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ABSTRACT 

 
Synthesis and Characterization of Lactose-amines with Respect to Oil-in-Water Emulsion 

Stability 

 
by 

Nidhi Garg, Master of Science 

Utah State University, 2008 

 

Major Professor: Dr. Marie K. Walsh 
Department: Nutrition and Food Sciences 
 
 

Fatty amines (hexadecyl-amine) can be esterified to lactose via Schiff-base 

formation at temperatures of 60° C.  Extending the time of the reaction results in a darker 

colored product due to the Maillard reaction.  Due to the amphiphilic properties of the 

lactose-amines, the emulsion stabilization characteristics were investigated.  

       In this study, synthesis of lactose-amines was done at four different heating and 

cooling cycles from 4 to 24 hours.  Lactose-amines processed for 24 hours and 12 hours 

of constant heating and cooling cycles are named as 24H and 12H, respectively.  Lactose-

amines 4H and 8H were processed for 4 and 8 hours of constant heating at 60°C.  The 

24H and 12H samples were white in color as they were exposed to heat for short time 

(due to the cooling cycle) i.e. 2-2.5 and 1.5 hours, respectively, as compare to 4H and 8H 

(i.e. 4 hours and 8 hours, respectively). It was assumed that white colored compounds are 

early intermediates of Maillard browning reactions known as Amadori. The light brown 

color of the 4 hours heat-treated product might contain intermediate products of the 
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Maillard browning reaction. The dark brown colored after 8 hours of constant heating 

might have advanced Maillard products and polymers.  

Each lactose-amine sample was used as emulsifiers in oil-in-water (20:80 ratio of 

oil: water) emulsion at four different concentrations (0.01%, 0.05%, 0.1%, and 1%).  

Negative controls consisted of hexadecyl-amine and lactose at the same concentrations as 

stated above, as well as an oil-in-water control.  The positive control was an emulsion 

containing 2% whey protein (WP).  Emulsions were formed with a microfluidizer 110S at 

a pressure of 6,900 psi. Emulsion stability was monitored by measuring the oil droplet 

sizes of each emulsion on day 0 and destabilization kinetics on day 1 and 5.   

The oil droplet size distribution and destabilization kinetics of the emulsions 

prepared with lactose-amines (4H, 8H, 12H, and 24H) at 0.01% of concentration were 

closer towards the negative controls (lactose, fatty-amine, and o/w).  At 1% 

concentration, emulsions prepared with all types of lactose-amines had smaller droplet 

size similar to WPC 80.  Destabilization kinetic profiles of the emulsions show that 1% 

lactose-amines produced more stabilized emulsions as compared to WPC 80 with respect 

to time.  Emulsions of 4H and 24H were following the similar trend of droplet size 

distribution and destabilization rate as of WPC 80.  Lactose-amines 8H and 12H 

emulsions were showing more destabilization and bigger oil droplet size as compared to 

4H, 24H, and WPC 80.  Droplet size distribution at day 0 and destabilization kinetics 

from day 0 to day 5 showed that the types of lactose-amines and their increasing 

concentrations have great influence on the stability of emulsions.  This research has 

shown that lactose-amines produced at treatments of 24 and 4 hours are effective at 

stabilizing emulsions at 1% concentration.                              (98 pages) 
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INTRODUCTION  

 
Emulsions are a mixture of two immiscible liquids, which are unstable systems 

due to the dispersed phase, which divides into small droplets increasing the contact area 

between both liquid phases (Hui 2007).  Some food and food products consist of complex 

emulsions (Bee et al. 1989; Larson and Friberg 1990).  Some of the most commonly 

known examples of o/w (oil-in-water) emulsions are salad dressing, ice-cream, and 

mayonnaise. 

 
Instabilities in Emulsions 

Emulsion is the mixture of two unblendable or immiscible liquids like oil and 

water, by applying shear pressure causing changes in the interfacial layers of both the 

liquids.  With the progression of time emulsions destabilize.  Instabilities in emulsions 

are creaming, coalescence and flocculation.  

Creaming is when the dispersed phase has a lower density than the continuous 

phase and can be coupled with coalescence or flocculation, which leads to a phase 

separation.  An example of creaming is the rising of the layer of fat in raw milk.  

Coalescence and flocculation phenomena are physico-chemically very different, but they 

both lead to an increase in the size of the oil droplets.  Coalescence is irreversible and 

leads to the fusion of the interfaces, hence the creation of one single oil drop, while 

flocculation is an aggregation of the oil droplets.  These instabilities occur in emulsions 

due to insufficient emulsifiers which cover the entire oil-water interface protecting oil 

droplets from interacting with each other, leading to the inhibition of the flocculation and 

coalescence phenomenon. 
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Mechanism of Emulsifiers  

Emulsifiers or surface-active agents can be used to make emulsions stable for a 

reasonable period of time (Hui 2007).  The mechanisms of emulsifiers are based on their 

amphiphilic property.  Amphiphilic nature means that they contain both hydrophobic 

groups (water-fearing group as their "tails") and hydrophilic groups (water-loving group 

as their "heads"); therefore, they are soluble in both organic solvents and water.  An 

example is phospholipids.  Emulsifiers aggregate in a liquid colloid, forming a micelle.  

A micelle is a structure where hydrophobic tails associate in the center shielded from the 

aqueous solution while the hydrophilic charged associate with the aqueous solution (Fig 1 

(A) and (B)). 

 

 

 
Fig 1 (A). Scheme of a micelle formed by phospholipids in an aqueous solution (Source: 

General, organic and biological chemistry, Platinum edition, 2004). 

(A) 
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Fig 1 (B). Cross section view of the structures that can be formed by phospholipids in 

aqueous solutions (Source: General, organic and biological chemistry, Platinum edition, 

2004). 

 
There are two categories of emulsifiers that are widely used in the food industry. 

They are low molecular weight emulsifiers which includes phospholipids such as lecithin 

(found in egg yolk) and surfactants which includes sugar esters (sucrose esters), and high 

molecular weight emulsifiers consisting of polysaccharides (maltodextrin, gum Arabic) 

and proteins (caseins, whey proteins, gelatins) (Garti 1999).  Both types of emulsifiers 

possess amphiphilic properties, which increases the stability of the emulsions for a 

prolonged period.    

In the categories of emulsifiers, proteins stand as efficient emulsifying agents and 

stabilizers of food o/w emulsions (Dickinson and Stainby 1982).  Because the free energy 

of protein is lower at the interface than it is in the bulk aqueous phase, spontaneous 

migration of protein occurs forming a highly visco-elastic film at the o/w interface.  
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Surface active properties of proteins are related to differences in protein conformation, 

which include adaptive nature within the environment, stability and flexibility of the 

polypeptide chain, and the distribution pattern of hydrophilic and hydrophobic groups on 

the protein surface (Damodaran 1996).  Whey proteins purified from bovine milk are 

frequently used in various emulsion based food products such as ice cream, salad 

dressing, frozen desserts, and infant formulas (McClements 2004; Swaisgood 1996; Surh 

et al., 2006).  Several studies have reported the ability of whey proteins to stabilize o/w 

emulsions.  Martin-Diana et al. (2005) reported that whey proteins have significantly 

higher emulsifying activity index as compare to casein macropeptides.  Other researchers 

have also found that whey protein-maltrodextrin conjugates act as an emulsifying agent 

and can be a good alternative to gum Arabic (Akhtar and Dickinson 2005). 

 
Lactose 

 Lactose is a disaccharide and reducing sugar found in milk and milk products.  It 

consists of β-D-galactose and α-D-glucose monosaccharides bonded through a β1-4 

glycosidic linkage.  This linkage is β1-4 glycosidic because galactose forms an acetal 

with a hydroxyl group of glucose at carbon 4 (Fig 2).  Lactose possess a property of 

mutarotation, hence is a reducing sugar, due to the presence of the aldehyde group of 

glucose, which form α and β- lactose (Anonymous 2004). 

 
Previous Studies on Synthesis of Lactose-amines 

Based on the reducing and mutarotation properties of lactose, researchers found 

ease in modifying the lactose chemically (Dhruv et al. 2005).  Presence of multi-hydroxyl 
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Fig. 2. Structure of beta-lactose and the products of hydrolysis (Source: General, organic 

and biological chemistry, Platinum edition, 2004). 

 
groups in lactose can produce several synthesized products like hydrogels, and 

glycopolymers (Dhruv et al. 2005).  Previous studies have shown that lactose cross-

linked to fatty amides or fatty amines, becomes novel lactose based surfactants 

(Bhattacharya and Acharya 1999; Dhruv et al. 2005).  These synthesized polymers due to 

their amphiphilic nature come into the class of “surfactants,” which means surface active 

agents.  Studies have shown that nonionic surfactants can stabilize o/w emulsions 

(Ponginebbi et al. 1999).  Lactose was selected by the researchers in the past as lactose is 

a low cost product or, in other words, a waste from the cheese industry.  Lactose is used 

in pharmaceuticals, infant formulas, and confectionary markets.  It has been stated that a 

lactose-rich clean waste of the dairy industry can be considered a source of surfactants in 

the food industry (Lukondeh et al. 2003).  Drummond and Wells (1998) found that 
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nonionic lactose and lacitol-based surfactants possess very similar physio-chemical 

properties and both exhibit good surface and interfacial activity suggesting their roles as 

effective emulsifiers.  

On the basis of previous studies of Bhattacharya and Acharya (1999) and Dhruv 

et al. (2005), several points regarding lactose as a surfactant came into focus, leading to 

the concept of using this surfactant in the food industry.  Bhattacharya and Acharya 

(1999) and Dhruv et al. (2005) synthesized lactose (disaccharide) with hexadecyl amine 

(C16 fatty amine) by going through maillard reactions.  These Maillard reacted lactose-

amines have the ability to form hydrogels (gels that can hold water in them for a 

prolonged period).  Several researchers studied that hydrogels are the results of cross-

linked polymerization and copolymerization of surfactants (Dhruv et al. 2005).   

My study focused on a) the synthesis of lactose-amine with constant and cyclic 

heat treatments, which resulted in polymerized (brown colored Maillard reacted) and 

non-polymerized (non brown Maillard reacted) lactose-amines,  and b) their influence 

with different concentrations on o/w emulsions as an emulsifier, in comparison to whey 

protein concentrate (protein emulsifier). 

 
Hypothesis  

• Lactose-amines synthesized via constant and cyclic heat treatments act as a 

surfactant at different concentrations by stabilizing o/w emulsions.   

 
Objectives  
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• Synthesis of lactose-amines at four different heating times from 4 to 24 hours, to 

polymerized (brown colored maillard reacted) and non-polymerized (non brown 

maillard reacted) lactose-amines. 

• Estimation of particle size of o/w emulsion with different concentrations of 

polymerized and non-polymerized lactose-amines comparable to whey protein 

concentrate (protein emulsifier) as positive control. 

• Determine the optimum concentration of polymerized and non-polymerized 

lactose-amine synthesized in objective 1 that will stabilize o/w emulsions 

comparable to whey protein concentrate (protein emulsifier) as positive control, 

lactose, o/w and fatty-amine as negative controls. 
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REVIEW OF LITERATURE 

 
Emulsion  

 Emulsions are a mixture of two immiscible liquids, which are thermodynamically 

unstable systems due to the dispersed phase, which divides into small droplets increasing 

the contact area between both liquid phases (Hui 2007).  Emulsions are of two types 

“direct emulsion” and “inverse emulsion.”  Direct emulsions are the emulsions in which 

oil droplets are dispersed in water and inverse emulsion are those emulsions in which 

water is dispersed in oil (Mason et al. 2006).  The dispersed phase droplet size generally 

ranges from 0.1 - 10 µ m.  Examples of food oil-in-water (o/w) emulsions include milk, 

cream, ice cream, salad dressings and cake batters, while butter and margarine are water-

in-oil (w/o) emulsions (Bee et al. 1989; Larson and Friberg 1990). 

 In emulsions, the thermodynamically lowest energy state is a layer of liquid (oil) 

having lower density on top of a liquid layer of higher density (water). To create an 

emulsion, energy (shear and pressure) is applied to rupture oil into small droplets which 

are dispersed in water phase (Mason et al. 2006).     

 To prepare these emulsions, high pressure homogenizers are considered to be the 

best choice, and widely used in the food industry (Manea et al. 2008).  Several studies 

have shown that sheer is required to prepare o/w emulsions (Pearce and Kinsella 1978; 

Cameron et al. 1991; Yaghmur et al. 1999).  These emulsions are homogenized in a 

microfluidizer (bench scale high pressure homogenizer) as it ruptures large oil droplets 

into smaller droplets (Garti et al.1998; Mason et al. 2006). 



 

 

 

9

 Homogenization is a mechanical treatment of the fat globules under high pressure, 

which results in a decrease in the average diameter and an increase in the number and 

surface area of the fat globules.  Three factors that enhanced the stability of homogenized 

emulsion are; decrease in the mean diameter of the fat globules, decrease in the size 

distribution of the fat globules, and an increase in density of the globules (Dalgleish et al. 

1996).  This disruption of fat globules is done by a combination of factors such as 

turbulence and cavitation.  Homogenization reduces fat globule size in milk from 3.5 µm 

to less than 0.1 µm, and increases the fat interfacial layer by four to six folds (Dalgleish 

et al. 1996).  

 Homogenizers works on two theories; first is the theory of globule disintegration 

or disruption by turbulent eddies (micro whirls), which work on the fact that an unlimited 

number of small eddies are created in liquid moving with high velocity.  Higher velocity 

yields smaller eddies and if an eddy causes droplets to collide, the droplets will break up.  

Secondly the theory of cavitation suggested that when the liquid leaves the narrow gap in 

the homogenizer of 0.1 mm (where the fat globules are separated what does this mean?) 

due to back pressure, homogenization takes place.  Homogenization can be done without 

considering the cavitation theory but it will reduce the efficiency of the homogenization 

process (Dalgleish et al. 1996).  

Instability of emulsions results when there is high concentration of oil droplets in 

the creaming phase leading to aggregation (particles will adhere to each other and 

become larger particles), or coalescence i.e., fusing of particles (Dalgleish 1997).  To 

avoid these destabilization effects, emulsifiers play an important role. 
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Creaming is a phenomenon of instability for emulsions, when the dispersed phase 

has a lower density than the continuous phase and can be coupled with coalescence or 

flocculation which leads to a phase separation.  Sedimentation is a phenomenon 

encountered when the density of the dispersed phase is greater than the density of the 

continuous phase.  Coalescence and flocculation phenomena are physico-chemically very 

different but they both lead to an increase in the size of the particles.  Coalescence is 

irreversible and leads to the fusion of the interfaces, hence the creation of one single drop 

while flocculation is an aggregation of the particles. 

 
Emulsifiers 

 Emulsions are thermodynamically unstable, certain emulsifiers or surface-active 

agents can be used to make emulsions kinetically (the rate at which molecules collide in 

order to react together) stable by allowing them to remain in a high state of energy 

(Dalgleish 1997; Hui 2007).  These emulsifiers reduce the interfacial tension between the 

two immiscible phases, reduce the amount of work in dispersing these two phases, and 

provide stabilization of the dispersed droplets by inhibiting flocculation and coalescence 

(Garti 1999).  Emulsifiers are absorbed into the newly formed surface of the oil droplet 

during the process of homogenization.  Emulsifiers thus lower the interfacial tension and 

form a protective layer around the droplets, which results in decreasing droplet 

coalescence and resistance to rupture by generating repulsive interactions between 

droplets (Pallandre et al. 2007). 

Garti (1999) quoted the definition of emulsifiers and stabilizers, defined by 

Dickinson et al. (1988) as “a single chemical component, or mixture of components 
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having the capacity for promoting formulation and stabilization by interfacial action, and 

a stabilizer as chemical component, or a mixture of components, which can confer long 

term stability to an emulsion, possibly by a mechanism involving adsorption.”  

A good stabilizer keeps droplets apart in the emulsion once it has been formed 

during long-term storage.  An emulsifier has the capacity to adsorb rapidly at the nascent 

o/w interface created during emulsification and protecting the newly formed droplets 

against re-coalescence.  Polysaccharides (hydrocolloids) are used as stabilizers as they 

can form macromolecular barriers in the aqueous medium between dispersed droplets 

with their hydrophilicity and high molecular weight.  Proteins are also commonly used 

emulsifiers due to their molecular flexibility which allows rapid adsorption and 

rearrangement at the interface to give a coherent molecular protective layer (Dickinson 

1988).   

There are two categories of emulsifiers; low molecular weight and high molecular 

weight.  Low molecular weight includes monoglycerides, diglycerides, phospholipids and 

surfactants which include sugar esters such as sucrose esters.  High molecular weight 

emulsifiers include polysaccharides and proteins (casein and whey proteins).  

Phospholipids, polysaccharides, proteins and sugar esters are all widely used in the food 

industry (Garti 1999). 

 
Food Grade Emulsifiers 

 Food grade emulsifiers are those emulsifiers that are recognized and approved to 

be in the GRAS (Generally Recognized as Safe) category.  These emulsifiers have a 

significant place in cosmetic, food and pharmaceutical industries.  Several studies have 
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been done on the influence of food grade emulsifiers on the stabilization of o/w 

emulsions (Garti 1999). 

 
High molecular weight emulsifiers 

High molecular weight amphiphiles have been the topic of discussion in the field 

of emulsions and emulsifiers for years.  Several studies have been done to understand the 

behavior of macromolecules at liquid or solid interfaces in foods and related industries 

(Finney 1982; Fox and Condon 1982; Tornberg and Ediriweera 1986; Barsh and Horbett 

1987; Dickinson et al. 1988). 

Maltodextrin is a polysaccharide that is used as a food additive. It is produced 

from starch and is usually found as a creamy-white hygroscopic powder.  Maltodextrin is 

used in various emulsions, which give desirable viscosity, texture, and mouth feel to the 

emulsions (Dokic-Baucal et al. 2004).  Dokic-Baucal et al. (2004) have also stated that 

emulsions with high maltodextrin concentration (25%) were stable compared to the low 

maltodextrin concentration (5%).  Emulsion stability with high concentrations of 

maltodextrin is due to the branched molecules of maltodextrin which form tightly packed 

segments or are arranged like “fringes” (Chronakis 1997), forming a network structure 

which keep the droplets in place preventing coalescence (Dickinson et al. 1995). 

The other most studied polysaccharide is gum Arabic, which is a mixture of 

saccharide and glycoprotein, used to stabilize emulsified flavored oils (McClements 

2004; Tan 2004) at concentrations of 2% or less (Djordjevic et al. 2007).  Gum Arabic 

adheres to the surface of the oil droplets during homogenization, where an interfacial 

layer is formed, which is thick and negatively charged, stabilizing the oil droplets 
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(Chanamai 2002).  Addition of sodium alginate has been reported to improve the stability 

of o/w emulsions containing caseinate (Pallandre et al. 2007).  

Protein emulsifiers includes 1% sodium caseinate (Kanafusa et al. 2007), whey 

proteins and gelatins which are widely studied and discussed for their role in influencing 

the interfacial activity of the o/w emulsions (Garti 1999).   Of the total milk protein, 80% 

is casein (Wong et al. 1996).  Sodium caseinate (NaCN) is a spray dried high quality milk 

protein or in other words, contains a soluble mixture of surface active caseins, which can 

act as an emulsifier and stabilizer at o/w interfaces (Dickinson et al. 1998; Shrinivasan et 

al. 2000; Ye and Singh 2001).  Due to its iron chelating properties and ability to produce 

thick interfacial layers around the droplets, sodium caseinate protects emulsified oils 

from oxidation (Hu et al. 1995; Kanafusa et al. 2007).   

Other proteins and polysaccharides used as emulsifiers include gelatin (Vaziri and 

Warburton 1994), xanthan (Evison et al. 1995), conjugates of casein-maltodextrin 

(Shepherd, et al. 2000), and, above all, whey proteins (Cornec et al. 1998; Onsaard et al. 

2005; Akhtar and Dickinson 2007).  Protein-polysaccharide conjugates are referred to as 

natural and non-toxic emulsifiers. Shepherd et al. (2000) reported that casein-

glycoconjugates have significant potential as effective food emulsifiers or soluble protein 

additives for acidic sports drinks or nutritional supplements.  Casein-glycoconjugates at a 

2% concentration act as emulsifiers even in acidic solutions (Shepherd et al. 1995; 

Fencher et al. 2006).  Use of casein-dextran conjugate as an emulsifier makes the oil 

droplets smaller and narrowly distributed in o/w emulsions (Fencher et al. 2006). 

 
Whey Proteins  
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Whey protein (WP) is the name for a collection of globular proteins that can be 

isolated from whey, a by-product of cheese manufactured from cow's milk.  The protein 

fraction in whey (approximately 10% of the total dry solids in liquid whey) is typically a 

mixture of beta-lactoglobulin (~55%), alpha-lactalbumin (~25%), serum albumin (~5%) 

and immunoglobulins (~15%) (Swaisgood 1996).  

Whey proteins are an important ingredient in the commercial food industry due to 

their high nutritional value and versatile functional properties such as solubility, 

viscosity, water holding capacity, gelation, adhesion, emulsification (de Wit 1998; 

Huffman 1996; Boye et al. 1997; Corradini 1998; Kinekawa et al. 1998; Herceg et al. 

2005).   Two major forms of whey proteins are discussed in this chapter: isolate and 

concentrate.  Whey protein isolates (WPI) are processed to remove fat and lactose and 

contain >90% protein.  Whey protein concentrates (WPC) contain a low level of fat and 

lactose and the protein content may vary from 25% to 80% (Morr and Ha 1993; Kinsella 

and Whitehead 1998). 

WPI, at acidic pH, stabilizes the interfacial layer around the oil droplets which is 

relatively thin (~2nm) and positively charged (+29mV at 100 mM NaCl at pH 3), this has 

been proven to increase the oxidative stability of emulsified polyunsaturated lipids and 

decrease iron-lipid interactions.  Above all, WPI stabilized emulsions are stabilized to 

thermal processing operations such as pasteurization (Hu et al. 2004; McClements and 

Decker 2000; Djordjevic 2004).  WPI created emulsions have been proven to be more 

stable compared to protein source fractions such as coconut skim milk proteins (Onsaard 

et al. 2005).  The covalent complexes of WPI and maltodextrin have demonstrated 
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effectiveness in stabilizing emulsions at low pH stored for several weeks without any 

visible precipitation or phase separation (Akhtar and Dickinson 2006). 

WPCs are readily available in the U.S. and have the surface active properties 

required to make an emulsion stable (Hogan et al. 2001; Herceg et al. 2005; Surh et al. 

2005).  WPC 60 (60% protein) and WPC 80 (80% protein) were used in various studies 

to compare emulsion properties (Arai and Watanbe 1988; Kato et al. 1994; Herceg et al. 

2005).  The ability of WPC to maintain the stability of oil droplets during spray-drying 

and also fulfilling the role of protective agent for the oil droplets makes it an effective 

emulsifying agent (Hogan, et al. 2001).  Studies have proven the wide application of 

WPC as a natural emulsifier in food products (Surh et al. 2005). 

WPI concentration ranging from 0.09% to 0.9% in 5 mM phosphate buffer, 

(Onsaard et al. 2005; Surh et al. 2005) are effective emulsifiers with 20:80 o/w 

emulsions.  WPC 80 at 2% concentration has 1.6% protein (Herceg et al. 2005) and WPC 

75 at 5% concentration has 3.75% protein, both of which work as effective emulsifiers 

for 20:80 o/w emulsion (Hogan et al. 2001). 

 
Low molecular weight emulsifiers 

 Fats and oils are considered to be the best source of emulsifiers (Bee et al.1989; 

Larson and Friberg 1990; Hamilton 1995; Karleskind 1996; Garti 1999).  Purifying 

emulsifiers from fats and oils produces more than 92% of pure monoglyceride esters, 

which are considered to be GRAS emulsifiers (Garti 1999).  Fats and oils from every 

source contain small quantities of phospholipids and triglycerides. Phospholipids hold an 
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important position in the areas of emulsions (Karleskind 1996; Garti 1999) especially in 

food, agriculture, pharmaceutical, and cosmetics industries.  

 Lecithin is a synonym for pure phosphatidylcholine, a phospholipid. Lecithin is 

isolated either from egg yolk or soy beans.  Due to its low solubility in water, in aqueous 

solution the phospholipid can form liposomes, bilayer sheets, micelles, or lamellar 

structures, depending on hydration and temperature.  These properties results in a type of 

surfactant that is usually classified as amphoteric i.e., the molecule consist of both water 

and oil soluble portions (Jimenez et al. 1990; Iwata et al. 1993).  Lecithin, as a primary 

emulsifier has been studied in o/w emulsion (Akhtar and Dickinson 2001). O/w 

emulsions have been reported consistently in research studies related to emulsions.   

Researchers (Johansson et al. 1995; Nieuwenhuyzen 2002) have reported that lecithin, 

when heated, improves emulsifying properties of o/w emulsions (Weete et al. 1994).   

O/w emulsions prepared with 2.5% lecithin are stable over a significant period of time 

(Knoth et al. 2005; Scherze et al. 2006).  Egg lecithin used at 5% also formed stabilized 

emulsions (Thakur et al. 2007). 

The high surface activity of phospholipids influences the interfacial properties of 

emulsions, and foams (Bos et al. 1997; Patino et al. 2007), and due to their strong 

tendency to absorb at fluid interfaces.  These qualities make phospholipids a useful 

component in the manufacturing of stable food dispersions (Patino et al. 2007). 

 
Surfactants  

 Surfactants are a surface-active, structurally diverse group of molecules 

synthesized by microorganisms or chemically and enzymatically synthesized (Nitschke 
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and Costa 2007).  Due to their influence on interfacial activities and the surface tension of 

water, surfactants are also used as emulsifying and dispersing agents.  Studies done on 

emulsion capabilities of surfactants, considered them an emulsifier (Garti 1999). 

Surfactants exhibit some special properties: low toxicity; a biodegradable nature; 

effectiveness at extreme temperatures, pH, and salinity; and, above all, ease of synthesis 

(Desai and Desai 1993).  Rosenberg and Ron (1999) had suggested two categories of 

surfactants on the basis of molecular mass that are low-molecular-mass molecules with 

low surface and interfacial tensions (glycolipids, lipopeptides, and phospholipids), and 

high-molecular-mass polymers which act as an emulsion stabilizing agent, i.e., polymeric 

and particulate surfactants (Nitschke and Costa 2007). 

The term surfactant is a blend of "surface acting agent".  Surfactants are usually  

compounds that posses an amphiphilic nature, meaning they contain both hydrophobic 

groups (their "tails") and hydrophilic groups (their "heads").  Therefore, they are soluble 

in both organic solvents and water (Desai and Banat 1997).  Surfactin is acyclic 

lipopeptides-amino acid lipid surfactants, which is capable of lowering the surface 

tension of water, and also of being stable at wide pH ranges (Arima et al. 1968; Garti 

1999) and shares the category of low molecular weight polymers.  Among the high 

molecular weight polymers, emulsan has proved to be the most efficient as it holds good 

surface properties and excellent emulsification capabilities due to the presence of fatty 

acids linked to an amino sugar backbone of the anionic polysaccharides (Gutnick 1987; 

Garti 1999). 

Sugar-based surfactant products are based on the useable renewable resources 

(Hill and Rhode 1999). Studies have been done to modifying their amphiphilic structure 



 

 

 

18

by attaching a carbohydrate group to a lipid as the hydrophilic group (Schulz 1992).  

Sugar-based surfactants include sorbitan esters, sucrose esters, alkyl polyglycosides, and 

fatty acids glucamides.  Some of the sugar based surfactants and their uses are currently 

limited due to the economics involved in their processing (Hill and Rhode 1999).  Most 

successful sugar based surfactants are alkyl polyglycosides and fatty acid glucamides, as 

they are multi-functional, competitively priced, and exhibit high product safety in 

addition to being made from renewable resources (Hill and Rhode 1999).  Akoh (1992) 

suggested that emulsifier blends of potential fat substitutes with sugar ester emulsifiers, 

which are commercially approved by FDA, may act as an o/w emulsifiers at 

concentration of 0.5%- 1.0% at 10%-20% oil concentration (Akoh 1992; Piao and Adachi 

2006).  Studies have shown that surfactants can stabilize oil and water emulsions 

(Ponginebbi et al. 1999).  The use of synthetic low molecular weight or polymeric 

surfactants has been documented in several research studies (Clark 1995; Bos et al. 1997; 

Knoth et al. 2005).  On the basis of the above review of literature, the present study was 

conducted with different concentrations of lactose based surfactants and WPC 80, which 

is a well-known and established emulsifier in the food industry. 

 
Other uses of surfactants 

 Surfactants have various applications in different industrial sectors other than the 

food industry such as organic chemicals, cosmetics and pharmaceuticals, petrochemicals 

and petroleum, mining and metallurgy, agrochemicals and fertilizers, and many others 

(Kosaric 1992).  Surfactants are not only used as emulsifiers but also as wetting agents, 

spreading agents, foaming agents and as functional detergents (Kosaric 1992).  They also 
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play an important role in emulsification of simple emulsions like kerosene /water in 

petroleum industries (Kosaric et al. 1987).   

 
Lactose and Maillard Reaction 

 Lactose is a reducing sugar found in milk and milk products. It is made up of two 

monosaccharides, galactose and glucose.  Lactose disaccharide exists as α and β anomers 

which can undergo mutarotation via the open chain formation in the solution.  Lactose 

disaccharide forms hemiacetal when an aldehyde group reacts with one alcohol molecule 

and forms the open chain. In the process of mutarotation each isomer converts from the 

closed ring to the open chain and vice versa. On the closing and opening of the chain, 

carbon 1 and 2 bonds rotate, which leads to the shift of the hydroxyl group (-OH) 

between α- and β- positions (Anonymous 2004). The bond in lactose is a β-1-4 glycosidic 

bond (the glycosidic bond forms when an alcohol reacts with a cyclic hemiacetal to give 

an acetal). In the lactose, β- anomer of galactose forms acetal with the hydroxyl group of 

glucose. Due to the presence of hemiacetal carbon in glucose, lactose undergoes 

mutarotation to give α- and β- lactose (Fig 3) (Anonymous 2004). 

 

              

 
Fig. 3.  Formation of beta-lactose (Source: General, organic and biological chemistry, 

Platinum edition, 2004) 
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Lactose undergoes mutarotation (classified as a reducing sugar) therefore it can 

participate in the Maillard reaction to form synthesized products like hydrogels, and 

glycopolymers (Dhruv et al. 2005).  The Maillard reaction is a chemical reaction between 

primary amino group and a reducing sugar. This reaction can be the result when there is 

an increased heat to the system. It is a form of non-enzymatic browning (oxidative 

browning is a chemical process that produces a brown color in foods without enzymes). 

The two types of non-enzymatic browning are caramelization and the Maillard reaction.  

The reactive carbonyl group of the sugar reacts with the amino group and forms a variety 

of molecules responsible for a range of odors and flavors. This process generally takes 

place in an alkaline environment as the amino groups are deprotonated.  The reducing 

sugar reacts with the amine group to form Schiff base (an imine, RHC=NHR’), which 

may cyclize to form a glycosylamine or N-glycoside. The Schiff base undergoes a 

reaction called the Amadori rearrangement (Fig. 4 A).  The progression of the maillard 

reaction leads by condensation and polymerization reactions which further produce 

furfural and hydroxymethylfurfural (HMF) compounds (Boekel 2006; Liu et al. 2008).  

These compounds are brown, polymerized compounds of the Maillard reaction known as 

melanoidins (Boekel 2006; Liu et al. 2008). A furfural compound forms when there is a 

reaction with a pentose sugar and HMF is the result of a reaction with a hexose (glucose, 

saccharose) (Fig. 4 B) (Boekel 2006; Liu et al. 2008).   
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Fig. 4 (A) Formation of Amadori complex with Schiff base formation (Source: Dhruv et 

al. 2005). 

 
 

 

 
Fig. 4 (B) Formation of Amadori-rearrangement and Hydroxymethylfurfural compounds 

(Source: Dhruv et al. 2005).  
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Synthesis of Lactose-amines 

 Bhattacharya and Acharya 1999 have extensively studied the amphiphilic 

behavior of lactose and maltose coupled to fatty-amines and fatty acids.  Their 

synthesized lactose-amines were gels that possessed thermoreversible properties as they 

are early intermediates (Amadori compounds) in the browning reactions (Martin et al. 

2005; Boekel 2006; Liu et al. 2008).  Lactose-amine gels turned into clear fluid on 

applying heat and returned back to a gel state by cooling the fluid (Bhattacharya and 

Acharya 1999; Dhruv et al. 2005). The present study was designed on the basis of the 

above studies done on the lactose-amine hydrogels, which possesses surfactant 

properties. The present study includes cyclic heat treated lactose-amine, and constant heat 

treated maillard reacted lactose-amine polymers.  Reversible reactions were observed in 

cyclic heat treated lactose-amines when stored for a long period (Bhattacharya and 

Acharya 1999; Latge et al. 1992).  Constant heat treatment was the continuation of the 

maillard reaction after the amadori rearrangements. Two potential products were formed 

with constant heat treatment, osones and hydroxymethylfurfural compounds (Martin et al. 

2005; Boekel 2006; Liu et al. 2008).   

 
Analytical Techniques for Measurement of Emulsions 

 
Droplet size measurement 

 Emulsion droplet size measurements can be done using a light scattering 

instrument (LS Beckman Coulter LS230, Coulter Corporation, Miami, Florida, USA).  

This instrument is patented with an advanced technology of polarization intensity 

differential scattering (PIDS), as droplets below a few microns in diameter have very 
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similar light scattering patterns that are alike in both shape and intensity.  The major 

benefit of acquiring PIDS data is that by simple interpretation of the raw data, presence of 

small droplets can be confirmed (Beckman Coulter Manual, BeckLS13320.pdf, Coulter 

Corporation, Miami, Florida, USA).  The basis of the method is as follows, a laser light 

source is used to illuminate particulates, usually contained within a suitable sample cell.  

The light scattered by the droplets is then detected by silicon photo-detectors.  The 

intensity of light on each detector measured as a function of angle is then subjected to 

mathematical analysis using a complex inversion matrix algorithm.  The result is a 

droplet size distribution displayed as volume % in discrete size classes. 

 Droplet size measurements can be reported as mean D3, 2 values.  As D3,2 is the 

diameter of a sphere that has the same volume in ratio with surface area (McClements 

2004).  The D3,2 is more accurate with smaller droplets measurements as compare to d4,3 

which is a weight-average mean droplet diameter and also sensitive to large droplet size 

(Herceg et al. 2005; Onsaard et al. 2005; Surh et al. 2005; Akhtar and Dickinson 2007).   

Studies have shown that mean D3,2 value of a whey protein emulsion is 0.3-0.4µm 

(Hogan et al. 2001; Herceg et al. 2005; Onsaard et al. 2005; Akhtar and Dickinson 2007).  

Droplet size measurement is an important tool to measure the stability of the emulsions, 

the smaller the D3,2 value the higher the stability of the emulsion (Hogan et al. 2001; 

Herceg et al. 2005; Onsaard et al. 2005; Akhtar and Dickinson 2007; Dalgeish 2006). 

 
Emulsion stability 

  Turbiscan is an instrument that can be used to measure emulsion stability.  It 

consists of a reading head moving along a flat-bottomed, cylindrical cell, which scans the 
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entire sample height and the reading head.  The reading head consists of a pulsed, near-

infrared light source used to read backscattering data.  The backscattering detector (BS) 

receives the light backscattered by the sample at an angle of 135 °.  The reading head 

acquires backscattering data every 40 µm on a maximum height of 80 mm.  The obtained 

profile measures sample homogeneity and particle concentration of homogenized sample 

(HS) and is represented on the software screen as a curve showing the percentage of 

backscattered light in form of sample height (in mm).  The acquisition along the product 

is then repeated with a set frequency to obtain the superimposition of sample fingerprints 

characterizing the stability or destability of the sample (Fig. 5). 

   (A) 

   (B) 

Fig. 5. (A) Measurement principle and (B) Backscattering profiles of turbiscan (Source: 

Turbiscan Manual, TurbiScan MA 2000, Formulaction, Toulouse, France). 
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Backscattering is defined as when a light beam is scattered, the rate at which 

scattered light beam reflects back after passing through the emulsion, and this rate of 

reflection of light is called % backscattering.  Backscattering can be used to measure the 

stability of emulsions.  The backscattering % increases with the decrease in droplet mean 

diameter and it decreases with an increase of the mean diameter of droplets in emulsion 

(Pearce and Kinsella 1978; Herceg et al. 2005;). 

 
Interpretation of turbiscan results 

There are few ways to interpret whether there is sedimentation or clarification at 

the bottom or any creaming present at the top layer of emulsions.  Creaming is coupled 

with coalescence or flocculation and finally leads to a phase separation (Fig. 6).  These 

phenomenon can be easily detected using the turbiscan as it records a variation of the 

concentration between the top and the bottom of the cell (Fig. 7, 8).  

 

 

 
Fig. 6. Profile of creaming emulsions (Source: Turbiscan Manual, TurbiScan MA 2000, 

Formulaction, Toulouse, France) 
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Fig. 7. Profile of sedimentation emulsions (Source: Turbiscan Manual, TurbiScan MA 

2000, Formulaction, Toulouse, France) 

 

 

Fig. 8. Profile of flocculation and coalescence emulsions (Source: Turbiscan Manual, 

TurbiScan MA 2000, Formulaction, Toulouse, France) 
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MATERIAL AND METHODS 

 
Materials  

Lactose was donated by Proliant Inc., iso-propanol (90%) and hexadecyl-amines 

(HCA) (95%) (C16 fatty amine) were purchased from Sigma Aldrich.  Whey protein 

concentrate (WPC) (80% protein, 5% lactose, 6% fat, 3% water, and 6% ash) was 

obtained from Saputo (St.-Hyacinthe, Quebec).  The technical analysis were done using 

LS Beckman Coulter (LS230, Coulter Corporation, Miami, Florida, USA) for mean 

droplet size and D(3,2) and Turbiscan (TurbiScan MA 2000, Formulaction, Toulouse, 

France) for emulsion stability measurements.  

 
Study Design 

The experiment consisted of emulsions prepared with 8 groups including oil and 

water alone and oil and water with lactose and hexadecyl-amines (HCA) as negative 

controls.  The treatment group included four different lactose-amine samples (4 hour, 8 

hour, 12 hour, and 24 hour) treatments at four different concentrations (0.01%, 0.05%, 

0.1%, and 1.0%) with 4 replicates at each concentration.  WPC (2% protein in 50 mM 

phosphate, pH 7) was used as the positive control. 

 
Synthesis of Lactose- amines 

 For the synthesis of lactose-amines, 250 milimolar solutions of HCA in 10 ml iso-

propanol were added with 250 milimolar solutions of lactose in 10 ml distilled water 

(Fig. 9).  
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 (i) n-hexadecyl amine + 2-propanol and lactose + d H2O, stir, 24 hr, with intermittent 

heating at ~60 °C to produce n-hexadecyl D-lactosylamine.  

 
Fig. 9. Synthesis scheme of lactose-amines from lactose and hexadecyl-amine (Source: 

Bhattacharya and Acharya 1999; Dhruv et al. 2005)  

. 
The treatment groups were 4 hour (4H) and 8 hour (8H) lactose-amines which 

were processed for 4 and 8 hours of constant heating at 60°C, while 12 hour (12H) and 

24 hour (24H) lactose-amines were processed for 12 and 24 hours of cyclic heating at 

60°C followed by cooling cycles at room temperature.  For the heating cycle, the 

solutions were kept in a hot water bath at 60°C with continuous monitoring of the 

temperature of the sample solution and hot water bath.  During the heating cycle when 

the solutions turned transparent, the samples were removed from the hot water bath and 

were moved to a room temperature water bath for the cooling cycle until they become 

opaque again (Fig. 10).  

After the synthesis of lactose-amines, the products were in the form of gels which 

were frozen to -80°C.  After freezing, the product samples were freeze dried (Dura-Top 

microprocessor control freeze-dryer, FTS systems, NJ, USA) for 8 days.  Dried and 

grounded (grinding was done with mortar and pestle) samples, in the powder state were 
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kept frozen at -4°C. Each lactose-amine samples (4H, 8H, 12H and 24H) was synthesized 

4 times and the dried samples were pooled. 

 

 

  

 
Fig.10. (A) Heating and (B) cooling cycle during synthesis of lactose-amines. 

 
 
Droplet Size Determination 

 
Preparation of o/w emulsions 

 Emulsions of negative controls and treatment groups were prepared with 80 ml of 

water and 20 ml of oil.  Samples were mixed with a high speed blender (polytron) (Ultra-

Turrax T25, Janke and Kunkel, Staufen, Germany) at 24000 rpm for 3 minutes with four 

different concentrations of lactose, hexadecyl-amines and lactose-amines (0.01%, 0.05%, 

0.1% and 1.0%).  For the positive control, 80 ml of solution of WPC and 20 ml of oil 

were mixed with polytron as described above.  Each solution was homogenized in a 

microfluidizer (Microfludics Corporation, Newton, Massachusetts, USA) for 3-5 minutes 

at 6900 psi at room temperature.   

A B 
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Determination of droplet size distribution 

 The droplet size of the fat globules present in the emulsions was measured by 

using a LS Beckman Coulter droplet size analyzer.  All the measurements were made on 

two freshly prepared emulsions from each treatment group (4H, 8H, 12H, and 24H) at 

each concentration (0.01%, 0.05%, 0.1%, and 1.0%) and the WPC control, except 

negative controls (lactose, HCA, and o/w) as they were too unstable to measure.  

Emulsion samples were added drop wise to the droplet size analyzer until PIDS 

obscuration reached 40%.  Before measuring the droplet size of each sample, the 

instrument was rinsed, the background measured and the instrument calibrated.  The 

results for each sample were given in volume (%) of droplet size distribution and droplet 

size (µm).  

 The oil droplet measurements were taken at angular dependence of the intensity of 

laser light (λ= 632.8nm) scattered by emulsions, and then mean oil droplet size was 

generated as the surface-volume mean particle diameter, using the following equation: 

D3,2(=Σnidi
3/ Σnidi

2), 

where d is the diameter and n is the number of particles. The results were reported as 

means and standard deviation of D(3,2). 

 
Emulsification Activity 

The physicochemical stability of the o/w emulsions with lactose-amines, and both 

negative and positive controls, was done using Turbiscan, a vertical scan macroscopic 

analyzer.  About 6 ml of each emulsion was put in the tubes for measuring the change in 
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backscattering (∆ BS %). ∆ BS % were recorded every 15 minutes over 3 hours and then 

once a day for 5 days.  

 
Statistical Analysis 

 Repeated measures of ANOVA were used to analyze the destabilization rate of 

o/w emulsions.  Analysis of the data set was not satisfying the assumption of normality as 

a plot of normal quantile was long-tailed, a box plot was showing outliers, the 

approximate test of normality was showing significant values, and plots against predicted 

values and residuals were showing a triangular pattern which means there was a sign of 

heteroscedasticity.  To remove these abnormalities, the data was transformed with the 

highest level of transformation (according to ladder of power of transformation), but still 

there were outliers in the analysis.  Outliers were discarded and the analysis was done on 

day 1 and day 5 data using a two-way factorial analysis.  Means and standard deviation 

were used to relate the droplet size estimation with the destabilization rate. 
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RESULTS AND DISCUSSION 

Synthesis of Non- polymerized and Polymerized Lactose-amines 

After synthesis, non-polymerized and polymerized lactose-amines are in a gel 

form which forms a dried product after freeze drying (Fig. 11).  Grounded dried products 

were stored frozen at -4°C (Dhruv et al. 2005) to prevent the reverse reactions of 

Amadori compounds into lactose and fatty amine (Boekel 2006; Liu et al. 2008).   Figure 

12, shows lactose-amine products, every product posses a different color due to their heat 

exposure.  Four hour (4H) and 8 hour (8H) samples were heat-treated for longer times as 

compare to 24 hour (24H) and 12 hour (12H) which results in different colored Maillard-

reacted product.  The color of 8H was brown as it was prepared with continuous and 

constant heating at 60°C for 8 hours and 4H was light brown as its exposure to heat was 

for 4 hours. The resultant brown color of the products may be the result of dehydration, 

cyclization, condensation and polymerization reactions (Boekel 2006; Liu et al. 2008). 

The 24H and 12H samples were white in color as they were exposed to heat for short 

time (due to the cooling cycle) i.e. 2-2.5 and 1.5 hours, respectively, as compare to 4H 

and 8H (i.e. 4 hours and 8 hours, respectively). 

  Based on the previous studies and facts of the Maillard reaction, it can be 

assumed that white colored compounds are early intermediates of Maillard browning 

reactions. These intermediates may share the designation of Amadori compounds and 

falls in the category of low molecular weight surfactants (LMW) (Dhruv et al. 2005). 

Studies have shown that there is a series of reversible reactions between reducing sugar 

and amine to form Schiff base and Amadori compounds (Boekel 2006; Liu et al. 2008). 

Amadori compounds further undergo irreversible reactions of dehydration, condensation 
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and polymerization (Martins et al. 2005; Boekel 2006; Liu et al. 2008) with continued 

heat. The light brown color of the 4 hours heat-treated product might contain intermediate 

products of the Mailard browning sequence. Dark brown color of the product can be 

considered as melanoidins, nitrogenous polymers and copolymers (Boekel 2006; Liu et 

al. 2008). After 8 hours of constant heating, it can be assumed that resultant product may 

contain advanced Maillard products which include polymers. 

 
Droplet Size Measurement of O/w Emulsions 

Figure 13 shows the D(3,2) profiles of emulsions formulated with lactose-amines 

(4H, 8H, 12H, and 24H) at various concentration (0.01%, 0.05%, 0.1%, and 1%) in 

comparison with WPC 80 at day 0 (no negative controls results were used as they were to 

destabilized to analyze).  It can be clearly seen in Fig. 13, that there is a descending trend 

of D(3,2) observed from concentration 0.01% to 1%. 

 

        

                  (Before- Gel form)                                     (After- Dried form)  

 
Fig. 11. Processed lactose-amines sample before and after freeze drying. 
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  (A) 4H (Maillard product)                            (B) 8H (Maillard product) 

 

            

  (C) 12H (LMW surfactant)                            (D) 24H (LMW surfactant) 

 
Fig. 12. Lactose-amines products in their powder state A) 4 hours of constant heat 

exposure at 60°C, B) 8 hours of constant heat exposure at 60°C, both the treatments 

produced Maillard reacted polymers. C) 1.5 hours of cyclic heat exposure at 60°C and 

cooling at room temperature D) 2.5 hours of cyclic heat exposure at 60°C and cooling 

at room temperature, resultant product of both the treatments were low molecular 

weight surfactants (LMW). 
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 Although 12H is shows a slightly different trend, with the D(3,2) value at 0.1%  

higher as compare to other groups (Fig. 13).  D(3,2) values of all the groups at 1% 

concentration are less than or equal to WPC 80 (Fig. 13).  The reported values of D(3,2) of 

WPC 80 emulsions prepared with the 20% oil and 80% water, ranges between 0.3-0.4µm 

(Hogan et al. 2001; Herceg et al. 2005; Onsaard et al. 2005; Akhtar and Dickinson 2007) 

which is similar to the D(3,2) of present study i.e. 0.4±0.038 µm.  The D(3,2) value of 24H 

and 12H at 1.0% concentration were found to be less than WPC 80, i.e. 0.32±0.002 and 

0.37±0.028, respectively (Table A1 in the Appendix).  As mentioned earlier D(3,2) is a 

tool to measure the stability of an emulsion, the smaller the value of D(3,2), the higher the 

stability of an emulsion (Hogan et al. 2001; Herceg et al. 2005; Onsaard et al. 2005; 

Dalgeish, 2006; Akhtar and Dickinson 2007).  

Statistical analysis for droplet size at day 0 has shown that there is significant 

difference between droplet size of lactose-amines and WPC 80 emulsions.  No results 

were presented for droplet size of emulsions of negative controls as they were highly 

unstable to analyze. LS mean comparison shown that 24H at day 0 has smaller droplet 

size as compare to other lactose-amines. 

Figure 14 shows the droplet size distribution (the distribution of oil droplets of 

certain sizes in percent volume) of emulsions formulated with 24H with various 

concentrations of lactose-amines in comparison with WPC 80 at day 0.  Droplet 

distribution profiles show the oil droplet distribution in relation to volume % with respect 

to droplet diameter (µm).  WPC 80 has 14% of the volume oil droplets in the range of 0.1 

µm to 1 µm, approximately 4.5% of the volume droplets were between 1 and 10 µm, 
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while the remaining oil droplets are distributed in very small fractions of the total volume 

of emulsion (Fig. 14).   

 

 
Fig. 13. Mean droplet size D(3, 2) of emulsions formulated with different lactose-amines 

and concentrations in comparison with WPC 80 (2% protein) at day 0. (n=2). 

 
Emulsions prepared with 1% of 24H sample follow a similar droplet distribution 

as WPC 80 while a concentration of 0.01% of 24H has an oil droplet size of 

approximately 10 µm.  Concentrations of 0.05% and 0.1% of 24H have very small 

percentage of oil droplets of less than 1 µm (Fig. 14). With increase in concentration of 

lactose-amines (12H, 8H and 4H), their higher volume% of droplet size is falling within 

the range of 0.1 µm to 1 µm (Fig. 15, 16, and 17).  

 



 

 

 

37

 

 
Fig. 14. Droplet distribution of emulsions formulated with lactose-amines (prepared 

under 24H condition) at different concentrations in comparison with WPC 80 at day 0. 

 

 

 
Fig. 15. Droplet distribution of emulsions formulated with 12H (12 hour) lactose-amines 

at different and concentrations in comparison with WPC 80 at day 0. 
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Fig. 16. Droplet distribution of emulsions formulated with 4H (4 hour) lactose-amines at 

different and concentrations in comparison with WPC 80 at day 0. 

 

 

 
Fig. 17. Droplet distribution of emulsions formulated with 8H (8 hour) lactose-amines at 

different and concentrations in comparison with WPC 80 at day 0. 



 

 

 

39

Destabilization Kinetics of O/w Emulsions 

Descending trends in droplet-size measurements with an increase in concentration 

of lactose-amines were confirmed by measuring destabilization kinetics.  Selective 

turbiscan data of changes in backscattering over the length of tubes are given in Fig. 14 

A-E.  Changes in backscattering is defined as the percent difference between the 

backscattering with respect to time (∆ BS %).  In Fig. 18 C and D, ∆ BS % profiles of 

emulsions formulated with 24H lactose-amines at 0.01% concentration show clarification 

at the bottom of the tube and an increase in droplet size over the tube length with 

creaming at the top of the tube.  At 1.0% concentration there is less clarification at the 

bottom with constant droplet size till day 5 (144 hours) and creaming at the top of the 

tube.  However, negative control lactose is showing clarification at the bottom of the tube 

and increase in particle size over the length of the tube at both 0.01% and 1.0% 

concentrations (Fig. 18 A and B).  The WPC 80 at 2% protein is showing slight 

clarification at the bottom of the tube over time while no increase in droplet size was 

observed over the length of the tube (Fig. 18 E) (profiles with other groups or treatments 

are in Table B1 in Appendix B).  Similar trends in the ∆ BS% profiles have been 

followed for determining the destabilization kinetics of the o/w emulsions (Scuriatti et al, 

2003; Palazolo et al, 2004).  Presence of clarification at the bottom of the tube from 0-10 

mm is evidence of emulsion destabilization.  As mentioned earlier in the literature 

review, an increase in ∆ BS % is directly related to destabilization of emulsions.  On 

focusing on the bottom part of the tube (0-10 mm) in the backscattering profile, the 

absolute thickness of the clarification layer can be calculated.  Figure 19 shows that at a 

concentration of 0.01%, emulsions prepared from lactose-amines exhibit a thick 
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clarification layer at the bottom similar to negative controls while at concentration 1.0% 

in Figure 20 emulsions prepared from lactose-amines were showing less clarification at 

the bottom of the tube similar to WPC 80 (Appendix C has additional absolute thickness 

in Figures C1 and C2).  

 

 

 

 

 

 
Fig. 18 A. Turbiscan view of o/w emulsions formulated with lactose at 0.01% 

concentration. 

 

 

 

 
 

 
 
 
Fig. 18 B. Turbiscan view of o/w emulsions formulated with lactose at 1.0% 

concentration. 
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Fig. 18 C. Turbiscan view of o/w emulsions formulated with 24H lactose-amine at 0.01% 

concentration. 

 

 

 

 

 

 
 
Fig. 18 D. Turbiscan view of o/w emulsions formulated with 24H lactose-amine at 1.0% 

concentration. 
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Fig. 18 E. Turbiscan view of o/w emulsions formulated with WPC 80 (2% protein). 

 

 
 
 
Fig.19. Absolute thickness (at the bottom of the tube from 0-10mm) of the clarification 

layer of emulsions formulated with different lactose-amines (4H, 8H, 12H and 24H), 

negative controls (L, FA and OW) at 0.01% concentration and WPC 80 (2% protein). 
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Fig. 20. Absolute thickness of clarification emulsions formulated with different (4H, 8H, 

12H and 24H), negative controls (L, FA and OW) at 0.01% concentration and WPC 80 

(2% protein).          

 
Statistical analysis (two-way factorial design) was done for day1 and day 5 data, 

on the absolute thickness of ∆ BS % at the 1-10 mm portion of the tube as clarification 

was started at the bottom of the tube (Table 2), for day 1 data and day 5 data you just 

stated this in the same sentence. From day 0 to day 1, the data recorded were absolute 

zero figure or in other words the emulsions were to stable to record any other value then 

zero. Statistical analysis of day 0 to day 1 data showed outliers in the results (Anova 

tables in appendix D). Therefore, day 0 to day 1 data was discarded from the statistical 

analysis. Statistical analysis for day 1 shows that there was a significant interaction 

between treatments and concentration (p < 0.0001) while there was no significant 

interaction between treatments and replicates.  There are significant differences between 

treatments (p < 0.0001) and between concentrations (p< 0.001).  Results show that there 



 

 

 

44

are significant differences in emulsion between 4H and 8H, 12H, 24H, lactose, 

hexadecyl-amine, and o/w.  For the concentration analysis, a significant difference was 

recorded within all the groups between concentrations 0.01% and concentrations 0.05%, 

0.1%, 1.0% on day 1.  

Statistical analysis (two-way factorial design) for day 5 shows that there are 

significant interactions between treatments and concentration (p < 0.0001).  There are 

significant differences in treatments (p < 0.0001) and in concentrations (p < 0.001). 

Results show that there is a significant difference between treatments 12H and 24H while 

no significant difference was found between treatments 4H, 8H and 24H.  There is also 

no significant difference between treatments 4H and 12H (p < 0.001).  There are 

significant differences among negative controls of lactose, hexadecyl-amine, and o/w and 

treatment groups.  These significant differences were also seen between lactose-amines 

groups and WPC with comparison of LS means.  The results show that the destabilization 

rate of 24H is close to that of WPC 80 at 1.0% concentration.  For the concentration 

analysis, there was a significant difference between the concentration 0.01% and 

concentrations of 0.05%, 0.1%, and 1.0% but there are no significant differences between 

concentrations of 0.1% and 1.0% on Day 5.  Maillard reacted lactose-amine 4H follows 

the similar trend as 24H and WPC 80 in destabilization rate of emulsion at 1.0% 

concentration. In table 2, it can clearly be seen that absolute thickness of clarification 

layer of emulsions prepared with Maillard reacted 4H lactose-amines at 1.0% 

concentration shows no significant difference with WPC 80 and 24H of low molecular 

weight lactose-amine.  
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Table 1. Mean thickness of clarification layer (0-10mm at bottom) of emulsions formulated with different treatments at different 
concentrations on day 1 and day 5  

 

abcd mean with same letter are not significantly different in each column 

ABC capitalized letter represents significant differences in concentrations across the rows 

Concentration 
 

Treatments  

0.01g 0.05g 0.10g 1.0g 
Day1 Day 5 Day1 Day 5 Day1 Day 5 Day1 Day 5 

4 hour 
   1.13±1.30Ad 

 
6.87±0.75Abc 

 
1.1±0.78Bd 3.45±0.08Bbc 

 
0.77±0.51Bd 2.18±0.26Cbc 

 
0.29±0.32Bd 1.45±0.54Cbc 

 

8 hour 
4.33±0.47Ac 7.73±0.28Abc 

 
0.88±0.59Bc 3.32±0.16Bbc 

 
0.72±0.23Bc 1.88±0.25Cbc 

 
0.18±0.23Bc 2.61±1.32Cbc 

 

12 hour 
4.92±1.43Ac 6.24±1.27Ac 

 
1.15±0.25Bc 2.82±0.36Bc 

 
0.86±0.02Bc 2.26±0.25Cc 

 
0.8±0.21Bc 2.17±0.70Cc 

 

24hour 
3.06±0.61Ac 7.85±0.09Ab 

 
1.21±0.34Bc 3.92±0.61Bb 

 
1.01±0.1Bc 3.22±0.33Cb 

 
1.02±1.11Bc 1.38±0.44Cb 

 
 

lactose 
7.41±0.13Aa 6.62±0.54Aa 

 
7.47±0.14Ba 7.24±0.13Ba 

 
7.7±0.34Ba 8.03±0.33Ca 

 
8.24±0.65Ba 8.35±0.10Ca 

 
 

fatty amides 
4.64±1.18Ab 6.49±1.40Aa 

 
2.13±0.63Bb 8.4±0.20Ba 

 
2.48±0.40Bb 8.45±0.24Ca 

 
1.66±0.27Bb 8.55±0.15Ca 

 
 

oil- water 
7.92±0.25Aa 7.82±0.32Aa 

 
7.92±0.25Ba 7.82±0.32Ba 

 
7.92±0.25Ba 7.82±0.32Ca 

 
7.92±0.25Ba 7.82±0.32Ca 

 
 

WPC 
(2.5g/100ml) 

0.77±0.18Ad 

 
 

 
 

 
 1.81±0.19Cd 
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Concentration 0.05% is significantly different from concentrations 0.01%, 0.1%, 

and 1.0%.  On day 1, interactions between treatment and concentration show varying 

significant differences among themselves and with controls also.  Fatty amines with all 

the 4 concentrations show no significant difference with 4H at 0.01%, 0.05% and 0.1%.  

No significant difference was observed between lactose-amines at 1.0% and WPC 80.  

On day 5, lactose-amines at 0.1% and 1.0% were non-significantly different from WPC 

80 and also among themselves, while lactose-amines at 0.01% and 0.05% were 

significantly different from WPC 80 but not significantly different from lactose and fatty 

amines at 4 concentrations (Anova tables in appendix D). 

Figure 19 supports the results by showing the difference between WPC and other 

lactose-amines (4H, 8H, 12H, and 24H), including negative controls lactose, fatty amines 

and o/w.  Whey protein at 2.5g/100ml (2% protein) has less thickness of clarification 

layer as compared to other groups at 0.01% of concentration (Fig. 19). Lactose-amines 

4H, 8H, 12H, and 24H are closer towards the negative controls at 0.01% of concentration 

(Fig.19).  On day 1 and day 5, a difference in the absolute thickness of the clarification 

layer in the emulsions was observed in Table 2.  Figure 20, shows the thickness of 

clarification layer from day 1 to day 5 at 1.0% concentrations of all the groups and their 

comparison with WPC 80 (2% protein).  At 1.0% concentration all the lactose-amines 

were showing similar thickness of clarification layer as of WPC 80, and on day 5, 4H and 

24H were following the similar trend of clarification as of WPC 80 while other lactose-

amines i.e 8H and 12H were showing more clarification on day 5 as compare to 4H, 24H 

and WPC 80. 
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All the analysis and results are supported by Table. 2.  A macroscopic view of the 

destabilization of o/w emulsions of different treatments with different concentrations. 

This table contains pictures of day 1 and day 5 samples. In these pictures separation of 

both phases are evident for some samples.  

Based on the above results, two groups of lactose-amines were produced.  These 

two groups are surfactant lactose-amines, including 24H and 12H, and advanced Maillard 

reacted polymers, including 4H and 8H.  The above results have shown that 24H and 4H 

can stabilize o/w emulsions for 5 days comparable to WPC 80.  Previous studies have 

proven that lactose-amines prepared with cyclic heating possess low molecular weight 

surfactant properties, but can also be reversed back into lactose and fatty amines on 

prolonged storage (Bhattacharya and Acharya 1999). As mentioned earlier, studies have 

shown that Maillard browning is the result of an reversible and irreversible series of 

condensation and polymerization reactions with prolonged heating (Boekel 2006; Liu et 

al. 2008). Fatty amine groups may have interacted covalently with the Maillard 

intermediate products forming polymers.  The new polymers with both hydrophobic and 

hydrophilic characteristics might have formed after 4 hours of constant heating.  Due to 

the presence of both hydrophobic and hydrophilic compound in 4H lactose-amine (light 

brown color), emulsification activity was recorded as compared to the 8H lactose-amine.  

The dark brown colored 8H lactose-amine was showing less emulsification activity, 

which could be due to decomposition of the polymers with, prolong heating. I assumed 

that both types of non- polymerized and polymerized lactose-amines have hydrophilic 

and hydrophobic ends which may have stabilized the emulsions.    
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It can be concluded, on the basis of the droplet size distribution at day 0 and 

destabilization kinetics from day 0 to day 5, that concentration has a great influence on 

the activity of lactose-amines as an emulsifier.  At concentration 1% all the types of 

lactose-amines have smaller droplet size similar to WPC 80 and also ∆ BS% profiles 

show that 1% lactose-amines are more stable as compare to WPC 80 with respect to time.  

  Statistical analysis on oil droplet size and destabilization rate of o/w emulsions 

shows that 24H lactose-amines have greater stability as compared to 12H lactose-amines 

at 1% concentration.  While brown colored polymerized lactose-amines group, 4H at 

1.0% concentration have greater efficiency to stabilize o/w emulsions as compare to 8H. 

Therefore, 24H and 4H lactose-amines at a 1% concentration can be recommended as 

emulsifiers. 
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SUMMARY AND FUTURE RESEARCH 

        In this study, synthesis of lactose-amines was done at four different heating and 

cooling cycles from 4 to 24 hours.  Lactose-amines processed for 24 hours and 12 hours 

of constant heating and cooling cycles are named as 24H and 12H, respectively.  Lactose-

amines 4H and 8H were processed for 4 and 8 hours of constant heating at 60°C. The 

24H and 12H samples were white in color as they were exposed to heat for short time 

(due to the cooling cycle) i.e. 2-2.5 and 1.5 hours, respectively, as compare to 4H and 8H 

(i.e. 4 hours and 8 hours, respectively). It was assumed that white colored compounds are 

early intermediates of Maillard browning reactions known as Amadori. It can be assumed 

that white colored compounds are early intermediates of Maillard browning reactions 

known as Amadori compounds. The light brown color of the 4H product might contain 

intermediate products of the Maillard browning sequence. After 8 hours of constant 

heating, it can be assumed that resultant product may contain advanced Maillard products 

which include polymers.  

           Lactose-amines, lactose and hexadecyl-amine were each used in o/w emulsions at 

4 different concentrations (0.01%, 0.05%, 0.1%, and 1.0%) and each concentration had 4 

replicates.  Observations based on the experiments were, that stability of o/w emulsions is 

dependent on the concentration of lactose-amines.  O/w emulsions produce with lactose-

amines are stable for days, comparable to WPC 80.  This research has determined the 

influence of treatments and concentration of lactose-amines on the stability of o/w 

emulsions.  
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Emulsions prepared by lactose-amines at different concentration showed different 

oil droplet sizes, droplet size distributions and emulsion destabilization kinetics.  

Observations showed that 24H lactose-amine at 1% concentration produced stable 

emulsion comparable to WPC 80.  Oil droplet diameter at day 0 showed a decreasing 

trend as the concentrations increased from 0.01% to 1.0% for all lactose-amines.  At day 

0, 24H at 1.0% concentration and WPC 80, both had small oil droplet sizes as compared 

to other lactose-amines.  Destabilization kinetics to day 5 showed that at 0.01% 

concentration, lactose-amines had similar destabilization kinetics as the negative 

controls of lactose and hexadecyl-amine.  Emulsion stability was significantly higher 

than the negative controls at lactose-amines concentrations greater than 0.05%.  There 

was a decrease in stabilization for each treatment and concentration of lactose-amines, as 

well as negative controls, over time.  This research has shown that lactose-amines 

produced at treatments of 24H and 4H are effective at stabilizing emulsions at 

concentrations of 0.05% to 1%.  Lactose-amines 24H at 1.0% concentration showed a 

small separation of o/w phases as compare to WPC 80. 

Further research is needed to complete the study on the influence of lactose-

amines on o/w emulsions.  Stabilization of o/w emulsions with respect to time with 

higher concentration of lactose-amines, after day 5 up to one month, is required to know 

the stabilization rate of the emulsions for prolong period.  Work must be done to know 

the rate of hydrolysis of lactose-amines and its influence on the stability of the o/w 

emulsions.  Due to the different heating treatments used to prepare lactose-amines, their 

molecular weights are presumed different but undefined. Studies are also required to test 

the assumptions of polymerized and non- polymerized lactose-amines definitions. 
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Determining the beneficial usage in food and pharmaceuticals industries by 

comparing the functionality of lactose-amines with present emulsifiers such as sugar 

esters will increase its future prospects.  Further research is required to find out whether 

lactose-amines fit to the GRAS (Generally Recognized as Safe) category. 
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Appendix A 

Droplet size measurement of o/w emulsions 

Table A1. Droplet mean diameter (d3,2) of emulsions formulated with different lactose-

amines and concentrations in comparison with WPC 80. 

Concentrations 0.01% 0.05% 0.1% 1.0% 

Treatments  Average D(3,2) 

WPC 0.479 ±0.038 

4H 1.294±0.098 1.077±0.074 0.705±0.038 0.512±0.008 

8H 0.808±0.057 0.721±0.148 0.570±0.037 0.456±0.030 

12H 1.007±0.153 0.900±0.257 0.727±0.041 0.374±0.028 

24H 1.175±0.255 0.772±0.090 0.620±0.025 0.329±0.002 
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Appendix B 

 
Destabilization profiles of o/w emulsions 

Table. B1. Turbiscan view of o/w emulsions formulated with lactose-amines, negative groups at different concentrations. 

Concentration  

Treatments 

0.01% 1.0% 

4H   

Time (mins) Time (mins) 
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Destabilization profiles of o/w emulsions 

Fig. C1. Absolute thickness (at the bottom of the tube from 0-10mm) of the clarification 

layer of the emulsions formulated with different lactose-amines, negative controls at 

0.05% concentration and WPC 80 (2% protein). 
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Fig. C2. Absolute thickness (at the bottom of the tube from 0-10mm) of the clarification 

layer of the emulsions formulated with different lactose-amines, negative controls at 0.1% 

concentration and WPC 80 (2% protein). 
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Appendix D 
 

Destabilization of o/w emulsions(day1.sas) 

A two way factorial design 
 

The GLM Procedure 

Class Level Information 

Class Levels Values 

treat 8 A B C D E F G 
H 

c 4 1 2 3 4 

 

 

Number of observations 12
8 
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Source 
D
F 

Sum of 
Squares 

Mean 
Square 

F 
Value Pr > F 

Model 31 1166.6885
50 

37.635115 132.83 <.000
1 

Error 96 27.200800 0.283342   

Corrected 
Total 

12
7 

1193.8893
50 

   

 

 

R-Square Coeff Var Root MSE Dstabrate Mean 

0.977217 21.45824 0.532298 2.480625 

 

 

Sourc
e 

D
F Type I SS 

Mean 
Square 

F 
Value 

Pr > 
F 

treat 7 931.31275
00 

133.0446786 469.56 <.000
1 

c 3 103.75752
50 

34.5858417 122.06 <.000
1 

treat*
c 

21 131.61827
50 

6.2675369 22.12 <.000
1 

 

 

Source DF Type III SS Mean Square F Value Pr > F 

treat 7 931.312750
0 

133.0446786 469.56 <.0001 

c 3 103.757525
0 

34.5858417 122.06 <.0001 

treat*c 21 131.618275
0 

6.2675369 22.12 <.0001 



 

 

71 NOTE
: 

This test controls the Type I experimentwise error 
rate. 

 

 

Alpha 0.05 

Error Degrees of Freedom 96 

Error Mean Square 0.28334
2 

 

 

Number of Means 2 3 4 5 6 7 8 

Critical Range 0.47774
5 

0.518559
6 

0.540802
1 

0.555843
3 

0.5670
4 

0.5670
4 

0.583187
4 

 

 

Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N treat 

 A 7.920
0 

16 G 

     

 B 6.055
0 

16 E 

     

 C 1.932
5 

16 C 

 C    

D C 1.512
5 

16 B 

D     

D E 1.067
5 

16 D 



 

 

72 Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N treat 

 E    

F E 0.787
5 

16 A 

F     

F G 0.510
0 

16 F 

 G    

 G 0.060
0 

16 H 

NOTE
: 

This test controls the Type I experimentwise error 
rate. 

 

 

Alpha 0.05 

Error Degrees of Freedom 96 

Error Mean Square 0.28334
2 

 

 

Number of Means 2 3 4 

Critical Range 0.302351
7 

0.31680
1 

0.347938
2 

 

 



 

 

73 Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N c 

A 3.858
1 

32 1 

    

B 2.473
8 

32 2 

B    

B 2.245
6 

32 3 

    

C 1.345
0 

32 4 

treat c 
Dstabrate 
LSMEAN  

LSMEAN 
Number 

A 1 1.12500000 1 

A 2 1.10000000 2 

A 3 0.76500000 3 

A 4 0.16000000 4 

B 1 4.33000000 5 

B 2 0.88000000 6 

B 3 0.66000000 7 

B 4 0.18000000 8 

C 1 4.92000000 9 

C 2 1.15000000 10 

C 3 0.86000000 11 

C 4 0.80000000 12 

D 1 3.06000000 13 

D 2 1.21000000 14 

D 3 -
0.00000000 

15 



 

 

74 Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N c 

D 4 -
0.00000000 

16 

E 1 7.41000000 17 

E 2 7.47000000 18 

E 3 7.70000000 19 

E 4 1.64000000 20 

F 1 2.04000000 21 

F 2 -
0.00000000 

22 

F 3 -
0.00000000 

23 

F 4 -
0.00000000 

24 

G 1 7.92000000 25 

G 2 7.92000000 26 

G 3 7.92000000 27 

G 4 7.92000000 28 

H 1 0.06000000 29 

H 2 0.06000000 30 

H 3 0.06000000 31 

H 4 0.06000000 32 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 

1  1.000
0 

1.000
0 

0.754
9 

<.000
1 

1.000
0 

1.000
0 

0.789
4 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

0.000
6 

2 1.000
0 

 1.000
0 

0.797
7 

<.000
1 

1.000
0 

1.000
0 

0.829
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

0.000
5 

3 1.000
0 

1.000
0 

 0.999
2 

<.000
1 

1.000
0 

1.000
0 

0.999
6 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

4 0.754
9 

0.797
7 

0.999
2 

 <.000
1 

0.988
2 

1.000
0 

1.000
0 

<.000
1 

0.708
8 

0.992
0 

0.998
0 

<.000
1 

5 <.000
1 

<.000
1 

<.000
1 

<.000
1 

 <.000
1 

<.000
1 

<.000
1 

0.999
5 

<.000
1 

<.000
1 

<.000
1 

0.203
2 

6 1.000
0 

1.000
0 

1.000
0 

0.988
2 

<.000
1 

 1.000
0 

0.992
0 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

7 1.000
0 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

1.000
0 

 1.000
0 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

8 0.789
4 

0.829
1 

0.999
6 

1.000
0 

<.000
1 

0.992
0 

1.000
0 

 <.000
1 

0.745
9 

0.994
8 

0.998
8 

<.000
1 

9 <.000
1 

<.000
1 

<.000
1 

<.000
1 

0.999
5 

<.000
1 

<.000
1 

<.000
1 

 <.000
1 

<.000
1 

<.000
1 

0.001
3 

10 1.000
0 

1.000
0 

1.000
0 

0.708
8 

<.000
1 

1.000
0 

1.000
0 

0.745
9 

<.000
1 

 1.000
0 

1.000
0 

0.000
8 

11 1.000
0 

1.000
0 

1.000
0 

0.992
0 

<.000
1 

1.000
0 

1.000
0 

0.994
8 

<.000
1 

1.000
0 

 1.000
0 

<.000
1 

12 1.000
0 

1.000
0 

1.000
0 

0.998
0 

<.000
1 

1.000
0 

1.000
0 

0.998
8 

<.000
1 

1.000
0 

1.000
0 

 <.000
1 

13 0.000
6 

0.000
5 

<.000
1 

<.000
1 

0.203
2 

<.000
1 

<.000
1 

<.000
1 

0.001
3 

0.000
8 

<.000
1 

<.000
1 

 

14 1.000
0 

1.000
0 

1.000
0 

0.589
6 

<.000
1 

1.000
0 

0.999
9 

0.630
2 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

0.001
5 

15 0.438
4 

0.487
8 

0.974
0 

1.000
0 

<.000
1 

0.883
3 

0.996
7 

1.000
0 

<.000
1 

0.390
9 

0.905
9 

0.955
9 

<.000
1 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 

16 0.438
4 

0.487
8 

0.974
0 

1.000
0 

<.000
1 

0.883
3 

0.996
7 

1.000
0 

<.000
1 

0.390
9 

0.905
9 

0.955
9 

<.000
1 

17 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

18 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

19 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

20 1.000
0 

0.999
9 

0.889
3 

0.045
4 

<.000
1 

0.976
0 

0.727
6 

0.053
2 

<.000
1 

1.000
0 

0.967
1 

0.925
5 

0.072
5 

21 0.836
5 

0.797
7 

0.197
1 

0.001
1 

<.000
1 

0.372
6 

0.097
4 

0.001
3 

<.000
1 

0.870
9 

0.337
2 

0.243
1 

0.650
3 

22 0.438
4 

0.487
8 

0.974
0 

1.000
0 

<.000
1 

0.883
3 

0.996
7 

1.000
0 

<.000
1 

0.390
9 

0.905
9 

0.955
9 

<.000
1 

23 0.438
4 

0.487
8 

0.974
0 

1.000
0 

<.000
1 

0.883
3 

0.996
7 

1.000
0 

<.000
1 

0.390
9 

0.905
9 

0.955
9 

<.000
1 

24 0.438
4 

0.487
8 

0.974
0 

1.000
0 

<.000
1 

0.883
3 

0.996
7 

1.000
0 

<.000
1 

0.390
9 

0.905
9 

0.955
9 

<.000
1 

25 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

26 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

27 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

28 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

29 0.558
9 

0.609
9 

0.991
2 

1.000
0 

<.000
1 

0.942
1 

0.999
3 

1.000
0 

<.000
1 

0.508
0 

0.955
9 

0.982
9 

<.000
1 

30 0.558
9 

0.609
9 

0.991
2 

1.000
0 

<.000
1 

0.942
1 

0.999
3 

1.000
0 

<.000
1 

0.508
0 

0.955
9 

0.982
9 

<.000
1 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 

31 0.558
9 

0.609
9 

0.991
2 

1.000
0 

<.000
1 

0.942
1 

0.999
3 

1.000
0 

<.000
1 

0.508
0 

0.955
9 

0.982
9 

<.000
1 

32 0.558
9 

0.609
9 

0.991
2 

1.000
0 

<.000
1 

0.942
1 

0.999
3 

1.000
0 

<.000
1 

0.508
0 

0.955
9 

0.982
9 

<.000
1 

 

Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 14 15 16 17 18 19 20 21 22 23 24 25 26 

1 1.000
0 

0.438
4 

0.438
4 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

0.836
5 

0.438
4 

0.438
4 

0.438
4 

<.000
1 

<.000
1 

2 1.000
0 

0.487
8 

0.487
8 

<.000
1 

<.000
1 

<.000
1 

0.999
9 

0.797
7 

0.487
8 

0.487
8 

0.487
8 

<.000
1 

<.000
1 

3 1.000
0 

0.974
0 

0.974
0 

<.000
1 

<.000
1 

<.000
1 

0.889
3 

0.197
1 

0.974
0 

0.974
0 

0.974
0 

<.000
1 

<.000
1 

4 0.589
6 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.045
4 

0.001
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

5 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

6 1.000
0 

0.883
3 

0.883
3 

<.000
1 

<.000
1 

<.000
1 

0.976
0 

0.372
6 

0.883
3 

0.883
3 

0.883
3 

<.000
1 

<.000
1 

7 0.999
9 

0.996
7 

0.996
7 

<.000
1 

<.000
1 

<.000
1 

0.727
6 

0.097
4 

0.996
7 

0.996
7 

0.996
7 

<.000
1 

<.000
1 

8 0.630
2 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.053
2 

0.001
3 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

9 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

10 1.000
0 

0.390
9 

0.390
9 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

0.870
9 

0.390
9 

0.390
9 

0.390
9 

<.000
1 

<.000
1 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 14 15 16 17 18 19 20 21 22 23 24 25 26 

11 1.000
0 

0.905
9 

0.905
9 

<.000
1 

<.000
1 

<.000
1 

0.967
1 

0.337
2 

0.905
9 

0.905
9 

0.905
9 

<.000
1 

<.000
1 

12 1.000
0 

0.955
9 

0.955
9 

<.000
1 

<.000
1 

<.000
1 

0.925
5 

0.243
1 

0.955
9 

0.955
9 

0.955
9 

<.000
1 

<.000
1 

13 0.001
5 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

0.072
5 

0.650
3 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

14  0.287
8 

0.287
8 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

0.934
1 

0.287
8 

0.287
8 

0.287
8 

<.000
1 

<.000
1 

15 0.287
8 

 1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.011
4 

0.000
2 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

16 0.287
8 

1.000
0 

 <.000
1 

<.000
1 

<.000
1 

0.011
4 

0.000
2 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

17 <.000
1 

<.000
1 

<.000
1 

 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

18 <.000
1 

<.000
1 

<.000
1 

1.000
0 

 1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

19 <.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

20 1.000
0 

0.011
4 

0.011
4 

<.000
1 

<.000
1 

<.000
1 

 1.000
0 

0.011
4 

0.011
4 

0.011
4 

<.000
1 

<.000
1 

21 0.934
1 

0.000
2 

0.000
2 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

 0.000
2 

0.000
2 

0.000
2 

<.000
1 

<.000
1 

22 0.287
8 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.011
4 

0.000
2 

 1.000
0 

1.000
0 

<.000
1 

<.000
1 

23 0.287
8 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.011
4 

0.000
2 

1.000
0 

 1.000
0 

<.000
1 

<.000
1 

24 0.287
8 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.011
4 

0.000
2 

1.000
0 

1.000
0 

 <.000
1 

<.000
1 

25 <.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

 1.000
0 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 14 15 16 17 18 19 20 21 22 23 24 25 26 

26 <.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

 

27 <.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

28 <.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

29 0.390
9 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.019
5 

0.000
4 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

30 0.390
9 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.019
5 

0.000
4 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

31 0.390
9 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.019
5 

0.000
4 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

32 0.390
9 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.019
5 

0.000
4 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

<.000
1 

 

Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 27 28 29 30 31 32 

1 <.000
1 

<.000
1 

0.558
9 

0.558
9 

0.558
9 

0.558
9 

2 <.000
1 

<.000
1 

0.609
9 

0.609
9 

0.609
9 

0.609
9 

3 <.000
1 

<.000
1 

0.991
2 

0.991
2 

0.991
2 

0.991
2 

4 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

5 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 



 

 

80 Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 27 28 29 30 31 32 

6 <.000
1 

<.000
1 

0.942
1 

0.942
1 

0.942
1 

0.942
1 

7 <.000
1 

<.000
1 

0.999
3 

0.999
3 

0.999
3 

0.999
3 

8 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

9 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

10 <.000
1 

<.000
1 

0.508
0 

0.508
0 

0.508
0 

0.508
0 

11 <.000
1 

<.000
1 

0.955
9 

0.955
9 

0.955
9 

0.955
9 

12 <.000
1 

<.000
1 

0.982
9 

0.982
9 

0.982
9 

0.982
9 

13 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

14 <.000
1 

<.000
1 

0.390
9 

0.390
9 

0.390
9 

0.390
9 

15 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

16 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

17 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

18 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

19 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

20 <.000
1 

<.000
1 

0.019
5 

0.019
5 

0.019
5 

0.019
5 



 

 

81 Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 27 28 29 30 31 32 

21 <.000
1 

<.000
1 

0.000
4 

0.000
4 

0.000
4 

0.000
4 

22 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

23 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

24 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

25 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

26 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

27  1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

28 1.000
0 

 <.000
1 

<.000
1 

<.000
1 

<.000
1 

29 <.000
1 

<.000
1 

 1.000
0 

1.000
0 

1.000
0 

30 <.000
1 

<.000
1 

1.000
0 

 1.000
0 

1.000
0 

31 <.000
1 

<.000
1 

1.000
0 

1.000
0 

 1.000
0 

32 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

 

 

Appendix D 
 

Destabilization of o/w emulsions(day5.sas) 

A two way factorial design 
 

 



 

 

82 Class Level Information 

Class Levels Values 

treat 8 A B C D E F G 
H 

c 4 1 2 3 4 

 

 

Number of observations 12
8 



 

 

83 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 31 944.508187
5 

30.4680060 110.69 <.0001 

Error 96 26.4236000 0.2752458   

Corrected Total 12
7 

970.931787
5 

   

 

 

R-Square Coeff Var Root MSE Dstabrate Mean 

0.972785 10.57140 0.524639 4.962813 

 

 

Source DF Type I SS Mean Square F Value Pr > F 

treat 7 637.540287
5 

91.0771839 330.89 <.0001 

c 3 97.0404375 32.3468125 117.52 <.0001 

treat*c 21 209.927462
5 

9.9965458 36.32 <.0001 

 

 

Source DF Type III SS Mean Square F Value Pr > F 

treat 7 637.540287
5 

91.0771839 330.89 <.0001 

c 3 97.0404375 32.3468125 117.52 <.0001 

treat*c 21 209.927462
5 

9.9965458 36.32 <.0001 



 

NOTE
: 

This test controls the Type I experimentwise error 
rate. 

 

 

Alpha 0.05 

Error Degrees of Freedom 96 

Error Mean Square 0.27524
6 

 

 

Number of Means 2 3 4 5 6 7 8 

Critical Range 0.470870
3 

0.511097
6 

0.533020
1 

0.547844
8 

0.558880
3 

0.558880
3 

0.574795
4 

 

 

Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N treat 

 A 7.820
0 

16 G 

 A    

 A 7.820
0 

16 F 

 A    

 A 7.550
0 

16 E 

     

 B 3.955
0 

16 D 

 B    

 B 3.895
0 

16 B 
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Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N treat 

 B    

C B 3.487
5 

16 A 

C     

C  3.365
0 

16 C 

     

 D 1.810
0 

16 H 

NOTE
: 

This test controls the Type I experimentwise error 
rate. 

 

 

Alpha 0.05 

Error Degrees of Freedom 96 

Error Mean Square 0.27524
6 

 

 

Number of Means 2 3 4 

Critical Range 0.298000
9 

0.312242
3 

0.342931
4 
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Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N c 

A 6.425
0 

32 1 

    

B 4.813
8 

32 2 

    

C 4.377
5 

32 3 

C    

C 4.235
0 

32 4 

treat c 
Dstabrate 
LSMEAN  

LSMEAN 
Number 

A 1 6.8700000
0 

1 

A 2 3.4500000
0 

2 

A 3 2.1800000
0 

3 

A 4 1.4500000
0 

4 

B 1 7.7300000
0 

5 

B 2 3.3200000
0 

6 

B 3 1.9200000
0 

7 

B 4 2.6100000
0 

8 
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Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N c 

C 1 6.2100000
0 

9 

C 2 2.8200000
0 

10 

C 3 2.2600000
0 

11 

C 4 2.1700000
0 

12 

D 1 7.8500000
0 

13 

D 2 3.9200000
0 

14 

D 3 2.7400000
0 

15 

D 4 1.3100000
0 

16 

E 1 6.6200000
0 

17 

E 2 7.2400000
0 

18 

E 3 8.0300000
0 

19 

E 4 8.3100000
0 

20 

F 1 6.4900000
0 

21 

F 2 8.1300000
0 

22 

F 3 8.2600000
0 

23 
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Means with the same letter are not 
significantly different. 

REGWQ Grouping Mean N c 

F 4 8.4000000
0 

24 

G 1 7.8200000
0 

25 

G 2 7.8200000
0 

26 

G 3 7.8200000
0 

27 

G 4 7.8200000
0 

28 

H 1 1.8100000
0 

29 

H 2 1.8100000
0 

30 

H 3 1.8100000
0 

31 

H 4 1.8100000
0 

32 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 

1  <.000
1 

<.000
1 

<.000
1 

0.892
1 

<.000
1 

<.000
1 

<.000
1 

0.995
9 

<.000
1 

<.000
1 

<.000
1 

0.700
6 

2 <.000
1 

 0.181
1 

0.000
2 

<.000
1 

1.000
0 

0.024
8 

0.913
9 

<.000
1 

0.998
0 

0.291
9 

0.169
8 

<.000
1 

3 <.000
1 

0.181
1 

 0.982
7 

<.000
1 

0.378
7 

1.000
0 

1.000
0 

<.000
1 

0.997
4 

1.000
0 

1.000
0 

<.000
1 

4 <.000
1 

0.000
2 

0.982
7 

 <.000
1 

0.000
9 

1.000
0 

0.342
5 

<.000
1 

0.090
6 

0.940
7 

0.985
6 

<.000
1 

5 0.892
1 

<.000
1 

<.000
1 

<.000
1 

 <.000
1 

<.000
1 

<.000
1 

0.027
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

6 <.000
1 

1.000
0 

0.378
7 

0.000
9 

<.000
1 

 0.072
3 

0.988
1 

<.000
1 

1.000
0 

0.537
5 

0.360
4 

<.000
1 

7 <.000
1 

0.024
8 

1.000
0 

1.000
0 

<.000
1 

0.072
3 

 0.992
0 

<.000
1 

0.839
2 

1.000
0 

1.000
0 

<.000
1 

8 <.000
1 

0.913
9 

1.000
0 

0.342
5 

<.000
1 

0.988
1 

0.992
0 

 <.000
1 

1.000
0 

1.000
0 

1.000
0 

<.000
1 

9 0.995
9 

<.000
1 

<.000
1 

<.000
1 

0.027
1 

<.000
1 

<.000
1 

<.000
1 

 <.000
1 

<.000
1 

<.000
1 

0.009
1 

10 <.000
1 

0.998
0 

0.997
4 

0.090
6 

<.000
1 

1.000
0 

0.839
2 

1.000
0 

<.000
1 

 0.999
7 

0.996
7 

<.000
1 

11 <.000
1 

0.291
9 

1.000
0 

0.940
7 

<.000
1 

0.537
5 

1.000
0 

1.000
0 

<.000
1 

0.999
7 

 1.000
0 

<.000
1 

12 <.000
1 

0.169
8 

1.000
0 

0.985
6 

<.000
1 

0.360
4 

1.000
0 

1.000
0 

<.000
1 

0.996
7 

1.000
0 

 <.000
1 

13 0.700
6 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.009
1 

<.000
1 

<.000
1 

<.000
1 

 

14 <.000
1 

1.000
0 

0.003
5 

<.000
1 

<.000
1 

0.999
1 

0.000
2 

0.138
9 

<.000
1 

0.455
9 

0.007
6 

0.003
1 

<.000
1 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 

15 <.000
1 

0.988
1 

0.999
7 

0.159
0 

<.000
1 

0.999
5 

0.932
5 

1.000
0 

<.000
1 

1.000
0 

1.000
0 

0.999
6 

<.000
1 

16 <.000
1 

<.000
1 

0.880
1 

1.000
0 

<.000
1 

0.000
2 

0.998
8 

0.148
7 

<.000
1 

0.029
5 

0.756
9 

0.892
1 

<.000
1 

17 1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.436
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.232
0 

18 1.000
0 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.599
7 

<.000
1 

<.000
1 

<.000
1 

0.998
8 

19 0.342
5 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.001
5 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

20 0.052
8 

<.000
1 

<.000
1 

<.000
1 

0.999
5 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

21 1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.218
4 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.097
5 

22 0.193
0 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.000
5 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

23 0.078
0 

<.000
1 

<.000
1 

<.000
1 

0.999
9 

<.000
1 

<.000
1 

<.000
1 

0.000
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

24 0.024
8 

<.000
1 

<.000
1 

<.000
1 

0.994
8 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

0.999
8 

25 0.756
9 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.012
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

26 0.756
9 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.012
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

27 0.756
9 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.012
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

28 0.756
9 

<.000
1 

<.000
1 

<.000
1 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

0.012
1 

<.000
1 

<.000
1 

<.000
1 

1.000
0 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 

29 <.000
1 

0.009
1 

1.000
0 

1.000
0 

<.000
1 

0.029
5 

1.000
0 

0.948
1 

<.000
1 

0.640
8 

1.000
0 

1.000
0 

<.000
1 

30 <.000
1 

0.009
1 

1.000
0 

1.000
0 

<.000
1 

0.029
5 

1.000
0 

0.948
1 

<.000
1 

0.640
8 

1.000
0 

1.000
0 

<.000
1 

31 <.000
1 

0.009
1 

1.000
0 

1.000
0 

<.000
1 

0.029
5 

1.000
0 

0.948
1 

<.000
1 

0.640
8 

1.000
0 

1.000
0 

<.000
1 

32 <.000
1 

0.009
1 

1.000
0 

1.000
0 

<.000
1 

0.029
5 

1.000
0 

0.948
1 

<.000
1 

0.640
8 

1.000
0 

1.000
0 

<.000
1 

 

Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 14 15 16 17 18 19 20 21 22 23 24 25 26 

1 <.000
1 

<.000
1 

<.000
1 

1.000
0 

1.000
0 

0.342
5 

0.052
8 

1.000
0 

0.193
0 

0.078
0 

0.024
8 

0.756
9 

0.756
9 

2 1.000
0 

0.988
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

3 0.003
5 

0.999
7 

0.880
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

4 <.000
1 

0.159
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

5 <.000
1 

<.000
1 

<.000
1 

0.436
1 

1.000
0 

1.000
0 

0.999
5 

0.218
4 

1.000
0 

0.999
9 

0.994
8 

1.000
0 

1.000
0 

6 0.999
1 

0.999
5 

0.000
2 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

7 0.000
2 

0.932
5 

0.998
8 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 14 15 16 17 18 19 20 21 22 23 24 25 26 

8 0.138
9 

1.000
0 

0.148
7 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

9 <.000
1 

<.000
1 

<.000
1 

1.000
0 

0.599
7 

0.001
5 

<.000
1 

1.000
0 

0.000
5 

0.000
1 

<.000
1 

0.012
1 

0.012
1 

10 0.455
9 

1.000
0 

0.029
5 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

11 0.007
6 

1.000
0 

0.756
9 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

12 0.003
1 

0.999
6 

0.892
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

13 <.000
1 

<.000
1 

<.000
1 

0.232
0 

0.998
8 

1.000
0 

1.000
0 

0.097
5 

1.000
0 

1.000
0 

0.999
8 

1.000
0 

1.000
0 

14  0.308
3 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

15 0.308
3 

 0.057
2 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

16 <.000
1 

0.057
2 

 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

17 <.000
1 

<.000
1 

<.000
1 

 0.998
5 

0.066
9 

0.005
7 

1.000
0 

0.029
5 

0.009
1 

0.002
3 

0.276
1 

0.276
1 

18 <.000
1 

<.000
1 

<.000
1 

0.998
5 

 0.954
9 

0.516
9 

0.975
6 

0.853
6 

0.620
3 

0.342
5 

0.999
5 

0.999
5 

19 <.000
1 

<.000
1 

<.000
1 

0.066
9 

0.954
9 

 1.000
0 

0.022
8 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

20 <.000
1 

<.000
1 

<.000
1 

0.005
7 

0.516
9 

1.000
0 

 0.001
5 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

21 <.000
1 

<.000
1 

<.000
1 

1.000
0 

0.975
6 

0.022
8 

0.001
5 

 0.009
1 

0.002
5 

0.000
6 

0.121
0 

0.121
0 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 14 15 16 17 18 19 20 21 22 23 24 25 26 

22 <.000
1 

<.000
1 

<.000
1 

0.029
5 

0.853
6 

1.000
0 

1.000
0 

0.009
1 

 1.000
0 

1.000
0 

1.000
0 

1.000
0 

23 <.000
1 

<.000
1 

<.000
1 

0.009
1 

0.620
3 

1.000
0 

1.000
0 

0.002
5 

1.000
0 

 1.000
0 

1.000
0 

1.000
0 

24 <.000
1 

<.000
1 

<.000
1 

0.002
3 

0.342
5 

1.000
0 

1.000
0 

0.000
6 

1.000
0 

1.000
0 

 0.999
5 

0.999
5 

25 <.000
1 

<.000
1 

<.000
1 

0.276
1 

0.999
5 

1.000
0 

1.000
0 

0.121
0 

1.000
0 

1.000
0 

0.999
5 

 1.000
0 

26 <.000
1 

<.000
1 

<.000
1 

0.276
1 

0.999
5 

1.000
0 

1.000
0 

0.121
0 

1.000
0 

1.000
0 

0.999
5 

1.000
0 

 

27 <.000
1 

<.000
1 

<.000
1 

0.276
1 

0.999
5 

1.000
0 

1.000
0 

0.121
0 

1.000
0 

1.000
0 

0.999
5 

1.000
0 

1.000
0 

28 <.000
1 

<.000
1 

<.000
1 

0.276
1 

0.999
5 

1.000
0 

1.000
0 

0.121
0 

1.000
0 

1.000
0 

0.999
5 

1.000
0 

1.000
0 

29 <.000
1 

0.791
8 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

30 <.000
1 

0.791
8 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

31 <.000
1 

0.791
8 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

32 <.000
1 

0.791
8 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 27 28 29 30 31 32 

1 0.756
9 

0.756
9 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

2 <.000
1 

<.000
1 

0.009
1 

0.009
1 

0.009
1 

0.009
1 

3 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

4 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

5 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

6 <.000
1 

<.000
1 

0.029
5 

0.029
5 

0.029
5 

0.029
5 

7 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

8 <.000
1 

<.000
1 

0.948
1 

0.948
1 

0.948
1 

0.948
1 

9 0.012
1 

0.012
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

10 <.000
1 

<.000
1 

0.640
8 

0.640
8 

0.640
8 

0.640
8 

11 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

12 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

13 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

14 <.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

<.000
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 27 28 29 30 31 32 

15 <.000
1 

<.000
1 

0.791
8 

0.791
8 

0.791
8 

0.791
8 

16 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 

1.000
0 

17 0.276
1 

0.276
1 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

18 0.999
5 

0.999
5 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

19 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

20 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

21 0.121
0 

0.121
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

22 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

23 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

24 0.999
5 

0.999
5 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

25 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

26 1.000
0 

1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

27  1.000
0 

<.000
1 

<.000
1 

<.000
1 

<.000
1 

28 1.000
0 

 <.000
1 

<.000
1 

<.000
1 

<.000
1 
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Least Squares Means for effect treat*c 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

 
Dependent Variable: Dstabrate 

i/j 27 28 29 30 31 32 

29 <.000
1 

<.000
1 

 1.000
0 

1.000
0 

1.000
0 

30 <.000
1 

<.000
1 

1.000
0 

 1.000
0 

1.000
0 

31 <.000
1 

<.000
1 

1.000
0 

1.000
0 

 1.000
0 

32 <.000
1 

<.000
1 

1.000
0 

1.000
0 

1.000
0 
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