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ABSTRACT 

Spatial Epidemiology of Birth Defects in the United States and the State of Utah Using 

Geographic Information Systems and Spatial Statistics 

 

by 

 

 

Samson Y. Gebreab, Doctor of Philosophy 

Utah State University, 2010 

 

Major Professor: Dr. Robert R. Gillies  

Department: Watershed Sciences 

Oral clefts are the most common form of birth defects in the United States (US) 

and the State of Utah has among the highest prevalence of oral clefts in the nation. The 

overall objective of this dissertation was to examine the spatial distribution of oral clefts 

and their linkage with a broad range of demographic, behavioral, social, economic, and 

environmental risk factors through the application of Geographic Information Systems 

(GIS) and spatial statistics. Using innovative linked micromaps plots, we investigated the 

geographic patterns of oral clefts occurrence from 1998 to 2002 and their relationships 

with maternal smoking rates and proportion of American Indians and Alaskan Natives 

(AIAN) at large scales across the US. The findings indicated higher oral clefts occurrence 

in the southwest and the midwest and lower occurrence in the east. Furthermore, these 

spatial patterns were significantly related to the smoking rates and AIAN. Then at the 

small area level, hierarchical Bayesian models were built to examine the spatial variation 



iv 

 

 

iv
 

in oral clefts risk in the State of Utah from 1995 to 2004 and to assess association with 

mothers using tobacco, mothers consuming alcohol during pregnancy, and the proportion 

of mothers with no high school diploma. Next, multi-scalar spatial clustering and cluster 

techniques were used to test the hypothesis whether there was spatial clustering of oral 

clefts anywhere in the State of Utah and whether there were statistically significant local 

clusters with elevated oral cleft cases. Results generally revealed modest spatial variation 

in oral clefts risk in the State of Utah, with no pronounced spatial clustering, indicating 

environmental exposures are unlikely plausible cause of oral clefts. However, a few 

notable areas within Tri-County Local Health District, Provo/Brigham Young University, 

and North Orem had a tendency toward elevated oral clefts cases. Investigation of the 

maternal characteristics of these potential clusters supports the hypotheses that maternal 

smoking, lower education level, and family history are possible causes of oral clefts. 

Throughout this dissertation, we demonstrated how birth defects data collected by state 

and local surveillance systems coupled with GIS and spatial statistics methods can be 

useful in exploratory etiologic research of birth defects.  

              (186 pages) 
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CHAPTER 1 

INTRODUCTION 

Oral clefts are the most common form of birth defects in the United States (US) 

and constitute a major public health problem in the State of Utah. The prevalence of oral 

clefts in the State of Utah is among the highest in the nation. Oral clefts have substantial 

public health impacts in various contexts: namely that of infant mortality, lifelong 

morbidity and mortality (Czeizel and Sankaranarayanan, 1984; Christensen et al., 2004), 

and medical cost (Waitzman et al., 1994). In addition, there are extraneous effects that are 

both psychological and social (Caplan and Weintraub, 1993). Given the burden of oral 

clefts in the State of Utah, it is imperative that effective prevention strategies and control 

measures are undertaken, but equally important is the identification of any associated risk 

factors. Therefore, this dissertation presents a comprehensive analysis of the spatial 

distribution of oral clefts for the State of Utah.  

Currently, there are numerous ongoing efforts to reduce the burden of oral clefts, 

both at the national and at the state level. To this end, various agencies have established 

surveillance programs that collect data on the occurrence of birth defects along with other 

crucial information. At the national level, the National Birth Defects Prevention Network 

(NBDPN) maintains a network of state and population-based programs for birth defects 

surveillance and research (NBDPN, 2005). Additionally, many states have their own 

statewide birth defects surveillance programs that collect and monitor major birth defects 

outcomes. The Utah Birth Defects Network (UBDN) is one such program that collects, 

stores, and collates data on major birth defects in Utah and this dataset includes oral
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clefts.  Birth defects data collected by these programs along with other population studies 

have been used to monitor trends, examine the causes of birth defects, and subsequently 

are used to develop policy and prevention measures (NBDPN, 2005). 

However, in the case of oral clefts, the etiology remains largely unknown. A 

significant and growing body of evidence hints that there is an etiologic role at play here 

that comprises genetic and environmental triggers which manifest both individually and 

through multiple interactions (Shaw et al., 1996; Romitti et al., 1999; Murray, 2002). 

Evidence to date suggests that environmental triggers associated with the risk of oral 

clefts are maternal exposure to smoking (Khoury et al., 1987; Lieff et al., 1999; Chung et 

al., 2000), alcohol consumption (Munger et al., 1996; Lorente et al., 2000), medication 

use (Dansky et al., 1991; Parkwyllie et al., 2000), nutritional deficiencies such as 

multivitamins and folic acid (Shaw et al., 1995;  Hayes et al., 1996; Munger et al., 2004), 

exposure to chemical solvents in the work place or at home (Laumon et al., 1996; Garcia 

and Fletcher, 1998), drinking water contamination (Bove et al., 1995), environmental 

lead pollution (Vinceti et al., 2001), ambient air pollution (Ritz et al., 2002; Gilboa et al., 

2005), and residing near to hazardous waste sites (Dolk et al., 1998; Orr et al., 2002; 

Brender et al., 2006). 

The majority of epidemiological studies that have examined the risk associated 

with being born with oral clefts have focused on individual level studies drawn from 

case-control and cohort studies. Very little attention has been given to the spatial 

dimensions of the disorder. Geographic variation of oral clefts is commonplace. In fact, 

studies have shown that there are substantial geographic variations in oral clefts across 
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various geographical scales in the US and, for that matter, around the world. These 

variations are ascribed to geographic origin (Vanderas, 1987), racial and ethnic 

backgrounds (Croen et al., 1998; Tolarova and Cervenka, 1998), socioeconomic status 

(Murray et al., 1997), lifestyle and nutrition (Munger et al., 2004; Bille et al., 2007), and 

environmental pollution (Dolk et al., 1998; Ritz et al., 2002; Brender et al., 2006).   

Given that so much of the etiology of oral clefts is poorly understood and the fact 

that there is considerable geographical variation in oral clefts, which is likely due to a 

broad range of factors (i.e., demographic, genetic, behavioral, social, economic, and 

environmental), a geographically focused examination of oral clefts may provide a 

supplementary if not a broader approach towards figuring out the etiology of oral clefts. 

Moreover, understanding the geographic distribution of oral clefts may assist with 

hypotheses generation as to the underlying risk factors, that is to say, once potential risk 

factors are identified, one can further assess them by using more refined epidemiologic 

studies such as case control studies or cohort studies. A further advantage of performing 

geographic-type analyses is in the identification of areas of elevated oral clefts risk – this 

being most advantageous in future planning for health care as well as in the allocation of 

health resources.  

Spatial analysis of disease has played a historical role in the arena of public 

health, and has long underscored the classical triad in epidemiology as noted by Walter 

(2000) that is of person, time and place. A famous example, conducted by John Snow, 

was the mapping of the 1814 London cholera epidemic (Figure 1-1 when etiology of the 

disease was not scientifically understood.). 
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Figure 1-1 Snow's map of cholera. The affected well is clearly identified by the 

concentration of cases in its vicinity (Source: http://archives-fig-st-

die.cndp.fr/actes/actes_2000/thouez/t13.gif). 

Snow drew dots on a map background which he subsequently used to trace the 

source of the cholera outbreak, i.e., fecal-contaminated water supplied by the Broad 

Street pump (Snow, 1855). His direct action in dismantling the pump saved many lives. 

However, since this investigation, the spatial analysis of disease has been sporadic and 
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generally limited to simple dot maps and density maps.  On the other hand, advances in 

Geographic Information Systems (GIS), spatial statistical methods, coupled with 

developments in digital and computing resources, has lead to a very powerful synergistic 

toolset that now supplies the means with which to effectively analyze any data that is 

spatially distributed.  

As previously noted, during the past two decades the methods for spatial analysis 

of disease have dramatically improved. Advances in GIS, availability of geo-referenced 

health and environmental data, along with statistical methodologies, particularly 

Bayesian methods have allowed investigators to perform routine sophisticated spatial 

analysis of disease with enhanced precision. So much so that a new sub-field of spatial 

epidemiology, a hybrid of epidemiology, statistics, and GIS has emerged, and has been 

increasingly used to assess the spatial variations of chronic and infectious diseases 

(Elliott and Wartenberg, 2004).  

GIS and spatial statistics methods, however, have had limited use in birth defects 

epidemiology. There is a very limited set of information on the extent and level of 

geographic variations in oral clefts across the US.  Furthermore, little is known about the 

spatial variations in oral clefts and associated environmental risk factors at small area 

levels within a state. Given the aforementioned situation, this dissertation, is a step 

towards the provision of a comprehensive description as to the extent and level of spatial 

variations in oral clefts at national, regional and small area levels. Further analyses were 

performed to describe observed spatial variations of oral clefts within the context of 

demographic, behavioral, social, economic and environmental risk factors.  In doing so, 
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this dissertation draws upon theoretical and methodological approaches from the 

disciplines of epidemiology, GIS, and spatial statistics. The work outlined in chapters one 

through four illustrates how GIS and spatial statistic methodologies, coupled with 

routinely collected oral clefts data from birth defects surveillance systems, can be useful 

tools to augment oral clefts surveillance and prevention.  

RESEARCH PROBLEMS 

Oral clefts are one of the most common birth defects in the US. Oral clefts include 

cleft lip (CL), cleft lip with or without a cleft palate (CL/P), and isolated cleft palate 

(CP).  On average, the occurrence of oral clefts in the US is 1 in 750 (UBDN, 2007). 

There are, however, marked racial and geographical variations in oral clefts prevalence in 

the US. In the general population, Asian or Amerindian populations exhibit the highest 

frequencies, often at 1 in 500 or higher, with Caucasian populations intermediate, and 

African-American populations the lowest at 1 in 2500 (Murray, 2002).  

The impact of oral clefts is profound both socially and economically. Children 

who are born with an oral cleft require several surgical procedures and complex medical 

treatments. The estimated lifetime medical cost for each child with an oral cleft is 

$100,000; this amounts to $750 million if one considers all children born with an oral 

cleft each year in the United States (Waitzman et al., 1994). In addition to the economic 

burden, these children and their families often experience profound psychological, 

behavioral, and physical problems (Caplan and Weintraub, 1993). The defects, therefore, 
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pose a substantial burden to the individual and their family, and require significant 

expenditure in terms of health and related services.   

In Utah, oral clefts are a major public health problem. The birth prevalence of oral 

clefts rates in the State is among the highest in the nation. Oral clefts affect 1 in 450 

births in Utah compared to 1 in 750 births nationally. Each year more than 100 children 

with oral clefts are born in Utah (UBDN, 2007). Rates of oral clefts are similar among 

Utah Caucasians (22.2 per 10,000), Hispanics (22.4 per 10,000), and Asians (18.2 per 

10,000). While the rate among Native Americans may be higher (36. 9 per 10,000), the 

numbers are too small to be certain.  The number of affected births among African 

Americans in Utah is simply too small to draw any conclusions (UBDN, 2007). 

The high prevalence of oral clefts in the State of Utah compared to most States in 

the US is not clearly understood. One approach, to understand why Utah exhibits such a 

high prevalence, is to investigate the spatial variations in oral clefts at the small area level 

and is a research topic that has not been given much attention in the literature of the field. 

Therefore, this dissertation provides a detailed description of the spatial variations in oral 

clefts in the State of Utah at the small area level for the period from 1995 to 2004.  

Specifically examined and assessed are the spatial patterns of oral clefts and their 

associations with certain risk factors; identified also are local clusters with significantly 

higher number of oral clefts cases than expected.  
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Spatial Epidemiology of Birth Defects  

In recent years, GIS and spatial statistics have been used increasingly in public 

health and epidemiology. These technologies are useful tools in identifying both the 

spatial pattern of a disease, areas of excess risks, and in investigating the association 

between the observed disease incidence and potential risk factors that contribute to a 

spatial variation in disease risk. As such they are valuable in generating more 

sophisticated hypotheses for a more in-depth investigation or merely to serve as part of a 

general health surveillance and monitoring system. However, they have thus far played 

only a limited role in birth defects research (Siffel et al., 2006). There are only a handful 

of published studies on birth defects using spatial statistics and GIS. For example, 

Rushton and Lolonis (1996) used an exploratory spatial analysis approach to find spatial 

clusters in birth defects rates in Des Moines, Iowa. Forand et al. (2002) used the spatial 

scan statistic to map elevated and lowered birth defect rates. GIS has been used in the 

analysis of associations between birth defects and exposures such as hazardous waste 

sites and air pollution (Orr et al., 2002; Wu et al., 2004; Gilboa et al., 2005; Gilboa et al., 

2006), and in the analysis of socioeconomic status and neural tube defects (Wasserman et 

al., 1998). Recently, Cech et al. (2007) utilized spatial clustering techniques to identify 

spatial clusters and then evaluate the association between low-level radioactivity in 

drinking water and rates of oral clefts among residents of Harris County, Texas. Gardner 

et al. (2007) developed the Automated Spatial Surveillance program (ASSP) to monitor 

spatial and temporal trends of birth defects. All of these studies illustrate the utility of 

GIS and spatial statistical methods in birth defects surveillance. However, the full 
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potential of GIS and spatial statistics capabilities in birth defects research has not yet 

been fully realized. There are several issues that have slowed down the integration of GIS 

and spatial statistics into birth defects research; to mention a few – (a) primarily the 

availability of a high quality geocoded birth defects data, (b) the fact that GIS and spatial 

statistics techniques are relatively new, and (c) the lack of suitable and accessible 

software coupled to the shortage of individuals trained in both GIS and spatial statistics 

techniques (Siffel et al., 2006). 

Birth defects surveillance systems typically collect information on the maternal 

residential address during pregnancy. Prior to any spatial analyses, this residential 

information generally has to be converted to digital map coordinates (e.g., latitude and 

longitude) via a technique called geocoding. The geocoding process utilizes both, GIS 

and specialized geocoding software, after which it is possible to map the coordinates of 

maternal residential address and subsequently link a location to demographic, 

socioeconomic, environmental risk factors as well as other potential risk factors that 

might be associated with birth defects occurrence. For instance, GIS can facilitate the 

linkage of birth defects data from the UBDN registry with US Census Bureau 

demographic and socioeconomic data and Environmental Protective Agency (EPA) 

environmental data.  

Several statistical methods have been developed to analyze the spatial patterns of 

birth defects data. The choice of spatial statistical method depends on the type of 

geocoded birth defects data as this data is available at either point or area level. Point - 

level data requires exact coordinates of birth defect records.  For spatial analyses point 
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level is the preferred choice. However, confidentiality and privacy issues of birth defects 

records more often than not restrict the use of the data at this level. Given such instances, 

area - level data, where the birth defects cases are aggregated up to some geographical 

unit (e.g. census tract, county or ZIP code), are more commonly made available for the 

purposes of research and any privacy concerns are protected  (Olson et al., 2006). Hence, 

the research presented here was performed at the area level, with an emphasis on small 

area analyses. 

The term ‗small-area‘ refers to an area with small ‗at-risk‘ population, but not 

necessarily small in geographical size/scale (MacNab, 2004). An analysis of birth defects 

at the small-area level reduces the potential for ecological bias created by the within-area 

heterogeneity of exposure or other determinants (Lawson et al., 1999; Elliott et al., 2000). 

Furthermore, at the small-area level statistical tests are able to detect more effectively any 

local effects that might be linked to environmental circumstances such as industrial 

pollution in the vicinity. However, when analyzing the spatial variation of birth defects at 

area level, especially at small-areas, it is important to keep in mind and consider two 

methodological issues. The first issue is the impact of the modifiable areal unit problem 

(MAUP) – a phenomenon which occurs when different scales and different zoning 

methods lead to different statistical results and spatial patterns (Openshaw, 1984). To date 

there is no solution to the MAUP but one can minimize the negative impact of MAUP 

through a careful choice of the areal units and zoning designs. In practice, researchers try 

to select a geographic unit that is as small as possible; however, the selection is often 

dictated by the availability and depth of the birth defects data. The second issue is the 
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small-area problem caused by small observed and expected numbers in areas with small 

‗at-risk‘ population, especially the case for diseases that exhibit low frequency (e.g., birth 

defects). Such crude birth defect rates for areas with small ‗at-risk‘ population produce 

unstable risk estimates. Problems associated with small-area can be addressed through the 

use of sophisticated statistical techniques such as Bayesian hierarchical models, which 

permit to ―borrow strength‖ from neighboring areas and the entire study area to produce 

more stable risk estimates. 

In general, spatial analyses of birth defects at the area level are divided into four 

categories of study. The first category is explanatory spatial data analysis (ESDA); this 

endeavors to explore geo-referenced birth defects data for the detection of patterns, 

isolation of outliers, and cluster identification using graphical plots and figures. For 

example, the GeoDa spatial analysis toolkit (Anselin, 2003) provides a set of tools for 

conducing ESDA, (e.g., linking and brushing techniques), all of which help uncover 

complex relationships between a variable and its covariates. In particular, the multivariate 

nature of birth defects benefits from using ―geographic brushing" techniques for 

exploring the relations between birth defects and potential risk factors (Monmonier, 

1989). In addition, birth defects research can also benefit from the use of innovative 

linked micromap (LM) visualization techniques that portray the information in a joint 

geographical and statistical context (Carr and Pierson, 1996). Extension of the techniques 

towards interactive, web-based mapping is becoming increasingly popular. If 

implemented, a web-based LM application in the context of birth defects surveillance 

would provide a set of interactive tools that could be used to dynamically query and sort 
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the data, and further to compare birth defects rates for different geographic regions, as 

well as to explore birth defects estimates at different spatial resolutions- all in real time. 

An example of such an application is the Web-based Atlas of Cancer Mortality in the US 

(NCI, 2009).  

The second category in studying disease mapping deals with the estimation and 

mapping of birth defects risks across a geographical area. Disease maps provide a visual 

description of the spatial distribution of birth defects, and are valuable for many reasons 

the least of which is hypotheses generation and the allocation of health care resources. 

The standardized morbidity /mortality ratio (SMR) is often used to estimate and map 

disease risk. However, a particular challenge in estimating disease risk using the SMR at 

the small-area level, especially for low frequency birth defects, is that there is a tendency 

for computing unstable risk estimates (Manton et al., 1989; Gelman and Price, 1999). 

Moreover, this method fails to take into account the presence of spatial dependence in 

birth defects risks between adjacent areas. One way of handling this problem is to 

‗borrow strength‘ by incorporating information from neighboring areas via a smoothing 

process as is done using Bayesian disease mapping models. Bayesian disease mapping 

models provide a more robust method of estimation of disease risks that is often more 

interpretable and informative (Lawson et al., 1999; Elliott et al., 2000) compared to SMR 

map. Bayesian models, however, require computer intensive iterative procedures, such as 

Markov Chain Monte Carlo (MCMC) methods for the estimation of model parameters. 

However, the development of the WinBUGS software (Spiegelhalter et al., 2007) has 

facilitated the implementation of MCMC. As a result, Bayesian models are now widely 
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used for the disease mapping of chronic and infectious diseases (Best et al., 2005). 

Drawing on these techniques, Wu et al. (2004) have recently applied hierarchical 

Bayesian models in an investigation of the spatial distribution of neural tube birth defects 

in China.  

The third category lies in ecological regression analyses; these techniques have to 

do with the quantification of any associations that might exist between the spatial 

variations of birth defects and extraneous risk factors (e.g., environmental). These factors 

are measured at an aggregated level. Such analyses provide useful in exploratory 

etiologic research. For example, ecological analysis can generate etiological hypotheses 

that could set a stage for a comprehensive epidemiologic studies using either case-control 

or cohort studies. However, it is important to consider three issues when conducting 

ecological regression analyses. The first is the confounding problem, which is a major 

problem in the interpretation of the results; for example, it is not uncommon for pregnant 

mothers residing in a deprived area to reside close to a hazardous environmental source. 

The second lies in the ecological fallacy; i.e., drawing incorrect individual level 

inferences. Because of such drawbacks, ecological analyses are not appropriate for 

assessing causal relationships. Third is that the lack of spatial independence in ecological 

data, often referred as ―spatial dependence‖. Spatial dependency can occur because of 

Tobler's first law of geography summarized as ―everything is related to everything else, 

but near things are more related than distant things‖ (Tobler, 1970).  From a statistical 

point of view, spatial dependency can lead to the spatial autocorrelation problem in 

statistics, which violates the assumptions of most standard statistical methods such as 
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Poisson and logistic regression. So, failure to account for spatial dependency in any 

ecological analyses can underestimate the standard error and so the significance of any 

risk factors has a propensity to be overestimated. Instead, it is appropriate to use methods 

such as hierarchical Bayesian frameworks that incorporate random spatial effects and 

covariate effects that account for issues that are related to spatial autocorrelation, 

unmeasured or unknown covariates, and measurement error (Richardson, 1992; Clayton 

et al., 1993; Best, 1999).  

The fourth and final category consists of spatial cluster analyses that deal with 

conducting formal hypothesis testing in order to determine whether there is spatial 

clustering of birth defects anywhere in the study area or whether there are local clusters 

with a high proportion of birth defects that is more than expected. Such investigations 

serve two fundamental purposes: (a) to alleviate community concern over adverse health 

outcomes from perceived exposures, and (b) for the purposes of hypotheses generation. 

In general, there are two types of spatial clustering methods: (i) Spatial global clustering 

methods and (ii) local cluster detection methods (Besag and Newell, 1991). The former 

method tests for the presence of spatial clustering in the whole study area but does not 

provide any information as to location. The later identifies a spatial cluster with excess 

disease risk without previous knowledge of either how many or where they are located. 

There are several statistical methods that have been developed for spatial cluster 

analyses; a detailed review is given in Wakefield et al. (2000) and Waller and Gotway 

(2004). Among the most significant methodological developments for spatial clustering 

and cluster analyses at the area level are test for heterogeneity (Potthoff and Whittinghill, 
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1966), Moran‘s I  statistic  (Moran, 1950), Tango‘s excess events test (Tango, 1995), and 

Tango‘s maximized excess events test  (Tango, 2000) all of which are used for testing  

global clustering. Methods for the identification of local clusters are local indicators of 

spatial association (LISA) (Anselin, 1995) and Getis and Ord‘s local Gi(d) statistic (Getis 

and Ord, 1992). These are widely used to identify local clusters by measuring spatial 

autocorrelation and by measuring ―concentration‖ of disease risks between neighboring 

areas respectively.  While the Besag-Newell method (Besag and Newell, 1991) and the 

spatial scan statistics (Kulldorff, 1997) are widely applied in the detection of local 

clusters of disease without any pre-selection bias. Several software packages are available 

for spatial cluster analysis. For example, the opensource  DCluster R package that allows 

testing for both global clustering and local cluster package  (Gómez-Rubio et al., 2004; R 

Development Core Team, 2004) and the opensource SaTScan software that allows 

detecting purely spatial, purely temporal, or space-time clusters (Kulldorff, 2007). There 

are also commercially available software such as ClusterSeer (Jacquez et al., 2002), 

which includes a wide variety of methods for spatial cluster detection and cluster 

analyses.  

OBJECTIVES 

The overall objective of this dissertation was to examine the spatial distribution of 

oral clefts and their spatial linkage with a broad range of demographic, genetic, 

behavioral, social, economic, and environmental risk factors. The specific objectives of 

this dissertation are: 
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1. To explore the geographic patterns of oral clefts rates across states and 

regions in the US. 

2. To determine if the prevalence of oral clefs shows any spatial variability at 

the small area level in the State of Utah.  

3. To identify locations and populations with significantly higher than 

expected oral clefts risk (―local clusters‖) in the State of Utah.  

4. To investigate whether any spatial patterns observed in objectives 2 and 3 

are attributable to spatial differences in demographic, behavioral, 

socioeconomic, or environmental risk factors. 

5. To evaluate the utility of GIS and spatial statistical techniques in spatial 

surveillance of oral clefts. 

6. To furnish reliable risk maps of oral clefts to aid public health officials in 

intervention programs and allocation of health resources. 

RESEARCH HYPOTHESES AND QUESTIONS 

The research focuses primarily on the following two hypotheses. The first is that 

the spatial variation in the prevalence of oral clefts across the State of Utah is 

hypothesized to be non-random, and the second hypothesis is that spatial associations 

exist between oral clefts and area-level behavioral and economic characteristics. 

Specifically, the research aspires to answer the following questions:  
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1. Are there differences in oral clefts rates across states and regions?  How do 

the rates of oral clefts in the State of Utah compare to the rates in the other 

states within the US? 

2. Is there spatial clustering in the prevalence of oral clefts anywhere in the State 

of Utah? 

3. Do significant local clusters (hotspots) of higher than expected oral clefts 

cases exist in the State of Utah and, if so, where are the location of these 

clusters? 

4. What specific area-level characteristics are related to oral clefts outcomes and 

what can this tell us about possible cause of the birth defects? 

The research attempts to address the aforementioned questions by utilizing GIS 

and novel spatial statistical methodologies. Data sources  are the US oral clefts data 

obtained from National Birth Defects Prevention Network (NBDPN, 2005) for the period 

from 1998 to 2002 and Utah oral clefts data obtained from Center for Epidemiologic 

Studies, Utah State University, thorough the collaboration of Utah Birth Defects Network 

(UBDN) for the period from 1995 to 2004. 

DISSERTATION STRUCTURE 

This dissertation is divided into five chapters.  

Chapter 1 this chapter provides an introduction to the research along with 

outlines covering research problems, study objectives, and hypotheses. Also discussed is 

the application of geospatial techniques in birth defects research. 
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Chapter 2 is titled ―Visualization and Interpretation of Birth Defects Data Using 

Linked Micromap Plots.‖ This chapter presents two different templates of LM plots for 

representing spatially indexed oral clefts rates at two geographical resolutions - at the 

state level for the US, and at the county level for the State of Utah. The first LM plot 

displays parallel sequences of micromaps for US states, names of the states, and 

statistical summaries of selected variables. The LM plot describes spatial patterns of oral 

clefts and explores the relationships between two variables (a) the rates of oral clefts and 

the proportion of smoking in pregnant women and, (b) the proportion of American Indian 

and native Alaskan populations. The second LM plot uses confidence interval statistical 

plots to represent the uncertainty associated with rate estimates of oral clefts at the county 

level for the State of Utah.  

Chapter 3 is titled ―Small Area Mapping and Ecological Analyses of Oral Clefts 

for the State of Utah for the Period From 1995 to 2004 Using Hierarchical Bayesian 

Models.‖  Chapter 3 uses hierarchical Bayesian models to explore the spatial variations in 

oral clefts at the small-area level in Utah by generating stable risk estimates. An 

assessment as to any relationships between area-specific risk factors and oral clefts is 

presented and, geographic areas with high-risk of oral clefts are identified. Techniques 

used comprise (i) a non-spatial model that uses only uncorrelated heterogeneity random 

effects, and (ii) a spatial model with both uncorrelated heterogeneity and spatially 

correlated heterogeneity random effects. Models (i) and (ii) were used to generate risk 

estimates of oral clefts and to describe their spatial variations across small-areas. The two 

Bayesian models were further extended to incorporate covariate effects measured at the 
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small-area level for various ecological analyses i.e., oral clefts prevalence associated with 

socioeconomic status (proportion of mothers with no high school diploma) and 

behavioral covariates (proportion of mothers using tobacco, and consuming alcohol 

during pregnancy).  

Chapter 4 is titled ―A Multi-Scalar Approach to Spatial Clustering and Cluster 

Analysis of Oral Clefts in the State of Utah: Clues for Etiology.‖ Chapter 4 undertakes 

analyses to test whether there is disease clustering anywhere in the study area and 

progresses to identify those local clusters with high concentration of oral clefts cases and 

to establish if indeed they are statistically significant. Additionally, this chapter 

investigates whether the maternal characteristics of the cases involved in the detected 

clusters provide some etiological clues as to their existence. The approach taken was an 

integrative one to test for global clustering and in the detection of local clusters. 

Specifically, a heterogeneity test (Potthoff and Whittinghill, 1966), the Moran test 

(Moran, 1950), and  the Tango‘s maximized excess event test (Tango, 2000) were used to 

detect overall global clustering in the Utah dataset. The Besag-Newell method (Besag and 

Newell, 1991) and the spatial scan statistic (Kulldorff, 1997) were used in the detection 

of local clusters (―hotspots‖).  

Chapter 5 wraps up with a discussion on the findings, and provides conclusions 

and recommendations for further research directions.  
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CHAPTER 2 

VISUALIZATION AND INTERPRETATION OF BIRTH DEFECTS DATA 

USING LINKED MICROMAP PLOTS
1
 

ABSTRACT 

 Many states have implemented birth defects surveillance systems to monitor and 

disseminate information regarding birth defects. However, many of these states rely on 

tabular methods to disseminate statistical birth defects summaries. An innovative 

presentation technique for birth defect data that portrays the information in a joint 

geographical and statistical context is the linked micromap (LM) plot. LM plots were 

generated for oral cleft data at two geographical resolutions—USA states and counties of 

Utah. The LM plots also included demographic and behavioral risk data. A LM plot for 

the USA reveals spatial patterns indicating higher oral cleft occurrence in the southwest 

and the midwest and lower occurrence in the east. The LM plot also indicates 

relationships between oral cleft occurrence and maternal smoking rates and the 

proportion of American Indians and Alaskan Natives. In particular, the five states with the 

highest oral cleft occurrence had a higher proportion of American Indians and Alaskan 

Natives. Among the 15 states with the highest oral cleft occurrence, nine had a smoking 

                                                   
 
 
1
 The material for this chapter was previously published as: Gebreab, S. Y., Gillies, R. R., 

Munger, R. G., Symanzik, J. (2008). Visualization and interpretation of birth defects data using 

linked micromap plots. Birth Defects Research Part A Clinical and Molecular Teratology, 82 
(2):110 – 119 
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rate of 16% or higher while among the 15 states with the lowest oral cleft occurrence 

only one state had a smoking rate greater than 16%. The LM plot for the state of Utah 

shows no clear geographic pattern, due perhaps to a relatively small number of cases in a 

limited geographic area. LM plots are effective in representing complex and large volume 

birth defects data. Integration to birth defects surveillance systems will improve both 

presentation and interpretation.  

BACKGROUND 

Birth defects are one of the leading causes of infant mortality and childhood 

morbidity in the US; the statistics for the US hold that birth defects alone account for 

21% of all infant mortality (CDC, 1998). Most of these birth defects result in a range of 

disabilities where the economic cost of medical treatment is substantial: according to 

Waitzman et al. (1994), the estimated lifetime cost of care for the number of US children 

born with the 18 most common birth defects exceeds $8 billion per year. In addition to 

the economic effects, children who are born with such birth defects often experience 

long-lasting psychological and physical burdens. For many years now, there has been a 

continuous and concentrated effort to monitor birth defects through data collection and 

surveillance systems—with the ultimate goal of establishing prevention strategies. As a 

result, many states have developed monitoring systems that collect data on the occurrence 

of birth defects along with other crucial information—the underlying objectives being to 

catalogue and disseminate information regarding the prevalence of birth defects (Sever, 

2004). These data are very important in providing information as to the monitoring of 
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such fundamentals as the occurrences and trends of birth defects. Moreover, historical 

characteristics of the data are particularly useful in public health planning services, 

implementing prevention strategies such as allocating finite resources to the most affected 

areas, and improving health care access to affected children and families. Furthermore, 

these data are essential in a scientific sense as they are often used to generate hypotheses 

that are used to research the risk factors that may be associated with birth defects. 

As a component of public health surveillance, states collect data on 45 major birth 

defects and related information (National Birth Defects Prevention Network [NBDPN], 

2005). In addition, these states and many US public health agencies (e.g., CDC and 

NBDPN) play an important role in making birth defects data accessible to the public 

through differing media. However, they tend to depend on tables to disseminate the birth 

defects in-formation. For example, in its role to inform the public, the NBDPN published 

birth defects data for the period of 1998–2002 (NBDPN, 2005). The published report 

contains a myriad of data that consist of estimates for each birth defect by state, 

race/ethnicity, and, for some birth defects, by age of mother–all of which are in tabular 

form that constitute multiple rows and columns that run through many pages. 

Publishing large statistical datasets in tabular form is an important way of 

managing data but is not particularly informative from an interpretative standpoint. It 

may be difficult and frustrating for a reader to observe trends, relationships, and 

anomalies that may be present in the data. A user is forced to scan through many pages of 

tables, and tries to build a visual picture that permits an integrative understanding of the 

numbers, for example, which state has the maximum number of cases in a particular year. 
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Equally, it can be argued that tabular data are especially useful to researchers who are 

interested in utilizing the raw data to conduct research; however, researchers likewise 

require a conversion of bulk tabular data into a visual framework to help not only in 

understanding the structure of the data, but further to facilitate the analysis of the data. 

Furthermore, there is value in reporting to the public in an informative way while at the 

same time facilitating the presentation of data for policy makers to enable them to make 

informed and timely decisions. These aforementioned circumstances suggest that the 

conversion of tabular data into a visual and ordered context can illustrate patterns and 

relationships and so forth in the data to an observer that would erstwhile be elusive and 

moreover, in the most practical sense, be an efficient vehicle for disseminating 

information to the public and decision makers. 

Visualization techniques offer a set of tools that can be used to simplify large and 

complex datasets into more comprehensible forms. They offer the ability to transform 

large public health datasets such as birth defects data into a more meaningful 

representation of the underlying epidemiological information in a revealing way without 

overwhelming the reader. Using visualization, trends, relationships, and anomalies that 

were not at first obvious in the tables can be revealed quickly. Moreover, visualization 

increases the effectiveness of communicating information to the public and further 

enables users to do a critical evaluation of the data while at the same time likely reducing 

errors in its interpretation but maintaining consistency. 

Over many years, many visualization tools have been developed to convert 

tabular information into visual graphs or plots (e.g., Carr, 1994), but a fairly recent 
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development in the field highlights the use of linked micromap (LM) plots (Carr and 

Pierson, 1996) as a way of displaying geographically indexed data. LM plots use multiple 

small maps (called micromaps) to visualize complex data structures in a geographical 

context. LM plots have already been used in many fields, including environmental 

science (Carr and Pierson, 1996; Carr et al., 1998; Symanzik et al., 1999), ecology (Carr 

et al., 2000a), epidemiology (Carr et al., 2000b; Symanzik et al., 2003), and in the case of 

federal statistical summaries (Hurst et al., 2003). However, LM plots have not been 

specifically applied to birth defects data. The purpose of this article is to highlight and 

examine the use of LM plots in presenting geographically indexed birth defects data. 

Specifically, it will demonstrate the use of LM plots to graphically represent statistical 

summaries and their associated uncertainties for oral cleft occurrences (oral clefts are 

defined as a cleft lip and cleft palate birth defects, where occurrence of oral clefts 

observed is prevalence at birth). This is done at two geographical resolutions: (1) at the 

state level for the US, and (2) at the county level for the state of Utah. Furthermore, LM 

plots are used to graphically relate oral cleft occurrence estimates with associated 

demographics and behavioral data collected at the same geographical resolutions. 

A final important point is that of ensuring confidentiality. All the data used in the 

construction of the LM plots were aggregated values and so an individual‘s information is 

kept strictly confidential. In fact, LM plots are not designed to show specific data at a 

particular location but more to group information into manageable units such as a 

statistical summary that by its very nature removes the individual from the picture. 
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MATERIALS AND METHODS 

Data Sources, Breakdown, and Aggregation 

Birth defects and other variables of interest (including data on demographics and 

behavioral risk factors) were obtained from various sources. National data for oral cleft 

occurrence and livebirths for the period of 1998– 2002 were obtained from the NBDPN 

(2005) as issued in Birth Defects Research (Part A). Thirty-five states participated in 

reporting up to 45 major birth defects and, of these, 31 states contributed oral cleft 

occurrence. The relevant data for oral cleft occurrence were compiled for each state. 

Next, occurrence of oral cleft in each state was computed per 10,000 livebirths (NBDPN, 

2005) for the same period. 

Oral cleft occurrence for the state of Utah was obtained from a case-control study 

of oral cleft occurrence under-taken by the Center for Epidemiologic Studies, Utah State 

University that covered the period of 1995–2004. The cases used in the study were 

originally obtained from the Utah Birth Defect Network, a statewide surveillance pro-

gram that monitors and detects birth defects in Utah. All cases had street address 

information of the mother‘s residence at the time of birth. The street address information 

was transformed (geocoded) to map coordinates and then aggregated to the county level. 

The live births at the county level for the same period (1995–2004) were obtained from 

US census data (http://quickfacts.census. gov/qfd/index.html) after which the oral cleft 

occurrence in each county was computed per 10,000 livebirths for the period of 1995–

2004. 
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Details of the geocoding process are as follows. Case addresses were geocoded 

using the ArcView geocoding utility and Dynamap/2000 (Version 14.3). Street File Net-

work information for the state of Utah was obtained from Geographic Data Technology 

(GDT), Inc. (GDT, 2004). Of the total cases, 96.6% of them were automatically geo-

coded or interactively geocoded with minor editing for spelling, street aliases, and 

acronyms. Certain addresses (0.5%) were unmatched and geocoded manually with the 

assistance of internet mapping services such as Yahoo Maps, MapQuest, and Google 

Maps. A number of the cases (2.7%) did not have a geocodable address but geo-coded 

either to the city or zip code centroid. The geographic centroids were obtained from a 

2004 Municipalities shapefile or a zipcode shapefile available from the Utah Automated 

Geographic Reference Center (AGRC) (Utah AGRC, 2006). The remaining cases (0.2%) 

were excluded from the analysis because no address was resolved or the location resided 

outside the state of Utah. 

Maternal smoking is a well-established risk factor for oral clefting (Khoury et al., 

1989; Little et al., 2004). Therefore, data on the percentage of maternal smoking during 

pregnancy were obtained for the purpose of relating this particular risk factor with the 

oral cleft occurrence; this was done at the state level. The data on the percentage of 

maternal smoking during pregnancy for 2002 were obtained from Mathews and Rivera 

(2004). The data were collected from birth certificates and reported by 49 states 

(including the District of Columbia and New York City) to CDC‘s National Vital 

Statistics System, operated by the National Center for Health Statistics. Of the 31 states 

that reported oral clefts, only California had not collected data on maternal smoking using 
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the same protocol as the rest (data collected as to maternal smoking at time of pregnancy 

was through birth certificates; California was an exception, as it does not conform to the 

standard format used by the other states, hence it was coded as data not available), but 

instead of excluding it from the analysis, it was included as missing data. As to the 

reliability of the maternal smoking data collection, Mathews and Rivera (2004) note: 

Second, prenatal smoking is underreported on birth certificates. Underreporting 

might be related to the wording of the smoking question, the timing of the data collection 

(e.g., during prenatal care versus after the live birth), and the stigma associated with 

smoking during pregnancy, particularly in cases of poor birth outcome. However, despite 

underreporting, the trends and variations in smoking derived from birth certificate data 

have been confirmed with data from other sources (e.g., National Survey of Family 

Growth and Pregnancy Risk Assessment Monitoring System). (p. 913) 

 

In adition, demographic factors, that is, race and ethnicity, are also understood to 

be risk factors in oral cleft occurrence. For example, the risk is particularly high in the 

American Indian and Alaskan Native (AIAN) population (Coddington and Hisnanick, 

1996). Therefore, data on the proportion of AIAN in the population for the year 2000 was 

obtained from the U.S. Census Bureau (2000), accessible at 

http://www.census.gov/prod/2002pubs/ c2kbr01-15.pdf. 

Visualization Technique 

The graphical visualization technique presented in this article is referred to as LM 

plots. LM plots provide an alternate way (compared to traditional choropleth maps—for a 

comparative discussion on the relative merits of choropleth maps (see Symanzik and 

Carr, 2008) of displaying geographically indexed statistical summaries (e.g., oral cleft 

occurrence for each state or counties within a state) in a corresponding spatial context 
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(Carr and Pierson, 1996; Carr et al., 1998). LM plots combine both an exploratory 

analysis capability together with traditional statistical graphics while maintaining the geo-

graphical context. 

Before LM plots are programmed and subsequently displayed (using the statistical 

software package S-plus or on the web), LM plots require a generalized map to work 

from, that is, a smoothed or simplified boundary defining a geographical region. 

However, such boundaries (e.g., state or county) that exist as Geographic Information 

System (GIS) data layers often consist of a large number of vertices that are considerably 

more than that required for micromap depiction on the display. Therefore, it is necessary 

to reduce redundant vertices in a polygon but only to the point of maintaining the 

essential shape and neighborhood relationship of the polygons that comprise the 

micromap. A generalized map for the US is available online at ftp://galaxy.gmu.edu/pub/ 

dcarr/newsletter/micromap/. To produce a generalized map for the state of Utah, a 

boundary shape file was obtained from the (Utah AGRC, 2006). Using ArcGIS, a desk-

top GIS package, the simplified boundaries were generalized. The generalization routine 

applied is based on the Douglas-Peucker line simplification algorithm (Douglas and 

Peucker, 1973). Finally, after generalizing the boundaries, LM plots for the US and the 

state of Utah were created using the S-plus statistical software package. The sample S-

plus code for creating LM plots is also obtainable from Dan Carr‘s ftp site at 

ftp://galaxy.gmu.edu/ pub/dcarr/newsletter/micromap/. 
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 RESULTS  

Template for LM Plots 

A typical template of a LM plot consists of four key features (Carr and Pierson, 

1996). Figure 2-1 shows a hypothetical LM plot. The first feature is three or more 

sequence panels in parallel linked by location. In the hypothetical case, Figure 2-1 shows 

five parallel sequences of panels. The first (leftmost) sequence of panels is the micromap 

panel itself that typically contains small caricatures of map outlines of a region. The 

caricature map maintains the shape and neighborhood relationship while making the 

small subregions more visible. The second (from the left) sequence of panels is the label 

panel that provides the names of the geographical subregions (here, Region 1 through 

Region 10). The third through the fifth (from the left) sequence of panels display the 

statistical summaries. These panels may represent many forms of statistical summaries 

including box-plots, dot-plots (as shown in Fig. 2-1), time series plots, CIs, and so forth. 

Sorting the geographic subregions based on the statistical variable(s) of interest is the 

second feature. Sorting improves perception between consecutive panels from the top to 

the bottom of the display. The third feature is the partitioning of the regions into 

perceptual groups of size five or less to allow the viewer‘s attention to focus on explicit 

areas at a time. The fourth feature is color and location that links corresponding elements 

within the parallel sequence panels, that is, the color red in the top-most panels relates to 

the geographic subregion in the northeast of the map, the subregion name (Region 5), and 

a red dot in each of the three statistical panels. The color red is reused in the next 
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consecutive set of panels for Region 2, but there is no relationship between Region 5 and 

Region 2 as one might at first assume. Simply, there do not exist enough distinguishable 

colors to populate an entire display (with, say, 50 different subregions) such that colors 

have to be reused in different panels. 

In the hypothetical Figure 2-1, the rows are sorted by decreasing values with 

respect to the statistical panel 2. The statistical data displayed in the statistical panels 1 

and 2 show a strong positive association (the correlation r calculated as 0.99), expressed 

in the almost parallel behavior of the dots and lines representing the values for these two 

variables. In contrast, the statistical data in panel 3 and 1 (as well as 3 and 2) show a 

strong negative association (the correlation r calculated as 20.94 for 3 and 1 and as 20.92 

for 3 and 2). This negative association is seen in the movement of the dots and lines in 

opposite directions for these variables. Moreover, the data in panel 3 show an unusual 

outlier, the value for Region 1. It is this outlier that considerably reduces the almost 

perfect negative association otherwise present in this data. Just a simple numerical 

calculation of r might not be able to reveal the influence of a single subregion on the 

overall relationship. 

The map panels of the LM plot in Figure 2-1 exhibit a strong geographic pattern: 

highest occurrences with respect to the statistical panels 1 and 2 can be found in the north 

and in the east; lowest occurrences can be found in the west and in the south. Additional 

features of LM plots exist and are described in more detail in Symanzik and Carr (2008). 
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US Level LM Plots  

Figure 2-2 shows the LM plot for the 31 US states that reported on oral cleft 

occurrence. The figure shows five vertical columns that are linked by geographic 

location. The first column shows the generalized outline of the US wherein are drawn the 

map caricatures for the states. In particular, Alaska and Hawaii are modified in size and 

shifted towards the 48 contiguous states. Otherwise, the island to the east of Virginia 

represents Washington, D.C. that otherwise would not be visible. Note that redundant 

details of a state‘s boundaries are left out; however, the essential fraction that designates 

the boundary shape and neighborhood relationships is preserved (other than Washington, 

D.C.), while at the same time small states such as Rhode Island are magnified such that 

their assigned color is evident on the map. The second column shows the state names 

along with a dot in the linking color. The last three columns illustrate three statistical 

variables. In this particular example, dot-plots represent the three variables oral cleft 

occurrence, maternal smoking rate, and the AIAN proportion in the population. All the 

corresponding micromaps, labels, and statistical panels are linked through the same color 

designation. Note that five distinct colors are used to distinguish the states within a 

particular micromap frame. 

The data in Figure 2-2 are sorted by oral cleft occurrence from largest to smallest. 

The micromaps are further divided into two main blocks with Texas in the middle— 

Texas defines the median occurrence and is plotted (and identified) in black between 

those states that lie above and below this median. The data are further partitioned into six 

micromaps each containing a grouping of five states. Such sorting (here descending) and 
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breaking of a long list of states into smaller groups highlights the data from a discrete 

visual perspective and so draws the viewer‘s attention to a few subregions at a time. 

Further-more, it also provides a viewer with additional visual perspective, that is, by 

sorting and breaking the data apart into, in this case, six micromaps. These LM plots 

provide a viewer with considerably more information than what would otherwise have 

been provided by a series of tables or an overall map representation (e.g., a chrolopleth 

map) alone. Viewers can now easily navigate through the LM plot to a place of interest in 

order to review oral cleft occurrence and related statistics without having to leaf 

backward and forward through a collection of tables or, for that matter, a series of maps. 

Moreover, viewers can compare the oral cleft occurrence of a particular state with a 

benchmark oral cleft occurrence or other states in an easier fashion. For example, it is 

immediately clear from the LM plot that Alaska (ranked 1
st
) exhibits a much higher oral 

cleft occurrence compared to Utah (ranked 2
nd

). The LM plot also reveals states that had 

oral cleft occurrence above, below, or equal to the median and shows states that surpassed 

the national average (which is 17.7 per 10,000 occurrences, i.e., 1.25 on a log10 scale). 

The national average is indicated with a vertical red line. 

Figure 2-2 also provides a viewer with a quick overview of any spatial patterns 

present in oral cleft occurrence. The LM plot is very effective in revealing spatial trends. 

The immediate impression about spatial patterns observed in Figure 2-2 is of a few small 

groups of states that certainly raise questions about oral cleft occurrence similarities. For 

example, there is a noticeable elevation in the west (including Alaska) as compared to an 

observable low occurrence in the east-northeast. 
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However, a glance at the series of micromaps in Figure 2-2 reveals further details 

in spatial patterns. For example, light gray shading is used as a foreground to distinguish 

states above the median occurrence (i.e., in Texas) from those states below the median 

occurrence. The light gray shading draws attention to higher oral cleft occurrence in the 

upper half of the plot and lower oral cleft occurrence in the lower half of the plot. The 

state with the median occurrence (Texas) is shaded in all individual micromaps. The use 

of such shading provides additional spatial detail. As one can see in Figure 2-2, high oral 

cleft occurrence is primarily to be found in the west and the midwest with the exception 

of California, while the east coast states show up as a broad area of lower oral cleft 

occurrence. 

LM plots can also display multiple variables simultaneously and this allows the 

viewer to explore the relationships between these variables. As shown in Figure 2-2, 

viewers can observe the relationship between oral cleft occurrence and maternal 

smoking—as mentioned earlier no data on maternal smoking rates were collated for 

California. The map shows that 9 of the 15 states that are above the median oral cleft 

occurrence have smoking rates above 16% (1.2 on a log10 scale) compared to only 1 of 

the 14 states that are below the median oral cleft occurrence. This difference is 

statistically significant (p=0.0052) as tested through a two-tailed Fisher‘s exact test. This 

is consistent with the smoking-cleft association that is well established and noted 

previously. 

The rightmost statistical panel reveals a positive relationship between oral cleft 

occurrence and the proportion of AIAN in the population. In fact, 7 of the 15 states with 



43 
 

 

4
3

 

above the median oral cleft occurrence have an AIAN population equal to or above 1.3% 

(0.114 on a log10 scale), while none of the 15 states with below the median oral cleft 

occurrence exceeds the same AIAN population level. This difference is also statistically 

significant (p=0.00632, two-tailed Fisher‘s exact test). 

Utah Level Analysis  

Figure 2-3 illustrates a LM plot for oral cleft occurrence by county for the state of 

Utah. The overall design of the LM plot in Figure 3 follows the LM template: it shows 

five sequence columns, the first column being a map demarking the counties of Utah, 

while the second column contains the county name with associated color labels. The next 

three columns show the statistical panels for three variables for each county respectively 

oral cleft occurrence (counts divided by number of live births) for each county. The 

counties are ranked according to the oral cleft occurrence from highest to lowest and are 

partitioned into seven micromaps. The number of counties in Utah is 29 and therefore it 

is not evenly divisible by five. Symanzik and Carr (2009) provide suggestions of how to 

partition subregions into the micromaps when the number of geographic units (in this 

case the counties of Utah) within a LM plot are not evenly divisible by the number of 

geographic units to be displayed in a single micromap. Here, the first three micromaps 

and the last three micro-maps each display four counties while the fourth (middle) 

micromap displays five counties. Note that in this representation of the LM plot the 

median is not explicably drawn but the first three micromaps outline counties above the 

median while the last three micro-maps outline counties below the median. The county 
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with the median occurrence (Garfield) is shaded in all individual micromaps. No 

additional counties are out-lined in the fourth (middle) micromap (other than the five 

counties that constitute this micromap). 

One supplementary statistical representation included in Figure 2-3 is the addition 

of CIs as part of the statistical oral cleft occurrence panel. The CIs indicated by connected 

small dots correspond to the 95% lower and upper confidence limits. The larger colored 

dots refer to, as before, the oral cleft occurrence in each county. The 95% CI was 

calculated for each occurrence using an exact Poisson distribution (Leslie, 1992). A 

viewer can now appreciate the fact that the oral cleft occurrence of each county is not 

quite the ‗‗true‘‘ (actual) oral cleft occurrence and that the CIs describe the uncertainties 

of the occurrence estimates, that is, the true value of the occurrence falls most likely 

somewhere between the limits of the CIs. Moreover, readers can also observe that 

counties where the occurrence is calculated from limited data (i.e., are more uncertain) 

have wider CIs and vice versa. As an example, consider how Daggett County (ranked 1
st
) 

with an oral cleft occurrence of 102.5 per 10,000 (resulting in a value of 2.01 on a log10 

scale) compares to Salt Lake County (ranked 18
th
) that has an oral cleft occurrence of 

12.7 per 10,000 (resulting in a value of 1.1 on a log10 scale). Upon initial examination of 

the occurrence information alone, one might be tempted to infer that Daggett County has 

a higher oral cleft occurrence when compared to Salt Lake County. However, the 

conclusion is somewhat different when one takes the CI information of both counties into 

account: it is evident that Daggett County has a wide 95% CI, compared to Salt Lake 

County, which has a narrow 95% CI. The implication that one should take from the 
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additional information is that the oral cleft occurrence for Daggett County is less reliable, 

while one may consider the occurrence for Salt Lake County to be more 

representative/reliable. This is justified by the data displayed in the counts and live-births 

statistical panels. 

The addition of counts and livebirths into the statistical panels in Figure 2-3 

provides a viewer with a more complete picture of the statistical assessment of oral cleft 

data at the county level. Certainly, viewers can appreciate the importance of these two 

variables by just comparing the oral clefts occurrence and counts in the statistical panels. 

As indicated in Figure 3, counties such as Salt Lake, Utah, Cache, Davis, Weber, and Box 

Elder have sizeable numbers in the counts and livebirths categories (a direct result of 

these counties being more heavily populated). This translates to narrow CIs. In contrast, 

counties such as Daggett, Garfield, Kane, Millard, and Sanpete correspondingly exhibit 

wide CIs—a direct result of a sparser population base. Overall, this demonstrates the 

interdependence of occurrence, counts, and livebirth numbers and implies that both the 

number of counts and livebirths determine the reliability of the oral cleft occurrence. 

DISCUSSION  

This article demonstrates the use of LM plots for the display of geographically 

indexed oral cleft occurrence at two geographical levels—the state and the county level. 

It is important to note that there are inherent limitations in the data used in this article. To 

begin with, all birth defects data (including oral clefts) were collected at the state level as 

compiled by the NBDPN—that is, the NBDPN only maintains the network of state and 
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population-based programs for birth defects. Thus, there may be differences in the 

standards used when gathering birth defects data and level of ascertainments among 

states; this may result in certain extremes of the variability of oral cleft occurrence among 

states that may obscure the true difference of the oral cleft occurrence among states. 

Maternal smoking and AIAN data are also not without limitations as they were only 

available for a single year, that is, 2002 and 2000, respectively, and do not cover the same 

period as the oral cleft data. Despite these limitations, we respect the differences in the 

state and census data and surmise that the limitations in the data are not so extreme that 

they may preclude the visualization and analysis presented here. The data can still 

provide us with important insights as to patterns and relationships in birth defects. 

However, the readers should be alert to these limitations and use caution when they 

interpret the results derived from these data. Hence, our intent is not to draw definitive 

conclusions from the LM plots but rather to show how the visualizations can order the 

data such that an easier interpretation is possible. From experience in the use of 

micromapping, the authors believe that LM plots may well have an important role to play 

in birth defect surveillance because of the many advantages a LM plot offers over tabular 

or other graphical methods of representation and elucidate this further with the following 

statements. 

The first advantage is that LM plots provide an improved way of viewing and 

communicating information about birth defects. By sorting and breaking the datasets into 

a series of micromaps, LM plots simplify the visual appearance by encouraging selective 

focus. Viewers can immediately spot their home state or county for review of the status of 
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birth defects, and in this manner, they can engage in meaningful discussion. Moreover, 

LM plots allow viewers to make rapid and meaningful comparisons between different 

regions. Viewers can compare the rate of a particular state of interest with bench-mark 

values (median or national average) or with other states in a stratified environment. This 

kind of profiling of states or counties (above or below a central tendency) is valuable 

information for planning public health services and their subsequent decision criteria like 

that of resource allocation. 

The second advantage of LM plots is that they present statistical summaries and 

estimates of birth defects in a spatial context. Unlike traditional statistical graphical 

methods, LM plots combine both exploratory analysis and traditional statistical graphics 

while maintaining the spatial context; this is very important in birth defects epidemiology 

because of the intrinsic spatial nature of the events. LM plots are also very effective at 

describing the spatial elements of the oral cleft occurrence, that is, the varied 

geographical distribution of the oral clefts as well as their spatial clustering. LM plots are 

particularly effective in highlighting subregions in a series of micro-maps, and in doing 

so, they reveal detailed spatial pat-terns that otherwise might not have been detected from 

data tables alone. As was illustrated in Figure 2-2, as one moved from the high to median 

oral cleft occurrence and from the median to the low oral cleft occurrence, a spatial 

pattern emerged. High oral cleft occurrence tended to be in the western and midwestern 

states, while the east coast (especially the northeast) revealed a region of low oral cleft 

occurrence. Such insights are as valuable for hypothesis generation as for identifying 

areas of high or low risk. 
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A third advantage of LM plots is associated with the efficacy of the technique of 

micromapping in handling multiple variables. It is well known that causes for birth 

defects are, by nature, multivariate, which advocates the linking of birth defects data with 

potential risk factors in order that one may investigate underlying patterns and 

relationships. LM plots effectively facilitate this by displaying multiple variables 

alongside oneanother. This capability allows readers to quickly view associations 

between variables and further pinpoint any anomalous relationship(s) that may exist 

between variables. Figure 2-2 illustrates this by displaying maternal smoking and AIAN 

alongside the oral cleft occurrence. In particular, the association observed between oral 

cleft occurrence and AIAN was immediately evident for the 15 states in the top three 

micromaps when compared with the remaining states.  

Also shown was the capability of LM plots to display uncertainties of the oral 

cleft occurrence estimates. Reporting uncertainties along with the occurrence are 

particularly helpful to the viewer as this permits an assessment as to the reliability of the 

data. Viewers are able to appreciate that the big dots (Fig. 2-3) are not representative of 

the true value but the fact that CIs indicate that there is a range into which the true 

occurrence falls. The viewer can also note that states or counties with small count values 

and livebirths produce less reliable in-formation on the occurrence as exhibited by wider 

CIs, while states or counties with a large number of counts and livebirths create an 

occurrence that is more reliable and is evidenced by narrower CIs. 

In addition to the earlier description of LM plot templates, an ample set of 

templates are available that offer readers considerable flexibility in visualizing their data 
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via LM plots. For example, the statistical panels of LM plots can take many different 

forms such as box-plots, bar-plots, histograms, or time series plots. These alternate 

statistical plots offer additional avenues for one to query the underlying structure of the 

data and to examine pat-terns and relationships in the data. For example, Carr et al. 

(1998) used LM plots to effectively depict time series data for per capita carbon dioxide 

emissions. One could imagine a similar time series LM plot that would examine the trend 

of NTDs before and after mandatory fortification of cereal grain products with folic acid. 

One can also manipulate the colors by using a different set of colors or hues. 

Furthermore, the beauty of LM plots is that they are not limited to static representations 

of summary statistics; web-based LM plots can provide users with real-time data to 

interactively and dynamically query, sort, and compare different regions over different 

resolutions, for example, at the state or county level. Such web-based LM plots also 

permit dynamic links between databases and automatic updates of data. In this capacity, 

Symanzik et al. (1999) developed web-based interactive LM plots for the US 

Environmental Protection Agency, and in a similar fashion, Wang et al. (2002) developed 

web-based LM plots for the National Cancer Institute, micromap website (National 

Cancer Institute, 2003) accessible at http://statecancerprofiles.cancer.gov/ micromaps/. 

A final interesting aspect of the national cleft data that pertains to the eastern 

states lies in the fact that the oral cleft occurrences in these states all fall below the 

median occurrence. This is notable because the northeastern states are generally high in 

cancer rates (Hao et al., 2006) and many (Zhu et al., 2002; Mili et al., 1993a,b; Windham 
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et al., 1985) have suggested that cancer and birth defects may share common causes 

linked to location—these data, at least for clefts, do not support that notion. 

In conclusion, LM plots provide a constructive geographic representation coupled 

to a statistical visualization tool, which also have an exploratory capability. In the context 

of the integration of LM plots towards the monitoring of birth defects, there is certainly 

provision, if not tremendous advantage, in the utilization of LM plots to augment the 

presentation of birth defect data. Further, the application of LM plots has distinct merit in 

the enhancement of data analysis, the generation of scientific hypotheses, as well as in the 

integration of data of various forms (e.g., census, environment, etc.). These 

aforementioned aspects, when linked together, can facilitate planning of public health 

services towards such aims as targeting limited resources to places with the greatest need. 
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Figure 2-1 Hypothetical LM plot illustrating the main features of such plots: the leftmost 

sequence of map panels, the second (from the left) sequence of label panels, and the third 

through the fifth (from the left) sequence of statistical panels.
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Figure 2-2 LM plot showing oral cleft occurrence by state for the period of 1998–2002. 

Only oral cleft occurrence for 31 out of the 50 US states was available and displayed 

here.  Smoking rates for California were not available. The  red  lines  show  the  national 

average (i.e., mean)  of oral  cleft occurrence (17.7 per 10,000), smoking rate  16%, and  

AIAN  proportion of 1.3%. Note that Texas had the median oral cleft occurrence among 

the 31 states for which data were available.
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Figure 2-3 LM plot of oral clefts occurrence for the State of Utah by county for the period 

of 1995-2004. Only oral clefts occurrence for 24 out of the 29 counties in Utah were 

available.
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CHAPTER 3 

SMALL AREA MAPPING AND ECOLOGICAL ANALYSES OF ORAL CLEFTS 

IN THE STATE OF UTAH USING HIERARCHICAL BAYESIAN MODELS
2
 

ABSTRACT 

The objective of this paper was to assess the spatial variation in oral clefts risk 

and to investigate the associations between oral clefts risk and three area-level covariates 

in the State of Utah using four hierarchical Bayesian models. Oral clefts data aggregated 

at sixty-one Utah small areas for the period from 1995 to 2004 were used. The four fitted  

hierarchical models were: i) a non-spatial model with uncorrelated heterogeneity random 

effects only; ii) a spatial model with both uncorrelated heterogeneity and spatially 

correlated random effects, and iii) a non-spatial regression with covariates  and 

uncorrelated heterogeneity random effects and iv)  a spatial regression model with 

covariates and both uncorrelated heterogeneity and spatially correlated random effects. 

The main findings were that the models produced more smoothed and interpretable maps 

of oral clefts risk compared to the SMR map. However, the models detected little 

evidence of spatial variation in oral clefts risk, with no pronounced evidence of spatial 

clustering. A few areas in Tri-county Local Health District, Provo/Brigham Young 

University, and North Orem areas were highlighted with a tendency of high relative risks 

                                                   

 

 
2
 Part of the material for this chapter was presented at the Urban and Regional Information 

Systems Association‘s (URISA) GIS in Public Health Conference, May 20-23, 2007, New 

Orleans, Louisiana. 
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indicating potential ―local clusters‖ of oral clefts.  The ecological analysis confirmed an 

association between mother using tobacco and the risk for oral clefts as has been reported 

in the literature while the other factors considered, mothers consuming alcohol and 

mothers with no high school diploma were not statistically significant. The smoothed 

maps of oral clefts risk produced here along with the highlighted areas of excess oral 

clefts can assist decision makers in initializing prevention measures and prioritizing 

health resources for these areas.  

INTRODUCTION 

Oral clefts are one of the most common birth defects in the United States (US). 

They are major cause of infant mortality, and lifelong morbidity and mortality (Czeizel 

and Sankaranarayanan, 1984; Christensen et al., 2004). Furthermore, they are associated 

with considerable economic (Waitzman et al., 1994), psychological and social problems 

(Caplan and Weintraub, 1993). Oral clefts also constitute a major public health issue in 

the State of Utah evidenced by the prevalence of oral clefts which lies around 1 in 450 

births as compared to 1 in 750 births nationally (UBDN, 2007). Of significance, however, 

is the fact that this figure is the second highest in the US next to the State of Alaska 

(Gebreab et al., 2008). Yet it is still unclear why Utah exhibits higher oral clefts 

prevalence as compared to other states in the US and for that matter other countries 

around the world.  

While the etiology of oral clefts remains largely unknown, it is hypothesized that 

there exists an interaction between the genetic disposition and environmental triggers 
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likely enhance the risk of having a child with oral clefts (Mossey et al., 2009; Romitti et 

al., 1999; Murray, 2002).  When the etiology is largely unknown or poorly characterized, 

one approach to investigate the role that the environment might play in triggering oral 

clefting is to carry out a geographical or ecological analysis of the birth defect. It is well 

documented the prevalence of oral clefts varies considerably at large scales across the US 

and around the world. These variations have been ascribed to geographic origin 

(Vanderas, 1987), racial and ethnic backgrounds (Croen et al., 1998; Tolarova and 

Cervenka, 1998), socioeconomic (Clark et al., 2003), lifestyle and nutritional status (Bille 

et al., 2007), and through genetic variation (Murray, 2002). However, what is less 

understood is the extent to which these large-scale variations in oral cleft rates reproduce 

at smaller scales. The extent of geographic variation in oral clefts at small area levels has 

not been detailed in published literature. Therefore, we examined the spatial variations in 

oral cleft rates at the so-called small area level in Utah and explored their spatial link with 

risk factors for oral clefts measured at area-level.  Spatial analysis of oral clefts at small-

area level allowed us to investigate the spatial patterns of oral clefts adequately while 

protecting the birth defects records‘ privacy. Furthermore, this approach offered greater 

flexibility to detect localized effects of environmental factors while minimizing 

ecological bias (Elliott et al., 2000).  

In recent years, small-area disease mapping and ecological analyses have gained 

increasing popularity and recognition; this is due in part to enhanced geographic 

information systems (GIS) capabilities, which have fueled the availability of geo-

referenced data, that when coupled together have created a powerful tool and have 
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allowed public health professionals to carry out more high-level disease mapping and 

ecological analyses at the small-area level (Elliott et al., 2000; Walter, 2000). Disease 

maps, in the form of mortality and morbidity atlases, are now routinely produced by 

health agencies and such maps have improved our knowledge concerning the factors that 

result in particular spatial patterns of disease (Waller and Gotway, 2004). Moreover, 

disease maps are increasingly utilized as a basis in the generation of hypotheses in search 

of etiological evidence (e.g. demographic, behavioral factors, socio-economic variables, 

environmental hazards, or genetic disposition) that might act as a precursor for the 

development of an ailment. Furthermore, disease maps are particularly useful in disease 

surveillance where they can be applied to identify high risk areas for the purposes of 

preventive medicine and effective resource allocation (Wakefield et al., 2000).  

The most widespread statistical methods for disease mapping and ecological 

analyses have been based on the standardized mortality/morbidity ratio (SMR) and 

Poisson regression. While effective in many contexts, they are not applicable when 

computed from sparsely populated area as they tend toward unstable risk estimates, 

especially for a disease with low frequency of occurrence (Manton et al., 1989; Gelman 

and Price, 1999). What is more these methods are not appropriate when the data exhibit 

more over-dispersion than assumed by the Poisson model (Breslow, 1984; Elliott et al., 

1995). One source of over-dispersion is when the disease risk is not constant within areas 

or depends on unknown or unmeasured covariates. A more complex source of over-

dispersion is due to the failure to account for the presence of spatial dependence of 

disease risks in nearby areas, such spatial dependence may arise due to one or more 
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spatially distributed covariates that have not been observed and/or measured (Clayton et 

al., 1993).  

To address these problems, researchers advocate the use of Bayesian models, 

which offer a flexible framework for disease mapping and ecological analysis at small 

area level (Besag et al., 1991; Richardson, 1992; MacNab, 2004; Wakefield, 2007).  One 

of the advantages of Bayesian models is that they provide a more stable risk estimates by 

―borrowing strength‖ from neighboring areas or entire geographical areas via the 

inclusion of random effects (MacNab, 2004). What is more, Bayesian models can handle 

over-dispersion through these random effects. In essence, the random effects can be 

thought of as latent variables which capture the effects of unmeasured and /or unobserved 

covariates that are both randomly distributed or spatially structured covariates 

(Richardson, 1992; Best, 1999; Clayton et al., 1993). In addition, Bayesian models offer a 

richer set of inferential outcomes while, at the same time, accounting for the uncertainty 

in the parameter of interest, including local estimates of oral cleft rates, and associated 

probabilistic summaries(e.g., probability of exceedance threshold and credible intervals)  

to quantify uncertainty.  

The use of Bayesian models for disease mapping was first introduced by Clayton 

and Kaldor (1987), and was further developed into a fully Bayesian settings by Besag et 

al. (1991). However, full Bayesian inference of parameters is computationally intractable 

and requires computer intensive simulations, such as Markov Chain Monte Carlo 

(MCMC) methods. Fortunately, these issues have been addressed by the development of 

a statistical software package WinBUGS (Spiegelhalter et al., 2003), which facilitated the 



62 
 

 

6
2

 

implementations of MCMC simulations, such as Gibbs sampler (Gilks et al., 1996).  As 

the result, full Bayesian models are increasingly being used for disease mapping and 

ecological analyses of chronic and infectious diseases (Best et al., 2005).  Examples of 

recent applications of Bayesian modeling include, investigation of the spatial distribution 

of prostate cancer incidence in UK (Jarup et al., 2002), malaria in South Africa 

(Kleinschmidt et al., 2002), and neural tube birth defects in China (Wu et al., 2004). 

In this study, we used hierarchical Bayesian models to conduct spatial and 

ecological analysis of oral clefts in the State of Utah at the small-area level for the period 

from 1995 to 2004. The objectives of this paper were threefold (i) to examine the spatial 

variation in oral cleft risks by generating statistically stable risk estimates (ii) to assess 

the associations between oral cleft risks and potential risk factors measured at area-level, 

and  (iii) to accurately identify geographic areas with significantly elevated oral cleft 

risks. The specifics will follow but the aim is to first fit two types of Bayesian models to 

estimate the relative risks. They are the non-spatial model with single uncorrelated 

heterogeneity random effects, and the spatial model that partitions the random effects into 

uncorrelated heterogeneity and spatially correlated random effects, thus adjusting for the 

presence of spatial autocorrelation in the oral clefts data. The next step involves 

extending the two Bayesian models to incorporate covariates effects measured at area-

level for ecological analyses, identified later as non-spatial regression and spatial 

regression models. The covariates included in the regression models are (a) the 

proportion of mothers using tobacco during pregnancy, (b) the proportion of mothers 

consuming alcohol during pregnancy and, (c) the proportion of mothers with no high 
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school diploma. The choice of covariates is based on documented major risk factors for 

oral clefts (Lieff et al., 1999; Munger et al., 1996; Krapels et al., 2004; Mossey et al., 

2009). 

 The paper is organized in the following way. The next section (section 2) 

describes the data and data sources. Following, the statistical notations and maximum 

likelihood method are introduced in section 3. Section 4 provides a brief overview of the 

hierarchical Bayesian models, including the non-spatial, spatial and regression models. 

Here further discussion is provided on hyperprior specification, model implementation, 

convergence and selection. Section 5 presents the results of the analyses and is followed 

by some discussion in section 6. Section 7 consists of some conclusions and, given the 

analyses reflections and perspectives for future works.  

MATERIALS AND METHODS 

Data and Data Sources 

 

The oral clefts data used in this study was provided through a case-control study 

set up to investigate Utah child and family health carried out by the Center for 

Epidemiologic studies at Utah State University. Data were originally obtained from Utah 

Birth Defects Network (UBDN), a statewide surveillance program that monitors and 

detects birth defects in Utah.  The UBDN began monitoring efforts in 1994 by collecting 

data on neural tube defects. In 1995 monitoring efforts were extended to include oral 

clefts. Four years later in 1999, monitoring all major birth defects was undertaken 

(UBDN, 2007).  For the purposes of this study, the data covers the period from1995 to 
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2004; over this period a total of 894 oral clefts cases and 458,593 live births were utilized 

yielding a crude rate of oral clefts of 19.5 per 10,000.  

All individual cases had street address or zip code information on the mother‘s 

residence at the time of birth. A first step involved geocoding street addresses into a map 

coordinate system. In order to protect confidentiality, the data were then aggregated to 

―small geographic areas‖ (referred hereafter as the small areas) for subsequent analyses. 

Utah is divided into 61 small areas (Figure 3-1) for the purposes of public health 

assessment (Haggard et al., 1998). As the number of oral clefts per year aggregated at the 

small area level was quite low, mapping and ecological analyses were carried out using 

the aggregated number of oral cleft cases over the ten-year period, i.e., 1995 to 2004. The 

numbers of oral cleft cases within any small area ranged from 4 to 36 and the live births 

ranged from 2,998 to 18,177. Data on the live births (the population at risk) for each of 

the 61 small areas for the study period were obtained from the Utah Department of 

Health (UDOH, 2007).  

For the purpose of the ecological analyses, as mentioned in the introduction, three 

covariates were considered: (a) the proportion of mothers using tobacco during 

pregnancy, (b) the proportion of mothers consuming alcohol during pregnancy and, (c) 

the proportion of mothers with no high school diploma. Here, maternal education is 

considered as an indication for socioeconomic status. The data for these covariates were 

obtained from UDOH (2007) for the study period from 1995 to 2004. These were 

publicly available at the UDOH web site (http://ibis.health.utah.gov/).  

http://ibis.health.utah.gov/
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Maximum Likelihood Method 

 

The study area for the state of Utah is divided into i=1, . . . , 61 disjoint small 

areas. We denote iy to be the observed count of oral clefts cases within each area i and 

iN the number of live births within each area i. Given that we are dealing with small 

areas and a relatively rare-disease, the observed count of oral clefts cases in each area 

was assumed to follow an independent Poisson distribution with mean iiE  :   

)(~ iii EPoissony 
         (1) 

where iE is the expected count of oral clefts cases in each area i. Typically, the 

expected count of cases is standardized for the age of the mother and race of the infant; 

this is especially so for oral clefts data. However, these data were not available; hence, it 

was not possible to standardize for such confounding variables. Therefore, iE was 

calculated as   iii NyE /
 .  

i  is the area-specific relative risk, the parameter of interest. First, we estimated 

i  using the maximum likelihood method, which is commonly referred as SMR. The 

SMR was computed as: 

i

i
i E

y
SMR ̂

         (2) 

And the standard error of SMR was defined accordingly as 
ii Ey . The SMR is 

the most common measure for disease mapping. However, as described in the 

introduction, the SMR is not always an appropriate measure for disease mapping because 
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it provides a less reliable risk estimate, especially for rare disease or sparsely populated 

areas.  In addition, this approach does not take into account the presence of spatial 

autocorrelation of disease risks in nearby areas. Such correlation may be due to spatially 

correlated covariates which are not included in the model. To circumvent these problems, 

we employed hierarchical Bayesian models that permit ―borrowing strength‖ from data 

across areas to achieve stable risk estimates (Besag et al., 2005).   

 Hierarchical Bayesian models 

 

Within the Hierarchical Bayesian framework, our parameter of interest (e.g., the 

relative risks) within each small area was treated as random and assumed to have 

underlying probability distributions called prior distributions. The prior distributions were 

parameterized by hyperparameters and were, in turn, defined by hyperprior distributions 

leading to a hierarchical model structure. Using Bayes‘s theorem, these prior distributions 

and the likelihood of the data were combined to obtain posterior distribution of the 

relative risks. 

In the ensuing analyses, four types of Bayesian hierarchical models of increasing 

complexity that took into account for uncorrelated heterogeneity, spatial correlated 

random effects, and covariate effects were fitted. The first model (Model 1) was non-

spatial model incorporated only uncorrelated heterogeneity random effects while the 

second spatial model (Model 2) incorporated both spatially correlated and uncorrelated 

heterogeneity random effects. Models 1 & 2 were further broadened to include covariate 
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effects and were referred as non-spatial regression model (Model 3) and spatial 

regression model (Model 4).  Here, we briefly outlined the models.  

Model 1:  Non-spatial model  

The first fit was the non-spatial model (also called exchangeable model) and 

included only uncorrelated heterogeneity random effects in the model. These random 

effects was used to account for extra-Poisson variation in the oral clefts data due to 

important unobserved risk factors that do not have systematic spatial patterns and shrinks 

the relative risks to a global smoothing, and is written as  

ii v  )log(
        (3)

 where   is the intercept or the overall mean relative risk in the study area and iv  

represents area-specific uncorrelated heterogeneity random effects and assumed to have 

an independent Gaussian distribution of zero mean and precision hyperparameter 2

v  as 

shown below.  

),0(~ 2

vi Nv 
 

Model 2: Spatial model (Conditional Autoregressive Model - CAR model) 

The second fit was the spatial model based on the assumption that oral clefts risk 

in nearby areas are likely to be similar to each other (i.e., the presence of spatial 

autocorrelations in the oral cleft data) in part because they reflect the underlying spatially 

varying risk factors. Therefore, Model 2 was augmented with spatially correlated random 
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effects ( iu ) that accounted for the spatial clustering of oral clefts risk between 

neighboring areas. The formulation of the model is specified as 

iii uv   )log(
        (4)  

where iu represents area-specific spatially correlated random effects and follow an 

intrinsic Conditional autoregressive (CAR) model (Besag et al., 1991).  
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The parameter 
ijw  is weight matrix defining the relationship between areas i and 

its neighbor j.  Here, the definition adopted was ijw  =1 if areas i and j were adjacent (i.e., 

share a common border) and ijw  = 0 if not. The hyperparmeter 2

u
 
represents the 

precision that controls the amount of variability in iu  and is conditional on the 

neighborhood structure defined by the weights ijw .  

Model 2 is more often referred to as a convolution model (Mollie, 1996) or BYM 

model after Besag, York and Mollie (1991) and is essentially the sum of two independent 

iv and iu  random effects. This model allows us to determine the extent and the amount of 

spatial clustering in the oral clefts data, and the relative importance of spatially correlated 

random effects compared to uncorrelated heterogeneity random effects.   In the case of iu , 

the proportion of total variation due to spatial clustering was computed from the posterior 

distribution of    following (Best et al., 1999; Eberly and Carlin, 2000) as shown below. 
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Where )(vsd  and )(usd  are the empirical marginal standard deviations of iv  and 

iu respectively. The parameter   ranges between 0 and 1. If the estimate of    is close to 

1 then the total variation is dominated by the spatial clustering while a value close to zero 

indicates that the spatial clustering is negligible.  

 Ecological analyses  

In addition to modeling the relative risks of oral clefts in Utah, also investigated 

was the association between oral cleft risks and the following three area-level covariates 

(a) the proportion of mothers using tobacco during pregnancy, (b) the proportion of 

mothers consuming alcohol during pregnancy and, (c) the proportion of mothers with no 

high school diploma. The prevalence maps for the covariates are given in Figures 3-2, 3-

3, and 3-4, respectively for (a) - (c). The covariates effects were modeled in the presence 

of uncorrelated heterogeneity and/or spatially correlated random effects and were added 

linearly into model 1 and model 2 as prior distributions. Consequently, the regression 

models take the form:   

i

p

j

jji vx



1

)log(          (5) 

ii

p

j

jji uvx  
1

)log(          (6) 

In equations 5 and 6, jx was the value of the j
th
 area-level covariate and j  was 

the corresponding regression coefficient for the j
th
 area-level covariate. Therefore, 
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equations 5 and 6 respectively comprise models 3 (non-spatial regression model) and 4 

(spatial regression model). 

Hyperprior specification  

In order to perform full hierarchical Bayesian analysis, hyperprior distributions 

were assigned for the hyperparameters , , 2

v and 2

u . Since we had no prior 

knowledge, we assumed independent and vague hyperpriors for all these 

hyperparameters.  Bernardinelli et al. (1995) contains more detailed information on issues 

related to the selection and interpretation of the various priors. For  and  , we assigned 

uniform prior distributions as representative of vague beliefs. Although these are 

improper priors, it has been shown that these assumptions do not lead to an improper 

posterior distribution (Mollie, 1996). For precision hyperparameters of 2

v  and 2

u , we 

assigned non-informative Gamma (0.001, 0.001) hyperprior distributions. The non-

informative hyperprior specifications for the precision hyperparameters allow the 

likelihood data to dominate the prior information; hence, it will have minimum effect on 

the inference of relative risks and regression coefficients.  

Model implementation and convergence 

The aforementioned four models were fitted to the oral clefts data using 

WinBUGS version 1.4 (Spiegelhalter et al., 2003). All models were simulated with two 

independent chains starting with dispersed initial values.  Convergence of the four 

models were monitored by visual inspection of (a) trace plots (in this cases, a sample 
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should resemble a random scatter about a stable mean value), (b) autocorrelation graphs 

(here, a high autocorrelation graph, near to one, indicates slow mixing), and (c) Gelman-

Rubin (GR) convergence statistics which is based on upon the ratio of between and 

within chain variance (this ratio should converge to 1.0 Best et al., 1999).   

The four models described above had different "burn-in" iterations, with the 

slower convergence for the regression models. Convergence was detected at 40,000 

iterations for the non-spatial and spatial models and at 60,000 for the regression models.  

Depending on the complexity of the models, the first 40,000 - 60,000 iterations were 

discarded as ―burn-in‖ and each model was run for a further 20,000 iterations, giving 

40,000 (2 chains x 20,000) samples with acceptable Monte Carlo (MC) errors of <5% of 

the sample posterior standard deviation. These pooled samples were, then, used to obtain 

the posterior means and credible intervals of the parameter interests of relative risks, 

regression coefficients, heterogeneity and, spatial autocorrelation, spatial fraction and 

probability of exceedance.  

Model Comparison 

The deviance information criterion (DIC) proposed by (Spiegelhalter et al., 2002) 

was used to compare the performance of the four models. The DIC is similar to the 

Akaike Information Criterion (AIC) (Akaike, 1973) that combines model fit and 

complexity. The DIC is calculated by adding the effective number of parameters 

(complexity) to the posterior mean deviance (goodness-fit) of a model. The effective 

number of parameters is estimated by the difference between the posterior mean of the 
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deviance and the deviance at the posterior estimates of the parameters of interest (see 

Appendix B for detailed information on DIC).  

The ‗best fit‘ model is the one with the smallest DIC value.  Differences in DIC of 

around three or more are considered ‗significant‘ while differences of 10 or more provide 

evidence of substantial difference in a model fit (Kelsall and Wakefield, 1999). The DIC 

value for each model was computed at the same time as the MCMC simulation using 

WinBUGS.  

RESULTS 

Figure 3-5 displays observed SMR oral clefts in the State of Utah from 1995 to 

2004. The SMR map showed modest variability in SMR, with very few areas exhibiting 

extreme SMR values. The SMR values ranged from 0.43 to 1.83, with a mean value of 

0.31.  The map also revealed areas with high anomalies of oral clefts risk (shaded as dark 

grey); these were located in areas of Tri-County Local Health District (LHD) (53), Box 

Elder County (2), East Orem (46), and Wasatch County (52). However, the last three 

small areas might be outliers due to random variability. On the whole, though, the SMR 

map showed no evidence of an apparent spatial pattern. 

Figures 3-6 to 3-9 show maps of the Bayesian estimates of relative risks (RR) 

derived from the non-spatial, spatial models, non-spatial regression, and spatial 

regression models, i.e., models 1 to 4, respectively. The Bayesian based estimates of RR 

were considerably smoothed, and had a narrower set of ranges in comparison to SMR 

values (Figure 3-5).  This is clearly illustrated by the plot in Figure 3-10 where it has 
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shown that the Bayesian estimates of RR for models 1 to 4 shrunk substantially towards 

one. For example, the non-spatial RR ranged from 0.90 to 1.12, while the spatial RR 

ranged from 0.88 to 1.13. The effect of smoothing was particularly obvious for sparsely 

populated areas, for example, the non-spatial model (model 1) substantially smoothed the 

SMR values for the Box Elder County (2) from 1.60 to 1.06 and for the East Orem (46) 

from 1.72 to 1.08. On the other hand, the SMR values for areas that had large populations 

were preserved.  

Overall, the four models produced broadly similar patterns in oral clefts risk.  In 

fact, a comparison of the DIC values (see Table 3-1) among the models showed that there 

were almost no discrepancies among the models, i.e., the DIC values were essentially 

similar.  Therefore, it is apparent that the addition of the spatially random effects and / or 

covariates to the models did not improve the reduced non-spatial model; indicating lack 

of presence of any ―significant‖ spatial clustering in the oral clefts data.  

Table 3-2 reports the variance of the uncorrelated heterogeneity ))(( vsd and the 

spatially correlated ))(( usd random effects along with the spatial fraction )( for the four 

models. As shown in Table 3-2, the variance of )(vsd using non-spatial model was 0.094 

(95% CI: 0.026, 0.199). This corresponds to 1.37-fold variation (95% CI: 1.09-fold to 

1.70-fold variation) in risk of oral clefts between highest and lowest 5% of areas, 

indicating modest heterogeneity in the risk for oral clefts across 90% of the small areas in 

the State of Utah. The inclusion of the spatially correlated random effects in Model 2 

decreased the variance of the uncorrelated heterogeneity random effects to 0.085 (95% 

CI: 0.024, 0.189). Furthermore, the inclusion of the covariates to models 3 and 4 further 
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reduced the variance of the uncorrelated heterogeneity random effects to 0.089 (95% CI: 

0.024, 0.196) and 0.080 (95% CI: 0.023, 0.181) respectively. The small change in the 

variance of the uncorrelated heterogeneity random effects with the inclusion of the 

covariates suggests that there is little evidence in the data to determine conclusively the 

effects of these covariates on the spatial variation of oral clefts. The proportion of total 

variation captured by the spatially correlated random effects,  was around 42% (95% 

CI: 11% to 79%), indicating the uncorrelated heterogeneity random effects dominates 

over the spatially correlated random effects. In other words, there is little evidence of 

spatial clustering in the oral clefts data.   

The parameter estimates for the associations between oral clefts and three area-

level covariates are reported in Table 3-3 and the corresponding maps are shown in 

Figures 3-8 & 3-9.  Note that the coefficient estimates ( 31 ) were virtually similar under 

both models 3 and 4. For this discussion, we use the estimates from the non-spatial 

regression model and the corresponding map is shown in Figure 3-8.  From model 3, 

there was marginally significant association between oral clefts risk and mothers using 

tobacco, showing a relative risk of 1.025 and 95% CI of (1.000, 1.051).  The association 

between the oral clefts risk and mothers consuming alcohol was found to be statistically 

not significant, indicated by a relative risk of 0.958 and 95% CI of (0.874, 1.044). 

Similarly, the association between oral clefts risk and mothers with no high school 

diploma was found to be statistically non significant, shown by a relative risk of 0.995 

and, with 95% CI of (0.984 to 1.005). 
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The maps of high risk areas using model 1 and model 3 are presented in Figures 

3-11 & 3-12 respectively. In addition, Table 3-4 shows the exceedance probability for 

selected areas for the non-spatial model. To identify areas with high risk of oral clefts, the 

posterior probability of the RR was computed in each area that exceeded a threshold of 

one, i.e., Pr (RR > 1.00). The high risk map using  model 1 (Figure 3-11) identified three 

areas Tri-County local health district (LHD) (53), Provo/Brigham Young University 

(BYU) (44), and North Orem (47) as having at least 75% probability of excess relative 

risk greater than one, but none of them were statistically significant different from one. 

The high risk map after adjusting for the covariates using model 3 (Figure 3-12) shows  

that the probability for area Tri-County LHD dropped from 80% to 73%, suggesting the 

high risk of oral clefts in this area could be due to high proportion of mothers using 

tobacco (see Figure 3-2). On the other hand, the exceedance probability for the other two 

areas 44 and 47 was unchanged, an indication that there are no clear reasons why these 

areas should show a tendency of excess risk. Although none of these areas are statistically 

significant high risk areas, they should be closely monitored for potential risk factors. 

DISCUSSION 

Four Bayesian models of increasing complexity were applied to investigate and 

understand the risk of oral clefting in Utah, the use of which was to generate and map 

accurate risk maps, to identify possible clusters of oral clefts and further to assess the 

relationships between oral clefts and covariates measured at the small area level. The 

results shown here illustrate there is potential benefit in using hierarchical Bayesian 
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models to obtain viable assessments of  underlying risk in oral clefts, if simply by 

overcoming some of the problems associated with the conventional SMR method. Of 

note was the fact that the SMR method had a tendency to misinterpret the true underlying 

patterns of oral clefts in Utah. In essence unreliable high risk areas were mistakenly 

defined as ―true‖ high risk due to a small population size by the SMR method while the 

converse was true where genuinely high risk areas masked by the random noises were not 

identified.   

Using Bayesian models, however, it was possible to achieve robust estimates of 

relative risks by ―borrowing strength‖ from the neighboring areas or entire areas.  It is 

quite clear from the comparison of the SMR map versus the Bayesian smoothed maps 

(Figures 3-6 to 3-9) that the Bayesian models produced more homogenous and 

interpretable maps by eliminating the random variation. Furthermore, the Bayesian 

models reduced the chance of obtaining ―false‖ clusters while providing a much clearer 

picture of the ―true‖ high risk areas. However, a limitation of the  Bayesian models were 

excessive shrinkage of the estimates, which may mask the detection of areas with low to 

moderate excess risk of oral clefts (Richardson et al., 2004; Bergamaschi et al., 2006; 

Goovaerts and Gebreab, 2008). 

Findings revealed modest evidence of heterogeneity in oral clefts risk across the 

small areas of the State of Utah, with no pronounced evidence of spatial clustering. This 

suggests that the occurrence of oral clefts is mainly driven by risk factors that are 

randomly distributed across the State.  However, the study identified three areas (Figure 

3-11 & 3-12) with a tendency of oral cleft cases  as shown by their probability values 
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being exceeding one (Table 3-4); these areas were Tri-County LHD (53), Provo/BYU 

(44) and North Orem (47). Although none of these areas was statistically significant, they 

cannot be regarded as that of random noise and should be closely monitored for potential 

risk factors (the one of tobacco use is suggested) using epidemiological studies.  

The Bayesian framework also enabled the exploration of any associations 

between oral clefts risks and area-level risk factors. Our study found a positive but 

marginally significant association between the mothers using tobacco and the risk for oral 

clefts. This result is in concurrence with previous reports that mother‘s tobacco use is an 

important risk factor for cleft lip and/or cleft palate (Khoury et al., 1987; Lieff et al., 

1999; Chung et al., 2000).  Other studies (e.g., Munger et al., 1996; Lorente et al., 2000) 

have noted that mother‘s alcohol consumption during pregnancy is also a risk factor for 

oral clefts. However, in our study the association between oral clefts risk and mother 

consuming alcohol was not statistically significant; this inconsistency can be attributed to 

the use of ecological data, i.e., through aggregation of data direct relationships between 

oral clefts risk and the mother‘s alcohol consumption may simply be obscured. 

Further investigation the association between oral clefts and mothers with no high 

school diploma was found to be statistically non-significant; this is in contrast to the 

positive and significant association found in a case-control study conducted using the 

data from Utah child and family study (Moss, 2006). The lack of association with the 

mothers education could be due again to the fact that this study is based on aggregated 

data and not at individual level, which can mask the true association that is occurring at 

the individual level. Another possible reason may be a mother‘s education by itself might 
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not be a sufficient indicator, but simply a complex variable that is a combination of other 

variables such as maternal racial/ethnicity or mother‘s habits (i.e., tobacco use, alcohol 

consumption, drug abuse, intake of multivitamin supplements during pregnancy, etc.). 

However, regardless of its direct association with oral clefts, it is important that a 

mother‘s education is considered as a surrogate for socioeconomic status or as a proxy for 

covariates that are unmeasured or difficult to measure. For example, women with lower 

education are more likely to smoke likely to take folic acid during pregnancy (Clark et 

al., 2003; Krapels et al., 2004), which several studies have shown multivitamin and folic 

acid supplementation reduce the risk for oral clefting (van Rooji et al., 2004, Wilcox et 

al., 2007).  

There are a number of limitations that could have affected our results. A major 

limitation of was that we could not adjust for age and race, because these data were 

available. The results potentially could be affected by the difference in race and age 

between areas; for example, the excess oral clefts cases in the Tri-County area might be 

due to high number of the American Indian population in that area. The converse might 

also be true that important spatial patterns or areas of excess oral clefts cases have not 

been accounted for. However, it is surmised that adjustment for age and race would have 

had a negligible effect on the results because most of the cases and live births are 

Caucasian followed closely by Hispanic, and they have virtually the same rates (UBDN, 

2007).   

Another concern about the data used in this study is that there a number of 

unaccounted oral clefts cases that have not been included.  For example, the oral clefts 
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rate as reported by the UBDN is 22.2 per 10,000 for the period from 1995 to 2003 

compared to this study‘s rate of 19.5 per 10,000 for the period from 1995 to 2004. 

Although the difference between these two rates is small and the percentage of missing 

cases very low; there might exist a small bias which might have slightly affected our 

results. However, as long as they are distributed randomly, any bias should be negligible.  

The results here are based on so-called ecological analysis that assesses the 

association between aggregated covariates and the risk for oral clefts. The inference 

based on these analyses cannot be directly transferred to the individual level, because of 

the ecological bias known as ecological fallacy. Nevertheless, ecological analysis such as 

is presented here can be useful for generating testable hypotheses using epidemiological 

studies such as case-control or cohort studies (Best, 1999). Furthermore, they are 

particularly useful because the data are freely available and the fact that cost and 

confidentiality reasons can limit the amount of research conducted at the individual level 

and likely means that such analyses, such as was conducted here, will likely continue to 

provide either etiological clues or monitoring guidance in any spatially distributed 

disease or ailment.  

SUMMARY AND CONCLUSIONS 

Demonstrated here was the benefit of hierarchical Bayesian models through the 

development and provision of reliable maps of oral clefts risk maps at small area level.  

The overall analysis revealed modest spatial variations in oral clefts risk but no 

pronounced spatial pattern; this implies that the occurrence of oral clefts in the State of 
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Utah appears to be not driven by spatially distributed risk factors. The study also 

identified areas of potential ―hotspots‖ for oral clefting, particularly Tri-county LHD, 

North Orem, and Provo/BYU, which warrant further investigation. The ecological 

analysis did however confirm an association between mothers using tobacco and the risk 

for oral clefts as has been reported in the literature in the subject area. The other factors 

considered, a mothers consuming alcohol and mothers with no high school diploma were 

not statistically significant in this specific study. 

While our study is based on ecological analysis, studies such as this are useful in 

exploratory etiologic research. The results from this study are potentially valuable to 

epidemiologists and public health authorities in Utah towards developing preventive and 

control measures that can be applied to reduce the burden of oral clefts in the State. The 

smoothed maps of oral clefts risk produced here along with the highlighted areas of 

excess oral clefts can be useful in further investigating etiological factors, initializing 

prevention measures and prioritizing health resources for affected areas. For instance, a 

risk factor like mother‘s tobacco use can be prevented through smoking cession 

intervention programs. On a more esoteric front, such studies also prove to be valuable in 

generating hypotheses and oftentimes set the stage for more comprehensive 

epidemiological studies using either cohort or case-control studies.  

However, there are several issues that could lead to improvements of this 

ecological study. For example, future work should account for known potential 

confounding factors, and would certainly expand the models to account for measurement 

errors (Best, 1999; Bernardinelli et al., 2000). In the future, the Bayesian models should 
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extend to include temporal or seasonal variations in oral clefts. Furthermore, an 

opportunity exists in a future to explore other choices of neighborhood weight matrix that 

reflect better the irregular size and shape of the small-areas of the study area, such as the 

State of Utah (Goovaerts and Gebreab, 2008). Certainly the techniques applied here 

should be extended in a categorization of oral clefts that reflects cleft lip with or without 

cleft palate (CL/P) or cleft palate only (CP) separately, as they appear to have discrete 

etiologies (Harville et al., 2005), this  may shed light on whether they have similar spatial 

patterns and if they share common risk factors.  Finally, it should be noted that our 

ecological study of oral clefts is only preliminary. For refined understanding of the 

etiology and development of intervention for oral clefts, more investigation of the case-

control data collected by Utah child and family study will be required. 

REFERENCES 

Akaike H, 1973. Information theory and an extension of the maximum likelihood 

principle. In, Petrov B, Caáki F (eds). 2nd International Symposium on 

Information Theory. Akademiai Kiado, Budapest, Hungary.  

Bernardinelli L, Clayton D, Montomoli C, 1995. Bayesian estimates of disease maps, 

How important are priors? Stat Med 14, 2411-2431. 

Bernardinelli L, Pascutto C, Montomoli C, Gilks W, 2000. Investigating the genetic 

association between diabetes and malaria, an application of Bayesian ecological 

regression models with errors in covariates. In: Elliott P, Wakefield JC, Best NG, 



82 
 

 

8
2

 

Briggs DJ (eds). Spatial epidemiology: methods and applications. Oxford 

University Press, Oxford, UK, 286–301. 

Bergamaschi R, Montomoli C, Candeloro E, Monti M, Cioccale R, Bernardinelli L, 

Fratino P, Cosi V, 2006. Bayesian mapping of multiple sclerosis prevalence in the 

province of Pavia, northern Italy. J Neurol Sci 244, 127-131. 

Besag J, York JC, Mollié A, 1991. Bayesian image restoration, with two applications in 

spatial statistics (with discussion). Ann Inst Stat Math 43, 1–59. 

Best NG, Arnold RA, Thomas A, Waller LA, Conlon EM, 1999. Bayesian models for 

spatially correlated disease and exposure data (with discussion). In: Bernardo JM, 

Berger JO, Dawid AP, Smith AFM (eds). Bayesian Statistics 6, Oxford University, 

Press, Oxford, UK, 131-156. 

Best NG, 1999. Bayesian ecological modelling. In: Lawson A, Biggeri A, Böhning D, 

Lesaffre E, Viel JF, Bertollini R (eds). Disease Mapping and Risk Assessment for 

Public Health. John Wiley and Sons, Chichester, UK, 193–201. 

Best NG, Richardson S, Thomson A, 2005. A comparison of Bayesian spatial models for 

disease mapping. Stat Methods Med Res 14, 35–59. 

Bille C, Olsen J, Knudsen VK, Olsen SF, Rasmussen K, Murray JC, Andersen MA, 

Christensen K, 2007. Oral clefts and life style factors – A case–cohort study based 

on prospective Danish data. Eur J Epidemiol 22, 173-181. 

Breslow NE, 1984. Extra-Poisson variation in log-linear models. Applied Statistics 33, 

38-44. 



83 
 

 

8
3

 

Caplan DJ, Weintraub JA, 1993. The oral health burden in the United States, a summary 

of recent epidemiologic studies. J Dent Edu 57, 853-62. 

Christensen K, Juel K, Herskind AM, Murray JC, 2004. Long term follow up study of 

survival associated with cleft lip and palate at birth. BMJ 328, 1405  

Chung KC, Kowalski CP, Kim HM, Buchman SR, 2000. Maternal cigarette smoking 

during pregnancy and the risk of having a child with cleft lip/palate. Plast and 

Reconstr Surg 105, 485-491. 

Clark JD, Orth D, Mossey PA, Orth M, Sharp L and Little J, 2003. Socioeconomic status 

and orofacial clefts in Scotland, 1989 to 1998. Cleft Palate Craniofac J 40, 481-

485 

Clayton DG, Kaldor J, 1987. Empirical Bayes estimates of age-standardized relative risks 

for use in disease mapping. Biometrics 43, 671-681. 

Clayton DG, Bernardinelli L, Montomoli C, 1993. Spatial correlation and ecological 

analysis. Int J Epidemiol 22, 1193–1201. 

Croen LA, Shaw GM, Wasserman CR, Tolarova MM, 1998. Racial and ethnic variations 

in the prevalence of orofacial clefts in California, 1983-1992. Am J Med Genet 

79, 42-47. 

Czeizel A, Sankaranarayanan K, 1984. The load of genetic and partially genetic disorders 

in man. 1. Congenital anomalies, estimates of detriment in terms of years of life 

lost and years of impaired life. Mutat Res 128, 73-103. 

Eberly LE, Carlin BP, 2000. Identifiability and Convergence Issues for Markov Chain 

Monte Carlo Fitting of Spatial Models. Stat Med 19, 2279-2294. 



84 
 

 

8
4

 

Elliott P, Martuzzi M, Shaddick G, 1995. Spatial statistical methods in environmental 

epidemiology, a critique. Stat Methods Med Res 4, 137-159. 

Elliott P, Wakefield J, Best N, Briggs DJ, 2000. Spatial epidemiology: methods and 

applications. Oxford University Press, Oxford, UK, 3–14. 

Gebreab SY, Gillies RR, Munger RG, Symanzik J, 2008. Visualization and interpretation 

of birth defects data using linked micromap plots. Birth Defects Research Part A, 

Clinical and Molecular Teratol 82, 110-119. 

Gelman A, Price PN, 1999. All maps of parameter estimates are misleading. Stat Med 18, 

3221-3234.  

Gilks WR, Richardson S, Spiegelhalter DJ, 1996. Monte Carlo Markov Chain in practice. 

Chapman and Hall, London, UK. 

Goovaerts P, Gebreab S, 2008. How does Poisson kriging compare to the popular BYM 

model for mapping disease risks. Int J Health Geogr 7, 6. 

Haggard LM, Shah GH, Rolfs RT, 1998. Assessing health status, establishing geographic 

areas for small area analysis in Utah. Utah‘s Health: An Annual Review Vol V., 

1997-1998.  

Harville EW, Wilcox AJ, Lie RT, Vindenes H, Abyholm F, 2005. Cleft lip and palate 

versus cleft lip only, are they distinct defects? Am J Epidemiol 162, 448–453. 

Jarup L, Best NG, Toledano MB, Wakefield J, Elliott P, 2002. Geographical epidemiology 

of prostate cancer in Great Britain. Int J Cancer 97, 695–699. 

Kelsall JE, Wakefield, 1999. Discussion of Bayesian models for spatially correlated 

disease and exposure data, by Best NG, Arnold RA, Thomas A, Conlon E, Waller 



85 
 

 

8
5

 

LA Thomas A, Conlon EM, Arnold R.  In: Bernado JM, Berger JO, Dawid AP, 

Smith AFM (eds). Bayesian Statistics 6, Oxford University Press, Oxford, UK, 

pp. 151. 

Khoury MJ, Weinstein A, Panny S, Holtzman NA, Lindsay PK, Farrel K, Eisenberg M, 

1987. Maternal cigarette smoking and oral clefts, a population-based study. Am J 

public Health 77, 623-625. 

Kleinschmidt I, Sharp B, Mueller I, Vounatsou P, 2002. Rise in malaria incidence rates in 

South Africa, a small area spatial analysis of variation in time trends. Am J 

Epidemiol 155, 257–264. 

Krapels IP, van Rooij IA, Ocke MC, van Cleef BA, Kuijpers-Jagtman AM, Steegers-

Theunissen RP, 2004. Maternal dietary B vitamin intake, other than folate, and the 

association with orofacial cleft in the offspring. Eur J Nutr 43,7-14. 

Lieff S, Olshan AF, Werler M, Strauss RP, Smith J. Michell A, 1999. Maternal cigarette 

smoking during pregnancy and risk of oral clefts in newborns. Am J Epidemiol 

150, 683-94.  

Lorente C, Cordier S, Goujard J, Ayme S, Bianchi F, Calzolari E, De Walle HE, Knill-

Jones R, 2000. Tobacco and alcohol use during pregnancy and risk of oral clefts. 

Am J Public Health 90, 415-419. 

MacNab YC, 2004. Bayesian spatial and ecological models for small-area accident and 

injury analysis. Acc Anal Prev 36, 1019-1028. 



86 
 

 

8
6

 

Manton KG, Woodbury MA, Stallard E, Riggan WB, Creason JP, Pellom AC, 1989. 

Empirical Bayes procedures for stabilizing maps of U.S. cancer mortality rates. J 

Am Stat Ass 84, 637-650. 

Mollie A, 1996. Bayesian mapping of disease. In: Gilks WR, Richardson S, Spiegelhalter 

DJ (eds). Markov Chain Monte Carlo in Practice. Chapman & Hall, New York, 

USA, 359–79. 

Moss MM, 2006. Smoking, Anemia, and risk of oral clefts in Utah. MS thesis, Utah State 

University, Logan, USA.  

Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC, 2009. Cleft lip and palate. Lancet 

374, 1773-85. 

Munger R, Romitti P, Daack-Hirsch S, Burns T, Murray J, Hanson J, 1996. Maternal 

alcohol use and risk of orofacial cleft birth defects. Teratol 54, 27-33. 

Murray JC, 2002. Gene/environment causes of cleft lip and/or palate. Clin Genet 61, 248-

256. 

Richardson S, 1992. Statistical methods for geographical correlation studies. In: Elliott P, 

Cuzick J, English D, Stern R (eds). Geographical and Environmental 

Epidemiology, Methods for Small-Area Studies. Oxford University Press, Oxford, 

UK, 181–204. 

Richardson S, Thomson A, Best N, Elliott P, 2004. Interpreting posterior relative risk 

estimates in disease mapping studies. Environmental Health Perspect 112, 1016-

1025. 



87 
 

 

8
7

 

Romitti P, Lidral A, Munger R, Daack-Hirsch S, Burns T, Murray J, 1999. Candidate 

genes for nonsydromic cleft lip and palate and maternal cigarette smoking and 

alcohol consumption; evaluation of genotype-environment interactions from a 

population-based case-control study of orofacial clefts. Teratol 59, 39-50. 

Spiegelhalter  DJ, Best NG, Carlin BP, van-der Linde A, 2002. Bayesian measures of 

model complexity and fit (with discussion). J R Stat Soc B 64, 583–640. 

Spiegelhalter DJ, Thomas A, Best N, Lunn D, 2003. WinBUGS user manual version 1.4. 

Medical Research Council Biostatistics Unit. http,//www.mrc-bsu.cam.ac.uk/bugs. 

Tolorova M, Cervenka J, 1998. Classification and birth prevalence of orofacial clefts. Am 

J Med Genet 75, 126-137. 

Utah Birth Defect Network (UBDN), 2007. Orofacial Clefts at a glance. Information 

available at http,//health.utah.gov/birthdefect/defects/orofacial.html. Accessed 

August 2007. 

Utah Department of Health (UDOH), 2007. Utah‘s indicator based-information system 

for public. Information available at http,//ibis.health.utah.gov/ Accessed August 

2007. 

Vanderas AP, 1987. Incidence of cleft lip, cleft palate, and cleft lip and palate among 

races, a review. Cleft Palate J 24, 216-225. 

van Rooij IA, Ocke MC, Straatman H, Zielhuis GA, Merkus HM, Steegers-Theunissen 

RP, 2004. Periconceptional folate intake by supplement and food reduces the risk 

of nonsyndromic cleft lip with or without cleft palate. Prev Med 39, 689–694. 

http://www.mrc-bsu.cam.ac.uk/bugs
http://health.utah.gov/birthdefect/defects/orofacial.html.%20Accessed%20August%202007
http://health.utah.gov/birthdefect/defects/orofacial.html.%20Accessed%20August%202007


88 
 

 

8
8

 

Waitzman NJ, Romano PS, Scheffler RM, 1994. Estimates of the economic costs of birth 

defects. Inquiry 31, 188-205. 

Wakefield J, 2007. Disease mapping and spatial regression with count data. Biostatistics 

8, 158-183. 

Wakefield JC, Best NG, Waller L, 2000. Bayesian approaches to disease mapping. In: 

Elliott P, Wakefield JC, Best NG, Briggs DJ (eds). Spatial epidemiology: methods 

and applications. Oxford University Press, Oxford, UK, 104–127. 

Waller LA, Gotway CA, 2004. Applied Spatial Statistics for Public Health Data. John 

Wiley & Sons, New York, USA.  

Walter SD, 2000. Disease mapping, a historical perspective.  In:  Elliott P, Wakefield JC, 

Best NG, Briggs DJ (eds). Spatial epidemiology: methods and applications.  

Oxford University Press, Oxford, UK, 223-239. 

Wilcox AJ, Lie RT, Solvoll K,Taylor J, McConnaughey DR, Abyholm F, Vindenes H, 

Vollset SE, Drevon CA, 2007. Folic acid supplements and risk of facial clefts: 

national population based case-control study. BMJ 334, 464 

Wu JL, Wang JF, Meng B, Chen G, Pang LH, Song XM, Zhang KL, Zhang T, Zheng XY, 

2004. Exploratory spatial data analysis for the identification of risk factors to birth 

defects. BMC Public Health 4, 23–33. 

 

 

 

 



89 
 

 

8
9

 

Table 3-1 Posterior mean deviance ( D ), effective number of parameters (
Dp ), and model 

comparison criterion ( DIC ) for each model. 

 

 

Model  D  )(D  Dp  DIC  

      

Non-Spatial model 331.11 322.08 9.03 340.14 

 (Model 1) 

    
 

    Spatial Model   329.31 317.94 11.37 340.68 

(Model 2) 

    
 

    Non-spatial regression   330.3 319.04 11.26 341.56 

(Model 3) 

    
 

    Spatial regression   327.82 314.27 13.55 341.36 

(Model 3)         
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Table 3-2 Posterior means and 95% credible intervals (CIs) of the standard deviations of 

the random effects for the four Bayesian models. 

 

Model )(vsd  
(95% CI) 

)(usd  
(95% CI) 


 

(95% CI) 

    

Non-Spatial model 0.094 
_ _ 

 (Model 1) (0.026, 0.199) 

    

Spatial model 0.085 0.06 0.422 

(Model 2) (0.024, 0.189) (0.015, 0.150) (0.114, 0.790) 

    

Non-spatial regression 0.089 
_ _ 

(Model 3) (0.024, 0.196) 

  
  

Spatial regression 0.08 0.072 0.472 

(Model 4) (0.023, 0.181) (0.017, 0.170) (0.135, 0.816) 
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Table 3-3 Posterior coefficients and 95% CIs of area-level covariates associated with oral 

clefts for the non-spatial and spatial regression models. 

 

Covariates  Posterior mean (*
) SD() MC error RR 95% CI (RR) 

Non-Spatial Regression (Model 3) 

Intercept ( 0 ) -0.0732 0.0861 1.39E-03 0.934 (0.786, 1.097) 

Smoking (
1 ) 0.0249 0.0125 2.60E-04 1.025 (1.000, 1.051) 

Alcohol (
2 ) -0.0434 0.0452 5.24E-04 0.958 (0.874, 1.044) 

Education ( 3 ) -0.0055 0.0056 1.04E-04 0.995 (0.984, 1051) 

Spatial Regression (Model 4) 

Intercept ( 0 ) -0.0893 0.0905 1.78E-03 0.918 (0.7618, 1.090) 

Smoking (
1 ) 0.0261 0.0134 2.94E-04 1.026 ( 1.000, 1.053) 

Alcohol (
2 ) -0.042 0.0473 6.01E-04 0.96 (0.8727, 1.050) 

Education ( 3 ) -0.0053 0.0058 1.11E-04 0.995 (0.9833, 1.006) 
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Table 3-4 Posterior means of RR and probability of exceedance for selected areas using 

the non- spatial model. 

 

Area SMR RR SD MC error 95% CI Pr (RR > 1) 

       

Tri-County HDL(53) 1.834 1.135 0.155 0.00326 (0.916, 1.521) 0.83 

       

Wasatch Co.(52) 1.711 1.059 0.132 0.0016 (0.848, 1.374) 0.658 

       

Provo/BYU (47) 1.458 1.107 0.136 0.00234 (0.898, 1.431) 0.792 

       

East Orem (46) 1.721 1.08 0.14 0.00211 (0.861, 1.419) 0.709 

       

North Orem (44) 1.428 1.101 0.132 0.00198 (0.895, 1.417) 0.785 

       

Elder Box (2) 1.595 1.064 0.13 0.00155 (0.854, 1.372) 0.677 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

 

9
3

 

 

 

 

Figure 3-1 The study area for the State of Utah showing 61 small-geographic areas with 

their corresponding area ID. 
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Figure 3-2 The proportion of mothers using tobacco during pregnancy from 1995 to 2004 

across Utah small areas. The color scheme goes from a light grey (low smoking 

percentage) to a dark grey (high smoking percentage). 
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Figure 3-3 The proportion of mothers consuming alcohol during pregnancy from 1995 to 

2004 across Utah small areas. The color scheme goes from a light grey (low alcohol 

consumption percentage) to a dark grey (high alcohol consumption percentage). 
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Figure 3-4 The proportion of mothers with no high school (HS) diploma during 

pregnancy from 1995 to 2004 across Utah small area. The color scheme goes from a light 

grey (low percentage of mothers with no HS diploma) to a dark grey (high percentage of 

mothers with no HS diploma). 
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Figure 3-5 Raw Standardized Morbidity Ratio (SMR) values for oral clefts from 1995 to 

2004 across Utah small areas. The color scheme goes from a light grey (low SMR value) 

to a dark grey (high SMR value). 
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Figure 3-6 Bayesian smoothed relative risks (RR) for oral clefts from 1995 to 2004 across 

Utah small areas using non-spatial model (Model 1). The color scheme goes from a light 

grey (low RR value) to a dark grey (high RR value). 

 

 



99 
 

 

9
9

 

 
 

 

Figure 3-7 Bayesian smoothed relative risks (RR) for oral clefts from 1995 to 2004 across 

Utah small areas using spatial model (Model 2). The color scheme goes from a light grey 

(low RR value) to a dark grey (high RR value). 
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Figure 3-8  Bayesian smoothed relative risks (RR) for oral clefts from 1995 to 2004 

across Utah small areas using non-spatial regression model (Model 3). The color scheme 

goes from a light grey (low RR value) to a dark grey (high RR value). 
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Figure 3-9 Bayesian smoothed relative risks (RR) for oral clefts from 1995 to 2004 across 

Utah small areas using spatial regression model (Model 4). The color scheme goes from a 

light grey (low RR value) to a dark grey (high RR value). 

 

 

 

 

 



102 
 

 

1
0
2

 

 

 

Figure 3-10 Plot showing the degree of smoothing of the raw SMR value using the 

different Bayesian models – SMR (Raw SMR value), Model 1 (Non-Spatial model), 

Model 2 (Spatial model), Model 3 (Non-Spatial Regression model), and Model 4 (Spatial 

Regression model). The Bayesian models shrunk the raw SMR towards to one. 
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Figure 3-11 Thematic map of exceedance probability of oral clefts risk greater than 1, i.e., 

Pr (RR > 1) using non-spatial model (model 1). The color scheme goes from a light grey 

(low probability being the RR value greater than 1) to a dark grey (higher probability the 

RR value being greater than 1). 
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Figure 3-12 Thematic map of exceedance probability of oral clefts risk greater than 1, 

i.e., Pr (RR > 1) using non-spatial regression model (model 3). The color scheme goes 

from a light grey (low probability being the RR value greater than 1) to a dark grey 

(higher probability the RR value being greater than 1). 
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CHAPTER 4 

A MULTI-SCALAR APPROACH TO THE SPATIAL CLUSTER ANALYSIS OF 

ORAL CLEFTS IN THE STATE OF UTAH FROM 1995 TO 2004: WITH CLUES 

FOR ETIOLOGY
3
 

ABSTRACT 

The state of Utah has among the highest prevalence of oral clefts in the United 

States (US). Yet the reasons are unclear. Spatial cluster analysis was conducted to 

determine whether or not global clustering was present, to identify clusters of excess oral 

cleft cases, and to examine the maternal characteristics of the cases involved within the 

clusters. For the spatial cluster analysis, a total of 894 cases of oral cleft were identified 

by the state of Utah Birth Defects Network from 1995 to 2004. Tests for global clustering 

were performed using the Potthoff-Whittinghill (PW), Moran‘s I, and Tango‘s Maximized 

Excess Events Test (MEET) statistics. To detect local clusters of excess oral clefts, the 

Besag-Newell (BN) method and the spatial scan statistic were used. Finally, utilizing a 

subset of the oral cleft database, a descriptive analysis was carried out in order to reveal 

characteristics of the cases involved in the identified clusters. No evidence of spatial 

heterogeneity was found using the PW statistic and there was no evidence of spatial 

clustering using either Moran‘s I or Tango‘s MEET. However, the spatial scan statistic 

                                                   

 

 
3
 The material for this chapter will be submitted as:  Gebreab SY, Gillies RR, Munger GM 

and Symanzik J to Environmental Health. 
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and BN method detected a most likely cluster of high oral cleft cases within the Tri-

County Local Health District (LHD) and Wasatch County, with borderline statistical 

significance. A secondary cluster within Provo/Brigham Young University (BYU), North 

Orem, and East Orem areas was detected, but was not statistically significant. Our 

analysis revealed a higher number of cases with the characteristics of maternal smoking, 

lower education level and family history in the most likely cluster. Conversely, in the 

secondary cluster, there were modest number of cases with maternal lower education 

level and family history accompanied with only one case of maternal smoking. The Utah 

Study, using a variety of spatial techniques, revealed little evidence to support the 

existence of a single point source of environmental exposure causing oral clefts. 

However, our study revealed a tendency of excess oral cleft cases in some areas that are 

related to maternal smoking, lower education level, and family history. These geographic 

areas may warrant further investigation using epidemiological methods designed to 

account for the risk factors and covariates revealed in this study.  

INTRODUCTION 

Oral clefts are one of the most common birth defects in the United States (US) 

and the State of Utah has among the highest prevalence of oral clefts in the US [1]. The 

geographical distribution oral clefts birth defect via micromaps is shown in Gebreab et al. 

[2]. Oral clefts include a cleft lip with or without a cleft palate (CL/P), isolated cleft 

palate (CP) and isolated cleft lip (CL). Oral clefts affect 1 in 450 births in Utah compared 

to 1 in 750 births nationally [3]. There is, however, marked variation by ethnic groups 
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[4,5]; for example, oral clefts prevalence rates are considerably higher in American 

Indian and Native Alaskan populations, intermediate in Caucasians, and lowest in African 

Americans. In addition, there is a substantial geographic variation in the prevalence of 

oral clefts related to geographic origin [6,7] and socioeconomic status [8].    

The etiology of oral clefts still remains elusive, but it is hypothesized to be caused 

by a combination or interaction of genetic and environmental factors [9,10].  Oral clefts 

have been linked to a variety of environmental risk factors, including maternal smoking 

[7,11,12,13], alcohol consumption [14,15], maternal nutrition [16] as well as instances of 

medication use [17,18]. Additionally, exposure to chemical solvents in the work place or 

at home [19,20], to contaminated drinking water [21], environmental lead pollution [22], 

ambient air pollution [23], or residing near to hazardous waste sites [24,25] have attracted 

considerable attention as potential risk factors for the development of oral clefts.  

Risk factors for oral clefts may be unevenly and unequally distributed 

geographically, and thus may result in spatial patterning of oral clefts [7]. Therefore, 

investigation of the spatial patterns of oral clefts using techniques that involve spatial 

cluster methods can be of great public health importance for identifying areas of elevated 

risk and for advancing our understanding of the etiology of the birth defect. A spatial 

―cluster‖ can be defined as an area with unusual concentration of cases of a birth defect in 

a small area [26]. Identification of spatial clusters with unusual concentration of oral cleft 

cases at small area level may uncover potential causes such as environmental exposures, 

communal behavioral risk factors, and socioeconomic determinants, or perhaps, a shared 

genetic susceptibility. Furthermore, spatial cluster analysis is relevant for planning and 
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delivery of health services such as targeting potential intervention programs and 

resources allocation to the affected children.  

Several statistical methods have been developed for spatial cluster analysis of a 

disease [27-31]. In general, Besag and Newell [32] distinguished the methods into two 

groups including tests for global clustering and tests for detecting local clusters. The 

former are used to determine whether there is spatial clustering present throughout the 

study area, without identifying any specific clusters that may exist. Whereas, the latter are 

designed to identify local clusters (often referred as hotspots) with no prior knowledge of 

their number, size, and location and subsequently determine whether they are statistically 

significant or not [33].  

The purpose of this paper is to investigate the spatial patterns of oral clefts in the 

State of Utah during the period from 1995 to 2004. Despite high oral clefts rates in the 

State, it is still unclear why Utah exhibits high oral clefts prevalence when compared to 

most other states in the US. Moreover, there is very little information available in the 

published literature about the nature and the extent of spatial patterns of oral clefts in the 

State of Utah at small area level. Therefore, three-step spatial analysis was performed 

first to assess whether there was a general tendency of global clustering in the oral cleft 

data, second to identify local clusters (―hotspots‖) and determine the statistical 

significance of the clusters. Finally, to examine the characteristics of the cases involved 

in these clusters in order to gain insight about the etiology of oral clefts.  

In the analysis outlined in this paper, we utilize a battery of tests for global 

clustering and local clusters in tandem to provide a complete description of the different 
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aspects of spatial patterns that may be present in the oral clefts data. This stems from the 

fact that first, we have no knowledge a priori as to  the ―true‖ underlying  spatial patterns 

of oral clefts in the State of Utah, i.e., it is unclear as to  the nature and  the magnitude of 

clustering to be tested. Second, each method differs in their definition of clustering test, 

hence, in their ability to capture different aspects of spatial patterns even though they all 

similarly assume a null hypothesis of spatial randomness [27,30,34,35]. For example, 

some measure over-dispersion using goodness-of-fit statistics [36]. Some measure spatial 

autocorrelation, i.e., the tendency for higher (or lower) values to cluster more closely in 

space (e.g., [37]).  While others scan for potential clusters with elevated incidence of 

disease by delineating using a circular shape [38] or using an irregular shape [39]. Third, 

each spatial cluster method has associated strengths and weaknesses, and there is no 

single best method that captures all the different aspects of spatial patterns with sufficient 

statistical power [40,41]. Fourth, by using a combination of methods, our goal is also to 

corroborate the consistency and validity of the results to each other. For example, if the 

different methods produce similar clusters of size, shape, and location in a logically 

consistent manner, then our confidence in the results are improved. 

Finally, our study is motivated by the recent emphasis on the need for a multi-

scalar approach that is epitomized in such studies as the investigation of the spatial 

patterns of  Creutzfeldt-Jakob disease in France [42], breast, lung and colorectal cancer in 

Long Island, New York [43], brain cancer in the US [44], low birth weight in Shelby 

County, Tennessee [45], breast cancer in Upper Cape Cod, Massachusetts [46], childhood 

acute leukemia in France [47] and different cancer data types  in Connecticut and the US 
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[48]. All these studies underscored the need for a multi-scalar approach to the spatial 

cluster analysis of a disease in order to provide a more complete description of the spatial 

patterns of a disease.  

Given the aforementioned, in the analysis that follows, we explore Utah oral clefts 

data using a combination of methods that include tests for global clustering and local 

clustering. We tested global clustering in the Utah oral clefts data by using the Potthoff - 

Whittinghill (PW) statistic [36], Moran‘s I statistic [37], and Tango‘s maximized excess 

event test (MEET) [49,50]. To detect the presence of local clusters (―hotspots‖) of oral 

clefts, we employed the Besag-Newell (BN) method [32] and the spatial scan statistic 

[38]. 

METHODS 

 Datasets and Data Sources  

The oral cleft data used in this study were obtained from the case-control study of 

the Utah oral clefts study carried out at the Center for Epidemiologic Studies at Utah 

State University [51]. A total of 894 cases were identified from 1995 to 2004 by the Utah 

Birth Defect Network (UBDN), a State–wide birth defects surveillance program that 

began monitoring oral cleft birth defects in 1995 and added all major birth defects in 

1999 [3]. 

All of the individual cases had street address, or zip code information or both of 

the mother‘s residence at the time of birth. We first geocoded the street address to a map 

coordinate system. The geocoding details are reported in [2]. To protect confidentiality, 
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the data were subsequently aggregated to ―small geographic areas‖ (referred to as small 

areas) for analysis. Utah is divided into 61 small areas (Figure 4-1) for the purposes of 

public health assessment [52]. Data on the live births (population at risk) for each of the 

61 small areas for the study period were obtained from the Utah Department of Health 

(UDOH) [53]. A total of 458,593 live births were identified during the study period. The 

number of oral cleft cases within any small area ranged from 4 to 36 while the number of 

live births ranged from 2,998 to 18,177. 

In addition, we obtained data on maternal characteristics during pregnancy for 

560 (63%) of the cases that participated and completed interviews as part of the Utah oral 

clefts study. The variables included in our analysis were family history (parental and 

relative history) of congenital malformations, maternal education, maternal smoking 

status (active and passive smoking), and maternal alcohol consumption during pregnancy. 

 Statistical Framework  

 

The study area for the state of Utah was divided into i=1, . . . , m(61) disjoint 

small areas. Let Oi be the observed number of oral cleft cases within each area i, and let 

iN  be the corresponding number of live births in area i. The total number of cases )( O  

and live births )( N  for the entire study area are given by 


 
m

i

iOO
1

 and 


 
m

i

iNN
1

, 

respectively. The statewide oral clefts rate is expressed as  NOR .   

Under the null hypothesis of ―no clustering‖ and/or ―no cluster,‖ the oral cleft 

cases are randomly distributed across the small areas and we expect that the number of 
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cases is proportional to the number of births in each area [30].  So, the expected number 

of oral cleft cases ( iE ) in each area i is computed as the statewide oral clefts rate (R) 

multiplied by the number of live births in each area i, i.e., RNE ii  .  Given the 

definitions for Oi and Ei , the standardized morbidity ratio (SMR) is computed as the ratio 

of the observed to the expected number of oral cleft cases, i.e., iii EOSMR  for each 

area i.  

We want to mention here that we did not adjust the expected values for the age of 

the mother and the race of the infant which are commonly done. This is because the data 

on the age of the mother and the race of the infant for some of the cases and all live births 

were not available. Hence, it was impossible to adjust for these confounding factors.  

However, we surmised that this does not limit the validity of our analyses, because age 

and race distribution of the cases tend to closely follow the age and race distribution of 

the live births at risk. Moreover, with over 90% of the cases and live births being 

Caucasian and Hispanic and the rates for the Caucasian and Hispanic being similar, any 

adjustment for age and race would have a negligible effect on the expected values. 

Test for Global Clustering  

The presence of global clustering of oral clefts in the State of Utah was tested by 

using three methods. The PW statistic [36] to assess the spatial heterogeneity, Moran‘s I 

statistic [37] to measure the spatial autocorrelation, and Tango‘s MEET statistic [49, 50] 

to establish evidence of overall global clustering in the oral clefts data. The general 

procedure in the application of these tests was essentially the same, i.e., we tested the null 
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hypothesis of ―no clustering‖ against an alternative hypothesis of ―there is clustering‖ and 

summarized the evidence of clustering across the study area using a single p-value [33]. 

For all three methods, the p-values of the clustering were obtained using Monte Carlo 

simulations i.e., by comparing the observed statistics from the real oral clefts dataset to 

the test statistics generated from 999 random replicas of the dataset under the null 

hypothesis.  The analyses for PW and Moran‘s I were implemented in the R statistical 

software [54]. Tango‘s MEET was implemented using S-plus code obtained from Dr. 

Toshiro Tango which is publicly available at 

http://www.niph.go.jp/soshiki/gijutsu/download/meet/index.html. A summary of each 

method follows. 

1. Potthoff - Whittinghill’s Statistic: The PW statistic [36] is the uniformly most 

powerful (UMP) test of random pattern against spatial heterogeneity. Under the null 

hypothesis of no spatial heterogeneity, the variance of the observed number of oral cleft 

cases would equal the expected number of oral cleft cases. The PW alternative hypothesis 

is that the ratio of the variance to the expected is greater than one. If the ratio is greater 

than one, then there is over-dispersion relative to the Poisson distribution and relatively 

large numbers of cases would arise in some areas, i.e., more than predicted under the 

Poisson distribution. The PW statistic is defined as [29]. 
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where Oi and Ei are used as defined above, and 


 
m

i

iEE
1

.  

http://www.niph.go.jp/soshiki/gijutsu/download/meet/index.html
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2. Moran’s I Statistic: Moran‘s I statistic is a global measure of spatial 

autocorrelation that quantifies the tendency of high (or low) oral clefts risk areas to be 

clustered together [37]. Moran‘s I values range from -1 to 1. A zero Moran‘s I indicates 

absence of spatial autocorrelation (null hypothesis of no clustering), a positive Moran‘s I 

indicates positive autocorrelation, i.e.,  similar values of oral clefts risks tend to cluster 

together,  whereas a negative Moran‘s I indicates negative spatial autocorrelation, i.e., 

high values of oral clefts risk tend to be located next to low values of oral clefts risk.  

Moran‘s I statistic is calculated as 
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where, Zi = iSMR , 
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1 , and wij is  the m x m weight matrix defining the 

―closeness‖ between area i and its neighbor j.  There are various ways of defining 

weights. The most commonly used are adjacency and distance-based measures of weight.  

The adjacency weight is defined as  
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The distance weight is defined as 












0  ifor         if   0

   distance fixed somefor     if1

iiij

ij

ij
ddd

ddd
w

 



115 
 

 

1
1
5

 

The parameter 
ijd  is the Euclidean distance in kilometers between the centroids 

of areas i and j, and d is a user specified spatial autocorrelation scale in kilometers. In 

practice, we have no a priori knowledge of the scale of spatial autocorrelation, thus we 

specify different values of d.  For the purposes of this study, we used both adjacency and 

distance-based weights to measure spatial autocorrelation in the oral clefts data. For the 

distance-based weights, we set several successive values of d = 5, 10, 15, 20, 25, 30, 35, 

40, 50 km.  

A limitation of Moran‘s I statistic is that it requires a constant variance 

assumption. It is difficult to meet this assumption for our data because of varying 

population sizes across Utah‘s small areas. Therefore, we also considered the empirical 

Bayesian index (EBI) proposed by Assunção and Reis [55]. The EBI is a population-

based adjusted Moran‘s I, which is robust in detecting spatial autocorrelation in the 

presence of population heterogeneity. 

3. Tango’s Statistic:  The Tango statistic is used to establish evidence of overall 

clustering in the oral clefts data. Tango [49] first proposed the excess events test statistic 

(EET), which is a weighted sum of the excess number of cases (observed minus 

expected) in area i times the excess number of events in area j, then weights the 

difference by a measure of the distance between the areas, with a higher weighting given 

when the two area are close. For a given parameter, the statistic is defined as  
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where, 
ijd  is used as defined above, and    is a clustering scale parameter in 

kilometers chosen by the user.  A large  is sensitive to large clusters, while a small  is 

sensitive towards small clusters. Since we have no a priori knowledge about the 

clustering scale parameter, in practice we evaluate the method with a range of   values. 

However, this creates multiple testing problems. To overcome this problem and to be able 

to detect clustering irrespective of its clustering scale, Tango [50] proposed the 

Maximized Excess Events Test (MEET). 

 


,|)()(min 0
0

HeetEETPMEET
U




     (5) 

where, eet ()   is the observed value of the EET statistic as a function of , and U 

is an upper limit on  specified by the user; this usually varies continuously from a small 

value near zero upwards until   reaches about half of the size of the whole study area. 

(min)P is the minimum of the profile of p-value of EET  for  .   

In this study, we had no a priori knowledge on the spatial clustering scale of oral 

clefts data, so we set several values of  = 5, 10, 15, 20, 25, 30, 35, 40, 50 km. We 

obtained p-values for each  value and adjusted p-value over all  values.  

Tests for Detection of Local Clusters 

 

To detect the presence of any local clusters (hotspots) of excess oral cleft cases 

and to evaluate their statistical significance, we employed the Besag and Newell [32] 

method and the spatial scan statistic [38]. Both methods tested a null hypothesis of ―no 

cluster‖ against an alternative hypothesis that ―there is at least one cluster‖ and computed 

p-values associated with each candidate cluster.  As before, the p-values of candidate 
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clusters were obtained using Monte Carlo simulations i.e., by comparing the observed 

statistics from the real oral clefts dataset to the test statistics generated from 999 random 

replicas of the dataset under the null hypothesis. Analysis for the BN method was 

implemented in the R statistical software package [54] and the spatial scan statistic was 

implemented using the SaTScan software [56]. A brief description of these two methods 

follows.   

1. The Besag and Newell Method: The BN method was originally developed to 

improve the limitations of Openshaw‘s Geographical Analysis Method (GAM) [57]. The 

BN method was first used in the detection of childhood leukemia clusters in northern 

England [32]. The basis of this method is relatively simple. First a user chooses a 

parameter k, a number of oral cleft cases representing the size of a cluster to be detected. 

For each area i, the remaining areas are ordered according to their increased distance 

from the centroid of area i.  Then, circles are drawn centered on each area i to include the 

minimum number of neighboring areas needed to accumulate at least k cases, i.e., the 

radius of the circle increases until it contains k or more cases. If it contains k or more 

cases, then the procedure stops. The final step then involves the calculation of associated 

statistics that encompass the last circle formed around the centroid of area i. 

Let  Oj(i) be  the observed  number of cases in area i and its j closest neighbors  

and let Nj(i) be the observed number of live births in area i and its j closest neighbors. Let 

Mi be the random variable containing the minimum number of nearest areas around area i 

that are needed to accumulate at least k cases, where mi is an observed value of Mi, i.e., 

 kOjm iji  )1(:min )( . The significance level of the test is obtained by using a 
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Poisson distribution under the null hypothesis that there is no cluster at the centroid of 

area i.  The statistics is defined as  
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A critical issue in the BN method is the choice of k, the cluster size. The choice of 

k is arbitrary, especially since we have no prior knowledge on cluster sizes, if present, in 

the oral clefts data.  Besag and Newell [32] recommend repeating the test using several 

values of k, and mapping all the clusters that attain statistically significant (at the 5% 

level) for different values of k.  For our study, we evaluated the BN method for several 

values of cluster sizes (k = 22 to 38). We report clusters as ―consistent‖ if their statistical 

significance persisted over three values of k and ―less clear‖ if their statistical 

significance appeared only on fewer than three k values as was suggested by Newell and 

Besag [58]. 

2. Spatial Scan Statistic: The spatial scan statistic tests for clusters of any size 

and at any location without a pre-selection bias, by using circular windows with a 

continuously variable radius [38]. The method accounts for multiple testing and 

inhomogeneous population density. It was first applied to leukemia disease in Sweden 

[59] and breast cancer in the northeastern United States [60].  This method imposes a 

circular scanning window on the map and lets the center of the circle move over the study 

area so that at different positions the window includes different sets of neighboring areas. 

An area is included if its centroid lies within the circle. For each circle centroid, the 

radius varies continuously from zero to a user-defined maximum population size (usually 
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set not to exceed 50% of the underlying population). In this way, the circular window is 

flexible both in location and in size. In total, the method creates an infinite number of 

distinct circular windows, each with a different set of neighboring areas within it, and 

each is a potential cluster that may consist of a single area or a large number of 

neighboring small areas.  For each circle, a likelihood ratio is computed for the 

alternative hypothesis that there is a higher rate of oral clefts than expected inside the 

circle against the null hypothesis that the oral clefts rates inside and outside the circle are 

the same. Let Li(j) be the likelihood under the alternative hypothesis that there is a cluster 

in area i and its j closest neighbors, and let L0 be the likelihood under the null hypothesis. 

The likelihood ratio statistic is defined as 
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The test statistics is  
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where LR is the maximum likelihood ratio, and I(   ) is the indicator function, that  is 

equal to '1' when the observed number of  oral cleft cases inside the circle is more than 

expected, i.e., R N O ijij )()(    otherwise it is equal to '0'.  The circle with the maximum 

likelihood ratio among all radius sizes at all possible locations is considered as the most 

likely cluster (also known as the primary cluster) and is followed by other non-

overlapping secondary clusters according to the order of the likelihood ratios.  
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The spatial scan statistic requires specifying the maximum population size; 

however, there are no clear guidelines for the selection of the appropriate maximum 

population size. For our study, we set different values of maximum population size at 

10%, 25%, and 50 % of the total population.   

 Maternal Characteristics of Local Clusters  

The maternal characteristics of the local clusters identified by the spatial scan 

statistic were examined using a descriptive analysis. Summary statistics (number and 

percentage) describing some of the maternal characteristics of the cases involved in the 

local clusters were constructed. The descriptive analysis was restricted only to those cases 

that had detailed maternal characteristics information. The maternal characteristics 

included in this study were the number and percentage of mothers with lower education 

level (without some college level), with family history (if at least one of the parents or 

blood- relatives had congenital malformation), with active and passive maternal smoking 

history, and with a history of maternal alcohol consumption during pregnancy. 

RESULTS 

Figure 4-2 shows a map of SMR and indicates the distribution of oral clefts in the 

State of Utah. The SMRs range from 0.43 to 1.83 around an overall mean of 1.03 and 

standard deviation of 0.31. A visual inspection of Figure 2 reveals that high anomalies of 

oral cleft cases are located in the following areas, Tri-County Local Health Department 

(LHD) (53), East Orem (46), Wasatch County (52), and Box Elder County (2) - all are 
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shaded as dark grey. However, only the SMR for Tri-County LHD was statistically 

significant at the 5% level. On the whole, the SMR map shows no evidence of an 

apparent spatial pattern. 

 Table 4-1 shows the results from the rest of the formal tests performed for 

clustering. The test for heterogeneity using the PW statistic resulted in a p-value of 0.237 

(ref., Figure 4-3), indicating no evidence of spatial heterogeneity in the risk of oral clefts 

across the study area. Moran‘s I statistic was evaluated using distance and adjacency-

based weights. A statistically significant spatial autocorrelation was evidenced at d = 5 

km. However, no evidence of spatial autocorrelation for d = 10 km or greater was 

observed. Moran‘s I statistic based on adjacency weight showed no evidence of 

statistically significant spatial autocorrelation, with Moran‘s I value = -0.147 and p-

value=0.956. Similarly, the result from the EBI (population-adjusted Moran‘s I statistic) 

showed no evidence of spatial autocorrelation (Moran‘s I = -0.115, p-value= 0.905) in the 

oral clefts data. The results for Tango‘s EET and MEET, as summarized in Table 4-1 are 

also visualized in Figure 4-4 both for the unadjusted p-value (EET) for different values of 

 and the adjusted p-value (MEET) for overall clustering. As seen in Table 4-1 and 

Figure 4-4, Tango‘s EET indicates no evidence of global clustering in the range of 5 to 50 

km, with an overall MEET adjusted p-value of 0.229.  

 Table 4-2 shows the summary information for the clusters detected by both the 

BN and the spatial scan statistic. First we applied BN with differing cluster sizes (k) 

ranging from 22 to 38. This method detected three possible clusters as identified in Table 

4-2 and shown in Figure 4-5.  The first cluster was detected at k = 22 and was centered at 
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the Tri-County LHD (53) area. This cluster was later expanded to include Wasatch 

County (52) over three values of k =30, 32, 36 (Figure 4-5), with p-values <0.05 as 

revealed in Table 4-2. According to the definition of Newell and Besag [55], this cluster 

is classified as ―consistent‖ since it was statistically significant (at the 5% of level) over 

three values of k. Of note in Table 4-2, this cluster had a relative risk of 1.799 and 

contained 37 observed cases compared to 20.57 expected. The method also detected two 

―less clear‖ clusters that were statistically significant (p-values <0.05), but only at two k 

values (k =36 and 38). One of the clusters was centered at Provo/Brigham Young 

University (BYU) (47) with a radius of 5 km and included East Orem (46). This cluster 

had a relative risk of 1.523 and contained 39 observed cases compared to 25.60 expected.  

The third cluster (k=36, 38) was centered at East Orem (46) with a radius of 4 km and 

included North Orem (44). This cluster had a relative risk of 1.498 and contained 40 

observed cases compared to 26.70 expected. 

The spatial scan statistic detected two clusters of excess oral cleft cases, although 

not strictly significant at the 5 % threshold at all maximum population sizes of ≤ 10%, ≤ 

25% and ≤ 50%. Figure 4-6 displays the primary cluster (red circle, covering areas 52 & 

53) and a secondary cluster that was detected (green circle, covering areas 44, 46, & 47). 

Summary information is provided in Table 4-2. The primary cluster, with the largest 

likelihood ratio, comprised the Tri-County LHD (53) and Wasatch County (52) areas with 

a radius of 111 km. This cluster contained 37 observed oral cleft cases compared to 20.57 

expected and had the largest relative risk of 1.833.  This cluster was borderline significant 

(p=0.063, p=0.089, and p=0.100) at population sizes ≤ 10%, ≤ 25% and ≤ 50%, 
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respectively. This method also detected a non-overlapping secondary cluster comprising 

North Orem (44), East Orem (46) and Provo/BYU (47) with a radius of 4.6 km. This 

cluster contained 68 observed cases compared to 45.91 expected cases and had a relative 

risk of 1.521, but it was not statistically significant (p-values were in the range of 0.111 to 

0.165) within their different maximum population sizes. 

We examined the maternal characteristics of the oral cleft cases involved in the 

clusters detected by the spatial scan statistic. Some of these maternal characteristics are 

summarized in Table 4-3.  In the primary cluster, Tri-County LHD (53) had twenty seven 

cases observed during the study period, detailed information on maternal characteristics 

were available for only fifteen cases. Among these, twelve (80%) cases had maternal 

lower education level and five (33.33%) had an active maternal smoking history during 

pregnancy. Furthermore, out of the fifteen cases, six (40%) cases had a family history of 

congenital malformation in this area as shown in Table 4-3.  Wasatch County (52) had ten 

observed cases during the study period, but only three cases had information on maternal 

characteristics. Of these, one case had a family history of congenital malformation, but 

none of the cases had maternal lower education level, maternal smoking or alcohol 

consumption history during pregnancy. In the secondary cluster, which comprises the 

North Orem (44), East Orem (46), and Provo/BYU (47) areas, the total observed number 

of cases during the study period was sixty eight cases, but detailed information on 

maternal characteristics were only available for forty nine cases. Among these, the 

number of cases with lower maternal education level was thirteen cases (26.5%) and 
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fourteen cases (28.6%) had a family history of congenital malformation, but only one 

case had a history of maternal smoking which belonged to North Orem (46).  

DISCUSSION 

We have presented a statewide spatial cluster analysis of oral clefts in the State of 

Utah at the small area level. Our objectives were three-fold:  a) to investigate whether 

clustering of oral cleft cases was present anywhere in Utah, b) to detect specific clusters 

that manifest a significant excess of oral cleft cases, and c) to examine the maternal 

characteristics of the oral cleft cases involved in the clusters identified under item b).  

Our study used a multi-scalar approach to capture the different types of spatial 

patterns present in the Utah oral clefts data. First we preformed test for spatial 

heterogeneity using the PW statistic. This provided no evidence of spatial heterogeneity 

in oral clefts risk across the small areas of the State of Utah.  However, this method does 

not provide information about the spatial pattern of the deviations i.e., whether areas of 

high (or low) deviations are spatially correlated or widely separated from each other. 

Thus, we used Moran‘s I statistic with the goal of measuring spatial autocorrelation of 

oral clefts rates between small areas. 

 The results obtained from Moran‘s I statistic showed no evidence of spatial 

autocorrelation in the oral clefts data despite multiple testing at different scales of 

distance values (ref., Table 4-1). One of the criticisms of Moran‘s I statistic is that it 

assumes constant population size, which was difficult to meet for our data. To overcome 

this problem and further confirm the results, we evaluated EBI, which is effective in 
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accounting for differing population sizes in the presence of population heterogeneity.  

The result from EBI was still statistically non-significant which likewise confirmed the 

absence of spatial autocorrelation in the oral clefts data.  

Next, we applied Tango‘s MEET statistic to asses for evidence of overall 

clustering.  This method has several appealing features in comparison to the PW and 

Moran‘s I statistics. First, it serves as a general purpose test for evidence of general 

clustering by incorporating aspects of goodness – of – fit tests and spatial autocorrelation 

[30,61]. Second, it accounts for heterogeneous population sizes and multiple testing 

problems. Third, MEET has been shown to have a higher statistical power in detecting 

overall clustering in comparison to Moran‘s I statistic [40,41]. The results obtained by 

Tango‘s MEET reflected those findings obtained by the PW and Moran‘s I statistics. 

Tango‘s MEET showed no evidence of general clustering within the 5 to 50 km range 

with an overall adjusted p=0.229, which suggests the absence of global clustering in the 

oral clefts data.  

Our finding of lack of global clustering by the three methods suggests a common 

environmental risk factor is unlikely the plausible cause of oral clefts. In other words, it 

eliminates the existence of a single and strong point-source of environmental exposure 

such as air pollution, contaminated water, hazardous waste, factory emissions, or 

maternal infection causing the high prevalence of oral clefts in the State of Utah. Despite 

the lack of evidence for global clustering in our study, it is possible to have local clusters 

with an excess of oral cleft cases [33]. Local clusters, if present, may reflect an 

aggregation of mothers at high risk of giving a child with oral clefting due to some non-
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environmental factor such as socioeconomic factors, demographic composition, and 

genetic susceptibility.  

We tested for any presence of local clusters by applying the BN and spatial scan 

statistic. Both methods identified two non-overlapping clusters in the same locations of 

similar sizes (ref., Table 4-2, Figures 5 and 6). However, their main point of departure 

was in the estimation of statistical significances (p-values) as was indicated in Table 4-2. 

Much of the variation is due the fact that the BN statistic provides p-values for each 

cluster location, but does not adjust for multiple testing at different k values, so it is more 

likely to detect false positive clusters [32]. To circumvent this problem, Newell and 

Besag [58] suggested classifying clusters into ―consistent‖ or ―less clear‖ on the basis of 

their statistical significance over three values of k. Following their  classification, only 

the cluster found within the Tri-County LHD and Wasatch County was ―consistent‖ since 

it was statistically significant (p < 0.05) over three values of k, whereas the cluster within 

the North Orem, East Orem, and Provo/BYU areas  would be defined as  ―less clear.‖  

An alternative approach to that of BN method is the spatial scan statistic. Unlike 

the BN method, the spatial scan statistic adjusts the p-values for multiple testing inherent 

in the many potential cluster locations and sizes. The primary cluster of oral clefts was 

found in the Tri-County LHD and Wasatch County but reported borderline significant 

(0.05 < p < 0.1) at the different maximum population sizes. Given that this cluster was 

identified by BN method as a ―consistent‖ cluster, we can reasonably conclude that there 

is a tendency toward excess oral cleft cases in the Tri-County LHD and Wasatch areas. 

The spatial scan statistic found a secondary cluster in North Orem, East Orem, and 
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Provo/BYU areas but was not statistically significant (p-values were in the range 0.111 to 

0.165) regardless of maximum population size. This is not surprising since the BN 

method identified the same cluster as a ―less clear‖ cluster.   

Another important difference between the spatial scan statistic and the BN method 

in searching for local clusters is the cluster size. The spatial scan statistic does not require 

pre-specification of cluster size; it searches for a cluster at any location and of any size up 

to a maximum population size without pre-selection bias [38]. In contrast, the BN method 

requires specifying the cluster size (k) a priori and looks specifically for that cluster size. 

Thus, the size of clusters to be detected is highly dependent on the choice of k. If too 

small, large clusters cannot be detected, and if too large, spurious clusters may be 

produced [62]. Therefore, the BN method is a good choice when the size and the scale of 

a cluster are erstwhile known. Another advantage of the spatial scan statistic is that it has 

higher statistical power for detecting the most likely cluster compared to the BN method 

[40,41], especially when the most likely cluster is circular in shape. 

The spatial scan statistic does, however, have some drawbacks. First, the method 

uses circular windows to detect clusters, which may inadvertently include surrounding 

areas with non-elevated risk. Its design is therefore not directly applicable for the 

detection of non-circular clusters such as clusters that tends to follow linear features like 

rivers or overhead power lines. To avoid such limitations and to identify non-circular 

clusters, irregular-shaped [39] or elliptical-shaped [63] scans have been proposed. 

Second, the spatial scan statistic tends to produce conservative p-values for the secondary 

clusters [38], thus it may underestimate the statistical significance of secondary clusters.  
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Third, the choice of maximum population size is somewhat arbitrary, and there are no 

clear guidelines for an appropriate choice of maximum population size. For example, 

Hjalmars et al. [59] used 10% of the total population to define the windows while 

Kulldorff et al. [60] used 50%. 

Although the etiology of oral clefts is poorly understood, oral clefts are related to 

such factors as maternal low socioeconomic status, maternal smoking, nutrition intake, 

alcohol consumption, and medication use. Investigation of the maternal characteristics of 

the primary and secondary clusters revealed maternal smoking history, maternal lower 

education level, and family history of congenital malformations were dominant 

characteristics in the primary cluster, particularly in the Tri-County LHD area where the 

percentage of cases with maternal smoking history during pregnancy (33%), maternal 

lower education level (80%), and family history (40%) were higher compared to the other 

areas in the study (ref., Table 3). This observation was also consistent with UDOH report 

that reported that this area had the highest proportion (17%) of pregnant women smoking 

during pregnancy in comparison to the other areas over the period 1995-2004 [53]. 

Although a higher smoking history, lower education level, and family history might 

explain excessive oral cleft cases in this area, racial/ethnicity composition might be also a 

factor; this is because this area overlaps with American Indian reservations where there is 

a higher proportion of Native Americans in the population.  For the secondary cluster 

(North Orem, East Orem, and Provo/BYU ), we found that the percentage of cases with 

maternal lower education level and  family history was modest and was accompanied by 

only one case with maternal smoking history (i.e., North Orem). Of the areas in the 
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secondary cluster, North Orem exhibited a higher number of cases with associated family 

history as a compounding factor as well as maternal lower education.  

Our association study was essentially descriptive because of small sample size 

and therefore prevents us from drawing a definitive conclusion with regard to this 

association; however, this study provides further evidence in support of a causal role of 

maternal smoking during pregnancy, maternal lower education level, and family history 

in oral clefts. Our findings are consistent with the Utah case-control study of oral clefts 

by Moss [64] that maternal smoking history, maternal lower education level, and family 

history were significantly associated with oral clefts. Furthermore, previous studies have 

showed a strong association between oral clefts and maternal smoking [11,12,13], 

maternal lower education level [65], and family history [10]. However, further 

investigations designed to account for the risk factors and covariates revealed in our 

study would be necessary. Future research should also examine whether there is a 

particular genetic marker related to oral clefts and explore the etiology of oral clefts in 

terms of gene-environment interactions.  

Limitations and Strengths  

 

This study is not without limitations and, like many that involve statistical 

analyses, care must be taken when interpreting the results. First, this study did not adjust 

for confounding variables such as the mother‘s age and race of the infant because these 

data were not available to us.  It is feasible that the detected clusters might be attributed 

due to uneven distributions of the race of the infant and/or age of the mother. For 
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example, it is possible that the excess oral cleft cases in Tri-County LHD might be 

confounded due to the high proportion of Native Americans in that area. Conversely, lack 

of adjustment can also have the opposite effect, that other potential clusters might have 

been obscured from being detected.  Obviously, future follow-up studies should include 

information on the mother‘s age and race of the infant to account for possible 

confounding effects in the study of the spatial patterns of oral clefts in the State of Utah.  

Second, the total cases of oral clefts used in this study were not the complete 

record as was compiled by the UBDN. The oral clefts rate reported by UBDN [3] for the 

period 1995 to 2003 was 22.2 per 10,000 compared to this study‘s rate of 19.5 per 10,000 

for the period from 1995 to 2004. Despite the fact that the difference between the rates is 

small, such differences may lead to a spurious spatial variation between small areas.  

Third, as mentioned, the descriptive analysis of the maternal characteristics of the local 

clusters was restricted to those cases that had maternal information, which limited our 

ability to generalize the results. Nevertheless, we believe that the subset information was 

helpful in shedding some light on the etiology of oral clefts. 

Fourth, we considered adjusting for the repeated tests required in the sensitivity 

analysis to parameters (such as spatial scale parameters) but do not believe this necessary 

for two reasons:  (a), evaluating sensitivity to scale parameters was undertaken to identify 

the underlying spatial scale of the process, and not for the purposes of statistical 

inference. (b), the spatial clusters that were identified are suggestive in that they have 

borderline statistical significance at the alpha level of 0.05.  Adjustment for multiple tests 
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would increase the p-values but should not alter qualitatively the concordance of results 

across the multiple methods.  

Despite its limitations, this study had several strengths. A major strength of this 

study was that it demonstrated the significance of spatial cluster analysis in characterizing 

the spatial patterns of oral clefts at the small area level. The role of spatial statistics 

techniques and Geographic Information Systems (GIS) in birth defects surveillance is 

rarely explored. Clearly, this study illustrated how spatial cluster techniques coupled with 

data summarized at the small area level can be a powerful tool in birth defects 

surveillance in a preliminary fashion which is arguably cost-effective. This study was 

useful in providing valuable etiological clues such as behavioral, genetic and 

environmental causes of oral clefts and in identifying high-risk populations and locations 

that could be utilized for further epidemiological studies as well as for health service 

planning and delivery. 

A second strength
 
of this study was that a multi-scalar approach was used to better 

understand the different aspects of the spatial patterns present in the oral clefts. By using 

different combinations of spatial cluster methods, we not only provided a complete 

picture of the spatial patterns of oral clefts in the State of Utah, but also highlighted the 

strengths and weaknesses of each method as well as corroborating the consistency and 

validity of the results produced by the different methods.  Finally, the third strength of 

this study was that we had the opportunity to examine the maternal characteristics of the 

local clusters based on a subset of oral cleft cases available to us, which confirmed the 
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role of established risk factors including maternal smoking, maternal education level, and 

family history in causing oral cleft birth defects. 

CONCLUSIONS  

In conclusion, our analysis did not reveal any evidence of global clustering of oral 

clefts in the State of Utah suggesting little evidence to support the existence of a single 

and strong point-source of environmental exposure that might cause oral clefts.  

Alternatively, the most likely explanation for the high rate of oral cleft cases in the State 

of Utah is attributed to demographic characteristics, maternal behavioral factors and 

family history of the population at risk. In particular, the high oral cleft cases found 

within Tri-County LHD support the role of established risk factors including maternal 

smoking during pregnancy, maternal lower education level, and family history in oral 

clefts etiology. Although epidemiologic studies such as case-control or cohort studies 

would be needed to draw more firm conclusions on the causal factors of oral clefts, a 

study such as this has demonstrated the usefulness of spatial cluster analysis in generating 

etiological hypotheses and identifying local clusters of excess oral cleft cases for further 

epidemiological studies, and for health service planning and delivery. 
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Table 4-1 Summary results for global clustering tests for oral clefts data in the State of Utah, 1995-2004 (MC p-values refers to 

Monte Carlo p-values). 

 

Test statistic 

 

Parameter 

 

Value 

 

MC* p-values 

 

PW statistic   805000 0.237 

Moran's I adjacency -0.147 0.956 

d(km) 

   

 

5.0 0.548 0.028 

 

10 -0.021 0.523 

 

15 -0.034 0.571 

 

20 0.002 0.363 

 

30 0.009 0.36 

 

40 -0.024 0.556 

 

50 -0.012 0.354 

EBI adjacency -0.115 0.905 

Tango's EET (unadjusted p-value) 

    (km) 5.0 0.00130 0.171 

 

10 0.00133 0.142 

 

15 0.00134 0.147 

 

20 0.00132 0.167 

 

30 0.00129 0.180 

 

40 0.00126 0.186 

 

50 0.00121 0.201 

Tango’s MEET (adjusted p-value) 5 - 50   0.229 
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Table 4-2 Summary results for cluster detection tests for the oral clefts data in the State of Utah, 1995-2004. 

 

        Test statistic Parameter Area ID Radius (km) Observed Expected Relative 

Risk 

MC p-value 

Besag-Newell statistic  

       k = 22 53 0.00 27 14.72 1.834 0.045 

  

k = 30 53, 52 100 37 20.57 1.799 0.030 

  

k = 32 53, 52 100 37 20.57 1.799 0.012 

 

 

k = 36 

 

47, 46 5.00 39 25.60 1.523 0.030 

 53, 52 100 37 20.57 1.799 0.001 

 46, 44 4.00 40 26.70 1.498 0.049 

 
 

k = 38 

 

47, 46 5.00 39 25.60 1.523 0.013 

 46, 44 4.00 40 26.70 1.498 0.023 

 

Spatial scan statistic 
 

≤ 10% 

 

53, 52 111 37 20.57 1.833 0.063 

46, 44, 47 4.60 68 45.91 1.521 0.111 

       
≤ 25% 

53, 52 111 37 20.57 1.833 0.089 

46, 44, 47 4.60 68 45.91 1.521 0.144 

       
≤ 50% 

53, 52 111 37 20.57 1.833 0.100 

46, 44, 47 4.60 68 45.91 1.521 0.165 
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Table 4-3 Maternal characteristics by cluster and area. Shown are counts (percentages) within each cluster and area. 

 

 Lower Active Passive Alcohol Paternal Relative Family 

Cluster Education Smoking Smoking Use History History History 

        

Primary 

Cluster (N = 18) 12 (66.7%) 5 (27.8%) 4 (22.2%) 1(5.6%) 3 (16.7%) 5 (27.8%) 7 (38.9%) 

        

52 (N
* 
= 3) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0(0.0%) 1 (33.3%) 0 (0.0%) 1 (33.3%) 

53 (N = 15) 12 (80.0%) 5 (33.3%) 4 (26.7%) 1(6.7%) 2 (13.3%) 5 (33.3%) 6 (40.0%) 

        

Secondary 

Cluster (N = 49) 13 (26.5%) 1 (2.0%) 1 (2.0%) 1(2.0%) 8 (16.3%) 6 (12.2%) 14 (28.6%) 

        

44 (N = 20) 8 (40.0%) 1 (5.0%) 1 (5.0%) 1(5.0%) 5 (25.0%) 4 (20.0%) 9 (45.0%) 

46 (N = 9) 2 (22.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (11.1%) 1 (11.1%) 

47 (N = 20) 3 (15.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (15.0%) 1 (5.0%) 4 (20.0%) 
 

*
N represents the number of cases that had maternal characteristics information. 
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Figure 4-1 The study area for the State of Utah showing 61 small-geographic areas with 

their corresponding area ID 
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Figure 4-2  SMR of oral clefts by small-geographic areas for the State of Utah, 1995 – 

2004. The color scheme goes from a light grey (low SMR value) to a dark grey (high 

SMR value). 
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Figure 4-3 Histogram of the PW statistic for the oral clefts data.  The vertical line denotes 

the PW statistic (80500) and the corresponding p-value (0.237). 
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Figure 4-4 The Profile p-value of EET statistic for the oral clefts data.  The vertical line 

denotes the optimal which attains the minimum of the profile p-value. 
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Figure 4-5  The most significant clusters of oral clefts using the BN statistic for the 

cluster sizes of k =30, 32, 36, and 38.  Easting refers x-coordinate and Northing refers y-

coordinate. 

 

http://en.wikipedia.org/wiki/Coordinate
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Figure 4-6 The oral clefts clusters detected using the spatial scan statistic. The red circle 

corresponds to the most likely cluster (primary cluster) and the green circle corresponds 

to the secondary cluster. 
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 CHAPTER 5 

SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

SUMMARY 

The overall objective of the research conducted here was to undertake a 

comprehensive evaluation of the spatial distribution of oral clefts and establish any 

linkages that might exist with a broad range of demographic, behavior, social, economic, 

and environmental risk factors, through the application of Geographic Information 

Systems (GIS) and spatial statistics methodologies.  Major research themes addressed 

were i) to explore differences in oral clefts rates across states and regions in the United 

States (U.S). and within Utah counties, and for the State of Utah, ii) to examine the 

spatial variations in the prevalence of oral clefts at the small-area level; iii) to identify 

high-risk populations and locations of oral clefts and iv) to assess the extent to which 

specific individual level and area-level risk factors explain the spatial variations and the 

local clusters identified in ii) and iii). 

From a methodological point of view, the research themes were conducive to the 

application of GIS technologies and several innovative statistical methodologies, those 

being 1) the visualization of geographically indexed oral clefts rates using linked 

micromap (LM) plots; 2) Bayesian spatial and ecological analyses of small-scale spatial 

patterns of oral clefts, and 3) identification of high-risk populations and locations of oral 

clefts using a numerous spatial clustering techniques. Each chapter exemplifies detailed 
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discussion. In this chapter, a summary of the salient findings for each chapter is provided 

along with conclusions and directions for future research.  

In Chapter two,  an innovative visualization technique called LM plotting was 

used to represent geographically indexed oral clefts at two geographical resolutions – at 

the state level for the U.S. and at County level for the State of Utah using data obtained 

from the National Birth Defects Prevention Network (NBDPN) and the Utah Birth 

Defects Network (UBDN). Many states and local agencies have implemented birth 

defects surveillance systems to monitor and disseminate information regarding birth 

defects. However, many of these agencies rely solely on tabular methods to disseminate 

statistical birth defects summaries, which force readers and public health officials to 

construct their own visualization in order to uncover trends, relationships, and anomalies 

that may be present in the data.  The LM representation, and particularly so the web-

based application, provides an alternative presentation technique for birth defect data that 

perhaps can move the field away from just tabular formats alone but goes further in 

portraying the information in a joint geographical and statistical context  which is unique 

in itself 

 Two template (US state and Utah County) LM plots were used to represent 

statistical summaries of oral clefts and their spatial indices. At the state level, the LM plot 

displayed five parallel sequences of panels: US and state micromaps, state names along 

with three statistical summary panels, including oral clefts rates, proportion of maternal 

smoking during pregnancy, and proportion of American Indian and Alaskan Native 

(AIAN). The purpose of this LM plot was to reveal overall spatial trends and explore the 
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relationships between the statistical summary panels. At the county level, the LM plot 

displayed four parallel sequences: State of Utah and counties micromaps, names of 

counties and statistical summary panels of oral clefts rates, count of oral clefts cases and 

total number of live births, with one of the statistical panels showing confidence intervals 

(to indicate uncertainty) of the oral clefts estimates in each county.  

The main epidemiological result that came  from the state level LM plot was that 

oral clefts were a major public health issue in the State of Utah, i.e., the state with the 

next to one the highest prevalence of oral clefts  in the U.S after Alaska. Moreover, the 

LM plot revealed spatial patterns indicating that higher oral cleft occurrences were 

observed to be in the southwest and the Midwest and that lower occurrences were found 

in the East of the country.  The plot also revealed significant and positive associations 

between oral cleft occurrence and maternal smoking rates and the proportion of American 

Indians and Alaskan Natives (States with a high percentage of AIAN population exhibited 

high oral clefts rates. In particular, there were five states (Alaska, Utah, New Mexico, 

North Dakota, and Oklahoma) in this category that scored highest in oral clefts rates. 

Among the 15 states with the highest oral cleft occurrence, nine had a smoking rate of 

16% or higher while among the 15 states with the lowest oral cleft occurrence only one 

state had a smoking rate greater than 16%.  

At the state level, the LM plot showed counties with reliable rate estimates such 

as Salt Lake, Cache, Weber and Box Elder resulted in narrow confidence intervals a 

direct result of these counties being more heavily populated. In contrast counties like 

Daggett, Garfield, Kane, Millard and Sanpete resulted in wide confidence intervals a 
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direct result of these counties being more sparsely populated.  Such a representation 

means that any readers can directly appreciate the uncertainty associated with rate 

estimations. Furthermore, graphical plots that include uncertainty estimates mean that 

public health officials are more informed and this purports a more objective decision-

making process in relation to targeted disease control. 

In conclusion, LM plots offer many advantages over traditional choropleth map 

and tabular methods of data presentation as they are more effective at representing oral 

clefts data both at the state and county levels. The integration of micromaps into birth 

defects surveillance will enhance data collection, data analysis, and hypothesis generation 

but will also aid in any planning of public health services. 

In Chapter three, an investigation of small scale spatial patterns of oral clefts in 

the State of Utah was carried out using Bayesian spatial and ecological models. The 

research goals were to demonstrate how Bayesian modeling techniques might be used to  

provide reliable oral clefts risk estimates and  to highlight areas of high prevalence, and 

then explain the results, in terms of  potential risk factors measured at area-level. The 

Bayesian analysis produced various unique model -based maps of oral clefts for the State 

of Utah. Such maps of oral clefts distribution are important tools for guiding surveillance 

and effective control of oral clefts because they (a) provide useful information on areas at 

high risk of oral clefts and, (b) help to optimize the allocation of resources. In addition, 

the oral clefts maps can be used to assess the effectiveness of intervention programs.  

The Bayesian analysis comprised four hierarchical models specifically; a non-

spatial model and a spatial model partitioned accordingly to account for random effects 
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and spatial autocorrelation in the data. The resulting risk estimates for all models were 

similar if not identical. All models produced smooth and interpretable maps of oral clefts 

risk. Moreover, all models filtered out that attributed to random noise from the ―true‖ 

high oral clefts risk areas. The models detected modest small scale variations in oral 

clefts risks in the State of Utah. A few areas in Tri-county LHD, Provo/BYU, and North 

Orem areas were highlighted with high relative risks indicating possible ―local clusters‖ 

of oral clefts. Comparison of the Deviance Information Criterion (DIC) of the two models 

indicated that the addition of spatially correlated random effects did not markedly the 

outcome.  

Furthermore, by extending the Bayesian models to include covariates, it was 

possible to assess the associations between oral clefts prevalence and ecological risk 

factors. The results point towards a statistically significant positive association between 

mother‘s tobacco use and the risk for oral clefts; this finding is consistent with several 

previous studies (Khoury et al., 1987; Lieff et al., 1999; Wyszynski et al., 1997; Chung et 

al., 2000). On the other hand, there was a positive but not statistically significant 

association between a mother‘s alcohol consumption and the risk for oral clefts. Other 

studies of a mother‘s alcohol use during pregnancy (e.g., Munger et al., 1996) have 

documented this as statistically significant. The inconsistency here is likely problems 

associated with using ecological data that is aggregated.  In such circumstances, direct 

relationships between oral clefts risk and mother‘s alcohol use can be obscured and 

difficult to establish.  
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There was no strong association between education background and oral clefting. 

Although the association was not significant, it is important to note that the direction of 

the relationship was positive. The lack of association between oral clefts and mothers 

with no high school diploma could be due to the fact that it was based on aggregated data, 

which could obscure the true association at the individual level. However, regardless of 

its direct association with oral clefts, it is important to consider maternal education as a 

proxy for covariates that are unmeasured or difficult to measure; for example, women 

with less education are less likely to take folic acid during pregnancy, it has been shown 

in several studies that multivitamin and folic acid supplementation reduces the risk of 

oral clefting (van Rooji et al., 2004; Wilcox et al., 2007). 

In conclusion, by accounting for spatial dependency and area-level covariates in 

small-area data, Bayesian hierarchical methods provide more reliable estimate of oral 

clefts risk. In addition, genuine areas of elevated oral clefts were highlighted and area-

level characteristics associated with the risk patterns of oral clefts were identified.  The 

small scale oral clefts maps produced by using Bayesian methods can have an important 

role in planning and intervention programs. Specifically, the maps can be used by the 

Utah Department of Health (UDOH) or UBDN to direct surveillance and channel 

resources or intervention strategies by virtue of more robust accurate estimates of oral 

clefts.  

Chapter four approaches the problem from another perspective where multi-scalar 

approaches to the spatial clustering and cluster analysis were introduced. Here the 

objectives were to test whether clustering of oral clefts cases were present anywhere in 



157 
 

 

1
5
7

 

Utah, to identify any local clusters of excess oral clefts that might be found, and to 

undertake an examination of the maternal characteristics involved with the clusters. 

Global clustering and local cluster testes were used in tandem to detect the different 

aspects of spatial patterns present in the Utah oral clefts data. Specifically, Potthoff - 

Whittinghill, Moran‘s I and Tango‘s MEET statistics were used to test for presence of 

global clustering and Besag - Newell and the spatial scan statistics were applied to detect 

for local clusters. Each of these methods is sensitive to different aspects of spatial 

patterns and so, they complement each other. 

The results of the multi-scalar approach using the Potthoff – Whittinghill, 

Moran‘s I and Tango‘s MEET methods indicated no evidence of spatial clustering of oral 

clefts rates across the study area.  This finding suggests that there is little evidence to 

support the existence of a strong source of environmental exposure or maternal infection 

affecting oral cleft outcome. However, a tendency of excess oral clefts cases was 

identified in the Tri-county LHD, Wasatch county, Provo/BYU, East Orem and North 

Orem areas using spatial scan statistic and Besag and Newell method.  Subsequent 

investigation of the maternal characteristics involved in these areas showed that maternal 

smoking use, maternal lower education level, and family history of congenital 

malformation were high within the Tri-County LHD, whereas the Provo/BYU and North 

Orem areas showed only a modest number of cases with maternal lower education level 

and family history of congenital malformation but very low maternal smoking.  

In conclusion, using a multi-scalar approach, it was possible to probe different 

aspects of spatial patterns in oral cleft prevalence over Utah and so provide a more 
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critical assessment of the processes that might underlie their distribution. Despite finding 

no evidence of spatial clustering, a few areas with excess oral clefs cases were signaled 

out. Furthermore, these areas were associated with established risk factors of oral clefts.  

LIMITATIONS AND FUTURE DIRECTIONS 

Although the research just detailed does provide a comprehensive evaluation of 

the spatial distribution of oral clefts, there are several limitations that must be discussed 

and addressed in the future work.  One limitation was that the NBDPN oral clefts data 

used were collected from different state birth defects surveillance programs. The 

variation in the rates of oral clefts across states and regions may reflect differences in the 

collection and ascertainment methods of state-based birth defect surveillance systems 

(e.g., difference in case ascertainments, case inclusion criteria, and inclusion of elective 

terminations and still births) rather than the true difference among states and regions. 

Therefore, for a more meaningful characterization of the spatial variations in oral clefts 

across states and regions, guidelines are needed on standardized methods of birth defects 

collection; cases case ascertainments, and inclusion criteria.  

As mentioned, this research study did not adjust for confounding factors (e.g., age 

of the mother and race of infant) for the Bayesian spatial cluster analysis and mapping 

because these data were not made available to us by the UDOH despite an IRB request. 

These confounding factors might influence the results of the spatial analysis, but it is 

doubtful, for reasons stated earlier, that the results were overly affected by a lack of these 
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adjustments.  Regardless, future studies of spatial analysis of oral clefts should control, 

wherever possible, for relevant demographic and socioeconomic confounders. 

The Utah oral clefts data used in this research study might not be complete record.  

For example, the oral clefts rates reported by UDOH are 22.2 per 10,000 for the period 

1995-2003 compared to this research study‘s rates of 19.5 per 10,000 for period 1995-

2004.  Although the difference between these two rates is small, an incomplete dataset 

could result in spurious geographical variation. However, again it is unlikely that the 

results would change substantively since we found only modest geographical variation or 

clustering.  

The research was based on aggregated data; essentially it was an ecological study. 

Although there is a valuable contribution in terms of helpful information garnered for 

pre-epidemiologic studies of oral clefts, a limitation of such a study is that it is difficult to 

establish casual relationships between oral clefts and any potential risk factors. Future 

studies should involve a more detailed investigation using either case-control or cohort 

studies. Especially important for future research initiatives should be a focus on those 

areas identified as hotspots in order to pinpoint specific individual risk factors that may 

be unique to these areas.  In addition, future studies should move to identify any genes 

that are risk factors for oral cleft development and examine the interactions between 

those genes and environmental factors. 

The effects of ambient air and environmental pollutants on oral clefts have not 

been directly addressed in this research, however other studies have examined the effects 

of exposure to ambient air pollution (Ritz et al., 2002; Gilboa et al., 2005) and 
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environmental hazardous waste sites (Brender et al., 2006)  during pregnancy. Future 

studies should consider the contribution of these pollutants in Utah oral cleft outcome at 

refined scale. For instance, one can examine whether oral clefts cases tend to cluster 

nearby to so-called ―superfund‖ sites or under elevated air pollution levels (e.g., strong 

subsidence inversion events where particulate matter, nitrogen dioxide, carbon monoxide 

and ozone can be concentrated and exceed ―safe‖ levels); in such scenarios the use of 

focused testes such as Lawson and Waller (1996) might be very insightful. 

The current study was based on the collective types of oral clefts grouped 

together. However, a growing body of evidence suggests that there exists etiologic 

heterogeneity between different types of oral clefts. To better understand the underlying 

etiology of oral clefts and whether common or different genes and environmental risk 

factors play a causal role for the different types of oral clefts, future studies should break 

down the analysis by type. 

From a methodological point of view, some of the methods for global clustering 

(e.g., Tango‘s MEET) and local cluster testes (e.g., Spatial Scan Statistics) formally 

accounted for multiple testing, while others such as Moran‘s I and BN method did not 

account for multiple testing. Future studies should consider a standardized approach to 

address the multiple testing problems that will allow a researcher to first maintain 

statistical rigor but second and more importantly, allow inter-comparison of results 

between different methods to be the case.   

Further spatial analyses of oral clefts at a finer scale level (individual level) 

should be conducted to confirm or capture spatial patterns that will be missed by using 
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aggregated data.  An important expansion would be to consider the inclusion of temporal 

data to allow for a better understanding of possible temporal patterns. Furthermore, to 

better understand the etiology of oral clefts and explore how physical and social 

environment of neighborhood might influence the risk of oral clefts, future studies should 

consider using multilevel modeling. Multilevel modeling is a powerful construct that 

allows one to estimate the contribution to the outcome of both individual level and 

neighborhood level to the total variation. 

CONCLUSIONS 

In conclusion, the research presented here presents additional insights into oral 

clefts epidemiology through a geographical perspective. The findings indicate that higher 

oral clefts occurrence in the southwest and the midwest and lower occurrence in the east, 

with the patterns of oral clefts occurrence significantly related to smoking rates and 

American Indians and Alaskan Natives.  The results also indicate that the State of Utah 

has the second highest prevalence of oral clefts in the U.S.  However, small-area analysis 

of Utah oral clefts data revealed modest spatial variation in oral clefts risks in the State of 

Utah, with no pronounced spatial clustering. Our finding of lack of global clustering 

suggests a common environmental risk factor is unlikely to be a plausible cause of oral 

clefts. In other words, it eliminates the existence of a single and strong source of 

environmental exposure such as air pollution, contaminated water, hazardous waste, 

factory emissions, or maternal infection causing high prevalence of oral clefts in the State 

of Utah. Despite the lack of evidence for spatial clustering in a study, a few notable areas 
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(i.e. within the Tri-County LHD, Wasatch County, Provo/BYU, North Orem and East 

Orem) there was a tendency towards high aggregation values of oral clefts cases, 

indicating possible local clustering of oral clefts. 

 Furthermore, the results support the hypotheses that maternal smoking, family 

history, and maternal education background are significant risk factors of oral clefts for 

the state. However, further evaluation of the role of these factors is required through the 

application of individual data; especially in areas that exhibit high oral clefts cases. In 

addition, throughout the research venture effort was made to reveal the usefulness of GIS 

and novel spatial statistical methodologies for birth defects surveillance. It was indeed 

demonstrated how birth defects data collected by state and local monitoring systems 

coupled with GIS and spatial statistics methods could be useful as a preliminary and cost-

effective method of characterizing the epidemiology of birth defects.   

Finally, the findings and the methodological applications demonstrated here can 

pose an important role for guiding further epidemiological studies and for aiding public 

health officials in surveillance and control activities. Specifically, governmental agencies 

such as UDOH or UBDN can use the information to optimize the allocation of health 

resources for oral clefts control or intervention activities such as smoking cessation 

programs, and / or nutritional and multivitamin supplement use as a preventative 

measure.  
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APPENDIX B 

Deviance Information Criterion  

 

Deviance information criterion (DIC) is a Bayesian model comparison criterion 

proposed by Spiegelhalter et al. (2002). DIC is based on trade-off between model 

―goodness of fit‖ and ―complexity‖ that is based on the posterior distribution of the 

deviance statistic:   

)(log2)|(log2)( yθyθ hfD   

where, )|( θyf  is the likelihood function for the observed data vector y given the 

parameter θ  and )(yh  is some standardizing function of the data alone and has no impact 

on model selection. In this approach the model goodness of fit of the data is summarized 

by the posterior expectation of the deviance ][| DED y , while the model complexity is 

captured by the number of effective parameters Dp , which is defined as the posterior 

mean deviance minus deviance evaluated at the posterior mean of the parameters: 

)θ(])[(][ || DDEDDEp yyD     

The DIC is then defined analogously to AIC, i.e., the sum of model goodness of 

fit and the effective number of parameters:  

) θ(2 DDpDDIC D   

Since a small value of ( D ) indicates good fit while a small value of Dp  indicates 

a parsimonious (simpler) model, therefore, a small value of DIC indicates that the model 
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is better supported by the data. DIC can be monitored in WinBUGS from Inference/DIC 

menu. 
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