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Abstract

Signal Processing on Digitized Ladar Waveforms for Enhanced Resolution on Surface

Edges

by

Kevin D. Neilsen, Master of Science

Utah State University, 2011

Major Professor: Dr. Scott E. Budge
Department: Electrical and Computer Engineering

Automatic target recognition (ATR) relies on images from various sensors including

3-D imaging ladar. The accuracy of recognizing a target is highly dependent on the number

of points on the target. The highest spatial frequencies of a target are located on edges.

Therefore, a higher sampling density is desirable at these locations. A ladar receiver captures

information on edges by detecting two surfaces when the beam lands partially on one surface

and partially on another if the distance between the surfaces is greater than the temporal

pulse width of the laser.

In recent years, the ability to digitize the intensity of the light seen at the ladar receiver

has led to digitized ladar waveforms that can be post-processed. Post-processing the data

allows signal processing techniques to be implemented on stored waveforms. The digitized

waveform provides more information than simply a range from the sensor to the target and

the intensity of received light. Complex surfaces change the shape of the return.

This thesis exploits this information to enhance the resolution on the edges of targets

in the 3-D image or point cloud. First, increased range resolution is obtained by means of

deconvolution. This allows two surfaces to be detected even if the distance between them
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is less than the width of the transmitted pulse. Second, the locations of multiple returns

within the ladar beam footprint are computed.

Using deconvolution on the received waveform, an increase from 30 cm to 14 cm in

range resolution is reported. Error on these measurements has a 2 cm standard deviation.

A method for estimating the width of a 19 cm slot was reported to have a standard deviation

of 3.44 cm. A method for angle estimation from a single waveform was developed. This

method showed a 1.4◦ standard deviation on a 75◦ surface. Processed point clouds show

sharper edges than the originals.

The processing method presented in this thesis enhances the resolution on the edges of

targets where it is needed. As a result, the high spatial frequency content of edges is better

represented. While ATR applications may benefit from this thesis, other applications such

as 3-D object modeling may benefit from better representation of edges as well.

(103 pages)
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Chapter 1

Introduction

Automatic target recognition (ATR) is a machine vision task that uses sensors to collect

data and attempts to identify targets of interest. To increase the ability to accurately

detect and identify targets, multiple imaging sensors may be used. One of these sensors

is 3-D imaging ladar. l Due to its short optical wavelength, ladar is capable of producing

high resolution images of the target compared to radar. This is advantageous because the

number of shots on the target improves the fidelity of ATR. Although ladar can provide

high spatial resolution images, there is a need for improvement with regards to the range

resolution.

Range resolution in a ladar system is the ability to detect two surfaces that lie within

the field of view (FOV) of a single detector. This is limited by the temporal pulse width

of the laser. For example, if the laser beam hits two surfaces that are separated by more

than the temporal pulse width, the receiver can detect multiple returns in the waveform.

However, if two surfaces are closer than the pulse width, the receiver detects only one return.

Ladar receivers have been built that digitize the intensity of returning light. A digital

waveform can be used to improve the range resolution of the ladar. Signal processing

techniques can be applied to the digitized waveform to obtain information about the shape

of the targeted surface within the detector FOV. Knowing the shape of the surface allows

for interpolating shots on the target for increased resolution in both range and spatial

dimensions.

This thesis explores signal processing techniques that can be applied to improve the

range resolution associated with a given ladar waveform. Much research has been conducted

for the application of terrain mapping from airborne sensors; however, the literature does

not contain much research on applying signal processing to digitized ladar waveforms to
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improve the resolution of complex, man-made and natural targets. This thesis focuses on

representing surfaces from these types of targets.

1.1 Prior Work

1.1.1 Surface Estimation

A common approach to estimate the shape of the surface is by means of modeling

the waveform as the sum of individual pulses [1]. Several authors use a Gaussian pulse

profile [1–5]. The assumption of a Gaussian pulse may not always be accurate. Another

pulse profile used by Chauve et al. is a generalized Gaussian [6]. Once the pulse profile that

best fits the data has been determined by the user, the signal is decomposed into individual

returns. The most common methods for decompostion are the expectation maximization

(EM) algorithm and the Levenburg-Marquardt (LM) algorithm [7].

After decomposing the received waveform into individual returns, features are extracted

from the parameters of the fitted profiles. The simplest interpretation of a feature is that

the range to the surface is determined by the mean of the pulse. Another interpretation

used by Neuenschwander et al. in the application of terrain mapping is that the width of the

first return can be interpreted as the width of the tree canopy [5]. Other application-specific

interpretations of features exist and are usually left to the end user of the data to interpret.

A drawback of the above method is that the number of pulses contained in the estimated

waveform must be known a priori. Jung and Crawford use a greedy EM algorithm proposed

by Vlassis and Likas to overcome this drawback [2, 8]. This approach begins by assuming

that the return is made up of one pulse. It then increases the number of assumed pulses in

the decomposed waveform until the residual in the estimate begins to increase. Thus, the

number of pulses assumed in the waveform is the number that leads to the smallest error.

Hernandez et al. use the reversible jump Markov chain Monte Carlo (RJMCMC) tech-

nique for pulse decomposition [9]. This work does not use the generalized Gaussian pulse,

but rather uses a piecewise defined function that models the pulse in their system. A more
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complex approach to surface classification that uses a marked point process and the RJM-

CMC algorithm is given by Mallet et al. [10]. This work argues that the ladar return is

not accurately modeled by the generalized Gaussian pulse shape or any other single shape.

Therefore, the waveform is modeled with a library of functions from different surfaces. The

closest fit indicates the surface that was most likely hit.

A different method for surface estimation is deconvolution. The received waveform

can be modeled as the response of the system convolved with the surface response of the

surface. Deconvolution is an operation that obtains the surface response given the received

waveform and the system response.

For deconvolution, Jutzi and Stilla applied the Wiener filter to ladar pulses [11]. The

Wiener filter is an optimal linear filter used to minimize the mean squared error between

the expected surface response and the estimated surface response [12]. Using the Wiener

filter, Jutzi and Stilla showed that it is possible to detect two surfaces that differ in range

by 15 cm with a 1 GHz bandwidth receiver that samples a 5 ns pulse at 20 GHz [11]. This

experiment used a specular surface at a range of 100 m. The conclusion of this work is that

under ideal conditions, i.e. high sample rate and high signal-to-noise ratio (SNR), obtaining

the surface response significantly improves the ability to detect two offset surfaces.

Harsdorf and Reuter compared the Wiener filter with two other methods on a simulated

ladar waveform [13]. One of these methods is the Richardson-Lucy (RL) algorithm. This

method is an iterative technique and has the constraint that the surface response must be

positive [14]. This constraint is applicable to the ladar waveform because light returning

to the receiver cannot be negative. The other method compared is the non-negative least

squares (NNLS) algorithm. This method computes the least squares solution for the surface

response with the constraint that the surface response is positive.

Harsdorf and Reuter’s work looked at two possible surface responses–a delta function

and a square pulse. They concluded that the NNLS algorithm works very well at recovering

the delta function surface response, but not at recovering the square pulse; however, the RL

algorithm can recover both surface response shapes well with 100 iterations. The Wiener
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filter method did not perform as well as the other two methods.

1.1.2 Spatial Relationship

Each ladar shot is independent one from another; however, spatial correlation exists

and can be used to increase the quality of the point cloud. One way that this correlation

has been used is to increase the SNR by means of averaging waveforms that are spatially

proximate. In terrain mapping, this has been used by Magruder and Neuenschwander

to detect faint returns along the ground [15]. In an urban environment, the same was

performed by Stilla et al. on roof tops [16]. This method is a trade off between SNR and

spatial resolution. Nonetheless, in areas where shots are highly correlated, it is an effective

means not only of extracting more information out of the signal for detection, but also of

obtaining a better range estimate of the surface due to the increase in SNR.

The matched filter is commonly used in pulse detection. It correlates the received

waveform with the transmitted waveform to increase the SNR. An obstacle to using the

matched filter with ladar waveforms is that an estimate of the surface response must be

known. To overcome this obstacle, Kirchhof et al. use surrounding points in the point cloud

to estimate the surface response [17]. This is done in an iterative procedure that begins

by estimating the surface response to be a delta function. After the initial point cloud is

created, the points are used to update the surface response. At each iteration, the new

surface response is used. This procedure is continued until the rate of improvement slows.

In urban mapping, Jutzi et al. use shots along a roof top to obtain better spatial

resolution along the edge of the roof [18]. When the beam footprint lands partially on the

roof and partially on the ground, the energy in each return can be computed. Assuming

that the ground and roof reflectivity is the same, the distance between the edge of the roof

and the middle of the footprint can be computed by integration over the footprint. They

report an increase of sub-pixel resolution by a factor of 10.
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1.2 Problem Statement

The quality of the 3-D ladar image, also known as a point cloud, is influenced by the

spatial and range resolutions. This is especially important on edges of targets where the

surface is complex. Without signal processing, the complex surface may be blurred causing

edge details to be lost.

The problem to be resolved by this thesis is how to apply signal processing methods to

the digitized ladar waveform and extract information about the shape of the surface seen

by a single detector. However, the orientation of the surface cannot be determined using

the waveform from a single detector. Therefore, a second problem to be resolved is how

to use neighboring points in the point cloud to determine the orientation of the surface.

Solving these problems allows for improved resolution in the point cloud by interpolating

the estimated surface.

1.3 Overview

The method used to solve the problem is done in two parts. First, deconvolution is

used on the waveform to increase the range resolution. Then, neighboring points in the

point cloud are used to find the orientation of the surface.

Background information on ladar and the instruments used for data collection are

given in Chapter 2. Chapter 3 describes the signal processing required to obtain the surface

response from the output of the Eye-safe Ladar Testebed (ELT) developed by the Navy.

This is a state-of-the-art waveform digitizing ladar. Chapter 4 derives and tests the surface

response for two types of surfaces of interest. These are two discontinuous surfaces within

the footprint that are separated by less than the pulse width in range and have angled

surfaces. Chapter 5 describes the method used to incorporate information from proximate

points. This solves the problem of not knowing the orientation of the surface from the

surface response. It also obtains a better estimate of the spatial location of each return.

Conclusions are given in Chapter 6.
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1.4 Thesis Contribution

A list of contributions from this thesis are given below.

• A signal processing model is presented for a state-of-the-art, waveform digitizing ladar.

• Several existing issues for ladar waveform processing are addressed including the

matched filter, interpolation, and deconvolution.

• The three deconvolution methods studied by Harsdorf and Reuter on simulated data

[13], were applied for real data from a ladar that digitizes the waveform at a practical

sample rate.

• The surface response is derived for two important surface types.

• A new method for treating the surface response of angled surfaces is given.

• A new method is presented that utilizes information from neighboring points to de-

termine the orientation of the estimated surface.

• The presented methods result in a technique to obtain enhanced resolution in a ladar

point cloud.
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Chapter 2

Background

2.1 Three-dimensional Imaging Ladar (Laser Detection and Ranging)

Three-dimensional imaging ladar is a technology commonly used for terrain mapping,

object recognition, and autonomous navigation. The term lidar (light detection and rang-

ing) refers to the same basic technology, and is used almost interchangeably with ladar

in the literature. Images obtained by ladar sensors contain information about the range

from the sensor to the target and are typically called point clouds. Figure 2.1 shows a

point cloud taken with the ladar sensor used in this thesis. Figure 2.1(a) shows a car in

front of two large trees and a building at the back. With red being the closest and blue

being the farthest, colors show ranges from the sensor to the target. Although both trees

in Fig. 2.1(a) are marked with green, the tree on the left is closest. To show more detail,

colors cycle five times for this image. Figure 2.1(b) demonstrates the capability of ladar

point clouds to be rotated to the side to show the 3-D nature of the data. This shows the

front part of the scene which includes the car and the tree on the left of Fig. 2.1(a). Notice

that only the front side of the car can be displayed whereas the tree shows full 3-D detail.

With only one scan, there is no way of knowing what is behind a solid target, thus creating

a shadow. Some applications require that the shadow be removed by fusing multiple scans

from different views. Alternatively, ladar can be used to create a range image. A range

image contains the same information as a point cloud, but differs in the way it is displayed.

Rather than displaying a 3-D space filled with points, it appears as a 2-D image where each

pixel contains the range to the target.

Ladar is an active form of sensing that requires transmission of a laser pulse. For this

reason, it is not currently possible to have large arrays comparable to digital cameras and
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(a) Front view of the entire scene.

(b) Side view of the car and the first tree in the scene.

Fig. 2.1: Point cloud of a car with trees in the background.
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preserve the ability to light each element with sufficient optical power. Common sensor

arrays vary from as little as one element to at most tens of thousands of elements. To

compensate for small arrays, a mechanical scanner is often used to change the array’s line

of sight. Scanning is frequently accomplished using low mass mirrors. Knowing the scanner’s

position and the range to the target for thousands of points allows the point cloud to be

created.

The range from the sensor to the target can be found using different types of sensors;

however, this thesis focuses on pulse time of flight ladar. The pulse time of flight principle

is based on firing a short laser pulse (on the order of a few nanoseconds) toward a target

and recording the time of flight. Knowing the speed of light and the time of travel, the

range from the sensor to the target is found by

R =
c

2
t, (2.1)

where c is the speed of light and t is the round trip time for the transmitted pulse to return

to the sensor.

Different techniques exist for discriminating the start and stop time of the pulse. The

simplest of these techniques uses a threshold. When the intensity of the light seen at the

receiver exceeds the threshold, a detection is declared. A problem with this method is that

it is susceptible to walk error. Walk error is defined as error in the range measurement due

to a change in pulse amplitude [19]. Pulse amplitude is highly dependent on the reflectivity

and distance of the target. If a target contains dark and bright areas, the amplitude of the

returns over the dark area would be lower than the amplitude of the returns over the bright

area due to the reflectivity. Example pulses detected using the leading edge discriminator

are given in Fig. 2.2. Although, the returns have the same mean, the larger return which

came from the bright area, is estimated to be closer than the smaller return.

A more accurate discrimination method uses a high-pass filter as a differentiator [19].

The detection is declared when two conditions are met–the differentiated signal crosses zero

and the pulse is above a threshold. This method is commonly known as the crossover
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Fig. 2.2: Example of walk error due to pulse amplitude.

method. Because this method uses a differentiator, the timing point does not depend on

the amplitude of the pulse.

Another approach to discriminate a pulse is the constant fraction method [19]. The

constant fraction method is implemented in hardware by creating a scaled, delayed copy of

the received signal. The difference between the original and the delayed signal is computed.

When the difference is equal to zero, a threshold is checked. If the signal is above the

threshold, a detection is declared at the crossover point. Like the derivative crossover

method, the timing point does not depend on the amplitude of the pulse.

In the past, ladar systems have been subject to analog methods of detection including

the methods just discussed. Since 2004, however, commercial systems have been built that

digitize and store the intensity of the light returning to the sensor [7]. This allows digital

signal processing techniques to be performed on the waveform to increase the quality of the

point cloud. Processing the waveform can be done in real-time, or can be post-processed for

implementation of more complex algorithms. Figure 2.3 shows a digitized waveform from

the ladar used in this thesis.
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Fig. 2.3: Digitized ladar waveform.

An advantage of waveform processing comes from the fact that the laser beam diverges

as it propagates, creating a beam footprint. Due to the divergence, the beam footprint may

fall onto more than one target. This causes multiple returns in the ladar waveform. Analog

systems typically report the first or last return. However, waveform digitizing systems store

the information to find each return in the waveform. Evidence of this can be seen in the

trees in Fig. 2.1(b) where returns were detected on multiple leaves from each ladar shot.

Not only can waveform digitizing ladar systems detect multiple returns better than analog

systems, but also can provide more information about the surface that was hit. For example,

when the laser hits a surface at an angle, the light does not return to the receiver all at

the same time. Instead of showing a delayed copy of the transmitted pulse, the digitized

waveform shows a blurred version of that pulse [20]. A pulse that hit a surface at 75◦ is

shown in Fig. 2.4 and can be compared to the pulse in Fig. 2.3 which was obtained from

hitting a surface straight on.
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Fig. 2.4: Digitized ladar waveform from a surface angled at 75◦.

2.2 VISSTA ELT

The Vehicle Integrated Sensor Suite for Targeting Applications Eye-safe Ladar Test-

bed(VISSTA ELT), shown in Fig. 2.5, is the ladar system that was used for collecting

data for this thesis [21]. The VISSTA van was developed as an experimental ladar to

provide a mobile sensor platform designed for research. A target area of research is in the

understanding and exploitation of digitized ladar waveforms. The van contains the ELT

and an IR camera housed in a movable turret. Inside the cabin, multiple computers run

specific components of the system. These components include the fast scanning mirror,

pointing controller, visible camera, data recorder, and host computer.

The VISSTA ELT contains an eye-safe wavelength laser (1.5 µm) and a visible wave-

length camera co-boresighted to observe the same field of view. This allows the operator to

accurately point the ladar as well as capture visible images and ladar point clouds simulta-

neously. The ladar and visible image can be used to create 3-D texel images which contain

range data fused with textured data from a visible camera [22].
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(a) The ELT aperture can be seen at the right side in the turret behind the cab.

(b) Displays used for system control and display of sensor data.

Fig. 2.5: The VISSTA van.
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The receiver in the ELT includes a single sensor avalanche photo-diode (APD). This

requires a complex scanner capable of scanning in both the vertical and horizontal directions

in order to form point clouds. The scanner utilizes a fast scanning mirror to produce various

scanning patterns. The most common pattern is a square wave in the horizontal (azimuth)

direction while constantly zig-zagging in the vertical (elevation) direction. The scanner can

also reverse the vertical and horizontal scan roles, be fixed with no motion, or create a

mosaic of scans. Shots are generally collected at 20 kHz, but can be collected at up to 100

kHz. Because the van is experimental, there is still work needed to improve the scanning

patterns. Point clouds created by the ELT contain high levels of noise in the scanning

measurement relative to the noise in the range measurement.

The ELT is able to produce a point cloud in real-time as well as digitize and store ladar

waveform data for off-line processing. It samples data at 2 GHz, or equivalently, every .5 ns

providing digital waveforms. According to (2.1), this corresponds to 7.5 cm in range. Due to

the sampling, the real-time system quantizes the range into 7.5 cm bins. The ELT is capable

of producing point clouds with range error on the order of millimeters; thus, binning at 7.5

cm compromises the quality of the point cloud without post processing interpolation [21].

At this sample rate, the ELT can sustain data rates high enough to capture up to 500 m of

range data per shot at the 20 kHz shot rate.

The waveform data are quantized to signed 8-bit integers after being amplified with

linear amplifiers. The ELT has an adjustable gain setting that is set by the user. If the

target of interest is either far from the sensor or has a low reflectivity, the gain can be

easily increased so that the signal spans the range of the digitizer. Adjusting the gain

of the receiver to the amplitude of the pulse takes advantage of the dynamic range and

increases the signal-to-quantization noise ratio (SQNR). This is effective when surfaces of

similar reflectivities are targeted, but produces a lower SQNR when the intensities of the

returns vary significantly. The quantization noise, σ2q , is 1
12 counts, and the maximum signal

amplitude, Amax, is 127 counts for the ELT pulse [23]. If the SQNR is defined as
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SQNR =
A

σq
, (2.2)

then by plugging in the numbers, SQNR = 3.5A and SQNRmax = 440 counts. Noise from

the electronics is determined by the gain settings in the receiver and typically dominates

the quantization noise.

The ELT has a pulse width of 1.5 ns defined by the full width at half maximum

(FWHM) and an example pulse is shown in Fig. 2.6. This pulse was measured by the ELT

laser manufacturer. The bandwidth of the receiver that processes the pulse is estimated

to be 500 MHz. This bandwidth is given as the width of the spectrum for which the SNR

is greater than one. The power spectrum of a pulse after passing through the receiver

electronics is shown in Fig. 2.7.

2.3 LadarSIM

LadarSIM is another tool utilized for the experiments in this thesis. LadarSIM is a

Matlab-based ladar simulation that has been shown to accurately model the performance

of the VISSTA ELT [21]. Aimed at the engineering design process, LadarSIM was designed

to provide an interface that allows the user to change parameters to the setup and quickly

view the outcome. Simulation fidelity options are included in the simulation so that the

user can decide the trade-off between simulation time and accuracy. To maintain a user

friendly interface, the Matlab GUI shown in Fig. 2.8 is used to configure the simulation.

The entire data acquisition process is modeled from the hardware setup to the move-

ment of targets in the scene. The user first describes the ladar to be simulated. The main

hardware components are the focal plane array (FPA), scanner, transmitter, optics, and

receiver electronics. Then the user places the ladar into an environment and describes the

path and sensor pointing criteria of the sensor. The environment may contain multiple

targets that may contain motion during data aquisition.

The simulation occurs in two stages. The first stage focuses on the geometry of the

setup. The sensor and targets are able to move and scanner error enters in, but radiometric
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Fig. 2.6: ELT transmitted pulse.

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−80

−70

−60

−50

−40

−30

−20

−10

0

10
|R(f)|2

Frequency (MHz)

A
m

pl
itu

de
 (

dB
)

 

 

Fig. 2.7: Spectrum of a received waveform from the ELT.
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errors are not computed at this point in the simulation. This provides the user with the true

range to the targets. Once a geometry scan is completed, the user begins a radiometry scan.

The radiometry scan takes the geometry scan output and factors in the radiometric errors.

Radiometric errors come from noise sources such as solar background noise, backscatter

noise, shot noise, and noise in the electronics.

LadarSIM effectively models complex surfaces when the user chooses to perform wave-

form processing [24]. The ladar footprint is sampled by a specified number of beamlets.

This allows for sub-detector modeling of the surface. The true range depends on the surface

and is found at the location of each beamlet. Next, a waveform is created for each beamlet

with the coresponding range. The optical waveform seen at the detector is then modeled as

the superposition of the waveforms of the beamlets. Finally, the optical waveform is filtered

by the electronics and the signal is processed for range discrimination.

After a noiseless signal has been processed, errors are added to the simulation. These

errors are computed statistically from the noise in the system. Three sources of error due to

signal discrimination are dropouts, false alarms, and range error [25]. Dropouts are points

that should have been on a surface but are not detected. False alarms are points that did not

come from a surface, but were detected as such due to noise. Range error is measurement

error on a surface. It is defined as the standard deviation of the range measurements. After

errors are added, the point cloud is created.
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Fig. 2.8: Main user interface of LadarSIM.
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Chapter 3

Signal Processing to Obtain the Surface Response

3.1 Data Processing Model

The data acquisition model used for signal processing the ladar waveform is given in

Fig. 3.1.

The input to the system is the Dirac delta function δ(t), representing an ideal trans-

mitted pulse shape. The input is then passed through the laser pulse transfer function P (s)

to create a transmitted laser pulse waveform. An estimate of P (s) for the ELT is shown in

Fig. 2.6. The pulse then travels into the environment where it interacts with the target’s

surface. This is the convolution of the transmitted pulse waveform with the target’s surface

response, S(s). The surface response will be derived in Chapter 4 for the surfaces studied

in this thesis. Next, backscatter, solar background noise, dark current noise, and noise in

the receiver electronics are lumped together as additive white noise nt(t). Amplitude de-

pendent (multiplicative) shot noise from the avalanche photo diode (APD) is added at the

input of the electronics. In the design of the VISSTA ELT, separate electronics are used

to detect the transmitted pulse as it exits the sensor and the return pulse from the target;

however, they have the same design. Different electronics transfer functions, H(s), are used

δ(t)

nt(t)

A/D

ns(t)

r(n)

nq(n)

P (s) S(s) H(s)

√
(·)

Fig. 3.1: Data acquisition model for the received waveform.
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in modeling the digitized exiting and returning pulses due to slight mismatches between the

received and transmitted pulse electronics. The transmitted pulse electronics have a slightly

lower bandwidth than the received pulse electronics. Finally, the signal is quantized where

quantization noise nq(n) in the A/D converter is added to obtain the sampled waveform

r(n).

Due to the difficulty in obtaining an estimate of the signal-dependent shot noise, the

model was simplified by assuming it can be modeled as additive white noise with variance

proportional to the average value of the pulse waveform. This leads to the frequency-domain

sampled signal

R(f) = P (f)S(f)H(f) +N(f)H(f) +Nq(f), (3.1)

where

N(f) = Nt(f) +

√
ps(t)Ns(f), (3.2)

ps(t) = p(t) ∗ s(t), (3.3)

ps(t) is the time average of ps(t) during the duration of the pulse, f is the normalized

discrete frequency, Nt(f) and Ns(f) are white noise, and p(t) and s(t) are the inverse

Laplace transforms of P (s) and S(s), respectively.

The goal of processing the data described in this chapter is to recover the discrete-time

surface response s(n) from the received waveform r(n) and to use it for signal discrimination.

For the ELT waveform, this is achieved by filtering, interpolation, deconvolution, and range

discrimination as shown in Fig. 3.2.

3.2 Low-Pass (Matched) Filtering

To reduce unnecessary computation, it is desirable to be able to detect potential return

r(n) range

Filter Interpolation Deconvolution Discrimination

L(z) 1
P (z)H(z)L(z)I(z)

N I(z)

Fig. 3.2: Processing method used in the VISSTA ELT.
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pulses and deconvolve only those parts of the signal. The ability to detect pulses is improved

if the signal is filtered by a matched filter L(z) that reduces false alarms and improves the

SNR. As an approximation to a matched filter, a low-pass filter with a band edge located at

the highest frequency in the transmitted pulse spectrum can be used. A true matched filter

is not used because a matched filter assumes that the shape of the return is known. Due to

the surface response, the received signal takes on many different possible forms which are

not known until after the signal is received. It is significantly easier to detect return pulses

in the resulting low passed signal. An example of the improvement is illustrated in Fig. 3.3.

The data used to create this waveform were collected at a significant range to show high

noise levels. Contrasting the figures shows a significant decrease in the noise floor of the

signal. In this case, if a threshold level is set at ten counts, the number of false returns in

this waveform would be reduced from hundreds to under five.

Since the pulse spectrum only extends to half of the fold over frequency, a significant

amount of the white noise signal N(f) is in the stop band of the matched filter and is

therefore reduced by the filter. Figure 3.4 shows the magnitude response of L(f) and the

power spectrum of R(f).

3.3 Interpolation

The ELT digitizes data at 2 GHz which corresponds to 7.5 cm/sample in range. Relative

to the desired measurement accuracy, 7.5 cm/sample is very coarse and requires interpola-

tion to a higher sample rate. The two stages in the processing that require interpolation are

deconvolution and signal discrimination. Deconvolution or deblurring amplifies high fre-

quency content in the waveform which is limited to Nyquist. Thus, increasing the sample

rate by means of interpolation, allows a better representation of a delta function. If it were

not for interpolation, range estimates would be binned at 7.5 cm. Sub-centimeter range

error is only obtainable if the signal is interpolated. An example of a pulse interpolated

by a factor of N = 4 (which is the interpolation factor used for the experiments in this

thesis) is given in Fig. 3.5. This interpolation factor is adequate for processing through

the deconvolution stage. However, for detection, it still falls short of sub-centimeter range
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(a) The waveform before the matched filter.
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(b) The waveform after the matched filter.

Fig. 3.3: Waveform of a shot at a sufficient range to show high noise levels.
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Fig. 3.4: Plot of the power spectrum of the received signal and the low-pass filter.

error; thus, linear interpolation is applied in the discrimination stage to reduce range error

at very little computational cost.

Figure 3.6 shows the process of interpolation. Interpolation by a factor of N is per-

formed by first upsampling the signal, i.e. inserting N-1 zeros between every sample in the

signal. It can be shown that upsampling a signal causes the signal’s spectrum to be com-

pacted by a factor of N such that a frequency f0 maps to f0
N as shown in Fig. 3.6(d) [23]. An

artifact of the frequency compaction is that spectral copies of the original pulse are centered

at f = 1
N , 2

N , 3
N ... in normalized frequency. Next, the signal of interest is obtained by filtering

the signal with a linear phase low-pass filter, I(z), that has a bandwidth of 1
2N (normalized

frequency). This eliminates the spectral copies and leaves only the interpolated signal with

the power spectrum shown in Fig. 3.6(f).

It may be argued that the low-pass filter L(z) is unnecessary due to the low-pass

filter I(z) used for interpolation. However, it is advantageous to use both filters to reduce

computation time. Applying a filter L(z) of order k to the uninterpolated signal is equivalent



24

1600 1605 1610 1615 1620 1625 1630 1635 1640

0

10

20

30

40

50

A
m

pl
itu

de
 (

C
ou

nt
s)

Sample Number

r(n) with no interpolation

(a) No interpolation.

6420 6440 6460 6480 6500 6520 6540 6560

0

10

20

30

40

50

A
m

pl
itu

de
 (

C
ou

nt
s)

Sample Number

r(n) interpolated with N = 4

(b) Interpolation by a factor of 4.

Fig. 3.5: Waveform of interpolated pulse.
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Fig. 3.6: The process of interpolation.
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to applying a filter L(z) of order kN to the interpolated signal. This is because interpolation

causes the frequencies in the spectrum R(f) to be compacted. Therefore, the filter is

required to have a steeper bandedge. By filtering the noise on an uninterpolated signal,

the filter I(z) can have a more gradual transition band without passing high levels of noise

through the system. Hence, the more gradual transition band allows the filter I(z) to be a

lower ordered filter [26].

3.4 Deconvolution

As the laser pulse travels to and from the scene, the return waveform is modified as

it potentially hits multiple surfaces at various depths and angles within the beam foot-

print [11]. Deconvolution is a tool used to estimate the surface response of the target.

Because deconvolution is a deblurring operation, the surface response is used to obtain

higher range resolution on targets such as those with multiple surfaces within the beam

footprint. Applying the low-pass filters L(z) and I(z) to (3.1) leads to

R(z)L(z)I(z) = (P (z)S(z)H(z) +N(z)H(z) +Nq(z))L(z)I(z), (3.4)

which can be rearranged to obtain the target surface response,

S(z) =
R̃(z)

H̃(z)
+ Ñ(z), (3.5)

where

R̃(z) = R(z)L(z)I(z), (3.6)

H̃(z) = P (z)H(z)L(z)I(z), (3.7)

and

Ñ(z) =
N(z)

P (z)
+

Nq(z)

P (z)H(z)
. (3.8)
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Deconvolution is possible only if R̃(z) and H̃(z) are known and effects from Ñ(z) can

be minimized. r̃(n) is the measured waveform after filtering and interpolation. To reduce

computation, only segments of r̃(n) containing returns are processed. The middle of a

segment is taken to be the range of the return and is denoted by rm. This is found using

a first derivative crossover discriminator on r(n) [19, 25]. The beginning of the segment is

rm − 30N and the end of the segment is rm + 30N where N is the sampling factor. If two

segments overlap, they are merged into one segment that starts at the beginning of the first

segment and stops at the end of the second segment. Each segment is then windowed with

a Tukey window before being processed individually.

An estimate of H̃(z) (the blur function) is determined using data obtained by holding

the ELT scanner stationary while aimed at a flat target surface oriented normal to the ELT.

This scenario allows the transmitted pulse to return to the sensor unaltered by the surface.

This indicates that the surface response is a delta function for a flat surface perpendicular

to the sensor. Several pulses are recorded, and each waveform is registered with respect to

range. The waveforms are then averaged which substantially reduces noise and provides an

accurate estimate of H̃(z) as shown in Fig. 3.7. Once H̃(z) is obtained, it may be used for

any ELT experiment that shares the same receiver electronics characteristics. Alternatively,

the transmitted pulse for each shot could have been used to estimate the blur function [11],

but noise on each transmitted pulse waveform, combined with differences in the electronics

used to capture the transmitted and received pulse, produce a less accurate estimate of the

blur in the received waveforms than the averaging method used.

Once R̃(z) and H̃(z) are obtained, the surface response is computed using one of many

deconvolution algorithms. Although many deconvolution techniques exist, three were tested

with the ELT waveform. These are the Wiener filter (3.9), RL deconvolution (3.11), and

NNLS minimization (3.12).

The Wiener filter is given by

W (f) =
H(f)∗Ps(f)

|H(f)|2Ps(f) + PN (f)
, (3.9)
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Fig. 3.7: Plot of the impulse response h̃(t).

where Ps(f) is the power spectral density of s(n), and PN (f) is the power spectral density

of the noise in the waveform. The surface response is then given by

Ŝ(f) = W (f)R(f), (3.10)

where Ŝ(f) is the fourier transform of the surface response estimate ŝ(n).

The RL algorithm is an iterative technique where ŝ(n) is computed by

ŝ(n)i+1 = ŝ(n)i
∑

m

r(m)h(m− n)∑
n ŝ(n)ih(m− n)

, (3.11)

where ŝ(n)i is ŝ(n) on the ith iteration [14].

The NNLS algorithm minimizes

‖Hs− r‖22 s.t. s ≥ 0, (3.12)

where r is a column vector created with the elements of r(n), s is a column vector created

with the elements of s(n), and H is the convolution matrix respresentation of h(n) [27]. H
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has a Toeplitz structure given by

H =




h(0) 0 · · · 0

h(1) h(0) · · · 0

...
...

...

h(N) h(N − 1) · · · h(0)

...
...

...

0 0 · · · h(N)




. (3.13)

To comment on the computational cost, deconvolution is the process that is most time

consuming for creating the point cloud. A high density point cloud of over 200,000 shots that

required 358 s for processing without deconvolution took 756 s with the Wiener filter, 493 s

with the NNLS method, and 644 s with the RL method. The majority of the computation

in the Wiener filter case comes from gathering the noise statistics on every pulse. Much of

the computational cost could be eliminated by assuming the same statistics on every pulse.

Solving for the locations of returns in the footprint was not benchmarked because it was

observed to never take more than 5 s to process the entire point cloud. The machine used

to process the data has a 2.66 GHz Intel Core 2 Duo processor with 8 Gb of RAM. The

code was written in Matlab utilizing C-mex functions for the more demanding processes.

3.5 Range Discrimination

Several range discrimination methods were tested on the surface response. These in-

clude the crossover, constant fraction, and Gaussian decomposition methods. Based on

experimentation, the discrimination method chosen for the work in this thesis is the first

derivative crossover [19]. This method provided the most accurate results for our exper-

iments. Results of this testing go beyond the scope and purpose of this thesis and are

therefore not presented.

To provide more precision in the range estimate than is available with the current sam-

ple rate, linear interpolation is used at this stage. A similarity exists between the approach

used in section 3.3 and simple linear interpolation. Linear interpolation is equivalent to
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using L(f) = sinc2(f). The passband of sinc2(f) rolls off quickly, thus altering the high

frequencies in the signal’s spectrum. As was seen in Fig. 3.5, a filter with better passband

characteristics than L(f) = sinc2(f) was used at the interpolation stage. Since the sig-

nal has already been interpolated, it now contains lower frequency content in the sampled

frequency domain and linear interpolation at this stage provides desirable results.
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Chapter 4

Surface Response Estimation

4.1 Surface Response Derivation

In this section, the surface response is derived to understand what it is and what it

looks like for different surfaces. The surface response is the impulse response of the target’s

surface. For example, if a delta function were transmitted from the laser and the receiver

had infinite bandwidth with no noise, the profile of r(n) would be the surface response.

It is assumed that the beam divergence is small so that the laser beam is nearly parallel.

With this assumption, the range from the sensor to the target is the same over the entire

footprint when a flat, perpendicular surface is hit. The profile of the spatial beam footprint

of the laser is denoted by f(x, y). The profile of the ELT footprint is approximated to be a

bivariate Gaussian distribution

f(x, y) =
1

2πσ2f
exp

(
−((x− xc)2 + (y − yc)2)

2σ2f

)
, (4.1)

where (xc, yc) is the center of the beam and σf is the standard deviation of the circularly

Gaussian footprint which can be computed by

σf =
β

4
r, (4.2)

where r is the range from the sensor to the surface and β is the divergence of the laser

defined to give a value of e−2 at β/2. The surface is represented with the function g(x, y)

that returns the true distance from the sensor to the surface at location (x, y). Applying

(2.1) to g(x, y) results in the time of flight from the sensor to the surface. If a beam with

no spatial width were to be transmitted at (x, y), the surface response would result as a
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delta function offset by 2
C g(x, y). Let the footprint be divided into adjacent beamlets so

that the footprint is the union of all beamlets. If the number of beamlets increases so that

the width of each beamlet goes to zero, the surface response is given by

s(t) =

∫ ∞

−∞

∫ ∞

−∞
δ

(
t− 2

C
g(x− xc, y − yc)

)
f(x, y)dxdy. (4.3)

For the ELT pulse,

s(t) =
1

2πσ2f

∫ ∞

−∞

∫ ∞

−∞
δ

(
t− 2

C
g(x, y)

)
exp

(
−(x2 + y2)

2σ2f

)
dxdy, (4.4)

is the theoretical surface response.

4.1.1 Surface Response of Two Offset Surfaces

One surface of interest is a surface that is discontinuous inside the footprint as shown

in Fig. 4.1. Let the edge run parallel to the y-axis so that

g(x, y) =





r1, x ≤ xedge
r2, x > xedge




, (4.5)

where r1 is the range of the first surface, and r2 is the range of the second surface. Figure

4.1(a) shows the side view of the Gaussian footprint, which has a 1-D Gaussian profile.

The surface response of this surface with the VISSTA ELT footprint is given by



33

E1 E2

xedge xc

−x x

(a) Side view.
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(b) Top view.

Fig. 4.1: The footprint covering a discontinuous surface that gives two returns.

s(t) =
1

2πσ2f
δ

(
t− 2r1

C

)∫ ∞

−∞

∫ xedge

−∞
exp

(
−(x2 + y2)

2σ2f

)
dxdy,

+
1

2πσ2f
δ

(
t− 2r2

C

)∫ ∞

−∞

∫ ∞

−xedge
exp

(
−(x2 + y2)

2σ2f

)
dxdy,

= δ

(
t− 2r1

C

)
1√

2πσf

∫ xedge

−∞
exp

(
−x2
2σ2f

)
dxdy,

+δ

(
t− 2r2

C

)
1√

2πσf

∫ ∞

−xedge
exp

(
−x2
2σ2f

)
dxdy,

= E1δ

(
t− 2r1

C

)
+ E2δ

(
t− 2r2

C

)
, (4.6)

where E1 is the energy landing on the first surface, and E2 is the energy landing on the

second surface. This shows that the surface response of two offset surfaces contains two delta

functions. Furthermore, the range from the sensor to the target is found by the locations of

the delta functions. It should be noted that if r1 = r2, a single delta function results. This

represents a single flat surface perpendicular to the sensor.

Another result from this derivation is that given infinite bandwidth and no noise, there
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is no limit to the range resolution. This is not the case with real data, so it is assumed that

the delta functions take on a Gaussian pulse with a standard deviation, σ. The value σ = 0

represents the ideal case which results in a delta function. It is desired to know the limit

of detecting two Gaussian pulses in a waveform. To obtain a best case scenario, assume

that two Gaussian pulses have the same amplitude and standard deviation. The pulses are

separated by 2τ as shown in Fig. 4.2.

Let the summation of the two pulses be given by

f(t) =
A√
2πσ

(
exp

(−(t− τ)2

2σ2

)
+ exp

(−(t+ τ)2

2σ2

))
, (4.7)

where A is the amplitude and σ is the standard deviation of the pulses. When τ is small,

f(t) appears as one pulse with a peak at t = 0. As τ increases, f(t) separates into two

distinct pulses. If d
2f
dt2
|t=0 > 0, then two peaks are detectable with a first order differentiator.

The resolving limit is where d2f
dt2
|t=0 = 0. This can be solved by

d2f

dt2
|t=0 =

2(τ2 − σ2) exp(−τ
2

2σ2 )

σ4
= 0→ τ = σ. (4.8)

Therefore, if the separation between two Gaussian pulses is less than 2σ, they will appear as

one pulse to a first order differentiator. This result was derived for a noiseless, continuous

pulse. In the presence of noise or sampling, the separation must be larger in order to detect

the two pulses.

4.1.2 Surface Response of a Planar Surface

The second surface to consider is a planar surface that is not necessarily perpendicular

to the sensor. Let the angle of this surface be a rotation about x-axis as shown in Fig. 4.3.

φ is the angle of incidence, 0 ≤ φ < π
2 , and rc is the center of the footprint.

For this surface, g(x, y) is given by

g(x, y) = rc − y tan(φ), (4.9)
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τ−τ
0

Fig. 4.2: Separation of two Gaussian pulses.

y

(rc, yc)

φ

r

Fig. 4.3: Planar surface at an angle of φ.
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which leads to the surface response for the VISSTA ELT

s(t) =
1

2πσ2f

∫ ∞

−∞

∫ ∞

−∞
δ

(
t− 2

C
(rc − y tan(φ))

)
exp

(
−(x2 + y2)

2σ2f

)
dxdy,

=
1√

2πσf

∫ ∞

−∞
δ

(
t− 2

C
(rc − y tan(φ))

)
exp

(
−y2
2σ2f

)
dy,

=
C

2
√

2π tan(φ)σf
exp



−
(
C(t− 2

C
rc)

2 tan(φ)

)2

2σ2f


 ,

=
1

√
2π
(
2 tan(φ)σf

C

) exp



−
(
t− 2

C rc
)2

2
(
2 tan(φ)σf

C

)2


 . (4.10)

This result shows that the resulting surface response has a Gaussian profile. The standard

deviation of the surface response is given by

σs =
2 tan(φ)σf

C
. (4.11)

As φ→ 0, σs → 0. This indicates that the surface response of a flat surface perpendicular

to the sensor’s line of sight is a delta function. When φ = 0, this result agrees with the

result from section 4.1.1 where r1 = r2 by returning a single delta function. As φ → π
2

radians, σs → ∞, and the amplitude of the pulse goes to zero. This indicates that the

surface response of a planar surface for large φ is a single, wide pulse. Equation (4.11)

also agrees with intuition. As the beam footprint hits a surface at an angle, it is spread or

stretched across the surface. A measure of the pulse stretch in the waveform is provided by

σs.

4.2 Regularization

Inverse problems such as deconvolution are ill-posed and lead to undesirable solu-

tions [28]. For the NNLS method, the convolution matrix, H is ill-conditioned, therefore,

perturbations due to noise are severely amplified in the solution. This means that in prac-
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tice, obtaining the true surface response is not always possible. It has been shown that only

information inside the system bandwidth can be recovered unambiguously [28].

The ambiguity problem can be seen through an example of two signals passing through

a system. The first signal, x1(t), is a Gaussian pulse and the second signal, x2(t), is an

upsampled Gaussian pulse. x2(t) was constructed so that the non-zero values lie on x1(t).

The system, h(t), is a sinc2 pulse which transforms to a triangle function in the frequency

domain. Figure 4.4 shows these signals in the time domain. Figure 4.4 also shows the

convolution of the signals with the system. The result of x1(t) ∗h(t) appears to be equal to

the result of x2(t)∗h(t). Figure 4.5 shows that taking the difference, x1(t)∗h(t)−x2(t)∗h(t)

results in a very small residual relative to the original amplitudes. Even the quantization

noise for the ELT receiver is larger than this residual. If the signals of interest were surface

responses, then this example shows that two distinct surface responses can result in the

same received waveform when passed through the system.

The problem can be explained by observing the Fourier transforms of the signals in the

example. Figure 4.6 shows the Fourier transforms of the signals from Fig. 4.4. When X2(f)

is multiplied by H(f), the high frequency content in the signal is lost due to H(f) = 0

for high frequencies. Within the band limits of H(f), X1(f) = X2(f). Therefore the

convolution of the system and each signal provides two indistinguishable results.

Regularization is a method that incorporates prior information in order to select the

most feasible solution. A common approach when working with low-pass systems is to add

a constraint to the problem that chooses the solution with minimal energy [28]. Such a

constraint provides smooth results, thus high frequency noise is eliminated. However, high

frequency content in the signal is removed as well.

Regularization requires a parameter that determines the amount of regularization [29].

More regularization leads to higher error in the solution, but also increases its feasibility [29].

The regularization parameter may appear as a band edge in a filter, a parameter included

in the cost function, or even as the number of iterations in an iterative technique [28]. The

amount of regularization for iterative methods decreases with more iterations.
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Fig. 4.4: Convolution of two signals with a system in the time domain.
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Fig. 4.5: Difference between the convolution between the system and each signal.

Deconvolution using the Wiener filter regularizes the signal naturally [28]. The amount

of filtering is determined by the SNR; so for any f where H̃(f) = 0, Ŝ(f) = 0 also. The

regularization parameter is PÑ (f) from (3.9). Although the Wiener filter is regularized, it

does not incorporate the positivity constraint like the other two methods. For the exper-

iments in this thesis, positivity was applied to ŝ(n) after filtering by setting all negative

values to 0.

The RL algorithm is also naturally regularized, where the regularization parameter is

determined by i from (3.11). As i increases, ŝ(n) approaches the unregularized solution. It

was determined that i = 25 provided the best results for the VISSTA ELT waveform.

The NNLS method is unregularized. With this method, noise can cause ŝ(n) to appear

as two close returns even when only one flat surface was hit by the laser. This problem can

be addressed by low-pass filtering ŝ(n) for regularization after it has been estimated. In

order to preserve a non-negative surface response, the low-pass filter chosen for this method

is a Gaussian filter where the band edge, B0, acts as the regularization parameter [28]. The

Gaussian filter for regularization is given by

Y (f) = exp

(
−(2πf)2

2B2
0

)
. (4.12)
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Fig. 4.6: Convolution of two signals with a system in the frequency domain.
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B0 is determined so that Y (f) filters those frequencies outside of the support of H̃(f).

Increasing B0 gives less error to the solution, but allows high frequency noise to increase

in the solution. Upon increasing B0 to allow high frequencies in Ŝ(f) to pass, it was

observed that the surface response estimate of two offset surfaces still represents the true

surface response accurately. However, the surface response of angled surfaces is not well

represented. A similar result was noticed in other works [13]. If the angle of incidence is

small (< 60◦), the surface response appears identical to the surface response from hitting a

single flat surface at 0◦. The reason for this can be understood from (4.11). The standard

deviation of the Gaussian surface response is proportional to the tangent of the angle. At

small angles, a change in angle causes a small change in the standard deviation of the

surface response. As the angle gets closer to 90◦, a change in angle causes a big change in

the standard deviation of the surface response. For example, the value of σf for the ELT

pulse at a range of 500 m is estimated to be 4 cm. Using that value in the equation, the

difference between the width of the surface response at φ = 25◦ and φ = 30◦ is .03 ns. The

difference between the width of the surface response at φ = 75◦ and φ = 80◦ is .52 ns. The

ELT receiver has a sample period of .5 ns. Thus, the received waveform is notably different

only if the angle of incidence is large.

If the angle of incidence is large (> 60◦), a problem occurs in the surface response.

Unwanted high frequency noise corrupts the surface response. It was shown in section 4.1.2

that the surface response of a planar angled surface for the VISSTA ELT waveform has

a Gaussian profile. However, Fig. 4.7 shows the surface response estimate when B0 is set

too high. The high frequency noise causes ripples in the surface response that appear as

multiple peaks. This surface response could be mistaken for the surface response of four

distinct surfaces at different ranges. This is an example of two surface responses that cannot

be recovered uniquely without introducing prior information about the surface.

The typical solution would be to decrease B0 or equivalently to increase the amount of

regularization, thus trading error in the solution for feasibility. However, increasing B0 to

eliminate noise also decreases the range resolution. Section 4.1.1 shows that two Gaussian
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Fig. 4.7: Under-regularized surface response resulting from hitting a planar surface at 75◦.

pulses cannot be separated if their means are closer than 2B0. For the experiments in this

thesis, B0 was set to .32 ns or equivalently 4.8 cm when (2.1) is applied. This means that

the absolute best range resolution in the absence of noise would be 9.6 cm.

Although the surface response in Fig. 4.7 does not represent the surface response derived

in section 4.1.2, the low frequency envelope shows what one would expect in the surface

response for an angled surface. It is only the high frequency content that is incorrect. Under

the assumption that a planar surface was hit, section 4.3.4 shows a method to treat this

surface response to estimate the angle of incidence.

4.3 Surface Response Results

4.3.1 Range Error on a Single Surface

Range error is an important measure of the performance of a ladar system. This error

can be estimated statistically by [30]
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σr =
c

2
· σd(tp)
| ddtv(t)|

∣∣∣∣∣
t=tp

, (4.13)

where c is the speed of light, σd(tp) is the detection noise at the timing point tp, and

v(t) is the pulse waveform. This equation indicates that the range error depends on the

slope and noise level of the waveform at the point of detection. The surface response

provides a signal with a higher slope, but amplified noise due to the high-pass nature of

deconvolution. For this reason, three deconvolution techniques were tested to discover the

trade off between range resolution and range error. The methods tested are the Wiener

filter, RL deconvolution, and NNLS minimization.

To test the range error, a flat, white Lambertian target with estimated reflectivity of

0.7 was constructed and placed at a range of 493 m. The beam was held stationary while

sending multiple pulses. The data were processed using the three deconvolution methods

as well as using the waveform without deconvolution. The standard deviations of the range

for each test were computed from the data, and are found in Table 4.1.

These results show that for the Wiener filter and NNLS algorithm, range error was

not an issue, but for the RL algorithm, range resolution came at the cost of range error.

It was observed that as the number of iterations for the RL method increased, the range

error increased to 4.5 mm and remained there even at 100 iterations. Prior work showed

less difference between the methods. However, it used only 10 iterations for the RL method

as well as a different discrimination method [31].

Table 4.1: Range error at 493 meters.

Method Range error (mm)

No Deconvolution 1.8
Wiener filter 1.8

RL 4.5
NNLS 1.8
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4.3.2 Resolution of Two Surfaces

Multiple returns can be detected easily when the surfaces that were hit are farther

apart in range than the width of the pulse, but it is a more difficult task for close surfaces.

A purpose of deconvolution is to increase the ability to detect and estimate the surfaces

that are closer than the pulse width.

To explore the ability to resolve two surfaces, simulated data from LadarSIM were

collected. Simulated data were used to isolate the effects of noise on the processing methods.

This eliminated other sources of error such as non-uniformity in the surface and blur (H̃(z))

estimation errors. Models were created to match the target and the performance of the ELT.

After creating a point cloud, a shot whose energy was evenly split across the two surfaces

was selected as a representative waveform. Thirty-five waveforms that differed only in noise

were generated from the representative waveform and used for the statistics. The distance

between the two surfaces was calculated. Figure 4.8 shows the results of the experiment

as the distance between the two surfaces was varied. The mean estimate of each method

is plotted with error bars that show the standard deviation of the measurement. Not all

methods were capable of resolving two surfaces at all the different surface separations tested.

If a point is not shown on the plot, it indicates that the method could not resolve the surfaces

at that separation.

The pulse was resolved with no deconvolution at 28 cm. The error at this separation

was higher than any measurement from the other methods. The Wiener filter provided 4

cm improvement in resolution, but could not resolve the surfaces past 24 cm. The NNLS

method estimated the separation of the surfaces the best with regards to the mean, standard

deviation in measurement, and ability to resolve the two surfaces at the 14 cm separation.

Data were also collected from the ELT to show the performance of each method on

a real instrument. To measure the ability to resolve two surfaces on real data, the same

target as described in section 4.3.1 was again placed 493 meters from the ELT. Figure 4.9

shows the target with a 19 cm X 19 cm square hole cut out from the middle of the front

side. Surrounding the hole, sufficient area remained on the border of the target to act as
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Fig. 4.8: Simulation measurements from returns hitting two surfaces as the distance of
separation between the surfaces varied.
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the first surface. Directly behind the hole, a second surface was placed capable of varying

in range. This provided two surfaces that have a variable distance between them.

To obtain shots that hit both surfaces, the ELT scanner was set to carefully scan across

the hole in the target. The data were processed to create four point clouds–one for each

processing method. For all shots that detected both surfaces at the range of the target,

the distance between the surfaces was recorded. To ensure that the same points were used

for statistics, a shot was used only if all methods tested at that separation detected two

returns in the waveform. Thus, points that were barely detectable by only one method were

discarded. The ideal data points for the purposes of testing would be those that lie centered

on the edge of the discontinuous surface. Although this method did not obtain only those

points, it avoided points where the footprint’s energy rested heavily on only one surface.

At least 400 points were used at every separation except for the 14 cm test which only used

68 points. The distance between the two surfaces was calculated, and the results are shown

in Fig. 4.10.

Plots of an example waveform from the ELT after deconvolution are shown in Fig. 4.11.

This provides an indication of the resolving power of each method.

For ELT data, the pulse was resolved at 30 cm without deconvolution. The Wiener

filter again could not resolve the two surfaces past 24 cm. The NNLS method estimated

the mean separation of the surfaces the best, and the RL method had the lowest standard

deviation in measurement. Both the NNLS and RL algorithms resolved the 14 cm surface

separation which was found to be the limit.

The Wiener filter did not perform as well as the other methods. A reason for this is

the lack of the positivity constraint on the filter. This constraint was found to be necessary

to provide a feasible result for the least squares solution. In comparison to previous work,

the Wiener filter did not deconvolve the signal to the same extent with respect to the

original pulse width [11]. A reason for this is the difference in the bandwidth of the receiver

electronics [28]. The 500 MHz receiver bandwidth of the ELT is half of the 1 GHz receiver

used by Jutzi and Stilla [11].
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Fig. 4.9: The target used for testing in these experiments.

4.3.3 Effect of SNR on Range Resolution

Since deconvolution amplifies noise, the effect of SNR on the surface range estimation

was tested. SNR for these tests is defined as

SNR =
rmax(n)

σñ
, (4.14)

where σñ is the standard deviation of the noise and rmax(n) is the maximum of the received

waveform.

For simulation, noise levels were adjusted in the electronics and APD models to allow

the SNR to vary. The same test as described in section 4.3.2 was then performed at a

surface separation of 20 cm for the RL and NNLS methods. The Wiener Filter was not

tested due to the inability to resolve two surfaces at 20 cm. Figure 4.12 shows the results

for the simulated data.

To experimentally test SNR effects on real data, the surface separation on the target

was set to 20 cm, and the amount of light returning to the detector was manipulated by
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Fig. 4.10: ELT measurements from returns hitting two surfaces as the distance of separation
between the surfaces varied.
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Fig. 4.12: Simulation measurements from returns hitting two surfaces at 20 cm as the SNR
varied.
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controlling an alignment mirror in the optical path. Gain settings in the electronics were

kept constant. This provided data with varying SNR without affecting the receiver transfer

function. The same processing procedure as in section 4.3.2 was carried out for the RL

and NNLS methods. The Wiener filter was not tested due to the inability to resolve two

surfaces at 20 cm. Figure 4.13 shows the results at the varying SNR levels.

Obtaining the surface response increased the range resolution for the VISSTA ELT even

at the lower SNR’s tested. Both the NNLS and RL methods detected the two surfaces at an

SNR of 33, which was the lowest SNR tested with real data. At an SNR of 33, the standard

deviation increased only slightly, and the mean of the estimate did not decrease in fidelity.

The simulated data were processed at even lower SNR levels than the real data. At an SNR

of 20 and below, the tested methods began to have difficultly deconvolving the signal. Not

only did the error increase, but also the ability to detect two returns decreased. Not all

shots at the lower SNR’s of the simulated data were detected to have two returns; therefore,

they were not used in the statistics. A conclusion to be drawn is that a high sample rate

and SNR may be helpful, but not necessary provided that the SNR is adequate. For this

experiment, the necessary SNR for the ELT data is approximately 30.

4.3.4 Angle Estimation

In current ladar systems, one range is reported for a shot that hits at an angle. How-

ever it should be noted that within the beam footprint there is not just one range that

corresponds to the surface. Photons from one side of the footprint return before photons

from the other side of the footprint. This indicates that there is a time window over which

the photons return to the receiver.

Figure 4.7 shows the surface response of an angled surface computed from the NNLS

deconvolution method. It is possible that the ranges of the peaks in the noisy surface

response correspond to some location that is truly on the surface. Furthermore, because

ŝ(n) is not corrupted at low frequencies, the low frequency envelope of ŝ(n) appears to

be valid, e.g. the middle peak in Fig. 4.7 has more energy than the outer peaks. It was

observed that the surface response estimates of angled surfaces had the highest peak in the
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Fig. 4.13: ELT measurements from returns hitting two surfaces at 20 cm as the SNR varied.

center and the amplitudes of other peaks decreased as they moved away from the center of

the surface response.

The former two paragraphs can be summarized to help form a method to estimate

the angle of a surface given that the surface is planar. First, somewhere within the beam

footprint there is a location that corresponds to the range of each peak in the surface

response. The requirement of the angle estimation method is to decide where on the surface

each peak corresponds to. Second, due to the low frequency envelope in the surface response,

the energy in each peak can be estimated and used as if the energy of the beam footprint

is concentrated at the locations of the peaks.

Assume that a shot hits a planar surface and the surface response results in K peaks.

By assuming a planar surface, it is known that energy from the first peak comes from one

extreme of the footprint, energy from the last peak comes from the other extreme, and

energy from intermediate peaks comes from the middle of the footprint in order as shown

in Fig. 4.14.
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Fig. 4.14: Side profile of spatial beam footprint showing areas and boundaries of peaks.

For a zero mean Gaussian with a standard deviation of one, the boundaries separating

energy from each peak in the footprint, as shown in Fig. 4.14, are computed by

Bk = Q−1


1−

k∑

j=1

Ej


σf , (4.15)

where

Q(x) =
1√
2π

∫ ∞

x
exp

(
− t

2

2

)
dt, (4.16)

and Ek is the normalized energy contained in each peak or the area of each region Ak. With

boundaries defined, the mean value or expected location of peak k is given by

lk =



∫ Bk

Bk−1
x exp

(
−x2
2

)
dx

∫ Bk

Bk−1
exp

(
−x2
2

)
dx


 ,

=




exp
(
−Bk−1

2

)
− exp

(
−Bk
2

)

√
2πEk


 . (4.17)



53

The angle of incidence of the planar surface can be deduced from the geometry in Fig. 4.15

and is given by

φ = tan−1
(
d(ri, rj)

d(li, lj)

)
, (4.18)

where d(ri, rj) returns the distance between any two peaks in range and d(li, lj) is the

distance between the corresponding peaks in the footprint. Figure 4.15 shows that φ can be

computed using any two peaks. To obtain the most accurate estimate, the angles between

consecutive points are computed and averaged.

To test the method, a test board shown in Fig. 4.16 was constructed to provide a large

flat surface. The test board had an estimated reflectivity of 0.7 and was placed at 493

meters. The angle, φ, was measured using a compass with accuracy of approximately one

to two degrees. The board was scanned at 45◦, 60◦, and 75◦, and the angle was estimated

using the method presented in this section. A setup was used in LadarSIM to match this

scenario. Over 40 points were randomly selected from the middle of the target for the both

the ELT data and simulated data.

The number of peaks, K, varies depending on φ. In the experiments, K was observed

to be at most four on a plane where φ = 75◦. A 45◦ angled surface was tested, but it

was found that at this angle, only one peak was detected for both the VISSTA ELT and

LadarSIM. After deconvolving the signal, it was indistinguishable from a return that hit at

0◦. The results in Table 4.2 show that both the simulated and real data provide an accurate

estimation of φ.

Table 4.2: Angle estimate.

Data Truth (degrees) Estimate (degrees) Standard Deviation (degrees)

VISSTA ELT 60 64.4 4.9
VISSTA ELT 75 76.0 1.4

LadarSIM 60 59.6 4.1
LadarSIM 75 72.9 1.8
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55

 

Fig. 4.16: Test board used in experiments.

4.3.5 Slot Width Estimation

Under the assumption that a target with two discontinuous surfaces to form a slotted

surface is being targeted, a method similiar to the angle estimation method can be used

to estimate the width of the slot from section 4.3.2. However, for slot width estimation

it is the boundaries, Bk, that are desired. The width of the slot is wider than the beam

footprint, so each shot may hit only one of the edges.

Let the 2-D Gaussian spatial beam footprint be the footprint given in (4.1). Assume

that two distinct surfaces were hit by the ladar pulse, and the edge is perpendicular to the

x-axis as shown in Fig. 4.1. The location of the edge is determined by

xedge = σfQ
−1(1− E1) + xc. (4.19)

To test the ability to locate edges with this method, data from section 4.3.2 were used

for a slot depth of 16 cm. The measured width of the slot was 19 cm. An equivalent target

and scenario was created in LadarSIM. Table 4.3 shows the results of processing. The

mean was calculated by the difference between the mean of edge 2 and the mean of edge
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1. Because the two edges are independent events, the standard deviation was computed by

adding the variance of the measurement on edge 1 with the variance of the measurement

on edge 2 and taking the square root.

Discrepancies between results from LadarSIM and the ELT are mostly ascribed to

error in the pointing control. Because this paper is concerned with improving the waveform

analysis, it was assumed that there was no pointing error in the LadarSIM model. Therefore,

the LadarSIM results indicate the reliability of this method when considering only errors

coming from noise in the waveform. Scintillation is another possible source of error for this

test, but is likely to have had minimal effect due to data collection at temperatures below

0◦C.

Table 4.3: Estimate of slot width.

Data Truth (cm) Mean (cm) Standard Deviation (cm)

LadarSIM 19 19.20 1.13
VISSTA 19 18.58 3.44
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Chapter 5

Estimation of Spatial Location Within the Footprint

Work in previous chapters dealt with a single shot at a time. All processing was

performed on waveforms independent of other waveforms. In this chapter, it is assumed that

the surface response has been computed for each shot. This chapter describes improvements

that can be made to the point cloud using the surface response of the shots in the scan.

It has heretofore been assumed that each multiple return is spatially located in the

middle of the beam footprint. When a point cloud is created, all returns from one waveform

share the same values for azimuth and elevation. Although aligning all returns down the

center of the beam footprint is reasonable in some applications, Fig. 5.1 shows that this

assumption can misplace the point on the first surface in applications such as ATR. This

situation is from the shot hitting two surfaces when the center of the shot does not line up

with the edge. In this case, the first shot appears to be floating above the surface. Thus, a

false surface is reported from that shot.

Another problem that stems from the presence of multiple returns occurs when the

point cloud is interpolated. Interpolating a point cloud may be desired in various applica-

tions. For a 3-D model of an object, displaying points might not be as useful as showing the

object with either a smooth or mesh surface. To create a surface from points, the points

need to be connected so that the space between the points is filled in via interpolation. For

interpolation, the data can be viewed as a range image where the azimuth and elevation

are coordinates, and the range is the value at those coordinates. For a range image, each

azimuth and elevation pair can only have one range value; therefore a problem occurs with

multiple returns. There is not a one-to-one correspondence of spatial values to range values.

To overcome this problem, one may choose the average range or the range corresponding

to the return of highest intensity to be the range represented in the range image. In analog
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Centrally Located Points

True Location of Points

Fig. 5.1: Incorrect point estimation when the center of the footprint is assumed as the
location of points.

ladar systems, it is also common to choose the first or last return.

The method used for angle estimation in section 4.3.4 can be built upon to obtain a

solution to both of these problems. The angle estimation method assumes that the ladar

shot hit a planar surface at an angle. Under this assumption, the locations of the peaks

are solved for. Thus, each peak has a different value for azimuth, elevation, and range that

can be used in the range image. This avoids the problem of having multiple range values

for each coordinate in a range image, because the azimuth and elevation estimates of the

peaks are not simply aligned down the center of the beam footprint. Therefore, the range

image can be interpolated to obtain the underlying structure of the surface. It also makes

it possible to correct the bad point estimation shown in Fig. 5.1.

Work in Chapter 4 assumed that the surface being targeted was known to be either

two surfaces offset in range or an angled, planar surface. This may be useful in some

applications. For example, in an ATR setting, a target of interest that is known to have

an indentation at a particular location might be interrogated. It could be assumed that

there is a slot at the particular location, and the slot could be measured for its width. If

indeed there is a slot, the width could be used as a feature in the recognition. However,

to form a point cloud of an unknown image, the prior information about the surface being



59

planar, discontinuous, or highly complex is not available. Therefore, it is not possible to

distinguish between the surface response of a discontinuous surface and the surface response

of an angled surface using the processing method used in prior chapters of this thesis.

For the method presented in this chapter, it is assumed that all surfaces can be ap-

proximated to be planar surfaces. Therefore, surfaces with multiple returns are treated as

though the multiple returns are peaks in the surface response of a planar surface. Under

this assumption, the precise location of the edge cannot be determined as was done in sec-

tion 4.3.5 for the discontinuous surface. However, it removes the need to know the type of

surface being targeted and provides a general method for processing the entire point cloud.

Sharp edges on a surface contain high spatial frequencies. The effect of assuming a

shot on the edge of the target to be a shot on an angled surface is essentially a low-pass

filtering operation. It smooths the edge of the surface. At some point in the processing,

a low-pass filter must be applied if the surface is to be interpolated. Applying a low-pass

filtering operation by the planar surface assumption preserves the edge better than post-

poning it until the after the point cloud is formed as depicted in Fig. 5.2. This figure shows

an example of an interpolated surface under different methods for determining which point

to use for the interpolation. The shot spacing is denoted by ∆x. Figure 5.2 (a) shows that

a surface cannot be interpolated because there are two points at one location. Figure 5.2

(b) shows the interpolated surface if the first return is chosen. This scheme over extends

the interpolated surface. Figure 5.2 (c) shows the interpolated surface if the last return

is chosen. This shows the interpolated surface cutting into the actual surface. Figure 5.2

(d) shows the interpolated surface treating the shot on the edge as if it were a shot on an

angled surface processed by the method from section 4.3.4. This method has an advantage

that both the first and last points can be used. This causes the edge to be steeper than any

of the other methods and doesn’t place the first return above the surface.

The planar assumption holds only for surfaces with spatial frequencies lower than the

width of the footprint. It can misplace points otherwise. For example, a surface with a very

narrow slot might contain energy from the laser on both sides of the slot. Energy from the
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(b) First return.

(c) Last return.

(d) Planar approximation.

(a) All returns.

∆x ∆x ∆x

∆x ∆x ∆x
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∆x ∆x ∆x

Fig. 5.2: Side view depiction of an interpolated discontinuous surface that contains a mul-
tiple return.
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middle of the footprint would be inside the slot. Only two returns can be detected in this

case. Using the method of section 4.3.4, spatial locations of those returns would be solved

assuming only one boundary between them. In this situation, doing nothing to solve for

the location of the points within the beam footprint would also misplace the points.

Although section 4.3.4 presented a method to determine the angle of incidence, there is

no way to determine the orientation of the angled surface from a single ladar shot. There is

still a degree of freedom that has not been estimated. Thus, the coordinates of neighboring

points must be incorporated to determine the orientation of the surface. If two discontinuous

surfaces are hit, it is likely that some neighboring points lie on both of the surfaces. The

orientation of the plane can be determined by choosing the orientation that places the points

from the current shot closest to the neighboring points while preserving the estimated angle

of incidence. This is equivalent to choosing the orientation that results in the smoothest

interpolated surface. For an example, Fig. 5.3 shows an edge of a surface. Neighboring

points are shown on the surface as smaller points. The shot on the edge is shown to have

two returns with a line indicating the angle of incidence. The first figure shows a good

choice of surface orientation based on the locations of the neighboring points. The second

figure shows a bad choice of surface orientation. Shown on the figures, the distance between

the points in the first figure is less than the distance between the points in second figure.

5.1 Method for Locating Returns Within the Footprint

The method presented in this chapter relies on the following assumptions:

1. The range, intensity, and pointing direction of each return is known;

2. The range of the returns in the waveform does not affect the normalized intensity;

3. The coordinates of neighboring points are known;

4. The surface can be represented as if entire footprint lies on a single planar surface;

5. The surface has constant reflectivity and a Lambertian bi-directional reflectance dis-

tribution function (BRDF).
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Fig. 5.3: Choosing the orientation of the surface to promote smooth surfaces.

Since the location of the estimates depend on the amount of energy in each return,

assumption 2 states that the attenuation in the waveform due to range is the same for

all returns. The intensity could be calibrated to eliminate this assumption by taking into

account the attenuation of the pulse due to the change in range.

The first step in the proposed method is to compute the best fit plane of the neighboring

points. A plane is defined by the dot product of a normal vector and points on the plane.

n · (v − v0) = 0, (5.1)

where n = nxx̂ + nyŷ + nzẑ is the normal vector, v = xx̂ + yŷ + zẑ is any point in the

plane, and v0 = x0x̂ + y0ŷ + z0ẑ is the position of some known point on the plane. The

equation can be rewritten as

a1(x− x0) + a2(y − y0) = (z − z0), (5.2)
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where a1 = −nx
nz

and a2 = −ny

nz
.

This can be defined in a spherical coordinate system using φ from section 4.1.2 and θ

where 0 ≤ θ < 2π. Let x̂ be a unit vector in the azimuth direction, ŷ be a unit vector in

the elevation direction, and ẑ be a unit vector in the direction of the range. Let φ be the

rotation about ŷ and θ be the rotation about ẑ. Then x0 is the azimuth, y0 is the elevation,

and z0 is the mean of the range weighted by the intensity for the current shot. Applying a

rotation by φ followed by a rotation by θ to n = ẑ gives

n =




cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1







cos(φ) 0 − sin(φ)

0 1 0

sin(φ) 0 cos(φ)







0

0

1



,

=




− cos(θ) sin(φ)

− sin(θ) sin(φ)

cos(φ)



, (5.3)

which leads to

a1 = cos(θ) tan(φ),

a2 = sin(θ) tan(φ). (5.4)

To solve for a1 and a2, the only free variable is θ, because φ is determined from the

method in section 4.3.4. In order to obtain θ, neighboring points must be known. Ideally,

neighboring points would be given by using adjacent elements in the FPA. However, for

a flying spot scanning ladar such as the ELT, this is not given. Furthermore, noise on

the spatial measurements makes determining neighboring points even more difficult. A

nearest neighbor search must be performed. In this thesis, the nearest neighbor search is

accomplished using the K-D tree search method [32]. Figure 5.4 shows an example of the

nearest neighbor selection. It is desirable to have neighboring points on all sides of the
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current point for which θ is being solved. It is undesirable to use neighboring points that

are far from the current shot, because the correlation of points decreases with distance.

Another difficulty is the presence of multiple returns in the neighboring points. In the case

of multiple returns in the neighboring points, the range is computed as the average range

weighted by the intensity.

An algorithm that selects the appropriate neighbors to use in any situation for this

application would be difficult to develop. It can also be said that the correct number

of neighbors, M , to use may vary. For example, noise may cause the M neighbors to be

concentrated on one side of the current shot. In this case, more neighbors would be needed to

ensure that there are points on all sides of the current point. One solution to this problem is

to use interpolation to obtain regularly spaced data. This can be done by interpolating eight

points on a grid that surrounds the current shot. This is not interpolation for estimating

the surface, but is simply for obtaining regularly spaced data so that the best fit plane can

be easily obtained. The distance between points on the grid for the experiments was set to

2β as shown in Fig. 5.5.

The points on the grid are interpolated using inverse distance squared weighting [33].

The range at location (xi, yi) is given by

r(xi, yi) =

∑M
m=1 r(xm, ym)

(
(xm − xi)2 + (ym − yi)2

)−1
∑M

m=1 ((xm − xi)2 + (ym − yi)2)−1
, (5.5)

where (xi, yi) are the coordinates of the point to be interpolated, (xm, ym) are the coordi-

nates of the neighboring points, and r(x, y) is range at (x, y).

Interpolating points on a grid provides easy data to work with. It also makes the choice

of M simpler and more robust. If the value of M is set too high, the points that are far

from the current shot will not be weighted as much as the shots that are closer. This is

because of the inverse distance squared weighting. Thus M can be set to ensure that there

are sufficient neighbors to be less susceptible to problems from having all M neighbors on

one side of the point. The value of M depends on the shot spacing and should be selected

to ensure that neighbors are selected on all sides of the current shot. If the shots overlap,
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Fig. 5.4: Nearest neighbor selection.
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Fig. 5.5: Pixel spacing of interpolated points.
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the value of M must be high. However, if the shots are adjacent, a smaller value can be

used. For the experiments in this thesis, M = 64 was found to work well on dense point

clouds, and M = 16 was found to work well on point clouds with a shot spacing set so that

shots are roughly adjacent. This is more consistent with a shot spacing that would be used

in an application such as ATR.

The points on the grid are used to derive a best fit plane to the data by minimizing the

squared error. If azp, elp, and rp are vectors containing the azimuth, elevation, and range

of the 8 points, then the error is given by

e = |Xa− rp|22,

= aTXTXa− 2aTXT rp + rp
T rp, (5.6)

where X = [azp elp] and a = [a1 a2]
T . The value of a is constrained by (5.4) where φ is

known. This constraint gives rise to a solution different than the traditional best fit plane

solution. To minimize the error, the value of θ for which de
dθ = 0 is computed. This is

derived as follows.

de

dθ
=
daT

dθ

de

da
, (5.7)

daT

dθ
= [− sin(θ) cos(θ)] tan(φ), (5.8)

de

da
= 2XTXa− 2XT rp, (5.9)

de

dθ
= 2[− sin(θ) cos(θ)] tan(φ)XTX




cos(θ)

sin(θ)


 tan(φ)

−2[− sin(θ) cos(θ)] tan(φ)XT rp = 0. (5.10)
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This leads to solving for θ from

[− sin(θ) cos(θ)]XT rp = [− sin(θ) cos(θ)] tan(φ)XTX




cos(θ)

sin(θ)


 . (5.11)

Because the terms are scalars, the equation can be rewritten using the trace operator as

[− sin(θ) cos(θ)]XT rp = tr


[− sin(θ) cos(θ)] tan(φ)XTX




cos(θ)

sin(θ)





 ,

= tr







cos(θ)

sin(θ)


 [− sin(θ) cos(θ)]XTX


 tan(φ), (5.12)

= tr






− cos(θ) sin(θ) cos2(θ)

sin2(θ) cos(θ) sin(θ)


XTX


 tan(φ).

This equation yields no simple analytical solution. However, the data to form X comes

from the coordinates of the interpolated grid. Because of this, X is an orthogonal matrix,

so XTX = 24β2I, where I is a 2x2 identity matrix. This would not be possible if the noisy

data were used directly. This simplification allows (5.12) to be written as

[− sin(θ) cos(θ)]XT rp = tr






− cos(θ) sin(θ) cos2(θ)

sin2(θ) cos(θ) sin(θ)





 24β2 tan(φ),

= 0. (5.13)

θ is solved from (5.13) to obtain

θ = tan−1
(
b2
b1

)
, (5.14)

where [b1 b2]
T = XT rp.
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At this point, the best fit plane is known, and the points can be adjusted so that they

lie on the best fit plane. Originally, the points all lie along ẑ as shown in Fig. 5.6. This

illustrates a shot with three peaks in the surface response. One shot appears above the

surface, one appears on the surface, and the other appears below the surface. Figure 5.6 (a)

shows the side view of an angled surface to demonstrate the ranges of the points. Figure

5.6 (b) shows the top view to demonstrate the spatial locations of the points. All shots are

originally located in the center of the beam footprint. Then, the locations of the points are

adjusted via the method from section 4.3.4 as shown in Fig. 5.7. This result is equivalent

to a rotation by φ about ŷ. The angle φ is now set, but θ may be anywhere along the

dotted circle shown in Fig. 5.7 (b). Next, the final locations of the points are determined

by rotating the points to θ about ẑ as shown in Fig. 5.8.

5.2 Results of Locating Returns Within the Footprint

Results from section 4.3 quantified the ability to measure characteristics of the surface

if the surface shape was known. However, it is more difficult to quantify the ability of the

method from section 5.1, because the true surface is not known for the targets tested. For

this reason, many of the results in this section are visual only.

LadarSIM is capable of generating waveforms of single selected points from a point

cloud. However, it currently cannot produce waveform data for an entire point cloud. Since

the method presented in section 5.1 requires the use of neighboring points, simulated data

were not generated for the experiments in this section.

5.2.1 Slotted Surface

A point cloud using ELT data of the slotted surface from section 4.3.5 are shown in

Fig. 5.9. This point cloud shows the same data that were used to obtain the statistics for

section 4.3. The width of the slot of this target was constructed to be just larger than

the width of the footprint. The points display the return number. Black represents a first

return, and gray represents a second return. Figure 5.9 (a) shows the point cloud when

the data are not processed to obtain the surface response. Because the surface response is
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Fig. 5.6: Shot on planar surface before adjusting the locations of the points.
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Fig. 5.7: Shot on planar surface after solving for φ.
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Fig. 5.8: Shot on planar surface after rotating by θ.

not computed, the waveform contains only one resolvable pulse. This causes the points to

gradually transition to the second surface. Thus, the point cloud reports a sloped surface

leading into the slot. Figure 5.9 (b) shows the point cloud when the surface response is

computed and the coordinates of the returns are aligned down the center of the beam

footprint. This point cloud appears to show two surfaces, one behind the other. Figure 5.9

(c) shows the point cloud when the surface response is computed and the new method is

applied. This point cloud shows a sharper edge than the point cloud of Fig. 5.9 (a) and

removes the effect seen in the point cloud of Fig. 5.9 (b).

In order to obtain a sufficient number of samples, the point clouds were obtained with

a high point density. This provides insight to the quality of representing the slotted surface,

but does not represent a practical scan. Figure 5.10 shows the scan of the slotted surface

with points removed so that shots are barely overlapping. The points have been connected

so that the side view of the interpolated surface can be visualized. Also an approximation

to the true surface geometry has been drawn with dotted lines. Since the multiple returns

in Fig. 5.10 (b) share the same azimuth and elevation values, the last return was chosen as

the point to use in the interpolation.
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(a) Processed without obtaining the surface response.

(b) Processed using the surface response and assuming the points to be
located in the center of the footprint.

(c) Processed using the surface response and solving for the locations of the
points within the beam footprint.

Fig. 5.9: Side view of ELT point cloud of slotted surface.
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(a) Processed without obtaining the surface response.

(b) Processed using the surface response and assuming the points to be
located in the center of the footprint. Interpolation is done on the last
return.

(c) Processed using the surface response and solving for the locations of the
points within the beam footprint.

Fig. 5.10: Side view of ELT point cloud of slotted surface with a practical shot spacing. The
dotted line shows the true surface. The solid line shows the surface estimate by interpolation.
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5.2.2 Angled Surface

A point cloud using ELT data of the angled surface from section 4.3.4 are shown in

Fig. 5.11. This is a top view of the angled surface. Two axes were drawn with a 75◦ line

passing through the point cloud. The arrow indicates the line of sight. The target for these

experiments is shown in Fig. 4.16. This point cloud shows the same data that were used to

obtain the statistics for section 4.3. Figure 5.11 (a) shows the point cloud when the data

are not processed to obtain the surface response. This point cloud shows that the angled

surface is well represented, because the deviation of points from the plane is small. Figure

5.11 (b) shows the point cloud when the surface response is computed and the coordinates

of the returns are aligned down the center of the beam footprint. Distinct return number

levels are seen in this point cloud. This comes from the multiple peaks that exist in the

surface response of the angled surface. Figure 5.11 (c) shows the point cloud when the

surface response is computed and the new method is applied. The deviation of the points

in this point cloud is greater than the point cloud of Fig. 5.11 (a), but less than the point

cloud of Fig. 5.11 (b). This shows that adjusting the locations of the peaks within the beam

footprint places the points closer to the surface than simply assuming the locations to be

down the center of the beam footprint.

A best fit plane was computed for the points on the angled surface. This was taken

directly from the point clouds in Fig. 5.11. The standard deviation of the points from the

best fit plane was computed, and results are shown in Table 5.1.

Results show that when the under-regularized surface response is computed on an

angled surface, the error on the surface increases. However, by solving for the locations of the

returns inside the footprint, this error is reduced almost to the original value. This indicates

that the resolution can be increased with a small trade-off in the fidelity of representing

Table 5.1: Error of points from angled surface fitted to a plane.

Data Standard Deviation (cm)

VISSTA ELT (no surface response) 2.37
VISSTA ELT (points located in center of footprint) 4.02
VISSTA ELT (points located using new method) 2.39



74

(a) Processed without obtaining the surface response.

(b) Processed using the surface response and assuming the points to be
located in the center of the footprint.

(c) Processed using the surface response and solving for the locations of the
points within the beam footprint.

Fig. 5.11: Top view of ELT point cloud of angled surface.
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angled surfaces.

An estimate of the angle φ was given in Table 4.2, but an estimate of θ was not given.

The same data used in section 4.3.4 were used to estimate θ. To provide more accurate

test conditions that reflect a shot spacing with adjacent, non-overlapping points, points

were removed from the pointcloud. Every 5th row and column were used to create an

approximate shot spacing of 80 microradians. At the time of data collection, the angle θ

was not considered. All tests were conducted with the true value of θ ≈ 0◦. To show that

the method can estimate θ over the span of [0◦, 360◦), the data of the flat surface were

rotated by various angles unknown to the algorithm. Variation in the results comes from

interpolating the data onto the grid for obtaining the best fit plane. Points were selected

from the center region of the test board and θ was estimated. The mean estimate and

standard deviation were computed. Results are shown with φ = 60◦ in Fig. 5.12 and with

φ = 75◦ in Fig. 5.13. The mean estimate is plotted with error bars showing the standard

deviation of the estimate.

From Fig. 5.12 and Fig. 5.13 the error on the estimate of θ is on the order of 5◦ to 8◦.

Errors in the estimation of θ may come from noise in the scanner. This noise can cause

variation in the position of neighboring points and affect the best fit plane from which θ is

derived. If a system with little error in the pointing control were used, the amount of error

on θ may be less than the error in this system.

5.2.3 Complex Objects

Sections 5.2.1 and 5.2.2 show point clouds of the two surfaces used throughout this

thesis. This section shows the effect of the method on point clouds of other objects that

may appear in a scene.

Figure 5.14 shows a scan of the test board used in experiments from section 5.2.2. The

red points show first returns and the blue points show other returns. The strap on the left

attaches to the test board at the top. Figure 5.15 shows a closer view of the test board.

Figure 5.15 (a) shows the point cloud when the data are not processed to obtain the surface

response. Figure 5.15 (b) shows the point cloud when the surface response is computed and
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Fig. 5.12: Estimate of θ for φ = 60◦.
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Fig. 5.13: Estimate of θ for φ = 75◦.
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the coordinates of the returns are aligned down the center of the beam footprint. Figure

5.15 (c) shows the point cloud when the surface response is computed and the new method

is applied. When the surface response is not computed, there are second returns that are

missed towards the top of the strap. Another detail to notice is that the strap is slightly

thicker in Fig. 5.15 (b) than it is in the other point clouds. This result supports the drawing

in Fig. 5.1.

Figure 5.16 shows a large cube that was an object in a scan. Two smaller cubes rest

on opposite corners on top of the large cube. The angle of incidence on one side of the cube

was high (≈ 85◦). Figure 5.17 shows the top view of the cube. The arrow in the figures

indicates the line of sight of the ELT. Figure 5.17 (a) shows the least amount of variation

on the surface. Figure 5.17 (b) shows the most variation on the surface and Figure 5.17 (c)

shows an improvement upon Figure 5.17 (b).

A building that contains an I-beam was scanned and shown in Fig. 5.18. A close-up

view is shown in Fig. 5.19. The arrow indicates the location of the I-beam. Color indicates

return number. Red shows the first return, and blue shows other returns. Figure 5.19 (a)

shows multiple returns at the top of the I-beam. However, the second surface of the I-beam

is undetected at the bottom. This is because the distance between the two surfaces of the

I-beam decreases. Figure 5.19 (b) shows that multiple returns are detected all along the

I-beam when deconvolution is applied. Figure 5.19 (c) shows that when the new method is

applied, the edge of the I-beam is narrower than the edge of the I-beam in Fig. 5.19 (b).

This is due to solving for the locations of the returns within the beam footprint. Again,

this result supports the drawing in Fig. 5.1.

Another detail that can be observed in this point cloud is the fence along the bottom.

The fence is barely detected in Fig. 5.19 (a). This is due to the threshold setting for the

discrimination method. The point clouds were created according to a threshold level that

provided the best results. The point clouds that were created from the surface response

used a lower threshold setting. The reason that the point cloud in Fig. 5.19 (a) used

a higher threshold setting can be seen in Fig. 5.20. Ringing in the waveform can cause
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Fig. 5.14: Testboard scanned by the ELT.
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(a) Processed without obtaining the surface re-
sponse.

(b) Processed using the surface response and as-
suming the points to be located in the center of
the footprint.

(c) Processed using the surface response and
solving for the locations of the points within the
beam footprint.

Fig. 5.15: Strap on the testboard. First returns are shown in red. Other returns are shown
in blue.
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Fig. 5.16: Cube scanned by the ELT.
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(a) Processed without obtaining the surface re-
sponse.

(b) Processed using the surface response and as-
suming the points to be located in the center of
the footprint.

(c) Processed using the surface response and
solving for the locations of the points within the
beam footprint.

Fig. 5.17: Top view of cube scanned by the ELT.
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Fig. 5.18: Scan of shed with an I-beam.

multiple detections if the threshold is set too low. Detections from a ringing pulse are not

desirable because they create double images in a point cloud. Figure 5.21 shows the surface

response of this pulse. The ringing was removed when the waveform was deconvolved to

obtain the surface response. In this point cloud, obtaining the surface response enabled a

lower threshold setting to be used. This increased the ability to detect weak returns, thus

providing more detail in the point cloud.
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(a) Processed without obtaining the surface re-
sponse.

(b) Processed using the surface response and as-
suming the points to be located in the center of
the footprint.

(c) Processed using the surface response and
solving for the locations of the points within the
beam footprint.

Fig. 5.19: I-beam scanned by the ELT.
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Fig. 5.20: ELT waveform with a low detection threshold.

500.6 500.8 501 501.2 501.4 501.6 501.8
−40

−20

0

20

40

60

80

100
RX Data

C
ou

nt
s

Range (m)

Fig. 5.21: Surface reponse of ELT waveform with a low detection threshold.
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Chapter 6

Conclusion

6.1 Summary

A technique that exploited the digitized waveform and neighboring points in the point

cloud to enhance the resolution on the edges of surfaces was developed in this thesis. The

problem of representing a highly sloped surface with a single point was solved by forming

an estimate for the angle of incidence. Treatment of multiple returns has been simplified

by solving for the locations of the returns within the beam footprint. The advantage of the

method is the ability to increase the number of points on the edges of targets and accurately

place them within the footprint. This has direct application to ATR scenarios by increasing

the number of points on the target.

Chapter 3 defined the signal processing model and strategy to obtain the surface re-

sponse. Obtaining the surface response is not new to ladar processing; however, the VISSTA

ELT is a practical ladar with a waveform sample rate low enough to sustain the high data

rates required for forming a 3-D point cloud.

Chapter 4 derived the surface response in general as well as the surface response of

an angled surface and two offset surfaces. These surface responses were used to compare

the surface response estimate from the ELT and LadarSIM data using three methods of

deconvolution. The preferred method based on range error and resolution was the NNLS

method. By under-regularizing the surface response at this stage in the processing, the

range resolution increased, and a method was formed that allows the angle of incidence to

be estimated.

Described in Chapter 5, the needed regularization occurs after all points have been

processed. At this stage in the processing, neighboring points are used to obtain an estimate
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of the locations of each point within the footprint. Because the information is gleaned from

neighboring points, this is a low-pass filtering or regularizing operation. To obtain the

surface from a point cloud, points must be connected. Assuming all surfaces to be planar

allows sharper edges due to the increase of points as shown in Fig. 5.2 and the results

from section 5.2. The increase in points only occurred at edges of targets and high-angled

slopes. It is at these areas where increased resolution is needed. Other locations can be well

represented with low resolution point clouds. Using the method to obtain better estimates

of the locations of the returns within the beam footprints allows the user of the data to

obtain a better interpolation of the surface using the interpolation method of their choice.

6.2 Further Research

This thesis provided a small step toward a better representation of edges on complex

targets. Assumptions from section 5.1 made this problem tractable. The first step would be

to eliminate assumption 2 by calibrating the intensity in each return based on the range of

the return. Second, assumption 5 should be removed. This assumption may be difficult to

handle, but is very important for ATR applications. If a camouflaged target were hit, the

reflectivity of the surface under different areas of the footprint would change significantly.

The developed method relies heavily on knowing the amount of energy contained in each

portion of the footprint. Camouflaged surfaces would be poorly represented with the current

method. It is possible that neighboring points could be used to obtain a reflectivity estimate

for different areas under the footprint.

Studying more types of surfaces would strengthen the processing method presented in

this thesis for both the surface response estimation and solving for the locations of returns

in the beam footprint. Results in this thesis include only angled and discontinuous surfaces;

however, these surfaces do cover the extremes in surface complexities. The planar surface is

represented with low spatial frequencies, and the discontinuous surface is composed of high

spatial frequencies. Although the discontinuous surface was shown to be well represented

by a plane at a large angle, a better approach might be possible by studying more surfaces

such as cylindrical surfaces, round surfaces, and surfaces on the corners of objects.
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It was shown in this thesis that the angle of incidence can be estimated and two close

surfaces can be resolved if it is known a priori which surface is hit. Section 4.2 discussed that

only information within the system bandwidth can be recovered unambiguously. Studying

range resolution with bandwidth and noise power as variables would be beneficial. This

could enable range resolution to be used as a design specification. It could also provide

those who use ladar for applications such as ATR to know the resolving capabilities of a

ladar.

Chapter 5 presented a method to process the point cloud without the knowledge of the

surface hit by the beam footprint. This was done by assuming that any surface response

with multiple returns came from a planar surface. This was used to sharpen the edges of the

underlying interpolated surface; however, a measurement of the location of an edge cannot

be taken due to the planar assumption. Neighboring points could be used to determine the

type of surface being hit. For example, if the ranges of proximate shots were binned at

two locations, it is highly probable that a shot in the center of the neighorhood with two

returns does not represent an angled surface, but rather a discontinuous surface. The study

of more surfaces would allow further research to process a point cloud in this manner.
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