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ABSTRACT

Bayesian Data-Driven Models for Irrigation Water Management

by

Alfonso F. Torres Rua, Doctor of Philosophy
Utah State University, 2011
Co-Major Professor: Dr. Wynn Walker
Co-Major Professor: Dr. Mac McKee
Department: Civil and Environmental Engineering

A crucial decision in the real-time management of todagrigation systems
involves the coordination of diversions and delivery of water to croplankse #ost
irrigation systems experience significant lags between wiaderws diverted and when it
should be delivered, an important technical innovation in the next fers yaainvolve
improvements in short-term irrigation demand forecasting.

The main objective of the researches presented was the developintbese
critically important models: (1) potential evapotranspiratiored¢asting; (2) hydraulic
model error correction; and (3) estimation of aggregate watearttisn These tools are
based on statistical machine learning or data-driven modelivesel of wide application
in several areas of engineering analysis, can be used atiorigagnd system management
to provide improved and timely information to water managers. Thea@weht of such
models is based on a Bayesian data-driven algorithm called tlewaRee Vector
Machine (RVM), and an extension of it, the Multivariate Relevavieetor Machine

(MVRVM). The use of these types of learning machines has then&dpeaof avoidance



of model overfitting, high robustness in the presence of unseen data, amthintyce
estimation for the results (error bars).

The models were applied in an irrigation system located in the n_8eweier
River Basin near Delta, Utah.

For the first model, the proposed method allows for estimation ofefudtop
water demand values up to four days in advance. The model useddahylyair
temperatures and the MVRVM as mapping algorithm.

The second model minimizes the lumped error occurring in hydramhulation
models. The RVM is applied as an error modeler, providing estimagiath® occurring
errors during the simulation runs.

The third model provides estimation of future water releasesafmorentire
agricultural area based on local data and satellite imagery up to two daysnoeadva

The results obtained indicate the excellent adequacy in termscaifracy,
robustness, and stability, especially in the presence of unseen Hataomparison
provided against another data-driven algorithm, of wide use in emgigegehe
Multilayer Perceptron, further validates the adequacy of uskeoRVM and MVRVM
for these types of processes.

(149 pages)
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CHAPTER 1

INTRODUCTION

General introduction

Population growth worldwide and associated increase in demand for fodolepota
water and other services create the possibility of a futurervgabrtage problem which
will require methods to reduce the water use in activitiesusmatarge quantities, such as
irrigated agriculture. This type of agriculture will be theénpipal source of water to
supply increased urban and industrial demands. Still, changes towacedeasater use
in irrigation will be slow, costly and disruptive. Among the maegsons that could be
argued, one of the most apparent is the lack of adequate informatooloto support
better decisions related to more efficient water management in irrigation.

Water related sources of information exist and increase elryn number and
guantity, and government and private organizations expand effortdléotcstore and
make available collected data. There still remains a f@ecthodels or tools that can
provide information to manage water. Thus, the collected data do not necessasigte
into adequate information for water management, and in some cagé$e impractical
as inputs for hydraulic or hydrologic models.

The implications of this dilemma are vast, having significaniuanfce in the
control on the water supply, demand tradeoff, precise schedulifiuguoé releases from
water storages, water loss minimization and control of floeziratanals while providing
adequate amounts of water for irrigated lands. Therefore,ntgertant that research be
done to address the issues regarding adequate information and toetsang for

decision makers.
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Various hydraulic and hydrologic models have been used to addressatiforah
needs in irrigation for years with relative degrees of sucdeggnding on the adequacy
of the input data and the used simulation tools. Particular modelsyadpre linked to
the resources available to the organization responsible for wateigeraent. Thus, new
ways of supplying adequate information and enhancement of modeddyaire use is
necessary to provide better support for management activities. Fopesator of an
irrigation canal, the critical information is related to expéctear term (next days)
values of water requirements for irrigation, e.g. crop evapotrarispirand agricultural
command area (ACA) water requirements. In terms of enhancementsé simulation
models, adequate correspondence between measured and simulatedchydranieters
is important to precisely estimate the amount and timing of rwdskveries, thereby
offering better control over the allocated water for irrigation.

Also, a crucial decision in today’s irrigation system managermmaives the
coordination of water releases or diversions and the deliverggdiofithese flows to the
croplands. Since most irrigation systems experience signifiegatbetween when water
is released or diverted in comparison to when it should be deliverd@pgethe most

important technical innovation in the next few years will involve demand foregasti

Purpose and objectives

Purpose of the study
The purpose of this study was to develop adaptable methods and toaléothat

for better management of water destined for irrigation, usiatg-of-the-art supervised
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learning machines, while measuring their possible performahesn wnplemented for

everyday use.

Objectives
The objectives of the research were to:

e Develop a method that quantifies short-term future crop water naemsgation
lands in limited climatic data scenario.

e Develop a method that allows for error correction in simulation fedtiat account
for combined parameters, variables and structural error sources.

e Develop an approach to forecast near-term irrigation water deforaad agricultural
command area to improve canal operations in large-scale irrigation systems

e Present an adequate procedure that allows for the development aratioepbt the
proposed methods by comparison of data-driven algorithms.

e Estimate future performance of the methods developed using supenaseithge

machines by measurement of goodness-of-fit parameters.

Resear ch motivation

Recent research literature has shown some promising applicetiansariety of
water resources management problems through the use of Balgsiaing machine
algorithms. This initiated the idea that these algorithms coufabtentially applied for
irrigation water demand management. Given the Bayesian theory intb@udbese
algorithms, these can also provide additional information about the Vigyialfi the

results obtained.



Resear ch contributions

The proposed research has demonstrated the applicability of &ayeeia-driven
algorithms to provide adequate solution to the objectives mentioneer.e@tis study
was the first attempt to use Bayesian learning machine algorithms for:
e Daily ET, forecasts based on limited weather data.
e Minimization of aggregated or lumped error from a physical-based simulation.model
e Near-term daily future estimations of water demand for an A@&ed on local

information.

Dissertation organization

The dissertation consists of five chapters. Chapter 1 is an introductithis
document which includes the motivation, description of the overall obgsctiand
motivations for the major contributions of the research, and outlinesaheeptual
framework for the developed models. Chapter 2 provides an insight obpsewvork on
potential evapotranspiration forecasting as it appears in scientifatliter it describes in
a detailed manner the procedure developed; and shows the results obi@ihed
comparison with a similar alternative method. Chapter 3, sinmlastructure to the
previous one, describes the proposed methods in the literature to provideoan
correction model for physical-based models, and details the proposeddpre
developed in this study for a coupled physical- and statisticattbasédel to reduce the
impact of lumped or aggregate error in the simulation results.chiaister also discusses
the obtained results and provides a comparison with an alternata«eligven algorithm
of wide use in the scientific literature. Chapter 4, structuréer dhe previous two

chapters, analyzes the current proposed methods to determine ii#tiene demand
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forecasts for an irrigation command area and presents a ndwdukgy to forecast
water demand based on only SCADA and limited climatic data. €h&pprovides a
summary of this work, draws the major conclusions that follow, araiges
recommendations for further research.

The structure of this document is based on the paper dissertatioat.fagkm
result, some redundancies and repetition of parts of the matesanped, especially the

description of the data-driven algorithms and area of study, occur.



CHAPTERZ2
FORECASTINGDAILY POTENTIAL EVAPOTRANSPIRATIONUSING MACHINE

LEARNING AND LIMITED CLIMATIC DATA*

ABSTRACT

Anticipating or forecasting near-term irrigation demands ieguirement for
improved management of conveyance and delivery systems. The mpettant
component of a forecasting regime for irrigation is a simpd¢, reliable, approach to
estimate future crop water demands, which in this paper is representedrbietence or
potential evapotranspiration (BT In most cases, weather information for the irrigation
system is limited to a reduced number of measured variabtrefdre estimation of BT
values is restricted. This paper summarizes the resultsodbtecasting EJ approaches
under the mentioned condition. The first or direct approach involved faregdst,
directly using historically computed values. The second or irtdapproach involved
forecasting the required weather parameters for thecBlEulation based on historical
data and then computing ETA statistical machine learning algorithm, the Multivariate
Relevance Vector Machine algorithm (MVRVM) is applied for boththe forecasting
approaches. The general @hodel used is the 1985 Hargreaves Equation which requires
only minimum and maximum daily air temperatures and is thus we#dsto regions

lacking more comprehensive climatic data. The utility and maldy of the forecasting

! Reprinted from Agricultural Water Management Journal, Vol. 98/4, Alfonso F.
Torres, Wynn R. Walker and Mac McKee, “Forecasting Daily Potential Estipor
Using Machine Learning and Limited Climatic Data,” pages 553-562, Copyright
(2011), with permission from Elsevier.
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methodology is demonstrated with an application to an irrigation priojé&aentral Utah.
To determine the advantage and suitability of the applied alggritimother learning

machine, the Multilayer Perceptron (MLP), is tested in the present study.

Introduction

Population increases over the next decades will place a sullstanphasis on
achieving higher irrigation efficiencies and greater productionupé of water. A key
component of any strategy to improve irrigation water managewitie related with
improvement of water delivery strategies and efficiencighinvthe irrigation delivery
networks. As Kumar et al. (2002) note, evapotranspiration (ET) isobrtbe most
important components of the hydrologic cycle and its accuratmagin is of vital
importance for such diverse areas as hydrologic water leglanigation system design
and management, crop yield simulation and water resources planningasadement.
Likewise, achieving higher irrigation system performance wlipend on reliable
forecasts of cropland ET and will require that such forecasts be far emotinghfuture to
compensate for lag time travel of the water supply. ET estmat an important input to
water management and irrigation scheduling because crop demangsnarelly the
largest component of water diversions.

A number of computational methods have been developed to estimate potential
evapotranspiration (&) from climatic data. These methods vary in complexity from
models that require only basic information, such as maximum amimom air
temperature (Hargreaves, 1974), to complex models that estimatthBugh energy
balance models, such as the Penman - Monteith method (Allen €t98B). The

advantage of simple models is their suitability in regions withimal available weather
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data. Their major disadvantage is that these may not refleceffects of localized
climatic and geographic variations such as narrow valleys, highngrelevations,
extreme latitudes or strong winds. Also, simple methods are yfes suited to weekly
or monthly ET estimates than daily estimates.

In recent years there have been several attempts taagstaimd forecast Bwith
a higher degree of accuracy and over extended futures. Some ohth@we inumerical
and statistical approaches that attempt to accurately sintbhateandom nature of the
meteorological variables (Yamashita and Walker, 1994). The ecmerof difficulties
related with these attempts forced researchers to look for ®itleniques using data-
driven tools or statistical learning machines, such as éigifNeural Networks (Kumar
et al., 2002; Lai et al., 2004; Smith et al., 2006), Simple B&yassifier and k-Nearest
Neighbors (Verdes et al., 2000), Support Vector Machines and Retewaector
Machines (Gill et al., 2006). These newer approaches have bednpus®rily to
forecast hourly EJ values up to 24 hours in advance. Forecasting of daifybeyond
one day using data-driven algorithms have not been reported, even thesghmethods
are known for having excellent modeling accuracy, particulariepresenting complex
nonlinear behavior (Lai et al., 2004).

The objective of this paper is to demonstrate the adequacy of fievedt
approaches for forecasting daily &Tising statistical learning machines and limited
climatic information. The learning machine algorithm used isMb#ivariate Relevance
Vector Machine (MVRVM). The potential crop evapotranspiration tsmeged by the
1985 Hargreaves Equation. These results are then compared with ES ofathe area

under study to determine the accuracy of the forecasted esgirobtained. Also, for
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comparison and benchmarking analysis, another learning machinestea the Multi-

layer Perceptron, to determine the suitability of the proposed mapping algorithm

Theoretical development

Potential evapotranspiration

The potential or reference evapotranspiration JE&xpresses the evaporating
power of the atmosphere at a specific location and time of tmeagedadoes not consider
crop characteristics or soil factors. As it is mentionedAbbgn et al. (1998), the only
factors affecting EJ are climatic parameters. Consequentlyy ESTa climatic parameter
and can be computed from weather data. Among the several mailesdsitate EJ, the
FAO Penman-Monteith method is recommended as the sole methodedionideng ET,.
This method has been selected because it closely approximae€£gdat the location
evaluated, is physically based, and explicitly incorporates both gbgsial and
aerodynamic parameters.

Situations might occur where data for some weather variablesiasing. The
use of an alternative ETcalculation procedure, requiring reduced meteorological
parameters, should generally be avoided. It is recommended thatshelld be
calculated using the standard FAO Penman-Monteith method edt@ring the specific
problem of the missing data (Allen et al., 1998). Despite of Winen climatic data as
Net Radiation is not available, Allen et al. (1998) suggest theretargs E{§ equation

for its use.
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Hargreaves ET, equation

Hargreaves and Allen (2003) note that the current Hargreaves eque®
developed in 1975 in an attempt to improve thg &juation developed by Christiansen
(1968). Using eight years of daily cool season grass in precision weitygimgters and
weather data, Hargreaves performed regressions among mea3yradd&emperature
data using several ETnethods. Several posterior attempts to improve the resulting ET

equation led to the 1985 Hargreaves Eguation:

ET, =0.0023R, (T, +17.8-T.>° 2.1)

where:
ETo: potential evapotranspiration (mm/day) of a reference crop (grass),
Tmax and Tnin: maximum and minimum daily air temperatut€)
TC: 0.5 (Thax + Tmin)s
TR: Tmax- Tmin @nd;
Ra extraterrestrial solar radiation (mm/day).
The following empirical simplifications allow festimation using the latitude and

the day of the year, as mentioned by Allen et al. (1998):

R, =37.6*d, (0_sin(p,)sin@i + cosg, )sin@,))/A (2.2)
& = 0.4093 sin2n(284+ J)/ 369 (2.3)
d, =1+0.033 co$21J/365 (2.4)
o, = cogtan(p, ) tan@) (2.5)

being:

dr: relative distance from the earth to the sun,
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J: day of the year,

®S: sunset hour angle (rad),

op: latitude (rad),

d: declination of the sun (rad) and
L. latent heat of vaporizatioh,~ 2.54.

Hargreaves and Allen (2003) stated that the best use of Eq. 2.d bet@br ET
estimation in regional planning and reservoir operation studies. fltaetaeness of
Hargreaves Egdmodel is its simplicity, reliability, minimal data requirent, and ease of
computation. The viability of using Hargreaves instead of Pennameéth ET
equation is demonstrated in the study by Trajkovic and Kolakovic (20068yewthe
difference between Hargreaves and Penman-Monteighegdations is in the range of -
4.7% to 6.9% for all the weather stations used.

The estimated reference or potential evapotranspiration nslatad into the
actual crop evapotranspiration, ET, by adjusting EF crop variety growing stage as
follows:

ET=K_*ET, 2.6)

in which K. is the crop growth stage factor (no dimensional) and ET has the same units as
ETo. Tables and information related with the crop stage factor haae developed for

most of the agricultural crops around the world. Average values &rkvarious crops

can be found in Allen et al. (1998), while location-specificcén be found in research

publications (Wright, 1982).



Multi-layer perceptron
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Among the large number of implementations of Artificial Neuratvidek (ANN)

models, the Multi-Layer Perceptron (MLP) is one of the most wideed because of its

ability to approximate any smooth function (Nabney, 2002). An integestiaracteristic

of this ANN is the inclusion of the Bayesian Inference Methodaitate the MLP

parameters. The Bayesian Inference Method also allows esiimait the variability

related to the predicted outputs. The MLP architecture can be described as:

y®=w" tanr{w'x(”)+ b j +b"

where:
y™: MLP output vector, Y=[y1,...,Ym,...Ynm],

x™: input vector £'=[x4,...Xq,...,Xo],
wiow'. | . .
' . optimized weights for the first and second layer respectively,

w!' :[W::.,I’K ’W:Z),NN] w' :[Wll,liK ’WIILN,M

M: number of components of the output vector,
D: number of components in the input vector,

NN: number of hidden neurons,

b',b" : bias vectors for the first and second layer, respectively.

(2.7)

, N : -
Using a datase‘t:{x(”),t(”)}nzl, where N is the number of training cases, the

calibration of the MLP is performed by optimizing the network patans

W= {W',W” b’ ,b”} in order to minimize the Overall Error Function E (Bishop, 1995):
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(2.8)

where:
E.: data error function,
Ew: penalization term,
W: number of weights and biases in the neural ne¢wand
a, B: Bayesian hyperparameters.
In Bayesian terms, the goal is to estimate theglitiby of the weights and bias

of the MLP model, given the dataget

o A HY
e e

where, as explained by MacKay (1992):

p(W|t™): the posterior probability of the weights,
p(t"|W): the dataset likelihood function,
p(W): the prior probability of the weights, and
p(t™): the evidence for the dataset.
Assuming a Gaussian distribution for the error téft= t™-y™ and the weights W,

the likelihood and the prior probabilities can bpressed:
p(t® |W,B)=(2np*) "> exp(- BE, ) (2.10)

plt™ |W,a)=(2nat) ™ extt- oE,) (2.12)
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Ex models the uncertainty (or error) of the targetaldes as Gaussian zero-mean

noise and variance’= . By defines the conditional probability of W with vamice

ow’=a". Then Eq. 2.9 can be expressed as:

p(t‘“) IW,BJ : p(W Iaj
p(W [t™,0,B) = (2.12)
p(t‘"’ Ia,Bj
exr{E(V*Vj —1AW'H vvj
p(W[t™,0,B) = (2.13)

exr{E[\;V)(Zn)W/z |H| “j

in which,

E(Wj: expected optimized values for the weights and,bia

H= Hessian matrikl =BVV Ea+ al , | is the identity matrix.

AW=W-W.,
Once the distribution of W has been estimated byimaing the likelihood fora
andp, the prediction § and its standard deviatien, ™ can be estimated by integrating

(marginalizing) over W and the regularization paetensa. and (Bishop, 1995):

Ay 17, [p{ 171X | Wt |- cw (2.14)

This can be approximated by:

1 . 2
ply® [x®,t™)oc (27:65”)2} Zexp{—%o‘y”)z(y‘”)—t‘”)J J (2.15)
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where V" is the output ands(y”)2 is the output variance from the MLP. The output

variance can be expressed as:
o =B+ g"H g (2.16)

where g denotes the gradient &P with respect to the weightgy = VWy® |W. The

output variance has then two sources; the firsearfrom the intrinsic noise in the target

data; and the second from the posterior distributb the ANN weights (Pierce et al.

2008). The output standard deviation veoméj}’ can be interpreted as the error bar for

confidence interval estimation (Bishop, 1995).

Multivariate relevance vector machine

The Multivariate Relevance Vector Machine (MVRVM)leveloped by
Thayananthan et al. (2008), is a general Bayes@anework for obtaining multivariate
sparse solutions to regression tasks. The MVRVNbased on the Relevance Vector
Machines framework developed by Tipping (2001) amuping and Faul (2003) which
was extended to handle multivariate outputs. Téasrling machine is particularly useful
in hydrology and water resources because of thesrgbration properties and the
probabilistic estimation, useful to estimate prédic uncertainty (Tripathi and

Govindajaru, 2007). The mathematical formulatiothaf MVRVM is:

Yy = W. d[x "] (2.17)

where:

N
x™ and t": input and target vectors that belong to the Mtgé}nﬂ, as defined for the

MLP,
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y™: MVRVM output vector {’=[y;, ... ,yu]; me 1<m< M,
M: number of components in the target and MVRVMputitvectors,

N: number of training cases,

W: optimized weight matrixXW = [wy 1,...,Wm ..., Wnm.Rrv],
RV: number of optimal cases or relevance vectdects by the MVRVM from the N

training cases, RV << N, w1<rv<RYV,
@ [x"™]: optimized design matrix or basis function (resneted also byb) that can be

related with a kernel functio® = K x‘“),{ x® }RV ]

rv=l

The kernel function is a weighting function for timput vector £’ used in non-
parametric estimation techniques, e.g. kernel ssgpa models. It provides an
adjustment to the®® vector based on RV optimal cases or relevant vect , which
are selected automatically among the N trainingutingectors. For calibration of the
MVRVM a variation of the Overall Error function (Eg.8) is used and by means of the
Bayesian Inference Method the distribution of theighits of the model (Eq. 2.17) is
estimated, similar to the MLP calibration proceBse MVRVM error term or residual
MW = W .y js assumed to be probabilistic independent zeraam®aussian, with
variances:”. The detail of the MVRVM algorithm is as follows:

Assuming a Gaussian prior probability distributitor the weights (Tipping,
2001), and representing A = diagf,...,an?), and B = diadf,...,fm), where each
elementa, is a hyperparameter that determines the relevahdbe associated basis

function for every case in the training daia.= o:° represents the noise or error variance
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in the ni" component of the target data (Thayananthan €2G08). The prior distribution

over the weights is represented by:

p(W|A) =TT [NW,, 10,;2) (2.18)

where W, is the element at (m, n) of the weighting matie [w1 1,...,Wm.n,--.,Wu.n].

The likelihood distribution of W can be expressed a

N

p({ OF |w, B) HN( ™ |wW-o,B) (2.19)

n=

with CD:Kl{x(”)}:ﬂ,{x(”)}:ﬂj. The likelihood of the targef'tcan be written as:
M

IO({ t(”’} |W, B) HN(TmIWm-q),Bm) (2.20)

m=1
Tm is a vector with the ficomponent of all the target data ang the weight vector of
the ni” component of the output vect8P.tThe prior distribution over the weights can be

rewritten as:
M
W|A =HN |0A (2.21)
m=1

The posterior probability of W can be written as ginoduct of separate Gaussians

of the weights vectors of each output dimension:

(W 1o, B,A)oc ({t@}ﬁ‘:l | W,B)- p(W|A) (2.22)
p(W|{t<“>}§‘_l,B,A)oc]M_[N w, w3, (2.23)

The termspm = B EZm®@ tm and Zy = B @ '®+A)™ are the mean and the
variance of the weight matrix respectively. Mardjimiag the data likelihood over the

weights:
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plk ) 18,8)= ol } 1w, B) plw [ A)-aw (2.2
p({ O A, B): ]M[| H_ |'% ex;{—%r;Hm%mj (2.25)

Hm is the Hessian matrix for the"htomponent of the target vector, i Bl +

®"A®"T. An optimized set of hyperparametéra*w}S:1 and noise parametdrﬁ*m}x:l

is obtained by maximizing the marginal likelihoosl described by Tipping and Faul,

(2003). The final hyperparameter values are:
A =diada*;* K 02 (2.26)
. «T o« \ 7t
.= (B?n O O+ Aj (2.27)
The optimized mean vector and the weight matrix are
* * * T
My =B T @ T,y (2.28)

* * * T
W=(ul,...,qu (2.29)
The MVRVM output and output error bacta@s are:

y® =W (2.30)

* 71 * T * *
o) = sqr(B +O Y. (Dj (2.31)
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Materials and methods

Area of study

The water resources of the Sevier River Basin imti@é Utah (Fig. 2.1) are
among the most heavily utilized in the Western $abstantial efforts to increase
efficiency via canal lining and on-farm improvemesnich as conversion to sprinkler
irrigation and laser land leveling were made duti8g0 - 1990 period. From 1990 to the
present, all reservoirs and stream offtakes haea lequipped with SCADA technology
and web-based data summaries (SRWUA, 2009). Canamation was introduced in
1994 and shown to not only to result in substam&mluction in losses but also to
considerably shorten the response time betweenefademands and system deliveries
(Walker and Stringam, 1999, 2000).

Most recently, attention has been focused on impgpthe coordination between
farmer demands, canal deliveries, and reservoiergions, which depend to a large
extent on forecasting the irrigation demand. Ineoritd develop, test and implement the
ET, forecasting approaches of this study, a subsystethe lower end of the Sevier
River was selected. The Canal B system as showigin2.1 commands about 10,500
hectares in extent and is managed by the DeltalG2ompany. The Canal B area is
connected to the DMAD reservoir by a 9 km. canan(@& A). The DMAD gates as well
as the Canal B gates are automated and operatadS&ADA system by local water
masters. The lag time from DMAD Reservoir to then@leB headgates is about 3 hours.
The lag time between the Canal B inlet and an idda farm within the Canal B area

averages 9 hours.
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Fig. 2.1 Area of study, ACA Canal B in Delta, Utah.

The DMAD Reservoir is supplied water on a demansisodom Sevier River
Bridge Reservoir upstream. The lag time from SeBedge Reservoir to DMAD
Reservoir is approximately 3 days. Thus, an emgrgnep demand in the Canal B area
can be supplied within about 12 hours if watenailable in DMAD Reservoir, or 4 days
if water must be conveyed from Sevier Bridge Resierihe goal of the entire system is
to provide water to an individual farm within 12uve of an order by the irrigator. This
goal relies heavily on the SCADA system and theulagn capacity of DMAD

Reservoir.
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The water management goals over the next few yar&$o reduce the DMAD
regulation capacity and improve the reliabilitytbé 12 hour delivery interval period. It
is expected that controlled DMAD Reservoir levell veduce seepage, evaporation, and
administration losses by about 25 to 50%. The mogiortant capability needed to
achieve this goal is to develop a reliable and mteuforecast of irrigation demand,

which begins with the ET estimates.

Data description

All the weather data for this study were taken frim meteorological station
located in Delta, Utah (WMO Station Number 724 &Jgilable at the NOAA - National
Climatic Data Center website (2009). From thisistatdaily minimum and maximum air
temperatures over the full period from January 200l December 2009 were available.
For each of the 10 years, a subset was selectddotiig includes the daily air
temperatures during the agricultural season (M&vdDctober, ~ 256 days). Information
about crop coefficients (X for the Lower Sevier River Basin was obtainedrfrthe
study by Wright (1982). Information about crop dimitions and effective area per crop
for the years 2006 to 2009 was obtained from thedBat Imagery Program website

(2009).

Methodol ogy

As noted in the introduction to this paper, two @aghes were considered for
forecasting E§ using the 1985 Hargreaves equation. The first agubr (Direct
Approach) involved the calculation of historical £from the daily minimum and

maximum air temperatures and then applying the madearning algorithm described
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above to simulate directly the Efime series, obtaining as result the forecastéuegeof
ETo. The second approach (Indirect Approach) involaeplying the learning machine to
the daily minimum and maximum air temperatures.nTEd, is computed using the
forecasted air temperatures. A schematic view efttébo approaches is presented in Fig.
2.2.

For both of the approaches considered, the dakected from the NOAA website
was divided into two groups or datasets; the fireup was used for training the learning
machines and the second group for testing or eStighdhe accuracy of the results
provided by the calibrated learning machines. I$ wansidered a training/testing dataset
ratio of 1.5:1. This gives a training data size ro@eirrigation seasons (years 2000 to
2005) with N = 1476 cases. The testing datasetivedo4 irrigation seasons (years 2006
to 2009) with N= 984 cases.

Two testing criteria have been used to evaluaterekalts: (1) the Root Mean Square
Error (RMSE); and (2) the Nash-Sutcliffe Efficiendydex ). The Nash- Sutcliffe
Efficiency Index is recommended for nonlinear mauglproblems (McCuen et al.,

2006).

[\
RMSE= \/Z(yf")— t™ ) IN. (2.32)

n=1

n=l-nt (2.33)
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Fig. 2.2 Used ET forecasting approaches.

where t™: calculated EF values for the testing data": forecasted values of g Tor

the testing data, N number of samples or cases in the testing dm,t@ average

values of the calculated &ET

The RMSE values allow to rank the performance chdaarning machine, being
large RMSE values an indication that the error leetwthe calculated and predicted,ET
values is large too. The value measures the closure of the calculatedhesptedicted
ETo values in a non-dimensional range (framte 1). An value of 1 is an indication of

perfect correspondence.rpvalue of O indicates that the forecasted ETnot better than
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the average of the calculated Evalues. As a reference of the optimal rangernfoa
study by Khan and Coulibaly (2005) suggests thaadequate performance of learning
machines for forecasting flow rates should yighalues in the range of 0.8 to 1.0.

For both of the approaches, the main issue is termdne for each learning
machine the adequate number of past values orsn(@)tof daily air temperatures or
ETo values for the forecasting of multiple future \@uor outputs (K) of air daily
temperatures or EBlrespectively. About the learning machine algorghrior the MLP
the parameter to calibrate is the number of neuronthe hidden layer, and for the
MVRVM the kernel width parameteri. The optimal values of number of inputs D and
the respective learning machine parameter was tedlday trial procedure aimed at
obtaining the best RMSE amdvalues.

To ensure good generalization of the learning nmashiested under variation of
the training data, a bootstrap analysis was baoilefich approach on the best calibration
of the MLP and MVRVM, to evaluate the significanckthe testing criteria and draw
conclusion about model reliability (Khalil et aRp06). Also, in order to compare the
actual crop ET in the area under study vs. the fogstasted estimates from the used

approaches, a graphical analysis is performed.

Results

Using the training and testing datasets descrilztieg the calibration of the
machine learning algorithms was made using bothDiinect and Indirect Approaches.
To determine the performance and accuracy of #mmileg machines for forecasting, a 7-

day forecast horizon was solicited for thepEhalyses. This value is in fact larger than
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the required 4-day ahead forecast for the arearustely, nevertheless, additional
information could be useful for extended daily wateanagement operations.

Under this consideration, the search for the besbhber of required inputs -
learning parameter value combination based onppeoaches presented in Fig. 2.2 was
performed. For the Direct Approach, the best catdnt MLP was obtained with 7 days of
ET, values (inputs) in the past, using 9 hidden neuirdhe best calibrated MVRVM was
obtained with 10 past daily EValues using the Laplace kernel andvalue of 10. The
type of kernel for the MVRVM models was selectedipreliminary test.

For the Indirect Approach, the best calibrated Mi#&s found using 5 daily air
temperatures (maximum and minimum) values in th& 80 inputs) and 13 hidden
neurons. In the same manner for the best calibigtéR\VM, the number of past daily
air temperatures was of 8 days (16 inputs), the tfikernel is Laplace and tlog value
is 3. Table 2.1 shows the best configuration valfethe learning machines used per
approach and Table 2.2 shows the values of the ngmsedof-fit parameters values for
forecasted days 1, 3, 4, and 7 per approach. Fsgaldo show the behavior of these
statistical parameters in relation with the numifefiorecasted EJdays for each learning
machine and approach.

The goodness-of-fit parameters (Table 2.2) indidhtgt, on average, the two
considered approaches and the learning machinéswese able to provide a reasonable
ET, forecast up to 3 days ahead for the four irrigas@asons considered as test data
(2006 -2009) considering a threshajd> 0.8 (Khan and Coulibaly, 2005). Beyond the
fourth day, only the models from the Indirect Apgpeb were able to provide highegr

values than the threshold value considered. Alser, the fourth forecasted day, the



Table 2.1. Best learning machines configuration.
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Description MVRVM MLP
Approach Direct Indirect Direct Indirect
kernel type/optim function Laplace Laplace Seqpatl Secant grad.
kernel widthoy/ hidden neurons 10 9 13
Days in the past (inputs): 10 7 5
Forecasted days (outputs): 7 7 7
Table 2.2. Goodness-of-fit per approach.

Approach Direct - BNN

Day 1 3 4 7

RMSE (mm/day) 0.65 0.84 0.86 0.91

n 0.88 0.80 0.79 0.77
Approach Direct - MVRVM

RMSE (mm/day) 0.65 0.85 0.87 0.89

n 0.88 0.80 0.79 0.77
Approach Indirect - BNN

RMSE (mm/day) 0.65 0.84 0.84 0.85

n 0.88 0.80 0.80 0.79
Approach Indirect - MVRVM

RMSE (mm/day) 0.65 0.83 0.84 0.85

n 0.88 0.80 0.80 0.80
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Fig. 2.3. Goodness-of-fit values for the evaluated appresch

remaining forecasted values can be considered as a broader referentte @fctual
ETo.

Figs. 2.4 to 2.7 show the calculated and forecaStedsalues for the 2009 irrigation
season and also the correspondence among thess Vafuforecasted 1, 4, and 7 days.
For day 1, the learning machine models are ablestomate the future seasonal (long
term), the mid-term trends of the Eplus its daily variation. From day 2 to 7, the
accuracy of the estimation of the daily trend dases. The subplots (to the right), which
show the 4% degree plot in the Figs. mentioned, provides ints@if the relationship of
the forecasted Klvalues when compared with their respective caledlaalues. These

figures indicate that there is small sub-estimatind over-estimation of the forecasted
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maximum and minimum values respectively. This cti@réstic of the results seems to
increase along with the forecast time intervaldibthe approaches considered.

When comparing the Direct and Indirect Approacliesre is a small advantage
of the Indirect Approach related with the error batimation for the forecasted & The
error bar of the Indirect Approach varies along ithigiation season, providing smaller
error bar values for low Elvalues and broader values for seasonal pegk&ies.

This is a result of forecasting the required weathariables for the 1985
Hargreaves Eg equation. As described by Eqg. 2.1, the forecadily maximum and
minimum air temperatures and their respective erbars are affected by the
extraterrestrial radiation estimation value whistsimaller at the beginning and end of the
irrigation season and maximum at the peak season.

In terms of stability and robustness of the modElgs. 2.8 and 2.9 show the
performance of thg parameter for the learning machines used for hpgiroaches. In
general, MLP models for either approach proved dddss robust than the MVRVM,
which is demonstrated by the wider distributiontbé& n histogram for MLP when
compared with the distribution obtained for thehistogram of the MVRVM. When
comparing Direct and Indirect Approaches, it is th#er approach that provides in
average better goodness-of-fit values as alsonwdstrated in Table 2.2.

Comparison of forecasted to estimated
cropET

In order to determine the practical adequacy of libst forecasting approach
tested, a comparison among the forecasted andcthalarop ET in daily basis was

performed for the year 2009 using actual datatlverpurpose, forecasted EVfalues
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Fig. 2.8. Bootstrapping results for the Direct Approach.

from the Indirect Approach using the MVRVM modehfarmation about local crop
coefficients k by Wright (1982) and the distribution of the cropghe area under study
were considered as described in the Material anthddis Section. Three main crop
groups were considered accordingly to the agriceilaf the area: alfalfa, corn and small
grains. The crop area estimation and its relateegntage are presented in Table 2.3.
Also the crop areas identification using a LandsaiM satellite image for the year 2009

is presented in Fig. 2.10.
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Table 2.3. Crop distribution in Canal B for 2009.
Crop Area (ha) %
Alfalfa 3369.2 32.0
Corn 723.6 7.0
Small Grains 323.3 3.0
Fallow 6105.2 58.0
Total 10521.2 100.0
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Fig. 2.10. Agricultural crops in Canal B — 2009.

With this additional information, a comparison betbest approach developed

against the actual crop ET values for Canal B war$opmed. The results of this new

comparison are presented in Fig. 2.11.

As it is shown, the results in the last figure oade a small underestimation by the
Indirect Approach using the MVRVM model during tpeak season for 2009 when

compared to the actual crop ET for the forecastidgys interval as in shown in the Fig.
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Fig. 2.11. Best approach ET forecasting performance.

2.11. Nevertheless, the good performance of thecést results obtained by this
Approach is demonstrated again by the estimatderetasted ET along the irrigation
season, given that an estimated reference for hbe serm forecasted water demand

required for the crops in Canal B is not currerdiailable. Therefore, the Indirect
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Approach using the MVRVM provided better performanbeing also the most robust
and stable model among the others developed irsthdy for the time interval of 7 days

considered.

Conclusions and discussion

The present study demonstrates the adequacy afaftieg near term daily BT
information necessary for water management purpbassd on the 1985 Hargreaves
ETo equation. Two approaches were tested using thdivddate Relevance Vector
Machine algorithm. The first approach, Direct Apgeb, involves the estimation of ET
time series from historical data. The second ambrodndirect Approach, considers
forecasting the required climatic data for the 198argreaves EdJ equation, daily
maximum and minimum air temperatures using thenlagr machine mentioned and
later, using these forecasted values, estimatefutuee ET, values. For performance
comparison purposes, an Artificial Neural Networ&deal, the Multilayer Perceptron was
also applied in both of the proposed forecastitgstes.

The results indicates that using the approachgsopea in this study it is possible
to forecast up to 4 days of daily E&head in time within a reasonable range for the
goodness of fit parametey > 0.8. Also the specific use of these learning mazhi
provides an additional estimation of the expectadability values for every forecasted
day, thus giving an excellent estimation of theuaacy of the forecasted T

When comparing the performance of the approachdstta learning machines
used, the results obtained in this study indida&¢ despite the similar performance of the
two approaches considered, based on the goodndissrafues obtained, the Indirect

Approach provides better Torecasting capabilities for larger time intervéisin the
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Direct Approach. This outcome was also expectat;esthe learning machines in this
mentioned approach are used to model and forecdgttloe behavior of the climatic
parameters required for the 1985 Hargreavesdguation, while for the Direct Approach
the learning machines are required to model aretést the combined effect of the trend
of the climatic variables plus the ExtraterrestRadiation component of the Hargreaves
equation. Therefore the Indirect Approach procedtme be extended to other ET
equation that requires a small number of climatarameters. Nevertheless, for
forecasting EJ§ values based on models that requires a high nurobeclimatic
parameters such as Penman-Monteith, the compuahtione required to perform the
methodology used in Indirect Approach could be ssts®, being Direct Approach a
better and practical option.

The comparison of learning machines, MVRVM and MBRp indicates that the
former one provides more stable and robust resihigsr the latter model, as is
demonstrated by the bootstrapping results. Thues,affplication of Indirect Approach
using the MVRVM proves to be the best among théaptconsidered in this study.

The forecast of several days ahead in time is @&ffieby the level of relationship
of the time series value with the past ones. Tlhes,precision of the ETforecasted
decreases in time. Still, the used learning mashiere able to find relationships among
the previous past days with the forecasted futuamtues, as demonstrated by the
goodness-of-fit parameters (Table 2.2). Also theaathge of using learning machines
that includes the Bayesian Inference Method is d@bditional information about the

variability of the forecasted EyValues.
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Finally, a comparison of the best approach (Indir@pproach) using the
MVRVM with the calculated crop ET was performed swmiering the year 2009. These
results confirm again the good performance of th#RMM using the mentioned
Approach, providing a very good approximation toe tlactual values of crop
evapotranspiration for the Canal B location, intdiwa the usability of the method
proposed in this study for water delivery plannpugposes.

Futures studies on this topic are related withnestion of near term water
balance for the irrigated lands and also with gabapanalysis of water requirements,
which can provide information about future watemaads to be delivered in the canal

system.
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CHAPTER 3
MACHINE LEARNING APPROACH FOR ERROR CORRECTION OFYBRAULIC

SIMULATION MODELS?

ABSTRACT

Modernization of today’s irrigation conveyance syss typically employs
supervisory control and data acquisition (SCADAght®ologies to improve system
efficiency and management effectiveness. Hydrasiheulation models have proven to
be useful tools supporting SCADA systems, partitylevhen used to develop and test
operating rules and detecting sensors malfunctiblesvertheless the SCADA sensors,
flow measurement structures and gate controls areumconditionally accurate within
the relatively harsh environment of the irrigatigystem. Also fluctuations in power to
the sensors, hydraulic transients in the canal damtpbed sensor locations create readings
that can confuse both human and computer contsolléiso parameters used in
simulation models are also equipped with some @egfauncertainty or distortion. One
of the major sources of uncertainty is the spadiad temporal distribution of seepage
flows. In order to maximize the effectiveness oé tSCADA system, accurate and
reliable measurement and simulation of dischargeater levels, and position of
regulation structures are necessary. Achieving gbisl depends on understanding and
evaluating the errors and uncertainty associated both the SCADA readings and the

simulation model output. This paper outlines theotletical combined application of a

2 Coauthored by Alfonso F. Torres, Andres M. Tidiea, Wynn R. Walker and Mac
McKee
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statistical learning machine, the Relevance Vebtachine, and a hydraulic simulation

model and demonstrates its practical applicaticamirrigation system in Central Utah.

Introduction

Historically, canal modernization meant rehabildat to restore a canal to
original constructed conditions and to reduce sgepRehabilitation generally improves
the canal's capability to regulate and control 8owmith improved structures and water
measurement devices. More recently, the conceptaofl modernization has been
enlarged to include the much wider goal of imprgvinater management within the
entire irrigation system. Under this concept rélitabon may not be part of the project.
Nevertheless, an inherent component of today'sl candernization is the mechanization
and automation of canals’ inlet, outlet, divisi@md regulation structures. Among the
irrigation systems in the US, the most widely udedn of canal automation is the
supervisory control and data acquisition or SCADystem. Through sensors and
telemetry a canal operator can determine the stdttise canal in real time and where
necessary, remotely actuate changes in the caitumture settings to adjust the status to
a revised or corrected condition.

Two of the questions that emerge regarding theildgi&g and utility of canal
modernization are: (1) Will the costs be justifladlower losses; and (2) How should the
canal be operated within its real time capability® primary tool for evaluating these
qguestions is the hydraulic simulation model. Notpssingly there are extensive
investments to develop hydraulic models that canukite water flow conditions in
canals. The linkage between the SCADA system aadhydraulic model is an important

factor in improving water management in canal-baseghtion systems. The data stream
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from the SCADA system validates and refines thesamzy of the hydraulic model while

the hydraulic model evaluates the effects of a#teve decisions by the supervisory
controller and forecasts system status. A major efs¢he hydraulic model is the

development and testing of operating rules forSGADA system to follow in managing

the canal. The central issue in using hydraulic @i their accuracy.

Experience indicates that there are two main corscezlated with the accuracy of
hydraulic simulation models. The first is the a@ayr of the data used by the model. It is
generally assumed that the information describing tanal characteristics (model
parameters) as well continuous observations ofsfstem (model variables) contain
minimal errors or deviations (Gaussian, white ewomoise). For example, a modern
SCADA system may be sensing, recording, and tratisgnidata describing water levels
and gate positions every few minutes and may beadte by sensor lag time or
sensitivity of power fluctuations which may notdéealuated by the hydraulic simulation.
The second concern is related with the model's ngna@proximation to describe the
actual physical environment. This is related alsithwhe stability of the numeric
approximation under a wide range of operating domu in the canal and over time.
Rosenberry (1990) reports that the accuracy of Isitimm models degrades over time as
physical characteristics change and may not beatefll in the model input, thus the
importance of SCADA data to recalibrate and retheesimulation model.

One of the more important conditions for effectiwedraulic simulation is the
determination of the magnitude and source of igmat numerical errors associated with
both sources model variables and parameters. Mzimignithe impact of these errors on

the simulation is not a simple or straightforwaadkt and requires a relationship analysis
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(Pebesma et al., 2005). In recent years, new toal® become available to perform
mapping analyses that exploit the statistical attarstics of the data. Examples of these
can be found in Pebesma et al. (2005), ZechmarRangithan (2007), and Thyer et al.
(2009). These models are known as statistical diaan tools or learning machines,
which have been used to estimate relationships gnsomplex multidimensional non-
linear variables.

For purposes of this study a data-driven tool, Retevance Vector Machines
(RVM), has been used to simulate and reduce theeggte error caused by model
parameters, variables and numeric approximatioa bfydraulic simulation model for
canal flow control. Data from a SCADA system impknted to operate and manage a
feeder canal in Central Utah is used to calibrhate ltydraulic model and estimate the
aggregate error. The performance of RVM to simuthee aggregate error is compared
the results of the application of another learnmngchine, an artificial neural network-
based model called the Multilayer Perceptron mg@hglP). Also, the impact of future

new data on the data-driven algorithms is testedgdpfication of a bootstrap analysis.

Theoretical development

Saint Venant equations
The Saint-Venant equations express the laws of m@asd momentum

conservation for one-dimension analysis of opemnbhbflows can be written as:

2Q

—+— 1,A,Q)=0

OX i ot +alx Q) (3.1)
2

10Q, 0 +Q— -A-S,+D=0

got ox A-g

(3.2)
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In the continuity equation (Eq. 3.1) Q is the floate (ni/s), A is the flow cross-
section area (f), x is the longitudinal distance in the directiohflow (m), and t is the
elapsed time. The parameter q is the lumped esipre®f seepage, evaporation and
tributary inflows and aggregate model error. Thesawvation of momentum (Eq. 3.2) is
expressed in terms of Q, A, and t, x, variableglefined for Eq. 3.1. Flow depth is
represented by y (m) while P is defined as thehgdtostatic pressure acting on a fluid
element per unit weight of water §rand D as the drag force, or the product of ficti
slope and area @ The canal slope is,Sthe top width of the flow cross-section is T
(m), and g is the acceleration of gravity (9.80&%n/ The friction slope Ss defined by

the Manning Equation:

2 A2
g - Q"

X = —— %577

A-R;” (3.3)
where n is the Manning roughness coefficient aptsRhe hydraulic radius (m). Eg. 3.1
assumes seepage losses, evaporation losses, udgafige's, measurement errors by
the SCADA system, and volume balance errors agsacwith the numerical solution of
Egs. 3.1 and 3.2, which can be incorporated intostmulation model as a lumped error
term. The largest components of this lumped or eggge error term are seepage losses
which are spatially varied along the canal reacbr. iRstance, seepage depends on
discharge, local water table elevations, and thenpability of channel bed materials all
of which vary during the irrigation season. Theatahagnitude of seepage losses can
generally be well estimated over large periods wohet using inflow-outflow

measurements. However, the rates at which thesedmccur over the time step interval
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used in a hydraulic simulation are difficult to qtify and are thus lumped with other

sources of error.

Numerical solution of Saint-Venant equations

A numerical solution of Egs. 3.1 and 3.2 can beoagdished with a first order,
Lagrangian, deformable control volume (DCV) solatimtroduced by Strelkoff and
Katapodes (1997). Haie (1984) converted the DC¥rtdeulerian form which was then
detailed for surface irrigation by Walker and Skdge (1987).

When Eq. 3.1 is integrated using the DCV solutibe torrespondent Eulerian

terms can be written as:

@ [9- (QL_QR)+(1_6)’(QJ_QM )]

oX O0X (3.4)

oA [‘P’(AL_AJ)+(1_(0)’(AR_AM)]

ot ot (3.5)
where 6 and ¢ are temporal and spatial averaging coefficientspeetively (no

dimensional). The corresponding integration for &8.is:

9 _lp-(@-a;)+(@1-9) (@r—du)]

l@_l [¢'(QL_QJ)+(1_¢) (QR QM):|

g ot o9 ot 3.7)
. 8-|:(P+§2j —(P+ A(\?Zj }

i|:p+ Q :|_ ‘9 R g L +K

oX A-g oX

OX (3.8)
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~A-S, =-S,{0:[p-A +(1-0)-A]+(1-0)-[p-A,+(1-9)-A, ]} (3.9)

D=6-[p-De+(1-9)-Dg]+(1-6)-[p-D,+(1-9)-D, ] (3.10)

The selection o andg for the DCV solution is of special interest givibat their
values affect the stability of the hydraulic modelead (1974) indicates that the higher
the ¢ and0 values, the more unstable the numerical solutieeopmmending using and
0 values close to 0.55. Later, Chaudhry (1993) reslubep and6 range to 0.6 to 0.7,
being the suggested value 0.6 for both of the perars, which are also used in the

present model.

Model error

Zechman and Ranjithan (2007) classify the erroas #ffect simulation models
into two groups. The first group is the parameteore(g,) that occurs when only partial
or incomplete information of the attributes of tleal system is available. A typical error
in canal modeling in this classification is theefikparameters in the model. The second
group is the structural errogsf associated with the inaccuracies in the modeltduen-
modeled processes, for example incorrect hypothasdssimplifications. In modeling
canal hydraulics using SCADA data, it is also neagsto consider a third error group
called input or observation erras, which involves the distortion or noise in measure
variables or observations required for the simakatnodel. This third error is also called
measurement error (Chesner, 1991). The combinedtedf these errors in the model
results produces a simulation erregq) which can be approximated by comparing the
simulated and measured model output. Inside theemedor sources can be aggregated

into a single term, called aggregated ereg) (vhich is this study is the q variable in Eq.
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3.1. A schematic description of a generic modes phe errors sources and the simulation
error is shown in Fig. 3.1.

The combined effect of the error sources can ndsfeanagement decisions and
provide wrong information to the computational misdeFor instances, Rosenberry
(1990) discusses the effect of the sensor errantempretation of long term water-level
data for groundwater management purposes, claithagthe differences between the
real and the measured value obtained from the sens®d to monitor water level in
wells could be unpredictable in some cases andaanis others.

An obvious concern about the error sources is tifeasibility to determine a
priori their magnitude and effect on the model hssio provide individual measurement
corrections. Furthermore, it is the effect of tlygr@gate error the one noticeable on the
simulation results and not the ones produced bk ea©r source per se. This indicates
the limitation to determine without further analysif the aggregate error, the possible
sources for its occurrence. Also the impact of dlggregate error on a certain model
could be more or less noticeable on the resultemt#ipg on factors mentioned before
such as model numerical algorithm, error imbeddetthé parameters and variables of the
model, etc. Nevertheless, it is because of themiffces among the simulation values and
the actual results that the effect of the aggregatar is perceptible and correction of it
may be required.

In irrigation canal-fed systems, certain stepscammonly followed to determine
the seasonal performance of the system by evatpatmintenance deficiencies,
improving operations practices, and others (Skagednd Merkley, 1996). These steps

involve an assessment of the operations actiainessystem hydraulic performance.
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Model Parameters Model Variables
+ Error (g,) + Error (g,)
Simulation Model

+ Structural Error (g)
g, = f(e,, &,, &
Simulated Observed
Output Output

Simulation Error

sim

Fig. 3.1. Simulation model and error sources.

While these are very important and highly recomneensteps to identify areas
that interfere or reduce the seasonal performahtesystem, still some error sources in
smaller time intervals cannot be thoroughly addrdsky these practices. Thus, it is
important to develop approaches that allows foreggte error minimization.

In order to minimize the impact of the aggregat®revarious approaches have
considered each type of error in the model anddhiced correction values for the
structural error (Zechman and Ranjithan, 2007).0Alsrror analysis of the model
performance to determine the possible error sowandserror modeling can be applied as
mentioned by Pebesma et al. (2005). A completeoagpr is limited by number of

parameters and variables in the model, compleXitg@model and targeted time interval
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for the simulation. This limitation confines theeusf these developed approaches on

small time interval operations (hours).

Satistical learning machines

Statistical models appeared as new tools to ideatil model processes on which
mechanistic or physical-based approaches pres#iullies (e.g. simulation models).
These data-driven tools use the statistical prasedf inputs and outputs of the process
under study to define relationships among themceSiheir inception, these statistical
models have demonstrated their valuable use inrgleaeeas as hydrology, weather
forecasting, remote sensing and others (Khalillet2®05, 2006; Asefa et al., 2006,

Ticlavilca and McKee, 2010).

Multi-layer perceptron

Artificial Neural Networks (ANNs) have been usedeansively for simulation and
forecasting in such diverse areas as finances, pgereration, water resources and
environmental science (Maier and Dandy, 2000). Vhati-Layer Perceptron (MLP) is
one of the most widely used ANNs (Nabney, 2002ghse of its ability to approximate

any smooth function. The MLP architecture can lsrdbed as:
yo =W, tan?{w'x(’% b'} b (3.11)

where:
y™: MLP output vector, Y=[y1,...,Ym,-..Ym],

x™: input vector £)=[xu,...Xq,...,Xo],
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V:/' V\*/” . . . ;
' . optimized weights for the first and second layeespectively,

w!' :[W::.,l’K ’W:Z),NN] w' :[Wll,liK ’WIILN,M

M: number of components of the output vector,
D: number of components in the input vector,

NN: number of hidden neurons,
b',b" : bias vectors for the first and second layer respely.

Using a datase‘t:{x(”),t(”)}:ﬂ, where N is the number of training cases, the
calibration of the MLP is performed by optimizinghet network parameters

W= {W' W' b ,b”} in order to minimize the Overall Error Functior(Bishop, 1995):

(3.12)

n=1

E=B-E, +a-E,

2
BN m ym] L% 2
E=2 D] t™- += D2W,
2 Yoy &

where:
E.: data error function,
Ew: penalization term,
W: number of weights and biases in the neural netyand
a andp: Bayesian hyperparameters.
In Bayesian terms, the goal is to estimate the giihiby of the weights and bias

of the MLP model, given the dataget

o 1w )
p[W I t(”)j = (3.13)
-
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where, as explained by MacKay (1992):
p(W|t™): the posterior probability of the weights,
p(t"|W): the dataset likelihood function,
p(W): the prior probability of the weights, and
p(t™): the evidence for the dataset.
Assuming a Gaussian distribution for the error téft= t"-y™ and the weights

W, the likelihood and the prior probabilities camdxpressed:
p(t® |W,B)=(2np*) ™ exp(- BE, ) (3.14)

p(t(”) |W,a)= (27ta'1) 2 exg-oE,, ) (3.15)
Ex models the uncertainty (or error) of the targetaldes as Gaussian zero-mean
noise and variance’= . Ey defines the conditional probability of W with vamice

ow’=a". Then Eq. 3.13 can be expressed as:

p(t‘”) IW,BJ : p(W Iaj
p(W [t™,0,B) = (3.16)
p(t(”) Ia,Bj
exr{E(V*Vj —1AW'H vvj
p(W|t™,a,p) = (3.17)

exr{E[\;Vj~(2n)W/2 |H | Wj

In which,

E(Wj: expected optimized values for the weights and,bia

H= Hessian matrid =BVV Ex+al, | is the identity matrix.

AW=W-W.
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Once the distribution of W has been estimated byimiaing the likelihood fora
andp, the prediction § and its standard deviatian, ™ can be estimated by integrating

(marginalizing) over W and the regularization pagtensa andp (Bishop, 1995):

ply® [ x®,t)= [ p(t(ﬂ) |x<“>,v*vj ~p(\7V|t(”’j-dW (3.18)

This can be approximated by:

1 . 2
ply®™ [x,t™)oc (chgnfj Zex;{%c‘y’”z(y‘m t‘”)J J (3.19)

where " is the output andsi,”)2 is the output variance from the MLP. The output

variance can be expressed as:
o =B+ g"H g (3.20)

g denotes the gradient of'ywith respect to the weightgy= Vv Wy® |W . The
output variance has then two sources; the firsearfrom the intrinsic noise in the target
data; and the second from the posterior distributbthe ANN weights (Pierce et al.,

2008). The output standard deviation veodséﬁ can be interpreted as the error bar for

confidence interval estimation (Bishop, 1995).

Relevance vector machine

Tipping (2001) introduced the Relevance Vector Miaeh(RVM), a Bayesian
approach for classification and regression mod&dsin the case for the MLP, its use in
engineering topics is increasing over time (Ghosid aujumdar, 2008). The

development of the RVM concept is developed a®Wal given a training data set of

input-target vector pairs fxt.} \,, where N is the number of observations; the model
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has to learn the dependency between input and oiayget with the purpose of making

accurate predictions of t for previously unseemgalof x:

t=y+e¢
t=0(X)W+¢

(3.21)
where w is a vector of weight parameters drfr) = [1, K(X,x,... K(X, Xy)] iS a design
matrix where K(x, ¥) is a fixed kernel function. The erreiis conventionally assumed to
be zero-mean Gaussian with varianteA Gaussian likelihood distribution for the target
vector can be written as:
p(t|w,0) = (27) o™ exp{—w}
20 (3.22)
Tipping (2001) proposed imposing an additional pteErm to the likelihood or
error function to avoid that the maximum likelihoestimation of w and?® suffer from
severe over-fitting from Eq. 3.22. This prior idad by applying a Bayesian perspective,

and thereby constraining the selection of paramsdigrdefining an explicit zero-mean

Gaussian prior probability distribution over them:

2T 2 o, W5
p(w|a) = (2n) Ham exp - m2 m (3.23)
m=1

where M is the number of independent hyperparameter (o,..., am)'. Eacha is
associated independently with every weight to matgerthe strength of the prior
(Tipping, 2001) and to control the generalizatibrity of the model (Khalil et al., 2006).
Bayesian inference considers the posterior digiobwf the model parameters, which is

given by the combination of the likelihood and prilgstributions:

p(t|w,6°) p(w|a)
p(tla,c®)

p(Wlt,(X,GZ) = (3.24)
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The posterior distribution is Gaussian N(&) with covariances = (A+ ¢2 @'
®)* and meau= 62 X @'t ; where A is defined as diag(..., av). An optimal set of
hyperparametera®" can be obtained by formulating the maximizatiortref marginal
likelihood with respect ta. (Tipping, 2001). The marginal likelihood is theiwen by its

logarithm L@):

L(a) = logp(t|a,0%) =log [~ p(t|w,o®) p(w |a)dw,
L(a)z—%[NI092n+Iog|C|+tTC‘1t] (3.25)

where C =5°l + ® A™®". The optimal set of hyperparametef&' and noise parameters
(c°® ) are obtained by maximizing the marginal likelidoosing the fast marginal
likelihood maximization algorithm proposed by Tipgiand Faul (2003). During the
optimization process many elements @fgo to infinity, for which the posterior
probability of the weight becomes zero. The few zesn weights are the relevance
vectors (RVs) which generate a sparse represemtdiiee optimal parameters are used to
obtain the optimal weight matrix with optimal coiarce=z®® and mean® . Given a
new input x*, we can compute the predictive disttibn for the corresponding target t*
(Tipping, 2001):
pt* [t o™, (c*)?) = Ip(t* |w,(c™)?).p(w [t,a™,(c°™)*)dw (3.26)
Taking into consideration that both terms in theegmand are Gaussian, Eq. 3.26
is computed as:
p(t*[t,a™,(c*)*) = N(t* |y*, (c*)*) (3.27)
where y* is the predictive mean angt) = [(61*)%,... 6:%)%...., bm*) 7" is the predictive

variance with ¢*)?= (c°)? + ®(x*) " =% ®(x*) which contains the sum of two variance
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terms: the noise on the data and the uncertaintyeiprediction of the weight parameters
(Tipping, 2001). The standard deviatieh of the predictive distribution is defined as a
predictive error bar of y* (Bishop, 1995). Readetrested in greater detail regarding
sparse Bayesian regression, its mathematical fatouland the optimization procedures

of the model are referred to Tipping (2001) andping and Faul (2003).

Material and methods

Stedescription

The water resources of the Sevier River Basin inmti@é Utah (Fig. 3.2) are
among the most heavily utilized in the Western $oibstantial efforts to increase
efficiency via canal lining and on-farm improvemenich as conversion to sprinkler
irrigation and laser land leveling were made dudf8g0 - 1990 period. From 1990 to the
present, all reservoirs and stream offtakes haea lequipped with SCADA technology
and web-based data summaries (SRWUA, 2009). Cartamation was introduced in
1994 and shown not only to result in substantiauection in losses but also to
considerably shorten the response time betweenefademands and system deliveries
(Walker and Stringam, 1999, 2000). Most recendlitention has been focused on
improving the coordination between farmer demaruds)al deliveries, and reservoir
diversions.

In order to develop, test and implement the modep@sed of this study, a
subsystem at the lower end of the Sevier River sedected. The agricultural command

areas (ACAs) are connected to the DMAD Reservoi Bykm. canal (Canal A). The
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Fig. 3.2. Canal A location, Delta, Utah.

DMAD gates as well as the Canal A gates are autenhahd operated as a SCADA
system by local water masters.

The DMAD Reservoir is supplied water on a demansgiso&dom Sevier River
Bridge Reservoir located upstream. The lag timenf&evier Bridge Reservoir to DMAD
Reservoir is 3 days. Thus, an emerging water denmaady ACA can be supplied within
conveyed from Sevier Bridge Reservoir. Thus, thal gb the entire system is to provide
water to an individual farm within 12 hours of amler by the irrigator. This goal relies
heavily on the SCADA system and the regulation capaf DMAD Reservoir.

The water management goals over the next few yaarso increase the DMAD

regulation capacity and improve the reliabilitytbé 12-hour delivery interval period. It
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is expected that by better control of the DMAD Res& level will reduce seepage,
evaporation and administration losses by aboubZ®%. The most important capability
needed to achieve this goal is to develop a reiald accurate forecast of irrigation

demand, which is related with better or improvedisis to manage water allocation.

Data acquisition

The information used for this study was collectasirf two sources. The Sevier
River Water User Association website (SRWUA, 20p8)vided data on water levels
and discharge for years 2008 and 2009. Informattmout the hydraulic characteristics of
Canal A such as Manning’s roughness coefficiengnolel slope and cross section
dimensions were obtained from previous field warkhe area under study (Walker and

Stringam, 1999, 2000).

Hydraulic simulation model

A hydraulic model was developed from Eqgs. 3.4 tb03and applied to the
hydraulic conditions in Canal A. The configuratioiithe hydraulic model is presented in
Table 3.1.

As discussed above, the error sources in the higdmaodel can be grouped into:
(1) parameter error sources)(such as spatial and time averaging coefficietitdance
and time steps considered and canal roughnessaeetf (2) observation error sources
(e0) such as measured inflow and outflow rates; andh@ structural error sources)
associated with the numerical approximation of Bgs.and 3.2, and primarily attributed
to the values of g determined by the model. To ijgewa solution that takes into account

the lumped effect of the multiple error sources, dlgregate errogdj in the hydraulic
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Table 3.1. Hydraulic simulation model for Canal A.

Model Characteristics

Value

Approximation:

Saint- Venant - Deformable Contraliyme

Parameters:

Canal length : 9 km
Hydraulic Area A=9.12¥**"(m?)
Manning Eq.A*R=0.0734°**(m’)
Bed slope: 0.00011
Canal roughness coefficient: 0.018
Maximum flow : 12 ni/s
Distance / time steps used: 1m/1hr
Spatial averaging coefficiem) 0.6

Time averaging coefficienp}: 0.6

Variables:

Inflow rate at canal head,{Q@hr values from SCADA
Outflow rate at canal end (@ 1hr values from SCADA

On-Demand Variation (O 1hr values from SCADA

Output:

Canal water level (h) 1hr values from SCADA

model is determined by forcing the actual wateelewn Canal A to equal the simulated

values and then equating the volume balance adgmtio the parameter q in Eqg. 3.1.

Thus,

=q(x.t,A,Q) (3.28)

where ea shares the same units as the other componentgadtiBn 3.1. Here it is

important to indicate that it is very difficult tdetermine the individual contribution,
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order and magnitude of the canal seepage and tiex etror sources. As mentioned
before, the effect of the aggregate error is tHg one noticeable and feasible of being
measured. Hence, it is very difficult to establishny error source e.g, has the same
magnitude and impact than the seepage losses aafta for this study.

The data-driven algorithms were applied to deteemtine relationship of the
aggregate errota with other model variables available in order tmimize ga, and its
impact in the simulation results. The main requeatof the application of these
algorithms for thea minimization problem is a real-time capabilityork in a coupled

mode with the hydraulic simulation model.

Learning machines

The data-driven algorithm selected for #hecorrection model is the RVM. For
performance comparison the MLP was also tested.pftygosed error correction model
considers a combination of the hydraulic simulatioodel to estimate the water levels in
Canal A with a machine learning model to estimate dggregated error that comprises
the error sources. The proposed model approadesepted in Fig. 3.3.

Two testing criteria are used to evaluate the tesafltheea modeling: the Root
Mean Square Error (RMSE); and the Nash-Sutclifféciehcy Index ). The Nash-
Sutcliffe Efficiency Index use is recommended fondinear modeling problems along

with other statistical indicators (McCuen et aD08).

N.

RMSE= \/Z(y*—t* ) IN, (3.29)

n=1
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Fig. 3.3. Simulation + error correction model.

i(y*—t*)z

t*_t*
x{+-t)

where t actual values for the testing datafgrecasted values of for the testing data, N
is the number of samples or cases in the testita dad t the average value. The

RMSE value allows ranking the performance of easdrning machine, being large
RMSE value an indication that the error betweenctideulated and simulated aggregate
error is large too. The value gfmeasures in a non-dimensional range (frarto-1) the

closure of the calculated vs. the simulated agdgeegaror values, being = 1 an
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indication of perfect correspondence. A value of O indicates that the simulated
aggregated error is not better than the averagjgeaiggregate error values.

To determine the robustness of the learning mashimeresence of unseen data,
a bootstrapping analysis of the goodness-of-fiapeters allows a comparison and

selection of the best data-driven model.

Results

Hydraulic model performance

The hydraulic model used to simulate the flow ctads in Canal A was
calibrated with the data described in Table 3.8r#@phical description of the data used is
presented in Figs. 3.4 to 3.6.

These figures show the, behavior pattern along the irrigation seasons §200
2009) and the water levels and discharge in Cangl Aresents a strong correlation with
both Canal A variables, especially with the floweraalues, despitea seems to be
random as shown in Fig. 3.6c. Fig. 3.6 presentsstatistical characteristics, such
statistical distribution, autocorrelation pattenndarelationship with the Canal A flow
rate.

Considering thatea values should comply with Gaussian or white error
characteristics such as normal, independent andticddly distributed (NIID) set,
departure from this assumption indicates thatontains an imbedded structure that is
not accounted for in the hydraulic model. statistics resemble to a normal distribution
with mean = 1.4*18 m*¥m/hr and standard deviation = 8.86™.6r°/m/hr (Fig. 3.6 a).
Nevertheless, the Partial Correlation analysis.(Big b) indicates that the values are

highly correlated with the immediate past valueniifying the structure imbedded in the
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Fig. 3.4. Observed water levels, discharge and aggregaie(ex)y for 2008.

Table 3.2. Variables tested for the aggregate error corractiodel.

Variable Units | Symbol

Canal Inflow cms Q@

Canal Water Depth m il

Water On-demand cms| QD

Aggregate Error time series CMS €a¢-1) : €ae-n); N: NUMber of hours in the past

aggregated error and subtracting it to the hydeasifinulation model can lead to a better
approximation of the simulation results. Hence, itteorporation of the error correction
model pursues this objective, looking for a relasiop between the inputs of the

hydraulic model and the aggregate error presethemydraulic simulation model.



65

(a) Flow Conditions — 2009
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Fig. 3.5. Observed water levels, discharge and aggregaie (e for 2009.
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Error modeling

To develop an adequat® correction model using data-driven algorithmssit
necessary to determine which variables requiredthgy hydraulic model have the
strongest relationship witén. There is not a straightforward solution to tlasue, given
the possible synergy effect of two or more varighbd@erea. Therefore, several steps
were followed to determine the begt model: Given the limited data available for this
study (2 irrigation seasons), the data was semhratéwvo groups. The 2008 year data
was used for training and calibrating the dataairialgorithms while the data for 2009
was used to verify the adequacy of the tuned algorivith the 2008 data. There are four
possible variables to be included in thg correction model, so several variable
combinations were tested for the MLP and RVM. Téindethe best variableea set a
variable ranking procedure or stepwise forward alde selection was followed as
recommended by Guyon and Elisseett (2003), ratuagyetested variables combination
by the goodness-of-fit parameters values includimg data-driven error basy) and
visual analysis.

Defined the variables to be included in thecorrection model (Table 2), the
data-driven algorithms were fine-tuned with theadavailable for this study (2008 and
2009). The parameter to calibrate for the MLP wesrtumber of neurons in one hidden
layer. For the RVM model, the parameter to calbnats the kernel widthsg). The
results of this procedure are presented in TaBledd 3.4.

As shown in the mentioned tables, the variablemftbe hydraulic simulation
model demonstrated that the strongest relationshtipe error correction model includes

ea (1) and OO using MLP with 1 neuron located in the hidden tagmilarly, for the
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Table 3.3. Variables included irza correction model using MLP and goodness-of-fit
obtained for test data (2009).

Variable Combination | Hidden Neurons ~RMSYmvhr) | 1 oy (m*m/hr)
EA(t-1) 9 0.0249 0.813 0.035
EA (1)) EA (12) 8 0.0290 0.747 0.027
EA (1) EA (2)r A (13) 1 0.0312 0.706 0.027
ea 1), OD, 1 0.0248 0.815 0.034
€A t-1),Qin 1 0.0249 0.813 0.035
€A (t-1) Nin 1 0.0249 0.813 0.035
ea 1), ODy, Qn 1 0.0248 0.815 0.034
£a 1, Obv, hn 1 0.0248 0.814 0.034
£a 2, ODyy B, Qn 1 0.0248 0.814 0.034

* Best variable combination obtained

Table 3.4. Variables included irgza correction model using RVM and goodness-of-fit
obtained for test data (2009).

Variable Combination Om RMS (n/m/hr) N oy (m*/m/hr)
EA(1) 0.4 0.0245 0.819 0.035
EA (t1)r EA (t2) 2.8 0.0256 0.802 0.036
EA (t-1)r EA (t2), EA (t-3) 3.4 0.025 0.812 0.046
€a (1), ODy 2.4 0.0248 0.815 0.035
ea 1), Qn 1 0.0245 0.820 0.035
€A (1), Min 0.8 0.0247 0.816 0.035
ea 1), ODy, Qi 3 0.0246 0.818 0.035
ea 1), Obv, hin 3.2 0.025 0.812 0.035
ea 1), ODy, hin, Qn 3.7 0.0247 0.817 0.035

* Best variable combination obtained
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RVM, the variables from the hydraulic model for #or correction model wekg (.1
and @, using a Gaussian kernel with a kernel width & donfiguration for the data-
driven algorithm (Table 3.4). Thg.1) variableis common for both of thagorithms and
has a great impact on modeling thg, pattern and the inclusion of other variables
affects in positive or negative form the relatiapstfound by the data-driven algorithms
with ga.

In the results shown in Tables 3.3 and 3.4, fohloéapping algorithms, theq.1)
variable by itself (autoregressive model) providesd goodness-of-fit statistics for the
model error correction. Nevertheless, in an intetest the performance of this single
variable to model the aggregate error is less tahas the selected variable combination
along the irrigation season.

Figs. 3.7 and 3.9 presents the temporal behavidheofactual and simulateg
and theep residual obtained for the 2009 irrigation seassingthe best calibrated MLP
and the RVM respectively. Figs. 3.8 and 3.10 shlogv gtatistical characteristics of
also for MLP and RVM. The capability of the deveddpmodels to simulate, either
using the MLP or the RVM is demonstrated and theugcy of the models is further
detailed in the included subplots.

Both the MLP and RVMlgorithms were able to identify and map the vdesin
the hydraulic simulation model that have the stesmtgnfluence and are enough to
replicatesa behavior, proving that the methodology followedhis study to minimizea
is adequate. Thus the newfrom the coupled hydraulic simulation — error coti@n
model is thesa residuals which as seen in the graphical resulig $imong differences

with the originalea,
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Fig. 3.7. (a) Actual, simulateds and(b) ea residuals obtained usitige best MLP error
correction model (2009).

(a) 45 degree plot (b) € Residual Histogram (c) €, Residuals Autocorr
0.3 2500 mean =0 m¥/m/hr 1e
G = 0.0248 m°/m/hr
0.2 . 2000 c 08
E o 8
o 01 5 . I e
E R o &' 1500 S
Wt = P T g
s 0 IR 3 g o4
4,
5 -3 £ 1000 <
3 -0.1 t. g 0.2
£ . E
@ oy g
. o
02| Y* 500 H}m—; =
-0.3 0 -0.2
-0.3-0.2-0.1 0 0.1 0.2 0.3 -0.1 0 0.1 0 2 4
actual e, m°/h/m e, Residual (m>/hr/m) lag (hr)

Fig. 3.8. Statistical characteristics of andea residuals usinthe MLP model (2009).

The results obtained in terms of the hydraulic $aton model imply an effective
reduction of the simulation errotsg,). Theea reduction model improves the simulation
results, and allows a better correspondence amonglaand simulated canal water
levels,therefore reducingsim values. In statistical terms the results demotestteere is a

strong correspondence between the actual and $edajaas shown in Figs. 3.8 (a)
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Fig. 3.9. (a) Actual, simulateds and(b) ea residuals obtained usitige best RVM error
correction model (2009).
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Fig. 3.10. Statistical characteristics of andea residuals usinthe RVM model (2009).

and 3.10 (a), the distribution of thg residuals seems to comply better with NIID
characteristics. For example for the MLP model ltesii was obtained a mean of O
m*m/hr and a standard deviation of 2.48%1®%m/hr. For the RVM the mean obtained
has a mean of 0 #m/hr and 2.45*18 m*m/hr. These results and the goodness of

parameters obtained: = 0.815 and RMS = 0.0248%m/hr for the MLP and; = 0.820
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and 0.0245 fim/hr for the RVM. These results indicate that €M has a slight
advantage over the performance by the MLP modgk.R.8 and 3.10 also give more
insight of theea residuals in terms of autocorrelation, which dueed considerably.

A separate analysis is required for taaesiduals autocorrelation values obtained
for the MLP and RVM models. As shown in Figs. 33 &nd 3.10 (c) there is a strong
reduction of the autocorrelation behavior of thevalues for both mapping algorithms.
Nevertheless, the MLP model is able to capture ibetter fashion the underlying
behavior of the aggregate error when compared teh RVM model results. This
translates into a better approximation of theresiduals to the white or random noise
characteristics mentioned before. This lower pentorice of the RVM can be explained
by the amount of data used in this study (two atign seasons). For the error correction
model, the RVM algorithm provides better performatizan the MLP but requires more
information to completely model the behavior of Hggregate error from the hydraulic
simulation model.

Also it is important to mention that the correction model seems to lose
precisionat the beginning and end of the irrigation seadargére, residual values).
This could be related with the strong unsteady fbawditions that occur during the quick
filling and drainage of the canal reach. It is irege situations where the largest
residual values occur.

After completing the calibration and testing of thecorrection moddior both of
the data-driven algorithms used here, it is imptrta determine the suitability of each of
the g5 correctionmodels under different irrigation conditions thhe t2008 and 2009

seasons, looking for the stability and robustnesghe results provided by thea
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correction models. Thus a bootstrapping analyss pesformed on each best-configured
data-driven algorithm in order to evaluate theedictive power and robustness, as well
to estimate the properties of the goodness-oAfiL000-iteration bootstrapping analysis
was applied varying the training dataset (2008 )ddtg random sampling with
replacement. After training the learning machite, testing dataset (2009 data) is used
to obtain the goodness-of-fit values as explaingdAbguita et al. (2000). For each
bootstrap iteration the goodness-of-fit values (R&m8n) for 2009 data were stored. The
bootstrap analysis results are presented in Fig. 3.

Several conclusions can be drawn from the restilteeobootstrapping analysis.
First, the range of the goodness-of-fit parameitetthe presented histograms is smaller
for the RVM when compared with the MLP for bothtbé goodness-of-fit parameters.
This implies that once calibrated, the RVM is lsssceptible to the variation of the
training data as could occur under actual workiogdttions. For the MLP, the statistical
measures present a non-smooth distribution, indgahat the MLP performance is
affected by training data variation. This is beeaMi_P and ANN-based algorithms are
more sensitive to the initial weights used by thgo@athm. This is a strong limiting
condition for practical applications of tlag correction error model along the hydraulic
simulation model using MLP as mapping algorithm asduse is not recommended.
Therefore, based on the results obtained in thidystthe proposed coupled hydraulic
simulation model -5 correction model using RVM as the data-driven algm is

recommended.
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Fig. 3.11. Goodness-of-fit statistics for MLP and RVM errasriection models from
Bootstrap analysis (2009 data)

Conclusions and discussion

This study presents the findings of a combinediegipbn of a statistical learning
machine and a hydraulic simulation model to minanike lumped or aggregate error
caused by uncertainties and errors presents in SC&iBtems and hydraulic simulation
models. The proposed application tests the develoggplication using hydraulic
information from an irrigation canal fed in Centtéiah for the years 2008 and 2009.

The aggregate error in this study comprises seemagéateral flows in the canal
reach in an hour basis, the uncertainty imbeddeitienSCADA data and errors in the
numerical approximation of the hydraulic simulatiorodel. The aggregate error can
affect the precision of the results obtained, thegew levels in the canal reach, this

affecting human and computer controllers.
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For the aggregate error correction model, the ehdsda-driven algorithm is the
Relevance Vector Machine and its performance ispaoad against the results of another
data-driven tool, the Multilayer Perceptron.

The results obtained indicate that the combinatibthe hydraulic simulation —
learning machine model is capable to minimize thgregate error adequately, capturing
its behavior pattern along the irrigation seasohis Tprovides means to reduce the
aggregate error that ultimately improves the pemtorce of the hydraulic simulation
model. The variables from the hydraulic simulatioodel required to estimate the
aggregate error are the previous aggregate egf)) and the inflow rate () values
when using the RVM with fit statistics RMS =0.0248/m/hr andn = 0.820 for the
RVM. For the MLP the variables required werg()) and the on-demand hourly
variation (OQ) with RMS =0.0248 rfim/hr andn = 0.815. Also the statistics calculated
for the residuals indicates that these comply betii NIID characteristics.

It was found also that the RVM is affected by timeoant of data available for
training. While the RVM and MLP can perform in andar fashion with the same
amount of data. The RVM cannot capture completedyaggregate error pattern, being a
small autocorrelation in the residuals of the modéis can be corrected by providing
more information (one or more irrigation seasoos)fie training data.

In general the two learning machine algorithms (R¥Nd MLP) performed in
similar way mapping the relationship among the egagte error and the variables from
the hydraulic model using 2008 — 09 information.vél¢heless the MLP is more
susceptible to be influenced by the characteristidbe data used to train the algorithm.

This is an indication of the limited suitability ahe MLP algorithm for the error
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correction model and its use is not recommendedh®mwther hand, the RVM has better
generalization properties, providing better resaksdemonstrated by the bootstrapping
analysis. Therefore, the RVM is the data-driveroatgm recommended for modeling
the aggregate error.

In hydraulic terms, the estimation of the aggregater provides a new mean to
estimate the aggregate error term that in other wayld still remain not accounted in
the hydraulic simulation model e.g. seepage amddbflow in hourly basis and the error
or noise in the SCADA system data for the prestrtys This is because the aggregate
error comprises the error sources in the hydrautzlation model.

It is very difficult to determine the individual stribution of the error sources and
each error source impact on the model. The metbggidbllowed in this study considers
dealing with the lumped error produced by all tlieoresources and correct it, thus
improving the simulation results.

Besides of the results obtained in this study pitogosed approach is not limited
or restricted to minimize aggregate errors in hylicasimulation models. Similar
applications of coupled physical-based and dateedrmodels could be developed using
the methodology explained in this study.

Future work on this area is related with the impmatation of the developed
methodology in the SCADA system in the Lower Sewver Basin, Central Utah.
Also, given the versatility of the developed apgioand the learning machine algorithm,
a multivariate error modeling approach for sevexatputs from a hydraulic simulation

model or similar will be analyzed and tested.
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CHAPTER 4
MULTIPLE-DAY IRRIGATION WATER DEMAND FORECAST USING

MULTIVARIATE RELEVANCE VECTOR MACHINES’

ABSTRACT

Characterization of future water demands in ancatitiral command area (ACA)
is affected by factors such as the crop type amgkesisoil characteristics, weather pattern,
water availability and distribution, farmers’ an@ter managers’ decisions among others.
The estimation of future water deliveries is valeaimformation for water managers,
canal operators, etc. This information is critifcalirrigated areas where the water source
is located at far distances. In many irrigationtsys considerable investment has been
done implementing SCADA systems to monitor the eniriconditions of canal systems.
Nevertheless a missing component in irrigation watanagement is the information
about future water deliveries for the next daysdbedule the respective amounts from
the water storage location. In engineering andnseigelated areas, data-driven tools or
learning machines have proved to be very usefulpmgprelationships among inputs-
outputs under incomplete or limited data scenaiibgrefore, these algorithms could be
of use to develop models for water discharge esioms required for an ACA based on
limited available data. This study presents a mechearning-based methodology that
utilizes local available information (geospatialaigery, climatic data, soil moisture and
historical water releases) of an ACA to anticipaquired immediate daily future water

deliveries. The data-driven tool chosen is the Maitate Relevance Vector Machine.

% Coauthored by Alfonso F. Torres, Andres M. Ticleaj Wynn R. Walker and Mac
McKee
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Aerial and satellite imagery can provide informatiaf spatial variability in the system,
actual evapotranspiration can relate with crop wakeeds, on-ground soil moisture
sensors and collected water releases can suppiyribed information on water soll
availability and water demand of the ACA for tegtiand validation purposes. The
practical application of this methodology is dentosied in an ACA located in Central

Utah.

I ntroduction

As water becomes scarcer, competition intensifiekits value risesespecially in
semiarid regions where irrigation is the largestevaser in the basin (Svendsen, 2005).
The core of irrigation water management of an adiucal command area (ACA) is
based on implementation of structures and models ghovide information about the
state of the irrigation system and control overstsrage and distribution processes
(Pulido-Calvo and Gutierrez-Estrada, 2009). In modérigation systems these
structures are accompanied by their automatiorgkeewmvidely used form the supervisory
control and data acquisition or SCADA systems. éesithe SCADA implementation,
hydraulic simulation models allow to assess in teak water flow conditions under
different scenarios. Nevertheless, to manage amdratosuccessfully the irrigation
system, future aggregate water requirement foAtBA is necessary to be accounted.

Estimation of required future water releases ih®ACA is of critical importance
for managing and planning activities by water mansa@nd decision makers, especially
in water-scarce areas (Bontemps and Couture, 200@).value of future aggregated
water demand information is related with: (a) wadefivery efficiency management,

especially in systems that involve large conveydimes (one to more days) from water
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storage locations to agricultural areas, (b) whtetgeting and distribution in the ACA
canal internal network, and (c) expected water flo@nditions from SCADA and
hydraulic simulation models.

The characterization of present and future cropewdemands in an ACA is
affected by agronomical, hydrological and weatlaetdrs such as type and growth stage
of crops, soil characteristics, weather patterniewavailability, and quality. Other
factors that have a direct effect on water demamdfarmers’ and water managers’
knowledge and behavior pattern during the irrigatseason, as well as legal and
institutional factors such as farmers’ water righikost of these factors vary spatially
and/or temporally, affecting the water demand esiion in its different time scales
(daily, weekly, monthly, annually, etc.), espegiali large irrigation systems.

Methodologies to estimate water demand for irrgathave been developed
considering different points of view: spatial infwaition systems (Herrero and Casterad,
1999; Ojeda-Bustamante et al., 2007), economics¢sasnent of farmer behavior for
water use (Bontemps and Couture, 2002), detailadacterization of the water system
including spatial layout of crops (Lecina and Play2006), and many others. From these
methodologies two major approaches can be ideititenceptual or physical-based
versus statistical-based or data-driven modelingidB-Calvo and Gutierrez-Estrada,
2009).

Physical-based models can be used to estimate weqeirements assuming
external factors have a similar influence or lowpauot on the system such as weather
variation, farmers’ and water managers’ behaviat emowledge patterns, water rights

issues, etc. On the other hand, statistical maisprovide a direct mapping among the
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mentioned factors and the future water requirementis no detailed considerations
about the internal structure of the physical preesghat relate them (Pulido-Calvo and
Gutierrez-Estrada, 2009). Another major differean®ng the two modeling approaches
is that physical-based models requires a comptetadar complete) set of variables to
estimate future water releases, whereas data-dmatels only need to use available
information to provide the same (or near similaguits.

The purpose of this paper is to assess the pdtefita data-driven model, the
Multivariate Relevance Vector Machine (MVRVM), ftarecasting short-term irrigation
water demand (up to two days in advance) using filata a SCADA system, weather
information, soil moisture sensors and remote sgndata. The procedure to develop the
model is outlined here, and results and considerastimade are discussed. To
demonstrate its practical application, the propasethodology is applied to an ACA
located in the Lower Sevier River Basin (Canal Blsessment of stability and
robustness of the methodology was performed, armbraparison of benchmarking
performance is offered against the Multilayer Petc, a type of Artificial Neural

Network.

Theoretical development

Irrigation water demand

Estimation of water needs in agriculture has alwassn a concern for farmers,
water managers, and decision makers. Excessive agpécation to croplands is related
to “water losses” such as deep percolation, rurswf, surface water evaporation, and
others. These losses, added to the consequeriame reduction in the soil profile, root

nutrient depletion, and water logging, negativelie@ the crop dry mass and vyield
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production (Perry et al., 2009). On the oppositke sreduced water application causes
reduced crop yields and in some cases, total 8emsvar and Perry, 2002).

These non-optimal water application consequences tde investigations to
determine procedures that allow more precise estmaof water conveyance
requirements from water sources to agricultural déan Parameters such as
evapotranspiration, crop coefficients, and watgliagtion ratios were developed, along
with numerical and empirical models for crop watequirements and aggregate water
demand estimation. This on-farm information combingith that obtained by the
SCADA system is of great value when used for watartrol and distribution in an
irrigated area.

There are major challenges in estimation of aciggregate water needs within
an ACA. First is the inclusion of spatial and temgdovariability of critical parameters.
Soil characteristics, crop type, coverage areagaowing stage affect the accuracy of the
aggregate water needs estimation. Also, the respohfrmers to crop growing stage
and irrigation timing is of high importance. Finglivater conveyance and distribution in
the ACA which is related with water supply soureéso affect the response of the water
system to the farmers’ water requirements.

Considering the spatial component, in many pla¢élseowestern US, records are
not generally available of the type of crops grawrthe acreage covered by irrigation
systems. This situation is somewhat different imeotplaces such as some countries in
Latin America and Asia where records of intendempsrand their respective areas are
acquired by the Water User Associations (WUAS) teefihe irrigation season starts.

Nevertheless, the availability of aerial and satelimagery in different spectra and
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resolution formats now provide new means to es@nthese variables. This spatial
information can be useful to determine parametach @s crop, type, actual irrigated
land areas, top soil moisture, and others (Herreanol Casterad, 1999). Spatial
information has been proposed in previous studoesoh-demand irrigation system
management (D’Urso et al., 1995; Herrero and Cad{€r999)

Soil moisture monitoring is another potentially ionfant source of information of
the quantity of water supplied to the cropland (stwet al., 1998; Bellingham, 2009) in
support of irrigation systems operation. The ima@ace of soil moisture data is related to
developing irrigation schedules (Jensen et al.,0L9till, soil moisture is not
information collected in most irrigation systemsit lits implementation has become a
trend among large WUAs which usually are well fuhd®ne of the most interesting
aspects of soil moisture data is its synthesisestmal characteristics of the monitored
area, such as crop stage, amount of water supmabphysical and water holding
characteristics, agricultural labor availabilitydacosts, farmers’ irrigation pattern, water
management, weather pattern, groundwater effegtotiners.

The absence of information sources for most inagasystems has led to several
efforts to simulate them with water management risodsing physical- or statistical-
based approaches. Some examples of these modelsneationed in the Introduction
section. Focusing on statistical-based models, iquevattempts for water demand
forecasting using data-driven tools in the literatare limited. Some worth mentioning
have used a Linear Regression — Artificial Neuratvork approach (Pulido-Calvo et al.,
2007), a Genetic Algorithm - Artificial Neural Netwrks (Kim et al., 2001; Pulido-Calvo

and Gutierrez-Estrada, 2009) and Relevance VectxwhMes (Flake et al., 2010). So
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far, water demand forecasting has been limitedn® day ahead, or a separate single
model per forecasted day. This can be a constfaintheir practical use by water
managers and decision makers when water conveyango@es several days. Lack of
short-term water demand information requires camal reservoir managers to “guess”
future releases from water storage and diversiots irrigation canals. This could

negatively affect the adequate supply and distiobutf irrigation water.

Multi-layer perceptron

Among the large number of implementation of ArtdicNeural Network (ANN)
models, the Multi-Layer Perceptron (MLP) is onetled most widely used because of its
ability to approximate any smooth function (Nabn2§02). An interesting characteristic
of this type of ANN is the inclusion of a Bayesiaference Method to calibrate the MLP
parameters. The Bayesian Inference also allowmastin of the uncertainty related to

the predicted outputs. The MLP architecture caddseribed as:
y®=w". tanV{W'x(’% b J +b" (4.1)

where:

y™: MLP output vector, Y=[y,...,Ym,...Yul,
x™: input vector £'=[x1,...Xq,....X0],

WL WE optimized weights for the first and second layerespectively,

w' =[W|1,1’K ’W:D,NN] w' =[W|1|,1’K !WllllN,M

M: number of components of the output vector,

D: number of components in the input vector,
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NN: number of hidden neurons,
b',b" : bias vectors for the first and second layer, eetpely.

Using a dataset={x" t”"  where N is the number of training cases, the
calibration of the MLP is performed by optimizinghet network parameters

W= {W',W“ b ,b“} in order to minimize the Overall Error Functior{Bishop, 1995):

B M) _,0 i “WZWZ
E==2]t"W-y" | += -
> y j 2 =M 4.2)

n=1
E=B-E, +a-E,

where:

E.: data error function,

Ew: penalization term,

W: number of weights and biases in the neural ne¢wand

a andp: Bayesian hyperparameters.

In Bayesian terms, the goal is to estimate theglitiby of the weights and bias

of the MLP model, given the dataget

o) A
e

where, as explained by MacKay (1992):

p(W|t™): the posterior probability of the weights,
p(t"|W): the dataset likelihood function,

p(W): the prior probability of the weights, and
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p(t™): the evidence for the dataset.
Assuming a Gaussian distribution for the error téfth= t"-y™ and the weights

W, the likelihood and the prior probabilities caamdxpressed:
p(t” |W,B)= (27p ) ™ expl- BE,,) (4.9)

p(t(”) | W,a)z (27ta'1) M exit-oE, ) (4.5)
Ex models the uncertainty (or error) of the targetaldes as Gaussian zero-mean
noise and variance’= . Ey defines the conditional probability of W with vamice

ow’=al. Then Eq. 3 can be expressed as:

p(t‘”) IW,BJ : p(W Iaj
p(W [t?,0,B) = (4.6)
p(t(”) Ia,Bj
exr{E(V*Vj —1AW'H vvj
p(W [t?,0,B) = (4.7)

exr{E[\;Vj~(2n)W/2 |H | WJ

In which,

E(W) expected optimized values for the weights and,bia
H= Hessian matrid = [*WVEH (;I , | is the identity matrix.
AW = W—\;V.
Once the distribution of W has been estimated byimiaing the likelihood fora

andp, the prediction § and its standard deviatian, ™ can be estimated by integrating

(marginalizing) over W and the regularization pagtensa andp (Bishop, 1995):
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ply® [x®,t")= [ p(t(”) |x<“’,v*vj -p(\;V|t(”’j-dW (4.8)

This can be approximated by:
_% . 2
p(y(") |X(”),t(”))oc (ZWG(Y”)ZJ ex;{—%c‘y”)z[y‘”)— t(")j J (4.9)

where ¥ is the output ands§,”)2 is the output variance from the MLP. The output

variance can be expressed as:
Gg/n)z _ B_1+ g"H g (4.10)

where g denotes the gradient &P with respect to the weightg =V Wy®™ |W . The

output variance has then two sources; the firsearfrom the intrinsic noise in the target

data; and the second from the posterior distribugbthe ANN weights (Pierce et al.,
2008). The output standard deviation veorb@’ can be interpreted as the error bar for

confidence interval estimation (Bishop, 1995).

Multivariate relevance vector machine

The Multivariate Relevance Vector Machine (MVRVMYeveloped by
Thayananthan et al. (2008), is a general Bayes@andwork for obtaining multivariate
sparse solutions to regression tasks. The MVRVNbased on the Relevance Vector
Machines framework developed by Tipping (2001) aimping and Faul (2003) which
was extended to handle multivariate outputs. Téasriing machine is particularly useful
in hydrology and water resources because of thesrghkration properties and the
probabilistic estimation, useful to estimate préadit uncertainty (Tripathi and

Govindajaru, 2007). The mathematical formulatiothef MVRVM is:
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y® = W-O[x ] (4.11)
where:
x™ and t”: input and target vectors that belong to the éatis} ,, as defined for MLP,

y™: MVRVM output vector =]y, ... ,yu]; me 1<m<M,
M: number of components in the target and MVRVMputitvectors,

N: number of training cases,

W: optimized weight matrixXW = [wy 1,...,Wm ..., Wnm.Rrv],
RV: number of optimized cases or relevance vedelected by the MVRVM from the N

training cases, RV << N, w1<rv<RYV,
@ [x™]: optimized design matrix or basis function (resgneted also byb) that can be

related with a kernel functio® = K x‘“),{ x® }RV ]

rv=l

The kernel function is a weighting function for ineut vector (¥”) used in non-
parametric estimation techniques, e.g. kernel ssgpa models. It provides an
adjustment to the® vector based on RV optimal cases or “relevantors¢tX” , which
are selected automatically among the N trainingutingectors. For calibration of the
MVRVM a variation of the Overall Error function (EQ) is used and, by using the
Bayesian Inference Method the distribution of theights of the model (Eqg. 3) is
estimated, similar to the MLP process. Also, theRAM error term or residua™ =t
- y™ is assumed to be probabilistic independent zeraan@aussian, with varianee’.
The detail of the MVRVM algorithm is as follows:

Assuming a Gaussian prior probability distributitor the weights (Tipping,

2001), and representing A = diag(,....ax?), and B = diadfs,...,fm), Where each
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elementa, is a hyperparameter that determines the relevahdbe associated basis
function for every case in the training ddig.= 0;;2 represents the noise or error variance
in the " component of the target data (Thayananthan €2G08). The prior distribution

over the weights is represented by:

p(WA) =TT [NW,, 10,;2) (4.12)

where w,, Is the element at (m, n) of the weighting matrivy=

W11, .;Wmn-...Wun]. The likelihood distribution of W can be expredsas:

N

p({ O |w, B) HN( ™ |W.-®,B) (4.13)

n=

(I):Kl{x(”)}:ﬂ,{x(”)}::lj. The likelihood of the targeftcan be written as:
M
p({ o Jw, B)zHN(xm lw,,-®,8,,) (4.14)
m=1
wheret, is a vector with the fhcomponent of all the target data ang the weight

vector of the M component of the output vectdP.t The prior distribution over the

weights can be rewritten as:
M
p(W]A)=]N(w,, [0,A) (4.15)
m=1

The posterior probability of W can be written as gnoduct of separate Gaussians

of the weights vectors of each output dimension:

(W 1of, B,A)oc ({t@}ﬁ‘:l | W,B)- p(W|A) (4.16)

p(w 1o, B,A)oc ]M[ N(w, |, 2, (4.17)
m=1



91

where pm = B Zm® "tm andZy, = Bm ®@'®+A)™ are the mean and the variance of the

weight matrix respectively. Marginalizing the dékalihood over the weights:

it 1A.B)= [l ), 1w.B)pw | A)-aw (4.18)
p({ O A, B): ]M[| H_ |'% ex;{—%r;Hm%mj (4.19)

being H, the Hessian matrix for the"htomponent of the target vectory, i Bl + ©"A”

19T, An optimized set of hyperparamete{rm*rv}rRVZ1 and noise paramete[rs*m}x:l IS

obtained by maximizing the marginal likelihood asscribed by Tipping and Faul

(2003). The final hyperparameter values are:

A =diada*;* K 02 (4.20)

. T x w0\t

> =([3jncb O+ Aj (4.21)
The optimized mean vector and the weight matrix are

* * x T

ty =B Zn® T, (4.22)

* * * T

Wz(ul,...,qu (4.23)
The MVRVM output and output error bactaes are:

y® = W.d (4.24)

x =1 * T x *
o(y">=sqr(|3 +@ 2@} (4.25)
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Material and methods

Ste description

The water resources of the Sevier River Basin inti@e Utah (Fig. 4.1) are
among the most heavily utilized in the Western $obstantial efforts to increase
efficiency via canal lining and on-farm improvemesich as conversion to sprinkler
irrigation and laser land leveling were made dudfg0 - 1990 period. From 1990 to the
present, all reservoirs and stream offtakes haea lequipped with SCADA technology
and web-based data summaries (SRWUA, 2009). Cartamation was introduced in
1994 and shown not only to result in substantialucion in losses but also to
considerably shorten the response time betweenefademands and system deliveries
(Walker and Stringam, 1999, 2000). Most recendlitention has been focused on
improving the coordination between farmer demarwdsial deliveries, and reservoir
diversions.

In order to develop, test and implement the modep@sed of this study, a
subsystem at the lower end of the Sevier River rBass selected. The agricultural
command area (ACA) irrigated by Canal B is conreétethe DMAD Reservoir by a 9
km. canal (Canal A). The DMAD gates as well as@amal A gates are automated and
operated as a SCADA system by local water masters.

The DMAD Reservoir is supplied water on a demansisoffom Sevier River
Bridge Reservoir located upstream. The lag timmf&evier Bridge Reservoir to DMAD
Reservoir is 3 days. Thus, an emerging water denmaady ACA can be supplied within
about 12 hours if water is available in DMAD Resaryor 4 days if water must be

conveyed from Sevier Bridge Reservoir. Thus, thed gbthe entire system is to provide
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Fig. 4.1. Area of study, ACA Canal B in Delta, Utah.

water to an individual farm within 12 hours of amler by the irrigator. This goal relies

heavily on the SCADA system and the regulation cappaf DMAD Reservoir.
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The water management goals over the next few yaarso increase the DMAD

regulation capacity and improve the reliabilitytoé 12-hour delivery interval period. It

is expected that by better control of the DMAD Resg level will reduce seepage,

evaporation and administration losses by aboubZ®%. The most important capability
needed to achieve this goal is to develop a r&iabld accurate forecast of irrigation

demand, which is related with available estimatidrfuture aggregate water demand

under the current irrigation system conditions.
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Data description

For the area of study, information from severalrses for years 2008 and 2009
was collected. Spatial imagery of the ACA Canal Bswobtained from the NASA
LandSat TM5 Program (2009) for the month of MayisTinonth was chosen because by
this time crops in the area under study are mataorigh to allow identification from
bare soil and fallow vegetation areas using rersetesing techniques. Weather data was
collected from the local NOAA station located inlag Utah (Station Number 72479).
Maximum and minimum daily air temperatures and ipigtion records were available
from water station. Local crop coefficientsjKalues were obtained from the study done
by Wright (1982). Past water discharges conveyeciaal B records were obtained from
the SCADA database accessible from the Sevier RIWMUA website
(www.sevierriver.org). Soil moisture records wemlected from monitoring stations
located across the ACA Canal B being this infororatalso accessible from the WUA

website.

Aggregate water demand forecasting model

The proposed model for forecasting water requirdgsnfar the areas irrigated by
Canal B is based on the relationship of these fact) conveyed water into Canal B,
related with the current water management of thgation system by water masters,
reservoir and canal managers, farmers’ water ordeid current irrigation system
conveyance capacity, and b) agricultural infornmatiof the ACA, such as water
requirements by type and stage of the crops. Thedfaven algorithms, MVRVM or
MLP are used to provide the required mapping antbege factors. The proposed model

was based on the water balance equation (4.26)yfiedd and developed as follows:
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The water balance equation expresses the sum loivesifand outflows in a
defined soil volume over a specific time intervBhe net sum of inflows and outflows
produces a variation in the soil moisture content.

l,.+Pp—ET.—Ro—Dp, =A§ (4.26)

where:
l:: Net Irrigation (mm/day)
Pp: Precipitation (mm/day)
ET:. Crop Evapotranspiration (mm/day)
Ra: Runoff (mm/day)
Dp:: Deep percolation (mm/day)
AS:: Soil moisture variation (mm/day)
t. time (days)
Nevertheless, there are some components of Eq.tH&26are not measured or
assumed small enough, such as &al Dp. On the other hand, Pig extremely scarce
and very sparse for the area under study. Thesbtmms change Eqg. 4.26 to:

|, oc AS+ET, (4.27)

where the symbob indicates proportionality. Considering the watenweyance and
application efficiencyd), the discharge required for a given field at A@A inlet would
be Q = I/e (m%s). Thee is not necessarily uniform throughout the irrigatiseason,
being mostly influenced by water management proe=dulherefore, modifying EQ.
4.27:

Q x AS+ET, (4.28)
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Q =f(ET,AS) (4.29)

To extend Eq. 4.29 for the entire ACA, it is neeegd0o take into consideration
the implemented crops and water soil charactesisticthe area. Thus, the type and
acreage of crops in the ACA needs to be quantibedts inclusion in the model. About
the water soil characteristics, rarely spatialrthstion of soil moisture is available for
any ACA. For the area under study only selectedtlons which correspond to the Soil

Moisture Monitoring Sites () can be included in the model:
Qst = ZQI oc (ETcropt ’Ssitet) (4_30)

where Qsis the total inflow for the ACA at time t (i#s), the subscript crop is related
with each crop in the ACA and the subscript siteralted with the soil moisture
monitoring location. To include the implicit pattelof the human behavior in the
operation of the irrigation system, historical watdeases for Canal B are considered for
the model (Flake et al., 2010). With these last ifftcadions, it is possible to extend Eg.

4.30 for forecasting purposes:
Qsi+]:t+k = f (Qst:t—r ’ETcropI:t—m ’Ssitel:t—p) (431)

where the indexes r, m, n, and p refer to timesstephe past. The index k represents the
number of forecasted days. The letter f repres#r@smapping algorithm, in this case
MVRVM or MLP. In summary, the data-driven algoritenare required to provide
estimations of future aggregate water releases avith the available data in the ACA:

historical discharges, ET crop estimation and reaiisture records.
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Learning machines

The data-driven algorithm selected for the aggeegater demand forecasting
model is the MVRVM. For performance comparisonMieP was also tested. The model
considers the use of historical water releases A& Canal B, agricultural and soil
water information. As note in the Theoretical Deyghent section, the data-driven
algorithms require tuning of their own parametéos,the MVRVM, the type of kernel
function and kernel width. For the MLP is the numbghidden layers, the number of
neurons in these layers, and the training function.

To determine the accuracy of the forecasted resftiltise data-driven algorithms
two goodness-of-fit criteria were used: (1) the Rdean Square Error (RMSE); and (2)
the Nash-Sutcliffe Efficiency Indexn). The Nash-Sutcliffe Efficiency Index is

recommended for non-linear modeling problems (McCeteal., 2006).

N.

RMSE= \/Z(yf”)—tfn))z IN. (4.32)

n=1
n=1-t (4.33)

where:
t.": historical discharge for the testing data,
y-": forecasted discharge values for the testing data,

N-: number of samples or cases in the testing dath, a

t™ : average values of the historical flow rates.
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The RMSE values allow ranking of the performancesath learning machine.
Large RMSE values indicate that the error betwlerhtstorical and predicted discharge
values is largen measures in a non-dimensional range (fronto-1) the closure of the
historical vs. the predicted discharge values. nAvalue of 1 indicates perfect
correspondence. A value of O indicates that the forecasted flow rataot better than

the average of the historical water flow values.

Results

Available information

The initial information required to develop the wmatdemand model is the
identification of the types of crops and their aceaerage in the ACA. LandSat 5 TM
images from the GLOVIS USGS website (2009) were rdoaded for the area under
study (path/row: 38/33). Two images that corresptmthe May month for 2008 and
2009 were obtained. Once processed, these imalgegedlidentification of crops and
other land cover in the Canal B area and quantifineof the acreage covered by each.
Three main crops were identified: alfalfa, cornd @mall grains (barley, wheat). Fallow
vegetation was also detected during the image psoug To verify the accuracy of the
crop identification results a visual comparison waade during field trips to the ACA.
The processed satellite image for 2009 is presant&dy. 4.2 and the areas covered by
each crop for each year is presented in Table 4.1.
During the field trips to the ACA, interviews witlocal farmers, water masters and
managers was possible. Based on these conversatiomas determine that water

delivered in Canal B is used only for irrigatiordamot for other purposes, e.g. human
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Fig. 4.2. Crop distribution for ACA Canal B, 2009.

Table4.1. 2008 and 2009 crop areas for ACA Canal B.
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Crop 2008 2009
(ha) % (ha) %
Alfalfa 3183.9 30.0 3369.2 32.0
Corn 2378.5 23.0 723.6 7.0
Small Grains 305.6 3.0 323.3 3.0
Fallow 4653.2 44.0 6105.2 58.0
Total 10521.2 100.0 10521.2 100.0
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consumption, industrial and animal production. Sehether types of uses only employ
water from wells and other sources.

Based on the crop identification results, potergdpotranspiration rates were
estimated for the 2008 and 2009 irrigation seasmingg daily air temperatures and the
1985 Hargreaves BTEquation. This equation is recommended for watanrmpng
purposes and requires minimal weather informatoprovide ET estimations with good
approximation (Allen et al., 1998). The weathertistain Delta only provides daily
maximum and minimum air temperatures, and precipitarecords for the area under
study, which is enough for the application of tf83 Hargreaves Equation. Local crop
coefficients for the Midwest area of the Unitedt&savere obtained from Wright (1982)
and used to estimate the actual crop evapotratispinates. Fig. 4.3 shows the behavior
of, respectively, the local crop coefficients ame tactual values of ET for the 2009
irrigation season.

The soil moisture data was obtained from monitorsites located in the
croplands irrigated by Canal B. The soil moistuatadcan be accessed from the Sevier
River WUA website (www.sevierriver.org). Thesetistias have provided records of soil
moisture at depths of 1 and 2 ft in 44 selectenh$asince 2007 (88 sensors). For the 44
available soil moisture stations, a quality conanélysis was performed, addressing the
guality of soil moisture records, e.g. error or s@oimbedded in the data, and data
completeness. The results indicate data from sooilen®isture sites in 2008 was
affected by noise, given the harsh working envirentiio which the soil moisture probes
and ancillary equipment are exposed. Thereforer #fe quality control analysis, a final

selection of 11 stations with 2008 and 2009 irf@aseasons was performed and is
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Fig. 4.3. Local Kc and 2009 actual evapotranspiration vali@eesmain crops in ACA
Canal B

presented in Table 4.2. The soil moisture data ftbese stations will be tested for
inclusion in the proposed model. Historical recastidaily water diversions into Canal B
were retrieved from the WUA database for 2008 af@92irrigation seasons. This

information can be also accessed from the SevierBRVUA website.

Water demand forecasting model

After acquisition of available data for ACA Canal &libration of the mapping
function for the water demand forecast model, MVR\&kd the MLP was performed.
These learning machines have an advantage ovarle#neing models in terms of model
calibration, which was the reason for their setacin this study. The Bayesian Inference
Method used by these algorithms to estimate thaiarpeters is a technique that avoids
model overfitting issues. Thus, there is no neeafber techniques, e.g. cross validation,

to analyze the data-driven calibration. For théxcation of the learning machine
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Table 4.2. Selected soil moisture monitoring stations.

Station Crop 2008 Crop 2009
104-b no crop no crop
107-a alfalfa alfalfa
109-a alfalfa alfalfa
109-b alfalfa alfalfa
111-a alfalfa alfalfa
115-a alfalfa corn
115-b alfalfa corn
116-a corn barley
116-b corn barley
118-a alfalfa alfalfa
118-b alfalfa alfalfa

algorithms, two factors were taken into account:p@ameter selection and tuning, and
(b) the optimal information or variables requiredimputs for the forecasting model.

To proceed with the calibration of the water demé&metcasting model, it is
necessary to distribute the available data intodvemps: one for training and tuning the
data-driven algorithms and a second group to vehfy adequacy of the calibrated
algorithm. As mentioned before, available dataudek daily information for 2008 and
2009 irrigation seasons, covering the months ofilAprOctober (~256 days). For this

study, data from the 2008 irrigation season wasl tsecalibrate the forecasting model,
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while 2009 irrigation season data was used forfieation of the adequacy of the model
(goodness-of-fit values).

In terms of dimensionality or best inputs for tbeeicasting model, an inclusion of
all available data in the model is not recommenaschuse this can result in reduction in
the performance of the data-driven algorithm. Amdhg available data there is an
optimal number of variables or sources of inforimatihat provides the best relationship
with the future water demand. To identify the biegtut variables, a selection of the
inputs for the data-driven models was conductecdassed by Guyon and Elisseeff
(2003). In this selection (also called forward @hte selection), every variable or
variable combination is tested against the desmafputs using the selected learning
machine and the goodness-of-fit values obtained shoeed for ranking purposes.
Variable or variable combinations that have thénbégj correspondence with the desired
outputs (best-fit values) are kept as fixed inputhe model while the other variables are
being included in the learning machine in comborativith the fixed ones. The process
stops when the addition of any new variable inda& driven model does not improve
the goodness-of-fit statistics and the visual aialyThis procedure ensures that optimal
inputs are included in the data-driven algorithmlevthe synergy effect of these inputs is
maximized.

The calibration of the parameters for the dataeasrialgorithms was performed
during the execution of the variable selection méthogy. During the test of each
variable or variable combination, an internal tgniof the data-driven algorithm
parameters was performed. The tuned parametehéoMiVRVM was the kernel width

(om), while the type of kernel was fixed to Gaussiamecommended by Gill et al. (2006)
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for hydrologic problems. For the MLP, the tunedgmaeter was the number of neurons in
one single hidden layer using the secant gradiginin@zation function, as recommended
by Nabney (2002).

For ACA Canal B, there are three main data souiwd®e included as inputs in
the data-driven algorithms: past Canal B inflowsppcwater requirements and soil
moisture. As shown in Eq. 4.31, it is expected tpast values of the available
information are required for the forecasted wateleases. These past values are
identified in Eq. 4.31 by the indexes (m, p, andThese indexes are assumed not to be
the same for all the tested variables and theinevahall be defined by the variable
selection procedure. This is because the possilge that can occur between a soll
moisture site and the water releases for the (Buaaka. The same criterion is applied to
other variables like crop evapotranspiration. Aegah5 days lag in the past was applied
for every variable that could be included as inpuhe forecasting model. This makes a
total of 130 variables tested during the varialdkedion procedure. A summary of the
total number of input variables is presented inl@dh3.

Results of the forward variable selection with thedrresponding tuned data-
driven parameter for the MLP and MVRVM are presdnie Tables 4.4 and 4.5,
respectively, with the best variable combinatioaveh at the end of each table. The data-
driven error bardy) is also included as a measurement of the appediomof the model
to the actual water demand values. For both ofdhag-driven algorithms, the best
variable combination includes data from the threginmsources: historical Canal B
inflow, alfalfa actual evapotranspiration, and soibisture data from at least two

monitoring sites. The number of steps back in tsndifferent for each algorithm and
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Available Data| Variables | Notation Example Details

Discharge 5 QsQs1,...,QS4 Past Canal B inflows
ET Alfalfa,..., ET Alfalfa.s, Past crop water
ET Corn,..., ET Corna, requirements

Crop ET 15 ET Grain,..., ET Corn, for crops in ACA.
104-b-1ft,...,104-b-1ft4,

Soil Moisture 104-b-2ft,...,104-b-2ft 4, 11 stations,

Sites 110 118-b-2ft,...,118-b-2ft,. 2 sensors per station.

Table 4.4. Goodness-of-fit and error bar values for variadgéection procedure using

MLP (2009 data).

Hidden | n n RMSE | RMSE| oy Oy
Tested Variables Neurons| Qs+1 | QS+2 | Qs+1 | QS+2 | QSv1 | QS+2
Qs 8 0.92| 0.78 0.40 0.68 0.94 0.95
Qs, Qs1 4 0.93| 0.78 0.36 0.69 0.80 0.80
Qs, Qs.1, 109-a-2ft;3 3 0.93| 0.777 0.34 0.6 0.73 0.73
Qs, Qs.1, 109-a-2fts,
ET Alfalfa 1 0.92| 0.79) 0.35 0.65 0.88 0.88
Qs, Qs.1, 109-a-2fts,
ET Alfalfa,,
107-a-1ft, 116-a-1ft,, Qs> 1 0.92| 0.81 044 0.62 0.87 0.87




106

Table 4.5. Goodness-of-fit and error bar values for variaddéection procedure using

MVRVM (2009 data)

n n RMSE | RMSE | oy Gy

Tested Variables Om | QS+ | QS+2 | QSe1 | QSe2 | QSe1 | QS
Qs 3.5(0.92 |0.77 | 0.40 0.69 0.49 0.86
Qs, Qs1 8.8/ 0.95|0.81 |0.33 0.63 0.36 0.73
Qs, Qs.1, 109-a-1ft, 85(0.94 0.79 | 0.34 0.66 0.34/ 0.64
Qs, Qs.1, 109-a-1ft,, ET Alfalfa 7.5(0.95|0.82 | 0.32 0.60 0.35 0.70
Qs, Qs1, 109-a-1ft,, ET Alfalfa,

109-a-2ft, 7.8/ 0.95|0.83 |0.32 0.59 0.35 0.70
Qs, Qs.1, 109-a-1ft,, ET Alfalfa,

109-a-2ft,, 115-b-2ft 7.5/ 0.95(0.82|0.33 0.61 0.34] 0.65

variable tested. From 130 available variables, @mywere selected by the MLP and

seven by the MVRVM to provide forecasting of ag@gtegwater demand into ACA

Canal B for one and two days into the future.

The graphical representation of the best calibnatibthe forecasting models is

presented in Figs. 4.4 and 4.5 using 2009 dataseThgures present the approximation

of the learning machines to the estimation of ®RINCA Canal B water demands for two

days in advance. The figures also include a 1-staherror barc(y(”)), provided by each

data-driven algorithm.

It is interesting to note the variables selectecagh data-driven algorithms from

the 130 available ones. The MLP algorithm requatlktast three previous inflow rates
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Fig. 4.4. One and two days water demand forecast for 20@iron season using MLP.
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Fig. 45. One and two days water demand forecast for 200§airon season using
MVRVM.



108

of Canal B, plus the evapotranspiration requiresieot alfalfa at time t and soll
moisture information from sites 107-a, 109-a an@-aXht different depths and time steps.
Similarly for the MVRVM, two previous inflow ratesalfalfa evapotranspiration
requirements at time t, and soil moisture from rtwmg sites 109-a and 115-b at
different depths and time steps.

It is interesting to note the variables selecteg@égh data-driven algorithms from
the available ones mentioned in Table 4.3. The Mlgdrithm required at least three
previous inflow rates of Canal B, plus the evapmtpration requirements for alfalfa at
time t and soil moisture information from sites 44)71.09-a and 116-a at different depths
and time steps. Similarly for the MVRVM, two preu® inflow rates, alfalfa
evapotranspiration requirements at time t, andrmeoikture from monitoring sites 109-a
and 115-b at different depths and time steps.

The variables selected by the data-driven algostimdicate their importance in
forecasting future ACA Canal B water demand valdéfalfa, as shown in Fig. 4.2 and
Table 4.1, is by far the largest crop producedtardACA water requirements are related
to alfalfa water demand pattern. Soil moisture rimfation from Site 109-a is required for
both of the algorithms. Table 4.2 indicates thie kias recorded soil moisture conditions
for alfalfa for 2008 and 2009 irrigation seasonhisTinclusion in both models might
indicate that soil moisture from this site averagessture conditions for alfalfa in the
entire ACA. The other soil moisture sites includedhe -forecasting model provide data
on soil water conditions for corn and small gramthe ACA (107-a, 116-a, 115-b).

Now, when comparing the statistical (goodnessidpfrésults obtained for both

data-driven algorithms for the best forecasting etmdthe MVRVM performs slightly
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better than the MLP (Tables 4.3 and 4.4). The stahdrror bars from the best models
can also provide insight about the performancehefrhodels. These error bars are the
sum of two effects: one from the error containethinithe data, and the error from the
data-driven algorithm itself. Therefore, the snraltke error bars the better is the
approximation of the learning machine to the fosted water demand values.
Considering this concept, Tables 4.4 and 4.5, agd. .4 and 4.5 show clearly that
MVRVM can provide a better correlation using avaliéa data for the ACA and
forecasted water diversions than the MLP.

A consideration to keep in mind is the approximatal the forecasting results
obtained for both mapping algorithms. From Figutek and 4.5 there is a lag between
the forecasted and actual flow deliveries in Cdharhis is more evident for the second
forecasted day. This is because of the availabte, d&o irrigation seasons, one for
training and testing. Additional information foraiming will reduce the time lag,
enhancing the goodness-of-fit parameters at the siane.

Given the best variable combination and data-driwgred parameters for both
algorithms, it is important to assess the suitgbdf the models under different irrigation
conditions than the 2008 and 2009 seasons. Thesassst is conducted to determine the
stability and robustness of the forecasting modelen they are presented with
previously unseen data. A 1000-fold bootstrap wiblacement was applied to the
training data (2008), while keeping the testingad@009) constant. For each fold, the
goodness-of-fit parameters were estimated and cstaseexplained by Anguita et al.

(2000). To determine the characteristics of the tdicap results, a graphical
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representation of the goodness-of-fit statistidsaftet al., 1993) is presented in Fig. 4.6
and 4.7.

Several conclusions can be drawn from the lastrdguFirst, the range of the
goodness-of-fit parameters in the presented hiatogris smaller for the RVM when
compared with the MLP for both of the goodnessHoprameters. This implies that
once calibrated, the RVM is less susceptible o¥ipling reduced performance due to the
variation of the training data as could occur unaetual working conditions. For the
MLP, the statistical measures from the bootstrapwvsh more dispersed distribution,
indicating that the MLP performance is affectedifayning data variation. This could be
a strong limiting condition for practical applicatis to estimate future aggregate water

demand using MLP as the mapping algorithm.

Conclusions and discussion

This study presents the findings of a proposed ma@genand forecasting model
based on statistical learning machines and histionéormation of flow rates, crop water
demand and soil moisture data for an agricultuocmhmand area (ACA). The practical
application of the proposed model is tested inragation system in Central Utah (Canal
B).

For the forecasting model, the chosen data-drivgarithm is the Multivariate
Relevance Vector Machine (MVRVM) and its performans compared against the
results of another data-driven tool, the Multilajgarceptron (MLP). Over 130 possible
inputs variables were tested to determine the mp$imal combination of them to

provide the forecasted flow rates.
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The results indicate that the proposed forecastioglel is able to adequately
estimate the future water deliveries for ACA CaBalp to two days in advance. For this,
past inflow values, evapotranspiration of the onoth the largest planted acreage in the
ACA (alfalfa), and soil moisture at one and twotfé®m soil moisture sites for the
MVRVM algorithm was required. A similar set of vables was identified for the MLP
algorithm.

The results also show that the past inflow ratestlae most influential variables
in the forecasting scheme. The Canal B inflow iktesl to the water management
operations in the ACA (farmers’ water orders, watesters and water manager). Thus,
the human factor is an important component in gnedasting model.

When comparing the results obtained by the datseedralgorithms, the MVRVM
performs better than the MLP as demonstrated bygtwness-of-fit values and the
graphical analysis. Furthermore, when assessmentolmiistness and stability was
performed by application of bootstrap analysis,irddVRVM was less affected by
unseen new data than the MLP. This implies thatMh® (a type of neural network
model) is less suitable for water demand forecgstsks.

The approach to develop the forecasting modeligsiudy allows for replication
of the model under different scenarios and locatidhis advisable that data quality
completeness of the available information is pentat for the time intervals desired.
Also, to reduce performance lags in the resulis #dvisable to include at least three

irrigation seasons of daily data, two for trainthg MVRVM algorithm.
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Future work on this topic will be related the exdiem of the model of two to four
days by incorporation of detailed spatial inforraati Also, the MVRVM model will be

implemented for use by water managers of the ACAaCB.
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CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary and conclusions

The complexity of agricultural conditions and hungrtisions in an irrigation
system require better, yet simple, approaches ¢iods to translate available, real-time
data about the state of the system into valualgeisin-relevant information for water
masters, water managers and decision-makers. gthe iobjective of this dissertation.

The methods presented here were developed basadchew statistical learning
machine tool, the Relevance Vector Machines andxtended version, the Multivariate
Relevance Vector Machine, which have been repddede successful in many other
fields related to water management problems.

Three real different issues in irrigation water agement were analyzed, as
shown in Chapters 2, 3 and 4. These issues arestiyation of future crop water for
water management purposes when climatic data igetim2) error correction or
minimization in simulation models, and 3) genematmf an aggregate water demand
forecast based on actual agricultural conditiortsiatgation system management.

To demonstrate the performance of the developedetsa location in Central
Utah in the Lower Sevier River Basin was selectbe@, agricultural command area
(ACA) called Canal B. This ACA covers approximaté&ly,000 hectares. The main crops
in the ACA are alfalfa, corn and barley. Water aseeyed to the ACA inlet by a 9 km
canal, called Canal A, from a storage facility kechupstream, the DMAD Reservoir. A
SCADA system controls the irrigation system whilee tinternal canal network flow

condition in the ACA is operated by local water tees and water managers. The ACA
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also has a network of on-farm soil moisture sentwat monitor soil water variation on
an hourly basis.

For the three issues that are the central foctli®fesearch, the analytic methods
used here are strongly based on Bayesian learracgime models, the Relevance Vector
Machine (RVM) and the Multivariate Relevance Vectdachine (MVRVM). The
advantages of these models are their probabileproach to provide a mapping
function among the available input-output data, levfavoiding overfitting issues that
could affect their performance, which have beerrofseen in previous engineering
applications of data-driven models.

Chapter 2 presents the development of a metho@dmation of future daily
water crop demands, also called evapotranspirékdp). The critical point here is the
limited climatic information available, maximum amginimum daily air temperatures,
recorded by the local weather station. Utilizingaitable data and a well-known ET
model, i.e., the 1985 Hargreaves Equation, futufg \Elues are mapped against past
ones, using the MVRVM as the mapping function. Tquestions are answered here: 1)
How far in time can EJ be forecasted, and 2) is there any advantageretdsting: the
required weather variables for the ggdquation (daily air temperatures) or the already
calculated E{?

The second issue addressed (Chapter 3) is theogpeveht of a method that
allows the reduction of lumped errors that occuhyaraulic simulation models. These
lumped or aggregate errors,) are the consequence of noise imbedded in the Imode
parameters and inputs (parameter and observatiors @espectively), and accuracy of

the numerical approximation of the simulation modgystem error) to the actual
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phenomena. The objective for this analysis is teebig an error correction model that
only uses information from the simulation model #mak can provide a way to minimize
the aggregate errors, thus reducing its impacthensimulated results. An additional
requirement is that the error correction model &heaork under the same conditions as
the simulation model (i.e., real-time conditions).

The third issue addressed in this research (Chdptes the development of a
model that estimates the irrigation water requfcedan ACA under its actual agricultural
and water management conditions. There is not &y easwer for this question.
Estimates of irrigation water requirements showddniostly driven by crop water needs
and local soil characteristics. Nevertheless, omfaanagement and the operation of the
irrigation system are major components with a lamgpact on water that must be
delivered to the ACA. The model should capture thisrmation. Also the proposed
model must be limited to only the available infotioa in the ACA to provide the
required forecasted information.

Additionally, for each of the models developed iha@ters 2 to 4, it is always
important to determine their suitability for theug addressed in terms of robustness, and
accuracy in the presence of new, previously unsie¢a and in comparison with other
widely used models in similar issues. For this seas performance comparison against
a Bayesian Artificial Neural Network algorithm igoposed. This algorithm is the
Multilayer Perceptron (MLP) which is also used asapping tool to develop models in a
manner similar to the RVM and MVRVM. Thus, once ilmated, these mapping
algorithms are subjected to a bootstrap analysiketermine their robustness when given

new data, as if they were already implementedenAGA.
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The findings for the potential evapotranspiratianetast (Chapter 2) indicates
that it is possible to estimate future crop wagguirements in the Delta, Utah area for up
to four days in advance using historical weathea dand the MVRVM as mapping
function. This method requires the mapping of weatariables required by the ET
model rather than calculated g&Values. The difference between using air tempegatu
or ETp in the mapping function is that the forecast o&ther variables allows for larger
forecast periods than the direct use of histofalrecords.

The results for the error correction model (Chagdeshow that it is possible to
develop a coupled physical- and statistical-basedatthat provides minimization of the
lumped or aggregate error while performing in tgak. The mapping algorithm here is
the RVM and the required information is a small seinputs used by the simulation
model. The mapping provided by the RVM among tmedad error and the inputs of the
hydraulic simulation model can allow for an ideictition of possible error sources that
could be examined later by water managers, suchaheditions of water flow recording
sensors, SCADA system, among others.

In Chapter 4, the results indicate the possibititypredicting short term water
deliveries by making use of local and general imi@tion of an ACA. Here they key is
the implementation of an SCADA system to provideoastant and reliable source of
information. By making use of the MVRVM as a magpianction, water deliveries for
several days in the future can be estimated.

An issue that has been denoted in this researttte isxfluence of the amount of
data for the calibration of these learning machiesit has been demonstrated in this

study, an irrigation season of daily or hourly dateows for general calibration and
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variable selection. Nevertheless, to improve theuary of the models, more
information is required (2 or more irrigation seaspfor training purposes. In this way
the behavior of the variable to be modeled candoe avith higher accuracy.

In general, the results for each of the methodeldped were satisfactory. The
proposed mapping function (RVM or MVRVM) is an elest choice to perform the
required mapping task. Also these algorithms haeeadvantage of being more robust
and stable than the alternative, the MLP, as wasdan each analysis.

An advantage of using these Bayesian-based algwith their reduced time for
calibration (no crossvalidation techniques reqyire@robabilistic approach and
estimation of error bars for the model results #reweights. The error bar estimation
has not been exploited at their full potential ao é.g. indication of adequacy of the
suitability of the model to the data, outlier idéoation or measurement of the noise or

variation in the data.

Recommendationsfor futurework

The work presented here is focused on developinpods to provide adequate
information to water managers and others. The mné&bion used comes from historical
records from an existing SCADA system (temporahfafhus there is a need to explore
the use of a combination of temporal-spatial daardbduce better information.

Also, the good performance of the methods develdpd opens the doors to
other questions. One is related to the future perdoce of the methods once
implemented for everyday use by water managersatinels. The bootstrap analysis
provides some insight about this, allowing selectime mapping algorithm that is more

robust and stable. Nevertheless, an on field tebteoproposed models is recommended.
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This test is important for several reasons: 1)lavwes for feedback from the final users,
water managers and others, to the modeler tolsutniodel in a comprehensible manner
for them, 2) it allows the modeler to refine thedal to adjust it for actual working
conditions, and 3) it permits the users to adapiteéanew sources of information.

Another question is related to the frequency ofalibcation required for the
learning machine once implemented for use. Thilsted with the frequency of data
generation (hrs, days), agricultural season patttm Additional work during the field
test period, as proposed above, can provide inalgt this.

A final question is related to the black-box algfam concept that is commonly
applied to learning machine algorithms. The RVM aMVRVM, given their
conceptualization, can be explained in better tashhan earlier types of learning
machines (e.g., Artificial Neural Networks). Stilgdditional work is necessary to
illustrate the internal concepts used like the iplikelihood and posterior probabilities,
and others, and provide these as an outcome fremalgorithm. In any application of
RVM-type machines for modeling of hydrologic or Ingdlic processes, the question of
the physical meaning of the choice of relevancéors@lways arises. This is sometimes
easily answered, such as for groundwater forecpgimmonitoring applications (see
Ammar et al., 2008, and Asefa et al., 2005), buhaies unclear for time series

applications such as the ones in this researchthéfuresearch is needed here.
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