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ABSTRACT

Three Essays on Stock Market Volatility

by

Qianru Li, Doctor of Philosophy

Utah State University, 2008

Major Professors: Dr. Christopher Fawson and Dr. Basudeb Biswas
Department: Economics

Volatility is inherently unobservable, and thus the selection of models and their

definition is crucial in financial research. This dissertation attempts to check the role

of investor sentiment and forecast Value-at-Risk (VaR) of the stock market using both

parametric and nonparametric approaches. In the first essay, based on daily return

data of three stock indices and four individual stocks from January 1988 to December

2006, the role of day-of-the-week, as well as investor sentiment, is examined using two

approaches: linear regression to test investor sentiment effect on stock returns and

Logit regression to test the investor sentiment effect on market direction. The results

indicate that there is a significant positive role of investor sentiment in the market.

However, the outcome also shows that the role of the day-of-the-week effect varies

among stocks.

Based on the results presented in the first essay, in the second paper investor

sentiment effect was included in both mean and conditional variance equations of

GARCH models. By comparing augmented GARCH models considering investor

sentiment effect with traditional GARCH models, the result demonstrated that aug-

mented GARCH models are significantly better than traditional GARCH models

where AIC, BIC, log-likelihood, and out-of-sample VaR forecasting were employed.
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The research indicates that a significant role of investor sentiment in forecasting

conditional mean and conditional volatility and the accuracy of GARCH models is

improved by accounting for investor sentiment effect.

Compared with the first and second essays employing a parametric method to an-

alyze the stock market, the third paper adopts a nonparametric approach to estimate

the conditional probability distribution of asset returns. It is evident that the exact

conditional mean and conditional variance is inherently unobservable for time series.

In practice, conditional variance is often achieved from different parametric models,

such as GARCH, EGARCH, IGARCH, etc., by assuming different distributions such

as normal, student’s t, or skewed t. Therefore, the accuracy of forecasting strongly

depends on the distribution assumption. The nonparametric method avoids the need

for a distribution assumption by using a neural network to estimate the potentially

nonlinear relationship between VaR and returns. Our results show that the neural

network approach outperforms traditional GARCH models.

(96 pages)
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Chapter 1

INTRODUCTION

Over the last decade, research on conditional mean and conditional volatility of asset

prices has been a topic of expanding interest in the field of finance. It is common knowl-

edge that asset prices vary on a daily basis, i.e., they demonstrate dynamic behavior. For

economists, the essential feature of asset prices is their obviously increased volatility dur-

ing periods with greater amounts of news or information. Expertise in understanding the

dynamics of asset prices and forecasting them should not be withheld from investors. Aca-

demic researchers have developed mathematical tools facilitating analysis and prediction of

asset prices, and quantitative analysis is the backbone of this theory. Based on this state-

ment, this dissertation incorporates additional variables, such as investor sentiment in the

forecast of the stock market, and demonstrates how it enhances predictability of asset price

behavior. Estimation performance is compared using both parametric and nonparametric

methods. The first two papers employ a parametric method, whereas the third paper ap-

plies a nonparametric method. An overall description of the relationship between the three

papers is given in Fig. 1.1.

The first two papers analyze the changes in stock prices by incorporating investor

sentiment through an indicator based on trading volume.

In classical asset-pricing theory, the expected return of an asset depends upon the

risk-free interest rate, β, and the expected return of the market, E(Rm). This is reflected

in equation 1.1 below:

E(Ri) = Rf + βim(E(Rm)−Rf ), (1.1)
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Fig. 1.1: Three essays on stock market volatilities.

where E(Ri) stands for the expected return on the capital asset; Rf represents the risk-

free rate of interest; βim is the beta coefficient, which indicates the sensitivity of the asset

returns to market returns; and E(Rm) constitutes the expected return of the market, which

is determined simultaneously with trading volume within a structural framework. Under

this traditional asset-pricing approach, prices of traded assets, such as stocks, bonds, or

property, already reflect all known information , therefore, are unbiased in the sense that

they reflect the collective beliefs of all investors about future prospects. Therefore, at first

glance, investor sentiment is not generally used to forecast the stock market. For example,

in the work of Grossman (1976), prices bear all the information, while trading volume is

not assigned any role in informing investors. The reason behind this approach is the belief

that the equilibrium price alone reflects all the relevant information. For a long period in

empirical research, the role of investor sentiment has not been recognized as a valid variable

of interest. This traditional perspective underlies the notion that asset-pricing models rely

on rational factors and complete information. In traditional models, rational investors make

efficient use of information, while in empirical research investors are assumed to be rational

yet imperfect. Investor heterogeneity suggests differences in investors’ beliefs, risk aversion,

and time preference. Such striking events as the 1987 crash and the internet bubble of 1990
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have thrown doubt on the standard finance model in which stock prices equal the rational

expectations of unemotional investors. After 20 years of discussion, the question is no longer

whether stock prices are affected by investors’ emotions, but rather how to measure and

quantify these sentiments. However, it is obvious that measurement of information flow

and investor sentiment is not straightforward, and proxies such as surveys, mood proxies,

trading volumes, mutual fund flows, etc., have been used in the literature as an investor

sentiment index (Baker and Wurgler, 2007).

Hong and Stein (2007) state that the importance of trading volume is pinned down

by the unanticipated liquidity and portfolio rebalancing needs of investors in traditional

pricing models. However, these drives seem to be too small to account for the huge amount

of trading volume observed. This dissonance makes even the most ardent defenders of the

rational asset-pricing models to admit that the bulk of volume must be from something

else, such as the differences in investors beliefs.

In the research of Hong and Stein (2007), prices and returns are tightly correlated

to movements in volume, and higher volume is more likely to accompany higher price

levels. The authors contend that high-priced glamour stocks tend to be exchanged in higher

volume than low-priced value stocks, and they calculate a high significant correlation of

0.49 between trading volume and prices of the S&P index from 1901 to 2005. Furthermore,

an increasing number of empirical studies find a strong positive contemporary correlation

between trading volume and return volatility [Karpoff, 1987, 1988; Gallant et al., 1992;

Lamoureux and Lastrapes, 1994; Bollerslev, 2003]. Based on these empirical facts, the

question is this: what is the economic sense behind this phenomenon? What drives volume

and price change? Based on Kindleberger and Aliber (2005), the process is driven by

speculation bubbles. In the work of Hong and Stein (2007), volume can stand for investor

disagreement and it should be included in asset-pricing models. Baker and Wurgler (2007)

argue the importance of investor sentiment, and volume can be a proxy for it.

However, in many early studies on stock returns and volatility of stock prices, the role
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of trading volume was set aside because of the endogeneity of trading volume. Trading

volume and price are decided simultaneously by structural factors. While the research of

Hong and Stein (2007) and Cassidy (2002) show that trading volume may be an indicator

of investors’ sentiment, in Baker and Wurgler (2007) only part of the trading volume may

be seen as a proxy for sentiment, and the other part is used for the structural effect. They

remove the economic fundamentals in volume data by regressing them on macroeconomic

factors. The residual from this regression is used as the instrumental variable for investor

sentiment.

Based on this method, Hong and Stein proposed “asset-pricing theories in which vol-

ume plays a central role.” One key question they raised is this: what are the underlying

mechanism to induce the disagreement in investors’ belief to trading volume?

The primary reason for investors’ disagreement regarding the importance of the trad-

ing volume effect is gradual information flow. Some investors have access to a certain kind

of information earlier than others as a result of either the distribution of information tech-

nology, or investor segmentation and specialization. Different from the traditional rational-

expectations theory, investors are not aware the fact that they may be at an informational

disadvantage, and therefore do not draw the right inferences from others. Secondary reasons

include limited attention and heterogeneous priors. Investors base their predictions from

only a fraction of publicly available information. In addition, given the same information,

investors rarely reach consensus about their decisions.

According to the research by Shefrin (2000), the market is not perfectly efficient. In-

vestors have access to a heterogeneous pool of information and have different reactions to

the same piece of information. Many investors are inexperienced and underinformed, rush-

ing from one idea to another. Instead of following a random pattern, prices can sometimes

be pushed up violently by mania while sometimes be pushed down by panics. For example,

in the late stages of a bull market, the market is driven by buyers who take little notice of

underlying risk. Towards the end of a crash, investors are hesitant to participate regardless
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of the unusually good value that their positions represent. Many investors are unaware of

the irrationality of the market at its extremes. Many researchers believe that market partic-

ipants are influenced by a complex set of factors that drive personal expectations about the

future movement of prices. For example, Blanchard (1982) comments that public reaction

to the same piece of information can arbitrarily be optimistic or pessimistic, depending on

the individual’s perception regarding the state of the economy.

Because of the challenge in quantifying the factors that influence information flow

and investors’ behavior, an efficient indicator of investor sentiment is necessary. Trading

volume reflects the flow of transactions that underpin supply and demand factors operating

in the market at a particular moment. Increasing volatility in the stock market manifests the

presence of greater pressure or urgency by both buyers and sellers to engage in a transaction.

Therefore, looking at trading volume as a signal of the strength of sentiment to trade seems

to be a reasonable starting point.

Following Baker and Wurgler (2007), we regress trading volume on the three-month

treasury bills interest rate to disassemble the macro structure imbedded in trading volume

from investor sentiment. The residuals from this regression reflect the part standing for

investor sentiment:

V olumet = f(Interest rate) + εt, (1.2)

where εt is utilized as an indicator for the part remaining for investor sentiment in trading

volume.

In the first paper, a high/low volume indicator variable in Donaldson and Kamstra

(2004) is introduced to distinguish when the market has higher or lower sentiment. If the

residual from regressing the investor sentiment indicator is greater than the previous week’s

average, the indicator is set to 1, and to 0 otherwise. This high/low investor sentiment

variable is used to evaluate the relationship between investor sentiment, stock returns,

and the change in direction of stock returns. Day-of-the-week dummy variables are also
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employed together with this investor sentiment indicator to check the effect on stock returns

and changing directions.

Two models are set up in the first paper: a linear regression is introduced to demon-

strate the investor sentiment effect on stock returns; and a Logit model is set up to visualize

the effect of investor sentiment on the probability of an upward market.

The first paper aims to evaluate: (i) a positive effect of investor sentiment on stock

return; and (ii) a positive effect of investor sentiment on market direction. Results show

that investors’ sentiments, as reflected in volume data, have a significant positive effect on

the average of stock returns and market direction.

Based on conclusions from the first paper, in the second paper, the investors’ senti-

ment variable is included in the mean and conditional variance equations of generalized

autoregressive conditional heteroskedasticity models (GARCH), and their performance is

compared to that of traditional GARCH models.

Traditional GARCH models forecast return and volatility based on lagged returns

and innovations. It is important to emphasize that Engle (1982) and Bollerslev (1986)

allow the inclusion of exogeneous variables in the conditional mean and variance equations.

Considerable research has been done to include the day-of-the-week or holiday dummies

into the return and conditional variance in GARCH models. (See Hsieh, 1989; Schwert,

1990; Tonchev and Kim, 2004; Malik and Hassan, 2004.) As suggested by Hong and Stein

(2007), adding the investor sentiment into the mean and variance equations of the GARCH

model may prove to be a more effective way to analyze the stock market.

Four of the most innovative GARCH models are compared: GARCH, FIGARCH (a

fractional GARCH model considering long-range dependence), EGARCH (an exponential

GARCH model accounting for leverage effect), and riskmetrics GARCH (an integrated

GARCH model that was first introduced by the Morgan group and then widely adopted

by banks and securities companies). The performance of these four GARCH models with

and without investor sentiment is compared using in-sample AIC, BIC, log likelihhod and
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out-of-sample Value-at-Risk (VaR) forecasting.

VaR forecasting is commonly utilized as a stock-returns density prediction. Forecast-

ing density has been a critical issue in the research of finance and economics. Its purpose is

to model the potential uncertainty via parametric or nonparametric distribution functions.

Historically, more attention has been given to evaluating point forecasts, while there has

been less discussion given to interval forecasts, e.g., Chatfield (1993), Christoffersen (1998),

and Clemen et al. (1995). In recent years, more and more interest has been paid to evalu-

ating a density forecast. According to the research of de Diebold et al. (1998), Bao et al.

(2004), and Raaij and Raunig (2005), the rapid development of density forecast originates

from the booming demand for derivative products and financial risk management. Further-

more, the improvement of computer technology and simulation techniques has promoted

more straightforward and precise density forecasts.

Compared with the first two papers, the third paper adopts a nonparametric method.

As mentioned before, research on conditional volatility of asset prices has been the subject

of intense investigation over the last few years. Most of the estimation has been parametric,

e.g., GARCH family (Baillie and Bollerslev, 1989) and stochastic volatility models (Mahieu

and Schotman, 1994). The nonparametric smoothing approach offers a flexible tool in

analyzing unknown regression relationships between dependent and independent variables.

Sometimes a preselected parametric model might be too restrictive or too low-dimensional

to fit unexpected features. As an alternative, a nonparametric approach can be adopted

without reference to a specific functional form.

In contrast with the parametric methods adopted in the first two papers, nonpara-

metric methods can have certain advantages. According to Hardle and Sperlich (1998),

the nonparametric approach to estimating a regression has the following benefits. First,

it offers a versatile method of exploring a general relationship between the dependent and

independent variables. Second, it provides predictions without respect to reference to a

fixed parametric model. In the third paper, the use of a neural network is adopted, thanks
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to its ability to avoid the distribution assumption for the stock returns by forecasting VaR

based on historical stock returns simulated from a Monte Carlo simulation.

In the third paper, a small Monte Carlo experiment, similar to the work by Park

(2002), is adopted to generate stock returns. A series of standard normal distributions

(heteroskedastic, but neither skewed nor leptokurtic), a series of standard student’s-t dis-

tributions (heteroskedastic, not skewed but leptokurtic), and a series of skewed student’s-t

distributions (heteroskedastic, skewed, and leptokurtic) will be generated. For each of the

series, a neural network is trained and simulated to forecast the VaR, and results are com-

pared with traditional GARCH models.

As a nonparametric tool, neural networks have been used in domains of finance, such

as portfolio selection, market distribution analysis, stock prediction, bond risk assessment,

credit card fraud detection, and exchange rate forecast, etc. (Hamid, 2004). This method

has proven to outperform linear models in a variety of circumstances (Hamid, 2004), es-

pecially in capturing complicated relationships in which traditional models fail to perform

well (White, 1989; Kuan and White, 1994). White’s (1988) research on IBM daily common-

stock returns concluded that neural network method is capable of capturing some of the

dynamic behavior of stock returns. In other words, a neural network approach has been

proven to outperform traditional GARCH models. Based on these findings, the third paper

forecasts VaR of stock returns using a neural network.

The results from the third paper illustrate that the performance of neural networks

outperforms traditional GARCH models by both in-sample and out-of-sample mean squared

error and VaR analysis. Thus, nonparametric methods provide a superior alternative to

forecasting VaR.
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Chapter 2

THE INVESTOR SENTIMENT AND DAY-OF-THE-WEEK

EFFECT ON THE STOCK MARKET

2.1 Introduction

In our society, wherein the power of the media is continuously growing, the stock

market’s overall trend has a tendency to reflect the population’s reaction to broadcast

news: when information is positive, or when the public’s reaction to news is favorable, the

stock market typically reflects a general upward trend in prices. Conversely, a decline in

the stock market’s prices frequently originates from negative information. Comprehending

what information is incorporated in asset prices through the trading process and the process

by which it is incorporated is an essential research direction in finance. In this paper, we

address these issues by empirical investigation of the role of trading volume on returns and

market direction.

Blanchard (1982) found that public reaction to the same information can either be op-

timistic or pessimistic, depending on the health of the economy. Such a paradoxical result

demonstrates the challenge residing in forecasting investors’ sentiment. Another challenging

task is quantifying the flow of information, as no reliable source reflects it. As a practical

solution for traders and agents, a proxy could be employed. Thus, a promising candidate

is trading volume (Kalotychou and Staikouras, 2006). Chordia and Swaminathan (2000)

observe that daily and weekly returns on high trading volume portfolios lead returns on low

trading volume portfolios. Kuo et al.’s (2004) research results regarding the relationship

between trading volume and cross-autocorrelations of stock returns are different from the ef-

ficient market hypothesis that trading volume does not exhibit predictive power. Lamoureux

and Lastrapes (1994) state the following regarding the imprecise role of the trading-volume
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effect in financial research: “Volume is likely to contain information about the disequilib-

rium dynamics of asset markets.” Empirical surveys illustrate that time periods with high

trading volume tend to correspond to periods of increasing volatility. For instance, trading

volume and volatility are inclined to be greater during open and closed periods. Based on

their study of intra-day volume and price movements, Brock and Kleidon (1992) point out

that periods of increased trading volume tend to be periods of increased return variability.

In particular, volume and return variability are higher at the open and closed periods of

trading. Donaldson and Kamstra (2004) conclude that volume does, indeed, have predictive

power for forecasting stock market returns despite previous studies reporting that trading

volume can not forecast stock price and volatility directly.

Numerous empirical studies have discussed the strong positive contemporaneous cor-

relation between trading volume and stock market returns [Karpoff, 1987, 1988; Gallant,

et al., 1992; Lamoureux and Lastrapes, 1994; Bollerslev, 2003]. Hence it appears to be

possible to analyze stock market returns based on knowledge of the trading volume.

While trading volume may signal a flow of information into the market, calendar

effects can also constitute an important factor affecting the stock market return dynamics.

And despite the fact that “efficient market theory states that anomalies may disappear

once they are described by academics to the investment community because any profitable

opportunities will be traded out of existence” (Taylor, 2005, p. 59), empirical studies have

shown that anomalies from calendar effects exist throughout a long period in the history of

stocks prior to the last thirty years (Taylor, 2005). Furthermore, calendar effects have been

observed in stock market return data in very diverse institutional settings. For example,

Jaffe and Westerfield (1985) introduce the presence of the day-of-the-week effect in four

countries: Australia, Canada, Japan, and the UK. They additionally observe that the

lowest mean returns occurred on Tuesday for Australia and Japan during different periods

between 1950 and 1983.

Heckman and Rubinstein (2001) show that the Monday effect is the most potent of
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calendar anomalies. Their research indicates that, for all twelve nonoverlapping five-year

periods from 1928 to 1987, not only have Monday returns been negative but also Monday

has demonstrated the lowest returns of the week. However, this research has also indicated

that, from 1989 to 1998, Monday returns appeared to be positive and Monday was the best

day of the week. Taylor (2005) stated that this Monday effect anomaly is puzzling because,

as long as the public knows the information, such a behavior should not be observed.

This chapter incorporates the day-of-the-week as another explanatory variable in the

model for determining the effect of investor sentiment on stock price. The rationale is

to have a model correctly specified such that a relevant variable would not be excluded

even if, after calibration, it proves to be meaningless. The work reported here uses daily

return data for three stock indices data, S&P 500, Dow Jones Industrial Average, and

Nasdaq Composite, and four individual stocks Exxon (XOM), Walmart(WAL), General

Electric (GE), and Texas Instruments (TXN). Based on daily returns from January 1988

to December 2006, this chapter examine the effect of investor sentiment as reflected in

day-of-the-week and trading volume on stock returns and on the change in direction.

The chapter is organized as follows. Section 2.2 provides a review of existing litera-

ture. Section 2.3 introduces models to test investor sentiment effect on returns and market

direction through linear regression and Logit regression approaches. Section 2.4 discusses

investor sentiment effect on stock returns. Section 2.5 presents the analysis of investor

sentiment effect on the changing direction of stock returns.

2.2 Literature Review

Previous studies report that the absolute price change in the stock market is positively

correlated with trading volume. A summary of Karpoff’s (1987) survey about the relation-

ship between price changes and trading volume is given in Table 2.1. In this study, both

equity and futures market are examined. By using different measurements of price changes

and trading volume, almost all studies suggeste a positive correlation between absolute
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return and trading volume.

However, using data on 12 futures contracts from the Chicago Board of Trade (CBOT)

during the period 1972-79, Karpoff (1988) finds little correlation between absolute daily

return and volume. On the other hand, he finds positive and statistically significant cor-

relation for equity markets, wherein there are restrictions on short sale contracts. In other

words, when investors are restrained from acting on their information or beliefs by urgent

decision-making, there is no correlation between absolute return and volume.

Table 2.1: Summary of the Research Regarding Volume (Karpoff, 1987).

Author Year Sample Data Sample
period

sample inter-
val

Support pos-
itive | p |, V)
Correlation?

Godfrey et
al.

1964 Stock market ag-
gregates, 3 common
stocks

1959-62,
1951-53,63
daily trans-
actions

Weekly No

Cornell 1981 Future contracts for
17 commodities

1968-79 Daily Yes

Harries 1983 16 common stocks 1981-83 Transactions,
daily

Yes

Rutledge 1984 Future contracts for
13 commodities

1973-76 Daily Yes

Wood et al. 1985 946 common
stocks, 1138 com-
mon stocks

1971-72 1982 Minutes Yes

Grammatikos
and Saun-
ders

1986 Futures contracts
for 5 foreign cur-
rencies

1978-83 Daily Yes

Harris 1986 479 common stocks 1976-77 Daily Yes
Jain and Joh 1986 Stocks market ag-

gregates
1979-83 Daily Yes

Richardson
et al.

1989 106 common stocks 106 common
stocks

weekly Yes

Pettengill
and Jordan

1988 S&P 500 and Small
firm index

1962-85 Daily yes

Martikainen
et al.

1994 HeSE daily index 1977-88 Daily yes for 1983-
88, no for
1977-82.

Karpoff 1988 12 commodities
from CBOT

1972-79 Daily yes for eq-
uity market,
no for future
market
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Pettengill and Jordan (1988) set up a general linear model to assess the relative im-

portance of the various seasonal influences on stock returns from 1962 to 1985. The stock

returns regress on dummy variables of months, day-of-the-week and holidays:

Rt = F (TOM, TOY, JAN, EXP, TRD, DAY, PRE, PST ), (2.1)

where TOM is a dummy variable indicating turn of the month (TOM = 1 if it is the first

trading day of a month), TOY accounts for any additional effect of the turn of the year,

(TOY = 1 for the first trading day of a year), JAN stands for January, EXP and TRD

are dummy variables examining a potential explanation for the lower returns in the third

week; DAY measures the day-of-the-week effect, and PRE and PST are dummy variables

associated with holiday effects.

The results demonstrate that for stock price returns for both large firms, represented

by S&P 500 and small firms, the day-of-the-week effect is highly pronounced. However, the

turn of the month appears to be less significant for stock price returns of small firms than

for large firms.

2.3 The Model

It is common knowledge that information flow and investor sentiment are not straight-

forward to measure, and proxies, such as surveys, mood proxies, trading volume, mutual

fund flows, etc., have been used in the literature as investor sentiment indices (Baker and

Wurgler, 2007).

Hong and Stein (2007) state that the importance of trading volume is pinned down

by the unanticipated liquidity and portfolio rebalancing needs of investors in traditional

pricing models. However, these drives seem to be too small to account for the huge amount

of trading volume observed. This dissonance makes even the most ardent defenders of the

rational asset-pricing models to admit that the bulk of volume must be from something

else, such as the differences in investors beliefs.
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From these observations, Hong and Stein formulate a theoretical foundation for asset-

pricing theories in which volume plays a central role. Based on this definition, it is first

required to disaggregate the trading volume effect because it reflects both economic funda-

mentals and investor sentiment. The decomposition method introduced in Baker and Wur-

gler (2007) is selected in this paper. To remove the structural effect, volume is regressed

on three-month treasury bill interest rates, which can be considered as a macroeconomic

indicator, and the residuals of the regression are treated as the part remaining for investor

sentiment.

V olumet = f(Interest rate) + εt, (2.2)

where V olumet is the money value of trading volume traded per day, and εt can be viewed

as an indicator for the part remaining for investor sentiment in trading volume.

We consider a similar high/low volume indicator variable Vt as in Donaldson and

Kamstra (2004) to evaluate the relationship between investor sentiment, stock returns, and

the change in direction of stock returns.

In the euqtion below, TV stands for the investor sentiment portion of trading volume,

which is εt in equation 2.2. Vt is a dummy variable. Whenever the TV exceeds the previous

week’s average (average of last 5 days’ investor sentiment), it is equal to 1 and to 0 otherwise,

shown as follows:

Vt =





1 if TVt > TVt−1+TVt−2+TVt−3+TVt−4+TVt−5

5

0 otherwise

The day-of-the-week dummy variables (DMonday, DTuesday, DThursday, and DFriday)

associated with Monday, Tuesday, Thursday, and Friday will be used together with Vt to

validate our hypothesis regarding the effect on stock returns and changes in directions.

We define rt as the continuously compounded return at time t:
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rt = 100Log
Pt

Pt−1
, (2.3)

where Pt is the adjusted closing price at time t that considers dividend and stock split. Log

refers to the natural logarithm.

Hong and Stein (2007) showed that a positive relationship may exist between trading

volume and returns because trading volume may reflect the investor sentiment. The follow-

ing models aim to prove that there is a positive effect of investor sentiment on stock returns

and market direction.

Model 1: an ordinary linear regression is used to show the evidence of a positive effect

of investor sentiment on stock returns. Stock return is regressed on investor sentiment and

day-of-the-week dummy variables.

rt = α + βVt + γ1DMonday + γ2DTuesday + γ3DThursday + γ4DFriday + υt (2.4)

Model 2: a Logit regression is used to show the evidence of a positive effect of investor

sentiment on stock market direction.

There are two possibilities for stock market direction: upward market or downward.

Suppose a positive return means an upward market, and the possibility of having an upward

market is :

Pr(rt > 0) = Pr(Y = 1) = p, (2.5)

while the probability of a downward stock market is:

Pr(rt ≤ 0) = Pr(Y = 0) = 1− p (2.6)

A Logit model can be constructed defining Pr(rt > 0) as the probability of an upward

market:

Pr(rt > 0) =
eβVt+γ1DMonday+γ2DTuesday+γ3DThursday+γ4DFriday

1 + eβVt+γ1DMonday+γ2DTuesday+γ3DThursday+γ4DFriday
(2.7)
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These two models attempt to predict: (i) a positive effect of investor sentiment on

stock return; and (ii) a positive effect of investor sentiment on market direction.

Tables 2.2 and 2.3 show the descriptive statistics for return sorted by the investor

sentiment dummy variable and the day-of-the-week dummies. Obviously, if investor senti-

ment is higher than the previous week’s average, the mean value and standard deviation

are significantly larger for each stock. In addition, the mean of the return is often negative

when investor sentiment is lower than the week’s average. We can also remark that the

day-of-the-week effect is not same for all the stocks.

Table 2.4 demonstrates the assorted statistics of stock returns by V = 0 and V = 1

for GM, TXN, Dow Jones, Nasdaq, and S&P 500 for the period from 1988 through 2006.

Together with the results from Tables 2.2 and 2.3, it is easy to verify that the return and

variance are much higher when V = 1. The most significant observation lies in the fact that

two out of seven stocks show negative average returns when V = 0. This finding shows that

when investor sentiment is high, stock return is more likely to be higher and vice versa.

Table 2.2: Descriptive Statistics for Returns of XOM.

XOM N Mean Std. Dev Minimum Maximum
V=0 2113 -0.02889 1.166656 -4.32276 6.495001
V=1 1652 0.143469 1.703413 -8.83019 9.279536
MONDAY 715 0.106204 1.437522 -7.70241 5.259007
TUESDAY 771 0.066062 1.405638 -5.29968 9.242972
WEDNESDAY 769 0.041336 1.458194 -4.56493 9.279536
THURSDAY 757 -0.02014 1.410986 -8.83019 6.495001
FRIDAY 753 0.043233 1.436382 -7.00882 3.940708

Note: V=1 indicates the days when investor sentiment is higher than the previous
week average, and V=0 otherwise. Monday, Tuesday, Wednesday, Thursday, and
Friday indicate the stock returns on that specified day. Minimum and Maximum
indicate the minimum and maximum value of stock return.

2.4 Impact of Investor Sentiment on Stock Returns

An ordinary linear regression is employed to demonstrate the evidence of positive
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Table 2.3: Descriptive Statistics for Returns of WAL.

WAL N Mean Std. Dev Minimum Maximum
V=0 2093 -0.02647 1.549424 -7.3052 7.008676
V=1 1591 0.215468 2.4535 -10.2389 8.706984
MONDAY 699 0.145034 2.029291 -10.2389 8.706984
TUESDAY 754 0.064955 1.964679 -7.01636 7.605729
WEDNESDAY 753 0.101378 2.044586 -9.95746 8.124767
THURSDAY 741 0.026133 1.999458 -8.64632 6.61398
FRIDAY 737 0.056117 1.935617 -8.80701 7.64399

Note: V=1 indicates the days when investor sentiment is higher than the previous
week average, and V=0 otherwise.
Monday, Tuesday, Wednesday, Thursday, and Friday indicate the stock returns on
that specified day. Minimum and Maximum indicate the minimum and maximum
value of stock return.

Table 2.4: Descriptive Statistics for Returns Sorted by V = 0 and V = 1.

Stock Mean Std. Dev Minimum Maximum
GM V=0 -0.12088 1.524594 -6.77529 7.531746

V=1 0.200623 2.53518 -15.0282 16.6511
TXN V=0 -0.06264 2.326772 -10.7654 14.22925

V=1 0.205998 3.557287 -20.1265 21.563
Dow Jones V=0 6.77E-05 0.810679 -3.76729 5.273169

V=1 0.078565 1.128674 -7.4549 6.154722
Nasdaq V=0 -0.05548 1.261729 -7.50649 7.637188

V=1 0.134753 1.577885 -10.1684 13.25464
S&P 500 V=0 -0.01021 0.829008 -3.58671 5.266658

V=1 0.085714 1.123277 -7.11274 5.574432

Note: V=1 indicates the days when investor sentiment is higher than the previous
week average, and V=0 otherwise.
Minimum and Maximum indicate the minimum and maximum value of stock return.

investor sentiment effect on stock returns. Stock return is regressed on investor sentiment

and day-of-the-week dummy variables. The purpose is to testify the investor sentiment

effect and possible day-of-the-week effect. Monday, Tuesday, Thursday and Friday will be

selected from the week and Wednesday will be left as the base.
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rt = α + βVt + γ1DMonday + γ2DTuesday + γ3DThursday + γ4DFriday + εt (2.8)

The outcome from the ordinary linear regression as shown in Table 2.5 suggests that

there is a significantly positive relationship between return and investor-sentiment dummies.

The result is quite robust. All of the parameters regarding investor sentiment are positive

and significant at 1%. This indicates that if investor sentiment in a given day day is larger

than the previous week’s average, there is a positive effect on stock returns. However, it is

difficult to conclude whether a common day-of-the-week effect exists for all stocks. It is true

that the Monday effect appears for some series, while for other stocks there is no significant

effect.

Table 2.5: Parameter Estimated by Linear Regression.

STOCK Linear Regression
Investor Sen-
timent Effect

MONDAY TUESDAY THURSDAY FRIDAY

Dow Jones 0.19628
(0.02994)*

0.15163
(0.04737)*

0.04517
(0.04497)

-0.04698
(0.04502)

0.00050790
(0.04530)

Nasdaq 0.17070
(0.04470)*

-0.09244
(0.07112)

-0.10027
(0.06674)

-0.03420
(0.06696)

-0.04103
(0.06760)

SP 0.10364
(0.03063)*

0.06381
(0.04875)

0.00409
(0.04590)

-0.04753
(0.04605)

-0.00373
(0.04632)

XOM 0.21804
(0.04662)*

0.13076
(0.07413)***

0.06993
(0.07159)

-0.04155
(0.07181)

0.02060
(0.07196)

WAL 0.26928
(0.06816)*

0.14381
(0.10819)

0.00427
(0.10449)

-0.03055
(0.10491)

-0.00203
(0.10508)

GM 0.35160
(0.05997)*

0.34118
(0.09546)*

0.01909
(0.09245)

-0.08311
(0.09291)

-0.05442
(0.09305)

TXN 0.23840
(0.08932)*

-0.17322
(0.14228)*

-0.15572
(0.13727 )

-0.13113
(0.13785)

0.37141
(0.13838)*

Note: ∗ indicates significance at 1% level.
∗∗ indicates significance at 5% level.
∗ ∗ ∗ indicates significance at 10% level.
The parameters are estimated by a linear regression.
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2.5 Impact of Investor Sentiment on the Direction of Stock Market

Numerous studies are based on the relationship between detrended trading volume

and stock returns; refer to Hong and Stein (2007). However, none of these pieces of work

provide an explanation for the relationship between investor sentiment and stock market

direction. Suppose that a positive stock returns demonstrates an upward market, while a

negative sign of stock returns demonstrates a downward market. Given this assumption, a

Logit regression can be employed and compared to the linear regression above. Specifically,

the major contribution of this study is to further prove that higher investor sentiment does

have a positive effect on stock returns, and to demonstrate the relationship between market

direction and investor sentiment.

Table 2.6: Parameter Estimated by Logit Regression.

STOCK Linear Regression
Investor Sen-
timent Effect

MONDAY TUESDAY THURSDAY FRIDAY

Dow Jones 0.3507
(0.0614)*

0.3063
(0.0973)*

-0.0285
(0.0919)

-0.1022
(0.0920)

0.0765
(0.0927)**

Nasdaq 0.3071
(0.0622)*

-0.1577
(0.0990)

-0.2508
(0.0931)

-0.0829
(0.0937)

-0.0213
(0.0946)

SP 0.2130
(0.0610)*

0.1109
(0.0965)

-0.1326
(0.0909)

-0.1438
(0.0911)

0.0148
(0.0918)

XOM 0.3519
(0.0680)*

0.1409
(0.1080)

-0.0542
(0.1044)

-0.0931
(0.1048)

0.0364
(0.1047)

WAL 0.3826
(0.0688)*

0.1411
(0.1093)

-0.0322
(0.1057)

0.0377
(0.1060)

0.1225
(0.1060)

GM 0.4094
(0.0603)*

0.3978
(0.0960)*

0.0856
(0.0930)

-0.0431
(0.0937)

0.0269
(0.0936)

TXN 0.2531
(0.0602)*

-0.0759
(0.0957)

-0.0824
(0.0924)

-0.1648
(0.0929)***

-0.3121
(0.0935)*

Note: ∗ indicates significance at 1% level.
∗∗ indicates significance at 5% level.
∗ ∗ ∗ indicates significance at 10% level.
The parameters are estimated by a Logit model.

In this section, a similar approach is adopted; we assume there are two possibilities

in the market: to earn, or a positive return, meaning an upward market or not to earn,
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meaning a downward market. An upward market can be seen as:

Pr(rt > 0) = Pr(Y = 1) = p, (2.9)

while a downward stock market can be seen as:

Pr(rt ≤ 0) = Pr(Y = 0) = 1− p, (2.10)

where Y follows a Bernoulli distribution. According to Greene (1997), a Logit model can

be constructed defining Pr(rt > 0) as the probability of positive returns:

Pr(rt > 0) =
eβVt+γ1DMonday+γ2DTuesday+γ3DThursday+γ4DFriday

1 + eβVt+γ1DMonday+γ2DTuesday+γ3DThursday+γ4DFriday
(2.11)

Estimates from the Logit approach, as well as the associated t-statistics, are reported in

Table 2.7. Similar to the outcome from linear regression, investor sentiment has a positive

effect on the odds ratio at the 1% significance level, which can be seen as a positive effect

on stock market direction. The day-of-the-week effect varies according to stocks.

To define the relationship between investor sentiment and stock-price movement, the

Logit model is particularly suitable because the direction of movement is binary in nature,

i.e., either up or down. In this section, we will adopt a Logit model and compare it with

the linear regression method.

In recent years, there have been a growing number of studies using Logit model to an-

alyze the relationship between stock returns and fundamental variables. By using a Logit

model to check the relationship between the probability of a positive daily stock return

and cloudiness in New York City, Hirshleifer and Shumway (2003) observed a statistically

significant link between returns and cloudiness. Similar research employing a Logit model

has been reported by Loughran and Schultz (2006). By examining 26 stock exchanges inter-

nationally from 1982 to 1997, using Log regression Hirshleifer and Shumway (2003) found

that daily stock returns are significantly correlated with sunshine. This finding suggests
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Table 2.7: Parameter Estimated by Logit Regression.

STOCK Linear Regression
Investor Sen-
timent Effect

MONDAY TUESDAY THURSDAY FRIDAY

Dow Jones 0.3507
(0.0614)*

0.3063
(0.0973)*

-0.0285
(0.0919)

-0.1022
(0.0920)

0.0765
(0.0927)**

Nasdaq 0.3071
(0.0622)*

-0.1577
(0.0990)

-0.2508
(0.0931)

-0.0829
(0.0937)

-0.0213
(0.0946)

SP 0.2130
(0.0610)*

0.1109
(0.0965)

-0.1326
(0.0909)

-0.1438
(0.0911)

0.0148
(0.0918)

XOM 0.3519
(0.0680)*

0.1409
(0.1080)

-0.0542
(0.1044)

-0.0931
(0.1048)

0.0364
(0.1047)

WAL 0.3826
(0.0688)*

0.1411
(0.1093)

-0.0322
(0.1057)

0.0377
(0.1060)

0.1225
(0.1060)

GM 0.4094
(0.0603)*

0.3978
(0.0960)*

0.0856
(0.0930)

-0.0431
(0.0937)

0.0269
(0.0936)

TXN 0.2531
(0.0602)*

-0.0759
(0.0957)

-0.0824
(0.0924)

-0.1648
(0.0929)***

-0.3121
(0.0935)*

Note: ∗ indicates significance at 1% level.
∗∗ indicates significance at 5% level.
∗ ∗ ∗ indicates significance at 10% level.
The parameters are estimated by a Logit model.

that weather may be related to investor sentiment, which in turn affects stock returns and

market direction. In their model, the probability of a positive return is positively correlated

to total sky cover (SKC), which ranges from 0 (clear) to 8 (overcast):

Pr(rit > 0) =
eriSKCit

1 + eriSKCit
(2.12)

2.6 Concluding Comments

Based on daily return data of three stock indices and four individual stocks from

January 1988 to December 2006, the role of day-of-the-week, as well as investor sentiment,

is examined by two approaches: linear regression to test the investor sentiment effect on

stock returns and Logit regression to test the investor sentiment effect on market direction.

The results indicate that there is a significant positive role of investor sentiment in the
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market. However, the outcome also shows that the role of day-of-the-week effect varies

according to stocks.
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Chapter 3

MODELING STOCK RETURNS VOLATILITY WITH

INVESTOR SENTIMENT EFFECT

3.1 Introduction and Literature Review

Traditional GARCH models estimate return and volatility depending on lagged returns

and innovations. A short list of documented research includes ARCH process (Engle, 1982),

GARCH process (Bollerslev, 1986; Bollerslev et al., 1992), exponential GARCH consider-

ing asymmetric volatility (Nelson, 1991; Duffee, 1995), long memory ARCH (Bollerslev and

Mikkelsen, 1996, 1999) and Integrated GARCH (Nelson, 1990). All these publications esti-

mate the conditional mean and variance based on the past information set. However, lagged

returns are not the only candidate as a measure of market information. It is evident that

the flow of information cannot be easily quantified, and a proxy could be the tool used by

traders and agents. A promising candidate is trading volume (Kalotychou and Staikouras,

2006). Lamoureux and Lastrapes (1994) discuss the issue of disregarding the imprecise

role of trading-volume effect in financial research: “Volume is likely to contain informa-

tion about the disequilibrium dynamics of asset markets.” Huffman (1992) demonstrates

that asset prices increase with trading volume. Lamoureux and Lastrapes (1990) used

daily trading volume as a proxy for information arrival time, showing that trading volume

possesses significant explanatory power regarding daily stock return volatility. Empirical

surveys have proven that periods of high trading volume tend to be periods of increasing

volatility. For example, trading volume and volatility tend to be higher during the opening

and closing periods. Although financial research has long recognized that trading volume

may provide valuable information associated with stock returns, the efficient-market hy-

pothesis holds that trading volume should have no predictive power (Kuo et al., 2004). In
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the work of Grossman (1976), trading volume plays no role in informing investors because

the equilibrium price alone can provide all the relevant information.

Recently, an increasing number of studies have addressed the issue of the strong positive

contemporaneous correlation between trading volume and volatility (Clark, 1973; Karpoff,

1987, 1988; Gallant et al., 1992; Lamoureux and Lastrapes, 1994; Bollerslev, 2003). Kalo-

tychou and Staikouras (2006) include either contemporaneous or lagged value of trading

volume into GARCH models, and either is found to have a significant coefficient. There-

fore, it appears to be possible to estimate volatility based on knowledge of the trading

volume.

In the second essay of this dissertation, based on daily return data for three stock index

data and four individual stocks from January 1988 to December 2006, the role of day-of-

the-week as well as investor sentiment is examined. Through linear regression and Logit

regression approaches, we observe the presence of a significant positive role for investor

sentiment in the market. The results demonstrate that not only does investor sentiment

have a significant positive effect on stock returns, but also on change in stock market. The

research gives a theoretical background for adding investor sentiment effect in GARCH

models.

Moreover, it is important to emphasize that Engle (1982) and Bollerslev (1986) allow

the inclusion of exogeneous variables in the conditional mean and variance. A vast amount

of research has been done to include the day-of-the-week or holiday effect into GARCH

models. Hsieh (1989) demonstrates a GARCH model with return and conditional variance

regressed on day-of-the-week and holiday dummies to analyze five daily exchange rates from

1974 to 1983:

rt = α0 +
m∑

i=1

αirt−i + αMDMt + αT DTt + αW DWt + αF DFt + αHHOLt + εt (3.1)
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ht = ω +
q∑

i=1

βiε
2
t−1 + βMDMt + βT DTt + βW DWt + βF DFt + βHHOLt, (3.2)

where DMt, DTt, DWt, DFt, and HOLt are dummy variables standing for Monday, Tuesday,

Wednesday, Friday, and the number of holidays (excluding weekends) in a year.

Similar research regarding adding the day-of-the-week effect into GARCH models has

been performed by Schwert (1990) and Schwert (1999). Complementing the day-of-the-week

effect, Tonchev and Kim (2004) included dummy variables modeling the January effect, the

half-month effect, and the turn of the month effect. The research of Malik and Hassan

(2004) adds dummy variables indicating each point of sudden changes of variance onward

into the conditional variance equation in GARCH models.

Compared to the much-discussed calendar effect in GARCH modeling, the trading

volume effect has been less widely discussed. Lamoureux and Lastrapes (1990) add trading

volume into conditional variance:

rt = µt−1 + εtht = α1εt−1 + α2ht−1 + α3Vt (3.3)

ht = α1εt−1 + α2ht−1 + α3Vt, (3.4)

where µt−1 is the mean rt conditional on past information, and Vt is the trading volume.

After comparing GARCH models with and without a volume effect on 20 individual daily

stocks returns, Lamoureux and Lastrapes (1990) demonstrate that the persistence of vari-

ance as measured by the sum α1 + α2 was significantly lower for a GARCH model that

included volume. In other words, the GARCH effect tends to fade when volume is included

in the variance equation.

It has been well documented that both linear and nonlinear time trends exist in trading-

volume series (Gallant et al., 1992). Therefore, it is important to determine a method to

measure the volume variable. The research of Lamoureux and Lastrapes (1990) adds raw
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trading volume into the variance equation. Most research uses detrended trading volume to

test the effect on the stock market. Chen et al. (2001) adopt a quadratic time trend term

to detrend the trading volume series:

Vt = α + β1t + β2t
2 + εt, (3.5)

where Vt is raw trading volume, and detrended trading volumes are the residuals from the

equation. Other measures include turnover, log turnover adjusted by a moving average, and

log of volume (Groenewold, 2006).

This paper adopts an approach similar to that described by Donaldson and Kamstra

(2004) to measure investor sentiment effect. TV stands for investor sentiment portion of

trading volume, which is εt in equation 2.2. Vt is a dummy variable that equals 1 whenever

the investor sentiment exceeds the week’s average (the previous five days investor sentiment

average), otherwise it is equal to 0, such that:

Vt =





1 if TVt > TVt−1+TVt−2+TVt−3+TVt−4+TVt−5

5

0 otherwise

The paper is organized as follows. Section 3.2 provides a review of the traditional

GARCH models, including GARCH, EGARCH, FIGARCH, FIEGARCH, and Riskmet-

rics. Section 3.3, the GARCH models considering investor sentiment effect are presented.

In section 3.4, a comprehensive analysis of the distributional, statistical, and time series

properties of the data is explained. Section 3.5 and 3.6, both in-sample and out-of-sample

forecasts are compared and discussed.

3.2 Review of GARCH Models

In this section, four different traditional GARCH models (GARCH, FIGARCH, EGARCH,

Riskmetrics) are introduced.
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3.2.1 Traditional GARCH (1, 1)

Prior to discussing a GARCH (1, 1) process, it is important to present the ARMA (p,

q) process:

Let{xt}∞t=1 be a stationary process defined by:

φ(B)xt = θ(B)εt, (3.6)

where φ(B) is the autoregressive polynomial operator, φ(B) = 1−α1L−α2L...−αpL; θ(B)

is the moving average polynomial operator, and θ(B) = 1−β1L−β2L...−βqL. εt is a white

noise process normally distributed with mean zero and finite variance σ2.

In the ARMA(p, q) process, the variance of the disturbance term is assumed to be

constant, namely homoskedastic. However, many time series data series exhibit volatility

clustering. Engle (1982) defines a stochastic process whose conditional variance is a lin-

ear function of the square of the estimated residuals, called an autoregressive conditional

heteroskedastic (ARCH) model. Bollerslev (1986) extends Engle’s work by allowing the

conditional variance to be an ARMA process, which is a generalized ARCH model, also

known as a GARCH model. One important difference between GARCH and ARMA pro-

cesses is that the former allows volatility shocks to persist over time. The key feature of

GARCH models is that both autoregressive and moving average components are included

in the heteroskedastic variance (Bollerslev, 1989, 1990; Bollerslev and Mikkelsen, 1996a;

Bollerslev et al., 1994).

A GARCH (1, 1) model is the most popular model in empirical research and is defined

as:

rt = µ + εt (3.7)

εt = h
1
2
t zt (3.8)

ht = ω + β1ε
2
t−1 + β2ht−1, (3.9)
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where ω ≥ 0, β1 ≥ 0 and β2 ≥ 0. ht is the conditional variance. εt stands for the residual

of the process and zt is defined as the standardized residuals by:

zt =
εt√
ht

, (3.10)

the distribution of zt conditional on previous x is:

zt|xt−1, xt−2 . . . ∼ N(0, 1) (3.11)

Such a process is stationary if and only if β1 +β2 < 1. In Taylor (2005), when this condition

is satisfied, the unconditional variance is finite, the unconditional kurtosis is always greater

than 3 and can be infinite, the correlation is zero between any two variables in the time-series

data, and the correlation is positive between any squared residuals.

3.2.2 FIGARCH(1,d,1)

Some empirical research demonstrates the existence of long memory in time series

data. This long memory, or long run dependence, exists when the autocorrelation function

displays a slow decay, while the process remains stationary. The research of this long-

memory phenomenon has received much attention in recent years. Fractionally differenced

time series models have been adopted widely in practice.

The processes in ARCH models developed by Engle and GARCH models by Bollerslev

are short memory since the response of a shock on the conditional variance decreases at an

exponential rate. For a weakly stationary time series wherein sample mean µi is independent

of t and correlation ρ(t + h, t) is independent of t for each h, the autocorrelation function

(ACF) is defined as:

ρ(k) =
E[(xt − µ)(xt+k − µ)]

σ2
(3.12)

where µ is the mean and σ2 is the variance.
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If
∑∞

k=−∞ |ρ(k)| < ∞, the time series exhibits short memory or short range depen-

dence, or weak dependence, while if
∑∞

k=−∞ |ρ(k)| = ∞ as k → ∞, and the time series

displays long memory.

The correlation function ρ(k) satisfies ρ(k) ∼ Cp|k|−2(1−H) as k → ∞, where Cp is a

constant, Cp > 0 and the symbol ∼ means “asymptotically equal to.”

In Hosking (1981) and Brockwell and Davis (1987), the fractional ARMA (p, d, q)

model is defined as:

Φ(B)(1−B)dxt = θ(B)εt

(1−B)d =
∞∑

k=0

(dk)(−B)k =
∞∑

k=0

πkB
k

πk =
Γ(k − d)

Γ(k + 1)Γ(−d)
=

∏

1≤j≤k

j − 1− d

j

Γ(x) =





∫∞
0 tx−1e−tdt , x > 0

∞ , x = 0

x−1Γ(1 + x) , x < 0,

∣∣∣∣∣∣∣∣∣∣

where (1−B)d is the fractional differentiating operator and Γ(.) is the gamma function.

For d ∈ (−0.5; 0.5) the process defined is stationary and invertible.

As mentioned previously in this chapter, the processes in ARCH models and GARCH

models developed by Engle (1982) and Bollerslev (1986) are short memory. While more

and more research has proven the existence of long run dependence in the conditional

variance process, volatility tends to vary at a slow rate over time, and the autocorrelation

is dominated by a hyperbolic rate of decay.

Different from GARCH models which focus on the short term volatility specification

and forecast, FIGARCH models illustrate a finite persistence of volatility shocks. A FI-

GARCH model possesses a fractional ARMA structure on the variance. When d = 1, a
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FIGARCH model is reduced to an integrated GARCH model; and when d = 0, it is reduced

to a GARCH model.

A FIGARCH(1, d, 1) model is defined as:

rt = µ + εt (3.13)

εt = h
1
2
t zt (3.14)

ht = ω + β1ht−1 + (1− β1 ÃL− (1− ϕ1 ÃL)(1− L)d)ε2
t−1, (3.15)

where zt is a white noise with mean 0 and variance 1, following an AR(1) process, and the

conditional variance ht is represented by a FIGARCH process.

(1− β1 ÃL)ht = ω + (1− β1 ÃL− (1− ϕ1 ÃL)(1− L)d)ε2
t−1, (3.16)

where all the roots of ϕ1 ÃL and (1− β1 ÃL) lie outside of the unit circle, and 0 < d < 1.

The conditional variance of the FIGARCH process is written as:

ht =
ω

1− β1 ÃL
+ λ(L)ε2

t−1, (3.17)

where

λ(L) = (1− (1− ϕ1 ÃL)(1− L)d))(1− β1 ÃL)−1 (3.18)

3.2.3 EGARCH

Traditional linear GARCH models place a nonnegativity condition on all parameters.

However, Nelson and Cao (1992) argue that it is overly restrictive to confine all coefficients

to be nonnegative because stock return and volatility can be negatively correlated from some

empirical research. The work of Black (1976) illustrates that there is an inverse relationship

between current return and future volatility. This fact was also proven by Christie (1982)

and French et al. (1987). The EGARCH model proposed by Nelson (1991) thus concludes
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that the nonnegative constrains are too restrictive. Nelson (1991) introduces asymmetry,

also known as leverage effect, into conditional variances. Whenever there is a negative

return, the market responds more vigorously than whenever there is a positive return. In

other words, the market is particularly sensitive to negative returns. In summary, price

changes and volatility are more significantly negatively related by leverage effect.

In an EGARCH model, ht, the conditional variance, is the exponential of an AR

process. Furthermore, ht is defined as the asymmetric function of lagged disturbances εt−i

while there is no nonnegative restriction:

Ln(ht) = ω +
q∑

i=1

αig(zt−i) +
p∑

j=1

γjLn(ht−j) (3.19)

g(zt) = ν1zt + ν2(|zt| − E|zt|) (3.20)

εt = h
1
2
t zt (3.21)

The three variance parameters are: γj , the autoregressive parameter for process,

Ln(ht), the parameter accounting for leverage effect, and ν1, a parameter appearing in

g(zt). As long as the absolute value of γj is lower than 1, the Ln(ht) process is stationary.

Nelson (1991) argues that the returns process is strictly stationary if and only if the AR

process of Ln(ht) is strictly stationary.

3.2.4 Riskmetrics (IGARCH)

Riskmetrics is a type of IGARCH model. The process is stationary if and only if

β1 +β2 < 1 in the GARCH process. However, the empirical research shows strong volatility

persistence, when the sum of the parameters β1 and β2 is approaching one.

Under this condition, an IGARCH model is recommended as the underlying model.

RiskMetrics, a kind of IGARCH model developed by J. P. Morgan, has been popular in
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empirical application by banks and security companies.

By assuming ω = 0, Riskmetrics adopts a so called exponentially weighted moving

average (EWMA) method:

rt = µ + εt (3.22)

εt = h
1
2
t zt (3.23)

ht = (1− λ)ε2
t−1 + λht−1 (3.24)

The RiskMetrics classic concludes that “on average λ = 0.94 produces a very good fore-

cast of one-day volatility, and λ = 0.97 results in good estimates for one-month volatility”

(RiskMetrics Group, 1996).

One of the advantages of EWMA is that by discarding old information on asset re-

turns, the effective number of days used in the volatility calculation is decided by the scale

of the decay factor. In their example, if λ = 0.94, the effective number of days is 112

incorporating 99.9% of the information. For λ = 0.97, the last 227 days incorporate 99.9%

of the information.

3.3 Augmented GARCH Models with Investor Sentiment Effect

3.3.1 Augmented GARCH(1,1)

In this paper, an innovative form of GARCH (1,1) with investor sentiment effect in-

cluded in both return and variance equation is introduced and defined as:

rt = µ + ζVt + εt (3.25)

εt = h
1
2
t zt (3.26)

ht = ω + δVt + β1ε
2
t−1 + β2ht−1, (3.27)
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where ω ≥ 0, β1 ≥ 0 and β2 ≥ 0. ht is the conditional variance, εt is the residual of the

process, and zt is defined as the standardized residuals:

zt =
εt√
ht

(3.28)

The distribution of zt conditional on previous x is:

zt|xt−1, xt−2 . . . ∼ N(0, 1) (3.29)

3.3.2 Augmented FIGARCH(1,d,1)

A FIGARCH(1, d, 1) process incorporating the effect of investor sentiment is defined

as:

rt = µ + ζVt + εt (3.30)

εt = h
1
2
t zt (3.31)

ht = ω + δVt + β1ht−1 + (1− β1 ÃL− (1− ϕ1 ÃL)(1− L)d)ε2
t−1 (3.32)

3.3.3 Augmented EGARCH (1, 1)

Adding investor sentiment effect into the mean and variance equations of an EGARCH

model, we get the following definition:

rt = µ + ζVt + εt (3.33)

Ln(ht) = ω + δVt +
q∑

i=1

αig(zt−i) +
p∑

j=1

γjLn(ht−j) (3.34)

g(zt) = ν1zt + ν2(|zt| − E|zt|) (3.35)
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εt = h
1
2
t zt (3.36)

3.3.4 Augmented Riskmetrics

Similar to the previous augmented GARCH models, investor sentiment effect is incor-

porated into the mean and variance equations of the Riskmetrics IGARCH model:

rt = µ + ζVt + εt (3.37)

εt = h
1
2
t zt (3.38)

ht = (1− λ)ε2
t−1 + δVt + λht−1 (3.39)

3.4 Analysis of the Stock Market

In this section, daily returns for Dow Jones from 1/1/1988 through 12/31/2006 is

employed to test the efficiency of traditional GARCH models and augmented GARCH

models in taking into account investor sentiment effect. We define rt as the continuously

compounded return at time t:

rt = 100Log
Pt

Pt−1
(3.40)

where logPt refers to the natural logarithm of the adjusted closing price at time t.

3.4.1 Background Information

In this section, a comprehensive analysis of the distributional, statistical, and time

series properties of the data are discussed. Our purpose is to determine which properties

should to be included in the models.

The data consist of daily observations of closing price and trading volume from 1988 to

2006, totalling 4792 observations. The whole sample is divided into two periods, with the
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Fig. 3.1: The closing price for the Dow Jones from 1988-2006.

first 3700 observations as the in-sample estimation period, and the last 1000 observations

as the out-of-sample forecasting period.

Figures 3.1 and 3.2 demonstrate the closing prices and returns for the Dow Jones

index from 1988 to 2006. Figure 3.2 summarizes changes over time in the signs of variance

clusters: high returns tend to be followed by high returns, and vice-versa. Furthermore,

by studying 3.5, as well as the ARCH LM test and the Ljung-Box Q statistics Q test, we

observe a significant serial correlation among residuals, which shows that there is conditional

heteroscedasticity in the time series, thus GARCH modeling is recommended.

Table 3.1 gives the descriptive statistics for closing price, return, and trading volume

of the Dow Jones.

From Table 3.1 as well as Figures 3.3, it is obvious that the closing price and return are

left-skewed while the trading volume is right-skewed. The return series exhibits a leptokurtic

distribution, that is to say they exhibit has a more acute ”peak” around the mean and fat
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Fig. 3.2: The Dow Jones returns from 1988-2006.

Table 3.1: Descriptive Statistics Dow Jones.

obser. mean Std. Skewness Excess Jaque-
dev Kurtosis Bera test

Closing 4792 6781 3382.9 -0.034156 -1.6620 552.46
price (10.261)* (76.084)* (.NaN)*
Return 4791 0.03803 0.9863 -0.36301 5.3822 5888.0
Trading 4792 7.8616 6.7653 1.0775 0.40981 960.71
Volume e+008 e+008 (30.459)* (5.7938)* (.NaN)*

1. The column regarding kurtosis describes the excess kurtosis, namely, the kurtosis
in excess of 3. For a normal distribution, the excess kurtosis would be 0.
2. The numbers in parentheses under the parameter estimates are standard
deviation.
3. ∗ indicates significance at 1% level.
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Fig. 3.3: The histogram of returns.

tails. Overall, none of them have been shown to possess a normal distribution.

3.4.2 Stationarity

Before performing any time-series analysis, the stationarity of the series must be deter-

mined. If a time series is stationary, “The mean, variance and autocorrelations can usually

be well approximated by sufficiently long time averages based on the single set of realiza-

tions” (Enders, 1995, p. 124). For a stationary process, the effect of shocks is temporary,

and the series reverts to its original trend. Under stationarity, the long-run forecasts of

a time series converges to its unconditional mean. However, for a non-stationary process,

time-dependence exists, no long-run mean exists, and the variance diverges to infinity as

time progresses. Standard ARMA analysis requires a condition of stationarity of the time

series, which can be verified by its autoCorrelation function (ACF) and its partial autocor-

relation function (PACF). The ACF measures the correlation between a time series value
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and its lag. The PACF quantifies the additional correlation between a time-series value and

a specific lag value, removing the influence of the other lag values. If the ACF of a time

series dies out very slowly, the time series is possibly nonstationary.

However, judging whether the series is stationary directly from ACF can prove to be

difficult according to different standards. This is due to the fact that a near-unit root

process will have a very similar shape as a real-unit root process. Consider the case:

yt = a1yt−1 + εt, (3.41)

where ε is an evenly distributed white-noise process with mean 0 and variance σ2.

For the case wherein a1 = 0.99, the ACF analysis exhibits a similar gradual decay

as a nonstationary process. Therefore, ACF or PACF analysis does not suffice to assert

the existence of a unit root, and the Dickey-Fuller and Phillips-Perron Tests should be

performed. The Phillips-Perron Test incorporates an automatic correction to the Dickey-

Fuller test procedure to allow autocorrelated residuals.

As shown in Figure 3.4, the ACF of closing prices do not demonstrate trailling off while

the PACF of closing prices exhibits a significant first spike, indicating that the series may

not be stationary. Further results from the Dickey-Fuller and Phillips-Perron tests point

out that the closing price series is nonstationary. However, the results from ACF, PACF,

as indicated by Figure 3.5, as well as the results from the Dickey-Fuller and Phillips-Perron

Tests, prove that the return series is stationary.

Furthermore, in the time series considered here, ε is believed to be an identically

distributed white-noise process with mean 0 and variance σ2. However, the literature has

documented that variance may vary. One possibility is to model the conditional variance

employing an AR process defined as:

σ2
t = a0 + σ2

t−1 + σ2
t−2 + . . . + σ2

t−q + νt, (3.42)
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Fig. 3.4: ACF and PACF of closing prices.

where νt is a white-noise process. Equation 3.42 describes an autoRegressive conditional

heteroskedastic (ARCH) model. In order to examine whether a time-series’ variance is

correlated, ARCH LM and Ljung-box Q tests must be performed. The test results indicate

that there is significant autocorrelation in the variance of the return series.

3.4.3 Long Memory and Hurst Parameter

In this section, the intriguing feature of the data, particularly the property of the long

memory are examined by mathematical tools. H is the Hurst parameter, whose name comes

from the hydrologist who pioneered the topic (Hurst, 1951). The Hurst parameter is an

indicator of the degree of long range dependence (LRD). If the process is turned back to

its original state after a shock, then H < 0.5; this property is defined as antipersistance.

Under this situation, the market is frequently ”swinging” up and down. If the process tends

to move away, then H > 0.5; and under this situation investors can observe a strong trend
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Fig. 3.5: ACF and PACF of returns.

(no matter up or down). If H = 0.5, the process has no memory; it is a regular Brownian

motion. A Hurst parameter 0.5 < H < 1 means that the process has long range dependence.

One of the most popular techniques to measure the Hurst parameter is the R/S pa-

rameter, as indicated in Mandelbrot and Wallis (2006) as well as Beran (1994): Let R(n) be

the range of the data aggregated over blocks of length n and S(n)2 be the sample variance

of the data aggregated at the same scale. For long-range dependent time series, the ratio

R/S(n) follows:

E[R/S(n)] ∼ CHnH (3.43)

where CH is a positive, finite constant independent of n. Based on the data from ten finan-

cial market series, including Morgan Stanley Capital Index (MSCI) world, MSCI Europe,

MSCI North America (NA), S&P500, MSCI Emerging Markets Free (EMF), MSCI EMF
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Asia, etc. , Kitt (2003) measured Hurst exponents and found the presence of long-term

memory in this category of time series. Furthermore, the result from 50-year S&P500

corresponds to H = 0.64, which confirms the results of previous studies (Kitt, 2003).

The Hurst parameter estimated by the R/S technique using the sample size from 1998

to 2006 is 0.546, demonstrating that there is long-run dependency in the data set. Therefore,

models considering long memory should be recommended.

3.5 In-sample Results

The sample is separated into two parts: calibration and forecasting. Model parameters

are estimated from the first T − 1000 observations, where T is the sample size, and 1000

forecasts are generated and compared with true observations to test model accuracy.

Among all the possibilities suggested by ACF and PACF, we choose GARCH(1, 1)

because it is the simplest specification and the most widely used in the literature.

The parameters estimated by GARCH, FIGARCH, EGARCH, and Riskmetrics are

presented in Tables 3.2 to 3.9. All the parameters related to the investor sentiment effect

are positive and significant at the 1% level, which is a robust proof that investor sentiment

affects the conditional mean and variance of the returns.

For GARCH and augmented GARCH models, almost all parameters related to the

ARCH effect, GARCH effect, tail, and asymmetry are significant at the 1% level. The

Ljung-box test of significance for autocorrelations of 5 and 10 lags for returns residuals

and squared returns residuals, respectively, rejecting the null hypothesis of autocorrelation.

Most important of all, the results of AIC, BIC and log-likelihhod show that the in-sample

performance of augmented GARCH models are significantly better than traditional GARCH

models. Furthermore, these results show that models with a student’s-t distribution perform

the best in all three distributions.

For EGARCH models with and without investor sentiment effect, most of the parame-

ters are significant at 1% except that the ARCH effect breaks down for both models with a
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student’s-t distribution. Regarding the FIGARCH models with and without investor senti-

ment effect, d parameters in the models with three distributions are between 0 and 0.5 for

FIGARCH, indicating the process is stable. Other results from ARCH and GARCH effect

are less robust in models with investor sentiment effect. For Riskmetrics models with and

without the investor sentiment effect, all parameters related to the ARCH effect, GARCH

effect, tail, and asymmetry are at the 1% significant level. The overall performance of these

models with investor sentiment effect proves to be better than traditional models according

to the results of AIC, BIC, and log-likelihhod.

Conclusion 1

Augmented GARCH models with investor sentiment effect demonstrate significantly

lower AIC, BIC, and higher log-likelihood compared with traditional GARCH models.

For all of the GARCH models previously discussed, if we compare augmented GARCH

(1, 1) to traditional GARCH (1, 1) with the same distribution, the results clearly show that

augmented GARCH models with investor sentiment effect possess significantly lower AIC

and BIC and higher log likelihood. The result is robust.

Conclusion 2

Models with a skewed t-distribution have the lowest AIC, BIC and the highest log-

likelihood compared with the t-distribution and the normal distribution.

Comparing the same GARCH models with different distributions, the skewed t-distribution

shows the best result. Furthermore, the normal distribution has the highest AIC, BIC and

the lowest log likelihood. These findings are consistent with the literature that the skewed

t-distribution produces better results than the normal and student-t distributions. This is

due to the fact that financial data are always leptokurtic and skew to one side.
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Table 3.2: Augmented GARCH (1,1) Considering Investor Sentiment Effect.

Normal Student-t Skewed t
Cst(M) -0.032537

(0.019009)***
-0.014897
(0.015338)

-0.039923
(0.01697)**

V (M) 0.184477
(0.032056)*

0.176965
(0.025749)*

0.195885
(0.026533)*

Cst(V) -0.002360
(0.0087483)*

-0.007799
(0.0046922)*

-0.007386
(0.0047670)*

V (V) 0.044537
(0.029339)*

0.028262
(0.0091611)*

0.028003
(0.0091823)*

ARCH 0.075331
(0.030335)**

0.048595
(0.011230)*

0.049861
(0.010949)*

GARCH 0.908147
(0.041962)*

0.946884
(0.012743)*

0.945041
(0.012471)*

STUDENT(DF) 5.912263
(0.59861)*

Asymmetry -0.085549
(0.022511)*

Tail 6.136794
(0.62944)*

Log-likelihood -5086.890 -4938.937 -4932.051
AIC 2.699650 2.621753 2.618633
BIC 2.709566 2.633322 2.631854
Q(5) 10.7849 [0.0558163] 10.3914 [0.0648747] 10.3235 [0.0665716]
Q(10) 15.5832 [0.1122003] 15.3229 [0.1207245] 15.2514 [0.1231616]
Q2(5) 1.79410 [0.6162192] 2.24081 [0.5239540] 2.06116 [0.5598101]
Q2(10) 3.85688 [0.8697996] 3.67034 [0.8855755] 3.60006 [0.8912869]

*, **, and *** denote significant level at 1%, 5%, and 10%, respectively. Q(L) and
Q2(L) denote the Ljung-Box test of significance of autocorrelations of L lags for
returns residuals and squared-returns residuals, respectively. Autocorrelations are
computed for standard residuals.

3.6 Out-of-Sample Results

The predictability of a model is assessed not only based on the in-sample fit, but also

on the out-of-sample fit obtained from a sequence of rolling regressions. In this section,

the conditional VaR framework is used to measure the performance of the one-step ahead

VaR predicted by traditional GARCH models and augmented GARCH models considering

investor sentiment effect with normal distribution. VaR adopts a “nearly worst case” sce-

nario approach to measure the expected losses (Gordon and Tse, 2003). It gives a sense of

maximum expected losses that one can expect over a given time horizon under a specific



44

Table 3.3: Traditional GARCH (1,1).

Normal Student-t Skewed t
Cst(M) 0.055089 (.014534)* 0.064599 (0.012471)* 0.055670 (0.013222)*
Cst(V) 0.011574 (0.0064)*** 0.05938 (0.0027)** 0.061147 (0.0027)**
ARCH 0.055092 (0.018268)* 0.047488 (0.010316)* 0.048044 (0.010212)*
GARCH 0.935024 (0.021652)* 0.947857 (0.011582)* 0.946927 (0.011507 )*
STUDENT(DF) 5.997856 (0.62125)*
Asymmetry -0.045631

(0.021782)**
Tail 6.130201 (0.63871)*
Log-likelihood -5115.104 -4967.507 -4965.468
AIC 2.713546 2.635837 2.635287
BIC 2.720157 2.644101 2.645203
Q(5) 10.9659 [0.0520597] 11.1592 [0.0483126] 11.1180 [0.0490895]
Q(10) 15.0316 [0.1309150] 15.2848 [0.1220191] 15.2111 [0.1245528]
Q2(5) 2.18896 [0.5341261] 2.55278 [0.4658286] 2.42836 [0.4883778]
Q2(10) 3.01048 [0.9336982] 3.28520 [0.9152065] 3.17713 [0.9227546]

*, **, and *** denote significant level at 1%, 5%, and 10%, respectively. Q(L) and
Q2(L) denote the Ljung-Box test of significance of autocorrelations of L lags for
returns residuals and squared-returns residuals, respectively. Autocorrelations are
computed for standard residuals.

distribution at a given confidence level, e.g., 95%. In practice, VaR always focuses on the

left-hand (negative) tail of the distribution of possible returns because a key aspect of risk

management is to minimize the loss of negative events, supposing the investors have a long

position. Throughout this section, both long and short positions in the financial market

are analyzed. In the situation of a short position when prices of the assets tend to vary

upward, the investors’ concern is the portfolio’s appreciation amount. Five confidence lev-

els (99.75%, 99.5%, 99%, 95%, and 90%) are used to check the robustness of models for

expected stock returns. The time horizon is one day.

3.6.1 Value at Risk (VaR)

VaR is a quantitative tool developed to measure market risk. The term VaR did

not appear in financial market research until the last ten years, while the origins of the

concept of VaR measures can be traced back to about 1922 where the NYSE ruled that
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Table 3.4: Augmented EGARCH(1,1) Considering Investor Sentiment Effect.

Normal Student-t Skewed t
Cst(M) -0.048286 (0.017225)* -0.038213

(0.017720)**
-0.045307 (0.015560)*

V (M) 0.173519 (0.025109)* 0.171413 (0.027588)* 0.171370 (0.025680)*
Cst(V) -0.288862 (0.12491)** 12.935454 (11.275)* -1.530730 (0.32764)*
V (V) 0.595761 (0.068905)* 0.551558 (0.054477)* 0.546550 (0.053331)*
ARCH -0.426827 (0.13276)* 0.215554 (0.76283) -0.353507 (0.12707)*
GARCH 0.982910

(0.0051966)*
0.958986 (0.067986)* 0.986844

(0.0037114)*
ν1 -0.132654

(0.028562))*
-0.087015
(0.023958)**

-0.115221 (0.023716)*

ν2 0.163168 (0.025005)* 0.111105
(0.030197)**

0.151485 (0.022793)*

Asymmetry -0.097499 (0.022067)*
Tail 7.767901 (0.99056)*
STUDENT(DF) 6.855176 (0.73583)*
Log-likelihood -4951.006 -4879.484 -4852.932
AIC 2.628681 2.591298 2.577753
BIC 2.641902 2.606173 2.594280
Q(5) 10.2725 [0.0678724] 9.28175 [0.0983402] 10.3374 [0.0662196]
Q(10) 16.3709 [0.0894968] 14.7094 [0.1430208] 16.4475 [0.0875194]
Q2(5) 1.90845 [0.5916233] 1.02046 [0.7963005] 0.954191 [0.8123344]
Q2(10) 7.52434 [0.4812545] 5.88276 [0.6603632] 5.85877 [0.6630477]

*, **, and *** denote significant level at 1%, 5%, and 10%, respectively. Q(L) and
Q2(L) denote the Ljung-Box test of significance of autocorrelations of L lags for
returns residuals and squared-returns residuals, respectively. Autocorrelations are
computed for standard residuals.

required firms to hold specific amounts of capital to cover their exposure to market risk. The

development of VaRwas motivated by the volatility in US interest rates around 1980. VaR

literature has grown remarkably in the last ten years due to the growth of the Riskmetrics

approach developed by the J. P. Morgan group and the risk-adjusted measures of capital

adequacy enforced by the Basel Committee (Giot, 2005a). Over time, VaR measures have

been increasingly used by banks and securities firms as a way to estimate the potential loss

of financial assets.

VaR can be seen as the left α quantile conditional probability distribution of asset

returns:
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Table 3.5: Traditional EGARCH(1,1).

Normal Student-t Skewed t
Cst(M) 0.033954

(0.0075367)*
0.039114
(0.015345)***

0.039637 (0.010868)*

Cst(V) 0.099557 (0.12573) 6.483132 (1.0251)* -0.779609 (0.27908)*
ARCH -0.452028 (0.14738)* 0.597335 (0.43179) -0.345849 (0.13888)**
GARCH 0.984518

(0.0049030)*
0.885548 (0.027106)* 0.988355

(0.0035115)*
ν1 -0.130818 (0.031041)* -0.090595 (0.030907)* -0.100493 (0.022097)*
ν2 0.147578 (0.024219)* 0.154042 (0.039570)* 0.139761 (0.023561)*
STUDENT(DF) 4.762409 (0.28894)*
Asymmetry -0.051012 (0.021570)*
Tail 6.825930 (0.79430)*
Log-likelihood -5055.529 -4999.420 -4933.578
AIC 2.683026 2.653814 2.619442
BIC 2.692943 2.665383 2.632664
Q(5) 10.3932 [0.0648304] 10.0681 [0.0733291] 10.6282 [0.0592720]
Q(10) 16.0976 [0.0968721] 16.3563 [0.0898777] 16.1942 [0.0942074]
Q2(5) 1.04402 [0.7906019] 2.25538 [0.5211223] 0.830746 [0.8420997]
Q2(10) 2.34611 [0.9685212] 6.52878 [0.5882171] 1.93834 [0.9828443]

*, **, and *** denote significant level at 1%, 5%, and 10%, respectively. Q(L) and
Q2(L) denote the Ljung-Box test of significance of autocorrelations of L lags for
returns residuals and squared-returns residuals, respectively. Autocorrelations are
computed for standard residuals.

Under the normal distribution:

V aRLong,t,α = µt − Φtσtand (3.44)

V aRShort,t,α = µt + Φtσt, (3.45)

where µt is the conditional mean, and σ2
t is the conditional variance at time t. Φt is the left

α quantile for error distribution, Pr(r < Φt) = α . In this section, a normal distribution

is assumed. Clearly, VaR measures depend on the mean, standard deviation, skewness,

kurtosis, and higher moments of the distribution.

For example, for a standard normal distribution, if α =5%, the left α quantile Φt is

-1.645. Conditional mean and conditional variance can be derived from GARCH models
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Table 3.6: Augmented FIGARCH.

Normal Student-t Skewed t
Cst(M) -0.027468 (0.016485

)***
-0.012745 (0.015247) -0.026544 (0.015972)

V (M) 0.184759 (0.028470)* 0.178127 (0.026052)* 0.180371 (0.026123)*
Cst (V) -0.005693 (0.027073) -0.011528 (0.023887) -0.021855 (0.023144)
V (V) 0.364833 (0.074984)* 0.258677 (0.096222)* 0.256523 (0.10181)*
d-Figarch 0.223348 (0.026331)* 0.251354 (0.047430)* 0.249739 (0.050192)*
ARCH -0.044677 (0.12648) 0.087953 (0.19541) 0.078987 (0.21606)
GARCH 0.128324 (0.13859) 0.298514 (0.24718) 0.285450 (0.27215)
STUDENT(DF) 6.802575 (0.70534)*
Asymmetry -0.079236 (0.021490)*
Tail 7.079730 (0.75004)*
Log-likelihood -5009.072 -4907.522 -4901.253
AIC 2.658930 2.605631 2.602837
BIC 2.670499 2.618852 2.617712
Q(5) 11.2464 [0.0467079] 11.5466 [0.0415573] 11.4690 [0.0428338]
Q(10) 18.0782 [0.0536591] 18.0536 [0.0540654] 17.9527 [0.0557661]
Q2(5) 2.00766 [0.5708192] 3.53274 [0.3165405] 3.16362 [0.3670791]
Q2(10) 10.1876 [0.2521022] 8.53901 [0.3826621] 8.23149 [0.4111908]

*, **, and *** denote significant level at 1%, 5%, and 10%, respectively. Q(L) and
Q2(L) denote the Ljung-Box test of significance of autocorrelations of L lags for
returns residuals and squared-returns residuals, respectively. Autocorrelations are
computed for standard residuals.

or other time-series models, and thus VaR can be calculated at time t. When V aRt,0.05 =

−1.88, the left 5% quantile of return distribution is -1.88, which can also be explained as

the possibility of asset returns falling behind -1.88 equals 5%.

Consider the problem of comparing two different models by VaR. The model with the

closest failure rate will outperform the other. For banks and securities companies, if the

failure rate is too low, the model is too loose because it would underpredict the potential

risk. On the other hand, if the failure rate is too high, the model is too conservative because

it would unnecessarily jeopardize the profit opportunities.

3.6.2 Kupiec LR Test

The Kupiec LR test (Kupiec, 1995) is often applied to test the effectiveness of VaR
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Table 3.7: Traditional FIGARCH.

Normal Student-t Skewed t
Cst(M) 0.055989 (0.014488)* 0.064981 (0.012421)* 0.056916 (0.013133)*
Cst(V) 0.056474 (0.027986)* 0.031443 (0.010568)* 0.030976 (0.010490)*
d-Figarch 0.328519 (0.052978)* 0.389868 (0.047806)* 0.389079 (0.048249)*
ARCH 0.285117 (0.10582)* 0.296716 (0.045979 )* 0.298346 (0.046285)*
GARCH 0.550555 (0.12141)* 0.638119 (0.056214)* 0.638005 (0.056803)*
STUDENT(DF) 6.288170 (0.63500)*
Asymmetry -0.043252

(0.021659)**
Tail 6.408949 (0.65187)*
Log- -5099.722 -4960.415 -4958.559
AIC 2.705922 2.632608 2.632154
BIC 2.714185 2.642524 2.643723
Q(5) 11.7832 [0.0378822] 11.5129 [0.0421067] 11.4946 [0.0424086]
Q(10) 16.6105 [0.0834382] 16.0690 [0.0976728] 16.0285 [0.0988198]
Q2(5) 2.78183 [0.4264995] 4.20746 [0.2399157] 4.04531 [0.2566129]
Q2(10) 3.37360 [0.9087754] 4.80339 [0.7783681] 4.64888 [0.7943599]

*, **, and *** denote significant level at 1%, 5%, and 10%, respectively. Q(L) and
Q2(L) denote the Ljung-Box test of significance of autocorrelations of L lags for
returns residuals and squared-returns residuals, respectively. Autocorrelations are
computed for standard residuals.

models. It attempts to prove whether the observed frequency of exceptions conforms to the

frequency of true exceptions according to the model and chosen confidence interval.

Let N be the number of times the asset returns are lower than VaR in a sample of

size T . The number of exceptions, N , follows a binomial distribution. The probability of

experiencing N or more exceptions is:

Pr(N |m, p) =
m

n
px(1− p)n−x, (3.46)

where p is the probability of an exception for a given confidence level, and m is the number

of trials. The failure rate is defined as f , where:

f =
N

T
. (3.47)
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Table 3.8: Augmented Riskmetrics Considering Investor Sentiment Effect.

Normal Student-t Skewed t
Cst(M) -0.032831 (0.019178) -0.014396 (0.015044) -0.042041

(0.016985)**
V (M) 0.197477 (0.026482)* 0.177116 (0.025538)* 0.159917 (0.026465)*
V (V) 0.011214 (0.0025286

)*
0.011666
(0.0026052)*

0.011433 (0.0025827
)*

ARCH 0.060000 0.060000 0.060000
GARCH 0.940000 0.940000 0.940000
STUDENT(DF) 5.482625 (0.49926)*
Asymmetry -0.086889 (0.023059)*
Tail 5.656292 (0.52793)*
Log-likelihood -5095.899 -4942.166 -4935.385
AIC 2.702836 2.621874 2.618810
BIC 2.707794 2.628485 2.627074
Q(5) 10.7512 [0.0565431] 10.9524 [0.0523324] 10.8390 [0.0546673]
Q(10) 15.3590 [0.1195108] 15.6442 [0.1102807] 115.5464 [0.1133738]
Q2(5) 1.92932 [0.5872055] 2.01202 [0.5699167] 27.8929 [0.1119584]
Q2(10) 3.28225 [0.9154174] 3.31897 [0.9127763] 54.6053 [0.3038577]

*, **, and *** denote significant level at 1%, 5%, and 10%, respectively. Q(L) and
Q2(L) denote the Ljung-Box test of significance of autocorrelations of L lags for
returns residuals and squared-returns residuals, respectively. Autocorrelations are
computed for standard residuals.

Ideally, the failure rate should be equal to the prespecified VaR level α. Therefore, the

null and alternative hypotheses are:

H0 : f = α and (3.48)

H1 : f 6= α. (3.49)

The appropriate likelihood ratio statistic is:

LR = 2Log[fx(1− f)T−x]− Log[αx(1− α)T−x] ∼ χ2(1). (3.50)

Note that the Kupiec test is a two-sided statistical test. Both high and low failure
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Table 3.9: Riskmetrics.

Normal Student-t Skewed t
Cst(M) 0.048206

(0.020623)**
0.065586 (0.013768)* 0.059551 (0.014146)*

STUDENT (DF) 6.708077 (0.57045)*
Asymmetry -0.044821

0.020267)**
Tail 6.821400 (0.58879)*
ARCH 0.060000 0.060000 0.060000
GARCH 0.940000 0.940000 0.940000
Log-likelihood -5157.235 -4983.476 -4981.211
AIC 2.734288 2.642712 2.642041
BIC 2.735941 2.646018 2.646999
Q(5) 12.6314 [0.0270885] 12.7909 [0.0254193] 12.7378 [0.0259639]
Q(10) 16.7197 [0.0808022] 16.9596 [0.0752632] 16.8794 [0.0770756]
Q2(5) 1.58252 [0.6633606] 1.62971 [0.6526712] 1.61272 [0.6565094]
Q2(10) 2.74773 [0.9491781] 2.75748 [0.9486430] 2.75382 [0.9488442]

*, **, and *** denote significant level at 1%, 5%, and 10%, respectively. Q(L) and
Q2(L) denote the Ljung-Box test of significance of autocorrelations of L lags for
returns residuals and squareds-return residuals, respectively. Autocorrelations are
computed for standard residuals.

rates tend to reject the null hypothesis. As mentioned before, both too-high and too-low

failure rates will bring some problems: being either too conservative and jeopardizing the

profit opportunity or being too liberal and underpredicting the potential risk. Therefore,

for bank and securities firms, the two-sided test is appropriate to evaluate the performance

of the model.

3.6.3 Out-of-Sample Results of the Kupiec LR Test

In this part, the forecasting capability of GARCH models are compared. The out-

of-sample VaR is a one-step-ahead forecast based on the available information. 1000 out-

of-sample VaRs are calculated for each model, and the performance of the model will be

evaluated by the Kupiec’s LR test given in Tables 3.10- 3.16. If the value of the Kupiec LR

test appears to be NaN, the model captures perfectly all the characteristics of the series.

Conclusion 1
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Table 3.10: Out-of-Sample Forecast—GARCH—Short Position.

Traditional GARCH(1,1) GARCH(1,1) with investor sentiment effect
Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value

0.95 0.959 1.812 0.17827 0.965 5.2684 0.021716
0.975 0.982 2.224 0.13588 0.979 0.69355 0.40496
0.99 0.995 3.0937 0.078594 0.992 0.43374 0.51016
0.995 0.998 2.3439 0.12578 0.997 0.93906 0.33252
0.9975 0.998 0.10768 0.74281 0.999 1.1697 0.27947

Note: Quantile indicates ideal failure rate. Failure rate indicates the actual failure
rate estimated by the model.
Lupiec LRT is to test whether actual failure rate equals the ideal failure rate.
Short indicates short position, which means investors buy and sell later.

Table 3.11: Out-of-Sample Forecast—GARCH—Long Position.

Traditional GARCH(1,1) GARCH(1,1) with investor sentiment effect
Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value

0.05 0.036 4.553 0.032861 0.041 1.812 0.17827
0.025 0.019 1.6082 0.20474 0.022 0.38455 0.53518
0.01 0.009 0.10452 0.74647 0.011 0.097834 0.75444
0.005 0.005 .NaN 1 0.004 0.21586 0.64222
0.0025 0.002 0.10768 0.74281 0.003 0.09418 0.75893

Note: Quantile indicates ideal failure rate. Failure rate indicates the actual failure
rate estimated by the model.
Lupiec LRT is to test whether actual failure rate equals the ideal failure rate.
Long indicates long position, which means investors sell first and buy later.

The overall performance of Augmented GARCH models with investor sentiment effect

demonstrate a lower rejection rate compared with traditional GARCH models.

By the Kupiec LR test, the null hypothesis is that the actual failure rate should equal

the ideal failure rate, as indicated as the quantile in the tables. The overall performance

of augmented GARCH models considering investor sentiment effect demonstrates a lower

rejection rate compared with traditional GARCH models.

Conclusion 2

Generally, models with more conservative confidence levels perform better than in

other cases.
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Table 3.12: Out-of-Sample Forecast—FIGARCH—Short Position.

Traditional FIGARCH(1,d, 1) FIGARCH(1,d, 1) with investor sentiment Effect
Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value

0.95 0.964 4.553 0.032861 0.967 6.8784 0.008724
0.975 0.982 2.224 0.13588 0.983 2.9529 0.085722
0.99 0.994 1.8862 0.16963 0.994 1.8862 0.16963
0.995 0.998 2.3439 0.12578 0.996 0.21586 0.64222
0.9975 0.999 1.1697 0.27947 1 .NaN 1

Note: Quantile indicates ideal failure rate. Failure rate indicates the actual failure
rate estimated by the model.
Lupiec LRT is to test whether actual failure rate equals the ideal failure rate.
Short indicates short position, which means investors buy and sell later.

Table 3.13: Out-of-Sample Forecast—FIGARCH—Long Position.

Traditional FIGARCH(1,d, 1) FIGARCH(1,d, 1) with investor sentiment Effect
Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value

0.05 0.033 6.8784 0.008724 0.032 7.7765 0.005293
0.025 0.016 3.8016 0.051203 0.014 5.8887 0.015238
0.01 0.007 1.0156 0.31356 0.004 4.706 0.030058
0.005 0.004 0.21586 0.64222 0.002 2.3439 0.12578
0.0025 0.002 0.10768 0.74281 0.001 1.1697 0.27947

Note: Quantile indicates ideal failure rate. Failure rate indicates the actual failure
rate estimated by the model.
Lupiec LRT is to test whether actual failure rate equals the ideal failure rate.
Long indicates long position, which means investors sell first and buy later.

Obviously, when the confidence level is more conservative, such as 99.75% or 99.5%,

the performance of both traditional GARCH models and augmented GARCH models are

better than in other situations shown by a lower failure rate or higher accept rate. Although

traditional Riskmetrics for short position at 0.0025 break down, generally speaking, the

augmented GARCH models considering investor sentiment effect outperform traditional

GARCH models.
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Table 3.14: Out-of-Sample Forecast—EGARCH—Short Position.

Traditional EGARCH EGARCH with investor sentiment Effect
Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value

0.95 0.964 4.553 0.032861 0.961 2.7469 0.097444
0.975 0.987 7.145 0.007517 0.987 7.145 0.007517
0.99 0.995 3.0937 0.078594 0.995 3.0937 0.078594
0.995 0.999 4.7972 0.028506 0.998 2.3439 0.12578
0.9975 1 .NaN 1 1 .NaN 1

Note: Quantile indicates ideal failure rate. Failure rate indicates the actual failure
rate estimated by the model.
Lupiec LRT is to test whether actual failure rate equals the ideal failure rate.
Short indicates short position, which means investors buy and sell later.

Table 3.15: Out-of-Sample Forecast—EGARCH—Long Position.

Traditional EGARCH EGARCH with investor sentiment Effect
Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value

0.05 0.027 13.278 0.000268 0.039 2.7469 0.097444
0.025 0.016 3.8016 0.051203 0.014 5.8887 0.015238
0.01 0.007 1.0156 0.31356 0.008 0.43374 0.51016
0.005 0.003 0.93906 0.33252 0.005 .NaN 1
0.0025 0.003 0.09418 0.75893 0.002 0.10768 0.74281

Note: Quantile indicates ideal failure rate. Failure rate indicates the actual failure
rate estimated by the model.
Lupiec LRT is to test whether actual failure rate equals the ideal failure rate.
Long indicates long position, which means investors sell first and buy later.

Table 3.16: Out-of-Sample Forecast—Riskmetrics—Long Position.
Traditional Riskmetrics Riskmetrics with investor sentiment Effect

Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value
0.05 0.057 0.98893 0.32 0.041 1.812 0.17827
0.025 0.027 0.16 0.68916 0.018 2.224 0.13588
0.01 0.011 0.097834 0.75444 0.007 1.0156 0.31356
0.005 0.007 0.71463 0.39791 0.005 .NaN 1

Note: Quantile indicates ideal failure rate. Failure rate indicates the actual failure
rate estimated by the model.
Lupiec LRT is to test whether actual failure rate equals the ideal failure rate.
Long indicates long position, which means investors sell first and buy later.
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Table 3.17: Out-of-Sample Forecast—Riskmetrics—Short Position.

Traditional Riskmetrics Riskmetrics with Volume Effect
Quantile Failure rate Kupiec LRT P-value Failure rate Kupiec LRT P-value

0.95 0.951 0.021187 0.88427 0.963 3.8953 0.048421
0.975 0.968 1.8494 0.17385 0.982 2.224 0.13588
0.99 0.988 0.37976 0.53773 0.997 0.68255 0.8986
0.995 0.998 2.3439 0.12578 0.998 2.3439 0.12578
0.9975 0.999 1.1697 0.27947 0.999 1.1697 0.27947

Note: Quantile indicates ideal failure rate. Failure rate indicates the actual failure
rate estimated by the model.
Lupiec LRT is to test whether actual failure rate equals the ideal failure rate.
Short indicates short position, which means investors buy and sell later.

3.7 Concluding Comments

In this paper, investor sentiment effect is included in both mean and conditional vari-

ance equations of different GARCH models, such as FIGARCH, EGARCH, and Riskmetrics.

By comparing augmented GARCH models considering investor sentiment effect with tradi-

tional GARCH models, the result proves that augmented GARCH models work significantly

better than traditional GARCH models by AIC, BIC, log-likelihood, and out-of-sample VaR

forecasting. The research indicates a significant role of investor sentiment in forecasting con-

ditional mean and conditional volatility and the accuracy of the GARCH model is improved

by accounting for investor sentiment effect.
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Chapter 4

ESTIMATING THE VALUE-AT-RISK OF RETURNS BASED ON

MONTE CARLO SIMULATION AND NEURAL NETWORK

4.1 Introduction

Forecasting density of asset prices has been a crucial issue in the research of finance

and economics. Its purpose is to model the potential uncertainty via parametric or non-

parametric distribution functions. Historically, more attention has been given to evaluating

point forecasts, while less emphasis has been placed on interval forecasts (Chatfield, 1993;

Christoffersen, 1998) and probability forecasts (Clemen et al., 1995). In recent years, more

and more interest has centered on evaluating density forecasts. According to the research

done by Diebold et al. (1998), Raaij and Raunig (2005), and Bao et al. (2004), the rapid

development of density forecasting is based on the following reasons:

First, traditionally, density forecast is parially due to a lack of computer technology and

simulation techniques. The rapid advance in computer technology has made straightforward

and precise density forecasts possible.

Furthermore, the booming area of derivative products and financial risk management

increases the demand for density forecasts. Point or interval forecast is not adequate for

loss analysis. More emphasis has been put on “tails” analysis in many classical finance

theories, such as asset pricing, portfolio optimization, and option valuation. To handle

risks in this global financial market, an efficient management of potential risk is required.

One popular risk measurement tool is VaR, which is used to model the tails of portfolio

return distributions and is also developed from the perspective of density forecasting. VaR

is the left-quantile conditional probability distribution of asset returns, and it is broadly

used to forecast the worst portfolio loss in practice. Another example is the Basle Accord,
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which is concerned with the need to hold a certain amount of capital that is commensurate

with risk.

Supposing a random number Y is described by a distribution function F (y) and sup-

posing F (y) is differentiable, the probability density function is defined as:

f(y) =
dF

dy
. (4.1)

The q − quantile(0 < q < 1) of Y is any value y such that Pr(Y ≤ (y) = q = F (Y ).

sectionBackground The most popular generalized autoregressive conditional heteroskedas-

tic model (GARCH (1,1)) in empirical research is described as:

rt = E(rt | Ωt−1) + εt (4.2)

εt = h
1
2
t zt (4.3)

ht = ω + β1ε
2
t−1 + β2ht−1, (4.4)

where Ωt−1 stands for the information set at time t-1, E(rt | Ωt−1) is the conditional mean,

rt represents the asset return, εt is the error, ht is the conditional variance, and zt follows

a white-noise process. The GARCH model described by equations 4.2, 4.3 and 4.4 displays

two essential elements: the variance is an autoregressive moving average (ARMA) process

and the standardized residuals are identically distributed.

It is known that volatility is inherently unobservable, and many conclusions drawn

about volatility are either derived using models such as GARCH or from option-pricing

models such as Black-Scholes. Absolute or squared returns are also used to represent

volatility. However, none of them are completely correct (Andersen et al., 2003). For

example, squared returns are always affected by noise, and Andersen and Bollerslev (1998)

demonstrate that the variance of the noise is often larger than the amplitude of the signal.

The main feature of GARCH models is their ability to forecast unobservable conditional



57

mean and conditional variance processes, and VaR is a popular measure of the efficiency of

GARCH models in practice (Giot, 2005). VaR can be seen as the left α-quantile conditional

probability distribution of asset returns. In practice, when VaR is mentioned, it usually

stands for the 1-day-ahead forecast of the worst portfolio loss. For example, 1-day VaR

equalling $1 million at a 99% confidence level implies that under normal trading circum-

stances, tomorrow, one can expect a worst portfolio loss of no more than $1 million with

99% probability.

One way of calculating VaR is by conditional mean, and conditional variance:

V aRt,α = µt − Φtσt, (4.5)

where α is the confidence level, µt is the conditional mean and σ2
t is the conditional variance

at time t. Φt is the left α-quantile for error distribution, which could follow a standardized

normal, Student’s-t, skewed-Student-t or any other distribution. Conditional mean and

conditional variance can be derived from GARCH models or other time-series models and

VaR can thus be calculated at time t.

The failure rate, namely violation rate, is the probability that the real return value is

lower than the computed VaR.

Let N be the number of times the asset returns are lower than the VaR in a sample of

size T. We define the failure rate as f , such that:

f =
N

T
. (4.6)

Ideally, the failure rate should be equal to the prespecified α-level associated with VaR.

Using the conventional method to get a conditional probability distribution of returns,

the conditional mean and conditional variance must be derived from different time-series

models. Only after a specific distributional assumption has been imposed does it become

possible to achieve a quantile forecast. During that process, it is important for the distri-
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bution assumption to be capable of approximating the “true” distribution of the series. In

this paper, an innovative way to obtain the conditional probability distribution of returns

is presented without a distribution assumption.

The paper is organized as follows. Section 4.2 provides a literature review, Section 4.3

presents a Monte Carlo experiment, and Section 4.4 gives a comprehensive introduction of

neural networks. In Section 4.5, we assess the performance of the models by the failure rate

as well as the mean squared error (MSE).

4.2 Literature Review

Using daily exchange rates from July 1988 to July 1996, Taylor (2001) discusses a new

approach to estimate the conditional probability distribution of returns by using neural

network algorithms. The benefit of this approach is that the use of a neural network does

not require a distributional assumption. The result of Taylor (2001) shows that the neural

network method gives a useful alternative for estimating VaR.

Taylor’s nonparametric approach analyzes historical returns from a range of different

holding periods: 1, 3, 5, 7, 10, 12, and 15 days, wherein conditional means for returns are

assumed to be 0. The quantile distribution of returns is a function of k, the length of the

holding period, and σ̂t+1, the 1-step-ahead conditional variance forecast. Supposing that

the k-period volatility forecast equals σ̂t+1, inflated by k
1
2 , i.e.,

Qt,k(θ) = Φθσ̂t,k = Φθk
1
2 σ̂t+1, (4.7)

where Qt,k(θ) can be viewed as VaR at θ confidence level and k holding period. Notice

that Equation 4.7 is a special case of Equation 4.5, assuming that the conditional mean

is 0 and k = 1. The conventional approach to obtain the k-period forecast of Qt,k(θ), the

θth quantile distribution of returns, requires the assumption of a distribution. For different

distributions, such as Gaussian, student’s-t, or skewed student’s-t, the value of Φθ differs.

To avoid the assumption of distribution, Taylor uses a linear quantile regression model:
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Qt,k(θ) = a + bk + ckσ̂t+1 + dk
1
2 σ̂t+1, (4.8)

where Qt,k(θ) is the θth quantile of return distribution, for which Pr(rt,k ≤ (Qt,k) = θ, and

a , b, c, and d are constant parameters.

To estimate the relationship between Qt,k(θ) and σ̂t+1, Taylor uses a more efficient

approach called neural networks instead of the traditional approach. Taylor points out that

neural networks are capable of avoiding the laborious and potentially inefficient regression

procedure. In Taylor (2001), neural networks are used to analyze the model described by

Equation 4.8 and to obtain the forecasts on future Qt,k(θ) and σ̂t+1, which are calculated

using Gaussian GARCH(1, 1) to analyze the exchange rate. It is acknowledged by Taylor

(2001) that if the normal GARCH model is misspecified, the efficiency of the quantile

regression neural network approach is affected, and a better alternatives might be available.

However, according to Taylor (2001), this normal GARCH(1,1) may be the simplest and

the least controversial choice.

The accuracy of Taylor’s method depends in part on whether Gaussian GARCH (1,

1) is the most suitable model to analyze the exchange-rate return data. As mentioned in

Taylor (2001), the Gaussian assumption is often inappropriate because the distribution is

always skewed and leptokurtic, and alternatives such as the t-distribution and nonparamet-

ric methods may be more appropriate. If the Gaussian GARCH (1, 1) is not the best choice

for the return data, it appears that the forecast σ̂t+1 is affected as well as the relationship

between Qt,k(θ) and σ̂t+1.

An example is used to illustrate the analysis of Dow Jones Industrial Index daily

returns data back Chapter 3 of this dissertation. Table 4.1 demonstrates the descriptive

statistics for the daily return data from 1998 to 2006. It is obvious that returns are left

skewed and leptokurtic, which means that they have a smaller “peak” around the mean

and thinner tails than the normal distribution. Figure 4.1 displays the histogram of returns

compared with normal distribution. It is obvious that return distribution has a more acute
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“peak” around the mean and fat tails, which indicates that the empirical Dow Jones daily

return data do not display a standard normal distribution.

Table 4.1: Descriptive Statistics for Dow Jones.

obser. mean Std. Skewness Excess Jaque-
dev Kurtosis Bera test

Return 4791 0.03803 0.9863 -0.36301 5.3822 5888.0

Note: the column reporting kurtosis describes the excess kurtosis, that is, the
kurtosis in excess of 3, where the excess kurtosis would be 0 for the normal
distribution.
Skewness is to test whether the distribution is symmetric. If Skewness is 0, the it is
symmetric. If Skewness is negative, it skews to the left.
Jaque-Bera test is test the normality.

To analyze the stock market using GARCH models, a distribution assumption is re-

quired. Although the real distribution of empirical data is not normal, the standardized

student’s t or skewed student t distribution assumption often work better. In Table 4.2,

GARCH (1,1) models with normal, student’s-t, and skewed student’s-t distribution are

compared by failure rate as explained in Chapter 3 of this dissertation. A popular mea-

sure of GARCH models’ accuracy is whether the failure rate equals the prespecified level

of significance; refer to Taylor (2001). The failure rates of 5%, 2.5%, and 1% left-quantile

are presented respectively in Table 4.2. It is obvious that for different distributions, the

failure rates are different. For 1% and 5% left-quantiles, skewed t outperforms the other two

distributions, which confirms the results from the literature, that financial series is always

skewed and leptokurtic. From this, it seems difficult to judge whether normal GARCH(1,1)

is the best candidate in Taylor’s method.

The accuracy of estimated conditional mean and variance clearly depends on models

and distribution assumptions. Taylor mentions that if the results from other models are

found to be notably different from those of the normal GARCH(1,1) model, it is difficult to

determine whether the difference is caused mainly by the choice of models. In view of this
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Fig. 4.1: Estimated density and histogram of returns.

problem, this paper attempts to use a Monte Carlo approach to generate a perfect normal

distribution, a perfect standardized student’s-t distribution, and a perfect skewed student’s-

t distribution. On the basis of this generated data, we compare the performance of the

GARCH and neural network approaches. To make the method simple and straightforward,

this paper uses 1-day return series and 1-step-ahead forecasting instead of the multi-period

return series and the multi-step-ahead forecasting method of Taylor’s (2001) paper. In other

words, k=1 is assumed as in Taylor’s model.

4.3 Monte Carlo Evidence

A small Monte Carlo experiment designed to generate the simulated conditional vari-

ance is adopted in this paper. The design of the experiment is similar to the work done

by Park (2002). However, error distributions, parameter values in GARCH models, and

sample sizes are constructed differently.
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Table 4.2: Violation Rates for GARCH Models with Normal, Student’s-t, and Skewed
Student-t Distributions for Dow Jones Daily Returns.

Failure Rate
Quantile Normal Student’s-t Skewed t
0.05 4.28% 3.66% 4.77%
0.025 2.81% 1.94% 1.85%
0.01 1.36% 0.892% 0.0979%

Note: Quantile indicates the ideal failure rate.
Failure rate indicates actual failure rate by different distribution assumptions.

Following Taylor’s (2001) method, the conditional mean for return series is supposed

to be 0. We acknowledge that this assumption may have some problems because the mean

of empirical data is not shown to be 0. However, this assumption of Taylor’s (2001) will

simplifies the analysis and calculation of VaR in the following sections. The Monte Carlo

experiment is based on the following GARCH (1, 1) data-generating process:

rt = h
1
2
t zt (4.9)

ht = ω + β1ε
2
t + β2ht−1 (4.10)

zt|rt−1, rt−1... ∼ iid(0, 1), (4.11)

where the values of parameters, ω, β1, and β2 are obtained from estimating the model

using Dow Jones daily return data from 1988 to 2006. The innovations zt are drawn as

i.i.d. from N(0,1), standard student’s-t distribution with 7 degrees of freedom, and skewed-

t-distribution with 7 degrees of freedom and -0.069272 asymmetry as indicated by the

historical data.

GARCH(1, 1) models with three different distributions are presented as:

1. Normal Distribution

A standard GARCH model with a conditional normal distribution (heteroskedastic,

but neither skewed nor leptokurtic):
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ht = 0.005929 + 0.046914ε2
t + 0.948515ht−1 (4.12)

V aRLong,t,α = µt − Φασt (4.13)

V aRShort,t,α = µt + Φασt, (4.14)

where Φα is the left α-quantile for a standardized normal distribution. σt is a conditional

variance at time t, which is indicated as ht in the GARCH model. µt is a conditional mean,

which is assumed to be 0 following Taylor (2001). Long indicates a long position, which

involves the purchase of an asset; short indicates short position when traders sell shares

they do not own. For investors in long position, their concern is about prices falling, or left

tail analysis on return distribution. On the other hand, the concern of those who are in

short position is related to price increasing, or right tail analysis on return distribution.

2. Student’s-t Distribution

Model GARCH (1,1) with standard student’s-t distribution (heteroskedastic, not skewed

but leptokurtic)

ht = 0.005280 + 0.043433ε2
t + 0.950937ht−1 (4.15)

V aRLong,t,α = µt − Stα,νσt (4.16)

V aRShort,t,α = µt + Stα,νσt, (4.17)

where Stα,ν is the left α-quantile for student-t distribution. ν is the degree of freedom.

3. Skewed student’s-t Distribution

Model GARCH (1,1) with skewed student-t distribution (heteroskedastic, skewed and

leptokurtic):

ht = 0.005529 + 0.044554ε2
t + 0.94996ht−1 (4.18)
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V aRLong,t,α = µt − Skstα,ν,ζσt (4.19)

V aRShort,t,α = µt + Skstα,ν,ζσt, (4.20)

where Skstα,ν,ζ is the left α-quantile for student-t distribution, ν is the degree of freedom,

and ζ measures the skewness.

Because 4700 Dow Jones data points are used to estimate the parameters of the model,

4700 hypothetical trials of daily returns for each model are generated. From each data

generating process, ht, the simulated conditional variance, and rt, the simulated return, are

achieved, and VaR in each step is calculated using V aRt,α = Φα

√
ht by assuming that the

conditional mean is 0. The 1-step-ahead forecast of VaR for time t is:

V aRt+1,α = Φα

√
ĥt+1, (4.21)

where ĥt+1 is the 1-step-ahead conditional variance forecast. V aRt+1,α can be seen as a

function of ĥt+1:

V aRt+1,α = g(ĥt+1). (4.22)

Similar to Equation 4.9 and Equation 4.10, ĥt+1 can be expressed as the following

equation:

ĥt+1 = ω + β1ε
2
t + β2ht−1 = ω + β1r

2
t + β2(

rt

zt
)2. (4.23)

Therefore, ĥt+1 can be seen as a function of rt:

ĥt+1 = f(rt). (4.24)

V aRt+1,α, the 1-step-ahead forecast of VaR for time t, can then be seen as a function

of rt:

V aRt+1,α = φ(rt). (4.25)
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Equation 4.25 demonstrates a certain relationship between VaR and returns. From the

Monte Carlo simulation, conditional variance ht and return rt can be achieved at time t.

V aRt,α can be calculated through equation 4.5. Therefore, we have two series available, rt

and V aRt,α at each time. A neural network is adopted to analyze the relationship between

the two series, and V aRt+1,α is forecasted based on previous values of VaR and returns.

4.4 Neural Networks

Inspired by Taylor (2001), Hamid (2004), Kulczycki and Scholer (1999), we use neural

networks to fit the nonlinear relationship between the 1-step-ahead forecast of VaR and

returns. The neural network is more flexible in modeling the relationship and most im-

portantly, it can avoid making distribution assumptions. Taylor (2001) points out that

returns do not always exhibit a normal or t-distribution. Thus, a nonparametric approach

to quantile estimation is attractive. The main advantage of this method is that it allows

a complete analysis of the nonlinear relationship between quantiles of asset returns and

returns by avoiding any specific distribution assumption.

An artificial neural network (ANN) is a computational technique developed to mimic

the ability of human brains to process data and to comprehend patterns. It can be viewed

as a type of multiple regression accepting inputs and processing them to predict the output.

ANNs are one of the most effective tools in learning and interpreting complicated real-world

data (Mitchell, 1997).

The business world is becoming increasingly dependent on neural networks to esti-

mate problems and to forecast the future. The networks have been used in domains such as

portfolio selection, market distribution analysis, accounting, auditing, human resources eval-

uation, stock prediction, bond risk assessment, credit card fraud detection, exchange rate

forecasting, options valuation, financial distress detection, commodity trading, mortgage

risk assessment, and business cycling, etc. (Hamid, 2004). Wong et al. (1997) demonstrate

that the most frequent application domains of ANN are productions and operations (53.5%)
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and finance (25.4%).

Neural networks have proven to outperform linear models in a variety of circumstances

(Hamid, 2004), especially in capturing complicated relationships in which traditional mod-

els fail to perform well (White, 1989; Kuan and White, 1994). White’s (1988) research on

IBM daily common-stock returns by the neural network conclude that ANNs are capable

of capturing some of the complex dynamic behavior of stock returns. Shachmurove and

Witkowska (2000) compare the performance of ordinary least squares, general linear regres-

sion, an artificial neural network model and multi-layer perception models to examine the

dynamic interactions of some world stock markets. They conclude that the neural network

outperformed other conventional techniques.

Which type of neural network performs best relies on the ability to forecast the data.

There is no way to decide which kind of neural network is best before applying it to the

data. The best strategy is to estimate different types of neural networks to find which

fits the data best. In this paper, after comparing different neural networks, a multi-layer

perception or MLP network is chosen with twenty inputs and two hidden layers. The twenty

input nodes are ten lagged values of returns and ten lagged values of VaRs from time t-1

to t-10, and VaR at time t is the forecasted output.

MinΣT
t=0(yt − ŷt)2 (4.26)

nk,t = ωk,0 + Σi∗
i=1ωk,ixi,t (4.27)

Nk,t =
1

1 + e−nk,t
(4.28)

pl,t = pl,0 + Σk∗
k=1pl,kNk,t (4.29)
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Fig. 4.2: MLP network.

Pl,t =
1

1 + e−pl,t
(4.30)

ŷt = γ0 + Σl∗
l=1γlPl,t, (4.31)

where y is the output, x is the input, and n and p are two hidden layers, N and P represent

the logsigmoid activation function with the form 1

1+e
−nk,t

and 1

1+e
−pl,t

. The reason why

logsignoid activation function is adopted in MLP is that it can characterize many types

of economic responses to change and reflects a form of learning behavior, as suggested by

McNelis (2004). The set of k∗ neurons or inputs are combined in a linear way with the

coefficient vector {γl}, l = 1, ...l∗, and with a constant term, γ0 to form the forecast ŷt at

time t. In this system, there are i∗ input variables x, input weights ωk,i, k∗ neurons in the

first hidden layer, l∗ neurons in the second hidden layer, and constants ωk,0, pl,0 and γ0.

Before using the neural network, scaling the data between 0 and 1 is a necessary
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step. The reason is that underflow or overflow problems can be caused by very high or low

numbers in the series. Judd (1998) finds that the computer assigns a value of 0 to the values

being minimized. Furthermore, for the logsigmoid approach used above, if the data are not

scaled to a reasonable interval, such as [0, 1] or [−1, 1], the neural network will simply set

the reasonably large values at 1, and the reasonably low values at 0 or -1. Without scaling,

it is likely that a great deal of information will be lost (McNelis, 2004).

In this paper the linear and standardization methods from McNelis (2004) are com-

bined:

x∗k,t =
zk,t −min(zk)

max(zk)−min(zk)
(4.32)

zk =
xk − x

σx
(4.33)

In the following section, the results from neural networks are compared with those

of GARCH (1,1) models using the 4700 data generated from the Monte Carlo experiment

under three data generation process: a normal distribution, a student-t distribution, and a

skewed-t distribution.

Under each situation, the 4700 data is divided into two parts: estimation and fore-

casting. The first 3700 data are set to estimate the GARCH (1,1) model and to train the

neural network, one-day is set as the order of the lagged term, and the last 1000 data are

used as an out-of-sample validation data set to evaluate the forecasts. Simulated VaR and

returns from the Monte Carlo experiment are compared with the VaR forecasts to test the

forecasting ability of neural networks and GARCH models.

The predictability is judged from the in-sample fit of both GARCH and neural networks

and out-of-sample fit obtained from a sequence of rolling regressions under each distribution

condition.
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4.5 Results

The performance of the models is evaluated by the failure rate, as well as the mean

squared error (MSE) method, which are presented in Tables 4.3 - 4.14.

Table 4.3: In-sample Failure Rate by GARCH and NN-Normal Distribution.

Simulated VaR GARCH Neural Networks
5% 4.73% 4.59% 4.73%
2.5% 2.3% 2.16% 2.27%
1% 0.92% 0.86% 0.92%

Note: The first column indicates the ideal failure rate.
Simulated VaR indicates the actual failure rate of simulated data.
GARCH indicates the actual failure rate of the simulated data estimated by a
GARCH model.
Neural network indicates the actual failure rate of the simulated data estimated by
a neural network approach.

Table 4.4: Out-of-Sample Failure Rate by GARCH and NN-Normal Distribution.

Simulated VaR GARCH Neural Networks
5% 4.1% 3.8% 4.00%
2.5% 1.7% 1.7% 1.6%
1% 0.5% 0.5% 0.5%

Note: The first column indicates the ideal failure rate.
Simulated VaR indicates the actual failure rate of simulated data.
GARCH indicates the actual failure rate of the simulated data estimated by a
GARCH model.
Neural network indicates the actual failure rate of the simulated data estimated by
a neural network approach.

Ideally, the failure rate should be equal to the prespecified VaR level α. In practice, if

the failure rate is too low, the model is too loose because it would underpredict potential

risk. On the other hand, if the failure rate is too high, the model is too conservative because

it would unnecessarily jeopardize profit opportunity. MSE can be used with the failure rate

to measure the specific distance between the ideal value and estimated value:
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Table 4.5: In-sample MSE by GARCH and NN-Normal Distribution.

GARCH Neural Networks
5% 0.001394 6.33432E-08
2.5% 0.001979 4.46477E-07
1% 0.002787 1.25818E-07

Note: The first column indicates the ideal failure rate.
GARCH indicates the MSE estimated by the distance of ideal failure rate and
actual failure rate derived from a GARCH model.
Neural network indicates the MSE estimated by the distance of ideal failure rate
and actual failure rate derived from a neural network approach.

Table 4.6: Out-of-sample MSE by GARCH and NN-Normal Distribution.

GARCH Neural Networks
5% 0.00277363 7.685E-08
2.5% 0.00394239 4.6927E-07
1% 0.00556993 1.5355E-07

Note: The first column indicates the ideal failure rate.
GARCH indicates the MSE estimated by the distance of ideal failure rate and
actual failure rate derived from a GARCH model.
Neural network indicates the MSE estimated by the distance of ideal failure rate
and actual failure rate derived from a neural network approach.

Table 4.7: In-sample Failure Rate by GARCH and NN-student’s-t Distribution.

Simulated GARCH Neural Networks
5% 5.07% 5.6911% 5.04%
2.5% 2.66% 2.5474% 2.60%
1% 1.14% 0.81301% 1.14%

Note: The first column indicates the ideal failure rate.
Simulated VaR indicates the actual failure rate of simulated data.
GARCH indicates the actual failure rate of the simulated data estimated by a
GARCH model.
Neural network indicates the actual failure rate of the simulated data estimated by
a neural network approach.

MSE =
1
N

N∑

1

( ˆV aRt,α − V aRt,α)2 (4.34)
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Table 4.8: Out-of-Sample Failure Rate by GARCH and NN-student’s-t Distribution.

Simulated VaR GARCH Neural Networks
5% 4.6% 5.6% 4.7%
2.5% 2.3% 2.6% 2.4%
1% 1.1% 0.8% 1.2%

Note: The first column indicates the ideal failure rate.
Simulated VaR indicates the actual failure rate of simulated data.
GARCH indicates the actual failure rate of the simulated data estimated by a
GARCH model.
Neural network indicates the actual failure rate of the simulated data estimated by
a neural network approach.

Table 4.9: In-sample MSE by GARCH and NN-student’s-t Distribution.

GARCH Neural Networks
5% 0.006213749 2.8861396E-8
2.5% 0.001672545 4.4608918E-8
1% 0.041402473 7.1597047E-8

Note: The first column indicates the ideal failure rate.
GARCH indicates the MSE estimated by the distance of ideal failure rate and
actual failure rate derived from a GARCH model.
Neural network indicates the MSE estimated by the distance of ideal failure rate
and actual failure rate derived from a neural network approach.

Table 4.10: Out-of-sample MSE by GARCH and NN-student-t Distribution.

GARCH Neural Networks
5% 0.0048803 1.1982538E-6
2.5% 0.0016062 1.8667803E-6
1% 0.0321145 2.9955287E-6

Note: The first column indicates the ideal failure rate.
GARCH indicates the MSE estimated by the distance of ideal failure rate and
actual failure rate derived from a GARCH model.
Neural network indicates the MSE estimated by the distance of ideal failure rate
and actual failure rate derived from a neural network approach.

for α = 0.05, 0.25, and 0.01



72

Table 4.11: In-sample Failure Rate by GARCH and NN-skewed student’s-t Distribu-
tion.

Simulated VaR GARCH Neural Networks
5% 4.65% 5.2162 % 4.65%
2.5% 2.73 % 2.7027 % 2.73 %
1% 1.38% 1.1351 % 1.38 %

Note: The first column indicates the ideal failure rate.
Simulated VaR indicates the actual failure rate of simulated data.
GARCH indicates the actual failure rate of the simulated data estimated by a
GARCH model.
Neural network indicates the actual failure rate of the simulated data estimated by
a neural network approach.

Table 4.12: Out-of-Sample Failure Rate by GARCH and NN-skewed student-t Dis-
tribution.

Simulated VaR GARCH Neural Networks
5% 5.6% 6.4 % 5.7%
2.5% 3.6% 3.5% 3.6 %
1% 1.5% 1.1% 1.5 %

Note: The first column indicates the ideal failure rate.
Simulated VaR indicates the actual failure rate of simulated data.
GARCH indicates the actual failure rate of the simulated data estimated by a
GARCH model.
Neural network indicates the actual failure rate of the simulated data estimated by
a neural network approach.

Tables 4.3 - 4.6 summarize both the in-sample and out-of-sample performance of

GARCH and neural networks under normal data-generating processes by comparison with

the simulated VaRs obtained from the Monte Carlo simulation. Simulated VaR is calcu-

lated by simulated conditional variance, assuming different distributions, such as normal,

student’s-t or skewed t. Clearly, the in-sample fit of the neural network method outperforms

GARCH, as indicated by the fact that the failure ratio for 5%, 2.5%, and 1% left-quantile

is exactly the same as those of the simulated VaR and neural networks. The out-of-sample

forecasting performance of both GARCH and neural networks are very close to the simu-
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Table 4.13: In-sample MSE by GARCH and NN-skewed student’s-t Distribution.

GARCH Neural Networks
5% 0.008943602 1.0960299E-7
2.5% 0.003109564 1.7014316E-7
1% 0.025626077 2.7340442E-7

Note: The first column indicates the ideal failure rate.
Simulated VaR indicates the actual failure rate of simulated data.
GARCH indicates the actual failure rate of the simulated data estimated by a
GARCH model.
Neural network indicates the actual failure rate of the simulated data estimated by
a neural network approach.

Table 4.14: Out-of-sample MSE by GARCH and NN-skewed student’s-t Distribution.

GARCH Neural Networks
5% 0.0147448 0.0016686
2.5% 0.0045320 0.0025990
1% 0.1264481 0.0041769

Note: The first column indicates the ideal failure rate.
GARCH indicates the MSE estimated by the distance of ideal failure rate and
actual failure rate derived from a GARCH model.
Neural network indicates the MSE estimated by the distance of ideal failure rate
and actual failure rate derived from a neural network approach.

lated VaR. However, based on the MSE between the actual and fitted values, it is obvious

that the neural networks method shows better performance than the GARCH method;

the advantages lie in the tiny MSE for both in-sample and out-of-sample fit from neural

networks.

Under the student’s-t distribution data-generation process of the Monte Carlo ex-

periment, Tables 4.7 - 4.10 summarize both in-sample and out-of-sample performance of

GARCH and neural networks by comparism with the simulated VaRs from the Monte

Carlo simulation. Similar to the case of normal distribution, both the in-sample fit and

out-of-sample forecast of the neural networks method outperforms GARCH.

Tables 4.11 - 4.14 summarize both in-sample and out-of-sample performance of GARCH
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and neural networks under a skewed student’s-t distribution data-generation process of the

Monte Carlo experiment. It is obvious that both the in-sample fit and out-of-sample forecast

of the neural networks method outperforms GARCH.

4.6 Concluding Comments

This paper adopts a nonparametric approach to estimate the conditional probability

distribution of asset returns. It is evident that the exact conditional mean or conditional

variance is inherently unobservable for time series. In practice, conditional variance is often

achieved from different parametric models, such as GARCH, EGARCH, IGARCH, etc., by

assuming different distributions such as normal, student’s t, or skewed t. Therefore, the

accuracy of forecast strongly depends on the assumption of distribution. The introduced

method avoids the need to assume distribution by using a neural network to estimate the

potentially nonlinear relationship between VaR (value at risk) and returns. Our results

show that the neural network approach outperforms traditional GARCH models.
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Chapter 5

CONCLUSIONS

In this three-essay dissertation, we examined the role of trading volume in the stock

market and forecast Value-at-Risk using both parametric and nonparametric methods. It

is known that volatility is inherently unobservable, thus the selection of models and how

to define them is crucial for financial research. This research attempts to analyze and

forecast the stock market by both parametric and nonparametric approaches. The first two

essays use the parametric method. In the first essay, the role of the day-of-the-week as well

as investor sentiment is examined on stock returns and market direction. Through linear

regression and Logit regression approaches, robust results are achieved to show that there

is a significant positive role for investor sentiment on returns and market direction. The

day-of-the-week effect is dubious varying with individual stocks. Based on evidence from

the first essay, an investor sentiment effect derived from trading volume is added to both the

mean and conditional variance of Generalized Autoregressive Conditional Heteroskedastic

(GARCH) models. Four GARCH models are examined including GARCH, FIGARCH,

EGARCH, and Riskmetrics. By both in-sample and out-of-sample value-at-risk forecasts,

GARCH models are significantly improved by accounting for the investor sentiment.

In contrast to the first two essays that use parametric methods to forecast stock market

returns, the third essay uses a nonparametric approach to forecast value at risk of returns.

A Monte Carlo experiment is used to generate stock-return data, including a series with a

standardized normal distribution, a series with a standardized student’s-t distribution and a

series with a skewed student’s-t distribution. A neural network approach is used to forecast

Value-at-Risk and the result is compared with the traditional GARCH approach. These

results suggest that nonparametric neural network methods can be a good alternative to

forecasting Value-at-Risk in the market.
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