proposed earlier in Chapter 3 is used to estimate the resource

utilization of a circuit. To confirm the correctness and accuracy of this technique, the

estimated values are compared against the actual post P&R resource utilization of architec-

tures generated by the proposed methodology as shown in fig. 6.2. A comparison of LUT
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utilization is shown in fig. 6.2(a). It can be observed from fig. 6.2(b) that the percentage

error in LUT estimation was less than 4.5% for all the test cases. Similarly, the percentage

error in FF, DSP48, and BRAM resource utilization estimation was observed to be 0.2%,

0%, and 0%, respectively. Table 6.2 shows the absolute error (in %) in area estimation

of the proposed algorithm in comparison with area estiamtions used by other approaches

( [22, 24, 25]). It can be observed that the absolute error of the proposed methodology is

the least.

(a) (b)

Fig. 6.2: (a) Comparing the estimated against the actual post P&R LUT utilization, (b)
Percentage error in the estimated LUT utilization when compared against post P&R values.

Table 6.2: Comparison of absolute error in area estimations.
Authors Estimator Input Absolute Error Handle Memory

(%) units?

Nayak et al. [24] MATLAB 16 No

Kulkarni et al. [25] SA-C 6.3 No

Bilavarn et al. [22] CDFG 20 Yes

Proposed Algorithm CDFG 4.5 Yes
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6.2 Analysis of Proposed Methodology

6.2.1 Updating Available Device Primitives

In the proposed methodology, scheduling and resource selection are performed simul-

taneously. For each additional resource required by the resource set of a scheduled DFG,

WSDPs of all implementations are calculated and the option with the least WSDP is se-

lected and the number of available device primitives is updated. The advantage of evaluating

WSDPs of implementations, after allocation of each resource, is discussed here. Consider

a scheduled DFG (say G1), which requires three floating-point multiplication units and

two floating-point addition units. Assume that device primitives available for mapping this

DFG are: 1500 LUTs, 1710 FFs, and 18 DSP48s (note that the available device primitives

for mapping a DFG/CDFG need not be the total number of device primitives present on

the un-configured FPGA). Routing resources are neglected, for sake of discussion. Table 6.3

shows the different implementations of the multiplier and adder, and their corresponding

area costs (in WSDPs) are presented for different sets of available device primitives.

For the initial set of available device primitives, resources FMUL-2 and FADD-2 have

the least area cost among other implementations of the same type. If these two implemen-

tations are chosen for multipliers (all three) and adders (both) for DFG G1, then a total of

1148 LUTs, 1588 FFs, and 20 DSP48s are consumed. As there are only 18 DSP48s available,

this is an invalid solution. Therefore, a new approach of selecting implementations for one

functional unit at a time and then recomputing the area costs of different implementations

(as shown in columns 5 through 9 and the last row) is proposed. In column 5, as FMUL-2

has the least area cost (shown in bold text) among all multiplier implementations, therefore

resources are allocated for it, available device primitives are updated, and area costs are

recomputed in column 6. Again FMUL-2 has the least area cost. However, in column 8 we

see that FADD-1 has the least area cost, but when the device primitives were updated in

column 9, FADD-2 has the least area cost. Using this approach, the final circuit consumes

1394 LUTs, 1710 FFs, and 16 DSP48s, which is a valid solution.
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Table 6.3: Illustration of updating available device primitives and WSDPs.
Resource Required device primitives Available device primitives in WSDPs for (LUT/FF/DSP48)

Type LUT FF DSP48 1500/1710/18 1348/1504/14 1196/1298/10 1044/1092/6 452/485/6

FMUL-1 653 703 0 0.85 0.95 1.09 1.27 2.89

FMUL-2 152 206 4 0.44 0.54 0.69 1 1.43

FMUL-3 121 185 5 0.47 0.57 0.74 1.12 1.48

FADD-1 592 607 0 0.75 0.84 0.96 1.12 2.56

FADD-2 346 485 4 0.74 0.86 1.06 1.44 2.43

Allocated resources 1st FMUL 2nd FMUL 3rd FMUL 1st FADD 2nd FADD

6.2.2 Optimal Resource Selection

In the following sub-section, solutions generated by the proposed heuristic resource se-

lection algorithm are compared with optimal solutions. The optimal solutions are generated

by exhaustively listing all possible combinations of resources and their implementations. To

reduce the complexity of testing, the following assumptions were made: (i) there is only

one operation type in the entire CDFG, (ii) each DFG has only one schedule (say, critical

path schedule), and (iii) resources available for mapping operations are implemented using

only LUTs and/or DSP48s (FFs and BRAMs are not considered). Note that these assump-

tions are not limitations of the algorithm itself. As each DFG has only one schedule, there

exists only one final solution for comparison, rather than a set of solutions as explained

in the CAAE algorithm. Also, the execution time of the CDFG remains the same for the

proposed heuristic resource selection and optimal resource selection. We have generated

five synthetic test cases, each with different number of DFGs and operation types as shown

in Table 6.4. For each test case, the input available device primitives (LUTs and DSP48s

only) are varied resulting in large number of test points as shown in column 3 of Table 6.4.

Each test point represents one combination of device primitives. The CAAE algorithm

proposed in this thesis is run for each test point and the resource utilization is noted. Also,

the optimal resource utilization is determined by exhaustively evaluating all the resource

combinations. Both the values are then compared and the number of test points for which

my algorithm generates optimal solutions is tabulated in column 4. The maximum and

average area cost overhead of the solutions generated using the proposed heuristic resource
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Table 6.4: Percentage area overhead of the proposed approach compared to optimal solution.
Number Operation Number of Number of test Max. area overhead Avg. area overhead

of DFGs type total test points with optimal over optimal over optimal

points solution solution (in %) solution (in %)

5 FMUL 960 679 10.87 1.14

4 FMUL 1440 664 15.40 2.72

3 FMUL 1440 820 12.42 1.83

6 IMUL 720 720 0 0

4 IMUL 1300 1151 19.40 1.38

selection algorithm when compared to the optimal solutions is listed in columns 5 and 6

respectively. As we can see, though the maximum area overhead is approximately 20%, the

average area overhead was not more that 3%. However, it is important to note that, as

the proposed algorithm is a heuristic, these values are greatly dependent on the amount of

available device primitives at the beginning of the algorithm. The computation complexity

of the proposed resource selection algorithm is O(nk) as opposed to O(nk) for the exhaus-

tive search algorithm, where n is the maximum number of resources of any type and k is

the maximum number of implementations for any resource.

6.3 Comparison with Datapath Merging Approach

This section evaluates the proposed architecture against the architectures generated

using the Datapath Merging (DM) approach proposed by Moreano et al. [16]. For the DM

approach, only DFGs present inside loops are processed in the decreasing order of number of

nodes. The remaining DFGs (not present inside loops, but capable of hardware acceleration)

are instead mapped onto a soft-processor. The area of the final merged architecture is

calculated using

AreaDM = Areamerged + Areastatic, (6.1)

Areamerged =
VR−1∑
j=1

CjRj + Areamultiplexers, (6.2)
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where Areastatic is the area cost associated with a soft-processor (Microblaze on Xilinx

FPGAs), which has a constant value depending on the type of operations it has to execute

as shown in Table 6.5, and the number of available device primitives (using (3.1)). In (6.2),

Cj represents the total number of operations of type j present in the merged graph, VR

is the number of distinct operations, and Rj is the area cost (WSDP) of a resource that

can implement operation j. Areamultiplexers is calculated using the pseudo code shown in

fig. 4.3.

The DM approach is applied for the seven test cases and a comparison is provided in

fig. 6.3 against the proposed method. Depending on the size of the test case, different sets

of available device primitives are fed to the CAAE algorithm, as shown in Table 6.6. It

can be seen that the proposed method generates a faster and smaller circuit. Figure 6.3(c)

shows the final resource utilization for each of the individual device primitives for all the

seven test cases. It can be observed that, though the proposed method consumes more

DSP48s, it results in a lower final area cost (fig. 6.3(a)) of the circuit by balancing out

the device primitives. Note that DM approach failed to generate a circuit that can fit the

target FPGA for one test case (IDCT) where the number of data nodes is large (∼80).

6.4 Comparison with Template-Based Approaches (Prior Work)

The algorithms presented by Guo et al. [17], Kastner et al. [18], and Cong et al.

[19] propose to accelerate applications by extracting hardware templates for configurable

processors. Hence, we extend their methodology for applications involving control flow

Table 6.5: Three configurations of the Microblaze (v7.10) processor in Xilinx Virtex 4
FPGAs.

Microblaze type LUT FF DSP48 BRAM

Integer units only 1955 1163 3 32

Integer + FP† unit (Basic) 2936 1611 7 32

Integer + FP† unit (Extended§) 3483 1926 7 32
†FP: Floating Point (single precision)
§Extended: Support for square root operations
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(a) (b)

(c)

Fig. 6.3: Comparison with datapath merging approach: (a) Relative area cost, (b) CDFG
execution time, and (c) Resource utilization for individual FPGA device primitives.
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Table 6.6: Available device primitives used to obtain results shown in fig. 6.3.
Test case LUT FF DSP BRAM

1 ADE 4000 3000 50 60

2 IDCT 30720 30720 50 50

3 SOP 3000 2000 50 50

4 SS 17000 26000 20 20

5 CB 9000 9000 50 50

6 AS 12000 12000 50 70

7 WT 12000 12000 50 20

and compare with the proposed approach. For each test case, templates are identified

using these three approaches and are used to cover the DFGs of a CDFG, individually.

These templates are potential candidates for hardware acceleration, and are hence termed

as nontrivial templates (NT ). The uncovered operations of all DFGs are identified as trivial

templates (single node) and are executed on a software processor (Microblaze). As there

is no mention on the number of instances of NT templates, only one instance of each

template is assumed to be present in the circuit. Unlike Guo et al. [17] and Kastner et

al. [18], the hardware templates used in Cong et al. [19] are assumed to have nonoverlapped

execution, because only one application specific instruction corresponding to a template

can be executed at any given time. For every NT template, the corresponding DFG is

scheduled using FDS and a set of number of resources {nr | r ∈ R} is obtained. The area

cost of a single NT template k is calculated using

Area(NTk) =
∑
r∈R

nrWr, (6.3)

where Wr is the relative area cost (WSDP) of resource r. The overall area cost is computed

as summation of the area costs of all the m NT templates and n T templates is calculated

using
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Areaprior =

{ (∑m
k=0 Area(NTk)

)
if n = 0(∑m

k=0 Area(NTk)
)

+ Areastatic if n 6= 0
. (6.4)

In the presence of trivial templates, area cost of the Microblaze (Areastatic) is added.

Figure 6.4 shows the relative area cost and execution time of architectures generated

by the proposed approach and the three template based approaches, for all the test cases.

For each test case the available device primitives used at the beginning of the algorithm are

shown in Table 6.7. From fig. 6.4(a) it can be seen that the architectures generated by the

proposed methodology have the least relative area cost for all the test cases except for IDCT,

when compared with Cong et al. [19]. This is because the number of distinct NT templates

present in the graph is very small (though the number of templates required to cover the

graph is large) and we assumed only one instance of each template to be present in the

hardware which requires less circuit. Note that the area cost for the proposed architecture

includes the resources for data routing (i.e., delay registers and multiplexers), whereas, the

area cost for the architectures generated using other approaches include only the area cost

of arithmetic/logic resources. However, the penalty can be observed in the execution time

difference. From fig. 6.4(b) it can be observed that the execution time for architecture

generated for IDCT using Cong et al.’s method is 5072 cycles, whereas for the architecture

generated using the proposed algorithm is only 600 cycles. That is to say, when compared

with Cong et al.’s method, though the proposed algorithm has an area overhead of 5%,

savings of 88% can be observed in execution time.
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(a) (b)

(c)

Fig. 6.4: Comparison of proposed architectures and architectures generated using Guo et
al., Kastner et al., and Cong et al.: (a) Relative area cost, (b) CDFG execution time, and
(c) Resource utilization for individual FPGA device primitives.
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Table 6.7: Available device primitives used to obtain results shown in fig. 6.4.
Test case LUT FF DSP BRAM

1 ADE 3000 2000 10 50

2 IDCT 6700 6050 20 50

3 SOP 3000 2000 10 50

4 SS 9000 11000 20 50

5 CB 7000 6000 20 50

6 AS 7000 6000 20 50

7 WT 6000 5000 20 50
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Chapter 7

Conclusion and Future Work

This thesis presents a methodology to derive context adaptable architectures for FPGA

that can support multiple DFGs contained in the CDFG of an application. An area metric

(WSDP) that is based on the heterogeneous mixture of device primitives in an FPGA is

presented and is used to guide resource selection, when multiple implementations for a

particular resource type are available. A context adaptable architecture (CAA) template

is presented and a CAA exploration (CAAE) algorithm, which includes heuristic-based

scheduling, resource selection, and mapping algorithms, is described in detail.

Architectures generated by the proposed methodology are compared against those gen-

erated using other published techniques. The test cases used for benchmarking are obtained

from multiple applications domains. Overall WSDP, execution times, and resource utiliza-

tion (in terms of number of device primitives) are used as metrics for comparison. The

proposed methodology outperformed the other published techniques by generating smaller

(an average savings of 46% in WSDP) and faster (an average savings of 46% in execution

times) architectures.

Future research can be carried out in the following directions:

(1) Resource implementations for multiple latencies can be explored, which will have an

impact on the execution time of the CDFG, FPGA resource utilization, and maximum

clock frequency of the generated architecture.

(2) Maximum clock frequency of the circuit can be studied by determining the absolute

time delays of all the components of the architecture and identifying the critical path.

The clock frequency can be improved by inserting registers at appropriate places in

the architecture.
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(3) Power consumed by the architecture can be anayzed and find ways to reduce it.

(4) Come up with an efficient way to map arrays present in the CDFG to the FPGA

on-chip memory.

(5) Perform partial or full unrolling of loops to decrease the execution time of the CDFG.
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