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Abstract

An Autonomous Unmanned Aerial Vehicle-Based Imagery System Development and

Remote Sensing Images Classification for Agricultural Applications

by

Yiding Han, Master of Science

Utah State University, 2009

Major Professor: Dr. HuiFang Dou
Department: Electrical and Computer Engineering

This work concentrates on the topic of remote sensing using a multispectral imag-

ing system for water management and agriculture applications. The platform, which is a

light-weight inexpensive runway-free unmanned aerial vehicle (UAV), namely, AggieAir, is

presented initially. A major portion of this work focuses on the development of a light-

weight multispectral imager payload for the AggieAir platform, called GhostFoto. The

imager is band-reconfigurable, covering both visual red, green, and blue (RGB) and near

infrared (NIR) spectrum, and interfaced with UAV on-board computer. The development

of the image processing techniques, which are based on the collected multispectral aerial

images, is also presented in this work. One application is to perform fully autonomous river

tracking for applications such as river water management. Simulation based on aerial mul-

tispectral images is done to demonstrate the feasibility of the developed algorithm. Other

effort is made to create a systematic method to generate normalized difference vegetation

index (NDVI) using the airborne imagery. The GhostFoto multispectral imaging system

based on AggieAir architecture is proven to be an innovative and useful tool.

(72 pages)
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Chapter 1

Introduction

1.1 Overview

1.1.1 Unmanned Aerial Vehicle

An unmanned aerial vehicle (UAV) is commonly referred to as a remotely piloted air-

craft, which can either be controlled from a remote location, or fly completely autonomously

according to a pre-planned flight path or real-time navigation system. Ever since its in-

vention, the UAV is mainly used for military purposes [1]. Until recently, a wide vari-

ety of civilian applications have emerged [2], indicating bright market prospects for the

civil/commercial UAVs in the near future.

The UAVs are commonly preferred for missions which are too “dull, dirty, or danger-

ous” [3] for manned aircraft, such as in modern warfare and forest fire fighting [4]. However,

apart from its obvious advantages in risky and hazardous missions, the UAVs also have

many other advantages over manned aircraft, such as higher reliability, lower cost, smaller

dimensions, and better flexibility. With different payloads, UAVs can be tasked for various

applications. Multispectral imagery over a coffee plantation collected by NASA Pathfinder

Plus UAV is used to estimate ripeness status and evaluate harvest readiness [5, 6]. A UAV

from IntelliTech Microsystems, Inc., fitted with five down-looking digital cameras, an up-

looking quantum sensor, is utilized for precision agriculture [7]. Kaaniche et al. [8] presented

a vision algorithm based on a video camera on UAV. The video stream is transmitted to the

ground station for real-time vehicle detection. Also a vision-based road following navigation

system for a UAV is presented [9].
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1.1.2 Remote Sensing and Agriculture

For agriculture applications, the use of multispectral remote sensing data has gained

increasing interest from researchers all over the world. Pinter et al. [10] has examined the

remote sensing approaches that have been developed for management of water, nutrients,

and pests in agricultural crop. Pinter et al. [10] also addressed the use of thermal infrared

camera which can measure plant temperatures. The thermal infrared camera is able to

remotely assess the water status and predict crop yields. To implement this technology on

UAV platforms, efforts were made by Berni et al. [11] to investigate the use of a thermal

camera and a 6-band multispectral visual camera which is mounted on a helicopter. The

implementation is used to detect water stress and measure the biophysical parameters of

the crops. However, due to the size and weight restraint of small UAVs, usually the smaller

uncooled thermal systems are carried. The issue with the uncooled thermal infrared (TIR)

system is the nonconformity of the images due to temperature change inside the TIR camera.

Wang et al. [12] developed an algorithm called random M-least square to find the optimized

projective transformation parameters between TIR frame. Their results show that the

registered TIR frames are able to create a mosaic and a real-time implementation is possible

in the future.

1.2 Motivation

In the Center of Self-Organizing and Intelligent System (CSOIS) at Utah State Uni-

versity, miniature fixed-wing autonomous UAVs are developed for civil applications such

as water management, irrigation control, vegetation recognition and highway mapping, etc.

The UAV system is named AggieAir. In our previous AggieAir system, the UAVs are

equipped with light-weighted multispectral high-resolution optical imager for aerial images

within reconfigurable bands [13]. Geo-referenced aerial imagery is retrieved with a system

called gRAID [14]. An inexpensive compact inertial measurement unit (IMU) and global

positioning system (GPS) module is integrated in the system to provide geo-referencing

data for the imagery. A man-in-the-loop approach is used to minimized the error from the

IMU and GPS.
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1.3 GhostFoto Multispectral Remote Sensing Platform

1.3.1 Development Background

A multispectral imager, called the GhostFinger, was developed for our previous UAV

system [15]. The imager system consists of a digital camera and a circuit board which auto-

matically triggers the camera. This system works reliably and captures high quality images,

but it is impossible to communicate with the payload from the ground station. Therefore,

monitoring or controlling the payload during flights was difficult to realize. In addition,

only poor accuracy can be achieved in geo-referencing the airborne imagery. As a result, we

wanted to develop a multispectral imager payload that is able to interface with the on-board

flight microcomputer and the ground control station in order to automatically record the

geo-referencing information for the airborne imagery, as well as providing improved image

quality. In addition, it is designed for multi-purposes and will allow scalable number of

the on-board imagers for both remote sensing and machine vision applications. The novel

imager system is called GhostFoto.

1.3.2 Hardware Development for GhostFoto

GhostFoto multispectral remote sensing platform consists of both hardware and soft-

ware components. The hardware includes a high resolution CCD camera and an on-board

micro computer which controls the cameras through Universal Serial Bus (USB). The cam-

eras can be modified to operate under both visible red, green, and blue (RGB) and near

infrared (NIR) spectrum. A software program, which runs on the on-board micro computer,

is designed to control and configure the cameras in order to capture images autonomously.

The software also records the geo-referencing data with respect to each aerial image.

Canon PowerShot SX100 IS / SX110 IS are the two camera models used in GhostFoto

system. SX110 IS model is the successor of SX100 IS. It is smaller, slightly lighter and able

to capture images with higher resolution. Underneath the cover, the two models feature

the same lens system and fundamentally the same control circuit. Therefore, the effort of

designing software to control the cameras is reusable between these two models.
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To let the cameras operate under both visible and NIR spectrum, some modification in

the camera’s CCD filter is required. In a normal RGB camera, usually a visible light filter

is placed in front of the CCD array to block NIR spectrum, and only allow visible light to

pass. By replacing this visible light filter with a NIR filter, we can allow only NIR spectrum

to pass and block all the visible spectrum.

A Gumstix Verdex computer-on-module is used as the on-board computer. Verdex

series is based on the Marvell XScale processor, and provided with a Linux operating system

for an OpenEmbedded build environment. The Verdex computer serves as the information

backbone of the UAV on-board system, establishing the data link between sensors and the

auto-piloting system. The sensors include an IMU and a GPS module. IMU is a sensor

which detects the position of an aircraft including pitch, roll, and yaw angles. These sensors

provide not only data which is used to auto-pilot the aircraft, but also critical information

for the orthorectification of aerial images. Therefore, the sensor data is recorded by the

Gumstix computer onto a micro SD card. In addition, the Gumstix computer is also in

charge of controlling and configuring the cameras.

1.3.3 Software Development for GhostFoto

In order to communicate with the cameras from Verdex computer, a Linux-based pro-

gram called the GhostEye was designed. GhostEye is based on libgphoto2, which is an

open source portable digital camera library of C functions for UNIX-like operating sys-

tems, providing supports of various types of digital cameras. With libgphoto2 library func-

tions, GhostEye is able to remotely control and configure multiple Canon PowerShot SX100

IS/SX110 IS cameras simultaneously.

In addition, GhostEye also provides the communication link between the imager pay-

load and the UAV system. Messages can be reported from GhostEye to the ground station

for observation purposes. Meanwhile, messages from the UAV system can trigger the im-

agers. When the UAV climbs up or drops down to a designated altitude, the imagers are

able to be activated or deactivated automatically. Moreover, GhostEye synchronizes image

capturing with the corresponding geo-referencing data. This information is saved in xml
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format which can be directly imported to gRAID software [16] to orthorectify the image

and map it onto global coordinates.

1.3.4 Image Processing

The different post-processes of the airborne images have been developed aiming for

various application. In the river mapping mission, the imager is used not only to map the

river flow, but can also be used to detect the flow line in real-time and guide the direction of

the UAV. Algorithms are developed based on NIR imagery to detect the river and predict

the river flow, so that dynamic 3D way points are generated. Complete autonomous river

tracking can be realized by implementing the algorithm to generate dynamic way points

which are used by the autopilot system in real-time.

For agricultural applications such as vegetation detection, the Normalized Difference

Vegetation Index (NDVI) is used to detect live green vegetation. The NDVI is widely used

in many applications related to remote sensing, mostly in the agricultural purpose such

as crops ripeness estimation [10, 17], soil moisture estimation [18], and ecological system

study [19], etc. A systematic way of generating high resolution NDVI images is developed

based on GhostFoto multispectral imager and AggieAir UAV system.

1.4 Contribution and Organization

This work concentrates on building the AggieAir architecture and develop the Ghost-

Foto multispectral imager based on the platform. Moreover, the image processing technolo-

gies, which aim at water management and agricultural applications, are developed.

Chapter 2 provides an overview of the AggieAir architecture and a detailed introduction

of every aspects within the architecture, including the airborne system and ground control

system. Chapter 3 deals with the development of GhostFoto multispectral imager system,

providing a detailed explanation of all the functionalities of GhostFoto imager, as well

as the methodology employed to develop such technologies. Chapter 4 focuses on the

image processing technologies develop for different applications based on the AggieAir UAV

platform. The first part of Chapter 4 deals with the river tracking mission developed
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based on the GhostFoto imagers. The proposed algorithms which are able to identify

the river path and calculate the GPS coordinates of dynamic way points which the UAV

should follow. Simulation results based on multispectral imagery taken from actual flight

test is compared to the real flight trajectory. The second part of Chapter 4 proposes a

systematic way of generating NDVI images based on the multispectral imagery captured by

the GhostFoto imaging system. Chapter 5 gives a conclusion of the contribution presented

in this thesis, and suggests several future works which will lead direction of the AggieAir

UAV development.
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Chapter 2

AggieAir Miniature UAV Architecture

AggieAir is fundementally an autonoumous aerial vehicle-based remote sensing plat-

form. The system only requires a minimun of two operators to complete the autonomous

flight missions based on pre-planned way points. The plane is launched with a bungee sys-

tem which provides the plane with the initial airspeed enough to takeoff. Then it begins

fully autonomous flight seamlessly after the launching and enters its pre-planned missions.

When the missions are complete, the aircraft is able to autonomously glide to the ground

until it completes the skid landing.

The autopilot unit is called Paparazzi, which is an open source UAV autopilot project.

The flight data required by the autopilot comes from on-board sensors, including a Global

Positioning System (GPS) module and an inertial measurement unit (IMU). The datalink

between the sensors and the autopilot is established by the on-board computer, called

Gumstix, which acts as the information backbone of the airborne system. As a remote

sensing platform, AggieAir features imager payload within reconfigurable bands, including

red, green, and blue (RGB) bands and near infrared (NIR) band. The high resolution

imagers are controlled by Gumstix on-board computer, which both configures the camera’s

settings and controls the shutter to capture images. Airborne imagery is stored either on

the Secure Digital (SD) Card inside the cameras, or in the storage space inside the Gumstix

computer and transmitted down to the ground stations via Wi-Fi communication in real-

time. Other than the autonomous flight capability, AggieAir UAV also has a fail-safe loop

to allow the safety pilot on the ground to take complete control of the aircraft. Figure 2.1

shows a block diagram which helps illustrate the system level overview of the AggieAir

miniature UAV architecture.
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Fig. 2.1: AggieAir system level overview.
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2.1 AggieAir System Overview

2.1.1 Airframe

The current AggieAir UAVs are based on Unicorn airframes. This airframe is designed

to have low-speed gliding characteristics, which means it does not tip stall easily even when

it is cruising at low airspeed (< 10m/s). Since the wings are made of resilient foam (EPP),

the body of the aircraft is extremely light. Moreover, upon impact, the foam body is able

to bounce off and absorb the force. Therefore, it is remarkably sturdy and difficult to

break. Apart from the EPP foam body, the airframe is reinforced with embedded carbon

fiber skeleton and thick striping tape skin. Figure 2.2 shows a completed empty Unicorn

airframe.

Modifying or fixing the foam body is easy and low-cost. Most of the body modification

can be done with hot wire foam cutter and utility knives. In serious crash accidents, small

part of the airframe body might be damaged, deformed, or peeled off. These damages can

be easily fixed by gluing new foam pieces and wrapping striping tapes around the injured

spot. However, the Unicorn can be crashed many times without sustaining any noticeable

Fig. 2.2: Unicorn airframe.



10

damage.

2.1.2 On-Board Electronics

The airframe offers different dimensions. Developer can choose among three wingspan

sizes: 48, 60, and 72 inches. The selection of distinct airframes provides flexibility in

building UAVs for specific purposes. The 48-inch for example, has the least weight-bearing

capacity, but the most agile manoeuvrability and the best controllability among the three.

Therefore, it is often utilized in multi-UAV formation flight tests, prototype development,

or crew training. In contrast, the 72-inch airframe carries payload with the most weight,

and is able to cruise with a much more stable posture. The 72-inch is currently the mostly

used airframe in the AggieAir UAV family. It is also the airframe on which the presented

AggieAir architecture is based.

Figure 2.3 illustrates the layout of an AggieAir 72-inch UAV. The plane is powered by

an electrical motor. The two elevons at rear end are controlled by separate servo motors.

The batteries and electronic devices are embedded inside the foam body, and protected by

tape covers, which also ensure smooth aerodynamics of the plane.

The batteries are located in the front end for better weight balance of the aircraft. Eight

lithium batteries are carried in the battery bay and able to provide approximately one hour

of endurance capability. The circuit board of the Paparazzi autopilot system, called the

Fig. 2.3: AggieAir 72 inches UAV layout.
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TINY board without GPS, or TWOG board, is located in the front of the right wing beside

the batteries. A data modem sits on the other side of the plane on the left wing, providing

the 900 MHz narrow band wireless data link between the on-board autopilot system and the

ground station. Its antenna is placed on the left side of the plane, embedded in the winglet

far away from the other electronics devices to minimize the electromagnetic interference.

Also, a GPS receiver is placed on the left wing. On the right wing, a Wi-Fi module is

seated near the right winglet, connected to the on-board computer through ethernet cable.

A Wi-Fi wide band data link is established with a 2.4 GHz antenna embedded in the right

winglet.

Most of the electronic equipment is protected inside the main bay. As illustrated in

fig. 2.4, the on-board computer, called Gumstix, is located on the left side of the main

bay. A groove is cut beside the Gumstix to allow wind blowing inside the main bay for

cooling purpose. As a result, the vent opening is placed above the groove in order to keep

the Gumstix from water and dusts coming from the environment. An inertial measurement

unit (IMU) is mounted in the middle of the main bay, which is also the center of gravity

of the aircraft. Two imagers are located in the front in parallel positions. In the layout

Fig. 2.4: Electronic devices inside the main bay.
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illustrated in fig. 2.4, two RGB cameras are mounted. They are tilted with about 20

degrees, facing towards left and right respectively to obtain wider field of view. Underneath

the aircraft, as illustrated in fig. 2.5, viewports are designed to protect the lenses, which

need to reach out of the bottom of the plane to initiate image capturing. The tiled angle

of the cameras can be modified by replacing the viewport with a different one, so that the

same airframe can satisfy the requirements of different applications. A bungee hook is also

installed underneath the aircraft and used during bungee takeoff.

2.1.3 Ground Controls

The ground controls are also essential in the architecture of AggieAir. This concept

might differ from the common knowledge that unmanned vehicles are completely controlled

by themselves without human intervention. But in fact, unmanned vehicles are similar to

manned ones in the sense that human operators are also required, they are just not in the

vehicle, but at a remote location, possibly in front of a computer terminal. This concept

suggests that in an UAV system architecture design, the development of the human ground

control interface is just as important as the airborne systems.

According to fig. 2.1, there are three levels of communication between the ground

control and the UAV. First is the RC communication, which is used by the safety pilot

to manually control the UAV. This is the lowest level of communication, considered as a

Fig. 2.5: Underneath the aircraft.
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fail-safe approach when the plane’s autonomous system cannot pilot the plane safely. It is

also the first communication link established from the plan to ground control, in order to

trim the airframe in an early stage.

The second level of communication is the data link of the autopilot system. The

autopilot system, known as Paparazzi, is able to create a bi-directional data link with the

ground control station. The downlink, meaning from UAV to the ground, is for transmitting

the flight data, including the flight attitude, GPS information, throttle percentage, battery

status, etc. The operator on the ground is able to use a software with graphical user interface

(GUI), called Ground Control Station (GCS), to monitor all the data in real-time. On the

other hand, data uplink is for transmitting flight commands to the UAV. This involves

changing the way points coordinates, or requesting the UAV to enter a different mission,

etc. However, the second level of communication is still a local communication, which is

based on a 900Mhz wireless connection.

The third level of communication is established upon the 2.4 Ghz Wi-Fi link. The Wi-

Fi module that is used to create this communication is able to hide the wireless details from

the user. Using a network switch which sets up a local ethernet network, every computer

on the ground is able to access to the on-board computer on the UAV. Several operators

on the ground can remotely log onto the on-board computer simultaneously, monitor or

control different aspects of the system, for instance, the resource usage on the on-board

computer including processor and memory usage, or detailed payload status including low-

level system I/O and driver communication, etc. Moreover, the bandwidth of the Wi-Fi link

is tremendous compare to the 900Mhz Paparazzi communication. Airborne images are able

to be transmitted to the ground imaging station and processed in real-time. In addition,

because of the local network, the imagery can be distributed among several computers to

perform image processing simultaneously. And if a Internet router is included in the local

network, the real-time shared aerial images can be accessed remotely from anywhere in the

world.
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2.2 Paparazzi

2.2.1 Paparazzi TWOG Board

Paparazzi [20] is a free, open-source project, consisting of both hardware and software.

Because of the open-source nature of Paparazzi, developers are supported within a pow-

erful community, sharing their contributions, including software source code, circuit board

schematics, etc. Due to the availability of information, Paparazzi developer are able to

adapt the project for specific applications. Therefore, an exceptionally versatile autopilot

system is developed and still growing with remarkable speed. In CSOIS, developers also

have made considerable contribution to the project. By connecting the Paparazzi TWOG

board with an on-board computer, the sensor data from IMU is linked to the Paparazzi au-

topilot system. Enabling this communication can greatly improve the navigation stability

and control accuracy. Moreover, the accuracy in imagery geo-referencing is considerably

improved compared with the old method in which IR sensors were implemented as the

navigation sensors. In addition to this contribution, CSOIS members also developed the

procedure for fully autonomous takeoff using Paparazzi autopilot.

The main control unit of the autopilot is the Paparazzi TWOG board [21]. The name

TWOG is originated from the initial letters in the phrase “Tiny WithOut Gps,” meaning

the Tiny circuit board without a build-in GPS module. The current v1.00 version TWOG

board features a single Philips LPC2148 MCU, which is based on an ARM7 microcontroller

running at 60 MHz with 512KB of zero wait-state on-chip flash and 40KB SRAM.1 The

TWOG board provides I2C, SPI, UART, USB, eight PWM outputs, and eight analog inputs.

Figure 2.6 shows the front and back side of a TWOG board and illustrates how large it is

compared to a coin.

2.2.2 Ground Station

Free software running on the ground station is provided with a friendly graphical user

interface (GUI). Although the number of available software and functionalities increases
1
40KB is divided as 32KB normal memory and 8KB shared memory with the USB DMA.
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Fig. 2.6: Paparazzi TWOG board.

almost constantly every once in a while, the most basic packages remain to be the Paparazzi

Center and Ground Control Station (GCS). Paparazzi Center, whose GUI is shown in

fig. 2.7, is used to modify the configuration files for each aircraft, including the airframe,

flight plan, settings, radio, and telemetry. The configuration files are compiled in the

Paparazzi Center, and uploaded to the Paparazzi TWOG board through a USB interface,

or for a simulation, which is run by the simulator inside the Paparazzi Center.

The Ground Control Station (GCS) is the most important tool during flights. GCS

monitors the status and controls the flight of every airborne plane. The communication is

based on the telemetry datalink provided by the 900 MHz antenna. As shown in fig. 2.8, a

2D world map is displayed with the way points of the flight plan, the icon of the plane is also

shown on the map indicating its current location. The execution of way points are defined

as blocks, which can be activated manually or automatically according to the flight plan.

Fig. 2.7: Paparazzi Center.
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The position of the way points, including latitude longitude and altitude, can be modified

in real-time during flights. GCS also provides parameter tuning of the flight control loops,

meaning the gains for the PID flight controllers can be modified on the run.

2.3 Gumstix On-Board Computer

Gumstix on-board computer is a small yet powerful computer-on-module with a wide

selection of expansion boards which provides extra system I/Os and user interfaces. The

computer-on-module is essentially a computer integrated on a circuit board with very small

footprint. The Verdex / Verdex Pro production line used on AggieAir UAVs has the dimen-

sions of 80mm × 20mm × 6.3mm, featuring a Marvell PXA270 Processor with XScaleTM

running at 600 MHz. The system has 128 MB RAM and a 32 MB ROM, plus an on-board

microSD adapter for extra memory. Figure 2.9 shows a Verdex Pro XL6P computer-on-

module installed with an expansion board, which provides an ethernet connection, a full

speed USB 1.1 port, and three RS232 serial ports.

2.3.1 Functionality

The Gumstix is the backbone of the AggieAir airborne system. It establishes the data

link to send the flight sensor data from IMU and GPS to the Paparazzi autopilot. It also

Fig. 2.8: Paparazzi Ground Control Station (GCS).
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Fig. 2.9: Gumstix Verdex computer-on-module with expansion board.

controls the payloads and records geo-referencing data and flight logs for airborne imagery.

The Gumstix communicates with IMU, GPS, and Paparazzi TWOG board through serial

ports, and controls the imager payload through a full speed 1.1 USB port. IMU data

packages are updated from the Gumstix to the Paparazzi at 50 Hz. GPS data packages are

slower at 4 Hz due to less frequent updating ratio of the GPS receiver.

As a result, the Gumstix computer bridges the flight sensors and the autopilot, which

means it is able to store and monitor the data flowing through itself. This design enables

a wide range of functionalities for AggieAir UAVs. For instance, by storing the raw flight

data, a flight black box is established. The logged raw data can greatly ease the process

of debugging and failure investigation. Moreover, on-board payloads, regardless of their

specific functionalities, are able to have access to the real-time flight data when interfaced

with the Gumstix computer. As an example, the imager system, including the camera

hardware and the software process within Gumstix, is highly autonomous in the sense that

all of its functionalities are automatically triggered by a software program, which also geo-

references the aerial images with the instantaneous flight sensor information.

2.3.2 Data Flow

The Gumstix computer runs on an OpenEmbedded Linux operating system. Programs

which runs on the Linux system are designed by CSOIS to enable the data flow within

the Gumstix and hense the entire AggieAir airborne system, as illustrated in fig. 2.10.
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AggieCap [22], which is the short term for “Aggie Captain,” is the name of the program

which manages the data flow inside Gumstix. Its purpose is to collect the navigation sensor

data and send out packages which can be recognized by Paparazzi autopilot, in the mean

time sharing the sensor data with other onboard components and payloads. For example,

GhostEye program, introduced in sec. 3.3, is running as a separate thread concurrently with

AggieCap, and communicating with AggieCap to fetch geo-referencing data and report the

status of the imager. The status is then send to the autopilot and monitored on the

Paparazzi message center on the GCS.

Fig. 2.10: Data flow of AggieAir airborne system.
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Another key data flow is also related to the Gumstix computer, and is established

through a broadband 2.4GHz Wi-Fi communication. On the hardware level, the Wi-Fi

communication is based on inexpensive, high-power (800mW), and easily constructed “car-

rier class” Wi-Fi units, manufactured by Ubiquity Wireless [23], known as the Bullet2-HP.

The units are employed on both ends communication link. As a result, on the software level,

the network is similar to an ethernet connection, since Bullet2-HP has hidden the details

of wireless connection from the end user. This Wi-Fi link has a tested effective range of

approximately two miles and is able to achieve up to 1.6 MB/s transfer speeds, depending

on the choice of antennas.

The Wi-Fi link enables a broadband communication compared with the Paparazzi

900MHz datalink. Large amount of data flow is able to be transmitted to, or from, the

ground station directly. For the current system, the Wi-Fi link is used for downloading

real-time airborne imagery and monitoring on-board system status on the ground stations.

2.4 gRAID Image Processing

Once the airborne images are downloaded to the ground stations, a software called

gRAID, which stands for Geospatial Real-time Aerial Image Display, is employed to pro-

cess the imagery by orthorectifying the images with respect to their geo-referencing data

recorded in the UAV on-board system, and overlaying the images onto an actual 3D earth

within NASA’s WorldWind [24] software. Figure 2.11 illustrates the results of the mosaic

of airborne images of a river overlaid on the 3D map in WorldWind.
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Fig. 2.11: Aerial imagery mosaic created by gRAID under WorldWind.
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Chapter 3

GhostFoto: A Multispectral Remote Sensing Platform

As a remote sensing platform, it is important to develop a multispectral imager that

is reliable, inexpensive, light-weighted, compatible with the AggieAir architecture, and also

captures images with high resolution. Therefore, GhostFoto multispectral remote sensing

imager is developed for the AggieAir architecture, and is designed to feature the following

functionalities:

• Interfaced with the on-board Gumstix computer,

• Autonomously managed capturing,

• Geo-referencing data logging,

• Monitor-able from ground station,

• Controllable from ground station,

• Support multiple cameras,

• Flexible cameras collocation,

• Full manual control over the cameras.

3.1 Background and Expectations

Prior to the GhostFoto multispectral imager, a GhostFinger-DC system was devel-

oped [15] and used on a Procerus airframe. The old design was based on an additional

hardware interfaced to a Pentax camera to trigger the camera to capture images. The sys-

tem, as illustrated in fig. 3.1, is proved to work reliably for capturing images periodically.

However, geo-referencing of the images appears to be difficult with this system. Since the
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Fig. 3.1: GhostFinger-DC imager using Pentax Optio E10 camera.

imager is isolated from the flight system, it needs to carry its own GPS module, a pressure

sensor, an SD card, and an inclinometer to record the geo-referencing data for each picture.

Another issue with the camera is that it does not allow users to have fully manual optical

configurations. Although the aperture size and shutter speed can be manually configured,

the white balance setting is still automatically configured by the camera. The different color

behaviors result in a map of nonuniform images.

As a result, a new multispectral imager is required to be developed. It is called Ghost-

Foto. Its most remarkable improvement over the old design is that the GhostFoto imager

is interfaced with the on-board computer, so that it will greatly benefit from the AggieAir

architecture in terms of information sharing. The software which is designed to control the

cameras is based on an open source digital camera library called the libgphoto2, which is

compatible with UNIX-like operating systems. A new type of camera will also be used in

the GhostFoto imaging system, providing complete manual configuration and better optical

lens system.

3.2 GhostFoto Hardware

3.2.1 Cameras

Although a wide variety of commercial off-the-shelf CCD digital cameras exist in today’s
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market, there are few that satisfy all the requirements offered by the GhostFoto imaging

system. These requirements are listed as following:

• Supported by libgphoto2,

• Enables remote controlled capturing,

• Remote capturing is supported by libgphoto2,

• Allow complete manual control,

• Manual setting configurable by libgphoto2,

• Fast capture rate,

• Preferably zoom-able lens system,

• High resolution CCD array,

• Light-weighted, small dimension, and inexpensive.

PowerShot SX100 IS camera manufactured by Canon falls in one of the best candidates.

Other choices are available, but they are mostly digital single-lens reflex (DSLR) cameras

with outstanding image quality but enormous dimensions. For example, the Nikon D40x

is probably one of the most compact DSLR available in the market, but is still over-sized.

As a result, the PowerShot SX100 IS, shown in fig. 3.2, is chosen1 because of its compact

size and relatively light weight, which is approximately 200 grams after the cover and LCD

panel are disassembled. This weight is light enough for the 48 inches airframe UAV to carry

one imager, and the 72 inches airframe to carry two imagers. Specifications of the camera

are listed in table 3.1 [25].

Canon PowerShot SX110 IS, which is the successor of the SX100 IS, entered market

in the late 2008. The new camera features a nine million effective pixels CCD sensor,

and smaller dimensions. The comparison with its predecessor is demonstrated in fig 3.3.

However, the two models share the same optical lens and a similar electronic system. The
1
The choice was made in August 2008.



24

similarity between the two indicates that the SX110 IS is merely an upgraded version of

the SX100 IS. Therefore, only minor modifications in the code are required to control both

Fig. 3.2: Canon PowerShot SX100 IS with and without the cover.

Table 3.1: Specifications of PowerShot SX100 IS and SX110 IS.
Model PowerShot SX100 IS PowerShot SX110 IS

CCD sensor 8.0 million effective pixels 9.0 million effective pixels

Image sizes 3264× 2448 3456× 2592

2592× 1944 2816× 2112

2048× 1536 2272× 1704

1600× 1200 1600× 1200

640× 480 640× 480

Lens 10× optical zoom 10× optical zoom

Focal length 6-60mm Focal length 6-60mm

Initial field of view 50.7055◦ × 39.2108◦ 50.7055◦ × 39.2108◦

Remote capture Yes Yes

Communication interface USB 2.0 USB 2.0

Image stabilization Yes Yes

Manual exposure Yes Yes

Manual ISO Yes Yes

Manual white balance Yes Yes

Weight 266g (9.4 oz.) 245g (8.64 oz.)

Dimensions 108.7× 71.4× 46.7mm 110.6× 70.4× 44.7mm

Price $ 200 $ 250
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(a) Front view.

(b) Top view.

Fig. 3.3: Canon PowerShot SX100 IS and Canon PowerShot SX110 IS.

models.

3.2.2 Near Infrared Camera

To meet the needs of multispectral remote sensing, cameras which can detect near in-

frared (NIR) band is required. According to the previous research [15,16], CCD sensors are

sensible to both red green and blue (RGB) bands and NIR band. However, manufactures

usually install a visible light filter in order to prevent the NIR light from causing overex-

posure on the RGB CCD sensors. Hence, by replacing the visible light filter with an NIR

filter, which let pass only NIR band, a normal RGB CCD camera can be modified to an NIR

camera. The CCD sensor and filter in a PowerShot SX100 IS camera is shown in fig. 3.4.

There are several standard filters provided by different manufactures, including Ho-

yaR72 filter (glass), Kodak Wratten 87 filter (Wratten), Lee 87 filter (polyester), and Lee



26

Fig. 3.4: CCD sensor inside Canon PowerShot SX100 IS, covered by visible light filter.

87C filer (polyester). Their starting transmission wavelength are listed in table 3.2. Our

choice is the Lee 87C filter.

3.3 GhostEye

GhostEye is a program designed based on libgphoto2 API to manage the on-board

cameras. It is written for Linux operating system and should be compatible with other

UNIX-like systems. The main functionality of this program is to access one or several cam-

eras, configure their settings, control the periodical capturing, and record geo-referencing

data with respect to every image.

Table 3.2: Starting transmission wavelength of different NIR filters.
Filter name Starting transmission wavelength (NM)

Hoyle72 720

Kodak Wratten 87 750

Lee 87 750

Lee 87C 800
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3.3.1 gPhoto

gPhoto [26] is an open source project to support digital cameras under UNIX-like sys-

tems. As of now more than 1100 cameras [27] are supported by gPhoto. The project consists

of several individual sub-projects, including gphoto2, libgphoto2, and gtkam. libgphoto2,

the core of gPhoto project, is a portable library of APIs that access to the digital cameras.

But for normal users, command lines or graphical front-end interfaces are required to utilize

the libgphoto2 APIs. The command line interface is provided by gphoto2, and the GUI is

provided by gtkam.

In order to manage GhostFoto cameras, a program called GhostEye is designed based

on the libgphoto2 API. When GhostEye project started, the stable version of libgphoto2

was 2.4.2, in which the supports of Canon PowerShot SX100 IS was provided. However,

the support was not 100% complete, so there were a few bugs in the APIs. The solutions

to overcome the issues caused by these bugs will be discussed in sec. 3.3.2.

The later version of libgphoto2 fixed most of the software issues. The 2.4.5 version is

the latest stable version of libgphoto2 that GhostEye is based on. Also the new PowerShot

SX110 IS camera is supported in this version, whereas it was not in the 2.4.2 one.

In fig. 3.5, the architecture of the software is illustrated. GhostEye accesses the

front-end of libgphoto2 API, it also accesses some of the low-level APIs provided by libg-

photo2 port library, which is a subsidiary library under libgphoto2, providing basic operat-

ing system level communication with USB ports, RS232 serial ports, and other ports that

might be used by some digital cameras.

3.3.2 Periodic Image Capturing

In this section, the discussion of the imager system is simplified in the way that only one

camera is connected with a Linux system through the USB port. The system environment

is defined as the following: the 2.4.2 version libgphoto2 is installed on the Linux system;

PowerShot SX100 IS camera is connected and able to be detected by gphoto2; a USB port

number is assigned to this camera by the operating system.
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Fig. 3.5: Software architecture on which GhostEye is based.

Initially, algorithm 3.1 is used to enable the periodic image capturing. To simplify the

explanation, a pseudo function “ghosteye init camera()” is called to finish the initialization

of the camera, the parameters of the function are omitted here. Similarly, pseudo function

“ghosteye extend lens()” is called afterward to reach out the optical lens in order to enable

capture. A libgphoto2 function which triggers the capture needs to be called inside a loop

for iterative capturing, with certain time interval. The value of the time interval, which is

4 seconds in this case, is set long enough for the camera to finish its operation. The return

value of the libgphoto2 function is checked at every iteration, where the term GP OK, whose

value is defined as 0 in libgphoto2 libraries, indicates no error has occurred.

However, due to the bug issue in the 2.4.2 version libgphoto, algorithm 3.1 does not

work at all. Instead, the function will take two shots, store the first image in the camera

SD card, and return failure for the second shot. As a result, a modified procedure, shown

in algorithm 3.2, is designed to overcome this issue.
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Algorithm 3.1 Periodic Capture 1
ghosteye init camera (...); /* Initialize Canon PowerShot SX100 IS */
ghosteye extend lens (...); /* Extend camera lens */
...
while (retval == GP OK)
{

retval = gp camera capture (...); /* Calling libgphoto2 function */
...
sleep (4.0); /* Sleep for 4 seconds */

}

Algorithm 3.2 Periodic Capture 2
ghosteye init camera (...); /* Initialize Canon PowerShot SX100 IS */
ghosteye extend lens (...); /* Extend camera lens */
ghosteye retract lens (...); /* Retract camera lens */
...
ghosteye extend lens (...); /* Extend camera lens again */
gp camera capture (...); /* Take a picture, but ignore the false return value */
...
while (retval == GP OK)
{

retval = gp camera capture (...); /* Calling libgphoto2 function */
...
sleep (4.0); /* Sleep for 4 seconds */

}
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The changes made in algorithm 3.2 are mostly in the beginning section before entering

the capturing loop. Although there is hardly any scientific explanation, this method is

proved to work reliably. As shown in the algorithm, the camera lens is being extended two

times after the initialization, and followed by capturing a picture. However, this particular

shot is also counted as an initialization process, for the libgphoto2 function will return

failure with a value of “-10.” Ignoring this error, the following shots by the same libgphoto2

function will work nicely in a periodic way.

A file name issue, however, does exist in algorithm 3.2. The first shot, which appears

to be failure, actually succeeds in taking a picture and storing it in the SD card. A file

name, automatically assigned inside the Canon camera, is given to the first picture, usually

as “IMG0000.JPG.” But due to the false exit of the libgphoto2 function, the counter of

picture number inside libgphoto2 fails to increase. As a result, when the following shots are

taken, the numbers in the correct file names, which are assigned inside the Canon camera,

are always one larger than those in the file names returned by libgphoto2. For example, the

name of the picture taken after the first one should be assigned as “IMG0001.JPG.” But it

is still “IMG0000.JPG” that is reported from libgphoto2. Due to this issue, downloading

the images in real-time is very difficult to be realized with libgphoto2 2.4.2.

This bug is fixed in the releases after libgphoto2 2.4.4 version. Therefore, technically

speaking, algorithm 3.1 can be applied without any issue with libgphoto2 2.4.5. But algo-

rithm 3.2 still gets inherited. The reason is not only for backward compatibility, but also

that this design is quite welcomed by the end-users. Extending and retracting the optical

lens during initialization provides the UAV operators with a visual confirmation, so that

failure of initialization can be identified in an early stage before the UAV is launched.

3.3.3 Calculation of Capture Interval

The time interval between each picture is set accordingly to the demands of certain

flight missions. For example, for a task of ground mapping, aerial images would need to be

stitched together to form a complete ground map. The stitching algorithm requires certain

amount of overlapping between the adjacent images, normally with an area of a minimum
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of 30% of the whole image. Chao et al. [13] presented eq. (3.1) to calculate the minimum

time interval. Therefore, when the UAV flies at 300 meters above ground with a ground

speed of 15 m/s, the minimum time interval to reach 30% of overlapping is 10.8 seconds.

Equation (3.1) is defined as:

tmin =
(1− p%)× Fy

v
, (3.1)

where p% is the percentage of overlapping area, Fy is the vertical length of the footprint of

GhostFoto imager, as illustrated in fig. 3.6. v is the speed of the plane. Fy is calculated

from eq. (3.2) defined as:

Fy =
h× Py × PN

f
, (3.2)

where h is the flight height, Py is the pixel size, and PN is the number of pixels on the

CCD array. f is the focal length of the camera. In case of a PowerShot SX100 IS camera:

Py = 4.31
PN

(mm), PN = 2448, f = 6(mm).

The PowerShot SX100 IS RGB cameras can capture image with a maximum speed of 0.4

Fig. 3.6: Imager footprint.
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picture/second (2.5 seconds capture interval). For NIR cameras a capture interval of three

seconds is achievable due to the less optical flux of the NIR filter. If two RGB cameras are

carried in one flight mission and used to capture images alternately, the maximum capture

speed is then doubled. At this rate, the plane is able to fly as low as 50 meters above the

ground altitude, yet still maintain sufficient overlapping area between the adjacent images.

3.3.4 State Machine

The actual design of GhostEye program is more refined than the algorithms presented

in sec. 3.3.2. A ghosteye object is declared for only one camera during initialization. This

ghosteye object is defined to encapsulate data and structure such as the camera object

defined by libgphoto2, camera settings, and a GhostEye periodic control thread, etc. Instead

of a single while loop, a state machine is designed as the main control architecture. The

flowchart of the architecture is demonstrated in fig. 3.7.

State machine is a device that stores the status of the object and changes its status for a

given input at a given time. A state machine is designed inside the ghosteye object to define

Fig. 3.7: Flowchart of GhostEye control structure.
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the status of GhostFoto imager. The state machine of GhostEye threads is illustrated in

fig. 3.8. Each state is marked with a different color, correspondingly to the colors in fig. 3.7.

Eight states are defined for the imager, including an “Abnormal” state which is used when

the libgphoto2 function returns with error.

As shown in fig. 3.8, each state can jump to another state only when certain requirments

are met. For example, the initial status of the state machine is “non-initialized.” And then

once the camera is successfully found and set up, the state machine enters “initialized”

status. In this state, GhostFoto imager is in a stand-by status and ready to start capturing

images. Once the start capturing command is committed by the user, the imager will switch

to “enabling capture” status to extend the lens and then enter the periodic capturing loop.

When the camera is in the “ready to capture” status, the state machine is waiting on

a timer for the next scheduled shoot, then it jumps to the “capturing” status to take a

picture and “logging data” status to log the geo-referencing data. During the “ready to

capture” period, the state machine also checks if the user has sent any stop-capture signal.

Once found such signal, the state machine will switch to “disabling capture” status, in

which the camera lens is being retracted, then the “initialized” status to stay in stand-by,

waiting for orders from user to start capturing again. Three of the eight states, “enabling

capture,” “capturing,” and “disabling capture,” involve calling fucntions that interface with

the camera hardware and, therefore, might result in failure. If happens, the state machine

will enter the “abnormal” status, trying to resolve to problem based on the return value of

libgphoto2 functions, or hibernate if the problem is not fixable.

Different values are defined to represent the statuses of the state machine. The envi-

roment is able to read these values in real-time via the APIs provided by GhostEye. Thus

the status of the imager is able to be monitored in the rest of the UAV system.

3.3.5 Multithreading Architecture

Cameras are recognized by GhostEye during program initialization. GhostEye searches

for Canon PowerShot SX100 IS cameras through the USB 1.1 port. Once found, a thread

which controls the camera is created. Therefore, as shown in fig. 3.9, the cameras are
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Fig. 3.8: Statuses defined in GhostEye state machine.

controlled separately by individual threads under GhostEye.

The multithreading architecture of GhostEye can ensure the flexibility and robustness

of the system. With more than one cameras on board, the multithreading architecture

is able to synchronize the capture very accurately. Also in situations that one camera

malfunctions, the other cameras would not be affected.

Inter-thread communication is established to ensure the accuracy of synchronization

among the GhostEye threads. However, the cost of inter-thread communication is relatively

high, and therefore, not suitable to be called too frequently. Instead, GhostEye only uti-

lizes inter-thread communication in the beginning of all GhostEye threads. As illustrated

in fig. 3.10, two GhostEye threads are synchronized shortly after their entries. The syn-

chronization is time-stamped, and considered as a time baseline (or time 0) to schedule all

the captures.
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Fig. 3.9: Multithread architecture of GhostEye.

The time of each capture is scheduled based on the time baseline, so that the periodic

captures in differenct threads are synchronized without communicating the whole time. As

illustrated in fig. 3.10, thread one should be capturing with an interval of 4 seconds. But the

third capture takes 5 seconds to complete due to some hardware issue, which instantanously

breaks the synchronization between the two threads. Therefore, thread one schedules its

4th capture with a time interval of 3 seconds, so that the rest of the captures can still keep

up with the pace.

Fig. 3.10: Inter-thread communication between GhostEye threads.
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Thread two uses a feature called capture offset, which intentionally delays every shot by

two seconds after thread one. As a result, the two cameras are taking pictures alternertively

in a synchoronized pace. The reason of this configuration is due to the bandwidth limit

of the USB 1.1 port on the Gumstix Verdex Pro computer, which greatly constrains the

amount of data transmitted within a short period of time. By spreading the load more

evenly along the temporal space, real-time high resolution images can be downloaded from

the camera to the Gumstix without causing any delay in the image capturing.

3.3.6 Image Geo-Referencing

When images are being captured, geo-referencing data of the images is logged by Ghost-

Eye. The data contains the flight information from the on-board IMU and GPS. The IMU

provides pitch, yaw, and roll angles of the plane, and GPS module offers the geograph-

ical coordinates of the plane such as altitude, longitude, and latitude, etc. The sensor

data is sampled at the time instant when each images is taken, and saved accordingly to

each picture name in an xml file. With this information, every pixel on the image can be

orthorectified and its geographical coordinates can therefore be calculated.

GhostEye provides APIs to fetch the sensor data from the enviorment in real-time. A

data pool which stores the most recently updated sensor data is allocated in GhostEye, for

the control threads to access whenever an image is captured. The structure is illustrated

in fig. 3.11. However, because GhostEye program is running in a separate thread from the

Fig. 3.11: Inter-thread communication to store geo-referencing data.
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main enviroment thread, inter-thread communication is used to ensure the safety of the

data. But the detail of this operation is completely hidden from the enviroment.

3.3.7 Logging and Debugging

GhostEye is able to log the geo-referencing data in an xml file, which includes the IMU

and GPS sensor data, image file information, camera field of view, etc. gRAID software is

able to read the xml files and import the aerial images accordingly.

Besides the geo-referencing data, GhostEye also has a status log in order to keep the

record of its operations. The log saves the initialization results of cameras, configurations of

the camera, and information about each image capture, including capture time stamp, time

interval between shots, etc. When malfunctioning happens, the log is able to record the

source and type of the error, providing critical information to trace back the cause of the

failure. Moreover, a low level log based on libgphoto2 is established to record the operating

system level USB port communications and camera driver operations.

3.3.8 Implementation in Gumstix

In order that GhostEye software can obtain sensor data and talk with the other parts

of the UAV system, its implementation in Gumstix is based on Gx2 software, which is an

AggieCap program that is designed for MicroStrain Gx2 IMU. The two programs, Gx2 and

GhostEye, are compiled together in one program, namely GhostGx2, which runs under the

OpenEmbedded Linux system on Gumstix. Separate threads are running within GhostGx2,

including the main thread, which is the Gx2 program, and the GhostEye threads. Inter-

process communication is set up between Gx2 and GhostEye to share the flight sensor data

and GhostFoto imagers status. Due to the multithreading structure, GhostGx2 can run

robustly and free of interruption among the threads.

3.3.9 Configure GhostEye

A “GhostEye.ini” file is saved on the Gumstix home folder. It stores the camera

configurations and a few other settings for the GhostFoto imaging system. When the user
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needs to specify setting for the system, parameters inside this file needs to be changed before

the initialization of the on-board computer system. During initialization process this file is

automatically loaded by the GhostEye and the configurations are set to be constant inside

GhostEye.
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Chapter 4

Image Processing

4.1 River Tracking

4.1.1 Motivation

This river tracking project is part of a river mapping application, in which AggieAir

UAV is required to capture aerial multispectral images of a river segment.

Due to the high spatial and temporal resolution of the UAV-based imaging system,

current multispectral images of the river segment can be geo-referenced and mapped onto

geographic information systems, then monitored by end users in little time delay. This will

greatly benefit the applications such as river water resource management, river geographical

information collection, and aquatic ecosystem study, etc.

In this section, an approach for autonomously generated real-time dynamic way points

is developed. In most cases, the pre-planned way points that the AggieAir UAVs navigation

system uses are generated from known geographical information, usually satellite images.

However, many rivers alter their flow path seasonally due to drought or flood. But satellite

images of such rivers may not update frequently enough to report this change. This suggests

that if the UAV follows the way points generated from those outdated satellite images, the

UAV airborne images might not completely cover the changed river flow. Therefore, the

navigation system is required to have the ability to follow deviations in the river’s path.

In this case, the UAV’s flight path is controlled based on a real-time close-loop system in

which GhostFoto imaging platform can provide feedback of the river direction, as well as

multispectral imagery of the river.
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4.1.2 Water Area Recognition

In order to follow the river, an algorithm which can detect the water area is developed.

GhostFoto multispectral imager is able to detect objects within the near infrared (NIR)

spectrum. Due to the absorbtion nature of liquid water to NIR spectrum, the water areas

all appear to be remarkably dark in a NIR image. The multispectral aerial images shown

in fig. 4.1 illustrate this effect.

It is obvious in fig. 4.1(a) that the water area of the image is the darkest part and has

a strong contrast compared to the rest of the picture. Moreover, the shade of cloud has no

effect on the darkness of the water area. Although it darkens the land area, the contrast

against water area is still differentiable. On the other hand, in fig. 4.1(b), the water area

appears greenish, which is very close to the color of vegetation. Moreover, this color may be

different on other water areas, such as deep lake or shallow creek where water can appear

to be darker, bluish or possibly transparent. Furthermore, the cloud shade shown in this

picture illustrates apparent effect on the reservoir’s greenish color. As a conclusion, using

RGB pictures for water area detection is difficult because of its non-unique and inconsistent

appearance. In contrast, NIR images can be considered as a reliable source to distinguish

water areas.

4.1.3 River Tracking Mission

The imagery used in this research was collected during a flight test over Onerda Narrows

in Preston, Idaho. Launch site coordinate was at latitude 42.263800, longitude -111.752220.

The flight went from North to South along the riverflow for 9 miles. Fifty-six pairs of NIR

and RGB images taken in the first 1.2 miles of flight were picked out of the imagery.

In this case, NIR imager is used as the “path finder” due to its ability to highlight the

river area. Meanwhile, the RGB imager captures high resolution pictures of the river, which

is later stitched together in gRAID into a complete map of the river segment. However, it is

not necessary to collect high resolution NIR images, for they need to be processed in order

to detect the riverflow. Therefore, smaller image size, such as 640×480 resolution, actually

speeds up the process but suffers from little accuracy loss. The settings of both cameras
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(a) NIR

(b) RGB

Fig. 4.1: NIR and RGB images of a reservoir.

are listed in table 4.1. The 9-mile-long flight plan made in Paparazzi GCS is illustrated in

fig. 4.2.



42

Table 4.1: Multispectral imager settings for river tracking mission.
Imager Configuration Setting

RGB Image sizes 3264× 2448

Exposure Time 1/200 sec.

Aperture Value f/4.0

ISO Speed 100

Focal Length 6.0 mm

NIR Image sizes 640× 480

Exposure Time 1/100 sec.

Aperture Value f/4.0

ISO Speed 800

Focal Length 6.0 mm

4.1.4 River Identification

A pair of RGB and NIR images is illustrated in fig. 4.3. In order to differentiate the

river from the NIR image, a threshold value is determined. The grayscale value that is less

than the threshold is considered as the river. However, due to different exposure settings

and weather conditions, the threshold used to differentiate the river is not a constant value.

Fig. 4.2: Flight plan of river tracking mission.
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In order to take account for the variable threshold value in every iamge, a histogram-based

method is used to determine this threshold value. The histogram of an image illustrate the

distribution of colors shown in the image. Usually, objects with uniformed color appear to

be a single crest in the histogram.

As shown in fig. 4.4, the histogram plots the distribution of the grayscale values of

the NIR image illustrated in fig. 4.3(a). It is obvious that the colors are distributed near

two crests, one is near the value of 50, the other is near 140. The crest near 50 is caused

by the river area, where colors are extraordinarily darker than the surroundings. On the

other hand, the 140 crest is caused by the land area, which usually appears to be bright

since the NIR light is not absorbed but mostly reflected by vegetation. Therefore, the

threshold of image is located within the trough between the crests, with a value of about

80. An algorithm is made in Matlab to automatically detect value of the trough between

two crests. Based on this method, a comprehensive way to automatically determine the

threshold value is developed. The algorithm is tested on the 56 sets of NIR images, and

able to achieve 100% successful rate in identifying the water area.

Once the threshold is determined, a binary image can be created from the original

grayscale image, with a simple equation shown as the following:

BW = (N < gt), (4.1)

where BW stands for binary value of 0 or 1. N is the grayscale value of one pixel in the NIR

image. gt stands for the value of the threshold. (.) is defined as the conditional operator,

which equals to 1 if the condition inside it holds true, otherwise it is equal to 0.

Shown in fig. 4.5(a), the binary image of the river is created using eq. (4.1). White

pixels represents water area, and the black ones for undefined object. However, it is obvious

that noise exists in the water area. Also several small objects that are not within the river

path is highlighted to be white. In order to get rid of the noise and obtain a binary image

with only the river path highlighted, some morphological image analysis are needed.

The first step is to fill the holes in the binary image. Holes are defined as a set of
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(a) NIR

(b) RGB

Fig. 4.3: NIR and RGB images of river segment.

background pixels that cannot be reached by filling in the background from the edge of the

image. In our case, holes are the black pixels which are completely surrounded by white
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Fig. 4.4: Histogram of the NIR image.

pixels and not adjacent to the edge. The result of this process is shown in fig. 4.5(b).

The second step is to clear the small white objects that are not the river. The result

is illustrated in fig. 4.5(c). Obviously, at this point the binary image is complete. The only

object highlighted in the image is the river which flows across in the middle. However,

a bridge over the river cuts the river path in half. But because most of the river flow is

explicitly detected, the bridge does not have much impact on the final results.

The final step is to draw the river path and predict the following direction accordingly

to this information. A line which simplifies the river path is drawn in the middle of the

river, illustrated in fig. 4.5(d) in green. It is obvious that the bridge does locally affect

the generation of river path, but the overall river path remains unaffected and smooth.

Based on the calculated river path, a first order linear estimation is used to predict the flow

direction of the river.

4.1.5 Way Points Generation

Based on the predicted river path, a dynamic way point can be generated to guide the

UAV with the given GPS and IMU information, including roll, pitch, yaw angles, latitude,
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(a) Original binary image. (b) After fill the holes.

(c) After small objects are cleared. (d) Final river path.

Fig. 4.5: Binary images of the river.

longitude, altitude of the plane, and the altitude of the ground. Also information about the

imager is required, including the field of view angle in x and y axes, focal length, and the

resolution of the image in x and y axes.

First, the predicted way point is calculated using the drawn river path by assuming

that the flow direction of the river is a first order linear function. Therefore, with the given

parameters of the camera, the way points coordinated within the camera coordinates can

be calculate. Second, several rotational matrices are used to rotate the way point from

camera coordinates to the navigation frame under Earth-Centered, Earth-Fixed (ECEF)

coordinates, which is a Cartesian coordinate system. Third, add the Cartesian coordinates
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within navigation frame to the UAV coordinate and transform it back to WGS-84 spherical

coordinates. Hence, the GPS location of the dynamic way point is generated based on the

NIR image of the river.

4.1.6 Results

The presented river flow detection method is able to successfully predict and locate

the flow direction based on all 56 NIR images. The generated way points are imported to

Google Earth program, where a 3D plot of these way points is illustrated over the 1.2 miles

segment of Onerda river. Also, trajectory of the actual UAV flight is exported from the

UAV flight log and demonstrated in the same plot as a reference. Shown in fig. 4.6, the red

line indicated the dynamic way points, whose projections on the ground are also shown in

red color. The blue curve is the trajectory of the UAV. The top view of the same plot is

shown in fig. 4.7, from which we can observe that the generated dynamic way points match

up with the actual flight trajectory. Moreover, at some points where the UAV trajectory

departs from the river flow, the dynamic way points are however closer to the river, trying

to correct the UAV’s direction.

These simulation results show the effectiveness of presented algorithm. Nevertheless,

Fig. 4.6: Dynamic way points generated from the aerial NIR images.
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Fig. 4.7: Top view of the dynamic way points.

in order to implement the methodology to a UAV so that it is able to navigate the flight

autonoumously in real-time, several essential problems still remain technologically unsolved:

• On-board real-time processing,

• UAV and ground station communication,

• Fail-safe procedure.

4.2 Vegetation Recognition

4.2.1 Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that was

created to analyze remote sensing measurements, in order to evaluate whether the object
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being observed is live green vegetation or not.

The rationale of NDVI is based on the absorption nature of live green plants in the

photosynthetically active radiation (PAR) spectral region and scattering in the near infrared

spectral region. The NDVI is defined as the following:

NDV I =
NIR−RED

NIR + RED
, (4.2)

where RED and NIR stand for the spectral reflectance measurements acquired in red and

near infrared regions. As illustrated in fig. 4.8, the spectral reflectance is defined as the

ratios of the reflected over the incoming radiation in the spectral band, ranging between 0.0

to 1.0. Therefore the value of NDVI can vary between -1.0 to 1.0. Higher value indicates

higher likelihood that the observed object is live green plant.

Fig. 4.8: NDVI calculation.
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4.2.2 White Panel Calibration

In order to measure the spectral reflectance within red and near infrared regions, it is

necessary to obtain not only the aerial images which measure the reflected radiation, but

also the incoming radiation on the ground surface. Therefore, a high reflectance white panel

is used to measure the incoming radiation. Figure 4.9 shows how the devices are set up.

The camera on the white panel are configured with the same exposure settings as the UAV

imagers. Pictures of the white panel are taken simultaneously with the UAV, but in a lower

frame speed.

Therefore, eq. (4.2) can be written as the following:

NDV I =
NIRr −REDr

NIRr + REDr
=

NIRo

NIRi
− REDo

REDi
NIRo

NIRi
+

REDo

REDi

, (4.3)

where NIRr and REDr stand for the spectral reflectance measurements, NIRi and REDi

for the incoming radiation measured by the white panel, and NIRo and REDo for the

reflected radiation measured by on-board imagers. Equation (4.3) can also be simplified in

Fig. 4.9: White panel calibration.
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the following form:

NDV I =
NIRo ×REDi −REDo ×NIRi

NIRo ×REDi + REDo ×NIRi
. (4.4)

Notice that in eq. (4.4), if the values of the incoming radiation of near infrared and red

spectral region hold as a local constant, we can obtain the radio between the two, which is

also a constant. The radio is described as the following:

α =
NIRi

REDi
, (4.5)

where α is the radio between the incoming radiation of near infrared and red spectrum.

Insert eq. (4.5) to (4.4), we have:

NDV I =
NIRo − α×REDo

NIRo + α×REDo
. (4.6)

As a result, using eq. (4.6), we can obtain the NDVI value, without knowing the exact

incoming radiance in each pixel of the image. This method is very useful when large objects

create shade in the image (i.e., clouds). However, the assumption is made that this object

does not create or only absorb spectrum in red or near infrared band. The result of a NDVI

image is shown in fig. 4.10. Note that the grayscale color of the NDVI is mapped from its

original value range of [−1.0, 1.0] to integers between [0, 255].
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(a) RGB image. (b) NIR image.

(c) NDVI image.

Fig. 4.10: NDVI image results.
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Chapter 5

Conclusion

5.1 Contribution

A multispectral imager based on AggieAir miniature Unmanned Aerial Vehicle is de-

signed and proven to work. Using some post image processing technologies, the multispec-

tral aerial images are utilized in a broad spectrum of applications. Below is a list of the

contributions presented in this thesis:

• AggieAir Architecture

– AggieAir Architecture planning and realization,

– 72 inches airframe flight tests support,

– Gumstix on-board computer implementation;

• GhostFoto multispectral imager

– Canon PowerShot SX100 IS/SX110 IS,

– Near infrared camera modification,

– Periodic capture function,

– State machine,

– Multithread architecture,

– Interthread communication and synchronization,

– Image geo-referencing,

– GhostEye logging function,

– GhostEye user interface,
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– libgphoto2 implementation in OpenEmbedded Linux,

– GhostEye implementation under OpenEmbedded Linux;

• River tracking algorithm

– Water area detection with NIR image,

– Histogram-based river detection in NIR image,

– River flow estimation,

– Dynamic way point generation,

– River tracking simulation;

• NDVI image generation

– NDVI algorithm,

– White panel calibration,

– High resolution NDVI images.

5.2 Future Work

5.2.1 Thermal Infrared Camera

As addressed in sec. 1.1.2, thermal imaging is important for agricultural applications

[10, 11]. The Photon 320 uncooled TIR camera, shown in fig. 5.1, can be mounted on the

72 inches AggieAir UAV due to its small size and light weight.

However, a few problems still need to be addressed:

• Nonuniform temperature interpretation due to uncooled system,

• Difficulty in mounting the camera system and high fidelity video transmission,

• Difficulty in installing camera protection due to reflection of its own heat.
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Fig. 5.1: Photon 320 uncool TIR camera.

5.2.2 Collaborative Remote Sensing

Collaborative remote sensing is based on multiple UAVs which are mounted with remote

sensing platforms. It is used in scenarios in which the users need to apply a group of UAVs

simultaneously to optimize the observation of distributed targets. Hence, a UAV group

needs to maintain a certain formation. The applications include remote stereo vision, 3D

geologic map modeling, etc.

The current pre-programmed fight plan can only provide an open-loop method for the

multi-UAV formation control, therefore collaborative remote sensing is not yet feasible in

the current platform. In order to implement the collaborative sensing technology, we need

to enable certain cross-UAV interoperability with which communication among multiple

UAVs can be realized, so that a close-loop multi-UAV formation control system can be

established. In addition, each UAV needs to determine its own position autonomously,

which means certain level of on-board real-time processing is required in such complex

multiple UAV navigation. The decision making could be based on many aspects, such as

ground and aerial targets, enviromental parameters, etc.

The implementation of the decision making system may involve technologies such as

machine vision, sensor fusion, etc. Therefore, the on-board computer systems need to be

powerful enough to handle the real-time signal and image processing computational stress.
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5.2.3 Implementation of OpenJAUS

Joint Architecture for Unmanned Systems (JAUS) [28] is a comprehensive architecture

specified for Unmanned Systems (UMS) to provide interoperability among all supported

platforms. JAUS was originally developed for US military unmanned system, but it is an

ideal communication architecture for systems such as AggieAir. The critical data such as

aircraft attitudes or payload status can be transmitted among multiple UAVs and ground

control stations.

Coopmans and Han [22] addressed that to ensure interoperability among multiple

UAVs, the future AggieAir system needs to use OpenJAUS [29], which is a free and open-

source implementation of JAUS architecture. The implementation of OpenJAUS on Ag-

gieAir system is able to create a cross-UAV commanding and controlling link, which is

considered to be the first step to enable applications such as collaborative remote sensing

or multi-UAV formation control.

5.2.4 General-Purpose GPU-Based Image Processing

GPU, graphics processing unit, was initially developed to offload the 3D graphics ren-

dering from CPUs. It is designed with fully programmable vertex and pixel processing units

which are used for creating more realistic 3D graphics. Architecturally GPUs are highly

parallel streaming processors optimized for vector operations, coupled with tremendous

memory bandwidth.

The idea of general-purpose computation on GPUs (GPGPU) is to utilize this compu-

tational power for algorithms that require intense computation and are able to be processed

in parallel. Image processing, for example, is a major application that can be shifted from

common CPU computation to GPU and achieve enormous performance gain, normally with

hundreds of times speedup than the sequential CPU implementations.

Therefore, in order to enable on-board real-time image processing on the UAV hard-

ware, an embedded GPU is required. In addition, on the software achitecture, to imple-

ment the image processing algorithms requires embedded GPU libraries or programming
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models [30], with which programmers can easily access the GPU streaming processor and

implement their image processing algorithms.
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