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ABSTRACT 
 
 

Geometry and Electronic Structure of Doped Clusters via the  

Coalescence Kick Method  

 
 

by 
 
 

Boris Averkiev, Doctor of Philosophy 
 

Utah State University, 2009 
 

 
Major Professor: Dr. Alexander I. Boldyrev 
Department: Chemistry and Biochemistry 

 
Developing chemical bonding models in clusters is one of the most challenging 

tasks of modern theoretical chemistry. There are two reasons for this. The first one is that 

clusters are relatively new objects in chemistry and have been extensively studied since 

the middle of the 20th century. The second reason is that clusters require high-level 

quantum-chemical calculations; while for many classical molecules their geometry and 

properties can be reasonably predicted by simpler methods.  

The aim of this dissertation was to study doped clusters and explain their 

chemical bonding. The research was focused on three classes of compounds: aluminum 

clusters doped with one nitrogen atom, planar compounds with hypercoordinate central 

atom, partially mixed carbon-boron clusters, and transition metal clusters. The geometry 

of the two latter classes of compounds was explained using the concept of aromaticity, 

previously developed in our group.  
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Also the Coalescence Kick Method for finding global minima structure and low-

lying isomers was implemented, tested, and applied to the considered cluster systems. 

Tests showed that the Kick Method works faster than other methods and provides reliable 

results. It finds global minima even for such large clusters as B17
- and B19

- in reasonable 

time. 

(404 pages) 
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CHAPTER 1 

INTRODUCTION 
 
 

Developing chemical bonding models in clusters is one of the most challenging 

tasks of modern theoretical chemistry. There are two reasons for this, the first one is that 

clusters are relatively new objects in chemistry and have been extensively studied since 

the middle of the 20th century. The second reason is that clusters require high-level 

quantum-chemical calculations. For many organic molecules, simplified methods were 

suggested: the Huckel method and a number of semi-empirical methods. Due to the 

limited number of bond types in a majority of organic compounds, it is possible to find 

reasonable parameters for theses methods and calculate feasible geometry and properties. 

The geometry of many organic molecules can be predicted even via molecular 

mechanics. The diversity of clusters and different types of bonding elements in clusters 

make it impossible to study them by semi-empirical methods. Therefore, the study of 

clusters has to be performed at high-level ab initio quantum-chemical methods. Such 

methods have been incorporated in available software packages and, thus, become 

possible for use in routine calculations only in the last 20 years. 

We still do not have a chemical bonding model capable of predicting the 

structure, stability, and chemical reactivity of clusters. In the study of some particular 

type of clusters, we start with investigating small clusters and then apply the gained 

knowledge to more complex systems composed of hundreds of atoms, including various 

elements, such as transition metals or even lanthanides and actinides. This approach leads 
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to the establishment of further understanding of structure and bonding in novel 

nanoparticles and nanomaterials in general. 

In this dissertation, I calculated the structures of isomers for some small (less than 

12 atoms) clusters and analyzed the nature of chemical bonding in them. There are three 

groups of studied clusters: aluminum clusters doped with one nitrogen atom, mixed 

carbon-boron clusters, and clusters of transition elements. 

Chapter 2 is a literature review of methods that have been previously 

implemented for global minimum search, as well as models of chemical bonding in 

clusters. Chapter 3 is dedicated to Coalescence Kick method, which was suggested, 

implemented, and tested in our group. This method is the simplest one from all methods 

described in literature, but our tests showed that it works faster and provides reliable 

results. It finds global minima even for such big clusters as B19
- in reasonable time.  

In Chapters 4-7, the aluminum clusters doped with nitrogen atom: AlxN and AlxN- 

for x=3-8 are discussed. In this project, we showed how impurities affect the structure 

and properties of aluminum clusters. Chapter 4 is devoted to the AlxN and AlxN- (x=3-5) 

clusters. It was shown that for x=5 there is a transition occurring from planar to 3-

dimensional structures for AlxN and AlxN- clusters. In Chapter 5, structures for Al6N and 

Al6N- are discussed. Chapters 6 and 7 describe structures for Al7N and Al7N-, and Al8N 

and Al8N- clusters, respectively. 

Chapters 8-11 describe probability of designing planar molecules with hyper-

coordinate central atom. In chapters 8 and 9 we developed a new chemical bonding 

model capable of explaining why carbon atom avoids the central position in the wheel 
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structure of carbon-boron clusters CB6
-, CB6

2-, C2B5
-, and CB7

-. Some authors suggested 

using such molecules as building blocks in other compounds. However, we showed that 

this is impossible because hexa- and hepta-coordinate carbon clusters, though being local 

minima, are not viable chemical species (high-lying isomers) and, thus, of no interest for 

experimentalists. Using our model of chemical bonding in clusters, one can see why 

clusters with hypercoordinate carbon atom are not stable. This model also allows one to 

predict what planar structures with hypercoordinate central atom will be low-lying 

isomers. In Chapter 10, we showed that planar AlB9 structure with central 

hypercoordinate Al atom is the global minima or a low-lying isomer for AlB9 cluster. 

This is an example of predictive power of aromaticity conception in cluster chemistry. In 

Chapter 11, we summarized ideas from Chapters 8-10 about aromaticity in planar 

structures with hypercoordinate planar atom. Also, we reported structure and analysis of 

electron density in CB8
- cluster. 

In Chapters 12-15, aromaticity and antiaromaticity in transition-metal systems are 

described. The conception of aromaticity is applied to transition metal compounds. Ta3O3
- 

in a 1A1’ D3h state was shown to be the first example of δ-aromatic compound. This is the 

topic of Chapter 12. Theoretical calculation of first example of triply (σ, π, δ)-aromatic 

system Hf3 is described in Chapter 13. The aromaticity in transition metal systems 

previously reported in literature is reviewed in Chapter 14. In Chapter 15, theoretical 

models for aromatic orbitals in transition metals are discussed. The diagrams for different 

aromatic orbitals in 3- and 4-member metallic cycles are presented. 

 



 

 

4 

CHAPTER 2 

LITERATURE REVIEW 
 
 

2-1. Introduction 

One of the most important targets of modern science is the design of new 

materials with desired properties. It can be done by experimental synthesis of 

compounds, followed by testing of their properties, or by ab initio calculations of yet 

unsynthesized molecules with calculation of their properties. Using quantum chemical 

calculations, one can predict myriads of unique compounds with unusual properties. 

However, it is not enough just to predict unique structure with desired properties. Only 

global minima or low-lying isomer will be feasible for synthesis, and so, can be used to 

design new materials. High-energy isomers, which are about 5 kcal/mol higher in energy 

than the global minimum structure, will be unstable. Hence, the global minima search is a 

very important step in designing new materials with desirable properties. Mathematically, 

the process of global minima search is represented by exploring the Potential Energy 

Surface (PES) – the 3n+1-dimensional surface, where energy variable depends on 3n 

coordinates of n-atomic system. The result of such a search should be a set of isomers 

corresponding to local minima structures and the global minimum structure. The main 

obstacle is that the number of minima increases exponentially with the number of atoms 

in the system, especially when there are several types of atoms in system.1,2 While for 

simple systems containing 2-5 atoms possible minima structures are usually obvious, and 

thus, can be manually constructed, for more complicated systems such a manual search is 
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impossible. Even for relatively small systems containing just 6-12 atoms, the manual 

search of global minima and low-lying isomers becomes tedious. Hence, we need 

unbiased computational methods for global minima search.  

 
2-2. Algorithms for Global Minima Search 

There were several algorithms proposed for solving this problem, with the most 

popular being Simulated Annealing,2-4 Genetic Algorithm,5-9 Particle Swarm 

Optimization,10-13 Kick Method,14,15 Basin Hopping,16,17 and Minima Hopping.18,19 All of 

them utilize random structure generation of initial populations.  

The easiest and most straightforward algorithm is a Kick Method,14,15 where the 

large population of randomly generated structures is optimized to the nearest local 

minima. Generating big enough population, one can obtain all minima on PES, including 

the global one. The process is finished when the method does not generate new structures 

anymore. 

Other algorithms generate smaller initial population of random structures, which 

is then used to generate other structures. In Simulated Annealing, Particle Swarm 

Optimization, Basin Hopping, and Minima Hopping approaches, each structure from 

initial population is slightly transformed in each step of process, so that the PES is 

gradually explored by “walking” of each of the initially generated structure. Because we 

are interested in minima of PES, we are looking for transformed structures with energies 

lower than energies of their untransformed “parents.” However, we also need to accept 

some structures with higher energies, otherwise we will stay in the same basin – area of 
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PES, where optimization of all structures will lead to the same local minima. Hence, 

when the energy of transformed structure is higher, it will be accepted with some 

probability. The algorithms mentioned above are differentiated by method of exploring of 

PES, i.e. how program generates new structures from initial population and which of 

them will be further accepted. 

The Simulated Annealing was the first method suggested for global minima 

search. The classic simulated annealing paper by Kirkpatrick2 has been cited over 8,600 

times since 1983. The Simulated Annealing, as one can see from its name, is based on a 

procedure simulating the process of self-organizing of clusters when we heat them to a 

high temperature and then gradually cool them down. We believe that, in this case, atoms 

will be assembled into the most stable structure, which has the lowest energy, i.e. global 

minima. Technically, it means that we allow the initial structure to be changed randomly 

in any direction of PES. The probability of acceptance depends on the energy difference 

between the initial and transformed structures and also on temperature. The higher the 

temperature, the more the probability that the transformation will be accepted, even if the 

transformation has increased the energy of the structure. The process starts at high 

temperature, so at the beginning of Simulated Annealing, most the steps are accepted. 

That allows one to overcome the barriers of PES and not to stay in one local minima 

basin. At the end of the process, the temperature decreases, along with the number of 

accepted transformations. The process is finished when the number of accepted 

transformations is less than some small value, e.g. 10%. 
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Basin Hopping algorithm, proposed by Wales,16,17 can be considered as a 

modification of Simulated Annealing. In Basin Hopping algorithm “basin energies” of 

initial and transformed structures are used to calculate the probability of acceptance of 

the transformed structure. “Basin energy” is the energy of the local minimum of basin to 

which structure belongs. Mathematically, it means that, in this case, we deal with 

modified PES, where energies of all points are replaced by energies of corresponding 

local minima (see Figure 1-1). This modification helps structures to overcome barriers 

between basins, so it speeds up the exploring of PES. Strictly speaking, Basin Hopping is 

not an algorithm, but rather, a procedure, which can be incorporated in other methods, for 

example, in Particle Swarm Optimization method, which is briefly described next. 

Particle Swarm Optimization10-13 simulates behaviors of swarms of insects or 

flocks of birds. Unlike previously described methods, where structures on each step are 

transformed randomly, in this method the transformation of each structure depends on 

transformations of other structures from initial population. The lower the energy of some 

obtained structure in whole population the higher the probability that all other structures 

will be transformed in the same direction in PES. 

Minima Hopping Algorithm,18,19 recently proposed by Goedecker, is another 

modification of Simulated Annealing. In this approach, authors used molecular dynamics 

simulations to explore PES. The probability that structure crosses a barrier in PES 

depends on kinetic energy of the atoms, which is an adjustable variable. Hence, the 

system “hops” from one minimum to another when a barrier between two basins is 

smaller than the kinetic energy. In this method, a program keeps history of all obtained 



 

 

8 

local minima, so that when the procedure do not obtain any new basins, the kinetic 

energy parameter is increased and that allows the system to explore other parts of PES. 

Goedecker emphasizes that this method works in cases where even Basin Hopping 

method does not work – in case when two basins are separated by other basins with 

higher energies and the difference between barrier and local minima is not big (Figure 2-

1).  

Genetic Algorithm5-9 is different from above-mentioned algorithms, because the 

new structures in this method are obtained via mating of two “parent” structures. It is 

based on Darwin’s theory of Evolution, where mating of two parents produces a child 

that takes best properties from his parents. In terms of global minima search, it means 

that when we use two structures with low energies there is a high probability that their 

combination will result in a child structure with low energy too. In Gradient Embedded 

Genetic Algorithm (GEGA),8,9 designed by Alexandrova, all structures are first optimized 

to local minima, and afterwars breed new generation of structures. Besides breeding 

Genetic Algorithm implements mutations – random changes of parent structures. This 

prevents the search to be entrapped in some local minima.  

In our group Simulated Annealing, Particle Swarm Optimization and Gradient 

Embedded Genetic Algorithm were implemented by Seth Call and Anastasia 

Alexandrova. While all these methods were effective for the calculation of relatively 

small molecules, they were not very efficient when we tried to deal with larger molecules 

containing more than 12 atoms. Hence, one more algorithm was implemented which is 

described in the next chapter. 
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2-3. Structures and Chemical Bonding of Inorganic Clusters  

The investigation of the structure of matter is one of the most intriguing and 

important tasks of science. Usually, all compounds are divided into two main classes: 

organic and inorganic compounds. The first step in the theory of structure of organic 

compounds was made by Butlerov at the end of the 19th century, where he explained 

isomerism of organic compounds using concept of valency. The principles of chemical 

bonding in organic and simple inorganic molecules were developed on the basis of Lewis 

model20 in the first part of the 20th century. In this model, the structure of molecule is 

described as a group of atoms, connected by 2-center 2-electron bonds (2c-2e bonds). 

Atoms also can have lone pairs (1c-2e electrons). Inorganic compounds usually exist as 

crystals, and chemical bonding in them can be described as ionic (like in NaCl), metallic 

(like in Cu), or covalent (like in diamond). 

Starting from the 1950’s the first clusters were studied.21 There is still no 

precise definition of a cluster. A cluster can be defined as an aggregate of atoms, which is 

stable in vacuum (gas phase), but usually is not stable as a bulk material. Unlike 

molecules, clusters can be charged. Clusters can contain from several to hundreds of 

atoms. Examples of classic small clusters are B12H12
2-, Co4(CO)12, Fe2(CO)9, Re2Cl8

2-. The 

challenging feature of clusters is that their chemical bonding pattern cannot be described 

in terms of classical 2c-2e bonds. Hence, we need to develop a new definition of 

chemical bonding, a definition, which will describe the geometry and properties of 

clusters. 
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Usually, clusters are produced by laser vaporization technique.22 Atoms from 

the source bulk material (for example, metal) are evaporated to gas phase and are 

assembled into clusters with different composition. Clusters containing N, O atoms can 

be produced by vaporization of metal in an atmosphere of N2 or O2, respectively. Using 

mass-spectroscopy, these clusters can be separated, and some of their properties (like 

photoelectronic spectra) can be studied. 

Mass spectra show that some clusters with a certain composition are more 

abundant than others. This reflects the increased stability of clusters with such specific 

composition. For example, mass-spectra of Cx clusters show that, at x=60, clusters should 

be especially stable.23,24 This is the famous fullerene cluster C60. Analogously, for Alx
- 

clusters, a very pronounced peak of mass-spectra corresponds to x=13,25 for AlxC-, x=7,26 

for AlxSi, x=12.27 These specific numbers are so-called “magic numbers.” One of the 

purposes of the chemical bonding theory in clusters is to explain the nature of these 

magic numbers. 

Before 80’s, the structure of the clusters, obtained from bulk material had not 

ever been discussed, since it was implicitly supposed that their structure is just some 

piece of original bulk material. The most famous example is carbon clusters, which were 

first produced by Rohlfing et al. in 1984.23 The authors noticed that cluster C60 is very 

stable, but they didn’t consider its structure, suggesting that it should be just a piece of 

graphite lattice. Only in 1985, in the famous paper of Kroto et al. in Nature, it was 

suggested that this cluster has an unusual, football (mathematically strictly speaking 
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truncated icosahedron) structure, and it was called buckminsterfullerene (in short, 

fullerene), named after the American architect R. Buckminster Fuller.24 

Hence, it occurred that cluster structure is not the same as that of the 

corresponding crystal. Moreover, the structure of clusters dramatically depends on the 

number of atoms. Addition of just one atom can dramatically change the cluster’s 

geometry and electronic structure. Also, structure depends on the charge of cluster. For 

example, bulk aluminum has face-centered cubic crystal structure. Al13
-, cluster, however, 

is a perfect icosahedron.27 This situation is common for many metal clusters. Search for 

global minima of gold clusters19 revealed that, depending on the number of atoms, the 

structure a of gold cluster can be described as amorphous (without any symmetry), 

fivefold symmetry cluster, cluster based on face centered cubic lattice, and cluster based 

on twinned face centered cubic lattice. 

The simplest theory, describing the stability of clusters, is the Jellium Model.28 

It was shown that it works well for sodium clusters.29 Mass spectra of Na clusters showed 

large peaks with N=8, 20, 40, 58, and 92. The main idea of this model is that a metallic 

cluster with approximately spherical shape can be considered as a superatom, where 

nucleus and core electrons make the core of this superatom, with valence electrons 

occupying atomic orbitals of this superatom. Because of spherical symmetry, these 

orbitals can be characterized by quantum numbers l and m. However, since the spherical 

potential, created by many nuclei, is not the same as that created by a single nucleus, for 

this superatom angular quantum number l is not restricted by a principle quantum number 

n - there are 1s, 1p, 1d orbitals. According to calculations, the order of the occupation of 
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orbitals is 1s2, 1p6, 1d10, 2s2, 1f14, 2p6 … Hence, superatoms with 2, 8, 18, 20, 34, 40, 

… electrons should have enhanced stability, analogously to atoms with completed sub-

shells that have more stable electronic configurations. 

However, the Jellium Model works only for metal clusters, and it does not 

explain the structure of clusters. Some authors tried to apply it to explain the stability of 

doped metal cluster Al7C–.26 This cluster contains 26 valence electrons, which doesn’t fit 

the Jellium Model. Authors suggested that this cluster could be considered as 

combinations of two superatoms, Al6 and AlC–, with 18 and 8 valence electrons, 

respectively. However, as it was noticed later on,30 this model did not work, because the 

structure of Al7C– with carbon atom, located in the center of the cluster, is not in 

consistence with this explanation. 

The second model, proposed to explain structure and bonding in clusters, is 

conception of aromaticity. The application of aromaticity to chemical bonding in clusters 

was first introduced by Kuznetsov et al.31 The authors suggested expanding the concept 

of aromaticity from organic chemistry to clusters. Like in case of organic molecules, 

aromatic clusters possess high symmetry and increased stability. The first examples of 

aromatic clusters were clusters containing Al4
2- fragment31 NaAl4

- and CuAl4
-, as well as 

XAl3
- (X=Si, Ge, Sn, Pb).32 The details of these works are given in Kuznetsov’s PhD 

dissertation.33 

Because of the diversity of clusters, the conception of aromaticity occurred to be 

even more fruitful than in organic chemistry. The striking feature of chemical bonding in 

clusters is the possibility of the multi-fold nature of aromaticity, antiaromaticity and 
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conflicting aromaticity. Like in aromatic organic structures, molecular orbitals in 

planar clusters can be classified as σ- and π-orbitals. Huckel rules should be applied for 

each of these subsystems separately. Consequently, there are four possibilities for planar 

clusters composed out of main group elements: 

1) both aromatic σ and π systems – double aromatic clusters.  

2) both antiaromatic σ and π systems – double antiaromatic clusters. 

3) σ aromatic, π antiaromatic – clusters with conflicting aromaticity 

4) σ antiaromatic, π aromatic – clusters with conflicting aromaticity 

Alexandrova et al. analyzed structures of pure boron clusters on the basis of 

conception of multiple aromaticity and antiaromaticity.34 In particular, they showed that 

B9
- cluster is doubly aromatic, which results in stable high-symmetry planar structure of 

this cluster. The details of analysis of boron clusters are given in Alexandrova’s PhD 

dissertation.35 

From quantum-chemical calculations, one can obtain molecular orbitals – wave 

functions, describing space distribution of electrons with certain energy. Natural Bond 

Orbitals (NBO) Analysis, developed by Weinhold,36,37 let us transform molecular orbitals 

to localized objects, which can be interpreted as atom-atom 2c-2e bonds and lone pairs 

(1c-2e bond) in classical molecules without delocalized bonding. Therefore, NBO 

Analysis fails for structures with delocalized bonding, like aromatic compounds. Hence, 

we cannot apply this analysis to many clusters, which could be explained on the basis of 

aromaticity conceptions. In 2008, Zubarev developed the Adaptive Natural Density 

Partitioning (AdNDP) method,38 which is an extension of NBO analysis. This method 
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localizes all 2c-2e bonds and lone pairs, but in addition to that, it also reveals bonds, 

localized over more than 2 atoms: 3c-2e, 4c-2e, and so on (such bonds are called 

delocalized). Hence, this method is a very powerful tool for analyzing electron 

distribution in clusters and molecules, and it allows describing bonding pattern in terms 

of 2c-2e bonds and aromaticity. This method was already applied to gold cluster39 and 

classical aromatic molecules.40 The details of this method are given in Zubarev’s PhD 

dissertation.41 
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Figure 2-1. Examples of transformation of PES in Basin Hopping method.  

a) Basin Hopping method works, b) Basin Hopping method does not work 
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CHAPTER 3 

COALESCENCE KICK METHOD 

 
3-1. Introduction 

Different methods of global minimum search were discussed in the previous 

chapter. Three from the above-mentioned methods – GEGA, Simulated Annealing, and 

Particle Swarm Optimization were already implemented in our group by A. 

Alexandrova1,2 and S. Call.3,4 

While all these methods were effective for calculation of relatively small 

molecules, they occurred not to be very efficient when we tried to deal with larger 

molecules containing more than 12 atoms. There were several problems, resulting from 

the fact that the main purpose of these methods is search for the global minimum, but not 

exploring PES for other minima. The first problem is repeated visits of certain 

configurations in PES. The closer programs get to the global minimum, the more often it 

generates structures from the global minimum basin or from neighboring basins. Hence, 

programs spend a lot of computational time to optimize different initial geometries 

leading to the same structure. The second problem is that programs can miss some low-

lying isomers. A low-lying isomer, which is not the global minimum structure at low-

level calculation, can become global minimum at high-level calculations. High-level 

calculations can change the order of isomers, and even result in a different global 

minimum structure. 
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It should be emphasized that a searching program usually performs more than a 

thousand calculations (depending on the number of atoms in structure), so nowadays for 

such a vast number of calculations one can afford only low-level quantum-chemical 

methods. Hence, a program should search not only for global minimum, but also for 

isomers lying within some reasonable energy gap from the energy of the global minimum 

at the current level of calculations. Usually this energy gap is about 20-30 kcal/mol. For 

chemical species, which are described in this dissertation, we report structures lying 

within 10-20 kcal/mol energy gaps from global minimum structures. 

Hence, increasing complexity of structures investigated in our group stimulated us 

to implement one more program featuring fast and simple Kick Method. In original 

version of this method program generates random structures without checking 

connectivity or short atom-atom distances. Generated structures are submitted to another 

program, which optimizes them to local minima. It was estimated that only 10-50% out 

of all generated structures are optimized completely and represent possible isomers for 

the cluster. All other initial structures have too bad, unreasonable, geometry if treated by 

quantum-chemical programs. There are two types of structures with bad geometry: 

1) Initially generated structure containing too short atom-atom distances. In this 

case it is impossible to calculate initial wave function because self-consistent field (SCF) 

convergence cannot be achieved, hence the quantum-chemical program abandons the 

structure from the beginning. 

2) Fragmented initially generated structure. This is the worst and the most 

common case. The fragmentation of structure results in very slow conversion of SCF. At 



 

 

20 

best SCF will result in convergence failure with quantum-chemical program 

abandoning the structure like in the case of structures of too short atom-atom distances. If 

SCF is converged then a process of optimization starts next. However, this process is 

much slower than for non-fragmented structures, so it slows down calculations 

dramatically, and does not lead to new isomers. Only in rare cases initial fragmented 

structure is optimized into a non-fragmented one. 

While all these problems did not play crucial role for small molecules, they 

became the main obstacle when we tried to calculate medium size clusters with more than 

12 atoms: Al12N- and B17
-, B18

-, B19
-. The program just could not create the initial 

wavefunction for any of randomly generated structures.  

To avoid above-mentioned drawbacks of the original version of Kick Method, we 

designed the modified “Coalescence” Kick Method. In this method initially generated 

random structure is first checked for connectivity, and then if the structure is fragmented, 

the coalescence procedure is applied to it. Two atoms are considered to be connected if 

the interatomic distance satisfies the sum of their covalent (or van der Waals) radii. 

There are several algorithms that can be implemented to transform fragmented 

structure to non-fragmented one. They can be classified into two groups:  

1) Program connects different fragments of initial structure step by step, starting 

from the fragments that are closest to each other. This approach was used by S. Call in 

his program of Simulated Annealing4 and Particle Swarm Optimization.3 

2) Program pushes all fragments of structure to the center of mass simultaneously. 

This approach is used in Coalescence Kick Method. 
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In spite of seeming simplicity of the former approach, the latter is easier to 

implement and it better preserves the mutual arrangement of atoms of initially generated 

random structure.  

 
3-2. Coalescence Kick Method Algorithm 

The current version of “Coalescence” Kick Method program is designed for 

search of global minimum as for single molecules of desired composition, as well as for 

complexes of molecules like solvated anions (e.g. SO4
2-

*4H2O), where the initial 

geometry of each molecule is specified in the input file. The program can also search for 

clusters with a desired core, for example, when we are looking only for the Al10N- 

clusters that contain Al6N octahedral fragment. 

The process of global minimum search is divided in four steps. 

1) The generation of a random structure.  

Because the structure can contain both atoms and fragments, there are two 

procedures of generation. Atomic position is assigned using three random coordinates x, 

y, z. The position of a fragment is defined by its center of mass being assigned three 

random coordinates x, y, z. The orientation of a fragment is defined by three random 

Euler angles φ, θ, ψ. The range of possible values of coordinates x, y, z depends on “box 

size,” which defines maximum values of coordinates. The box size is chosen to be very 

large to avoid initial structures with very short interatomic distances. The program uses 

4*(sum of atomic covalent radii) for all three linear dimensions of box. 

2) Analysis of system connectivity.  
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By connectivity we mean not only when atoms are directly connected to each 

other, but also in case atoms belong to the same fragment of the structure, that is they are 

connected indirectly, via other directly connected atoms.  

The information of connectivity between atoms in structure is represented by the 

matrix of connectivity. The calculation of the matrix is an iterative process. The initial 

matrix shows only directly connected pair of atoms. If two atoms i-th and j-th are directly 

connected to each other, then elements [i,j] and [j,i] are equal to 1. Otherwise, [i,j] and 

[j,i] are equal to 0. After that program checks the connections of the 2-nd order - two 

atoms are considered to belong to the same fragment when they are directly connected to 

the same atom. Then connectivities of the 3-rd order are checked (when i-th atom is 

connected to j-th atom via k-th atom, where connection i-k is the 2-nd order connection). 

This procedure starts from the first atom in the list of atoms. When all atoms that belong 

to the part of the first atom are obtained, the same procedure is applied to atoms that do 

not belong to this fragment. The number of atoms in the fragment of i-th atom is kept in 

element [i,i] of the matrix. This information will be used in coalescence procedure, which 

is the next step of our method. The [j,j] element for the j-th atom which already belongs 

to i-th fragment (i < j) is set to 0, so program skips the j-th element. The following three 

matrices demonstrate the calculation of the matrix of connectivity for a system of water 

molecule and hydrogen peroxide molecule (H2O+H2O2). The first matrix represents the 

initially generated matrix, in the second one the program revealed that first three atoms 

belong to the same fragment (water), the third matrix represents the final matrix of 

connectivity, where both water and hydrogen peroxide fragments are revealed.  
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3) The coalescence procedure. 

The structure obtained from the first step is fragmented. This step is intended to 

push all atoms and fragments toward the center of mass of the system. If several atoms 

belong to the same fragment, they are pushed to the center of mass of the system not 

independently, but as a whole fragment, so that their interatomic distances do not change. 

When two or more atoms approach each other and are considered to be connected by 

connectivity analysis, they are treated as one fragment. The process is repeated unless the 

system is non-fragmented.  

The magnitude of shift should be small enough so that atoms do not approach 

each other too close, but it should be large enough so that procedure converges in 

reasonable time. In the current version of program we use 0.2 A shift. 

The example of changing the geometry of system during the coalescence 

procedure is given in Figure 3-1 for system B7. 

4) Submitting generated structure to an optimizing program.  

The optimization procedure uses Schlegel’s analytical gradient method.5 This 

program is a subroutine of Gaussian 03 program.6 The attainment of the energy minimum 

is achieved if four following criteria are satisfied: 
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a) The maximum force on atoms is less than 0.00045 hartree/bohr. 

b) The root mean-squared (rms) force on atoms is less than 0.00030 hartree/bohr. 

c) The maximum displacement of atoms during optimization step is less than 0.0018 A.  

d) The rms displacement of atoms during optimization step is less than 0.0012 A.  

Currently we are using Gaussian 03 program, however, in principle it can be any other 

quantum-chemical or molecular-mechanical program, which optimizes geometry of a 

molecule to minimize its energy. 

The examples of generated non-fragmented structures are given in Figure 3-2. 

Using this method we predicted global minimum structures for B3H7
-, Al8N-, B17

-, and 

B19
- clusters (Figure 3-3). Our tests showed that Kick Method generates mostly different 

structures, so computational time is not wasted for calculation of the same structure for 

several times. For B3H7
- and Al8N- clusters the global minimum structures were predicted 

within 200 trials of randomly generated structures, while for B17
-, and B19

- the number of 

random structures was about 1000. Certainly, to be sure that program did not miss global 

minima structure, the number of generated structures should be 2-3 times more than 

above-mentioned. The process of optimization of initially generated non-fragmented 

structure to the final isomer is presented in Figure 3-4 for the second low-lying isomer of 

B19
-. 
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Figure 3-1. Coalescence procedure for B7 cluster. 
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a) b) c) 

 

 
d) e) 

Figure 3-2. Initial non-fragmented structures generated by “Coalescence” Kick Method.  
a)-c) 20 atomic structures, d) 100 atomic structure, e) 1000 atomic structure 
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Figure 3-3. Global minimum structures for B3H7
-, Al8N-, B17

-, and B19
- clusters.  

 

 

 

 

   

Figure 3-4. Initially generated random structure, intermediate structures, and the 

optimized structure for the second low-lying isomer of B19
- cluster. 
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CHAPTER 4 

PLANAR NITROGEN-DOPED ALUMINUM 

 CLUSTERS AlxN- (x = 3-5)1 

Abstract 

The electronic and geometrical structures of three nitrogen-doped aluminum 

clusters, AlxN- (x = 3-5), are investigated using photoelectron spectroscopy and ab initio 

calculations.  Well-resolved photoelectron spectra have been obtained for the nitrogen 

doped aluminum clusters at four photon energies (532, 355, 266, and 193 nm).  Global 

minimum structure searches for AlxN- (x = 3-5) and their corresponding neutrals are 

performed using several theoretical methods.  Vertical electron detachment energies are 

calculated using three different methods for the lowest energy structures and low-lying 

isomers are compared with the experimental observations.  Planar structures have been 

established for all the three AlxN- (x = 3-5) anions from the joint experimental and 

theoretical studies.  For Al5N-, a low-lying non-planar isomer is also found to contribute 

to the experimental spectra, signifying the onset of 2D-to-3D transition in nitrogen-doped 

aluminum clusters.  The chemical bonding in all the planar clusters have been elucidated 

on the basis of molecular orbital and natural bond analyses.  

 

                                                
1 Coauthored by B. B. Averkiev, A. I. Boldyrev, X. Li, L. S. Wang. Reproduced with 
permission from J. Chem. Phys. 2006, 125, 124305-1-12. Copyright 2006, American 
Institute of Physics 
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4-1.  Introduction  

By doping pure metal clusters with one or more “impurity” atoms one can 

generate novel chemical species and manipulate their physical and chemical properties.  

Understanding how impurities affect the chemical bonding in doped clusters can provide 

valuable information in understanding nanomaterials, nanostructure interfaces, and may 

be an important step in developing a robust chemical bonding model which could be used 

in the rational design of the smallest electronic devices based on nanoclusters.  

Aluminum is widely used as conductor in electronic devices and aluminum nitride (AlN) 

is an important semiconductor material.  Several prior experimental and theoretical 

studies have been reported on small aluminum nitride AlnNm clusters.1-11  In particular, 

Nayak et al. have reported a combined experimental and density functional study on 

Al3N- and Al4N-.4  Recently, Li and Wang reported an extensive set of photoelectron 

spectra of AlxN- clusters from x = 2-22 at 193 nm and compared them to those of pure 

Alx
- clusters.10   

The present contribution focuses on a detailed investigation of the electronic 

structure and chemical bonding in three small aluminum clusters doped with one impurity 

N atom, AlxN- and AlxN- (x = 3-5).  An extensive set of photoelectron spectra has been 

obtained for each anion at four detachment photon energies (532, 355, 266, and 193 nm).  

Well resolved spectral features were interpreted using ab initio theoretical calculations at 

several levels of theory, which allow us to unequivocally elucidate the electronic and 

geometrical structures, stability, and low-lying isomers of these three anions and their 
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corresponding neutrals. The ground states of all three species are found to be planar.  

Molecular orbital and natural bond analyses have been carried out to understand the 

chemical bonding in the planar clusters.  We also find a non-planar isomer of Al5N-, 

which is very close in energy to the planar ground state isomer and is present in the 

molecular beam, suggesting the onset of 2D to 3D structural transitions.  

 
4-2.  Experimental Method 

The experiment was performed using a magnetic-bottle photoelectron 

spectroscopy apparatus with a laser vaporization cluster source.  Details of this apparatus 

have been published elsewhere.12 Briefly, the AlxN- clusters were produced by laser 

vaporization of either a pure Al or an AlN alloy disk target with a 5% N2/He carrier gas.  

The anion clusters of interest were size-selected and photoelectron spectra were taken at 

several different photon energies.  The electron energy resolution was better than 30 meV 

for 1 eV electrons.  We have measured photodetachment spectra of AlxN- for x = 2– 45 at 

193 nm and reported those data up to x =22 recently.10 In current study, we obtained the 

photoelectron spectra of AlxN- with x = 3-5 at four photon energies, 532 nm (2.331 eV), 

355 (3.496 eV), 266 (4.661eV), and 193 6.424 eV) nm, as shown in Figures 4-1 – 4-3, 

respectively. 

 
4-3.  Theoretical Methods  

The initial search for most stable structures was performed using our gradient 

embedded genetic algorithm (GEGA) program written by Alexandrova.13,14 We used a 

hybrid method known in the literature as B3LYP15-17 with the small split-valence basis 



 

 

32 

sets (3-21G).18 for energy, gradient and force calculations.  The lowest few structures in 

every system were recalculated using the B3LYP, a second order Moller-Plesset 

perturbation theory (MP2)19, and coupled-cluster method with single, double, and 

noniterative triple excitations (CCSD(T))20-22  based on the UHF formalism for open-shell 

systems and all with the polarized split-valence basis sets (6-311+G*).23-25 Total energies 

of these structures were also calculated using the extended 6-311+G(2df) basis sets.  In 

order to test the validity of the one-electron approximation, single point calculations were 

performed using the multi-configuration self-consistent field method (CASSCF(X,Y)26,27 

with X active electrons and Y active molecular orbitals.  

 The vertical electron detachment energies were calculated using 

R(U)CCSD(T)/6-311+G(2df), the outer valence Green Function method (R(U)OVGF/6-

311+G(2df))28-32 and CCSD(T)/6-311+G(2df) at the CCSD(T)/6-311+G* geometries, as 

well as at the time-dependent DFT method33,34 (TD B3LYP/6-311+G(2df)) at the 

B3LYP/6-311+G* geometries. Core electrons were frozen in treating the electron 

correlation at the R(U)CCSD(T) and R(U)OVGF levels of theory.  

The B3LYP, MP2, R(U)CCSD(T), R(U)OVGF  ab initio calculations were 

performed using the Gaussian 98 and 03 programs.35,36 Molecular orbital visualization has 

been done using the MOLDEN3.4 program.37 

 
4-4.  Experimental Results  

The 193 nm spectrum of Al3N- (Figure 4-1) reveals six spectral bands below 5.8 

eV, labeled as X, A, B, C, D, and E, respectively.  The features X (around 0.96 eV) and E 
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(around 5.2 eV) are very broad. The onset of the first two transitions at 0.96 and 2.72 

eV represent a large energy gap, suggesting that the neutral Al3N cluster is likely to be 

closed-shell with a large HOMO-LUMO gap.  The broad nature of the X band indicates 

that there is a significant geometry change between the ground states of the anion and 

neutral.  The spectral features are better resolved in the lower photon energy spectra and 

the obtained vertical detachment energies (VDEs) are given in Table 4-1. 

The spectra of Al4N- (Figure 4-2) are surprisingly simple with only intense bands 

observed in the 193 nm spectrum.  The X band at 2.32 eV in the 355 and 266 nm spectra 

is very sharp with no indication of any vibrational structure, whereas the 3.41 eV feature 

(A) is broad with a partially resolved vibrational progression, which yields a vibrational 

frequency of 810 ± 50 cm-1. A shoulder on the higher binding energy side of the A band 

is identified as another electronic transition, labeled as B.  A weak band (C) is observed 

in the 193 nm at very high binding energies. There are also other weak features present in 

the spectra of Al4N-.  The features, occurring at around 1.76 and 1.93 eV, are resolved 

more clearly at lower photon energies, especially at 532 nm.  There are also weak signals 

around 2.7 eV.  The intensities of these features depend on the source conditions slightly, 

but could not be eliminated. All these weak features are most likely due to excited states 

or different isomers of Al4N-.   

The spectra of Al5N- are quite complicated with numerous well-defined features 

(X, A, B, C, D, E, and F) at both 266 nm (Figure 4-3); and more features are also 

revealed at higher binding energies in 193 nm. A strong feature around 2.01 eV (x) at 

both 532 and 355 nm is resolved, which appears to be merged with the X band.  The 



 

 

34 

complicated spectra of Al5N- suggest the possible population of closely lying isomers, 

as born out from our theoretical calculations. 

The VDEs of the main spectral features for AlxN- (x = 3, 4, and 5) are all given in 

Table 4-1 and are compared with ab initio results in Tables 5, 6, and 7, respectively (vide 

infra). 

 
4-5.  Theoretical Results  

 We performed extensive searchs for the global minimum structures of AlxN- (x = 

3-5) and their neutrals using our GEGA program at B3LYP/3-21G level of theory.  

 
A. Al3N and Al3N-. 

The planar D3h (1A1’, 1a1’21e’42a2”22a1’22e’43e’0) structure I (Figure 4-1) was 

found to be the global minimum structure for Al3N from prior ab initio calculations3-6 and 

from infrared matrix investigations.6 Andrews and co-workers assigned two sharp bands 

at 777.9 cm-1 and 770.3 cm-1 to e’ antisymmetric stretching mode of Al3N split by 

interaction in nitrogen matrix. The major peak at 773.1 cm-1 in argon matrix was assigned 

to the same mode. Our calculations of the planar D3h (1A1’) geometric structure for the 

Al3N (Table 2) at our highest level of theory (CCSD(T)/6-311+G*) reveal w3(e') = 776 

cm-1, in excellent agreement with the matrix experiment.  

For the Al3N- anion we performed GEGA search at the B3LYP/3-21G level of 

theory.  The two lowest (below 20 kcal/mol) doublet structures are presented in Figure 4.  

The planar T-shaped C2v (2B2, 1a1
21b2

22a1
21b1

23a1
22b2

24a1
23b2

1) structure II is predicted by 

GEGA to be the global minimum structure, similar to that reported previously by Nayak 
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et al.4 using DFT calculations. The second C2v (2A1) configuration originated from the 

1a1’21e’42a2”22a1’22e’43e’1 occupation is a first order saddle point on the intramolecular 

rearrangement of the anion from one global minimum structure into another. We 

performed single point calculations at the CASSCF(7,8)/6-311+G*, CASSCF(7,10)/6-

311+G* and CASSCF(13,12)/6-311+G* and found that the Hartree-Fock wave function 

was dominant (CHF = 0.949, CHF = 0.943, and CHF = 0.945, respectively) in the CASSCF 

expansion, thus confirming applicability of MP2 and CCSD(T) theoretical methods.  

However, at our highest level of theory (CCSD(T)/6-311+G*) the planar T-shaped C2v 

(2B2) structure is a saddle point with the w3(b1) = 37i cm-1 imaginary frequency (Table 4-

2). Geometry optimization following the imaginary frequency leads to a very slightly 

non-planar structure Cs (2A”) with the nitrogen atom being out of plane by 0.04 Å.  The 

energy difference between the planar and non-planar structure is only 5.6x10-4 kcal/mol 

and that value is significantly lower than the difference in zero point energy (ZPE) 

corrections (0.065 kcal/mol) for the two structures. Thus, the vibrationally averaged 

Al3N- structure is actually planar and for all practical purpose we will consider Al3N- as 

being planar in the following discussion. The lowest alternative structure III (C2v, 2B1, 

1a1
22a1

21b2
21b1

23a1
22b2

24a1
22b1

1) corresponds to a local minimum, which is substantially 

higher in energy and will not be further discussed. 

The T shape for the isoelectronic Al3O cluster was predicted before by Boldyrev 

and Schleyer38 and Sun et al.39 with quite similar molecular parameters. The CAlSi2 

cluster, another 15 valence electron tetra-atomic molecule, was, however, found to have a 

Y-type structure by Boldyrev, Li, and Wang.40 When an additional electron is added to 
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Al3N-, the resulting 16 valence electronic Al3N2- cluster was found to have the T-shape 

again, which has been found to be the ground state for all other studied isoelectronic 

species such as BSi3
-, CAlSi2

-, CSi3, NSi3
+, NAl2Si-, Al3O-, and Al3F.40  

 
B. Al4N and Al4N-.  

For Al4N the GEGA search led to a global minimum planar D4h (2B2g, 

1a1g
21eu

41a2u
22a1g

21b1g
22eu

41b2g
1) structure IV (Figure 4-5), in agreement with several 

previously reported theoretical studies.3-5,7,9 At our highest level of theory CCSD(T)/6-

311+G* the D4h (2B2g) structure is a saddle point. Distortion along the b2u mode of 

imaginary frequency leads to a slightly non-planar butterfly distorted structure D2d (2B1).  

However, the energy difference between D2d (2B1) and D4h (2B2g) is only 0.192 kcal/mol, 

which is smaller than the difference in ZPE (0.206 kcal/mol).  Therefore, the 

vibrationally averaged structure is actually planar and in the following discussion we will 

consider the Al4N cluster to be planar. The similar small deviation from planarity was 

previously reported for the valence isoelectronic Al4C- anion.41 The planar structure was 

also found to be a global minimum structure for other 18 valence electron penta-atomic 

species: Al4O,1,38,39 Al2Si2C,1,42 Al2Ge2C,1,42 Al3SiC-,43 Al3GeC-,43 as well as for other 17 

valence electron penta-atomic species: Al4C-,41 Al3SiC,43 and Al3GeC.43  Hence, the 18 

and 17 electron rule1,38,42-45 for planarity of penta-atomic clusters is a general rule for these 

species.   

For the neutral Al4N cluster, in addition to the global minimum D4h (2B2g) 

structure IV, we also found two low-lying isomers C2v (2A1) (structure V in Figure 4-5) 



 

 

37 

and C2v (2B1) (structure VI in Figure 4-5), which are 5.4 kcal/mol and 10.9 kcal/mol 

above the global minimum at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* level of 

theory. 

The planar D4h (1A1g) structure for Al4N- was first computationally predicted by 

Schleyer and Boldyrev1 on the basis of molecular orbital analysis for the five-atomic 18 

valence electron systems and was confirmed in follow up calculations.2,4,5,7 In order to 

confirm these results for the Al4N- anion we run GEGA calculations for both singlet and 

triplet states of the Al4N- anion.  The lowest (less than about 20 kcal/mol) singlet and 

triplet structures found by GEGA are presented in Figure 4-5. The GEGA search found 

the planar D4h (1A1g, 1a1g
21eu

41a2u
22a1g

21b1g
22eu

41b2g
2) structure VII to be the global 

minimum, in agreement with previously reported theoretical results.1,2,4,5,7  We performed 

single point calculations at the CASSCF(8,8)/6-311+G*, CASSCF(12,12)/6-311+G* and 

CASSCF(8,14)/6-311+G* and found that the Hartree-Fock wave function was dominant 

(CHF = 0.980, CHF = 0.969, and CHF = 0.958, respectively) in the CASSCF expansion.  We 

found that the next lowest isomer is a triplet C2v (3B1 

1a1
22a1

21b2
23a1

21b1
24a1

22b2
25a1

26a1
12b1

1) structure VIII (20.6 kcal/mol higher at 

CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*), which is similar to previously reported 

triplet structure by Nayak et al.4 using DFT calculations, though they did not specify the 

spectroscopic state of their triplet isomer.  We also found one singlet structure IX (Cs, 1A’ 

1a’22a’23a’24a’21a”25a’26a’27a’28a’2), which is more than 20 kcal/mol higher.  
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C. Al5N and Al5N-. 

For Al5N the GEGA (B3LYP/3-21G) search found many structures (Figure 4-6, 

X-XXI) with the planar C2v (1A1, 1a1
22a1

21b2
23a1

21b1
24a1

22b2
23b2

25a1
26a1

2) structure being 

the global minimum.  The refinement at B3LYP/6-311+G* and at CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G* confirmed our GEGA results. However, at MP2/6-

311+G* and CCSD(T)/6-311+G* it has one imaginary frequency (Table 4-4). The most 

stable structure Cs (1A’) at the last two levels of theory is only slightly distorted from the 

C2v symmetry and after ZPE corrections it is effectively C2v symmetry. The C2v (1A1) 

structure X was also reported to be the global minimum structure by Guo and Wu9 who 

used two B3LYP/6-311+G* and SVWN/6-311+G* theoretical methods. According to 

Ling, Song and Cao8 the global minimum of Al5N corresponds to the structure XVIII at 

the full-potential linear-muffin-tin-orbital molecular dynamics (FP-LMTO-MD) method.  

We found that this structure is a second order saddle point, which is 17.3 kcal/mol higher 

in energy at B3LYP/6-311+G* (13.5 kcal/mol at CCSD(T)/6-311+G(2df)//B3LYP/6-

311+G*). Geometry optimization of the structure XVIII following the imaginary 

frequency led initially to the structure XII; and geometry optimization following the 

imaginary in the structure XII led eventually to the global minimum structure X.  Thus, 

the structure XVIII can be safely excluded from being a global minimum structure of 

Al5N.  Nayak, Khanna, and Jena3 reported that the structure XI is the global minimum 

structure for the Al5N cluster using the BPW91/6-311G** level of theory.  The same 

global minimum structure was also reported by Leskiw et al.7 According to our 

calculations, the structure XI is a first order saddle point at B3LYP/6-311+G*.  Geometry 
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optimization of the structure XI following the imaginary frequency led to a slightly 

distorted structure C2 (1A) in which the top Al atom still located on the C2 axis with the 

beneath tetrahedral type Al4 cluster being slightly distorted.  The energy difference 

between the C2v (1A1) structure XI and slightly distorted local minimum structure is only 

0.021 kcal/mol, which is significantly lower than the difference in ZPE corrections (0.063 

kcal/mol) for the two structures.  At the MP2/6-311+G* and CCSD(T)/6-311+G* levels 

of theory the C2v (1A1) structure was found to be a minimum. Thus, for all practical 

purpose we will consider the structure XI of Al5N as being C2v symmetry.  The structure 

XI is 6.8 kcal/mol higher in energy than the structure X at B3LYP/6-311+G*, but this 

difference is only 1.3 kcal/mol at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* and 1.3 at 

CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*. Thus, these two structures are almost 

degenerate at our highest level of theory. Two structures (XIV and XVI) were found to 

have 2 and 1 imaginary frequencies at B3LYP/6-311+G* level of theory, however, they 

have effective C2v symmetry after ZPE corrections. The other structures identified in our 

calculations, within 20 kcal/mol above the ground state, are summarized in Figure 4-6. 

The structure of the Al5N- anion has been previously studied by Leskiw et al.,7 

who reported that the global minimum structure XXIII is similar to the structure XI for 

Al5N neutral.  Our GEGA search at B3LYP/3-21G for Al5N- found the planar C2v (2B1 

1a1
22a1

21b2
23a1

21b1
24a1

22b2
23b2

25a1
26a1

22b1
1) structure XXII to be the global minimum, 

which is similar to the global minimum of the neutral (structure X).  We also performed 

single point calculations at CASSCF(13,11)/6-311+G*, CASSCF(11,11)/6-311+G* and 

CASSCF(11,12)/6-311+G* and found that the Hartree-Fock wave function was dominant 
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(CHF = 0.932, CHF = 0.925, and CHF = 0.912, respectively) in the CASSCF expansion. At 

MP2/6-311+G* and CCSD(T)/6-311+G* it has one and two imaginary frequencies, 

respectively (Table 4-4). However, the vibrationally averaged global minimum structure 

can be considered to have the C2v symmetry. The second lowest energy structure Cs (2A’) 

in our calculations at B3LYP/3-21G, B3LYP/6-311+G* and MP2/6-311+G* is similar to 

the global minimum structure XXIII proposed by Leskiw et al.7, though in our case it has 

lower symmetry Cs instead of C2v.  It relative energy is 5.3 kcal/mol at B3LYP/6-311+G* 

and 2.9 kcal/mol at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*. Geometry optimization 

at the CCSD(T)/6-311+G* level of theory revealed that Cs (2A’) structure collapsed into 

the C2v (2A1) structure XXIII. The structure XXIII is 2.6 kcal/mol (CCSD(T)/6-

311+G(2df)//CCSD(T)/6-311+G*) higher in energy than the global minimum. The third 

lowest energy structure XXIV Cs (2A’) lies 6.2 kcal/mol at B3LYP/6-311+G*, 4.2 

kcal/mol at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* and 4.0 at CCSD(T)/6-

311+G(2df)//CCSD(T)/6-311+G* higher in energy than the global minimum. In addition, 

two more structures XXV and XXVI were found to be about 6-8 kcal/mol (CCSD(T)/6-

311+G(2df)//CCSD(T)/6-311+G*) above the global minimum.  The other structures 

identified in our calculations, within 20 kcal/mol above the global minimum, are also 

shown in Figure 4-6.  
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4-6.  Comparison of Calculated VDEs with Experiment  

 
A. Al3N-. 

The ab initio VDEs calculated at the TD-B3LYP/6-311+G(2df), ROVGF/6-

311+G(2df) and CCSD(T)/6-311+G(2df) levels for Al3N- are compared with the 

experimental data in Table 4-5 and good agreement is obtained among the different levels 

of theory and between the theory and experiment.   

The global minimum of Al3N- was found to be the planar structure II (C2v, 2B2) 

with the valence electronic configuration: 1a1
21b2

22a1
21b1

23a1
22b2

24a1
23b2

1.  As given in 

Table 4-5, our calculated VDE for removal of an electron from the HOMO of the global 

minimum is 1.06 eV at the UCCSD(T)/6-311+G(2df) level of theory, 1.16 eV at the 

UOVGF/6-311+G(2df) level of theory, and 1.15 eV at the TD-B3LYP/6-311+G(2df) 

level of theory.  The pole strength (UOVGF) was found to be 0.90, indicating that the 

detachment channel can be primarily described by a one-electron detachment process.  

These calculated first VDE for the structure-II (C2v, 2B2) is in excellent agreement with 

the measured VDE of 1.19 ± 0.04 eV for this feature (Table 4-5).  The 3b2-HOMO of 

Al3N- is a bonding orbital within the triangular wing Al-Al-Al in the global minimum 

structure (Figure 4-7). Detachment of the electron from this orbital results in a significant 

geometry relaxation from C2v in the anion to D3h in the neutral.  The large geometry 

change is consistent with the broad PES band width observed for this transition (Figure 

4-1). The calculated adiabatic electron detachment energy (ADE) is 0.73 eV 

(CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*+ZPE//CCSD(T)/6-311+G*), in good 



 

 

42 

agreement with the experimental threshold (~0.7 eV) for the X band.  Because of the 

large geometry changes and the lack of vibrational resolution, the ADE cannot be 

accurately determined from the experimental PES spectra.   

Electron detachment from the doubly occupied MOs could result in either triplet 

or singlet final states at the C2v global minimum structure.  The two triplet 3B2 

(1a1
21b2

22a1
21b1

23a1
22b2

24a1
13b2

1) and 3A1 (1a1
21b2

22a1
2 1b1

23a1
22b2

14a1
23b2

1) states are 

assigned to the sharp features A and B, respectively (Table 4-5) and the corresponding 

singlet 1B2 (1a1
21b2

22a1
21b1

23a1
22b2

24a1
13b2

1) and 1A1 (1a1
21b2

22a1
21b1

2 3a1
22b2

14a1
23b2

1) 

states are assigned to the relatively weak features C and D (Table 4-5).  The 4a1 and 2b2 

MOs are essentially non-bonding (Figure 4-7), consistent with the relatively sharp 

spectral features observed for bands A, B, C, and D.  Finally, the broad feature E most 

probably corresponds to several transitions involving the two triplet 3B2 

(1a1
21b2

22a1
21b1

23a1
1 2b2

24a1
23b2

1) and 3A2 (1a1
21b2

22a1
21b1

13a1
22b2

24a1
23b2

1) states (Table 

4-5).  The 3a1 and 1b1 orbitals are strongly bonding MOs (Figure 4-7), consistent with the 

broad E band. 

 
B. Al4N-. 

The calculated VDE’s for the global minimum structure VII, as well as for the 

low-lying isomer VIII of Al4N- are compared with the experimental data in Table 4-6.  

The calculated VDE from the 1b2g-HOMO of the planar square D4h structure VII at three 

levels of theory is 2.16 eV (TD-B3LYP/6-311+G(2df)), 2.26 eV (ROVGF/6-

311+G(2df)), and 2.29 eV (CCSD(T)/6-311+G(2df)), agreeing very well with the 
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experimental value 2.32 ± 0.02 eV (Table 4-6). The calculated adiabatic electron 

detachment energy (ADE) is 2.28 eV (CCSD(T)/6-311+G(2df)//CCSD(T)/6-

311+G*+ZPE//CCSD(T)/6-311+G*), in good agreement with the experimental value 

2.29 eV.4  

The broad band (A&B) in the experimental spectra (Figure 4-2) are due to 

detachment from HOMO-1 (2eu) and HOMO-2 (1b1g) (Table 4-6), which are very close to 

each other, resulting in the overlap of the two detachment bands.  Because of the order of 

the 2Eu and 2B1g states is different at TD-B3LYP and OVGF, we cannot be sure with 

certainty which spectroscopic state is actually lower in energy.  The next rather weak 

feature C could be assigned to detachment from HOMO-3 (2a1g).  According to our 

calculations there should be one detachment channel from HOMO-4 (1a2u)) around 6 eV 

(Table 4-6), which may be underestimated because no major detachment band was 

observed in the higher binding energy side.  Overall, the calculated VDE’s from the 

planar D4h global minimum are in good agreement with the experiment, in particular for 

the first three detachment channels.  

The weak features, observed in the low energy part (<2.3 eV) of the spectrum and 

in between the intense peaks X and A (Figure 4-2), cannot be explained by the global 

minimum D4h structure and they should belong to either alternative isomers or to 

impurities.  Nayak et al.4 explained these small features by contributions from a triplet 

isomer. According to our calculations there are two lowest isomers: a triplet C2v (3B1) 

structure VIII (19.8 kcal/mol higher at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*) and 

singlet a Cs structure IX (21.8 kcal/mol higher at CCSD(T)/6-311+G(2df)//B3LYP/6-
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311+G*) (Figure 4-5).  Indeed the triplet C2v (3B1) structure VIII gives calculated 

VDEs, which fall in the right energy ranges for the weak features in the PES spectra of 

Al4N- (Table 4-6).  Our result agrees with the previous assignment by Nayak et al.,4 

whose DFT calculations suggests that the triplet isomer is 0.97 eV (22.3 kcal/mol) above 

the D4h ground state.  It is very surprising that such a high energy isomer can be 

populated at all in the experiment.  The explanation suggested by Nayak et al. that such a 

high energy isomer is “spin-protected” seems reasonable, i.e., the triplet isomer once 

formed is prevented from being relaxed to the D4h ground state because it is spin-

forbidden.  Although this is unusual, we have increasingly observed in several cluster 

systems population of high energy triplet isomers, for example in B7
- and B13

-.46,47 

 
C. Al5N-. 

We computed the VDEs from the three low-lying isomers for Al5N- and compared 

them with the experimental data in Tables 4-7 – 4-9.  Clearly, at least two isomers are 

needed to interpret the observed spectra of Al5N-. The OVGF and TD-DFT methods give 

similar first VDE for all three isomers and cannot be used to distinguish them.  However, 

our most accurate ΔCCSD(T) method gives a first VDE of 2.01 eV for structure XXII, 

which is in good agreement with that of feature x (2.01 eV); whereas the first VDE for 

structure XXIII from ΔCCSD(T) is 1.83 eV in very good agreement with that of feature 

X (1.89 eV), suggesting the observed first two detachment bands come from two 

different isomers of Al5N-.  The fact that the two features have similar intensities suggest 
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that the two isomers are most likely degenerate, consistent with the close energies of 

the two isomers (Figure 4-6).   

The calculated second VDE from ΔCCSD(T) for the planar C2v  structure XXII of 

Al5N- is 2.63 eV, in good agreement with that of band B (2.66 eV). The second 

ΔCCSD(T) VDE for the C2v structure XXIII is 2.23 eV, in excellent agreement with that 

of band A (2.29 eV).  The next ΔCCSD(T) detachment channel for both isomers is at 

much higher energies, thus preventing us from making more definitive assignments for 

the higher binding energies features.  However, our TD-DFT data suggest that each of the 

higher binding energy feature may contain contributions from both isomers.  We also 

computed the VDEs for isomer XXIV (Table 4-9), which seem to be all similar to those 

of the planar isomer XXII.  Since this isomer is higher in energy, we suspect that it may 

not be significantly populated.  Its minor contribution to the observed spectra is likely to 

be obscured. 

Al5N- is a rare case, where two or more isomers are nearly degenerate and seem to 

be equally populated experimentally.  The two isomers of Al5N- are very different, one 

planar (2D) (structure XXII) and the other 3D (structure XXIII). Al3N-, Al3N, Al4N-, and 

Al4N are all overwhelmingly stable as 2D structures.  However, the 2D and 3D structures 

for Al5N- are nearly degenerate, signifying the onset of 2D to 3D transitions. 
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4-7.  Chemical Bonding Analyses 

 
A. Al3N- and Al3N.   

The peculiar T-shape for Al3N- can be understood on the basis of MO analysis, as 

shown in Figure 4-7.  The four lowest valence MOs (HOMO-7, HOMO-6, HOMO-5 and 

HOMO-4) are primarily formed from 2s (HOMO-7), 2px (HOMO-4), 2py (HOMO-6), 

and 2pz (HOMO-5) AOs of N.  The next three MOs (HOMO-1, HOMO-2 and HOMO-3) 

corresponding to three lone pairs are formed primarily by 3S-AOs of Al.  When only 

these MOs are occupied as that is in Al3N, then the resulting structure is a perfect 

triangule with N being at the center and formal charge distribution is close to ionic 

[(Al+)3(N3-)], i.e., Al is acting as a valence +1 atom.  Indeed, our calculated NBO 

effective charges q(N) = -2.46 |e| and q(Al) = +0.82 |e| (B3LYP/6-311+G*) support this 

simple ionic picture.  The central N atom has already a full octet of valence electrons and 

it should not form any additional bonds.  Thus one would expect that the Al3N- anion may 

not be an electronically stable species.  That is indeed the case for NH3, which does not 

bind an access electron.48 However, the Al3N- anion is quite electronically stable with a 

VDE of 1.19 ± 0.04 eV.  The stability of the Al3N- anion comes from the extra electron 

occupying 3b2-HOMO, which is a pure ligand (Al-Al) bonding orbital (Figure 4-7).  

Calculated NBO effective charges q(N) = -2.32 |e|,  q(Ala) = +0.20 |e| and q(Ale) = +0.56 

|e| (B3LYP/6-311+G*) support this description.  The bonding character of the 3b2-

HOMO is responsible for the electronic stability of this anion and for its T-shape.  The 

lower symmetry of Al3N- can be also understood as a Jahn-Teller distortion of the initial 
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D3h structure of Al3N when an additional electron occupies its double degenerate 

LUMO (3e’).  

 
B. Al4N- and Al4N.   

The planar square structure of Al4N- can also be understood on the basis of the 

MO analysis, as shown in Figure 8.  The four lowest valence MOs (HOMO-6, HOMO-5, 

HOMO-5’ and HOMO-4) are again primarily formed from 2s (HOMO-6), 2px (HOMO-

5’), 2py (HOMO-5), 2pz (HOMO-4) AOs of N.  The next four MOs (HOMO-1, HOMO-

2, HOMO-2’ and HOMO-3) corresponding to four lone pairs are formed primarily by 3S-

AOs of aluminum.  When only these MOs are occupied as in Al4N+, the resulting 

structure is a tetrahedron with N being at the center and a formal charge distribution close 

to ionic, similar to the isoelectronic Al4C molecule.41,44  The tetrahedral Al4C molecule 

has the following electron configuration 1a21t2
62a1

22t2
61e0.  When one or two electrons 

occupy one of the doubly degenerate 1e-LUMO, the resulting anions Al4C- and Al4C2- 

undergo Jahn-Teller distortion toward the planar D4h structure.41,45  Similarly, occupation 

of 1e-LUMO in the tetrahedral Al4N+ should result in the geometric distortion towards 

D4h structure in Al4N and Al4N-.  In Al4N+ the central atom N has a full octet and formally 

the hyper-stoichiometric molecules Al4N and Al4N- should not be stable.  However, the 

ligand-ligand bonding HOMO in Al4N and Al4N- is responsible for the electron and 

geometric stability of these species.  Al4N and Al4N- are analogs of the first 

experimentally discovered pentaatomic tetracoordinate planar carbon molecules, Al4C- 

and Al4C2-.41-45    
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C. Al5N- and Al5N.   

The geometries of the structures X of Al5N and XXII of Al5N- (Figure 4-6) hint 

that they could be formally considered as Al+ or Al coordinated to the edge of the planar 

Al4N- anionic structure IV (Figure 4-5), respectively. Calculated NBO charges 

(B3LYP/6-311+G*) on the central nitrogen atom (-2.31 and -2.33 |e|) are almost the same 

in Al4N- (IV), Al5N (X), and Al5N- (XXII).  The NBO charge on the apex Al atom in 

Al5N is +0.30 |e|, which is lower than ionic limit +1.0 |e|, but that is qualitatively 

consistent with the formal [Al4N]-Al+ formulation, indicating the structural stability of the 

planar tetracoordinate [Al4N]-.  In the anionic Al5N- cluster, a significant portion of the 

additional electron goes to the apex Al atom, which now has a NBO charge of -0.25 |e|.  

The molecular orbital pictures for Al5N and Al5N- (Figure 9) are also consistent with the 

chemical bonding described above.  One can see that molecular orbitals: HOMO-1, 

HOMO-2, HOMO-3, HOMO-4, HOMO-5, HOMO-6, HOMO-8, HOMO-9, and HOMO-

10 in Al5N- can be approximately correlated to the molecular orbitals: HOMO, HOMO-1, 

HOMO-2, HOMO-2’, HOMO-3, HOMO-4, HOMO-5, HOMO-5’, and HOMO-6 in 

Al4N-, respectively.  The HOMO and HOMO-7 are responsible for the p- and s-covalent 

bonding between the apex Al atom and the Al4N- cluster.   

 The second lowest isomer of Al5N (XI) could be formally considered as AlN2- 

coordinated to the edge of the tetrahedral Al4
2+ dication.  It was previously shown,38 that 

the Al4
2+ dication has a tetrahedral structure.  Calculated NBO charge (B3LYP/6-

311+G*) on the AlN group is -1.42 |e| and that is qualitatively consistent with the formal 
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[Al4]2+(NAl)2- formulation. According to our NBO analysis of Al5N- (XXIII), an 

additional electron in Al5N- goes to the Al4 unit.   

  
4-8.  Conclusions  

Well-resolved photoelectron spectra were obtained for three nitrogen doped 

aluminum clusters Al3N-, Al4N- and Al5N- at four photon energies (532, 355, 266, and 

193 nm) and compared with theoretical calculations to elucidate their electronic structure 

and chemcial bonding.  Global minimum structures of Al3N-, Al4N- and Al5N- were 

identified first by using Gradient Embedded Genetic Algorithm (B3LYP/3-21G) 

followed by B3LYP/6-311+G*, MP2/6-311+G* and CCSD(T)/6-311+G* geometry and 

frequency calculations.  By comparing the theoretical VDEs with the experimental data 

we established that NAl3 is D3h and Al3N- has a T-shape structure (II) C2v (2B2).  The 

ground state of Al4N and Al4N- are both square-planar in agreement with previously 

reported results.  For the Al5N- anion we found two quasi degenerate structures XXII 

(C2v, 2B1) and XXIII (C2v, 2A1), which are almost equally populated experimentally.  We 

also computationally identified three other low energy structures: XXIV (Cs, 2A’), XXV  

(C2v, 2A1), XXVI (Cs, 2A”), which lie with 6-8 kcal/mol above the ground state.  The low-

lying isomers of the neutral Al5N cluster are found to be similar to those its anion.  

Chemical bonding analysis revealed that Al3N can be described as an ionic cluster 

(Al+)3(N3-).  In the planar C2v structure of Al3N-, an additional electron occupies the 

peripheral ligand-ligand bonding HOMO, resulting in the structural distortion to the T-

shape.  Both Al4N and Al4N- have planar structure with a central nitrogen atom.  The 
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planarity of this structure is due to the singly or doubly occupied 1b2g-HOMO, which is 

a peripheral four-center ligand-ligand bonding orbital, similar to the tetracoordinate 

planar carbon molecules, CAl4
- and CAl4

2-.  Finally, the Al5N and Al5N- species two 

nearly degenerate structures competing for ground state, a planar one and a 3D one.  The 

planar structure can be viewed as an Al coordinated to the planar Al4N-: [Al4N]-Al+ or 

[Al4N]-Al, whereas the 3D structure can be viewed as an AlN unit interacting with a 

tetrahedral Al4 motif: [Al4]2+(NAl)2- or ([Al4]+(NAl)2-). 
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Table 4-1.  Experimental vertical detachment energies in eV for the Al3N-, Al4N-, and 

Al5N- anions from the photoelectron spectra.  The number in parentheses represents the 

uncertainty of the last digit. 

 

 X A B C D E F 

Al3N- 1.19 (4) 2.78 (3) 3.06 (3) 3.39 (4) 3.69 (4) 5.20 (5)  

 

Al4N- 2.32 (3) 3.41 (2) 3.74 (3) 5.40 (5)  

 

 

 

 

 

Al5N- 1.89 (4) 2.29 (3) 2.66 (3) 2.90 (3) 3.27(3) 3.51(3) 3.87 (3) 
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Table 4-2.  The molecular properties of the global minimum Al3N- and Al3N structures. 

 Al3N- (C2v, 2B2’) Al3N- (Cs, 2A”) 

Molecular 

Parameter 

B3LYP/ 

6-311+G* 

MP2/ 

6-311+G* 

CCSD(T)/ 

6-311+G* 

CCSD(T)/ 

6-311+G*,b 

E, a.u. -782.2040 -780.6194 -780.6674376 -780.6674385c 

R(N-Al1), Å 

R(N-Al2,3), Å 

<Al1NAl2,3, 0 

1.916 

1.822 

102.9 

1.923 

1.827 

101.8 

1.916 

1.821 

102.4 

1.916 

1.821 

102.4 

w1 (a1), cm-1 

w2 (a1), cm-1 

560 (80.2)a 

444 (0.6)a 

569 (101.5)a 

445 (1.0)a 

577 

452 

577 

452 

w3 (a1), cm-1 152 (8.3)a 156 (12.2)a 153 153 

w3 (b1), cm-1 164 (4.1)a 57 (2.9)a 37i 46 

w4 (b2), cm-1 

w4 (b2), cm-1 

801 (4.7)a 

140 (22.8)a 

822 (1.2)a 

175 (27.9)a 

822 

136 

821 

137 

 Al3N (D3h, 1A1’) 

Molecular 

Parameter 

B3LYP/ 

6-311+G* 

MP2/ 

6-311+G* 

CCSD(T)/ 

6-311+G*d 

E, a.u. -782.1750 -780.6034 -780.6512 

R(N-Al), Å 1.850 1.851 1.847 

w1 (a1’), cm-1 426 (0.0)a 428 (0.0)a 438 

w2 (a2”), cm-1 218 (0.1)a 133 (0.0)a 137 

w3 (e’), cm-1 749 (328.1)a 765 (334.7)a 776 

w4 (e’), cm-1 154 (2.8)a 150 (3.2)a 151 
a Values in parentheses represent relative absorbance intensities in the IR spectrum. 
b Nitrogen atom comes out of the Al3-plane by 0.039 Å. 
c Etot=-780.735852  a.u., 
d Etot=-780.709937  a.u. (all at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*). 
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Table 4-3.  The molecular properties of the Al4N- and Al4N species. 

 Al4N-  
(D4h, 1A1) 

Al4N 
 (D4h, 2B2g) 

Al4N 
 (D2d, 2B1) 

Molecular 

Parameter 

B3LYP/ 

6-311+G* 

MP2/ 

6-311+G* 

CCSD(T)/ 

6-311+G*,b 

B3LYP/ 

6-311+G* 

MP2/ 

6-311+G* 

CCSD(T)/ 

6-311+G*,c 

CCSD(T)/ 

6-311+G*,c 

E, a.u. -1024.6857 -1022.6343 -1022.6869 -1024.6060 -1022.5538 -1022.6130 -1022.6133 

R(N-Al), Å 1.936 1.938 1.936 1.964 1.968 1.962 1.961 

w1(a1g), cm-1 

w2(a2u), cm-1 

w3(b1g), cm-1 

w4(b2g), cm-1 

w5(b2u), cm-1 

w6(eu), cm-1 

w7(eu), cm-1 

400 (0.0) 

214 (14.1) 

265 (0.0) 

268 (0.0) 

90 (0.0) 

666 (238.8) 

217 (14.9) 

403 (0.0) 

118 (15.5) 

280 (0.0) 

278 (0.0) 

71 (0.0) 

709 (345.2) 

251 (17.4) 

407 

117 

277 

275 

55 

680 

226 

379 (0.0) 

223 (5.6) 

216 (0.0) 

223 (0.0) 

46 (0.0) 

521 (123.5) 

97 (0.2) 

381 (0.0) 

159 (8.5) 

231 (0.0) 

244 (0.0) 

52 (0.0) 

711 (505.5) 

316 (0.2) 

387 

151 

232 

245 

46i 

554 

159 

386 

220 

236 

265 

47 

555 

160 
a Values in parentheses  represent  relative absorbance  intensities in the IR spectrum (km/mol). 
b Etot=-1022.770084  a.u.,  
c Etot=-1022.686211  a.u. (all at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*). 
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Table 4-4.  The molecular properties of the Al5N- and Al5N species. 

 Al5N- (C2v, 2B1) Al5N (C2v, 1A1) 
Molecular 
Parameter 

B3LYP/ 
6-311+G* 

MP2/ 
6-311+G* 

CCSD(T)/ 
6-311+G*,b 

B3LYP/ 
6-311+G* 

MP2/ 
6-311+G* 

CCSD(T)/ 
6-311+G*,c 

E, a.u. -1267.1276 -1264.5970 -1264.6622 -1267.0636 -1264.5370 -1264.6025  
R(N-Al1), Å 
R(N-Al2,3), Å 
R(N-Al4,5), Å 
<Al1NAl2,3, 0 

<Al1NAl4,5, 0 

3.859 
1.934 
1.921 
42.7 
134.3 

3.796 
1.929 
1.932 
42.8 
135.7 

3.847 
1.940 
1.915 
42.2 
133.5 

3.885 
1.890 
1.975 
46.9 
136.3 

3.858 
1.888 
1.977 
46.9 
136.4 

3.878 
1.896 
1.971 
46.2 
135.8 

w1 (a1), cm-1 

w2 (a1), cm-1 
666 (311)a 

411 (6)a 
806 (1237) 
493 (28) 

707 
418 

697 (271)a 

402 (32)a 
738 (356) 
407 (29) 

707 
408 

w3 (a1), cm-1 

w4 (a1), cm-1 

w5 (a1), cm-1 

w6 (a2), cm-1 

304 (1)a 

243 (19)a 

211 (4)a 

67 (0)a 

353 (0) 
295 (6) 
246 (18) 
7 (0) 

327 
251 
224 
43i 

284 (14)a 

238 (3)a 

196 (37)a 

82 (0)a 

297 (18) 
256 (4) 
206 (51) 
65 (0) 

297 
242 
204 
38 

w7 (b1), cm-1 

w8 (b1), cm-1 
213 (5)a 

29 (2)a 
46 (0) 
78i (9) 

28 
62i 

200 (2)a 

34 (3)a 
10 (0) 
31i (5) 

72 
32i 

w9 (b2), cm-1 

w10 (b2), cm-1 

w11 (b2), cm-1 

w12 (b2), cm-1 

628 (67)a 

262 (3)a 

209 (8)a 

115 (0)a 

660 (64) 
284 (5) 
239 (7) 
166 (3) 

642 
268 
220 
117 

655 (110)a 

246 (6)a 

226 (1)a 

106 (3)a 

717 (160) 
281 (7) 
256 (1) 
122 (3) 

663 
261 
234 
109 

a Values in parentheses  represent  relative absorbance  in tensities in the IR spectrum (km/mol). 

b Etot=-  a.u., c Etot=-  a.u. (all at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*). 

c Etot=-  a.u., c Etot=-  a.u. (all at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*). 
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 Table 4-5.  Comparison of the experimental VDE’s to calculated VDE’s for structure 

II of the Al3N- anion. 

VDE (theo.), eV 

Feature 
VDE (exp.) 

eV 

Final State and Electronic 

Configuration TD-B3LYPb 

 

OVGFb 

 

∆CCSD(T) b 

X 1.19 (4) 1A1, 1b1
23a1

22b2
24a1

23b2
0 1.15 1.16 (0.90)a 1.06 

A 2.78 (3) 3B2, 1b1
23a1

22b2
24a1

13b2
1 2.78 2.92 (0.85) 2.71 

     B 3.06 (3) 3A1, 1b1
23a1

22b2
14a1

23b2
1 2.99 3.37 (0.85)a 3.15 

C 3.39 (4) 1B2, 1b1
23a1

22b2
24a1

13b2
1 3.33   

D 3.69 (4) 1A1, 1b1
23a1

22b2
14a1

23b2
1 3.33   

E 5.20 (5) 3B2, 1b1
23a1

12b2
24a1

23b2
1 4.39 4.71 (0.79)a  

  3A2, 1b1
13a1

22b2
24a1

23b2
1 4.88 5.45 (0.90)a  

 

a Values in parentheses represent the pole strength of the OVGF calculation. 

b 6-311+G(2df) basis set. 
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Table 4-6.  Comparison of the experimental VDE’s to calculated VDE’s for Al4N-. 

VDE (theo.), eV 

Feature 
VDE (exp.) 

eV 

Final State and Electronic 

Configuration TD-B3LYPc 

 

OVGFc 

 

∆CCSD(T)c 

  Structure VII    

X 2.32 (3) 2B2g, 1a2u
22a1g

21b1g
22eu

41b2g
1 2.16 2.26 (0.87) 2.29 

A 3.41 (2) 2Eu, 1a2u
22a1g

21b1g
22eu

31b2g
2 3.38 3.63 (0.84) 3.52 

     B 3.74 (5) 2B1g, 1a2u
22a1g

21b1g
12eu

41b2g
2 3.47 3.56 (0.85) 3.53 

C 5.40 (5) 2A1g, 1a2u
22a1g

11b1g
22eu

41b2g
2 5.21 5.79 (0.75)b  

D  2A2u, 1a2u
12a1g

21b1g
22eu

41b2g
2 5.83  5.97 

  Structure VIII    

 1.7-1.8 2A1, 1b1
24a1

22b2
25a1

26a1
1 1.63 1.84 1.72 

 1.9 2B1, 1b1
24a1

22b2
25a1

22b1
1 1.90 2.01 2.03 

 2.8 4B1, 1b1
24a1

22b2
25a1

16a1
12b1

1 2.79 2.82 2.82 
 

a Values in parentheses represent the pole strength of the OVGF calculation. 

   b The pole strength is too low. This value is not reliable.  
c 6-311+G(2df) basis set. 
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Table 4-7.  Comparison of the experimental VDE’s to calculated VDE’s for the 

structure XXII of Al5N-. 

VDE (theo.), eV 
Feature VDE (exp.) 

eV 
Final State and Electronic 

Configuration TD-
B3LYPd 

UOVGFd ∆CCSD(T)d 

X 1.89 (4)     
x 2.01 (4) 1A1, 1b1

24a1
22b2

23b2
25a1

26a1
22b1

0 1.92 2.06 (0.88) 2.01 
A 2.29 (3)     
B 2.66 (3) 3B1, 1b1

24a1
22b2

23b2
25a1

26a1
12b1

1 2.52 2.61 (0.86) 2.63 
C 2.90 (3) 1B1, 1b1

24a1
22b2

23b2
25a1

26a1
12b1

1 2.77 b b 

D 3.27 (3) 3B1, 1b1
24a1

22b2
23b2

25a1
16a1

22b1
1 3.22 3.29 (0.84) b 

E 3.51 (3) 1B1, 1b1
24a1

22b2
23b2

25a1
16a1

22b1
1 3.47 b b 

F 3.87 (3) 1A2, 1b1
24a1

22b2
23b2

15a1
26a1

22b1
1 3.72 b b 

  3A2, 1b1
24a1

22b2
23b2

15a1
26a1

22b1
1 3.75 4.17 (0.84) 3.92 

  3A2, 1b1
24a1

12b2
13b2

25a1
26a1

22b1
1 

1A2, 1b1
24a1

22b2
13b2

25a1
26a1

22b1
1 

3B1, 1b1
24a1

12b2
23b2

25a1
26a1

22b1
1 

4.07 
4.52 
4.79 

4.08 (0.83) 
b 

5.40 (0.78)c 

b 

b 

b 
 

a Values in parentheses represent the pole strength of the UOVGF calculation. 
b This value cannot be calculated at the this level of theory. 
c The pole strength is too low. This value is not reliable.  
d 6-311+G(2df) basis set. 
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Table 4-8.  Comparison of the experimental VDE’s to calculated VDE’s for the 

structure XXIII of Al5N-. 

VDE (theo.), eV 
Feature VDE (exp.) 

eV 
Final State and Electronic 

Configuration TD-
B3LYPd 

OVGFd ∆CCSD(T)d 

X 
x 
A 

1.89 (4) 
2.01 (4) 
2.29 (3) 

1A1, 2b1
24a1

22b2
25a1

26a1
27a1

0 
 

3A1, 2b1
24a1

22b2
25a1

26a1
17a1

1 

1.82 
 

2.04 

2.04 (0.86) 
 

2.17 (0.87) 

1.80 
 

2.23 
B 2.66 (3) 1A1, 2b1

24a1
22b2

25a1
26a1

17a1
1 2.64 b b 

C 2.90 (3)     
D 3.27 (3) 3A1, 2b1

24a1
22b2

25a1
16a1

27a1
1 3.33 3.61 (0.85) b 

E 3.51 (3) 1A1, 2b1
24a1

22b2
25a1

16a1
27a1

1 3.56 b b 

F 3.87 (3)     
  3B2, 2b1

24a1
22b2

15a1
26a1

27a1
1 4.37 4.24 (0.79)c 4.16 

  1B2, 2b1
24a1

22b2
15a1

26a1
27a1

1 4.48 b b 

  3A1, 2b1
24a1

12b2
25a1

26a1
27a1

1 4.40 5.17 (0.85) b 

  3B1, 2b1
14a1

22b2
25a1

26a1
27a1

1 4.48 4.53 (0.82) 4.37 
  1A1, 2b1

24a1
12b2

25a1
26a1

27a1
1 4.84 b b 

  1B1, 2b1
14a1

22b2
25a1

26a1
27a1

1 5.09 b b 

a Values in parentheses represent the pole strength of the OVGF calculation. 
b This value cannot be calculated at the this level of theory. 
c The pole strength is too low. This value is not reliable.  
d 6-311+G(2df) basis set. 
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Table 4-9.  Comparison of the experimental VDE’s to calculated VDE’s for the 
structure XXIV of Al5N-..   

VDE (theo.), eV 
Feature VDE (exp.) 

eV Final State and Electronic Configuration TD-
B3LYPc 

OVGFc ∆CCSD(T)c 

X 
x 
A 

1.89 (4) 
2.01 (4) 
2.29 (3) 

 

1A’, 4a’25a’26a’22a”27a’23a”28a’0 
 

 
1.98 

 

 
2.12(0.88) 

 

 
2.01 

B 2.66 (3) 3A”, 4a’25a’26a’22a”27a’23a”18a’1 

1A”, 4a’25a’26a’22a”27a’23a”18a’1 
2.44 
2.65 

2.50(0.87) 2.60 

C 2.90 (3)   b b 
D 3.27 (3) 3A’, 4a’25a’26a’22a”27a’13a”28a’1 3.34 3.44(0.86) 3.44 
E 3.51 (3) 1A’, 4a’25a’26a’22a”27a’13a”28a’1 3.56 b b 

F 3.87 (3) 3A’, 4a’25a’26a’12a”27a’23a”28a’1 3.68 3.94(0.85) b 

  3A”, 4a’25a’26a’22a”17a’23a”28a’1 3.81 3.72(0.86) b 

  1A”, 4a’25a’26a’22a”17a’23a”28a’1 3.99 b b 

  3A’, 4a’25a’16a’22a”27a’23a”28a’1 4.27 4.42(0.84) b 

  1A’, 4a’25a’16a’22a”27a’23a”28a’1 4.37 b b 

  1A’, 4a’15a’26a’22a”27a’23a”28a’1 4.81 b b 

 

a Values in parentheses represent the pole strength of the OVGF calculation. 
b This value cannot be calculated at the this level of theory. 
c 6-311+G(2df) basis set. 
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Figure 4-1. Photoelectron spectra of Al3N- at four photon energies: 532 (2.331 eV), 355 

(3.496 eV), 266 (4.661 eV), and 193 nm (6.424 eV). 
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Figure 4-2. Photoelectron spectra of Al4N- at four photon energies: 532 (2.331 eV), 355 

(3.496 eV), 266 (4.661 eV), and 193 nm (6.424 eV).  
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Figure 4-3. Photoelectron spectra of Al5N- at four photon energies: 532 (2.331 eV), 355 

(3.496 eV), 266 (4.661 eV), and 193 nm (6.424 eV). 
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Figure 4-4. The lowest isomers for Al3N and Al3N-.  Relative energies are presented at 

CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* and at B3LYP/6-311+G* in brackets. Nimag 

is the number of imaginary frequencies calculated at B3LYP/6-311+G*. 



 

 

68 

 

 

Figure 4-5. The lowest isomers for Al4N and Al4N-.  Relative energies are presented at 

CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* and at B3LYP/6-311+G* in brackets. Nimag 

is the number of imaginary frequencies calculated at B3LYP/6-311+G*. 
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Figure 4-6. The lowest isomers for Al5N and Al5N-.  Relative energies are presented at 

CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* and at B3LYP/6-311+G* in brackets. Nimag 

is the number of imaginary frequencies calculated at B3LYP/6-311+G*. 
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Figure 4-7. Valence molecular orbitals for the structure II of Al3N- (UHF/6-311+G*).  

 

 

 

Figure 4-8. Valence molecule orbitals for the structure VII of Al4N- (RHF/6-311+G*). 
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Figure 4-9. Valence molecule orbitals for the structure XXII of Al5N- (UHF/6-311+G*).  
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CHAPTER 5 

PROBING THE STRUCTURE AND BONDING IN Al6N- AND Al6N BY 

PHOTOELECTRON SPECTROSCOPY AND AB INITIO CALCULATIONS1 

 
Abstract 

The electronic and geometrical structure of a nitrogen-doped Al6
- cluster (Al6N-) is 

investigated using photoelectron spectroscopy and ab initio calculations.  Photoelectron 

spectra of Al6N- have been obtained at three photon energies with seven resolved spectral 

features.  The electron affinity of Al6N has been determined to be 2.58 ± 0.04 eV.  Global 

minimum structure searches for A6N- and its corresponding neutral are performed using 

several theoretical methods. Vertical electron detachment energies, calculated using three 

different methods for the lowest energy structure and a low-lying isomer, are compared 

with the experimental data.  The ground state structure of Al6N- is established from the 

joint experimental and theoretical study to consist of an Al2 dimer bonded to the top of a 

quasi-planar tetracoordinated N unit, Al4N- or it can be viewed as a distorted trigonal 

prism structure with the N atom bonded in one of the prism faces.  For neutral Al6N, three 

low-lying isomers are found to compete for the global minimum, two of which are built 

from the tetracoordinated Al4N unit.  The chemical bonding in Al6N- is discussed on the 

basis of molecular orbital and natural bond analyses.   

                                                
1 Coauthored by Boris B. Averkiev, Alexander I. Boldyrev, X. Li, and L. S. Wang. 
Reproduced with permission from J. Phys. Chem. A 2007, 111, 34-41. Copyright 2007 
American Chemical Society. 
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5-1.  Introduction 

 Aluminum nitride is an important semiconductor material, but there have been 

relatively few experimental and theoretical studies on small aluminum nitride clusters.1-11  

Recently, Li and Wang reported an extensive set of photoelectron spectra of AlxN- 

clusters from x = 2-22 at 193 nm and compared them to those of pure Alx
- clusters.10  

They found spectral similarity between AlxN- and Alx-1
- and suggested that there is a 

strong charge transfer to form formally N3- in the nitrogen-doped aluminum clusters.  In a 

very recent study,12 we combined photoelectron spectroscopy (PES) with global 

minimum structural search, using a gradient embedded genetic algorithm followed by 

high level ab initio calculations, to elucidate the structures and bonding for a series of 

nitrogen doped small aluminum clusters, AlxN- (x = 3-5).  Vertical electron detachment 

energies calculated for the lowest energy structures were found to be in excellent 

agreement with the experimental observations.  Planar structures were established for all 

the three AlxN- (x = 3-5) anions.  In particular, we found that Al4N- is a highly stable 

cluster, isoelectronic to the penaatomic tetracoordianted planar carbon molecule,  

CAl4
2-.13,14 The global minimum structure of Al5N- simply consists of a planar Al4N- with 

the extra Al atom bonded to its side in the same plane,12 suggesting the stability and 

robustness of the planar tetracoordinated N structural unit.  In the current article, we 

report a joint PES and ab inito study on Al6N- and Al6N to examine if the planar Al4N 

structural unit plays any role in larger N-doped aluminum clusters.   

For the Al6N cluster, a number of different structures have been suggested from 

prior theoretical studies,3,7-9 but there is no consensus about its global minimum.  Nayak, 
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Khanna and Jena3 reported a global minimum structure with the N atom capping the 

triangular face of a distorted Al6 octahedron.  Leskiw et al.7 and Guo and Wu9 reported a 

global minimum structure with the N atom located inside a distorted Al6 octahedron.  

Ling, Song, and Cao8 reported a very low-symmetry structure, which can be 

approximately viewed as a N atom inside a highly distorted Al6 prism structure.   

In the current work, well-resolved photoelectron spectra of Al6N- at three photon 

energies are compared to theoretical calculations. We found that Al6N- possesses a C2v 

global minimum structure, which consists of an Al2 dimer bonded on the top of a planar 

Al4N- unit.  It can also be viewed as an N atom located in one of the faces of a distorted 

Al6 trigonal prism.  For neutral Al6N, we found three low-lying isomers with very close 

energies competing for the global minimum.  Two of the three low-lying structures are 

related to the planar Al4N, confirming the stability and robustness of the planar 

tetracoordinated N structural unit. 

 
5-2.  Experimental Method  

 The experiment was performed using a magnetic-bottle PES apparatus with a 

laser vaporization cluster source, details of which have been published elsewhere.15 

Briefly, the Al6N- clusters were produced by laser vaporization of a pure Al disk target 

with a 5% N2/He carrier gas.  Under this condition, only clusters doped with one nitrogen 

atom were formed.10 The Al6N- anion clusters of interest were size-selected and 

decelerated before crossing with a detachment laser beam.  We have reported PES spectra 

of AlxN- for x = 2– 22 at 193 nm (6.424 eV) recently along with the AlxN- mass 
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distribution.10 In the current study, we have obtained additional photoelectron spectra 

for Al6N- at two lower photon energies, 355 (3.496 eV) and 266 (4.661eV).  The lower 

photon energy spectra yielded better resolved spectra, which were necessary to compare 

with theoretical calculations.  The electron energy resolution of our PES apparatus was 

DE/E ~ 3%, i.e. about 30 meV for 1 eV electrons.   

 
5-3.  Theoretical Methods  

We performed initial search for the global minimum of Al6N- and Al6N using our 

gradient embedded genetic algorithm (GEGA) program.16,17 We used a hybrid method 

known in the literature as B3LYP18-20 with the small split-valence basis sets (3-21G)21 for 

energy, gradient and force calculations.  We reoptimized geometries and calculated 

frequencies for all isomers found for Al6N- and Al6N at the B3LYP/6-311+G* level of 

theory.  We also recalculated the two lowest energy structures of Al6N- using a coupled-

cluster method with single, double, and noniterative triple excitations (CCSD(T))22-24 

based on the RHF formalism with the polarized split-valence basis sets (6-311+G*).25-27 

Total energies of the local minimum structures were also recalculated at the CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G* level of theory.  We performed additional single point 

calculations at the multi-configuration self-consistent field method (CASSCF(X,Y)28,29 

with X active electrons and Y active molecular orbitals in order to test the validity of the 

one-electron approximation.   

The Al6N- vertical electron detachment energies (VDEs) were calculated using the 

R(U)CCSD(T)/6-311+G(2df), the outer valence Green Function method (ROVGF/6-
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311+G(2df))30-34 at the RCCSD(T)/6-311+G* geometries, and the time-dependent DFT 

method35,36 (TD B3LYP/6-311+G(2df)) at the B3LYP/6-311+G* geometries.  Core 

electrons were frozen in treating the electron correlation at the RCCSD(T) and ROVGF 

levels of theory.   

The B3LYP, R(U)CCSD(T), R(U)OVGF  ab initio calculations were performed 

using the Gaussian 98 and 03 programs.37,38  Molecular orbital visualization has been 

done using the MOLDEN3.4 program.39 

 
5-4.  Experimental Results  

The PES spectra of Al6N- at three photon energies are shown in Figure 5-1.  Two 

bands were observed in the 355 nm spectrum (Figure 5-1a), a relatively sharp band (X) at 

a VDE of 2.66 eV and a broad band, which seemed to consist of two overlapping features 

(A and B).  A long tail was observed at the lower binding energy side, which depended 

on the detachment photon flux at 355 nm and was due to thermionic emission processes.40 

The thermionic emission was less severe at higher photon energies because of the 

relatively lower photon fluxes used.  The X band was relatively sharp, suggesting a small 

geometrical change from the ground state of Al6N- to that of neutral Al6N.  From the 

onset of the X band, we obtained an adiabatic detachment energy (ADE) of 2.58 ± 0.04 

eV, which defines the electron affinity of neutral Al6N.  At 266 nm (Figure 5-1b), the 

bands A and B were resolved more clearly and a number of new features were also 

revealed.  Two relatively sharp peaks were observed at 4.00 eV (C) and 4.06 eV (D), 

which could be due to the 0-0 and 0-1 transitions of a vibrational progression.  However, 
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since there were no other regular peaks with a similar spacing at higher binding 

energies beyond peak D, we tentatively assigned the C and D as the origins of two 

electronic transitions.  As will be shown below, these assignments were born out in our 

theoretical calculations.  At 193 nm (Figure 5-1c), two more closely spaced bands were 

observed at VDEs of 4.51 eV (E) and 4.70 eV (F). In addition, the relative intensities of 

the A and B bands, as well as the C and D bands, appeared to increase with the photon 

energies.  

The VDEs of all the observed bands are given in Tables 5-1 and 5-2, where they 

are compared with theoretical calculations for the two lowest-lying isomers of Al6N-.   

 
5-5.  Theoretical Results 

 Al6N-.  We initially performed the GEGA search for the global minimum structure 

at B3LYP/3-21G level of theory separately for both singlet and triplet states.  Figure 5-2 

displays the low-lying structures found by the GEGA search and recalculated at the 

B3LYP/6-311+G* geometry with relative total energies at CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G*.   

 The structure II (Figure 5-2) was found by GEGA at the B3LYP/3-21G level to be 

the global minimum, which is the same as reported by Leskiw et al.7 and Guo and Wu9.  

However, at the B3LYP/6-311+G*, CCSD(T)/6-311+G*, and CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G* levels of theory, the global minimum is the structure I, 

which is more stable than the structure II at the above levels of theory by 0.8, 2.4, and 1.5 

kcal/mol, respectively. The Hatree-Fock function was found to be dominant (CHF=0.951 
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out of 31,8787 configurations) in CASSCF(10,10)/6-311+G* calculations for the 

structure I. The global minimum structure I seems to have been missed in previous 

studies of Al6N-. At CCSD(T)/6-311+G* the structure II has one imaginary frequency 

(Table 5-3). However, the vibrationally averaged structure II can be considered to have 

the C2v symmetry.  Among other low-lying isomers, we mention the structure III, which 

consists of an NAl moiety bonded to a capped-tetrahedral Al5 cluster, is higher in energy 

than the global minimum structure by 7.7 kcal/mol (B3LYP/6-311+G*) and 10.1 

(CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*).  The lowest triplet structure IV, which is 

related to the singlet structure II, is higher in energy than the global minimum structure 

by 10.5 kcal/mol (B3LYP/6-311+G*) and 12.4 (CCSD(T)/6-311+G(2df)//B3LYP/6-

311+G*).  We also identified a number of local minimum structures (Figure 5-2) with 

energies between 14 and 32 kcal/mol above the global minimum.   

 Al6N.  We initially performed the GEGA search for the global minimum structure 

of neutral Al6N at B3LYP/3-21G level of theory separately for doublet and quartet states.  

Figure 5-3 shows the low-lying structures found by the GEGA search and recalculated at 

the B3LYP/6-311+G* geometry with relative total energies at CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G*.   

 The global minimum structure XVIII (Figure 5-3) at the B3LYP/3-21G level 

found by GEGA is the same as reported by Leskiw et al.7 and Guo and Wu9.  Ling, Song, 

and Cao8 found a global minimum structure similar to the structure XVIII, but without 

any symmetry.  Note the structure XVIII in Figure 5-3 possesses C2v symmetry.  Nayak, 

Khanna and Jena3 reported a global minimum structure for Al6N, in which a nitrogen 
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atom is coordinated outside the face of a distorted Al6 octahedron. However, at the 

B3LYP/6-311+G* level of theory the global minimum is the structure XIX, which has 

never been reported in the literature.  At our highest CCSD(T)/6-311+G(2df)//B3LYP/6-

311+G* level of theory the structure XVIII again becomes the most stable one, but it is 

only more stable than structure XIX by 0.7 kcal/mol.  We also found that the structure 

XX, which corresponds to the global minimum of the anion (structure I), is also a very 

stable structure for the neutral, only 3.3 kcal/mol (B3LYP/6-311+G*) and 0.8 kcal/mol 

(CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*) higher than the structure XVIII. In order to 

avoid the problem with a different spin-contamination at the UCCSD(T)/6-311+G(2df) 

level of theory for structures XVIII-XX, we evaluated energies of the structures XVIII-

XX as a difference between total energy of the anion at the geometry of the neutral 

species (at RCCSD(T)/6-311+G(2df)//B3LYP/6-311+G*) and the first vertical electron 

detachment energy for the anion (at ROVGF/6-311+G(2df)//B3LYP/6-311+G*) at the 

geometry of the neutral species. In that approach the <S2> values are exactly 0.750. The 

structure XVIII was found again to be the global minimum with relative energies equal to 

3.7 kcal/mol for the structure XIX and 1.8 kcal/mol for the structure XX.  The energy 

differences for the three low-lying structures of Al6N (XVIII, XIX, XX) are too small to 

allow us to conclude with certainty which one is the true global minimum.  Notably, all 

other isomers, XXI-XXXI in Figure 5-3, are significantly higher in energy and will not be 

discussed further. 
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 The molecular properties for the two low-lying structures of Al6N- (I and II) 

and the three low-lying structures of Al6N (XVIII, XIX, and XX) are summarized in 

Tables 5-3 and 5-4, respectively.   

 
5-6.  Interpretations of the PES Spectra and  

        Comparison with the Calculated VDEs  

 We calculated the VDEs for structures I and II of Al6N- at the TD-B3LYP/6-

311+G(2df), ROVGF/6-311+G(2df) and CCSD(T)/6-311+G(2df) levels of theory. The 

theoretical results are compared with the experimental data in Tables 5-1 and 5-2 for the 

two isomers, respectively.    

 The global minimum structure I has the 

1a1
21b2

21b1
22a1

23a1
22b2

24a1
22b1

21a2
23b2

25a1
23b1

2 (1A1) electronic configuration according to 

the ROVGF/6-311+G(2df) calculations.  The calculated VDE from the 3b1-HOMO at 

three levels of theory is 2.41 eV (TD-B3LYP/6-311+G(2df)), 2.53 eV (ROVGF/6-

311+G(2df)), and 2.63 eV (CCSD(T)/6-311+G(2df)), agreeing well with the 

experimental value for the ground state transition (X) with the measured VDE of 2.66 eV 

(Table 5-1).  The next two detachment channels from 5a1-HOMO-1 and 3b2-HOMO-2 

give very close VDEs in all three methods.  Again the TD-DFT method gives slightly 

lower VDEs for these two detachment channels (3.14 and 3.22 eV).  But the OVGF 

values (3.36 and 3.44 eV) are almost identical to the CCSD(T) values (3.36 and 3.44 eV), 

which are in excellent agreement the experimental measurements (3.25 and 3.40 eV).  

The calculated VDEs from the 1a2-HOMO-3 and 2b1-HOMO-4 from TD-DFT again 
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differ from the OVGE values, which are more reliable from the above discussion.  The 

OVGF values (4.20 and 4.21 eV) for these two detachment channels are somewhat larger 

than the experiment (4.00 and 4.06 eV). We also note that the OVGF values for the two 

relatively high-energy detachment channels, 4a1-HOMO-5 and 2b2–HOMO-6, are in 

excellent agreement with the PES data (Table 5-1).  The pole strength (UOVGF) in the 

OVGF calculations was found to be between 0.81 and 0.86 for all the seven detachment 

channels (Table 5-1), indicating that electron detachments from Al6N- can be primarily 

described by one-electron processes.  The overall agreement between the calculated 

VDEs for the structure I and the experimental VDEs is excellent.   

 Since the structure II was found to be very close to the global minimum structure, 

we also computed the VDEs for this isomer and compared them with the experimental 

data in Table 5-2. The electronic configuration for the structure II was found to be 

1a1
21b2

22a1
21b1

23a1
22b2

24a1
22b1

2 3b2
25a1

21a2
26a1

2 (1A1) at the ROVGF/6-311+G(2df) level 

of theory.  The calculated VDE from the 6a1-HOMO at three levels of theory is 2.56 eV 

(TD-B3LYP/6-311+G(2df)), 2.67 eV (ROVGF/6-311+G(2df)), and XXX eV 

(CCSD(T)/6-311+G(2df)), which also agrees well with the experimental VDE for the 

ground state transition at 2.66 eV (Table 5-4).  However, the calculated VDEs for the 

higher binding energy channels completely disagree with the experiment.  For example, 

the experiment showed that the bands A and B have very close VDEs, whereas the 

calculated VDEs for 1a2-HOMO-1 and 5a1-HOMO-2 show a very large separation in all 

three methods (Table 5-2).  The spectral pattern for the higher binding energy channels 
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also display large discrepancy with the PES data.  Thus, we can rule out structure II as 

the carrier of the PES spectra for Al6N-.   

Our results demonstrate again the sensitivity of the calculated PES spectra to 

cluster structures.  Even though both structures I and II are very close in total energies 

and give similar first VDEs, their overall spectral patterns are totally different. The 

excellent agreement between the calculated VDEs for structure I and the experiment 

unequivocally confirms it as the global minimum for the Al6N- cluster.   

 
5-7.  Chemical Bonding in Al6N- 

 The global minimum structure I and the low-lying isomer II are both related to the 

planar tetracoordinate nitrogen molecule Al4N-.  Our recent work12 showed that Al4N- is 

isoelectronic to the first penta-atomic planar tetracoordiante carbon, Al4C2-,13,14 and is a 

very stable structural unit. We also found in that work that Al5N- is build upon the planar 

Al4N- unit with the extra Al bonded to one side of Al4N- in the same plane.12  The ground 

state of Al6N- can be viewed as an Al4N- unit with the two extra Al atoms bonded to its 

top, whereas the low-lying isomer II can be viewed as an Al4N- unit with the two Al 

atoms bonded to each side of it on one edge.  In neutral Al6N, among the three lowest-

lying isomers structures XIX and XX are built from the planar Al4N unit.  These 

observations suggest the robustness and stability of the planar Al4N- and Al4N structural 

units, which may also play major roles in larger AlxN- clusters. 

The ground state structure I and the low-lying isomer II for Al6N- can also be 

understood as a Jahn-Teller distortion from the corresponding high symmetry D3h and Oh 
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structures, respectively.  In order to proof these structural relationships, we added an 

extra pair of electrons to the lowest unoccupied MO in both structures (Figures 5-4 and 5-

5).  Geometry optimizations for Al6N3- started from the geometries of structures I and II 

led to high symmetry D3h (1A1’, 1a1g
21t1u

62a1g
22t1u

61eg
41t2g

6) and Oh (1A1g, 1a1’21a2”1e’42a1’2 

2a2”22e’41e”43a1’23e’4) structures (see MOs in Figures 5-6 and 5-7). While isolated Al6N3- 

is not electronically stable, it has a repulsive Coulomb barrier on the electron ejection 

pathway and therefore it has a certain lifetime at the optimized Oh geometry. We discuss 

this metastable trianion only for showing that the low-symmetry global minimum 

structure of Al6N- can be explained on the basis of the Jahn-Teller effect. At the 

B3LYP/6-311+G* level of theory, the Oh (1A1g) structure is a local minimum and the D3h 

(1A1’) structure was found to be a first order saddle point being 8.9 kcal/mol (B3LYP/6-

311+G*) and 15.2 kcal/mol (CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*) higher in 

energy than the Oh structure.  Geometry optimization of the D3h (1A1’) structure along the 

imaginary frequency mode led to the Oh structure.  Thus, when a pair of electrons are 

removed from the 1t2g-HOMO (Oh) or from the 3e’-HOMO (D3h), the ensuring Jahn-

Teller distortion lead to the structures II and I, respectively.   

 Calculated NBO charges at B3LYP/6-311+G* for the two lowest structures of 

Al6N- and Al6N are summarized in Figure 5-8.  In all four structures the effective charge 

on the central N atom is almost the same (-2.30 – -2.40 |e|), which is close to the ionic 

limit -3.00 |e|.  Upon electron detachment from Al6N- the electron density is reduced 

primarily on aluminum atoms.  That can be easily understood from the MO pictures of 

Al6N- (structures I and II) presented in Figures 5-5 and 5-6 because the 3b1-HOMO in the 



 

 

84 

structure I and the 6a1-HOMO in the structure II are composed purely of aluminum 

AO’s only.  Thus, the N atom in Al6N- and Al6N can be viewed as N3-, consistent with the 

previous observation by Li and Wang that the electronic structures of AlxN- are similar to 

pure aluminum clusters with one less aluminum, Alx-1
-.10   

 The Oh structure of Al6N3- can be related to the recently reported Oh structure of 

the isolated Al6
2- cluster.41 In Al6

2-, the six lowest valence occupied MOs could be 

approximately assigned to six lone pairs formed by primarily 3s-AOs of Al with one lone 

pair at every Al atom.  That takes 12 valence electrons out of 20. The remaining 8 

valence electrons fill a completely delocalized 2a1g MO, which is formed by the radial 3p-

AOs of six aluminum atoms, and a delocalized triply degenerate 1t2g-HOMO, which is 

formed by the tangential 3p-AOs of the six aluminum atoms.  This results in double 

spherical aromaticity, where the 2a1g-MO is a spherical analog of a p-aromatic MO and 

the 1t2g-MO is a spherical analog of s-aromatic MOs in planar aromatic systems (see 

recent review ref. 42 for details).  MOs for the Oh structure of Al6N3- are presented in 

Figure 5-8.  The lowest valence 1a1g-MO is primarily 2s-AO of the central nitrogen atom.  

The next triply degenerate 1t1u-MO can be assigned to three 2px-, 2py-, and 2pz-AOs of 

the nitrogen. The next six valence MOs (2a1g, 2t1u, and 1eg) are primarily formed by the 

3s-AOs of the aluminum atoms.  Finally, the triply degenerate 1t2g-HOMO is formed by 

the tangential 3p-AOs of the Al atoms, similar to the 1t2g-HOMO in Al6
2-.  Thus, in the Oh 

structure of Al6N3- the chemical bonding can be approximately described as the central 

atom carrying a effective charge -3 (N3-), which is ionically bound to the octahedral Al6 

cluster.  The Al6 cluster keeps its octahedral structure in Al6N3-, because N3- can perfectly 
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fit in the cavity of the octahedron and N3- with its 8 valence electrons substitute a pair 

of electrons on the completely bonding 2a1g-MO in Al6
2-.  The tangential peripheral Al-Al 

bonding is the same in both clusters and thus Al6N3- is also tangential aromatic.   

 
5-8.  Conclusions 

We combined photoelectron spectroscopy and theoretical calculations to elucidate 

the electronic structure and chemical bonding of Al6N-.  Seven detachment channels were 

observed and compared with the calculated VDEs.  Global minimum structures of Al6N- 

and Al6N were identified first by using Gradient Embedded Genetic Algorithm 

(B3LYP/3-21G) followed by B3LYP/6-311+G* geometry and frequency calculations.  

The energies of the optimized structures were than refined at the CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G* level of theory. By comparing the theoretical VDEs with 

the experimental data we established that Al6N- has a distorted trigonal prism structure I 

(C2v, 
1A1), which is build from a planar Al4N- unit with the two extra Al atoms bonded to 

its top on one side.  Three low-lying isomers with close total energies were identified for 

the neutral Al6N cluster, competing for the global minimum structure.  The current work 

provides another example of the robustness and stability of the planar Al4N unit, which 

may play a major structural role in larger N-doped aluminum clusters.   
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Table 5-1.  Comparison of the experimental VDEs to the calculated VDEs for the 

structure I of Al6N-.  All energies are in eV.   

VDE (theo.) 
Feature 

VDE (exp.) 

a 

Final State and Electronic 

Configuration TD-B3LYP OVGF b ∆CCSD(T) 

X 2.66 (3) 2B1, 2b2
24a1

22b1
21a2

23b2
25a1

23b1
1 2.41 2.53 (0.86) 2.63 

A 3.25 (5) 2A1, 2b2
24a1

22b1
21a2

23b2
25a1

13b1
2 3.14 3.30 (0.86) 3.36 

B 3.40 (4) 2B2, 2b2
24a1

22b1
21a2

23b2
15a1

23b1
2 3.22 3.44 (0.86) 3.44 

C 4.00 (3) 2A2, 2b2
24a1

22b1
21a2

13b2
25a1

23b1
2 4.21 4.20 (0.83) 4.23 

D 4.06 (3) 2B1, 2b2
24a1

22b1
11a2

23b2
25a1

23b1
2
 4.00 4.21 (0.82) c 

E 4.50 (5)  2A1, 2b2
24a1

12b1
21a2

23b2
25a1

23b1
2 4.40 4.51 (0.81) c 

F 4.70 (5) 2B2, 2b2
14a1

22b1
21a2

23b2
25a1

23b1
2 4.62 4.70 (0.81) c 

 

a Numbers in parentheses represent the uncertainty in the last digit. 

b Values in parentheses represent the pole strength of the OVGF calculation.  

c This value cannot be calculated at the this level of theory. 
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Table 5-2.  Comparison of the experimental VDE’s to calculated VDE’s for the 

structure II of Al6N-.  All energies are in eV.   

VDE (theo.) 
Feature 

VDE (exp.) 

a 

Final State and Electronic 

Configuration TD-B3LYP OVGF b ∆CCSD(T) 

X 2.66 (3) 2A1, 2b2
22b1

24a1
23b2

25a1
21a2

26a1
1 2.56 2.67 (0.86) 2.79 

A 3.25 (5) 2A2, 2b2
22b1

24a1
23b2

25a1
21a2

16a1
2 2.78 2.95 (0.86) 2.99 

B 3.40 (4) 2A1, 2b2
22b1

24a1
23b2

25a1
11a2

26a1
2 3.64 3.73 (0.86) c 

C 4.00 (3) 2B2, 2b2
22b1

24a1
23b2

15a1
21a2

26a1
2 3.87 4.10 (0.84) 3.98 

D 4.06 (3) 2A1, 2b2
22b1

24a1
13b2

15a1
21a2

26a1
2
 4.11 4.31 (0.82) c 

E 4.50 (5)  2B1, 2b2
22b1

14a1
23b2

25a1
21a2

26a1
2 4.06 4.29 (0.80) 4.23 

F 4.70 (5) 2B2, 2b2
12b1

24a1
23b2

25a1
21a2

26a1
2 4.81 4.89 (0.79) c 

 

a Numbers in parentheses represent the uncertainty in the last digit. 

b Values in parentheses represent the pole strength of the OVGF calculation.  

c This value cannot be calculated at the this level of theory.   
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Table 5-3.  The molecular properties of the Al6N- species. 

 I (C2v, 1A1) II (C2v, 1A1) II (Cs, 1A’) 
Molecular 
Parameter 

B3LYP/ 
6-311+G* 

CCSD(T)/ 
6-311+G* 

B3LYP/ 
6-311+G* 

CCSD(T)/ 
6-311+G* 

CCSD(T)/ 
6-311+G* 

E, a.u. -1509.5965859 -1506.6828519 -1509.5952394 -1506.6791067 -1506.6796313 
R(N-Al2) 2.391 2.355 1.931 1.930 1.945 
R(N-Al4) 2.004 2.004 2.333 2.340 2.296 
R(N-Al5)   2.094 2.078 2.019 
R(N-Al7)     2.193 
R(Al2-Al3) 2.614 2.616 2.795 2.826 2.771 
R(Al2-Al4) 2.672 2.683 2.726 2.723 2.698 
R(Al4-Al5) 3.010 2.975 2.634 2.637 2.648 
R(Al4-Al7)     2.607 
R(Al5-Al6) 2.615 2.628    
w1, cm-1 

w2, cm-1 

w3, cm-1 

w4, cm-1 

w5, cm-1 

w6, cm-1 

w7, cm-1 

w8, cm-1 

w9, cm-1 

w10, cm-1 

w11, cm-1 

w12, cm-1 

w13, cm-1 

w14, cm-1 

w15, cm-1 

a1, 367 (17) 
a1, 323 (82) 
a1, 291 (2) 
a1, 259 (17) 
a1, 204 (5) 
a2, 245 (0) 
a2, 185 (0) 
a2, 63 (0) 
b1, 536 (77) 
b1, 272 (10) 
b1, 188 (8) 
b2, 526 (131) 
b2, 250 (13) 
b2, 109 (12) 
b2, 80 (1) 

385 
349 
297 
271 
212 
252 
181 
48 
536 
276 
183 
542 
242 
101 
56 

a1, 561 (198) 
a1, 339 (4) 
a1, 253 (3) 
a1, 216 (7) 
a1, 117 (11) 
a1, 115 (0) 
a2, 286 (0) 
a2, 64 (0) 
b1, 332 (12) 
b1, 229 (18) 
b1, 30 (0) 
b2, 550 (150) 
b2, 278 (2) 
b2, 194 (0) 
b2 108 (30) 

573 
350 
259 
225 
120 
104 
287 
52i 
360 
232 
113i 
564 
282 
193 
84 

 

a Values in parentheses  represent  relative absorbance  intensities in the IR spectrum 

(km/mol). 
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Table 5-4. The molecular properties of the Al6N species calculated at B3LYP/6-
311+G*. 

Molecular 
Parameter 

XVIII(C2v, 2A1) XIX (C2, 2A) XX(C2v, 2B1) 

E, a.u. -1509.5109768 -1509.5148164 -1509.5095013 
R(N-Al2) 1.894 3.749 2.443 
R(N-Al4) 2.832 1.886 2.003 
R(N-Al5) 2.030 1.965  
R(Al2-Al3) 3.499 2.579 2.712 
R(Al2-Al4) 2.724 2.767 2.698 
R(Al2-Al7) 3.078 2.997  
R(Al4-Al5) 2.700 2.730 2.934 
R(Al5-Al6)  2.742 2.689 
R(Al4-Al7)  2.694  
w1, cm-1 

w2, cm-1 

w3, cm-1 

w4, cm-1 

w5, cm-1 

w6, cm-1 

w7, cm-1 

w8, cm-1 

w9, cm-1 

w10, cm-1 

w11, cm-1 

w12, cm-1 

w13, cm-1 

w14, cm-1 

w15, cm-1 

a1, 434 (13) 
a1, 360 (1) 
a1, 256 (1) 
a1, 203 (1) 
a1, 127 (0) 
a1, 53 (0) 
a2, 233 (0) 
a2, 93 (0) 
b1, 364 (4) 
b1, 207 (12) 
b1, 119 (1) 
b2, 697 (108) 
b2, 278 (0) 
b2, 187 (0) 
b2, 127 (0) 

a, 714 (321) 
a, 408 (31) 
a, 301(5) 
a, 288 (0) 
a, 243(4) 
a, 172 (1) 
a, 70 (0) 
a, 63 (0) 
b, 639 (48) 
b, 250 (5) 
b, 221 (4) 
b, 195 (0) 
b, 123 (1) 
b, 70 (1) 
b, 34 (0) 

a1, 351 (3) 
a1, 271 (3) 
a1, 228(0) 
a1, 212 (35) 
a1, 193(8) 
a2, 226 (0) 
a2, 162 (0) 
a2, 59 (0) 
b1, 509 (95) 
b1, 222 (4) 
b1, 162 (5) 
b2, 537 (160) 
b2, 229 (4) 
b2, 111 (5) 
b2, 51 (6) 

a Values in parentheses  represent  relative absorbance  intensities in the IR spectrum 

(km/mol). 
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Figure 5-1. Photoelectron spectra of Al6N- at (a) 355 nm (3.496 eV, (b) 266 nm (4.661 

eV), and (c) 193 nm (6.424 eV). 
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Figure 5-2. Computationally found isomers for Al6N-.  Relative energies are given at 

CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* and at B3LYP/6-311+G* in parenthesis. 
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Figure 5-3. Computationally found isomers for Al6N.  Relative energies are given at 

CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* and at B3LYP/6-311+G* in parenthesis. 
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Figure 5-4.  Molecular orbital for Al6N- (structure I) calculated at RHF/6-311+G*. 
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Figure 5-5.  Molecular orbital for Al6N- (structure II) calculated at RHF/6-311+G*. 
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Figure 5-6. Molecular orbital for Al6N3- (structure D3h, 1A1’) calculated at RHF/6-

311+G*. 
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Figure 5-7.  Molecular orbital for Al6N3- (structure Oh, 1A1g) calculated at RHF/6-

311+G*. 
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Figure 5-8.  Effective NBO atomic charges (in |e|) for Al6N- (structures I and II) and 

Al6N (structures XX and XVIII) at B3LYP/6-311+G*. 
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CHAPTER 6 

PHOTOELECTRON SPECTROSCOPY AND AB INITIO STUDY OF THE 

STRUCTURE AND BONDING OF Al7N– AND Al7N1 

 
Abstract 

 The electronic and geometrical structures of Al7N– are investigated using 

photoelectron spectroscopy and ab initio calculations.  Photoelectron spectra of Al7N– 

have been obtained at three photon energies with six resolved spectral features at 193 nm.  

The spectral features of Al7N– are relatively broad, in particular for the ground state 

transition, indicating a large geometrical change from the ground state of Al7N– to that of 

Al7N.  The ground state vertical detachment energy is measured to be 2.71 eV, whereas 

only an upper limit of ~1.9 eV can be estimated for the ground state adiabatic detachment 

energy due to the broad detachment band.  Global minimum searches for A7N– and Al7N 

are performed using several theoretical methods.  Vertical electron detachment energies 

are calculated using three different methods for the lowest energy structure and compared 

with the experimental data. Calculated results are in excellent agreement with the 

experimental data. The global minimum structure of Al7N– is found to possess C3v 

symmetry, which can be viewed as an Al atom capping a face of a N-centered Al6N 

octahedron. In the ground state of Al7N, however, the capping Al atom is pushed inward 

                                                
1 Coauthored by Boris B. Averkiev, Seth Call, Alexander I. Boldyrev, Lei-Ming Wang, 
Wei Huang, and Lai-Sheng Wang. Reproduced with permission of J. Phys. Chem. A 
2008, 112, 1873-1879. Copyright 2008 American Chemical Society. 
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with the three adjacent Al-Al distances being stretched outward. Thus, even though 

Al7N still possesses C3v symmetry, it is better viewed as a N coordinated by seven Al 

atoms in a cage-like structure.  The chemical bonding in Al7N– is discussed on the basis 

of molecular orbital and natural bond analysis. 

 
6-1.  Introduction 

Metal clusters doped with one or more heteroatoms provide a new approach to 

manipulate the physical and chemical properties of clusters.  Doped clusters are 

interesting chemical species with novel modes of chemical bonding.  Understanding the 

structures and chemical bonding of such clusters may lead to rational designs of 

structurally and electronically stable clusters for applications in cluster-assembled 

nanomaterials or catalysis.   

 Aluminum nitride is an important semiconductor material.  However, there have 

been relatively few experimental and theoretical studies on aluminum nitride clusters.1-15  

Experimentally, it is difficult to produce (AlN)x type clusters due to the overwhelming 

thermodynamic stability of the N2 molecule.  In an attempt to produce (AlN)x
– clusters, Li 

and Wang were able to observe only aluminum clusters doped with only one N atom, 

AlxN–.10  Photoelectron spectra for a series of AlxN– clusters (x = 2-22) at 193 nm have 

been reported and compared to those of pure Alx
– clusters.10  The N-doped aluminum 

clusters are interesting and in larger sizes the AlxN– clusters are observed to exhibit 

similar electronic structures as pure Al(x-1)
– clusters.  Recently we have performed joint 

photoelectron spectroscopic and ab initio studies on a series of AlxN– (x = 3-6) clusters in 
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order to elucidate their electronic and structural evolution as a function of size.12,13  

We have found that the global minimum structures of AlxN- (x = 3-5) are planar. The 2D 

to 3D structural transition occurs at x=6.  We have shown that Al6N– possesses two 

closely-lying low-energy structures, which can be described as Jan-Teller distortions 

from the corresponding symmetric D3h and Oh anions of Al6N3–, respectively. 

 In the current work, we report a joint photoelectron spectroscopy (PES) and ab 

initio study on Al7N– and its neutral counterpart Al7N.  The neutral Al7N cluster is an 

intriguing species because it is valence-isoelectronic to Al7C–, which has been reported to 

be a particularly stable cluster that can be used as a building block for cluster-assembled 

materials.16,17  The stability of Al7C– has been predicted due to its stable 18-electron shell 

closing.  It would be interesting to compare the structure and bonding between Al7N and 

Al7C–. There are several previous theoretical studies on the Al7N cluster.7-9,14,15 We 

performed a detailed PES study on Al7N– and measured its PES spectra at three photon 

energies 355, 266, and 193 nm.  Extensive calculations have been carried out to search 

for the global minimum structures for Al7N– and Al7N. The calculated Al7N– global 

minimum structure was confirmed by comparing the calculated vertical detachment 

energies (VDEs) with the experimental PES spectra.  We found that the global minimum 

of Al7N– is a N-centered Al6N octahedron capped by one Al atom with C3v symmetry.  

The global minimum structure of Al7N also has C3v symmetry, but undergoes a 

significant geometry change relative to the anion.  It can be viewed as a N atom 

coordinated by seven Al atoms in a cage-like structure, similar to Al7C–.  
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6-2.  Experimental Method  

The experiment was performed using a magnetic-bottle PES apparatus with a 

laser vaporization cluster source; details of the experimental apparatus have been 

published elsewhere.18 Briefly, the Al7N– clusters were produced by laser vaporization of 

a disk target compressed from mixed powders of Al and AlN using pure helium as the 

carrier gas. A 10-cm long and 3-mm diameter extender tubing was used in the cluster 

source to allow adequate thermerlization of the nascent clusters.  This was found to 

produce relatively cold clusters even under room temperature source conditions, which 

were important to yield well-resolved PES spectra.19,20  The anion clusters were extracted 

from the cluster beam perpendicularly and were analyzed using a time-of-flight mass 

spectrometer. We showed previously that only AlxN– clusters with one N impurity atom 

could be observed under this condition.10  The anion clusters of interest were mass-gated 

and decelerated before being photodetached by a laser beam.  Photoelectrons were 

collected at near 100% collecting efficiency by the magnetic bottle and analyzed in a 3.5 

m long electron flight tube.  In the current experiment, three photon energies were used 

for photodetachment, 355 nm (3.496 eV) and 266 nm (4.661 eV) from a Nd:YAG laser 

and 193 nm (6.424 eV) from an ArF excimer laser.  The electron energies were calibrated 

by the known spectrum of Rh–.  The electron energy resolution (DEk/Ek) was about 

2.5%, i.e. ~ 25 meV for 1 eV electrons.   
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6-3.  Theoretical Methods  

We performed initial computational searches for the global minimum of Al7N- 

and Al7N using our gradient embedded genetic algorithm (GEGA) program written by A. 

N. Alexandrova21,22 and our simulated annealing program written by S. Call. In our 

simulated annealing Monte Carlo search for the global minimum, we used a population of 

20 randomly generated structures at an initial temperature of 10,000 K with an effective 

Boltzmann constant of 10.0 Hartree K-1, which allowed us to have the initial percentage 

of accepted transitions above 90%. After each iteration the temperature decreased 

according to Tn=0.9995Tn-1. The atomic coordinate perturbation P started at 0.3 Å and 

decreased according to Pn=0.99951/2Pn-1. The maximum allowed interatomic distance was 

3.0 Å. The minimum interatomic distances were 1.7 Å between N and Al and 2.5 Å 

between Al and Al. The Monte Carlo simulation continued until the percentage of 

accepted transitions decreased to 10% and the final temperature decreased to 25 K. We 

used a hybrid method known as B3LYP23-25 with the small split-valence basis sets (3-

21G) for energy, gradient and force calculations, with simulated annealing performing 

single-point energy calculations and GEGA performing gradient optimizations. We 

reoptimized geometries and calculated frequencies for the lowest structures using the 

B3LYP method with the polarized split-valence basis sets (6-311+G*).26-28 Total energies 

of the lowest structures were also calculated using the CCSD(T)29-31 method with the 

extended 6-311+G(2df) basis sets at the B3LYP/6-311+G* geometries. 

The vertical electron detachment energies were calculated using the 

R(U)CCSD(T)/6-311+G(2df) method, the outer valence Green Function method 
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(R(U)OVGF/6-311+G(2df))32-36 as well as the time-dependent DFT method37,38 (TD 

B3LYP/6-311+G(2df)) all  at the B3LYP/6-311+G* geometry.  In the last approach, the 

first vertical electron detachment energies were calculated at the B3LYP level of theory 

as the lowest transitions from the doublet state of the anion into the final lowest singlet or 

triplet states of the neutral species. Then the vertical excitation energies in the neutral 

species (at the TD-B3LYP level) were added to the lowest singlet and triplet VDEs in 

order to get the second and higher VDEs.  Core electrons were frozen in treating the 

electron correlation at the R(U)CCSD(T) and R(U)OVGF levels of theory.   

The B3LYP, R(U)CCSD(T), R(U)OVGF calculations were performed using the 

Gaussian 03 program.39  Molecular orbital visualization was done using the MOLDEN3.4 

program.40  

 
6-4.  Experimental  Results 

 Figure 6-1 shows the PES spectra of Al7N– at three different photon energies.  A 

total of six distinct detachment bands can be identified in the 193 nm spectrum (Figure 6-

1c), where the C and D bands overlap.  All the PES bands seem to be intrinsically broad, 

i.e. the band widths do not seem to change with photon energies (the instrumental 

resolution is better at lower photon energies).  The apparent sharper band A in the 355 

nm spectrum (Figure 6-1a) is due to a spectral cutoff at ~3.3 eV.  The broad spectral 

widths suggest either a large geometry change upon photodetachment and/or overlapping 

electronic states. The ground state band X is particularly broad with a long, low energy 

tail, making it very difficult to evaluate the adiabatic detachment energy (ADE). This 
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observation implies that there is a major geometry change between the ground state of 

Al7N– and that of neutral Al7N, meaning that there may be a negligible Franck-Condon 

factor for the 0-0 transition. We note that there appears to be a step in the low binding 

energy side in the 355 nm spectrum (see inset of Figure 6-1a). This step at ~1.9 eV is 

taken as an upper limit for the ADE for the X band. The VDE of the X band is measured 

to be 2.71 eV. VDEs for all the six PES bands are given in Table 6-1 and are compared 

with theoretical calculations.   

 
6-5.  Theoretical Results 

 Al7N–.  We initially performed simulated annealing and GEGA searches for the 

global minimum of Al7N– at B3LYP/3-21G level separately for doublet and quartet states.  

Figure 6-2 displays the first 11 low-lying doublet structures (I-XI) and the lowest quartet 

structure (XII) from simulated annealing. These isomers were recalculated at the 

B3LYP/6-311+G* level for geometry and at CCSD(T)/6-311*G(2df)//B3LYP/6-311+G* 

level for relative total energies.  

 The structure I (2A1, 1a1
21e42a1

23a1
24a1

22e43e45a1
24e46a1

1) with C3v symmetry was 

found by both searches to be the global minimum (Figure 6-2 and Table 6-2).  It is a face-

capped Al6N octahedron.  A similar structure was reported previously by Leskiw et al.,7 

who did not specify the point group symmetry.  The Al-capped octahedral structure for 

Al7N– is quite stable; the closest-lying isomer (II) is 10.2 kcal/mol higher at CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G* level of theory. This isomer can be described as square-

face-capped trigonal prism and is related to the global minimum of Al6N–.13 The lowest 
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quartet structure (XII) is 34.3 kcal/mol (at CCSD(T)/6-311+G(2df)//B3LYP/6-

311+G*) higher than the global minimum structure. 

 Al7N. As with the anion, we performed simulated annealing and GEGA searches 

for the global minimum structure of neutral Al7N at the B3LYP/3-21G level separately 

for singlet and triplet states. The geometries for all the low-lying structures were then 

recalculated at B3LYP/6-311+g* level, and relative energies were recalculated at the 

CCSD(T)/6-311*G(2df)//B3LYP/6-311+G* level. Both searches found structure XIII as 

the global minimum (Figure 6-2 and Table 6-2).  The structure XIII (1A1, 

1a1
21e42a1

23a1
24a1

22e43e45a1
24e4) with C3v symmetry, can be generated from the global 

minimum of Al7N– by removing one electron from the singly occupied HOMO. Even 

though they have the same point group symmetry, there is a significant structural change 

from the global minimum of Al7N– to that of neutral Al7N.  In the ground state of Al7N, 

the capping Al atom is pushed inward with the three adjacent Al-Al distances being 

stretched outward. Thus, neutral Al7N can be viewed as a N atom coordinated by the 

seven Al atoms in a cage-like structure, whereas in Al7N– the N atom is only coordinated 

by six Al atom, and the capping atom is in the second coordination shell.  A similar Al7N 

structure was obtained previously by several authors.7-9,14,15  It can be seen from Figure 6-

2 that the global minimum structure of Al7N is highly stable and that all the alternative 

structures (XIV-XX) are significantly higher in energy. 

 

 

 



 

 

110 

6-6.  Comparison between the Calculated VDEs and  
     Experiment and Interpretations of the Experimental  
     PES Spectra 

 Our extensive structural search for Al7N– did not locate any isomers close in 

energy to the global minimum; the closest isomer is 10.2 kcal/mol higher at 

UCCSD(T)/6-311+G(2df)// B3LYP/6-311+G* (Figure 6-2). Therefore only the global 

minimum structure should be responsible for the photoelectron spectra.  Indeed, the 

experimental PES spectra exhibit no hints of the presence of another isomer, which 

sometimes gives weak features in the low-binding energy side.41 The calculated VDEs for 

the global minimum structure I of Al7N– at the TD-B3LYP/6-311+G(2df), ROVGF/6-

311+G(2df) and CCSD(T)/6-311+G(2df) levels of theory  are compared with the 

experimental data in Table 6-1.   

 The Ground State PES Band X.  The ground state of Al7N– is a doublet (2A1) 

with an electron configuration of 1a1
21e42a1

23a1
24a1

22e43e45a1
24e46a1

1. According to our 

calculation the first PES band (X) of Al7N– corresponds to removal of the electron from 

the singly occupied 6a1 orbital.  The calculated VDE for this detachment channel is 2.67 

eV at the UCCSD(T)/6-311+G(2df) level of theory, 3.04 eV at the UOVGF/6-

311+G(2df) level of theory, and 2.56 eV at the TD-B3LYP/6-311+G(2df) level of theory 

(Table 6-1).  The pole strength in the UOVGF calculation was found to be 0.87, 

indicating that the detachment channel can be primarily described by a one-electron 

detachment process.  The UCCSD(T) result is in excellent agreement with the 

experimental VDE of 2.71 eV (Table 6-1).  Surprisingly, the VDE at UOVGF/6-
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311+G(2df) is significantly overestimated (by 0.33 eV) compared to the experimental 

value, whereas TD-B3LYP underestimated the VDE by 0.15 eV.   

The calculated ADE for the ground state transition is 1.86 eV at UCCSD(T)/6-

311+G(2df), which is significantly smaller than the VDE (2.67 eV) at the same level of 

theory.  The large relaxation energy (VDE – ADE) of 0.81 eV reflects the large geometry 

change between the ground states of the anion and the neutral structure; this is in good 

agreement with the observed broad ground state PES band (X). The calculated ADE at 

1.86 eV is in excellent agreement with the estimated upper limit of 1.9 eV from the 355 

nm PES spectrum, indicating that there is a finite Franck-Condon factor for the 0-0 

transition and that the 1.9 eV value may be taken as representing the true ADE or the 

electron affinity for neutral Al7N. 

 Higher Binding Energy Detachment Bands (A to E).  Because of the ground 

state of Al7N– is open shell with a single electron occupying the 6a1 HOMO, detachment 

from any other fully-occupied orbitals results in triplet and singlet final states, as shown 

in Table 6-1.  Unfortunately, the singlet excited states cannot be calculated using the 

OVGF or the CCSD(T) methods.  The TD-B3LYP method yields triplet-singlet splittings 

ranging from 0.22 to 0.26 eV (Table 6-1).  The second detachment channel is from the 

HOMO-1 4e orbital.  The calculated VDE to the 3E final state is 3.36 eV at CCST(T) 

level, which is in excellent agreement with the measured VDE of the A band at 3.34 eV.  

The OVGF VDE for this channel is 3.24 eV, which is in reasonable agreement with the 

experimental value.  TD-B3LYP appears to underestimate this VDE by ~0.3 eV.  

Because of the broad spectral width (i.e. Franck-Condon envelope) associated with the 
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anion to neutral geometry change, as well as the expected Jahn-Teller effect for the 3E 

final state, the transition to the singlet state cannot be resolved in the current PES spectra 

even under the slightly higher resolution at 266 nm (Figure 6-1b).  In addition, the 

intensity for the singlet detachment channel is expected to be lower than the triplet 

channel, and it is likely to be buried on the higher binding energy side of the A band.  

This appears to be the case for all the higher energy detachment channels (B to E), where 

the singlet states are not explicitly resolved.   

The next detachment channel is from the nondegenerate HOMO-2 5a1 orbital.  

The calculated VDEs from both CCSD(T) (3.69 eV) and OVGF (3.75 eV) are in 

excellent agreement with the experimental VDE of the B band at 3.77 eV.  TD-B3LYP 

again underestimates the VDE for this detachment channel by ~0.2 eV. The relatively 

lower intensity of the B band is consistent with the nondegenerate nature of the 5a1 

orbital. 

The next two detachment channels are from the degenerate HOMO-3 3e and 

HOMO-4 2e orbitals, which should correspond to the C and D bands, respectively. The 

calculated VDEs for these two channels at OVDF are 4.33 and 4.54 eV, which are fairly 

close to each other.  The calculated data are again in excellent agreement with the 

experimental PES spectra, in which the C and D bands overlap (Figure 6-1c). The final 

detachment channel comes from the HOMO-5 4a1 orbital, corresponding to the E band.  

Surprisingly, both TD-B3LYP (5.40 eV) and OVGF (5.43 eV) yield VDEs, which are in 

excellent agreement with the experimental value of 5.45 eV. The 4a1 orbital is 

nondegenerate, again consistent with the relatively weak intensity of the E band. 
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 The overall agreement between the theoretical results and the experimental 

data is truly excellent, leaving no ambiguity about the C3v global minimum structure (I, 

Figure 6-2) for Al7N–.  It is also interesting to note that the single particle MO picture 

works extremely well for Al7N–; there is a precise one-to-one correspondence between 

the MOs and the observed PES bands, as labeled in Figure 6-1c. The pole strengths in the 

OVGF calculations for all the detachment channels are >0.80, which also provides good 

indications for the validity for the single particle MO picture for the detachment 

processes from Al7N–. We have found previously that OVGF works well for Al-based 

clusters.12,13,42-56 However, in the current case, the first VDE was severely overestimated 

by OVGF, although the overall spectral pattern predicted by OVGF is in excellent 

agreement with experiment, especially for the high binding energy features. Although 

slightly less accurate, the TD-B3LYP method also yields a quite good spectral pattern in 

comparison with experiment.  In particular, the ability to compute both triplet and singlet 

final states is a distinct advantage of the TD-DFT method. The CCSD(T) method is the 

most accurate, but it can only be used to calculate the first three detachment channels. 

Therefore, the combination of the three theoretical methods is very powerful, providing a 

quantitative interpretation of the PES spectra of Al7N– and unequivocally establishing its 

global minimum structure. 

 
6-7.  Chemical Bonding in Al7N and Al7N- 

 Al7N.  The Al7N neutral cluster is isoelectronic to the so-called “magic” cluster 

Al7C–, which is quite prominent in the AlnC– mass spectra.17 Both Al7N and Al7C– have 
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similar global minimum structures, and we expect that Al7N should also be a very 

stable cluster. Enhanced stability of Al7C– has already been discussed in the 

literature.15,17,57 Initially Leskiw and Castleman57 suggested that the stability of Al7C– 

could be reconciled within a jellium model framework where Al7C– could be viewed as a 

compound jellium cluster formed from Al6 with a closed shell of 18 electrons AlC– unit. 

However, this bonding picture does not agree with the global minimum structure of Al7C– 

because the C atom is located inside the Al7 cage and one cannot identify an AlC unit. 

Thus, it seems that the stability of Al7C– is more complicated than the jellium model 

predicts. Indeed, the total number of valence electrons in Al7C– is 26, and according to 

the jellium model, one should have the following electronic configuration 

1s21p61d102s21f6, which is not a closed-shell system and should not have any special 

stability.  Later on, Reveles et al.17 proposed an alternative explanation, in which the 

closed-shell 1s21p61d102s22p6 electronic configuration is used instead of 1s21p61d102s21f6.  

The earlier appearance of the 2p subshell instead of the 1f subshell was explained on the 

basis of the higher stability of the 2s22p6 subshell. Sun et al.15 explained the “magic” 

behavior of Al7C– on the basis of a large HOMO-LUMO gap.  However, we can better 

understand the structure and bonding in the Al7N– anion using an alternative 

interpretation based on the stability of the highly stable octahedral Al6N3– unit, which we 

used to understand the structure and bonding in Al6N–.13 

 The ground electronic state of Al7N– is a doublet 2A1 with an electron 

configuration of 1a1
21e42a1

23a1
24a1

22e43e45a1
24e46a1

1. In order to simplify our chemical 

bonding analysis, we fill up the singly occupied HOMO in Al7N– by one more electron. 
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The geometry of the resulting Al7N2– structure was reoptimized at the B3LYP/6-

311+G* level of theory (Figure 6-3a and Table 6-2).  The final geometry of the structure 

of Al7N2– is very similar to the optimized structure I of Al7N– (Figure 6-2). From a purely 

geometrical perspective, one can formally view the structure of Al7N2– as a salt between 

an octahedral Al6N3– anion and a face-capping Al+ cation. The octahedral structure and 

chemical bonding in the Al6N3– anion were discussed in detail previously.13 Even though 

an isolated Al6N3– triply charged anion is not electronically stable, it has a repulsive 

Coulomb barrier on the electron ejection pathway58-60 and therefore it has a finite lifetime 

at the optimized Oh geometry. 

 Before discussing the chemical bonding in Al7N2–, let us briefly review the 

chemical bonding in Al6N3–, which is closed shell (1A1g) with an electron configuration of 

1a1g
21t1u

62a1g
2 2t1u

61eg
41t2g

6.13  The lowest valence MO 1a1g is primarily the 2s-AO of the 

central nitrogen atom.  The next triply degenerate 1t1u MO can be assigned to three 2px-, 

2py-, and 2pz-AOs of the central N atom.  The next six valence MOs (2a1g, 2t1u, and 1eg) 

are primarily formed by the 3s-AOs of the aluminum atoms and they can be viewed as six 

lone pairs located on the Al atoms.  Finally, the completely-bonding and triply-

degenerate 1t2g-HOMO is formed by the tangential 3p-AOs of the Al atoms, and it is 

responsible for the delocalized tangential bonding between the Al atoms. In order to test 

our interpretation of the bonding in Al6N3–, we performed NBO analysis of the Al6N3+ 

cation (at the geometry of Al6N3–), in which the delocalized 1t2g-HOMO was empty. The 

NBO analysis reveals four lone pairs of N with occupation numbers on the order of 1.95 

|e| (2s) and 1.98 |e| (2p), and one lone pair at every Al with the occupation number of 1.75 
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|e| (99.5% composed of 3s-AOs). Thus, in the Oh Al6N3– the chemical bonding can be 

approximately described as the central atom carrying an effective charge –3 (N3–), which 

is ionically bonded to an octahedral Al6 cluster, with every Al carrying a lone pair.  The 

1t2g-HOMO is the only orbital responsible for delocalized bonding and tangential 

aromaticity. The Al6 cluster keeps its octahedral structure in Al6N3–, because N3– can fit 

perfectly in the cavity of the octahedron and because the closed shell N3– unit substitutes 

a completely bonding pair of electrons in the 2a1g-MO in Al6
2–.56 

 All valence MOs of the Al7N2– anion are presented in Figure 6-3b. The HOMO 

(6a1) and HOMO-1 (4e) are responsible for the delocalized bonding, as in the case with 

1t2g-HOMO in Al6N3–. To understand bonding in the Al7N2- anion, we performed an 

analogous NBO analysis for the putative Al7N4+ cation at the geometry of the Al7N2– 

anion, but with the 6a1-HOMO and 4e-HOMO-1 empty. The NBO analysis of Al7N4+ 

revealed four lone pairs of N with occupation numbers from 1.90 |e| to 1.97 |e| and one 

lone pair at every Al with the occupation number from 1.57 |e| (97.6% composed out of 

3s-AOs) to 1.64 |e| (99.4% composed out of 3s-AOs). On the basis of this analysis, we 

conclude that indeed there is a formal building block in the Al7N2– cluster {Al+[Al6N3–]}, 

though the bonding between Al+ and Al6N3– is more covalent than ionic.  One can see in 

Figure 6-3b that the 3p-AOs of the capping Al atom participate in the delocalized 

bonding between the aluminum atoms. The question now is, could the building block 

Al6N3– be a part of the larger doped AlxN– clusters, and could it even be a part of a N-

doped solid aluminum? These questions are worth pursuing in future studies of larger 

AlxN– clusters. 
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6-8.  Summary 

 The Al7N– cluster has been investigated by a combined photoelectron 

spectroscopy and ab initio study. Well-resolved, albeit broad, spectral features were used 

to compare with the calculated VDEs. The global minimum structures of Al7N and Al7N– 

were located using both a genetic algorithm and stimulated annealing. The structure of 

Al7N– is found to possess C3v symmetry, which can be viewed as an Al capping an 

octahedron Al6N unit.  In the neutral Al7N, significant geometry relaxation is observed, 

consistent with the broad PES spectral features.  The calculated VDEs for the C3v Al7N– 

global minimum structure are in excellent agreement with the PES spectra. The structure 

and chemical bonding of Al7N– are understood using the closed-shell Al7N2-, which 

possesses similar C3v structure as Al7N–. Al7N2– can be viewed as an Al+ capping the face 

of a highly stable octahedral Al6N3– building block. The stability of the octahedral Al6N3– 

was used previously to understand the structures of Al6N an Al6N–.13 It would be 

interesting to discover if the N-centered Al6N3– octahedron is a building block in larger 

AlxN– clusters. 
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Table 6-1.  The experimental vertical detachment energies (VDE) compared to 

calculated VDEs from the global minimum structure I of Al7N- at three levels of theory.  

All energies are in eV.   

VDE (theo.) 
Feature VDE (exp.) Final State and the 

Electronic Configuration TD-
B3LYP 

OVGF b ∆CCSD(T) 

X 2.71 (4) 1A1, 3a1
24a1

22e43e45a1
24e46a1

0 2.56 3.04 (0.87) 2.67 
A 3.34 (4) 3E, 3a1

24a1
22e43e45a1

24e36a1
1 3.06 3.24 (0.86) 3.36 

  1E, 3a1
24a1

22e43e45a1
24e36a1

1 3.32 c c 
B 3.77 (4) 3A1, 3a1

24a1
22e43e45a1

14e46a1
1 3.56 3.75 (0.86) 3.69 

  1A1, 3a1
24a1

22e43e45a1
14e46a1

1 3.82 c c 
C 4.35 (5) 3E, 3a1

24a1
22e43e35a1

24e46a1
1 4.19 4.33 (0.85) c 

  1E, 3a1
24a1

22e43e35a1
24e46a1

1 4.41 c c 
D ~4.6 3E, 3a1

24a1
22e33e45a1

24e46a1
1 4.58 4.54 (0.83) c 

  1E, 3a1
24a1

22e33e45a1
24e46a1

1 4.81 c c 
E 5.45 (4) 3A1, 3a1

24a1
12e43e45a1

24e46a1
1 5.40 5.43 (0.81) c 

 

a Numbers in the parentheses represent the uncertainty in the last digit.  
b Values in parentheses represent the pole strength of the OVGF calculation.  
c This value cannot be calculated at this level of theory.   
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Table 6-2. The molecular properties of the Al7N, Al7N-, and Al7N2- species calculated 
at B3LYP/6-311+G*. 
 Al7N, XIII, C3v (1A1) Al7N-, I, C3v (2A1) Al7N2-, C3v (1A1) 

E, a. u. -1752.0019598 -1752.0661946 -1752.0192342 
R(N-Al1), Å 2.137 3.003 3.515 
R(N-Al2), Å 2.106 1.986 1.996 
R(N-Al5), Å 2.123 2.074 2.041 

R(Al1-Al2), Å 2.613 2.722 2.840 
R(Al2-Al3), Å 3.540 3.045 2.794 
R(Al2-Al5), Å 2.649 2.742 2.840 
R(Al5-Al6), Å 2.811 2.918 2.943 
ω1 (a1), cm-1 490 (291)a) 511 (158)a) 535 (225)a) 
ω2 (a1), cm-1 343 (1) 357 (5) 364 (16) 
ω3 (a1), cm-1 287 (14) 280 (0) 272 (4) 
ω4 (a1), cm-1 232 (1) 188 (5) 226 (60) 
ω5 (a1), cm-1 116 (1) 162 (9) 150 (3) 
ω6 (a2), cm-1 201 (0) 131 (0) 94 (0) 
ω7 (e), cm-1 488 (260) 553 (173) 532 (163) 
ω8 (e), cm-1 297 (2) 253 (5) 238 (2) 
ω9 (e), cm-1 259 (7) 223 (0) 232 (0) 
ω10 (e), cm-1 226 (15) 193 (4) 159 (29) 
ω11 (e), cm-1 166 (0) 146 (22) 118 (12) 
ω12 (e), cm-1   51 (0)   63 (1)   73 (0) 

a Values in parentheses  represent  relative absorbance  intensities in the IR spectrum 
(km/mol). 
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Figure 6-1.  Photoelectron spectra of Al7N– at (a) 355 nm (3.496 eV), (b) 266 nm (4.661 

eV), and (c) 193 nm (6.424 eV). The molecular orbital origin of each band is labeled in 

(c) according to theoretical calculations in Table 1 for the global minimum C3v structure.   
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Figure 6-2.  Computationally found low-lying isomers for Al7N– and Al7N.  Relative 

energies are given at CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* and at B3LYP/6-

311+G* in brackets. 
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Figure 6-3.  The optimized structure (a) and molecular orbital pictures (b) for Al7N2– 

calculated at B3LYP/6-311+G*. 
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CHAPTER 7 

EXPERIMENTAL AND THEORETICAL INVESTIGATION OF 3-DIMENSIONAL 

NITROGEN-DOPED ALUMINUM CLUSTER Al8N– AND Al8N1 

 
Abstract 

The structure and electronic properties of the Al8N– and Al8N clusters were 

investigated by combined photoelectron spectroscopy and ab initio studies.  Congested 

photoelectron spectra were observed and experimental evidence was obtained for the 

presence of multiple isomers for Al8N–.  Global minimum searches revealed several 

structures for Al8N– with close energies.  The calculated vertical detachment energies of 

the two lowest-lying isomers, which are of C2v and Cs symmetry, respectively, were 

shown to agree well with the experimental data.  Unlike the 3-dimesional structures of 

Al6N– and Al7N–, in which the dopant N atom has a high coordination number of 6, the 

dopant N atom in the two low-lying isomers of Al8N– has a lower coordination number of 

4 and 5, respectively.  The competition between the Al-Al and Al-N interactions are 

shown to determine the global minimum structures of the doped aluminum clusters and 

results in the structural diversity for both Al8N– and Al8N.   

 

                                                
1 Coauthored by Lei-Ming Wang, Wei Huang, Lai-Sheng Wang, Boris B. Averkiev, and 
Alexander I. Boldyrev. Reproduced with permission from J. Chem. Phys. 2009, 130, 
134303-1-7. Copyright 2009, American Institute of Physics 
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7-1. Introduction 

Doped clusters are interesting because they can exhibit specific properties tailored 

with the dopant.  Understanding the structures and chemical bonding of such clusters may 

lead to rational design of structurally and electronically stable clusters for applications in 

cluster–assembled nanomaterials or catalysis.  While aluminum nitride is an important 

semiconductor material, there have been relatively few experimental and theoretical 

studies on small aluminum nitride clusters.1-16 Li and Wang reported a set of 

photoelectron spectra of AlxN– (x = 2–22) clusters at 193 nm and compared them to those 

of pure Alx
– clusters.10  They found spectral similarity between AlxN– and Alx-1

– clusters 

and suggested that there is a strong charge transfer to form formally N3– centers in the 

nitrogen–doped aluminum clusters.  In a series of recent studes,12,13,16 we have combined 

photoelectron spectroscopy (PES) with global minimum structural search, using a 

gradient-embedded genetic algorithm followed by high-level ab initio calculations, to 

elucidate the detailed atomic structures and chemical bonding for several small nitrogen-

doped aluminum clusters, AlxN– (x = 3–7).  It was shown that AlxN– clusters are planar for 

x = 3–5, whereas their global minimum structures become 3-dimensional (3D) for x = 6 

and 7 with the nitrogen atom having coordination number of six.   

In the current work, we continue our research on AlxN– clusters and report the 

atomic and electronic structures of the Al8N– cluster using PES and ab initio calculations.  

Congested PES spectra were observed and interpreted by the ab initio data.  A few 

different structures have been suggested theoretically for Al8N and Al8N– in previous 

studies,7-9 but they have not been confirmed experimentally.  We found that there are 
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several low-lying isomers for Al8N– which are all 3D and very close in energy.  

Photoelectron spectra of Al8N– have been obtained at different experimental conditions, 

confirming the presence of close-lying isomers that contribute to the experiment.  The 

coordination numbers of the nitrogen atom in these low-lying isomers of Al8N– vary from 

4 to 6.  Unlike the 3D clusters of Al6N– and Al7N–, the N-centered [Al6N]3– octahedron is 

no longer found as a building block in the two lowest energy structures of Al8N–.  

 
7-2. Experimental Method 

The experiment was performed on a magnetic-bottle PES apparatus with a laser 

vaporization cluster source, details of which have been published elsewhere.17 Briefly, the 

Al8N– clusters were produced by laser vaporization of an Al/AlN composite disk target 

using a pure helium carrier gas.  The cluster/He gas mixture passed through a 10 cm-

long, 3 mm-diameter tube extension to allow adequate thermalization of the clusters.  

This was found to produce relatively cold clusters, which were shown to be important to 

yield well-resolved PES spectra.18,19  The anion clusters were extracted from the cluster 

beam perpendicularly and were analyzed using a time-of-flight mass spectrometer.  Only 

AlxN– clusters with one N impurity atom could be observed under the experimental 

condition, as was shown before.10  The Al8N– cluster was mass-selected and decelerated 

before being photodetached by a 193 nm laser beam from an ArF excimer laser, or by a 

355 nm or 266 nm beam from a Nd:YAG laser.  Photoelectrons were collected at near 

100% collecting efficiency by the magnetic bottle and analyzed using a 3.5 m long 

electron flight tube.  The electron energies were calibrated by the known spectrum of Au– 
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(193 nm) or Rh– (355 and 266 nm).  The resolution (ΔEk/Ek) of the apparatus was 

about 2.5%, i.e. ~25 meV for 1 eV kinetic energy electrons.   

 
7-3. Theoretical Methods 

We performed initial computational search for the global minima of Al8N– and 

Al8N using both our gradient embedded genetic algorithm (GEGA) program written by 

A. Alexandrova20,21 and our simulated annealing program written by S. Call.16  We used a 

hybrid method known as B3LYP22-24 with the small split-valence basis set (3-21G) for 

energy, gradient and force calculations, with simulated annealing performing single-point 

energy calculations and GEGA performing gradient optimizations and frequency 

calculations.  We reoptimized geometries and calculated frequencies for the lowest 

isomers using the B3LYP and CCSD(T)25-27 methods with the polarized split-valence 

basis set (6-311+G*).28-30  Total energies of the lowest isomers were also calculated using 

the CCSD(T) method with the extended 6-311+G(2df) basis set at the optimized 

CCSD(T)/6-311+G* geometries.   

The vertical electron detachment energies (VDEs) were calculated using the 

RCCSD(T)/ 6-311+G(2df) method, the restricted outer valence Green Function method 

(ROVGF/6-311+ G(2df))31-35 as well as the time-dependent DFT method36,37 (TD-

B3LYP/6-311+G(2df)) all at the optimized B3LYP/6-311+G* geometries.  In the last 

approach, the first VDE was calculated at the B3LYP level of theory as the lowest 

transition from the singlet state of the anion into the final lowest doublet state of the 

neutral.  Then the vertical excitation energies of the neutral species (at the TD-B3LYP 
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level) were added to the first VDE to obtain the second and higher VDEs.  Core 

electrons were frozen in treating the electron correlation at the RCCSD(T) and ROVGF 

levels of theory.  The B3LYP, RCCSD(T), ROVGF, and TD-B3LYP calculations were 

performed using the Gaussian 03 and Molpro programs.38,39  Molecular structure 

visualization was done using the MOLDEN 3.4 program.40  

 
7-4.  Experimental Results 

Figure 7-1 shows the PES spectra of Al8N– at three different photon energies.  At 

355 nm (Fig. 7-1a), two relatively sharp bands (X and A) were observed at VDEs of 2.86 

and 3.16 eV, respectively.  The adiabatic detachment energy (ADE) was evaluated from 

the relatively sharp onset of the X band to be 2.75 ± 0.05 eV.  A shoulder (X’) on the 

high binding energy side of band X was discernible, which became more obvious in the 

266 nm (Fig. 7-1b).  In addition, the 266 nm spectrum revealed several new bands: B, C, 

D, E, F.  The A band seems to show some fine features on its high binding energy side 

around ~3.3 eV, which could be due to vibrational structures and/or additional electronic 

transitions.  However, the pattern of the fine features seemed to depend on experimental 

conditions, indicating that they may be from different isomers.  At 193 nm (Fig. 7-1c), a 

new band G was observed at ~4.6 eV, but featureless and continuous signals were 

observed beyond 4.8 eV.  The overall PES spectral pattern was quite congested and 

complicated, probably due to contributions from more than one isomer.  The VDEs of all 

observed bands are listed in Table 7-1 and compared to the theoretical data in Table 7-2.   
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To confirm the presence of low-lying isomers, we also measured PES spectra 

under “hot” condition without using the tube extension in the cluster source, as shown in 

Fig. 7-2.  These spectra all show a long tail at the low binding energy side due to hot 

band transitions, consistent with hot source conditions.  More importantly, the relative 

intensity of the X’ band was indeed enhanced in the hot spectra, providing definitive 

experimental evidence that it came from contributions by another isomer.  As will be 

shown below, this is born out by our theoretical calculations.   

 
7-5.  Theoretical Results 

Al8N–.  We initially performed simulated annealing and GEGA searches for the 

global minimum of Al8N– at the B3LYP/3-21G level of theory separately for singlet and 

triplet states.  Both methods revealed an identical global minimum structure II (Cs, 1A’) 

(Fig. 7-3).  The geometries and frequencies for the low-lying structures of Al8N– were 

then recalculated at the B3LYP/6-311+G* level of theory. Finally, single point 

calculations for the seven lowest-lying isomers were calculated at RCCSD(T)/6-

311+G(2df) at the optimized CCSD(T)/6-311+G* structures.  Geometries, symmetry, 

electronic state, and relative energies at B3LYP/6-311+G* and at CCSD(T)/6-

311+G(2df)//CCSD(T)/6-311+G* for the first seven low-lying singlet and the lowest 

triplet isomers of Al8N– are displayed in Fig. 7-3. We found that previously reported 

global minimum Al8N- structure by Leskiw et al.7 is 15.5 kcal/mol higher in energy than 

the structure II at CCSD(T)//6-311+G(2df)//B3LYP/6-311+G*+ZPE// B3LYP/6-311+G*. 
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The structure II (1A’, 

1a'22a'21a"23a'24a'22a"25a'26a'27a'23a"28a'24a"29a'25a"210a'2) (the MOs are arranged 

according to its VDEs) of Cs symmetry was found to be the global minimum (Figure 7-3) 

at both the B3LYP/3-21G and the B3LYP/6-311+G* levels of theory.  However, at the 

CCSD(T)/6-311+G(2df)/CCSD(T)/6-311+G* level of theory the structure I (1A1, 1a1
22a1

2 

1b2
21b1

23a1
22b2

22b1
24a1

25a1
23b2

26a1
21a2

23b1
27a1

24b2
2) of C2v symmetry is lower than 

structure II by 1.9 kcal/mol.  It should be stressed that from the theoretical point of view, 

such a small energy difference is beyond our ability to determine the global minimum 

structure of this anion with certainty.  Unlike the 3D global minimum structures of Al6N– 

and Al7N–, in which the nitrogen atom has a high coordination number of 6,13,16 in both 

low-lying isomers of Al8N– (I and II) the nitrogen atom has low coordination numbers of 

4 and 5, respectively.  Structure I can be described as an Al6 octahedron bonded by an Al-

N-Al motif.  On the basis of Natural Population Analysis the Al-N-Al motif carries 

formal negative charge of –1.  The structure II can be considered as originated from 

structure I by moving one bottom aluminum atom from the Al6 octahedron to the top to 

bond with the N atom.  Both isomers I and II seem to have been missed in a previous 

study by Leskiw et al.7   

The next five low-lying isomers of Al8N– were found to be 3.1 kcal/mol (isomer 

III), 4.4 kcal/mol (isomer IV), 5.2 kcal/mol (isomer V), 6.0 kcal/mol (isomer VI), and 9.9 

kcal/mol (isomer VII) higher in energy than the global minimum (isomer I) at the 

CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* + ZPE//B3LYP/6-311+G* level of theory.  

The structures III-VII have the following symmetry, electronic state, and configuration:  
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III – C2v, 
1A1, 1a1

21b2
22a1

21b1
23a1

22b2
24a1

22b1
25a1

21a2
26a1

23b2
23b1

27a1
24b2

2;  

IV – C2v, 1A1, 1a1
22a1

21b2
21b1

23a1
22b2

24a1
22b1

25a1
23b1

23b2
26a1

21a2
27a1

24b2
2; 

V – C3v, 1A1, 1a1
22a1

23a1
21e42e44a1

25a1
23e46a1

24e47a1
2; 

VI – D3d, 1A1g, 1a1g
21a2u

21eu
42a1g

22a2u
23a1g

22eu
41eg

43a2u
22eg

44a1g
2; 

VII – D3h, 1A1’, 1a1’21a2”21e’42a1’22a2”23a1’22e’41e”43a2”24a1’23e’4. 

Isomers III, IV, and VI can all be considered as possible combinations of the 

Al6N3– octahedron bi-capped by two formal Al+ cations.  We have discussed the structure 

and bonding of the perfect octahedral Al6N3– previously.13  Structure V can be viewed as 

a distorted aluminum octahedron bi-capped with an Al and an Al-N fragment to opposite 

sides.  Finally, structure VII is formally a trigonal prism Al6N3– bi-capped by two Al+ 

cations.   

Al8N.  We also performed simulated annealing and GEGA searches for the global 

minimum structure of neutral Al8N at the B3LYP/3-21G level of theory for both doublet 

and quartet states.  The geometries and frequencies for low-lying structures were then 

recalculated at B3LYP/6-311+G* level.  Finally, single point calculations for the low-

lying isomers were calculated at RCCSD(T)/6-311+G(2df) at the optimized B3LYP/6-

311+G* geometries.  The structures of the eleven lowest-lying doublet isomers and one 

lowest quartet isomer of Al8N are shown in Fig. 7-4.  

There have been three different structures of Al8N proposed to be a global 

minimum structure. Guo and Wu9 reported the structure XI (Fig. 7-4) as the global 

minimum with the structure X being just 0.07 eV higher in energy than the structure XI. 

Liskiw et al.7 reported the structure XII as the global minimum of Al8N. Though Ling et 
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al.8 reported another global minimum structure, which converged into the structure 

XIII in our calculations. In the current work we found a global minimum structure of 

Al8N that is different from all the previously published. 

According to our GEGA search, isomer IX was found to be the global minimum 

structure (Fig. 7-4).  This structure (C3v, 2A1, 1a1
22a1

23a1
21e42e44a1

25a1
23e46a1

24e47a1
1) can 

be viewed as generated from structure V of the anion by removing one electron from its 

doubly occupied HOMO. The next lowest structure is structure X (Cs, 2A’, 

1a’22a’21a”23a’24a’25a’26a’27a’22a”2 3a”28a’29a’24a”210a’211a’1), which is only 1.1 

kcal/mol higher in energy at RCCSD(T)/6-311+G*//B3LYP/6-311+G* + 

ZPE//B3LYP/6-311+G* level, and thus they are degenerate from our point of view.  The 

isomers X, XI, XIII, XV, XIX can be viewed as derived from the anionic isomers III, II, 

IV, I, and VIII, respectively, by removing one electron from the HOMO and some 

subsequent bond relaxation.  It is more difficult to find parental anionic isomers for the 

neutral isomers XII, XIV, XVI, XVII, XVIII, and XX.  We notice that similar structures 

as isomer X, XI and XII have been reported previously for Al8N by several groups.7-9 

Similar to the case of the anionic isomers, the potential energy surface of the neutral Al8N 

cluster is found to have many low-lying local minima.   

 
7-6.  Interpretation of the PES spectra 

Our extensive structural search for Al8N– revealed five low-lying isomers within 

about less than 5 kcal/mol at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-

311+G*+ZPE//B3LYP/6-311+G* level of theory (Fig. 7-3).  Those isomers are so close 
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in energies that potentially they could all contribute to the experimentally observed 

PES spectra. Indeed, the congested spectral pattern of Al8N– suggested potential 

complications due to the presence of more than one isomer, as evidenced experimentally 

(Figs. 7-1 and 7-2).  The calculated VDE patterns for these five low-lying isomers of 

Al8N– at the ROVGF/6-311+G(2df) level of theory (or the CCSD(T) level if available) 

are compared to the 266 nm PES spectrum in Fig. 7-5, where the calculated VDEs are 

plotted as vertical bars.  To aid the assignments, the spectra taken with and without the 

tube extension are both presented in Fig. 7-5.  Clearly, isomer V (1A1, C3v) can be ruled 

out immediately, because its first VDE is very low at 2.53 eV (Fig. 7-5b), which is absent 

in the experimental data.  Similarly, the third VDE of isomer IV (1A1, C3v) occurs in the 

gap region of the PES spectra, and it is expected to have negligible contributions to the 

observed spectrum.  Both isomers IV and V are relatively high in energy, and it is 

reasonable that they are not present in our experiment.   

The first VDE of isomer I (1A1, C2v) and II (1A’, Cs) agrees well with the X and X’ 

band, respectively (Fig. 7-5a).  Higher energy detachment channels of these two isomers 

are also consistent with the PES data quite well.  Thus, they should be the major carriers 

of the PES spectra.  Isomer III (1A1, C2v) also gives detachment transitions, which are 

within the observed PES pattern (Fig. 7-5b).  While we cannot assign this isomer 

definitively, we also cannot completely rule it out.  The calculated VDEs for isomers I, II 

and III of Al8N– at the TD-B3LYP/6-311+G(2df), ROVGF/6-311+G(2df) and 

RCCSD(T)/6-311+G(2df) levels of theory are presented in Table 7-2, as well as tentative 

spectral assignments.  
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Overall, the experimental data are in excellent agreement with the combined 

detachment transitions calculated for the two lowest isomers (I and II), indicating that 

these structures are competing for the global minimum of Al8N–.  The slightly higher 

energy of the isomer II is consistent with its enhanced population under hotter 

experimental conditions, indicating that isomer I should be the true global minimum for 

Al8N– and confirming the accuracy of the current level of theory.   

 
7-7.  Discussion 

One of the most striking results found in the current experimental and theoretical 

study of Al8N– and Al8N is the presence of structurally diverse isomers with close 

energies.  This is likely a result of increasing competition between Al-Al and Al-N 

interactions in the doped cluster.  In the smaller doped clusters, AlxN– and AlxN (x = 3–

5),12 the Al-N interactions are more important.  For example, in the Al3N– (C2v) and Al4N– 

(D4h) clusters, all aluminum atoms are located in the first coordination layer of the central 

nitrogen atom in planar geometries, which optimize the Al-N interactions.12 We started to 

encounter low-lying isomers in Al5N– due to the competition between Al-Al and Al-N 

interactions. The global minimum structure of Al5N– (C2v) is built upon the square-planar 

Al4N– structure with the additional Al atom boned to one of its four edges outside the first 

coordination layer.  However, a 3D structure, which can be viewed as a tetrahedral Al4 

cluster bound to an AlN unit, was found to be a low-lying isomer and was also present in 

the PES spectra of Al5N–.12  Thus, the Al-Al interactions start to be important structure-

forming factors in Al5N–.  For Al6N–, we found two close low-lying isomers, which 
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appear to optimize both the Al-Al and Al-N interactions.13  For Al7N– and Al7N, our 

study found only one dominating isomer in which the N atom has high coordination 

number of 6 and 7, respectively.  Particularly for Al7N, the seven Al atoms are all in the 

first coordination sphere and bound to the N atom, which seems to optimize Al-N 

interactions.16  We have also shown that the global minimum structures of the Al6N– and 

Al7N– can be viewed as being evolved from the N-centered Al6N3– octahedron.  The 

chemical bonding in the Al6N3– octahedron can be approximately rationalized as the 

central N atom carrying an effective charge of –3 (N3–), which is ionically bound to an 

octahedral Al6 cluster, thus optimizing both Al-Al and Al-N interactions.   

For Al8N–, this Al6N3– octahedron is no longer found as a building block in the two 

lowest-lying isomers (Fig. 7-3).  Instead, the two lowest isomers (I and II) of Al8N– can 

both be viewed as a distorted Al4N– square bound to four additional Al atoms.  Unlike the 

3D structures of Al6N– and Al7N–, the Al-Al interactions seem to be dominating in Al8N–, 

although isomers III and IV do contain the Al6N3– octahedron units and they are not too 

high in energy.  Thus, the more complicated Al-Al and Al-N interactions in the larger 

Al8N– cluster are responsible for its structural diversity.  It should also be pointed out that 

in all the low-lying isomers for Al8N– we found that the effective atomic charges on the N 

atom (calculated using natural bond analysis at B3LYP/6-311+G*) vary from -2.1 |e| to -

2.5 |e|, indicating the formation of the nearly complete shell 2s22p6 in the ionic limit (N3–), 

which is consistent with the previous experimental observations.10   
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7-8. Summary 

 We investigated the structural properties of the Al8N– cluster in a combined 

photoelectron spectroscopy and ab initio study.  The calculated VDEs were compared to 

the complicated PES spectral features and confirmed the presence of multiple isomers in 

the experiment for Al8N–.  The global minimum structures of Al8N and Al8N– were 

located using both genetic algorithm and stimulated annealing.  We found that at least 

two low-lying isomers of Al8N– were populated experimentally and contribute to the 

observed PES spectra.  Unlike the 3-dimesional structures of Al6N– and Al7N–, where the 

N atom has a high coordination number of 6, in the two low-lying isomers of Al8N– the N 

atom has low coordination numbers of 4 and 5.  The competition between Al-Al and Al-

N interactions are found to dictate the structures of the N-doped aluminum clusters and 

results in the diverse low-lying structures for Al8N– and Al8N.   
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Table 7-1.  Experimentally observed vertical (VDE) and adiabatic (ADE) detachment 

energies of Al8N– from its photoelectron spectra.a   

Observed features VDE (eV) ADE (eV) 

X 2.86 (4) 2.75 (5) 

X’ 2.99 (5)  

A 3.16 (3)  

B 3.45 (5)  

C ~ 4.0  

D 4.09 (3)  

E 4.26 (5)  

F  4.40 (5)  

G ~4.6  

 

a The numbers in the parentheses represent the experimental uncertainties in the last digit.   
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Table 7-2.  The calculated VDEs of Al8N– for isomers I, II, and III at different levels 

of theory, and comparisons to the experimental data.  

VDE (Theo.) (eV) PES assignments  

isom

er 

 

final states and configuration TD-

DFT 

ROVGFa RCCSD(T) features VDE (exp.) 

(eV)b 

2B2, 5a1
23b2

26a1
21a2

23b1
27a1

24b2
1 2.64 2.79 (0.87) 2.89 X 2.86 (4) 

2A1, 5a1
23b2

26a1
21a2

23b1
27a1

14b2
2 2.96 3.09 (0.87) 3.25 A 3.16 (3) 

2B1, 5a1
23b2

26a1
21a2

23b1
17a1

24b2
2 3.28 3.09 (0.86) 3.33 A tail ~ 3.3 

2A2, 5a1
23b2

26a1
21a2

13b1
27a1

24b2
2 3.17 3.34 (0.86) 3.42 B 3.45 (5) 

2A1, 5a1
23b2

26a1
11a2

23b1
27a1

24b2
2 3.86 3.92 (0.86)  C ~ 4.0 

2B2, 5a1
23b2

16a1
21a2

23b1
27a1

24b2
2 3.89 4.23 (0.86)  E 4.26 (5) 

 

 

 

I 

2A1, 5a1
13b2

26a1
221a2

23b17a1
24b2

2 4.32 4.38 (0.85)  F 4.40 (5) 

2A’, 6a’27a’23a” 28a’24a” 29a’25a” 210a’1 2.73 2.77 (0.87) 2.93 X’ 2.99 (5) 

2A”, 6a’27a’23a” 28a’24a” 29a’25a” 110a’2 2.95 3.16 (0.86) 3.28 A 3.16 (3) 

2A’, 6a’27a’23a” 28a’24a” 29a’15a” 210a’2 3.24 3.30 (0.86)  A tail ~ 3.3 

2A”, 6a’27a’23a” 28a’24a” 19a’25a” 210a’2 3.18 3.35 (0.86)  A tail ~ 3.3 

2A’, 6a’27a’23a” 28a’14a” 29a’25a” 210a’2 4.04 4.11 (0.84)  D 4.09 (3) 

2A”, 6a’27a’23a” 18a’24a” 29a’25a” 210a’2 4.15 4.38 (0.83)  F 4.40 (5) 

2A’, 6a’27a’13a” 28a’24a” 29a’25a” 210a’2 4.52 4.88 (0.81)  G ~ 4.6 

 

 

 

 

II 

2A’, 6a’17a’23a” 28a’24a” 29a’25a” 210a’2 5.24 5.18 (0.77)    

2B2, 2b1
25a1

21a2
26a1

23b2
23b1

27a1
24b2

1 2.83 3.17 (0.87) 3.12 A 3.16 (3) 

2A1, 2b1
25a1

21a2
26a1

23b2
23b1

27a1
14b2

2 2.98 3.22 (0.86) 3.24 A tail ~ 3.3 

2B1, 2b1
25a1

21a2
26a1

23b2
23b1

17a1
24b2

2 3.25 3.47 (0.85) 3.49 B 3.45 (5) 

2B2, 2b1
25a1

21a2
26a1

23b2
13b1

27a1
24b2

2 3.92 3.96 (0.85)  C ~ 4.0 

 

 

 

 

III 2A1, 2b1
25a1

21a2
26a1

13b2
23b1

27a1
24b2

2 4.12 4.32 (0.84)  E 4.26 (5) 
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2A2, 2b1

25a1
21a2

16a1
23b2

23b1
2 7a1

24b2
2 4.74 4.92 (0.84) 4.92   

2A1, 2b1
25a1

11a2
26a1

23b2
23b1

27a1
24b2

2 4.79 4.98 (0.84)    

 

2B1, 2b1
15a1

21a2
26a1

23b2
23b1

27a1
24b2

2 4.64 4.94 (0.82)    

 

a Numbers in the parentheses represent the pole strength of the OVGF calculation. 

b Numbers in the parentheses represent the experimental uncertainties in the last digit 
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Figure 7-1.  Photoelectron spectra of Al8N– at (a) 355 nm (3.496 eV), (b) 266 nm (4.661 

eV), and (c) 193 nm (6.424 eV).   
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Figure 7-2.  Same as figure 7-1, but taken under hotter source conditions.   
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Figure 7-3.  The first seven low-lying singlet isomers and the lowest triplet isomer of 

Al8N–.  Upper and lower numbers are relative energies calculated at the CCSD(T)/6-

311+G(2df)//CCSD(T)/6-311+G*+ZPE//B3LYP/6-311+G* and B3LYP/6-311+G*+ 

ZPE//B3LYP/6-311+G* levels of theory, respectively.   
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Figure 7-4.  The first eleven low-lying doublet isomers and the lowest quartet isomer of 

Al8N.  Upper and lower numbers are relative energies calculated at the CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G* + ZPE//B3LYP/6-311+G* and B3LYP/6-311+G* + 

ZPE//B3LYP/6-311+G* levels of theory, respectively. 
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Figure 7-5.  Comparison between the 266 nm PES spectra and the calculated VDEs 

(shown as vertical bars) at the ROVGF/6-311+G(2df) level of theory (or the CCSD(T) 

level if available) for (a) isomer I (longer bars) and isomer II (shorter bars), (b) isomers 

III , IV and V of Al8N–.  PES spectra taken under both cold (dark) and hot (light gray) 

source conditions are shown for comparison.   
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CHAPTER 8 

CB7
–: EXPERIMENTAL AND THEORETICAL EVIDENCE AGAINST 

HYPERCOORDINATED PLANAR CARBON1 

 
Abstract 

The B8
2– cluster was previously shown to possess a planar molecular wheel 

structure with a heptacoordinated boron.  Substitution of one B– by C in B8
2– is expected 

to yield a closed shell CB7
– molecular wheel, which has been produced experimentally in 

a cluster beam and probed by photoelectron spectroscopy.  Ab initio calculations show 

that the CB7
– cluster possesses an extremely stable planar C2v structure, in which the C 

atom substitutes a B– atom at the edge of the B8
2– molecular wheel, whereas the D7h 

structure with a heptacoordinated C is a high-lying isomer 63.2 kcal/mol (CCSD(T)/6-

311+G(2df)//CCSD(T)/6-311+G*) above the global minimum.   

 
8-1. Introduction 

In organic chemistry, saturated carbon is known to bond to four ligands 

tetrahedrally, as first recognized independently by J. H. van’t Hoff and J. A. LeBel in 

1874.  However, after the proposal by Hoffmann and co-workers about tetracoordinated 

planar carbon in 1970,[1] there were extensive experimental and theoretical efforts to 

search for the so-called anti-van’t Hoff/anti-Lebel molecules (for recent reviews see 

                                                
1 Coauthored by Lei-Ming Wang, Wei Huang, Boris B. Averkiev, Alexander I. Boldyrev, 
and Lai-Sheng Wang. Reproduced with permission from Angew. Chem. Int. Ed. 2007, 46, 
4550-4553. Copyright Wiley-VCH Verlag GmbH & Co. KGaA.  
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references 2-4).  In particular, the first experimental and theoretical realization of 

penta-atomic planar coordinated carbon species in 1999 and 2000,[5-8] which confirmed 

earlier theoretical predictions,[9,10] has stimulated renewed interest in designing new 

tetracoordinated[11,12] and even hypercoordinated planar carbon molecules.[13-16]  Notably, a 

series of hypercoordinated planar carbon species with boron ligands have been 

proposed.[13-15, 16a,c,e]  Although none of these species is the global minimum on the 

potential energy surfaces, it has been suggested that they might be viable experimentally.  

The two proposed hexa- and hepta-coordinated carbon species are the D6h CB6
2– [13a,b,d,14c,15] 

and D7h CB7
–,[13b,14c] respectively.  The CB7

– species is isoelectronic to B8
2–, which we have 

shown previously to possess a global minimum D7h structure with a heptacoordinated 

boron.[17-20]  The D7h CB7
– can be viewed as replacing the center B- ion in B8

2– by a C 

atom.  In the current Communication, we report a serendipitous observation of CB7
– 

experimentally.  It is investigated by photoelectron spectroscopy (PES) and ab initio 

calculations, which show that the observed species is a C2v CB7
–, in which the C atom 

replaces a B- ion from the edge of the D7h B8
2– molecular wheel.  

 
8-2. Experimental Method 

The experiment was performed using a laser vaporization cluster source and a 

magnetic bottle photoelectron spectrometer (see Experimental Section).[21]  We have 

recently modified our cluster source by adding a 10 cm long and 0.2 cm diameter 

stainless steel tubing to enhance cluster cooling.[22]  We were using boron clusters, which 

we have investigated previously extensively,[17-20,23-28] to test the new cluster source 
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conditions.  A 10B-enriched disk target containing a small amount of Au was used as 

the laser vaporization target.[23]  Under certain conditions, when the vaporization laser 

was not perfectly aligned, we noted that in addition to the pure boron clusters we were 

also able to produce clusters containing one or two carbon atoms, as shown in Figure 8-1.  

The carbon source was most likely coming from the stainless steel tubing hit by the 

slightly misaligned vaporization laser beam.  The trace amount of carbon contamination 

was ideal to produce the boron clusters doped with only one or two carbon atoms and the 

beam condition was stable and reproducible.   

 The CB7
– cluster is particularly intense with abundance as strong as the nearby 

pure Bx
– clusters (Figure 8-1).  Its photoelectron spectra are shown in Figure 8-2 at two 

detachment laser wavelengths.  The 193 nm spectrum reveals five well-separated bands 

(X, A-D) and the B band exhibits a short vibrational progression with a frequency of 

1050 ± 60 m-1.  The 355 nm spectrum shows a much better resolved X band, which seems 

to also display a short vibraitonal progression.  However, the broad line width suggests 

that more than one low frequency modes may also be involved in the X band.  The onset 

of the X band yields an adiabatic detachment energy or electron affinity for CB7 as 2.99 ± 

0.03 eV.  The vertical detachment energies (VDE’s) are given in Table 8-1, in 

comparison with theoretical results from several levels of theory.   

 
8-3. Theoretical Methods 

 In our theoretical calculations, we first tested the two planar wheel structures of 

CB7
– with the C substituting a central B (D7h) and an edge B (C2v) in the B8

2- molecular 
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wheel.  We found that the C2v structure is overwhelmingly favored and is more stable 

than the D7h heptacoordinated carbon structure by 63.9 kcal/mol at the B3LYP/6-311+G* 

level and 63.1 kcal/mol at the CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level.  We 

further searched the potential energy surface for other low-lying structures using the 

GEGA method[29,30] and the top twelve low-lying isomers are shown in Figure 8-3.  The 

C2v wheel structure I was found to be the global minimum and the closest-lying isomer 

(II, Cs) is 37.6 kcal/mol (CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*) higher in energy.   

 The VDE’s from the C2v global minimum and the D7h isomer were calculated 

using three theoretical methods (Table 8-1), which are consistent with each other.  We 

found that the calculated VDE’s for the first five detachment channels from the C2v global 

minimum are in excellent agreement with the experimental PES data, whereas those from 

the D7h isomer totally disagree with the experiment.  The excellent agreement between 

experiment and theory confirmed unequivocally the C2v molecular wheel global minimum 

for CB7
–. 

 
8-4. Results and Discussion 

 To understand the difference in stability and chemical bonding in the two 

different molecular wheel structures of CB7
–, we analyzed their valence molecular 

orbitals, as shown in Figure 8-4.  The MOs of the D7h CB7
– (Figure 8-4b) are identical to 

those of the B8
2– molecular wheel,[17-19] i.e., it is doubly aromatic with 6 totally delocalized 

π electrons (HOMO 1e”2 and HOMO-3 1a”2) and 6 totally delocalized σ electrons 

(HOMO-1 2e’1 and HOMO-4 2a’1), as well as 7 MOs (HOMO-2 1e’3, HOMO-5 1e’2, 
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HOMO-6 1e’1, and HOMO-7 1a’1) which can be localized into seven two-center two-

electron (2c-2e) B-B peripheral bonds.  The MOs of the C2v global minimum (Figure 8-

4a) are rather similar to those of the D7h isomer; it is also π aromatic with 6 totally 

delocalized π electrons (HOMO 1a2, HOMO-1 2b1, and HOMO-5 1b1).  There are also 7 

MOs (HOMO-4 5a1, HOMO-7 3b2, HOMO-8 3a1, HOMO-9 2b2, HOMO-10 1b2, 

HOMO-11 2a1, and HOMO-12 1a1), which could be localized into five 2c-2e peripheral 

B-B and two 2c-2e C-B peripheral bonds, similar to those in the D7h isomer.  The only 

major difference between MOs in the C2v and D7h isomers comes from the HOMO-6 4a1 

orbital, in which the peripheral electron delocalization is broken between the two boron 

atoms located on the opposite side to the carbon atom; the corresponding HOMO-4 2a’1 

orbital in the D7h isomer is a completely delocalized s bonding orbital.  One can also see 

that there is an enhancement in the area between those two boron atoms in the HOMO-3 

6a1 (Figure 8-3).  Hence, the σ-aromaticity in the C2v isomer of CB7
– is less pronounced, 

though we think that this structure is still s-aromatic from the HOMO-2 4b2, HOMO-3 

6a1, and HOMO-6 4a1.  In the D7h isomer the bonding between the central carbon atom 

and the peripheral boron ring is completely delocalized (doubly σ- and π- aromaticity), 

while in the C2v global minimum structure, the carbon atom is involved in the two 2c-2e 

B-C peripheral bonds, in addition to the participation in the delocalized σ- and π-

bonding.  Carbon is known to form strong 2c-2e σ-bonds because of its high valence 

charge that makes the peripheral position of carbon atom significantly more preferable 

compared to the central position.  On the other hand, boron is known to participate in 

delocalized σ-bonding because of its relatively low valence charge, making the doubly 
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aromatic C2v structure I the most stable. The current experimental and theoretical 

study shows that the heptacoordinated carbon in the C-B system is extremely 

unfavorable.  

 The low symmetry of the global minimum structure of CB7
- leads to a dipole 

moment (1.4 D at B3LYP/6-311+G*) and this makes it possible to use the CB7
- cluster 

for a rotary motion, similar to the rotary motion experimentally observed in 

metallocarboranes[31] by Hawthorne and co-workers, if the CB7
- anion is incorporated into 

a sandwich like structure.  

 
8-5. Experimental Section 

Photoelectron spectroscopy: The CyBx
– clusters were produced by laser 

vaporization of a 10B-enriched disk target containing 60% 10B and 40% Au by atom for 

mass calibration.  The carbon source came from the long stainless steel tubing in the 

source due to a slight misalignment.  Subsequently we also prepared a 10B/C mixed target 

containing 5% C and produced CyBx
– clusters similar to that shown in Figure 8-1. 

Negatively charged clusters were extracted from the cluster beam and were analyzed 

using a time-of-flight mass spectrometer (Figure 8-1).[21]  The CB7
– clusters of interest 

were mass selected and decelerated before being intercepted by a 193 nm laser beam 

from an ArF excimer laser and 355 nm from Nd:YAG laser for photodetachment.  

Photoelectron time-of-flight spectra were calibrated using the known spectra of Au– and 

Rh– and converted to the binding energy spectra by subtracting the kinetic energy spectra 
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from the photon energies.  The resolution of the magnetic-bottle PES spectrometer 

was DE/E ~ 2.5%, i.e., about 25 meV for 1 eV electrons. 

 
8-6. Theoretical Section  

Calculations: We performed the search for the global minimum of CB7
- using a 

gradient embedded genetic algorithm (GEGA) program,29,30 using the B3LYP/3-21G 

method for energy, gradient and force calculations.  We reoptimized geometries and 

calculated frequencies for the lowest 12 isomers at the B3LYP/6-311+G* level of theory.  

We also recalculated geometries of the two C2v, 1A1 and D7h, 1A’1 structures of CB7
- using 

the CCSD(T)/6-311+G* method. Total energies of the twelve local minimum structures 

were also recalculated at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* level of theory. 

The CB7
- vertical electron detachment energies (VDE’s) were calculated using the 

R(U)CCSD(T)/6-311+G(2df), the outer valence Green Function method (ROVGF/6-

311+G(2df)) at the RCCSD(T)/6-311+G* geometries, and the time-dependent DFT 

method (TD B3LYP/6-311+G(2df)) at the B3LYP/6-311+G* geometries. All 

calculations were performed using the Gaussian 03 program.[32] Molecular orbital 

visualization has been done using the MOLDEN3.4 program.[33]  
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Table 8-1.  Comparison of the experimental vertical detachment energies (VDE) of 

CB7
– to the calculated values for the global minimum C2v structure and the high-lying D7h 

isomer.  All energies are in eV.   

VDE (theo.) 
Feature VDE 

(exp.) [a] Final State and Electronic Configuration TD-
B3LYP 

OVGF [b] DCCSD(T) 
[c] 

 
CB7

– (C2v, 1A1) 
X [d] 3.03 (2) 2A2, 4a1

21b1
25a1

26a1
24b2

22b1
21a2

1 2.90 2.94 (0.89) 3.04 

A 3.80 (3) 2B1, 4a1
21b1

25a1
26a1

24b2
22b1

11a2
2 3.79 3.81 (0.88) 3.86 

B [e] 4.73 (3) 2B2, 4a1
21b1

25a1
26a1

24b2
12b1

21a2
2 4.66 4.80 (0.89) 4.78 

C 5.28 (3) 2A1, 4a1
21b1

25a1
26a1

14b2
22b1

21a2
2 5.17 5.24 (0.88) 5.35 

D 6.2 (1) 2A1, 4a1
21b1

25a1
16a1

24b2
22b1

21a2
2
 6.10 6.29 (0.87)  

 
CB7

– (D7h, 1A1) 
  2E2”, 2a1’21a2”21e3’42e1’41e2”3 2.86 2.86 (0.89) 2.98 
  2E1’, 2a1’21a2”21e3’42e1’31e2”4 5.40 5.29 (0.89) 5.51 
  2E3’, 2a1’21a2”21e3’32e1’41e2”4 6.18 6.34 (0.87)  

  2A2”, 2a1’21a2”11e3’42e1’41e2”3 7.04 6.77 (0.65)  
[a] Numbers in parentheses represent the uncertainty in the last digit.  
[b] VDEs were calculated at ROVGF/6-311+G(2df)//RCCSD(T)/6-311+G* level of 
theory. Values in parentheses represent the pole strength of the OVGF calculation.   
[c] VDEs were calculated at UCCSD(T)/6-311+G(2df)//RCCSD(T)/6-311+G* level of 
theory. 
[d] The adiabatic detachment energy of the X band or the electron affinity of CB7 is 2.99 
± 0.03 eV.   
[e] The vibrational frequency observed for this band is 1050 ± 60 cm-1.   
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Figure 8-1.  Mass spectrum of Bx
– and CyBx

– clusters by using a 10B-enriched boron 

target.  The Bx
– and CBx

– series are marked.  Weaker masses for the C2Bx
– and C3Bx

– 

series can also be seen.   
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Figure 8-2.  Photoelectron spectra of CB7
– at a) 355 nm (3.496 eV) and  b) 193 nm 

(6.424 eV).  
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Figure 8-3.  Optimized structures (at B3LYP/6-311+G*) and relative energies of CB7
– (at 

CCST(D)/6-311+G(2df)//B3LYP/6-311+G*).  The relative energies in the brackets are 

from B3LYP/6-311+G*.  
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 a)  C2v                    b) D7h   

         

Figure 8-4.  Comparison of the valence molecular orbitals of the global minimum C2v 

CB7
– and the high-lying D7h isomer.   
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CHAPTER 9 

CARBON AVOIDS HYPERCOORDINATION IN CB6
–, CB6

2–, AND C2B5
– 

PLANAR CARBON-BORON CLUSTERS1 

 
Abstract 

The structures and bonding of CB6
-, C2B5

-, and CB6
2- are investigated by 

photoelectron spectroscopy and ab initio calculations. It is shown that the global 

minimum structures for these systems are distorted hepta-cyclic structures. The 

previously reported hexa-cyclic structures with a hypercoordinate central carbon atom are 

found to be significantly higher in energy and were not populated under current 

experimental conditions. The reasons why carbon avoids hyper-coordination in these 

planar carbon-boron clusters are explained through detailed chemical bonding analyses.  

 
9-1. Introduction 

In the past two decades computational chemistry has made dramatic advances, 

making it possible to predict novel molecules that often contradict chemical intuition. 

Many theoretical chemists have participated in this endeavor, proposing myriads of 

unusual molecules. However, very often the predicted species are not the global minima 

and it is difficult if not impossible to observe them experimentally. Molecules with 

hyper-coordinated carbons in planar boron-carbon clusters are vivid examples of such 

                                                
1 Coauthored by Boris B. Averkiev, Dmitry Yu. Zubarev, Lei-Ming Wang, Wei Huang, 
Lai-Sheng Wang, and Alexander I. Boldyrev. Reproduced with permission from J. Am. 
Chem. Soc. 2008, 130, 9248-9250. Copyright 2008 American Chemical Society. 
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predictions. Here we aim to show, via a joint experimental and theoretical 

investigation, that such species are too high in energy to be experimentally observed.  

Since Hoffmann and co-workers proposed the idea of tetracoordinate planar 

carbon (tpC) molecules,1 there have been numerous computational predictions of such 

unusual species.2-5 Ab initio predictions of thought-to-be outlandish pentaatomic tpC 

molecules6 were experimentally confirmed in 1999 and 2000.7 These experimental 

advances have stimulated further searches for even higher coordination in planar carbon 

species.8-10 In particular, a series of C/B binary clusters with hypercoordinate planar 

carbons,8a has been proposed which have attracted significant attention.11,12 The planar 

CB6
2– cluster with a hexacoordinate carbon has been touted as a “divining molecule” 

highlighted on the cover of Chem. & Eng. News.11 In this article we show that in the 

systems containing boron atoms as ligands, such as CB6
2-, the central position with high 

coordination number should be favored for atoms with low electronegativity and strong 

tendency to participate in delocalized bonding. The key point here is the presence of two-

center two-electron bonds between peripheral atoms. The higher electronegativity of C 

compared to B clearly disfavors the hexacoordinate C isomers of CB6
– and C2B5

–. It 

should be pointed out that in Ref. 8a an extensive survey of the isoelectronic C3B4 also 

revealed that the hexacoordinate isomer is higher in energy.  

Heptacoordinated planar carbon in the D7h CB7
– cluster was initially 

computationally predicted by Schleyer and co-workers.8b We recently observed a highly 

stable CB7
– cluster serendipitously during laser vaporization experiments. Using 

photoelectron spectroscopy (PES) and ab initio calculations, we found that the global 
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minimum planar structure CB7
– has C2v symmetry with the C atom in a peripheral 

position.13 The planar D7h CB7
– structure may be kinetically stable but it is much higher in 

energy than the C2v global minimum. In principle, kinetically stable but 

thermodynamically unfavorable isomers can be observed under some special conditions, 

but they were not populated under the experimental conditions of the previous study. 

Here we present both experimental and ab initio results demonstrating that the most 

stable isomers for CB6
2– and its isoelectronic C2B5

–, as well as CB6
–, are not the 

previously proposed planar structures containing a hexacoordinate carbon. Instead, the 

latter are found to be extremely high energy isomers and cannot be made through atom 

self-assembly in the gas phase.  

 
9-2. Experimental Methods 

The experiment was done using a laser vaporization cluster source and a 

magnetic-bottle PES analyzer, details of which can be found elsewhere.14 The target used 

to produce CB6
– and C2B5

– was compressed from a 98%-isotopically-enriched 10B powder 

mixed with ~5% graphite. The PES resolution was ΔE/E ~ 2.5%, i.e., about 25 meV for 1 

eV electrons. The spectra of CB6
– and C2B5

– at three different photon energies are 

presented in Figure 9-1. The spectra of both species are rather broad and complicated, 

indicating either large geometry changes between the anions and the neutrals, and/or 

presence of multiple isomers. The observed vertical detachment energies (VDE) for the 

main PES bands are given in Tables 9-1, and 9-2 and 9-3, where they are compared to 

theoretical data.  
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9-3. Computational Methods 

Computationally we first searched for the global minima of CB6
2–, CB6

–, and 

C2B5
– using the genetic algorithm program GEGA15 at the B3LYP/3-21G level of theory. 

We then recalculated geometries of low-lying isomers and two hexagonal structures for 

each species at the B3LYP/6-311+G* and for the two lowest isomers of CB6
- and C2B5

- at 

the CCSD(T)/6-311+G* levels of theory. Total energies of the twelve local minimum 

structures were recalculated at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* level of 

theory. 

VDEs for CB6
– and C2B5

– were calculated using the R(U)CCSD(T)/6-311+G(2df) 

method, the outer valence Green Function method [ROVGF/6-311+G(2df)] at the 

RCCSD(T)/ 6-311+G* geometries, and the time-dependent DFT method [TD-B3LYP/6-

311+G(2df)] at the B3LYP/6-311+G* geometries. All calculations were done using the 

Gaussian 03 program.16a  Molecular orbital visualization was done using the 

MOLDEN3.4 program.16b 

 
9-4. Results and Discussion 

According to our GEGA search, the structure I (Cs) is the global minimum for 

CB6
2– (Figure 9-2). Though the isolated CB6

2– dianion is not electronically stable as Exner 

pointed out,8a we used compact (6-311+G*) basis to model this unit in the electronically 

stable NaCB6
- or Na2CB6 species. This modeling is adequate for the description of the 

part of the potential surface within the Coulomb barrier. The previously discussed8a 

structure IV (D6h) with a hexacoordinate C is 34.4 kcal/mol higher in energy [here and 
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elsewhere the relative energies are given at CCSD(T)/6-311+G(2df)//B3LYP/6-

311+G*] than the global minimum. Similarly, for CB6
– and C2B5

–, the structures with a 

hexacoordinate C, VIII (D2h) and XII (C2v), are also significantly higher in energy than 

the corresponding global minimum structures (Figure 9-2).   

For all three clusters, we found a low-lying isomer very close to the global 

minimum. In the cases of CB6
– and C2B5

–, both of the low-lying isomers may be present 

experimentally, giving rise to the complicated PES patterns. Indeed, comparison of the 

theoretical VDEs with the experimental data (Tables 9-1, 9-2 and 9-3) clearly shows that 

the two lowest isomers are almost equally populated for both CB6
– and C2B5

–. For CB6
–, 

the first VDEs for the two lowest isomers V (2.95 eV) and VI (2.75 eV) calculated at the 

CCSD(T) level are close to each other, and both should contribute to the observed ground 

state band X, Figure 9-1a-c). The first VDE of isomer VI is slightly lower, corresponding 

to the main X band, whereas that of isomer V corresponds to the higher binding energy 

tail of the X band. The second calculated VDEs for isomers V (3.68 eV) and VI (3.14 

eV) are very different, corresponding to the observed PES bands B and A, respectively, 

and providing the most critical spectral signatures for the presence of both isomers. 

Spectral features beyond 4 eV can all be assigned to the two isomers (Table 9-2).  

For C2B5
–, the first four observed PES bands (Figure 9-1d-f) can be 

unambiguously assigned to the first two detachment channels of each of the two lowest 

isomers, as shown in Table 9-1. Higher PES bands can all be assigned to the higher 

binding energy detachment channels from the two isomers (the peak labeled * is likely 

due to a vibrational feature of the A band or contribution from a third low-lying isomer), 
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as given in Table 9-3. All the observed PES bands are relatively broad without 

vibrational resolution, consistent with the low symmetries of the two isomers of each 

cluster and suggesting that these structures are relatively floppy. Overall the agreement 

between the observed PES features and the theoretical data is quite satisfying, providing 

considerable credence for the obtained lowest structures for CB6
– (V and VI) and C2B5

– 

(IX and X). Clearly, the isomers with a hexacoordinate C (VIII for CB6
– and XII for 

C2B5
–) are too high in energy. Though hypercoordinated isomers IV and XII are true 

local minima and kinetically stable, we were only able to observe the global minimum 

and low-lying isomers.  

To understand why the structures with a hexacoordinate C for CB6
2–, CB6

– and 

C2B5
– are higher in energy than the global minima, we analyzed their chemical bonding 

using the recently developed Adaptive Natural Density Partitioning (AdNDP) method.17 

This approach leads to partitioning of the charge density into elements with the highest 

possible degree of localization of electron pairs: n center – two electron (nc-2e) bonds. If 

some part of the density cannot be localized in this manner, it is represented using 

completely delocalized objects, similar to canonical MOs, naturally incorporating the 

idea of completely delocalized (globally aromatic) bonding. Thus, AdNDP achieves 

seamless description of different types of chemical bonds.   

According to our AdNDP analyses (see Figures 9-3 and 9-4 for details) the 

hexagonal structures of CB6
2– and C2B5

– are doubly (σ and π) aromatic systems (6 

delocalized σ-electrons and 6 delocalized π-electrons) with six peripheral two-center 

two-electron (2c-2e) B-B or B-C bonds. This bonding picture explains why the hexagonal 
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isomers (IV and XII) with a central C atom are higher in energy than the hexagonal 

structures (III and XI) with the C atoms located on the periphery. The central C atoms in 

the hexagonal isomers IV and XII are involved in delocalized bonding only, while in the 

isomers III and XI the C atoms are involved in 2c-2e peripheral bonding in addition to 

the delocalized bonding. The lower electronegativity of B compared to C clearly favors 

the hexacoordinate B isomers of CB6
2– and C2B5

–. 

The lowest energy structures I and II for CB6
2– and IX and X for C2B5

– originate 

from hepta-cyclic structures. These four structures are all σ-aromatic (6 delocalized σ-

electrons) and π-antiaromatic (4 π-electrons) with seven peripheral 2c-2e B-B/ B-C 

bonds. There are no “internal” 2c-2e B-B or B-C bonds; in Figure 9-2 the internal lines 

connecting atoms do not represent 2c-2e B-B or B-C bonds. In order to prove that these 

low symmetry structures are indeed related to seven-membered rings we performed 

additional calculations for the CB6 cluster. We started at the geometry of the CB6
2- global 

minimum structure I and removed two electrons from its HOMO-10a’ (Figure 9-5). In 

the neutral CB6 structure we switched σ-HOMO (9a’) and π-LUMO+2 (3a”) thus making 

this structure doubly aromatic (2 σ-electrons, 6 π-electrons) preserving seven 2c-2e 

peripheral B-B and B-C bonds. Subsequent geometry optimization for the doubly 

aromatic structure led to almost perfect heptagonal ring for CB6 (C2v, 1A1) (Figure 9-5). 

The MOs of the latter now clearly confirm our initial assignment of this cluster as doubly 

aromatic (2 σ-electrons, 6 π-electrons) with seven 2c-2e peripheral B-B and B-C bonds. 

Hence, the stable low-lying structures I and II for CB6
2– and IX and X for C2B5

– are 

derived from distortions of the hepta-cyclic structures due to p antiaromaticity. There 
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might be more than one deformation for the C2v CB6 after the addition of two 

electrons. We selected the above-mentioned one for illustrative purpose. 

 
9-5. Conclusion 

Our chemical bonding analyses suggest that in theoretical designs of chemical 

systems with planar hyper-coordination the peripheral ring size, the electronegativity and 

size of the central atom have all to be considered.6a So far the highest coordination 

number observed in a planar environment is 8 in the B9
– molecular wheel.18 A similar 

molecular wheel has been predicted for AlB9 with a nona-coordinated Al,19 which 

represents the highest coordination number in the planar environment predicted so far as 

a low energy isomer.  

Supporting Information Available: Complete VDE Tables, complete reference 16a, 

alternative structure of CB6
2-, CB6

-, and C2B5
-, pictures of n-centered two-electron 

localized bonds for the CB6
2- and C2B5

- species, correlation MO diagram, absolute 

energies and Cartesian coordinates of all calculated structures. This information is 

available free of charge via Internet at http://pubs.acs.org.  
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Table 9-1. Comparison of Experimental Vertical Detachment Energies (VDE) of 

CB6
– and C2B5

- to Theoretical values.  All energies are in eV  

VDE (theo.)  
Feature VDE (exp.) a Final State and Electronic 

Configuration TD-B3LYP OVGF b ΔCCSD(T) c 

X tail ~ 2.9 1A’, 1a”27a’28a’22a”29a’210a’0 3.20 3.19 (0.88) 2.95 
B 3.62 (3) 3A’, 1a”27a’28a’22a”29a’110a’1 3.65 3.56 (0.88) 3.68 
C 4.21 (3) 3A”, 1a”27a’28a’22a”19a’210a’1 4.14 4.11 (0.88) 4.22 
D ~ 4.5 1A”, 1a”27a’28a’22a”19a’210a’1 4.55   C

B
6– , V

 

E 4.71 (5) 3A’, 1a”27a’28a’12a”29a’210a’1 4.81 4.88 (0.86)  
Xd 2.78 (3) 1A’, 1a”27a’28a’22a”29a’210a’0 3.14 3.58 (0.88) 2.75 
A 3.17 (2) 3A’, 1a”27a’28a’22a”29a’110a’1 3.12 2.86 (0.88) 3.14 
C 4.21 (3) 3A”, 1a”27a’28a’22a”19a’210a’1 4.13 4.07 (0.88) 4.19 
D ~ 4.5 1A”, 1a”27a’28a’22a”19a’210a’1 4.52   C

B
6– , V

I 

E 4.71 (5) 3A’, 1a”27a’28a’12a”29a’210a’1 4.74 4.78 (0.86)  
A 2.95 (6) 2A1, 1b1

24a1
25a1

21a2
24b2

26a1
1 3.00 3.08 (0.88) 3.13 

C 4.36 (4) 2B2, 1b1
24a1

25a1
21a2

24b2
16a1

2 4.42 4.73 (0.84) 4.49 

C
2B

5– , I
X

 

D 4.93 (3) 2A2, 1b1
24a1

25a1
21a2

14b2
26a1

2 4.79 4.90 (0.88) 4.97 
Xd 2.61(5) 2A’, 7a’28a’22a”29a’210a’1 2.54 2.74 (0.86) 2.69 

C
2B

5– , 
X

 

B 4.06 (3) 2A’, 7a’28a’22a”29a’110a’2 4.13 4.47 (0.83)  
a Numbers in parentheses represent the uncertainty in the last digit.  
b VDEs were calculated at OVGF/6-311+G(2df)//CCSD(T)/6-311+G* level of theory. 
Values in parentheses represent the pole strength of the OVGF calculation.   
c VDEs were calculated at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of theory. 
d ADEs were estimated from the X band to be 2.71 ± 0.02 eV (CB6

–) and 2.40 ± 0.05 eV 
(C2B5

–). Calculated ADE are 2.65 eV (CB6
-, V), 2.63 eV (CB6

-, VI), 2.82 eV (C2B5
-, IX), 

and 2.39 eV (C2B5
-, X) at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*. 
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Table 9-2. Comparison of the experimental vertical detachment energies (VDE) of 

CB6
– to the calculated values for two lowest isomers: Cs, V, 2A1 and Cs, VI, 1A’. All 

energies are in eV.   

VDE (theo.) 
Feature VDE (exp.) 

[a] Final State and Electronic Configuration TD-
B3LYP 

OVGF [b] ΔCCSD(T) 
[c] 

CB6
– (Cs, V, 2A’) 

X [d] tail ~ 2.9  1A’, 1a”27a’28a’22a”29a’210a’0 3.20 3.19 (0.88) 2.95 

B 3.62 (3) 3A’, 1a”27a’28a’22a”29a’110a’1 3.65 3.56 (0.88) 3.68 

C 4.21 (3) 3A”, 1a”27a’28a’22a”19a’210a’1 4.14 4.11 (0.88) 4.22 

D ~ 4.5 1A”, 1a”27a’28a’22a”19a’210a’1 4.55   

E 4.71 (5) 3A’, 1a”27a’28a’12a”29a’210a’1 4.81 4.88 (0.86)  
E tail ~ 5 1A’, 1a”27a’28a’12a”29a’210a’1 5.00   
F tail ~ 5.5 3A’, 1a”27a’18a’22a”29a’210a’1 5.41 5.53 (0.83)  

F tail  ~ 5.5 1A’, 1a”27a’28a’12a”29a’210a’1 5.50   

G ~ 6.1 3A”, 1a”17a’28a’22a”29a’210a’1
 6.12 6.20 (0.84)  

CB6
– (Cs, VI, 2A’) 

X [d] 2.78 (3) 1A’, 1a”27a’28a’22a”29a’210a’0 3.14 3.58 (0.88) 2.75 
A 3.17 (2) 3A’, 1a”27a’28a’22a”29a’110a’1 3.12 2.86 (0.88) 3.14 
C 4.21 (3) 3A”, 1a”27a’28a’22a”19a’210a’1 4.13 4.07 (0.88) 4.19 
D ~ 4.5 1A”, 1a”27a’28a’22a”19a’210a’1 4.52   

E 4.71 (5) 3A’, 1a”27a’28a’12a”29a’210a’1 4.74 4.78 (0.86)  
E tail ~ 5 3A’, 1a”27a’18a’22a”29a’210a’1 5.03 5.46 (0.84)  
E tail ~ 5 1A’, 1a”27a’28a’22a”29a’110a’1 5.04   

F  5.27 (5) 1A’, 1a”27a’28a’12a”29a’210a’1 5.27   

[a] Numbers in parentheses represent the uncertainty in the last digit.  
[b] VDEs were calculated at OVGF/6-311+G(2df)//CCSD(T)/6-311+G* level of 

theory. Values in parentheses represent the pole strength of the OVGF calculation.   
[c] VDEs were calculated at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of 

theory. 
[d] ADEs were estimated from the X band to be 2.71 ± 0.02 eV. Calculated ADE are 

2.65 eV (V) and 2.63 eV (VI) at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*. 
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Table 9-3. Comparison of the experimental vertical detachment energies (VDE) of 

C2B5
– to the calculated values for two lowest isomers: C2v, IX, 1A1 and Cs, X, 1A’. All 

energies are in eV.  

VDE (theo.) 

Feature VDE (exp.) 
[a] Final State and Electronic Configuration TD-

B3LYP 
OVGF [b] ΔCCSD(T) 

[c] 

C2B5
– (C2v, IX, 1A1) 

A 2.95 (6) 2A1, 1b1
24a1

25a1
21a2

24b2
26a1

1 3.00 3.08 (0.88) 3.13 

C 4.36 (4) 2B2, 1b1
24a1

25a1
21a2

24b2
16a1

2 4.42 4.73 (0.84) 4.49 

D 4.93 (3) 2A2, 1b1
24a1

25a1
21a2

14b2
26a1

2 4.79 4.90 (0.88) 4.97 

G ~ 6 2A1, 1b1
24a1

25a1
11a2

24b2
26a1

2 5.74 5.97 (0.88)  

G ~ 6 2A1, 1b1
24a1

15a1
21a2

24b2
26a1

2 6.08 6.24 (0.85)  

  2B1, 1b1
14a1

25a1
21a2

24b2
26a1

2
 6.42 6.57 (0.83) 6.65 

C2B5
– (Cs, X, 1A’) 

X [d] 2.61(5) 2A’, 7a’28a’22a”29a’210a’1 2.54 2.74 (0.86) 2.69 

B 4.06 (3) 2A’, 7a’28a’22a”29a’110a’2 4.13 4.47 (0.83)  

E 5.09 (3) 2A”, 7a’28a’22a”19a’210a’2 5.08 5.30 (0.86) 5.42 

F 5.62 (3) 2A’, 7a’28a’12a”29a’210a’2 5.57 5.86 (0.83)  

G ~ 6 2A’, 7a’18a’22a”29a’210a’2 6.03 6.41 (0.84)  

[a] Numbers in parentheses represent the uncertainty in the last digit.  
[b] VDEs were calculated at OVGF/6-311+G(2df)//CCSD(T)/6-311+G* level of 

theory. Values in parentheses represent the pole strength of the OVGF calculation.   
[c] VDEs were calculated at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G* level of 

theory. 
[d] ADEs were estimated from the X band to be 2.40 ± 0.05 eV. Calculated ADE are 

2.82 eV (IX) and 2.39 eV (X) at CCSD(T)/6-311+G(2df)//CCSD(T)/6-311+G*. 
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Figure 9-1. Photoelectron spectra of CB6
– (left) and C2B5

– (right) at 355 nm (3.496 eV), 

266 nm (4.661 eV), and 193 nm (6.424 eV).  
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Figure 9-2. Calculated structures and relative energies (upper line at CCSD(T)/6-

311+G(2df)//B3LYP/6-311+G* and bottom line at B3LYP/6-311+G*) for CB6
2–, CB6

–, 

and C2B5
–. 
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Figure 9-3. Orbitals calculated according to the Adaptive Natural Density Partitioning 
(AdNDP) method of structures of CB6

2- (number of structures are given according to 
Figure 9-1) 
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Figure 9-4. Orbitals calculated according to the Adaptive Natural Density Partitioning 
(AdNDP) method of structures of C2B5

- (number of structures are given according to 
Figure 9-1) 
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Figure 9-5. Correlation diagram for the geometric transformation of CB6 (Cs, 1A’) 
(initially at the optimal geometry of the global minimum) into CB6 (C2v, 1A1). 
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CHAPTER 10 

THEORETICAL DESIGN OF PLANAR MOLECULES WITH A NONA- AND 

DECACOORDINATE CENTRAL ATOM1 

 
Abstract 

The maximum coordination number of the central atom in planar molecules 

generated by now in mole-cular beams was 8. We made use of the chemical bond model 

developed for planar boron clusters to check the possibility of existence of planar 

molecules with coordination numbers 9 and 10. The objects of our study were the AlB9 

and AlB10
+ clusters, which have local minima corresponding to highly symmetrical D9h 

and D10h structures, respectively. According to our calculations, the highly symmetrical 

structure of AlB9 is a global minimum or a low-lying isomer, and, therefore, it holds 

promise as a new ligand for coordination chemistry. The energy of the highly 

symmetrical structure of AlB10
+ with the coordination number 10 is too high, and this 

structure is hardly synthetically feasible. Thus, 9 is presently the maximum coordination 

number of an atom in a planar molecule. 

 
10-1. Introduction 

 

                                                
1 Coauthored by B. B. Averkiev and A. I. Boldyrev. Reproduced with kind permission 
from Springer Science+Business Media: Russian Journal of General Chemistry 2008, 78, 
769-773. 
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The progress of quantum chemistry over the past two decades has made it 

possible to predict new molecules. An example is the successful quantumchemical 

prediction in 1991 of a series of five-atomic clusters with a tetracoordinate central carbon 

atom: cis-CSi2Al2, trans-CSi2Al2, cis-CSi2Ga2, trans- CSi2Ga2, cis-CGe2Al2, and trans-

CGe2Al2 [1]. These molecules are unusual: They contain planar tetracoordinate carbon, 

even though a four-bond carbon atom has long, since van’t Hoff and Le Bel (1874), been 

considered to have invariably a tetrahedral environment. In 1970 Hoffmann, Alder, and 

Wilcox published a fundamental work in which they suggested several approaches to 

constructing molecules with a planar tetracoordinate carbon atom [2]. However, even 

these researchers expressed certain skepticism as to the possibility of existence of 

pentaatomic molecules with planar tetracoordinate carbon. In particular, they considered 

it too optimistic to believe that carbon in a simple compound will prefer a planar structure 

over tetrahedral. Therefore, the theoretical prediction of the above molecules was met 

with a great deal of skepticism.  

In 1999 Lee et al. [3] showed in their combined theoretical and experimental 

study that the structure of the negatively charged ion CAl4
– is a planar square with the 

carbon atom in the center [3]. A year later the same researchers discovered that the anions 

CAl3Si– and CAl3Ge– and their corresponding neutral molecules CAl3Si and CAl3Ge, too, 

contain a tetracoordinate planar carbon atom [4]. The above five-atomic molecules all are 

planar, since they have a purely bonding ligand–ligand highest occupied molecular 

orbital (for details, see [1, 3, 4]). This successful prediction of unusual planar molecules 

stimulated further theoretical design of other planar molecules with even higher 
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coordinate carbon and other main group atoms [5–21]. In particular, Exner and 

Schleyer [5] predicted planar molecules with hexacoordinate carbon, and Wang and 

Schleyer [6] predicted planar molecules with penta- and heptacoordinate carbon [6]. 

Minkin et al. suggested planar molecules with a heptacoordinate carbon or nitrogen atom, 

based on quantum-chemical calculations [11]. They also predicted a series of planar 

octacoordinate carbon, silicon, and phosphorus structures: CB8, SiB8, and PB8
+ [9]. 

Minyaev et al. [19, 20] showed in their combined theoretical and experimental study that 

B8
2– and B9

– are planar structures containing a hepta- and an octacoordinate central boron 

atom. The maximum coordination number of the central atom in planar molecules 

presently generated in molecular beams is eight.  

Here we present a quantum-chemical research into the possibility of existence of 

planar molecules in which the coordination number of the central atom is 9 and 10. As 

potential candidates we chose the neutral molecule AlB9 and cation AlB10
+. These 

systems, according to the chemical bond theory developed for boron clusters [21, 22], are 

doubly aromatic structures with a ring formed by two-electron two-centered (2e– 2c) B–

B bonds (formed by sp hybrid orbitals). The first of these systems (AlB9) has 30 valence 

electrons, of which 18 are involved in nine 2e–2c B–B bonds of the outer ring, 6 form a 

delocalized π  bond between the central aluminum atom and the ring, and the rest 6 

electrons form a delocalized σ  bond of the central aluminum atom with the ring. 

Analogous analysis for AlB10
+ shows that this cation should have ten 2e–2c B–B bonds in 

the outer ring, 6 delocalized π and 6 delocalized σ electrons. The six delocalized π and σ 

electrons correspond to the Huckel (4n+2) rule which makes both molecules doubly 
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aromatic. Therefore, they would be expected to be planar nona- and decahedral 

structures.  

 
10-2. Procedure and Results of Сalculations of 

Molecular Systems with Nona- and 

 Decacoordinate Central Atoms 

 
We started with search for a global energy minimum for the AlB9 molecule using 

the Gradient-Embedded Genetic Algorithm (GEGA) software developed at our group by 

A. N. Alexandrova [23, 24]. The energies, gradients, and force constants were calculated 

using B3LYP–DFT with the small 3-21G basis set. The five lowest energy isomers found 

by GEGA were reoptimized with the subsequent calculation of vibration frequencies by 

means of B3LYP/6-311+G*. The full energies of these isomers were recalculated using 

CCSD(T)/6-311+G(2df) with the B3LYP/6-311+G* geometries.  

With AlB10
+, we restricted ourselves to two isomers. The geometric parameters 

and vibration frequencies of these isomers were calculated by the B3LYP/6-311+G* 

method, and their full energies were recalculated by the CCSD(T)/6-311+G(2df) method 

with the B3LYP/6-311+G* geometry. The calculations were performed using the 

Gaussian03 program [25]. The structures and molecular orbitals were drawn using the 

MOLDEN3.4 program [26].  

The five lowest energy isomers of AlB9, found by GEGA, are depicted in Fig. 10-

1a. Isomer II with a nonacoordinate aluminum atom in the center corresponds to a global 

minimum on the PES calculated by means of B3LYP/6-311+G*.  
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Isomer I which can be considered as a structure obtained by substitution of 

one peripheral boron atom by aluminum in the global minimum structure of the B10 

cluster [21, 22] is 6.1 kcal mol–1 higher in energy than isomer II obtained by B3LYP/6-

311+G* calculations However, according to CCSD(T)/6-311+G(2df) calculations with 

the B3LYP/6-311+G* geometry, isomer I is a global minimum structure. Isomer II at the 

latter level of theory is as little as 1.0 kcal mol–1 higher in energy than isomer I. 

Therefore, these results allow us to draw no conclusions as to which of the isomers 

corresponds to a global minimum, and we are inclined to consider them energetically 

degenerate.  

Isomers III and V are also derivatives of the global minimum structure of the B10 

cluster, with peripheral boron atoms substituted in two other possible positions. These 

isomers are both higher in energy than isomers I and II. Geometry optimization of the 

structure in which one of the two central boron atoms in the B10 cluster is substituted by 

aluminum leads to structure IV with an ionic bond between Al+ and B9
–.  

For the cluster AlB10
+ we only compared the two structures depicted in Fig. 10-1b. 

Isomer VII with a decacoordinate planar aluminum center is much higher in energy than 

isomer VI which can be considered as a complex of Al+ with the B10 cluster. Even though 

the global minimum structure of the AlB10
+ cluster is unknown, the fact that isomer VII is 

much higher in energy than isomer VI allows us to rule out isomer VII from possible 

candidate decacoordinate planar structures.  

Thus, as follows from our calculations, nine is a maximum coordination number 

of the central atom in a planar molecule where it surrounded by a ring of boron atoms. 
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Structure VII for the AlB10
+ cluster, while being a local minimum, has a too high 

energy for this structure to be realized in practice in any chemical compound. The energy 

gap is also too low for isomer VII to form in any appreciable amounts in experiments 

with molecular beams or under matrix isolation conditions.  

Our choice of the AlB9 and AlB10
+ clusters as possible candidate molecules with a 

nona- or decacoordinate atom in a planar structure is motivated by unique features of 

chemical bonds in boron clusters. Even though the crystal lattice of boron is formed by 

three-dimensional fragments (icosahedrons),isolated boron clusters, at least those 

containing up to 15 atoms, are either planar or quasiplanar [21, 22]. The planar or 

quasiplanar structure of boron clusters is explained by the fact that they have an outer 

ring of 2e–2c B–B bonds. Additional bonding in boron is provided by delocalized σ and 

π bonds. Clusters in which the number of delocalized σ  and π  electrons is 4n+2 are 

double aromatic and, therefore, highly symmetrical, which makes them suitable candidate 

planar molecules with a high-coordinate central atom. 

Aluminum was chosen for the central atom, since it is less electronegative than 

boron. This is important, because the central atom is only involved in delocalized bonds 

with peripheral atoms, whereas ring atoms are additionally involved in the formation of 

ring 2e–2c bond; as a result, electronegative atoms will prefer to reside in the ring rather 

than in the molecular center.  

Molecular orbital analysis of AlB9 and AlB10
+ (Figs. 10-2a and 10-2b) points to 

the same nature of bonding as in purely boron clusters. The HOMO-4 through HOMO-8 

in AlB9 can be localized by the NBO method on two-center B–B bonds with effective 



 

 

193 

filling numbers of 1.95 e, which is quite close to the classical number 2 for a 2e–2c 

bond. The NBO analysis showed that the peripheral boron atoms in these bonds are sp-

hybridized. The HOMO – HOMO-3 are impossible to localize, which means that they are 

responsible for the delocalized bond between the central aluminum atom and the 

peripheral ring. The HOMO and HOMO-2 are π orbitals (they are similar in structure to 

benzene π  orbitals), i.e. they provide π -aromaticity of the molecule. The HOMO-1 and 

HOMO-3 are σ  orbitals, and they provide σ -aromaticity of the cluster. The HOMO-4 

through HOMO-9 in AlB10
+ can be localized by the NBO method on two-center B–B 

bonds with effective filling numbers of 1.96 e. The NBO analysis showed that the 

peripheral boron atoms in these bonds are sp-hybridized. The HOMO – HOMO-3 cannot 

be localized; which means that they are responsible for the delocalized bond between the 

central aluminum atom and the peripheral ring. The HOMO and HOMO-2 in AlB10
+ are π 

orbitals, i.e. they make the molecule π -aromatic. The HOMO-1 and HOMO-3 are σ 

orbitals responsible for σ-aromaticity of the cluster. 

The above-described chemical bonding in the AlB9 and AlB10
+ clusters explains 

the planar structure and high symmetry of isomers II and VII. Isomer VII of AlB10
+ is 

much less stable than isomer VI, since the radius of the outer boron ring is too large for a 

single central atom to maintain 12 delocalized electrons. Substitution of aluminum by 

gallium or indium in the ring center fails to make the decacoordinate structure much more 

stable, despite the larger atomic radius of gallium or indium.  

 
10-3. Conclusion 
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The chemical bond model developed for planar boron clusters was used to check 

the possibility of existence of planar molecules with the coordination numbers 9 and 10. 

The objects for study were the AlB9 and AlB10
+ clusters which have local energy minima 

corresponding to highly symmetrical D9h and D10h structures. The highly symmetrical 

structure of the AlB9 molecule is a global minimum or a low-lying isomer, and, therefore, 

it holds promise as a new ligand for coordination chemistry. The highly symmetrical 

structure of AlB10
+ with the coordination number 10 has a too high energy and is hardly 

interesting for synthetic chemistry. Thus, at present 9 is the maximum coordination 

number of atoms in a planar molecule.  
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Figure 10-1. Calculated structures and relative energies for (a) AlB9 and (b) AlB10
+.  
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a) 

 

b) 

Figure 10-2. Molecular orbitals for (a) AlB9 and (b) AlB10
+ clusters. 
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CHAPTER 11 

EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF CB8
-: TOWARDS 

RATIONAL DESIGN OF HYPERCOORDINATED PLANAR CHEMICAL SPECIES1 

 
Abstract 

We demonstrated in our joint photoelectron spectroscopic and ab initio study that 

wheel-type structures with a boron ring are not appropriate for designing planar 

molecules with a hypercoordinate central carbon on the example of CB8, and CB8
– 

clusters. We presented a chemical bonding model, derived from the Adaptive Natural 

Density Partitioning analysis, capable of rationalizing and predicting planar structures 

either with a boron ring or with a carbon atom occupying central hypercoordinate 

position. According to our chemical bonding model, in the wheel type structures the 

central atom is involved in delocalized bonding, while peripheral atoms are involved in 

both delocalized bonding and two center two electron (2c-2e) σ-bonding. Since carbon is 

more electronegative than boron it favors peripheral positions where it can participate in 

2c-2e σ−bonding. To design a chemical species with a central hypercoordinate carbon 

atom, one should consider electropositive ligands, which would have lone pairs instead of 

2c-2e peripheral bonds. Using our extensive chemical bonding model that considers both 

σ- and π-bonding we also discussed why the AlB9 and FeB9
- species with octacoordinate 

Al and Fe are the global minima or low-lying isomers, as well as why carbon atom fits 

                                                
1 Coauthored by Boris B. Averkiev, Lei-Ming Wang, Wei Huang, Lai-Sheng Wang, and 
Alexander I. Boldyrev 
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well into the central cavity of CAl4
2- and CAl5

+. This represents the first step toward 

rational design of nano- and subnano-structures with tailored properties.   

 
11-1. Introduction 

Continuous miniaturization in electronic devices requires rational design of nano- 

and subnano-structures.  However, there are no simple chemical rules, such as the Lewis 

model in organic chemistry, for designing novel nano-structures with tailored properties. 

One attempt has been made recently to develop a simple structural model for boron and 

mixed carbon-boron clusters.1-4 This model assumes that there is a peripheral ring of 

boron atoms bonded by classical two-center two-electron (2c-2e) bonds with interior 

atoms bonded to the peripheral ring through delocalized bonding, which can be 

understood in terms of σ - and π -aromaticity (double aromaticity), σ - and π -

antiaromaticity (double antiaromaticity), σ -aromaticity and π -antiaromaticity, and σ -

antiaromaticity and π -aromaticity (conflicting aromaticity). We assess aromaticity in 

chemical species on the basis of the presence of delocalized bonding in cyclic structures. 

We have recently developed a new tool Adaptive Natural Density Partitioning (AdNDP) 

method5 for assessing delocalized bonding in chemical species. This method leads to 

partitioning of the charge density into elements with the highest possible degree of 

localization of electron pairs.  If some part of the density cannot be localized in this 

manner, it is represented using completely delocalized objects, similar to canonical MOs, 

naturally incorporating the idea of delocalized bonding, i.e., n center - two electron (nc-

2e) bonds. Thus, AdNDP achieves seamless description of different types of chemical 
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bonds and has been applied recently to representative aromatic organic molecules,6 as 

well as boron and gold clusters.5,7 If we encounter a molecule or a cluster in which 

AdNDP analysis reveals that σ- or π- electrons cannot be localized into lone pairs or 2c-

2e bonds, we consider such a species from the aromaticity/antiaromaticity point of view. 

If delocalization occurs over the whole molecule and corresponding bonds satisfy the 

4n+2 rule we consider such species to be globally aromatic.  

The B9
- molecular wheel (D8h, 1A1g)8 is a good example of probing aromaticity 

using AdNDP analysis (Fig. 1). The B9
- cluster has 28 valence electrons that form eight 

2c-2e peripheral bonds with occupation numbers (ON) 1.96|e| that are close to the ideal 

2.00|e| values and six delocalized bonds between the central boron atom and the B8 ring.  

The six delocalized bonds are evenly divided between the σ- and π-systems, giving rise 

to double aromaticity (the delocalized σ-system has 6 electrons satisfying the 4n+2 rule 

for σ-aromaticity and similarly for the delocalized π- system) and nicely explaining the 

high symmetry wheel structure of B9
-. 

There is a temptation to substitute isoelectronically the central boron atom in B9
- 

by a carbon atom to make a CB8 wheel structure with the highest coordination number for 

the central C atom yet known in a planar arrangement.  The search for high-coordinate 

planar carbon species started in 1999 and 2000 when we first presented experimental and 

theoretical evidence of penta-atomic planar coordinated carbon species,9-11 which 

confirmed earlier theoretical predictions.12,13  These studies have stimulated renewed 

interests in designing new tetracoordinate14-15 and even hypercoordinate planar carbon 

molecules.16-36 Although none of these species is the global minimum on the potential 



 

 

202 

energy surfaces, it has been suggested that they might be viable experimentally. The 

three proposed hexa-, hepta-, and octa-coordinated carbon species are the D6h CB6
2–,19 D7h 

CB7
–,20 and C2v (effectively D8h) CB8,24 respectively.  The planar CB6

2– cluster with a 

hexacoordinate carbon has been touted as a “divining molecule” highlighted on the cover 

of Chem. & Eng. News.14 We have shown in previous joint experimental and theoretical 

investigations that the hypercoordinate D6h CB6
2– (ref. 4) and D7h CB7

– (ref. 3) clusters are 

highly unstable and that carbon avoids the central position and therefore 

hypercoordination in those species as well.  Pei and Zeng37 computed the planar tetra-, 

penta-, hexa-, hepta-, and octa-coordinated structures in carbon-boron mixed clusters and 

again found that in all the species tested carbon avoids hypercoordination.  However, up 

to now there is no experimental proof that there exists a planar global minimum or planar 

low-lying isomer of the CB8 cluster with a hypercoordinated carbon atom.   

In the current article, we report a joint experimental and theoretical study of CB8
– 

and CB8.  Photoelectron spectroscopy (PES) is used to probe the electronic structure of 

the CB8
– anion and compared with ab initio studies for both the anion and the neutral 

cluster.  We show that the experimentally observed species is a Cs CB8
– cluster, in which 

the C atom replaces a B atom from the edge rather than at the center of the D8h B9
– 

molecular wheel.  We present a simple chemical bonding explanation why carbon avoids 

hypercoordination in the mixed B/C clusters.  We further propose a method on how to 

use pencil and paper chemical bonding models for designing hypercoordinate planar 

carbon molecules and planar chemical species with other hypercoordinated atoms.   
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11-2. Experimental section 

The experiment was performed using a magnetic-bottle PES analyzer equipped 

with a laser vaporization cluster source, details of which can be found elsewhere.38,39  The 

target used to produce CB8
– was compressed from a mixed powder of 98%-isotopically-

enriched 10B with ~3% graphite and about 40% gold (to enhance the compressibility).  

The cluster anions from the source were analyzed using time-of-flight mass spectrometry.  

The CB8
– cluster was mass-selected and decelerated before being photodetached by a 193 

nm laser beam from an ArF excimer laser.  The photoelectron spectra were calibrated by 

the known spectrum of Au-.  The energy resolution of the apparatus was ΔE/E ~ 2.5%, 

i.e., about 25 meV for 1 eV electrons.  

The photoelectron spectrum of CB8
– (Fig. 11-2) is rather broad and complicated, 

suggesting either large geometry changes between the anion and the neutral or a cluster 

with low symmetry. Numerous spectral features are resolved and are labeled in Fig. 11-2. 

The experimental vertical detachment energies (VDEs) of the resolved PES bands are 

given in Table 11-1 and compared with theoretical values to be discussed below. The 

calculated VDEs (at TD-B3LYP level) of the first few detachment channels for the 

lowest energy structure V (Fig. 11-4) are plotted as vertical bars in Fig. 11-2 for 

comparison.   
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11-3. Theoretical calculations of CB8 and CB8
-  

and comparison with experiment 

We initially performed searches for the global minimum structure of CB8 and 

CB8
- using a gradient-embedded genetic algorithm (GEGA) program40,41 with the 

B3LYP/3-21G method for energy, gradient, and force calculations. We then reoptimized 

geometries and calculated frequencies for the lowest four (CB8) and eight (CB8
-) 

structures at the B3LYP/6-311+G* level of theory.42-44 We also performed single point 

energy calculations of the four structures of CB8 and eight structures of CB8
- at the 

CCSD(T)/6-311+G(2df) level of theory45-47 using the B3LYP/6-311+G* optimized 

geometries and then corrected the obtained energy values for zero-point energy at 

B3LYP/6-311+G* (CCSD(T)/6-311+G(2df)//B3LYP/6-311+G* + ZPE//B3LYP/6-

311+G*). We found that isomer I (Fig. 11-3) is the global minimum, in agreement with 

the result by Pei and Zeng.37 The closest isomer II was found to be 20.4 kcal/mol (here 

and thereafter the relative energies in the text refer to CCSD(T)/6-311+G(2df)//B3LYP/6-

311+G*+ZPE//B3LYP/6-311+G*). We found that the high symmetry structure IV with 

the putative octa-coordinate carbon is a second-order saddle point consistent with 

previous calculations by Minkin et al.24 Optimization following the imaginary 

frequencies led to isomer III, which is significantly higher (71.2 kcal/mol) than the global 

minimum. The GEGA search for the doublet CB8
- anion revealed that isomer V (Fig. 11-

4) is the global minimum, in agreement with the results reported by Pei and Zeng.37 There 

are two low-lying isomers VI and VII, whereas other isomers (VIII-XI) are found to be 

significantly higher in energy.  Again, the high symmetry structure XII with an octa-
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coordinate carbon is unstable with five imaginary frequencies and it was found to be 

116.8 kcal/mol higher than the global minimum structure. 

The CB8
- VDEs for the lowest three isomers were calculated using the 

R(U)CCSD(T)/6-311+G(2df) method, the outer-valence Green Function method48-51 

(ROVGF/6-311+G(2df)), and the time-dependent DFT method52,53 (TD B3LYP/6-

311+G(2df)) at the B3LYP/6-311+G* geometries. VDEs for isomer V are found to be in 

excellent agreement with the experimental ones (Table 11-1). The large geometry 

changes between the lowest CB8
- structure V and the neutral CB8 structure I are 

consistent with the broad spectrum observed (Fig. 11-2). As shown in Table 11-1, all the 

calculated VDEs are in good agreement with the experimental data. The CCSD(T) values 

for the X, A, and C channels are in quantitative agreement with the experimental values.  

VDEs for isomers VI and VII do not agree well with the experimental data. However, 

due to the broad nature of the experimental spectrum, we could not completely rule out 

the presence of isomers VI and VII.  But their contributions to the observed spectrum, if 

any, were expected to be small.  

All calculations were performed via the Gaussian03 program.54 Molecular 

structures were visualized using MOLDEN3.4 program55 and the AdNDP bonds 

visualizion was performed using MOLEKEL, Version 4.3.56 

 
11-4. Chemical bonding analysis 

To understand why the structures with an octacoordinate C for CB8 and CB8
– are 

unstable we performed the AdNDP analysis of chemical bonding in these species at the 
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HF/3-21G level of theory. It was shown previously that the results of the AdNDP 

analysis similar to that of the Natural Bonding Orbital analysis do not depend on the 

choice of the basis set.6 

According to our AdNDP analysis, the chemical bonding in the D8h CB8 structure 

IV is identical to that of B9
- (Fig. 11-1): they both are doubly (σ− and π−) aromatic 

systems (6 delocalized σ−electrons and 6 delocalized π−electrons) with eight peripheral 

2c-2e B-B bonds (Fig. 11-5a).  However, unlike B9
-, the D8h CB8 is not even a minimum 

because the carbon atom is too small to make a perfect fit into the B8 ring.  Therefore, it 

is important to take into account the geometric factors in designing highly coordinated 

planar molecules. The bonding pattern in isomer III (Fig. 11-5c) that is obrtained by 

following the imaginary frequency mode of the structure IV is somewhat different from 

the bonding pattern of the high-symmetry structure IV (Fig. 11-5a). 

Although the eight peripheral 2c-2e B-B bonds (Fig. 11-5a-1 and 11-5c-1) are 

very similar in both structures, their delocalized σ− and π−bonds are different.  The π−

bonds in structure IV (Fig. 11-5a-5-7) are delocalized over the whole cluster, while in 

isomer III they become one 3c-2e (Fig. 11-5c-5) and two 4c-2e π−bonds (Fig. 11-5c-6 

and 7). Despite these changes, the partially localized π-bonds in isomer III are simply 

linear combinations of the completely delocalized π−bonds in structure IV.  This was 

confirmed by calculating a slightly distorted structure IV* (Fig. 11-5b), in which the 

central carbon atom was shifted by 0.004 Å from the central position.  Neither the total 

energy nor the orbital energies of IV* change significantly from those of IV, but the 

shape of the π−bonds (Fig. 11-5b-5-7) in this distorted structure now looks exactly like 
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there in isomer III (Fig. 5c-5-7).  Hence, isomer III can be still viewed as a π−

aromatic system. However, isomer III is no longer a σ−aromatic system, even though it 

has three partially delocalized σ−bonds.  We found that the σ−bonding pattern of the 

slightly distorted structure IV* (Fig. 11-5b-2-4) is different from that of isomer III (Fig. 

11-5c-2-4).  The slightly distorted structure IV* is still σ−aromatic, even though the σ−

bonds are now partially localized, analogous to the π−bonds discussed above. However, 

upon further distortion towards isomer III one of the “aromatic” σ−bond (Fig. 11-5b-4) is 

transformed into a new σ−bond (Fig. 11-5c-4). The three σ−bonds in III (Fig 11-5c-2-4) 

are now localized on the bottom part of the cluster, with the three upper peripheral atoms 

not participating in the delocalized σ−bonding. Therefore, isomer III is no longer σ−

aromatic, while clusters IV and IV* are with all the atoms being involved in delocalized 

bonding.  

This conclusion is confirmed by calculation of NICSzz indices for structures IV 

and III. In structure IV we found that NICS values are highly negative just above the 

central carbon atom and they slowly decrease with the height of the probe charge.  In 

structure III, NICS values are highly positive just above the carbon atom, but they 

become negative with increasing the height of the probe charge.  However, III and IV are 

not low-lying structures. Structure I is the global minimum structure for CB8. The reason 

why isomer I is significantly more stable than structure III and IV can be understood 

from the bonding patterns.  The central C atom in structures III and IV is involved in 

delocalized bonding with the peripheral atoms only, while in isomer I the C atom is also 
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involved in 2c-2e peripheral bonding with two neighboring boron atoms, in addition 

to the delocalized bonding.  The lower electronegativity of B compared to C clearly 

favors structures with the peripheral position for the carbon atom. The bonding pattern 

(Fig. 11-5d) is almost identical to the bonding pattern of the slightly distorted structure 

IV* (Fig. 11-5b) and thus, isomer I is also doubly (σ− and π−) aromatic. 

We further performed the AdNDP analysis for the doubly charged CB8
2- anion at 

the geometry of the global minimum structure V of CB8
- by adding an electron to the 

singly occupied HOMO (Fig. 11-6a).  The AdNDP analysis revealed that there are six 2c-

2e B-B and two  C-B peripheral σ−bonds (Fig. 11-6a-1), three 3c-2e σ−bonds (Fig. 11-

6a-2-4), one 4c-2e σ−bond (Fig. 11-6a-5), and two 4c-2e and one 3c-2e π−bonds (Fig. 

11-6a-6-8).  The three 3c-2e σ−bonds in structure V of CB8
2- are similar to the three 4c-2e 

σ−bonds in the slightly distorted octagonal structure of CB8 (Fig. 11-5b-2-4). The π -

bonds in structure V of CB8
2- are similar to those in the slightly distorted octagonal 

structure of CB8 (Fig. 11-5b-5-7). Finally, 4c-2e σ−bond (Fig. 11-6a-5) is similar to the 

4c-2e σ−bond in the structure III of CB8 (Fig. 11-5c-4). As we have already mentioned 

above, the slightly distorted octagonal structure is still doubly aromatic.  The appearance 

of the extra σ−bond (Fig. 11-6a-5) makes structure V of CB8
2- σ-antiaromatic with eight 

σ-electrons participating in the delocalized bonding. We confirmed this conclusion by 

calculation of NICS over the central boron atom and found that NICS values at low 

height (0.2 Å and 0.4 Å) are positive and at higher position (0.6 Å, 0.8 Å, 1.0 Å, and 1.2 
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Å)  become negative.  These results imply a system with conflicting aromaticity, i.e., 

σ−antiaromatic and π−aromatic. 

 
11-5. Rational design of hypercoordinate planar  

species with an external boron ring 

Our previous studies on pure boron clusters1,59-61 revealed that in planar structures 

there is always a peripheral ring of 2c-2e B-B σ -bonds with additional delocalized 

bonding between peripheral atoms or peripheral atoms and atoms located inside of the 

ring.  The presence of this peripheral ring gives us an opportunity to design planar 

molecules with hypercoordinate central atoms. In order to obtain planar boron clusters 

with a hypercoordinate central atom, the wheel type structure has to be a minimum 

(geometric fit, i.e., structural factor) and the system has also to be doubly aromatic 

(electronic factor).  As we mentioned above, the B9
- cluster has a D8h wheel structure and 

it is σ- and π-aromatic. Apparently, the central boron atom fits well into the octagonal B8 

ring. It was shown that ten atomic boron cluster favors the structure in which two boron 

atoms occupy central positions59 and the wheel structure with one central atom located 

inside the nine-member ring is significantly higher in energy.1,2 B9
- is a system with the 

highest yet experimentally observed coordination number of 8.   

In the CB6
-, C2B5

-, CB6
2-, CB7

-, and CB8
- clusters, we found that the carbon atom 

avoids the central position in wheel type structures.  Chemical bonding analysis 

performed by the AdNDP method revealed that the atom in the central position in the 

wheel type structures is involved in delocalized bonding only, while atoms at the 
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periphery are involved in both delocalized bonding and 2c-2e peripheral σ-bonding.  

The carbon atom, being more electronegative than the boron atom, favors peripheral 

positions, where it can participate in 2c-2e σ-bonding.  Thus, the boron ring wheel-type 

structures are not suitable for designing planar molecules with a hypercoordinate central 

carbon atom. 

This observation suggests that atoms, which are more electropositive than boron, 

may be more viable candidates to sit in a boron ring for hypercoordinate structures.  

Indeed, we recently demonstrated62 that an aluminum atom can be placed into a B9 ring to 

result in a high-symmetry and stable D9h structure, which according to high-level 

theoretical calculations was shown to be either the global minimum or a low-lying isomer 

on the potential energy surface. We can readily apply our chemical bonding model 

described above to the AlB9 cluster: it possesses 30 valence electrons with 18 electrons 

participating in nine 2c-2e peripheral B-B σ -bonds, 6 electrons participating in 

delocalized σ-bonding and 6 electrons participating in delocalized π-bonding (Fig. 11-7).  

Thus, AlB9 is doubly (σ- and π-) aromatic system and Al atom is a good geometric fit for 

the B9 ring.  AlB9 is the first computationally found system with a nine-coordinate central 

atom. We tried to use this approach to design a ten-coordinated atom in the AlB10
+ 

cluster.  However, we found that the isomer with Al at the central position of the B10 ring 

is significantly higher in energy than an alternative isomer, in which the Al+ cation is 

located above the B10 cluster. We believe that the central cavity for B10 is too big to fit 

favorably the Al+ cation at the center. Nevertheless, suitable atoms may exist to make ten-

coordinated planar clusters. 
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Recently, Ito et al.63 reported a calculation of the global minimum wheel-type 

FeB9
- structure with a nine-coordinate Fe atom. This structure can be easily rationalized 

using our chemical bonding model. The FeB9
- cluster has 36 valence electrons with 18 

electrons participating in nine 2c-2e peripheral B-B σ-bonds, 6 electrons participating in 

delocalized σ−bonding and 6 electrons participating in delocalized π−bonding, and three 

pairs of localized 3d electrons on Fe (Fig. 11-7).  Thus, the FeB9
- cluster is doubly (σ− 

and π−) aromatic and similar to AlB9 the central atom is an electropositive element in 

agreement with our conclusion that only electropositive (relative to boron) atoms can 

have high symmetry global minimum structures or at least to be a low-lying isomer.   

 
11-6. Rational design of hypercoordinate planar  

carbon species 

In spite of the unfavorable location of a carbon atom in boron rings, it has been 

shown theoretically and experimentally that carbon occupies the central position in the 

square of four aluminum atoms in the CAl4
- (ref. 6) and NaCAl4

- (ref. 8) species.  At first 

glance, these findings may seem to contradict the previously discussed chemical bonding 

model.  However, our AdNDP analysis performed for the CAl4
2- dianion (Fig. 11-9) 

showed that bonding between the peripheral boron atoms in planar wheel structures and 

those of aluminum atoms in CAl4
2- is quite different.  One can see that there are no 2c-2e 

peripheral Al-Al σ-bonds in CAl4
2-.  Instead, there is a lone pair at every aluminum atom 

(Fig. 11-9a).  There are also two delocalized bonds: one is a 4c-2e peripheral σ -bond 

composed out of 3p tangential aluminum AOs (Fig. 11-9f) and another one is a 5c-2e π-
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bonds composed of mainly 2pz-AO of carbon with small contributions from the 3pz-

AOs of Al atoms (Fig. 11-9e).  The other three bonds are essentially 2s-AO on C (Fig. 

11-9d) and 2px- and 2py-AOs on C (Fig. 11-9b,c). Thus, bonding in CAl4
2- can be 

approximately considered as being due to ionic bonding between a central carbon C4- 

anion and an Al4
2+ cation (with significant covalent contribution) and due to the 

delocalized σ-bonding and weakly delocalized π-bonding. Therefore, in order to design a 

chemical species with a central hypercoordinate carbon atom, one should consider 

electropositive ligands, which tend to form lone pairs instead of 2c-2e peripheral bonds.  

Aluminum is a good example of such a ligand, but it is conceivable that there may exist a 

class of such atoms to design hypercoordinate carbon species. A recent theoretical 

prediction of a planar pentacoordinate carbon in the CAl5
+ cation64 provides another 

example for our design principle.  

The considered in our article hypercoordinate chemical species CB8, CB8
–, CAl5

+
, 

AlB9
 and FeB9

– belong to electron deficient hypervalent chemical species.65,66 This 

conclusion can be supported by results of the Natural Bond Analysis (at B3LYP/6-

311+G*) that revealed that the charges at the central atoms are the following: Q(C)=-0.45 

|e| with the atomic occupations 2s1.282p3.15 in CB8 , Q(C)=-2.65 |e| with the atomic 

occupations 2s1.652p4.97 in CAl5
+, Q(Al)=1.46 |e| with the atomic occupations 3s0.443p1.05 in 

AlB9, and Q(Fe)=0.02 |e| with atomic occupations 4s0.213d7.65 in FeB9
–. The hypervalency 

in these hypercoordinate species is due to delocalized bonding revealed by our AdNDP 

analysis and not due to the formation of extra 2c-2e radial bonds.  
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11-7. Summary 

From our joint photoelectron spectroscopic and ab initio study we have 

demonstrated that carbon avoids central positions in CB6
2–, CB7

–, CB8, and CB8
–. We have 

developed a chemical bonding model (using AdNDP analysis), which explains why 

carbon avoids the central position in those species. According to this model, in the wheel 

type structures the central atom is involved in delocalized bonding only, while atoms at 

the periphery of the wheel structure are involved in both delocalized bonding and 2c-2e 

peripheral σ -bonding.  The carbon atom is more electronegative than boron atoms and 

favors peripheral positions where it can participate in 2c-2e σ-bonding.  Thus, wheel-type 

structures with a boron ring are not appropriate for designing planar molecules with a 

hypercoordinate central carbon.  However, if the central atom is more electropositive than 

boron, then the wheel type structures are stable and can be either global minimum or low-

lying isomers.  The results of the AdNDP analysis of the chemical bonding in the CAl4
2- 

dianion showed that in this case, the favorable central position of the carbon atom is due 

to essentially ionic bonding between a central carbon C4- anion and an Al4
2+ cation with 

contributions from delocalized σ-bonding and weakly delocalized π-bonding. In order to 

design a chemical species with a central hypercoordinate carbon atom, one should 

consider electropositive ligands, which would have lone pairs instead of forming 2c-2e 

peripheral bonds. The same is true for the pentacoordinate carbon atom inside of the Al5
+ 

ring (CAl5
+ cluster). We used our extensive chemical bonding model, which considers 

both σ- and π-electrons to explain why the AlB9 and FeB9
- species with octacoordinate Al 

and Fe are the global minima or low-lying isomers. Though the global minimum structure 
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of FeB9
- was established by Ito et al,63 they considered in their chemical bonding 

analysis only π-electron. We have shown that σ-electrons are also important for 

rationalizing high symmetry and high coordination number of Fe in FeB9
-. Hence, we 

presented a comprehensive chemical bonding model capable of rationalizing and 

predicting structures either with a boron ring or a central planar carbon. This represents 

the first step towards rational design of nano- and subnano-structures with tailored 

properties. 
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Table 11-1 Comparison of the experimental vertical detachment energies (VDE) of 

CB8
– with the calculated values for the global minimum CS structure.  All energies are in 

eV.  

VDE (theo.) 

Feature 
VDE 

(exp.) [a] 

Final State and Electronic 

Configuration TD-

B3LYP[b] 

OVGF [c] DCCSD(T) 
[d] 

X [e] ~ 3.45 1A’, 9a’210a’211a’22a”23a”212a’0 3.45 3.69 (0.89) 3.41 

A 3.70 (5) 3A”, 9a’210a’211a’22a”23a”112a’1 3.58 3.57 (0.89) 3.72 

A tail ~ 4.0 1A”, 9a’210a’211a’22a”23a”112a’1 4.02 [f] [f] 

B 4.23 (4) 3A”, 9a’210a’211a’22a”13a”212a’1 4.17 4.27 (0.88) [f] 

B tail ~ 4.5 1A”, 9a’210a’211a’22a”13a”212a’1
 4.43 [f] [f] 

C 4.75 (5) 3A’, 9a’210a’211a’12a”23a”212a’1 4.71 4.93 (0.88) 4.80 

D ~ 5 3A’, 9a’210a’111a’22a”23a”212a’1 5.06 5.17 (0.87) [f] 
1A’, 9a’210a’211a’12a”23a”212a’1

 5.48 [f] [f] E 

F 

5.16 (5) 

5.35 (5) 3A’, 9a’110a’211a’22a”23a”212a’1 5.66 5.80 (0.86) [f] 

[a] Numbers in the parentheses represent uncertainties in the last digit.  
[b] The first two VDEs were calculated at the B3LYP/6-311+G(2df)//B3LYP/6-311+G* 

level of theory as the lowest transition from the doublet state of the anion into the final 

lowest singlet and triplet states of the neutral species.  Then the vertical excitation 

energies of the neutral species in the lowest singlet and triplet states (at the TD-B3LYP 

level) were added to the first two VDEs, respectively, in order to obtain higher VDEs. 
[c]  UOVGF/6-311+G(2df)//B3LYP/6-311+G*. Pole strength is given in parenthesis.  
[d]  UCCSD(T)/6-311+G(2df)//B3LYP/6-311+G*. 
[e]  The adiabatic detachment energy (ADE) was estimated to be 3.2±0.1 eV.   
[f] This VDE cannot be calculated at this level of theory. 
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Fig. 11-1 The global minimum structure of B9
- (upper left), the eight 2c-2e B-B σ-bonds 

superimposed over the B9
- structure (upper right), the three 9c-2e delocalized σ -bonds 

(middle row), and the three 9c-2e delocalized π-bonds (bottom row), all recovered by the 

AdNDP analysis.   
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Fig. 11-2 Photoelectron spectrum of CB8
- at 193 nm. The vertical bars represent the 

calculated VDEs (at TD-B3LYP level) for the lowest anion structure.  The short bars 

represent the detachment transitions to singlet neutral states while the longer ones 

represent transitions to triplet final states.   

 

 

Fig. 11-3 Selected optimized structures of CB8.  Upper and lower numbers are relative 

energies calculated at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*+ZPE//B3LYP/6-

311+G* and B3LYP/6-311+G*+ZPE//B3LYP/6-311+G* levels of theory, respectively.   
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Fig. 11-4 Selected optimized structures of CB8
-.  Upper and lower numbers are relative 

energies calculated at the CCSD(T)/6-311+G(2df)//B3LYP/6-311+G*+ZPE//B3LYP/6-

311+G* and B3LYP/6-311+G*+ZPE//B3LYP/6-311+G* levels of theory, respectively.   
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Fig. 11-5 The eight 2c-2e B-B σ-bonds superimposed over the CB8 structures (first row), 

the three delocalized σ-bonds (second to fourth rows), and the three delocalized π-bonds 

(fifth to seventh rows), recovered by the AdNDP analysis (see text for details). 
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Fig. 11-6 The eight 2c-2e B-B σ -bonds superimposed over the CB8
2- structures (first 

row), the four delocalized σ -bonds (second to fifth rows), and the three delocalized π -

bonds (sixth to eighth rows), recovered by the AdNDP analysis (see text for details). 
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Fig. 11-7 One of the lowest energy structures of AlB9 (upper left), its nine 2c-2e B-B σ-

bonds superimposed over the AlB9 structure (upper right), the three 10c-2e delocalized σ-

bonds (middle row), and the three 10c-2e delocalized π -bonds (bottom row), all 

recovered by the AdNDP analysis.   
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Fig. 11-8 The global minimum structure of FeB9 (upper left), its nine 2c-2e B-B σ-bonds 

superimposed over the FeB9 structure (upper right), the three pairs of localized 3d 

electrons (second row), the 9c-2e delocalized σ-bonds (third row), and the three 9c-2e 

delocalized π-bonds (fourth row), all recovered by the AdNDP analysis.  
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Fig. 11-9 The structure of CAl4
2- (top), (a) the four Al lone pairs superimposed over the 

CAl4
2- structure, (b and c) the 2px- and 2py-AOs of the carbon atom, (d) the 2s-AO of the 

carbon atom, (e) 5c-2e delocalized  π-bond, and (f) 4c-2e σ -tangential bond (all 

recovered by AdNDP analysis). 
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CHAPTER 12 

δ-AROMATICITY IN Ta3O3
−:  A NEW MODE OF CHEMICAL BONDING1 

 
Abstract 

We report experimental and theoretical evidence of δ-aromaticity, which is 

discovered in the Ta3O3
– cluster via a combined photoelectron spectroscopy and ab initio 

study.  Well-resolved low-lying electronic transitions are observed in the photoelectron 

spectra of Ta3O3
– and are compared with ab initio calculations, which show that the 

Ta3O3
– cluster possesses a planar D3h triangular structure.  Chemical bonding analyses 

reveal that among the five valence molecular orbitals responsible for the multi-center 

metal-metal bonding there is a completely bonding δ and π orbital from the 5d atomic 

orbitals of Ta. The totally delocalized multi-center δ bond renders δ-aromaticity for 

Ta3O3
– and represents a new mode of chemical bonding.  Ta3O3

– is the first δ-aromatic 

molecule confirmed experimentally and theoretically, suggesting that δ-aromaticity may 

exist in many multi-nuclear, low oxidation state transition-metal compounds. 

 
12-1. Introduction 

Aromaticity was introduced in organic chemistry to describe delocalized p-

bonding in planar, cyclic and conjugate molecules possessing (4n + 2) p-electrons.[1]  In 

recent years the concept of aromaticity has been advanced into main group molecules 

                                                
1 Coauthored by Hau-Jin Zhai, Boris B. Averkiev, Dmitry Yu. Zubarev, Lai-Sheng 
Wang, and Alexander I. Boldyrev. Reproduced with permission from Angew. Chem. Int. 
Ed. 2007, 46, 4277-4280. Copyright Wiley-VCH Verlag GmbH & Co. KGaA 
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including organometallic compounds with cyclic cores of metal atoms[2] and in 

particular all-metal clusters.[3] It has been shown that main group clusters may possess 

multiple aromaticity (σ and π), multiple antiaromaticity (σ and π), and conflicting 

aromaticity (σ-aromaticity and π-antiaromaticity or σ-antiaromaticity and π-

aromaticity).[4-6]  Here we report experimental and theoretical evidence of d-aromaticity, 

which is only possible in transition metal systems.  It is discovered in the Ta3O3
– cluster 

via a combined photoelectron spectroscopy and ab initio study.  Well-resolved low-lying 

electronic transitions are observed in the photoelectron spectra of Ta3O3
– and are 

compared with ab initio calculations, which show that the Ta3O3
– cluster possesses a 

planar D3h triangular structure.  Chemical bonding analyses reveal that among the five 

valence molecular orbitals responsible for the multi-center metal-metal bonding there is a 

completely bonding δ and π orbital from the 5d atomic orbitals of Ta. The totally 

delocalized multi-center δ bond renders δ-aromaticity for Ta3O3
– and represents a new 

mode of chemical bonding. Ta3O3
– is the first δ-aromatic molecule confirmed 

experimentally and theoretically, suggesting that δ-aromaticity may exist in many multi-

nuclear, low oxidation state transition-metal compounds. 

In 1964, Cotton and co-workers published a milestone work on the 

K2[Re2Cl8].2H2O compound,[7] in which they showed the presence of a new type of 

chemical bond – δ-bond between the two Re atoms.  Since then, a new branch of 

inorganic chemistry has been developed involving multiple metal-metal bonding[8] with 

bond orders higher than three, the maximum allowed for main group molecules.  Power 

and co-workers recently reported the synthesis of Ar’CrCrAr’ [where Ar’ is the bulky 
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aryl group C6H3-2,6(C6H3-2,6-Pri
2)2] with a quintuple bond (σ2π4δ4) between the two 

Cr atoms.[9]  This work, along with the quantum chemical prediction of a quintuple bond 

in U2 by Galiardi and Roos,[10a] and in Re2Cl8
2- by Galiardi and Roos,[10b] and by Saito et 

al.[10c] has generated renewed interest into metal-metal multiple bonding.[11-13] The 

presence of δ-bonds between two transition metal atoms suggests that there may exist 

multi-center transition metal species with completely delocalized cyclic δ-bond, thus 

raising the possibility of δ-aromaticity analogous to π- or σ-aromaticity in main group 

systems.  We have been interested in understanding the electronic structure and chemical 

bonding of early transition metal oxide clusters as a function of size and composition and 

using them as potential molecular models for oxide catalysts.[14-16] During our 

investigation of tantalum oxide clusters, we found serendipitously the presence of δ-

aromaticity in the Ta3O3
– cluster, in which each Ta is in a low-oxidation state of Ta(II) 

and still possesses three electrons for Ta-Ta bonding.   

 
12-2. Experimental Method 

 The experiment was conducted using a magnetic-bottle-type photoelectron 

spectroscopy apparatus equipped with a laser vaporization cluster source, details of which 

have been described elsewhere.[17]  TamOn
– clusters with various compositions were 

produced by laser vaporization of a pure tantalum disk target in the presence of a helium 

carrier gas seeded with O2 and were size-separated by time-of-flight mass spectrometry.  

The Ta3O3
– species of current interest was mass-selected and decelerated before 

photodetachment by a pulsed laser beam.  Photoelectron spectra were obtained at two 
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relatively high photon energies, 193 nm (6.424 eV) and 157 nm (7.866 eV), to 

guarantee access to all valence electronic transitions, as shown in Figure 12-1.  Three 

well-resolved bands (X, A, and B) were observed at the lower binding energy side.  The 

X band is much more intense and shows a discernible splitting at 193 nm (Figure 12-1a).  

Surprisingly, no well-defined electronic transitions were observed beyond 3.7 eV, where 

continuous signals were present, probably due to multi-electron transitions.  The vertical 

detachment energies (VDEs) of the observed transitions at the low binding energy side 

are given in Table 12-1, where they are compared with theoretical calculations using two 

different methods.   

 
12-3. Theoretical Methods 

 We initially performed an extensive search for the Ta3O3
– global minimum for the 

singlet, triplet, and quintet states at the B3LYP/LANL2DZ level of theory and then 

recalculated the global minimum structure and the three lowest isomers at three other 

levels of theory.  

 
12-4. Results and Discussion 

We found that the Ta3O3
– global minimum has a perfect D3h (1A1’) planar 

triangular structure I (Figure 12-2). The closest isomer II is 6.6 

(B3LYP/Ta/Stuttgart+2f1g/O/aug-cc-pvTZ) and 1.7 kcal/mol 

(B3PW91/Ta/Stuttgart+2f1g/O/aug-cc-pvTZ) higher in energy than the D3h ground state.  

The theoretical VDEs of the global minimum at the two highest levels of theory are 

compared with the experimental data in Table 12-1.  One can see that the calculated 
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VDEs for the global minimum structure I agree well with the experimental results, 

while those for the three low-lying isomers are completely off, lending considerable 

credence to the theoretical methods and the D3h structure for Ta3O3
–.  The highest 

occupied molecular orbital (HOMO, 4e’) of the D3h Ta3O3
– is doubly degenerate, 

consistent with the intense X band observed experimentally.  The splitting of the X band 

could be due to either a Jahn-Teller effect or spin-orbit coupling. 

 To help understand the structure and bonding in Ta3O3
– we performed a detailed 

molecular orbital analysis.  Out of the 34 valence electrons in Ta3O3
–, 24 belong to either 

pure oxygen lone pairs or those polarized towards Ta (responsible for the covalent 

contributions to Ta-O bonding).  The remaining 10 valence electrons are primarily Ta-

based and are responsible for direct metal-metal bonding, as shown in Figure 12-3.  

Among the five MOs, three are responsible for σ-bonding of the triangular Ta3 

framework.  They include the partially bonding/antibonding doubly degenerate 4e’ 

HOMO and the completely bonding 3a1’ HOMO-3.  The antibonding nature of the 

HOMO significantly reduces the σ-bonding contribution to the Ta3 framework.[18]  In the 

Ta3O3
- anion, the HOMO-2 (2a2”) is a completely bonding π orbital composed primarily 

of the 5d orbitals of Ta, giving rise to π-aromatic character according to the (4n + 2) 

Hückel rule for π-aromaticity.[19] 

The most interesting MO is HOMO-1 (4a1’), which is a completely bonding 

orbital mainly coming from the overlap of the dz
2 orbital on each Ta atom.  This orbital 

has the “appearance” of a π orbital with major overlaps above and below the molecular 

plane, but it is not a π-type MO because it is symmetric with respect to the molecular 
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plane.  However, perpendicular to the molecular C3 axis, this MO possesses two 

nodal surfaces, and thus it is a δ orbital.[20]  In fact, a similar δ-bonding MO exists in the 

recently synthesized quintuple bond Cr2 complex,[9] where it is a two-center bond formed 

from a dz
2 orbital on each Cr atom.[13]  Analogous to the circularly delocalized p-MO over 

the three carbon atoms in C3H3
+, which renders C3H3

+ p-aromatic,[6] the circular 

delocalization and the bonding nature of the 4a1’ MO gives rise to δ-aromaticity in 

Ta3O3
-, which is also consistent with the (4n + 2) Hückel rule.[19]  In the Ta3O3

– cluster, 

the δ-MO is a three-center bond, but similar types of MOs are possible in planar 

tetraatomic, pentaatomic, or larger transition metal systems.   

Therefore, the Ta3O3
– cluster possesses an unprecedented multiple (δ and π) 

aromaticity, which is responsible for the metal-metal bonding and the perfect triangular 

Ta3 framework.  The stability of the Ta3 triangular kernel can be seen in all the low-lying 

isomers of Ta3O3
– (Figure 12-2), which differ only in the coordination of the oxygen 

atoms to the aromatic Ta3 framework.  It is also noteworthy that the energy ordering of σ 

(HOMO-3) < π (HOMO-2) < δ (HOMO-1) (Table 12-1 and Figure 12-3) indicates that 

the strength of the metal-metal bonding increases from δ to π to σ, in agreement with the 

intuitive expectation that σ-type overlap is greater than π-type overlap, and δ-type 

overlap is expected to be the weakest, as is also the case in the multiple bonding of 

diatomic transition metal compounds including classical Re2Cl8
2- dianion.[7-13]  Despite the 

expected weaker overlap in the δ MO, it makes important contributions to the overall 

metal-metal bonding, as shown in the quintuple bonds in the new Cr2 complex[9,11-13] or in 
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the U2 dimer.[10]  The three center delocalization in the aromatic δ MO in Ta3O3
– is 

expected to provide even more bonding contributions than in the cases of the metal 

dimers, even though it is difficult to quantify them.  The three center delocalization in the 

aromatic W3O9
2– molecule due to a d-d σ bond was estimated previously to provide about 

1 eV additional resonance energy, similar to that estimated for benzene.[21]  

 
12-5. Conclusion 

 Aromaticity in transition metal systems has been discussed in the literature,[4,5,21-30] 

in particular, since the discovery of aromaticity in all-metal clusters.[3]  King[22] and Li[23] 

have considered aromaticity in transition metal oxides due to metal-metal interactions via 

M-O-M bridges.  The Hg4
6– cluster, which is a building block of the Na3Hg2 amalgam, 

has been shown by Kuznetsov et al.[24] to be aromatic similar to that of the all-metal Al4
2– 

unit.[3]  Tsipis et al.[25,26] explained the planar structure of cyclic hydro-coinage 

compounds on the basis of their aromatic character.  Aromaticity in square-planar 

coinage metal clusters was discussed by Wannere et al.[27] and Lin et al.[28]  Alexandrova 

et al.[29] suggested the presence of aromaticity in the Cu3C4
– cluster.  Datta et al.[30] used d-

orbital aromaticity to explain the metal ring structure in tiara nickel thiolates.  Recently, 

Huang et al.[21] demonstrated the presence of d-orbital aromaticity in 4d and 5d transition 

metal oxide clusters, Mo3O9
2– and W3O9

2–.  The claim of d-aromaticity in the square-

planar coinage metal clusters[27] was questioned by Lin et al.,[28] who showed that the 

completely filled d orbitals do not play any significant role in the bonding in these 

clusters. Instead, aromaticity in these systems comes primarily from σ-bonding 
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interactions of the valence s electrons.  Thus, today the Mo3O9
2– and W3O9

2– clusters 

are the only examples, where aromaticity comes from d bonding interactions, albeit it has 

σ character.[21]  

In the Ta3O3
– cluster, we in fact found two new types of d bonding interactions 

leading to π- and δ-aromaticity.  The δ-aromaticity found in this cluster is a new mode of 

chemical bonding, which can only occur in multi-nuclear transition metal systems. The 

current finding suggests that δ-aromaticity may exist in many cyclic transition metal 

systems containing metal atoms in low oxidation states.  The next challenge is to find φ 

aromaticity, which may occur in multi-nuclear and cyclic f-metal systems.   
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Table 12-1: Experimental vertical electron detachment energies (VDE in eV) for 

Ta3O3
–, compared with those calculated for the D3h global minimum.   

Observed 

Feature 

VDE  

(exp.) 

Final State and Configuration VDE  

(B3LYP)[a] 

VDE 

(B3PW91)[a] 

X 2.25 ± 0.03b 2E’ (3a1’22a2”24a1’24e’3) 2.27 2.25 

A 2.89 ± 0.02 2A1’ (3a1’22a2”24a1’14e’4) 2.93 2.96 

B 3.44 ± 0.03 2A2” (3a1’22a2”14a1’24e’4) 3.27 3.36 

 

[a]Using the Ta/Stuttgartt+2f1g/O/aug-cc-pvTZ basis set.  

[b]Adiabatic electron detachment energy was measured to be 2.22 ± 0.03 eV.   



 

 

241 

 

 

Figure 12-1.  Photoelectron spectra of Ta3O3
–.  a) 193 nm (6.424 eV).  b) 157 nm (7.866 

eV).   
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Figure 12-2.  Optimized structures for the global minimum of Ta3O3
– (D3h, 1A1’) and 

selected low-lying isomers. The relative energies (ΔEtotal in kcal/mol at 

B3LYP/Ta/Stuttgart+2f1g/O/aug-cc-pvTZ and at B3PW91/Ta/Stuttgart+2f1g/O/aug-cc-

pvTZ in brackets) and interatomic distances (Å) were calculated at the 

B3LYP/Ta/Stuttgart+2f1g/O/aug-cc-pvTZ level of theory.   
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Figure 12-3.  The five valence molecular orbitals responsible for the metal-metal 

bonding in Ta3O3
– (D3h, 1A1’).   
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CHAPTER 13 

Hf3 CLUSTER IS TRIPLY (σ-, π-, AND δ-) AROMATIC IN THE D3h, 1A1’ STATE1 

 
Abstarct 

The extensive search for the global minimum structure of Hf3 at the 

B3LYP/LANL2DZ level of theory revealed that the D3h 3A2’ (1a1’21a2”21e’42a1’21e”2) and 

the D3h 1A1’ (1a1’22a1’21e’41a2”23a1’2) are the lowest triplet and singlet states, respectively, 

with the triplet state being the lowest one. However, at the 

CASSCF(10,14)/Stuttgart+2f1g level of theory these two states are degenerate, indicating 

that at higher level of theory the singlet state could be in fact the global minimum 

structure. The triplet D3h 3A2’ (1a1’21a2”21e’42a1’21e”2) structure is doubly (σ- and π-) 

aromatic and the singlet D3h 1A1’ (1a1’22a1’21e’41a2”23a1’2) structure is the first reported 

triply (σ-, π-, and δ-) aromatic system.  

 
13-1. Introduction 

In recent years the concepts of aromaticity and antiaromaticity have been 

advanced beyond the framework of organic chemistry. In particular, aromaticity and 

antiaromaticity have been extended into organometallic compounds with cyclic cores of 

metal atom1 and into all-metal clusters.2 It has been shown that main group metal clusters, 

in which the chemical bonding involves only s-AOs and p-AOs, may possess multiple 

                                                
1 Coauthored by B. B. Averkiev and A. I. Boldyrev. Reproduced with permission from J. 
Phys. Chem. A, 2007, 111, 12864-12866. Copyright 2007 American Chemical Society. 
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aromaticity (σ- and π-), multiple antiaromaticity (σ- and π-), and conflicting 

aromaticity (σ-aromaticity and π-antiaromaticity or σ-antiaromaticity and π-

aromaticity).2c In the transition metal clusters in which d-orbitals are involved in chemical 

bonding σ-tangential (σt-), σ-radial (σr-), π-tangential (πt-), π-radial (πr-), and δ-

aromaticity/antiaromaticity could occur. In this case, there can be triple (σ-, π-, and δ-) 

aromaticity, triple (σ-, π-, and δ-) antiaromaticity, and a variety of conflicting 

aromaticities (simultaneous σ-aromaticity, π-aromaticity, and δ-antiaromaticity; σ-

aromaticity, π-antiaromaticity, and δ-aromaticity; σ-antiaromaticity, π-aromaticity, and 

δ-aromaticity; σ-aromaticity, π-antiaromaticity, and δ-antiaromaticity; σ-antiaromaticity, 

π-aromaticity, and δ-antiaromaticity; σ-antiaromaticity, π-antiaromaticity, and δ-

aromaticity). 

Aromaticity in transition metal systems have been already discussed in the 

literature.2-12 King3 and Li4 have considered aromaticity in transition metal oxides due to 

metal-metal interactions via M-O-M bridges. Kuznetsov et al.5 have shown that the Hg4
6– 

cluster, which is a building block of the Na3Hg2 amalgam, is aromatic similarly to the all-

metal aromatic Al4
2– unit.2a Tsipis et al.6 explained the planar structures of cyclic hydro-

coinage compounds on the basis of their aromatic character. Alexandrova et al.7 

suggested the presence of aromaticity in the Cu3C4
– cluster. Datta et al.8 used d-orbital 

aromaticity to explain the metal ring structure in tiara-like nickel thiolates. Aromaticity in 

square-planar coinage metal clusters was discussed by Wannere et al.9 and Lin et al.10 The 

claim of δ−aromaticity in the square-planar coinage metal clusters9 was questioned by 
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Lin et al.,10 who showed that the completely filled d orbitals do not play any 

significant role in the bonding in these clusters.  Instead, aromaticity in these systems 

comes primarily from σ bonding interactions of the valence s electrons. Recently, Huang 

et al.11 demonstrated in the joint experimental and theoretical study the presence of d-

orbital aromaticity in 4d and 5d transition metal oxide clusters, Mo3O9
2– and W3O9

2–. In 

these clusters d-orbitals form σ-aromatic canonical molecular orbital. It was recently 

shown by Zhai et al.12 that the Ta3O3
– cluster possesses an unprecedented multiple (π and 

δ) aromaticity, which is responsible for the metal-metal bonding and the perfect 

triangular Ta3 framework. However, this cluster does not possess σ-aromaticity, because 

the bonding from the delocalized 3a1’-HOMO-3 is canceled by the antibonding 

contributions from the 4e’-HOMO.12 So far, there are no any reported systems in the 

literature, that would have all three (σ-, π-, and d-) types of aromaticity/antiaromaticity. 

We conjectured that the Hf3 cluster could possess triple (σ-, π-, and δ-) 

aromaticity, because Hf has the most diffuse valence orbitals out of all triatomic clusters 

of group IV thus providing good orbital overlap. Also, in the singlet D3h, 1A1’ state this 

cluster may use all its six d-electrons to populate completely bonding delocalized σ-MO 

(2a1’), π-MO (1a2”), and δ-MO (3a1’) in the 1a1’22a1’21e’41a2”23a1’2 electronic 

configuration. These three MOs would render σ-, π-, and δ-aromaticity just like the 

completely bonding π-delocalized MO in C3H3
+ renders π-aromaticity in C3H3

+. However, 

this triply aromatic electronic state might not necessarily be the lowest state. It is known 

in chemistry, that usually several σ-MO should be occupied, before π-bonding orbitals 
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start to fill up. For example, in C3H3
+ (valence electronic configuration 

1a1’21e’42a1’22e’41a2”2), the completely bonding π-MO (1a2”2) is occupied after the entire 

set of σ-MOs (2a1’22e’4).  Thus, completely bonding d-MO in Hf3 could be occupied after 

the sets of σ- and π-MOs, and the triply aromatic state might not be among low-lying 

states.  

 
13-2. Theoretical Methods 

To test our conjecture we initially performed an extensive search for the Hf3 

global minimum for singlet, triplet, and quintet states at the B3LYP level of theory using 

the LANL2DZ pseudo-potential and basis set (B3LYP/LANL2DZ). All calculations have 

been performed with the Gaussian 03 program.13 We recalculated the global minimum 

structure and the seven lowest isomers at the B3LYP level of theory using the 

Stuttgart+2f1g pseudo-potential and basis set (B3LYP/ Stuttgart+2f1g) (see Supporting 

Information for additional results and details of theoretical calculations). At this level of 

theory we found that the lowest isomer of Hf3 has the triangular D3h 3A2’ structure with 

the 1a1’21a2”21e’42a1’21e”2 valence electronic configuration. The lowest singlet state with 

the triangular D3h 1A1’ structure with the 1a1’22a1’21e’41a2”23a1’2 valence electronic 

configuration was found to be 9.2 kcal/mol (B3LYP/Stuttgart+2f1g) higher in energy 

than the triplet D3h 3A2’ structure. The B3LYP/CEP-121G calculations of Hf3 cluster have 

been reported by Jin et al.14 They concluded that the singlet D3h 1A1’ state is the global 

minimum for Hf3 in contradiction to our B3LYP results. We recalculated the D3h 3A2’ and 

D3h 1A1’ structures of Hf3 at the B3LYP/CEP-121G level of theory and found the triplet 
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state to be more stable than the singlet state by 8.2 kcal/mol. Apparently Jin et al.14 

missed the lowest triplet state. However, the B3LYP method could overestimate stability 

of triplet states over singlet states. In order to test this, we performed a series of CASSCF 

calculations at the B3LYP/Stuttgart+2f1g geometries. Because the CASSCF calculations 

are based on the restricted open shell Hartee-Fock (ROHF) method, we first calculated 

both D3h 3A2’ and D3h 1A1’ structures at the ROHF/Stuttgart+2f1g level of theory. The D3h 

3A2’ triplet state was found to be 31.3 kcal/mol lower in energy than the D3h 1A1’ singlet 

state. However, the energy difference dramatically decreased to 7.2 kcal/mol at the 

CASSCF(8,8)/Stuttgart+2f1g level of theory and even further to 0.5 kcal/mol at 

CASSCF(10,14)/Stuttgart+2f1g. Thus, the singlet state might become the ground state for 

the Hf3 cluster, as the number of active electrons and active orbitals is further increased. 

However, such calculations are beyond our computational abilities. The high level 

calculations for Hf3 have been performed by Dai et al.15 According to their 

MRCISD/4s4p3d calculations the triplet C2v, 3A2 state is the most stable one with the 

lowest singlet C2v, 1A1 state being 2.5 kcal/mol higher in energy. However these two 

states were not the lowest triplet and singlet states in our B3LYP/Stuttgart+2f1g 

calculations (see Supporting Information). When Dai et al.15 included spin-orbit coupling 

in their calculations they found significant stabilization in the triplet states due to the state 

mixing.  They concluded that after including spin-orbit coupling the ground state appears 

to be like a closed shell 1A1 state in agreement with the statements by Wang et al.16  based 

on the observed spectra of Hf3. It looks like at this point it is difficult to determine with 
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certainty if the Hf3 cluster is a singlet or a triplet in its ground electronic state. 

However, if the singlet state is not a ground state it is certainly a low-lying excited state. 

 
13-3.  Results and Discussion 

The singlet D3h 1A1’ structure is indeed a triply (σ-, π-, and δ-) aromatic system. 

The 1a2”-MO is a circularly delocalized p-MO (similar to the 1a2”-MO in C3H3
+, that 

renders π-aromaticity in C3H3
+), the 2a1’-MO is a circularly delocalized σ-MO, and the 

3a1’-MO is a circularly delocalized δ-MO (Figure 13-1). All these bonding MOs are 

formed by d-AOs of Hf and thus we have an example of triple d-aromaticity. Pictures of 

the molecular orbitals are made using Molden 3.4 program.17  

We also calculated nuclear independent chemical shifts (NICSzz)18 in order to 

probe aromaticity in Hf3. We found that NICSzz is large and negative at the center of the 

cluster and quickly diminishing above the plane: NICSzz=-41.5 ppm (z=0.0 Å), NICSzz=-

23.0 ppm (z=0.5 Å), and NICSzz=+4.0 ppm (z=1.0 Å), thus providing additional evidence 

of multiple aromaticity in Hf3 (D3h, 1A1’). The triangular D3h 3A2’ structure with the 

1a1’21a2”21e’42a1’21e”2 electronic configuration is a doubly (σ- and π-) aromatic state with 

two σ-electrons and four π-electrons. Two σ−electrons render σ-aromaticity according to 

the 4n+2 rule for the singlet coupling of electrons and four π-electrons render π-

aromaticity according to the 4n rule for the triplet coupling of electrons. Thus, the 

competition for being the global minimum in Hf3 occurs between the singlet triply (σ-, 

π-, and δ-) aromatic D3h 1A1’ ( 1a1’22a1’21e’41a2”23a1’2) state and the triplet doubly (σ- and 

π-) aromatic D3h 3A2’ (1a1’21a2”21e’42a1’21e”2) state.    
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In our highest (CASSCF(10,14)/Stuttgart+2f1g) multiconfigurational 

treatment the occupation numbers were found to be: 

1a1’2.002a1’1.861e’3.821a2”1.873a1’1.742e’0.30 1e”0.133e’0.142e”0.131a2’0.02. One can see that about 0.3 

|e| have been promoted from 3a1’ δ-HOMO into 2e’ σ-LUMO. That means that δ-

aromaticity is reduced at the multiconfigurational level of theory because the 3a1’ δ-

HOMO lost some electron density and that σ-aromaticity is reduced too at the same level 

of theory because bonding/antibonding 2e’ σ-LUMO gained some electron density 

compared to the pure one electron treatment. Partial promotion from δ-HOMO into 2e’ 

σ-LUMO occurs in order to reduce electron density and electron repulsion at the center 

of the cluster due to the presence of four electrons on completely bonding HOMO and 

HOMO-3. In spite of some multiconfigurational nature of the wave function, we believe 

that our qualitative assignment of the singlet D3h 1A1’ structure of Hf3 as the triply 

aromatic is still valid, because rather small amount of electron density was promoted and 

the Hartree-Fock configuration (with the coefficient 0.842) is still dominant in the 

CASSCF(10,14)/Stuttgart+2f1g expansion. 

 
13-4. Conclusion 

In summary, in the current communication we presented theoretical evidence that 

the singlet D3h 1A1’ structure of Hf3 is the first triply (σ-, π-, and δ-) aromatic system. We 

believe that transition metal systems with triple antiaromaticity and all types of 

conflicting aromaticity outlined in the introduction will be identified soon. Most 

importantly we hope that our work would stimulate theoretical analysis of chemical 
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bonding in numerous known chemical compounds with metal clusters at the center 

(such as carbonyls of transition metals) with the goal to probe if these systems are in fact 

aromatic, antiaromatic or they have conflicting aromaticity and how this affects their 

stability and reactivity.  
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Figure 13-1. (a) Structure of Hf3 D3h, 1A1’ optimized at the B3LYP/ Stuttgart+2f1g level 

of theory; (b) valence molecular orbitals at the B3LYP/ Stuttgart+2f1g level of theory. 
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CHAPTER 14 

AROMATICITY AND ANTIAROMATICITY IN TRANSITION-METAL SYSTEMS1 

 
Abstract 

Aromaticity is an important concept in chemistry primarily for organic 

compounds, but it has been extended to compounds containing transition-metal atoms.  

Recent findings of aromaticity and antiaromaticy in all-metal clusters have stimulated 

further researches in describing the chemical bonding, structures, and stability in 

transition-metal clusters and compounds on the basis of aromaticity and antiaromaticity, 

which are reviewed here.  The presence of d-orbitals endows much more diverse 

chemistry, structure, and chemical bonding to transition-metal clusters and compounds.  

One interesting feature is the existence of a new type of aromaticity - δ-aromaticity, in 

addition to σ- and π-aromaticity that are only possible for main group compounds.  

Another striking characteristic in the chemical bonding of transition-metal systems is the 

multi-fold nature of aromaticity, antiaromaticity, or even conflicting aromaticity.  

Separate sets of counting rules have been proposed for cyclic transition-metal systems to 

account for the three types of σ-, π-, and δ-aromaticity/antiaromaticity.  The diverse 

transition-metal clusters and compounds reviewed here indicate that multiple aromaticity 

and antiaromaticity may be much more common in chemistry than one would anticipate.  

                                                
1 Coauthored by D. Yu. Zubarev, B. B. Averkiev, H.-J. Zhai, L. S. Wang and A. I. 
Boldyrev. Reproduced with permission from Phys. Chem. Chem. Phys. 2008, 10, 257-
267. http://www.rsc.org/Publishing/Journals/CP/article.asp?doi=b713646c Reproduced 
by permission of the PCCP Owner Societies.  
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It is hoped that the current review will stimulate interest in further understanding the 

structure and bonding, on the basis of aromaticity and antiaromaticity, of other known or 

unknown transition-metal systems, such as the active sites of enzymes or other 

biomolecules, which contain transition-metal atoms and clusters. 

 
14-1.  Introduction 

Aromaticity in compounds containing a transition-metal atom was first considered 

in a pioneering paper in 1979 by Thorn and Hoffmann1 on six-membered ring 

metallocyclic compounds, that are derived from the prototypical aromatic benzene 

molecule with one C-H moiety replaced by an isolobal transition-metal fragment.  Just 

three years later the first example of a stable, isolable metallobenzene — osmabenzene — 

was reported by Elliott et al.2  A large family of metallobenzenes — the iridabenzenes — 

was synthesized by Bleeke and co-workers;3-5 whereas a series of dimetallobenzenes with 

two metal atoms incorporated into the benzene ring was synthesized and characterized by 

Rothweel et al.6,7  Recent advances in metallobenzenes have been reviewed by Bleeke,8 

He at al.,9 Wright,10 and Landorf and Haley.11  A thorough chemical bonding analysis of 

metallobenzene has been recently performed by Fernandez and Frenking.12  However, 

aromaticity in transition metal compounds is not restricted to metallobenzene molecules.  

Other molecules, in which the aromatic cycle composed of transition-metal atoms only 

and are not based on the prototypical benzene molecule, have also been reported recently, 

and they are the subjects of the current article.   
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Before discussing in detail the aromaticity in transition-metal systems, let us 

briefly review the concept of aromaticity, since it has been rather controversial, despite 

the fact that it is taught routinely in general chemistry.  Many books13-21 and numerous 

reviews22-29 have been published, and several conferences30-32 have been dedicated to 

deciphering the concept of aromaticity.  We would like to adopt a view of aromaticity, 

with which we hope that most chemists can agree.  Aromaticity was initially introduced 

into chemistry to describe the lack of reactivity of benzene and its derivatives, in spite of 

the apparent unsaturated nature of the carbon-carbon bonds in these molecules.  Because 

all these molecules have an aroma, the property of chemical stability of the unsaturated 

bonds in the cyclic systems was called aromaticity.  Nowadays most molecules, which 

are considered to be aromatic, do not have any aroma and in order to characterize them as 

aromatic a variety of criteria have been proposed in the literature based on molecular 

orbitals or other considerations.  They are summarized in Table 1 (we adopt a list of the 

properties proposed by Krygowski et al.33 with some small modifications and additions).  

These criteria have been proposed for p-aromatic and p-antiaromatic organic 

systems, but we will see that many of them are also applicable to s-aromatic and s-

antiaromatic systems, as well as to δ-aromatic and δ-antiaromatic systems.  We stress that 

one should not expect that aromaticity/antiaromaticity in transition metal systems will 

manifest itself exactly the same way as in organic chemistry.  Many specific deviations 

are expected.  Nevertheless, we believe that the overall delocalized chemical bonding and 

most of the molecular properties in certain transition metal species could be understood 

using the aromaticity/antiaromaticity concepts.   
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The discovery and experimental generation of the first all-metal aromatic and 

antiaromatic clusters using photoelectron spectroscopy and ab initio calculations34,35 have 

stimulated much interest in extending these ideas to other metal systems, including 

transition metals.36,37 It has been understood that aromaticity/antiaromaticity in metal 

systems has very specific flavors if compared with organic compounds.  The striking 

feature of chemical bonding in metal systems is the possibility of the multi-fold nature of 

aromaticity, antiaromaticity, and conflicting aromaticity.36-39  When only s-atomic orbitals 

(AOs) are involved in chemical bonding, one may expect only σ-aromaticity or σ-

antiaromaticity. If p-AOs are involved, σ-tangential (σt-), σ-radial (σr-), and π-

aromaticity/antiaromaticity could occur.36  In this case, there can be multiple (σ- and π-) 

aromaticity, multiple (σ- and π-) antiaromaticity, and conflicting aromaticity 

(simultaneous σ-aromaticity and π-antiaromaticity or σ−antiaromaticity and π-

aromaticity).  If d-AOs are involved in chemical bonding, σ -tangential (σt-), σ-radial 

(σr-), π-tangential (πt-), π-radial (πr-), and δ-aromaticity/antiaromaticity could occur.  In 

this case, there can be multiple (σ-, π-, and δ-) aromaticity, multiple (σ-, p-, and δ-) 

antiaromaticity, and conflicting aromaticity (simultaneous aromaticity and 

antiaromaticity among the three types of σ, π, and δ bonds).   

One would expect that doubly and triply aromatic molecules would be 

significantly more stable with higher resonance energies, shortened bond lengths, 

enhanced ring currents, more negative NICS values, and a higher average bifurcation 

value of the electron localization function (ELF) than in conventional singly aromatic 
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molecules.  Indeed, Boldyrev and Kuznetsov,40 and Zhan et al.41 showed that the 

doubly (σ- and π-) aromatic species Al4
2- has a very high resonance energy ~48 

kcal/mol40 and ~73 kcal/mol41, respectively.  For the prototypical singly aromatic benzene 

molecule the resonance energy is only 20 kcal/mol.13 The ring-current susceptibilities for 

the doubly aromatic Al4
2- dianion was also found to be 10 nA T-1, which is higher than 8 

nA T-1 in benzene.42  Fowler et al. demonstrated that the contribution to the ring current 

from s-delocalized electrons is significantly higher than from p-electrons.43,44  According 

to Chen et al.,45 Al4
2- has significant negative NICS (-30.9 ppm) compared to that in 

benzene (-9.7 ppm).46  Santos et al.47 showed that Al4
2- has the highest average bifurcation 

value of ELFs and ELFp among the set of various singly aromatic systems.  Establishing 

the overall aromaticity or antiaromaticity in molecules with conflicting aromaticity is 

especially challenging task, because of the simultaneous presence of aromaticity and 

antiaromaticity in different electronic subsystems.35,45,48  Studies of magnetic properties of 

systems with conflicting aromaticity such as Li3Al4
- and Li4Al4 can lead to contradictory 

conclusions on the overall aromaticity or antiaromaticity of the system.35,49-51  Conflicting 

aromaticity also results in floppy geometries of the Li3Al4
- and Li4Al4 clusters.50  One of 

the most interesting features of  molecules with conflicting aromaticity is the possibility 

of large linear and nonlinear optical properties such as linear polarizability, first 

hyperpolarizability, and second hyperpolarizability.52  

In the following sections we will consider in details the cases of multiple 

aromaticity, multiple antiaromaticity and conflicting aromaticity in recent examples of 

transition metal clusters and compounds, including Cu3
+,53 cyclo-CunHn (n = 3-6),54  
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cyclo-MnHn (M = Ag, Au; n = 3-6),55 cyclo-Au3LnH3-n (L = CH3, NH2, OH, and Cl; n = 

1-3),56 cyclo-CunAg3-nHn (n = 1-3), cyclo-CunAg4-nHn (n = 1-4), and cyclo-CunAg5-nHn (n = 

1-5),57 Au5Zn+,58 M4Li2 (M = Cu, Ag, Au),59 M4L2 and M4L- (M = Cu, Ag, Au; L = Li, 

Na),60 Hg4
6-,61 M3

2-, NaM3
-, and Na2M3 (M = Zn, Cd, Hg),62 M3

- (M = Sc, Y, La),63 M3O9
- 

and M3O9
2- (M = W, Mo),64 Ta3O3

-,65 and Hf3.66   

 
14-2.  s-AO based σ-aromaticity and σ-antiaromaticity 

in transition metal systems 

A.  s-AO based σ-aromaticity  

and σ-antiaromaticity in M3 clusters 

The prototypical system with s-AO based σ-aromaticity is the Li3
+ cluster, which 

was initially discussed by Alexandrova and Boldyrev,67 and then by Havenith et al.68 and 

Yong et al.53 The Cu3
+ has a similar D3h, 1A1’ (1a1’21e’41a2”2 

2a1’21e”42e’42a2”23e’42e”43a2”23a1’2) global minimum structure.53 As in the case of Li3
+, 

the bonding in Cu3
+ is rooted in 4s-AOs of Cu, because all the bonding and antibonding 

MOs (1a1’21e’41a2”2 2a1’21e”42e’42a2”23e’42e”43a2”2) composed out of 3d-AOs of Cu are 

occupied, hence the contribution to bonding from 3d-AOs of Cu is negligible.  The 3a1'-

valence HOMO is a sum of the 4s-AOs of three Cu atoms (Fig. 14-1a). It is completely 

bonding and in this sense similar to the completely bonding p-MO in the prototypical π-

aromatic C3H3
+ cation (Fig. 14-1b). The only difference is that the p-MO is a sum of 2pz-

AOs of carbons.  The delocalized p-MO in C3H3
+ renders its p-aromaticity according to 

the famous 4n+2 Huckel rule.  On the basis of the analogy between the p-delocalized MO 
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in C3H3
+ and the s-delocalized MO in Cu3

+ it is reasonable to call the latter s-aromatic 

(the 4n+2 rule holds for s-aromatic cyclic systems with valence s-AOs participating in 

bonding).19 

Yong et al.53 considered aromaticity in the Cu3
+ cation on the basis of nucleus-

independent chemical shift (NICS) indexes.46  Their calculations show NICS(0.0) = -

28.22 ppm, NICS(0.5) = -22.59 ppm, and NICS(1.0) = -12.31 ppm at B3LYP/6-311+G*, 

clearly confirming the presence of s-aromaticity in this cluster.53  Yong et al.53 also 

evaluated the resonance energy in the Cu3
+ D3h, 1A1’ using the following equation: 

 

Cu3Cl (C2v, 1A1) → Cu2 + CuCl      (14-1) 

 

where Cu2 and CuCl are reference classical molecules.  According to their calculations, 

the energy of reaction (14-1), which is also the resonance energy for Cu3
+, is 36.8 

kcal/mol (B3LYP/6-311+G(3df)).  The calculated resonance energy is certainly very high 

compared to the Cu2 dissociation energy (41.7 kcal/mol at the same level of theory).  

Thus, the use of the σ-aromaticity for the description of the Cu3
+ cation is justified.  

Apparently, the concept of σ−aromaticity based on the s-AOs should be applicable to 

Ag3
+ and Au3

+, though in the last case the s-d hybridization may play a more significant 

role.   

For σ−antiaromatic species (with ns-AOs participating in bonding) the counting 

rule is 4n (singlet coupling).  The Cu3
- anion is a good example of s-antiaromatic system 

with 4s-electrons.  The electronic configuration for the singlet state of Cu3
- at the D3h 
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symmetry is 1a1'21e'2 (only bonding MOs are included), and the triangular structure 

with the singlet electronic state must undergo the Jahn-Teller distortion towards linear 

D∞h structure with a 1sg
21su

2 valence electronic configuration.   

Two σ-delocalized MOs can be approximately localized into two 2c-2e bonds and 

the linear structure of Cu3
- can be formally considered as a classical structure.  This 

situation is similar to the antiaromatic cyclobutadiene structure, which can be considered 

as having two double and two single carbon-carbon bonds, and thus can be described 

using single a Lewis structure.  The antiaromaticity should manifest itself in the reduction 

of the stability of the molecule. Two reactions below show that the atomization energy of 

Cu3
- (reaction 14-2, CCSD(T)/6-311+G(2df)//CCSD(T)6-311+G*+ZPE/CCSD(T)/6-

311+G*) is indeed substantially lower than the atomization energy of Cu3
+ (reaction 3, 

CCSD(T)/6-311+G(2df)//CCSD(T)6-311+G*+ZPE/CCSD(T)/6-311+G*). 

Cu3
- (D∞h, 

1Sg
+) → 2Cu (2S) + Cu- (1S)  DE = +82.4 kcal/mol   (14-2) 

Cu3
+ (D3h, 1A1') → 2Cu (2S) + Cu+ (1S)  DE = +106.3 kcal/mol  (14-3) 

 
B.  s-AO based σ-aromaticity in M4

2- clusters 

Initially aromaticity in the M4
2- (M = Cu, Ag, Au) dianions as parts of M4Li2 (M = 

Cu, Ag, Au) neutral species was studied by Wannere et al.59  They found that the Li2M4 

species have distorted octahedral D4h, 1A1g structures (Fig. 14-2) with the M4
2- dianion 

forming a perfect square with two Li+ cations located above and below the square on the 

C4 axis.  The significant charge transfer from Li to M4 was confirmed by the NPA 

charges.  For example, in Cu4Li2, the NPA charge on Li is +0.8 |e|.  These authors also 
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reported the NICS values in the centers of Cu4Li2 (-14.5 ppm), Ag4Li2 (-14.1 ppm), 

and Au4Li2 (-18.6 ppm) (all at PW91PW91/LANL2DZ) clusters which show the presence 

of aromaticity in the M4
2- dianions.  Wannere et al.59 stated that the participation of p-

orbitals in the bonding (and cyclic electron delocalization) in these clusters is negligible.  

Instead, these clusters benefit strongly from the delocalization of d and to some extent s 

orbitals.  They also pointed out that d-orbital aromaticity of Cu4Li2 is indicated by its 

high (243.2 kcal/mol) atomization energy.    

   Lin et al.60 reported a joint photoelectron spectroscopy and theoretical study of 

Cu4Na-, Au4Na- as well as theoretical results on Cu4Li-, Ag4Li-, Ag4Na-, Au4Li-, Cu4Li2, 

Ag4Li2, Au4Li2, and Cu4
2-.  They found that the Cu4Li-, Cu4Na-, Ag4Li-, and Ag4Na- anions 

have a pyramidal structure consistent with the bipyramidal structure reported by Wannere 

et al., while the Au4Li- and Au4Na- anions were found to be planar.  The pyramidal 

structure of Cu4Na- with the Na+ cation located above the planar square Cu4
2- dianion was 

confirmed by good agreement between theoretical and experimental VDEs for this 

system.  

Using the Gauge-Including Magnetically Induced Current (GIMIC) method Lin et 

al.60 concluded that strong ring currents are sustained mainly by the HOMO derived from 

the Cu 4s-AOs.  Thus, the GIMIC calculations show that the Cu4
2- ring is s-aromatic due 

to 4s-AOs and that the d orbitals do not play any significant role for the electron 

delocalization effects.  This study did not support the notion by Wannere et al.59 that the 

square-planar Cu4
2- is the first example of d-orbital aromatic molecules.   
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If bonding in the Cu4
2- and Ag4

2- rings is primarily due to σ-orbitals, than these 

systems are examples of systems with six valence σ-electrons and should be regarded as 

σ-aromatic according to the 4n+2 rule, similar to the Li4
2-, Mg4

2+ and Li2Mg2 main group 

clusters with six bonding σ-electrons considered by Alexandrova and Boldyrev.67 

 
C.  s-AO based σ-aromaticity in the Au5Zn+ cluster and Au6  

   The Au5Zn+ cation was found to be the most abundant cluster in the mass-

spectrum of AunZn+ (n = 2-44) by Tanaka et al.58 The authors performed MP2/Zn/6-

311+G*/Au/5s5p4d1f calculations and identified three lowest isomers I, II, and III for 

Au5Zn+ (Fig. 14-3).  For the two lowest isomers, Tanaka et al.58 presented MO pictures 

(Fig. 14-4) showing that six valence s-electrons are delocalized over the whole cluster.  

The Au5Zn+ cluster is isoelectronic to the Au6 cluster and its most stable structure is the 

same as the D3h global minimum structure of Au6, which possesses a large HOMO-

LUMO gap and possesses a very stable electronic configuration.69,70   

  The MO pattern of Au5Zn+ depicted in Fig. 14-4 resembles those of prototypical 

aromatic organic molecules C6H6 and C5H5
-, except for their nodal properties in the 

molecular plane.  The six delocalized electrons with the appropriate nodal pattern in 

Au5Zn+ satisfies the 4n+2 rule for σ-aromaticity.  Tanaka et al.58 also performed NICS 

calculations for all three structures and concluded the negative NICS indexes are larger 

than in the prototypical aromatic organic molecules C6H6 and C5H5
-, confirming the 

presence of aromaticity in Au5Zn+.  Overall the Au5Zn+ cluster can be regarded as a σ-
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aromatic bimetallic cluster with six delocalized s-electrons and that the enhanced 

stability of Au5Zn+ may be ascribed to its aromaticity. 

 
D.  s-AO based σ-aromaticity in the cyclo-MnHn  

(M = Cu, Ag, Au; n = 3-6), cyclo-Au3LnH3-n (L = CH3, NH2, OH, and Cl; n = 1-3), 

 cyclo-CunAgk-nHn (n = 1-k, k = 3-5) clusters 

  Tsipis and Tsipis54 performed B3LYP/6-311+G* calculations on CunHn (n = 3-6) 

cyclic species (Fig. 14-5) as models for the well documented cyclic organocopper (I) 

compounds, such as the square planar four-membered ring Cu4R4 (R = CH2SiMe3) with 

short Cu-Cu distances of 2.42 Å.71  Tsipis and Tsipis54 calculated also the 3D-structures 

for CunHn (n = 4-6) and concluded that they are significantly less stable than the planar 

ones.  In follow-up articles,55-57 Tsipis and co-workers studied cyclo-MnHn (M = Ag, Au; 

n = 3-6), cyclo-Au3LnH3-n (L = CH3, NH2, OH, and Cl; n = 1-3), cyclo-CunAg3-nHn (n = 1-

3), cyclo-CunAg4-nHn (n = 1-4), and cyclo-CunAg5-nHn (n = 1-5).  The CunHn (n = 3-6) 

cyclic species are discussed here and the other species are similar. 

  All CunHn (n = 3-6) species were found to be cyclic with short Cu-Cu distances 

(between 2.404 Å in Cu3H3 to 2.556 Å in Cu6H6).  The authors54 stated that the 

equivalence of the Cu-Cu and Cu-H bonds in these species is indicative of the aromatic 

character of the cyclic hydrocoppers (I).  In addition, they reported binding energies, 

NICS values and the electrophilicity index w (Table 14-2), which also support the 

aromatic nature of these species.  
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The authors21 stated that all the metallocycles exhibit a composite bonding 

mode involving σ, π, and δ components on the basis of their analysis of occupied valence 

MOs.  However, we found a rather different picture.  We performed a NBO analysis of 

the representative Cu4H4 (D4h, 1A1g) cluster at B3LYP/6-311++G** level of theory.  

According to our NBO analysis the Cu atoms have 4s0.563d9.914p0.02 valence atomic 

occupations and a effective atomic charge of +0.50 |e|, while the H atoms have 1s1.49 

atomic occupation and an effective atomic charge of -0.50 |e|.  One can see that the 3d-

AOs of Cu are almost completely occupied and thus do not significantly contribute to 

bonding.  The bonding from completely delocalized δ-HOMO-11, π-HOMO-17, π-

HOMO-18, σ-HOMO-19 and σ-HOMO-20 (Fig. 14-6) will be offset by the effect of 

antibonding orbitals (Fig. 14-6) composed of d-AOs of Cu atoms. Thus, the net bonding 

effect from MOs composed of 3d-AOs cannot be significant. Rather, the bonding in the 

CunHn cyclic clusters comes from an ionic contribution between H-0.501 and Cu+0.501 and 

from delocalized MOs composed out of 4s-AOs on Cu.  In fact, NBO analysis in Cu4H4 

reveals one resonance structure (the same way as NBO produces some of the Kekule 

resonance structure for benzene), in which there are four Cu-H 2c-2e bonds composed of 

1s-AOs of H and 4s-AOs of Cu with the occupation number 1.744 |e| alternated over the 

Cu4H4 distorted planar octahedron.  This confirms the aromatic nature of the CunHn 

clusters, but the aromaticity is due to delocalization of σ-bonds (composed of 1s-AOs of 

H and 4s-AOs of Cu) and not due to the delocalized σ-, π-, and δ-MOs composed of 3d-

AOs of Cu.  Thus, aromaticity in the CunHn clusters is neither π nor δ but rather σ in 

nature.  Lin et al.,60 however, reported that they did not find any strong magnetically 
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induced ring current in Cu4H4.  This might be a sign of the weak aromaticity in CunHn 

clusters.  Due to relativistic effects, s-d hybridization started to play a bigger role in 

AgnHn and AunHn clusters, but additional research accounting for the relativistic effects 

should be performed before making any conclusions on the bonding nature in the these 

clusters.  

 

14-3.  p-AO based aromaticity and antiaromaticity  

in transition metal systems 

 Double aromaticity (simultaneous presence of σ- and π-aromaticity) was introduced 

in chemistry by Chandrasekhar et al. to explain the properties of the 3,5-dehydrophenyl 

cation.72 Simultaneous presence of aromaticity and antiaromaticity was first used by 

Martin-Santamaria and Rzepa73 to explain chemical bonding in small carbon rings. 

Präsang et al.74,75 have shown that small carborane molecules containing 3- and 4-

membered rings also exhibit both s and p aromaticity.  The Hg4
6- cluster was the first 

transition metal system where double (σ- and π-) aromaticity due to p-AOs was 

discovered.73   

 
A.  p-AO based multiple aromaticity in the Hg4

6- cluster 

Mercury has a closed shell electron configuration (6s2) and therefore a neutral Hg4 

cluster is expected to be a van der Waals complex.  However, it was shown in the solid 

that one particular sodium-mercury amalgam Na3Hg2 contains Hg4
6- square units as its 

building blocks.61  The high stability of the Hg4
6- building block was explained once we 
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recognized that it is isoelectronic to the first all-metal aromatic cluster, Al4
2-.34  

Basically, the bonding in Hg4
6- is due to Hg 6p-AO based MOs and the completely 

occupied Hg d-AOs do not contribute to bonding.61  Fig. 14-7 displays the seven valence 

MOs of the square-planar Hg4
6-, which are very similar to those in Al4

2-.34   

 The HOMO (1b2g), HOMO-1 (1a2u), and HOMO-2 (2a1g) are completely bonding 

orbitals  formed from the Hg 6p-AOs and represent pσ-t–MOs (tangential MO), pπ-MOs, 

and pσ-r–MOs (radial MO), respectively.  The remaining four MOs are bonding, non-

bonding, and antibonding orbitals formed primarily from the filled valence 6s orbitals of 

Hg and can be viewed as atomic 6s2 lone pairs.  Thus, the upper three MOs are mainly 

responsible for the chemical bonding in Hg4
6-.  If we split the s- and p-orbitals into two 

separate sets, we can represent the MOs formed by the Hg 6p-AOs with the MO diagram 

shown in Fig. 14-8.  

The lowest-lying π-MO and the two lowest-lying σ−MOs are completely 

bonding, whereas the highest-lying ones are completely antibonding.  The two MOs in 

the π-set and the four MOs in the σ-set that are located in between the completely 

bonding and antibonding MOs are doubly degenerate with bonding/antibonding 

characters.  The 2eu- and 3eu-MOs are composed of pσ-r- and pσ-t-AOs.  This is the reason 

why pσ-r- and pσ-t-MOs are presented as one set in Fig. 14-8.  On the basis of this mixing 

in the pσ-r- and pσ-t-AOs the counting rule for σ-electrons for cyclic systems with even 

number of vertices should be 4n+4/4n+6 for aromaticity/antiaromaticity (in the simplest 

case of the occupation of just one pσ-r- or one pσ-t-MO the system is also aromatic), but 
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they are 4n+2/4n for the cyclic systems with the odd number of vertices.  On the basis 

of two distinct types of MOs, we can introduce one types of aromaticity: π-aromaticity 

based on the pπ MOs, and two types of σ-aromaticity based on the pσ-r and pσ-t MOs.  The 

occupation of all three bonding MOs in Hg4
6- makes its shape a perfect square and 

renders its doubly (σ- and π-) aromatic nature.   

 The finding of the double aromaticity in Hg4
6- establishes a solid bridge between 

our gas-phase studies of multiply aromatic clusters and bulk materials containing such 

species.  It is surprising that such an ancient material as amalgams can be rationalized on 

the basis of multiple aromaticity initially discovered in the gas phase studies of the Al4
2- 

all-metal aromatic cluster,34, 41,76,77 produced in the form of MAl4
- in the gas phase, where 

M = Li, Na, Cu.   

 
B.  p-AO based multiple aromaticity in the M3

2-, NaM3
-,  

Na2M3 (M = Zn, Cd, Hg) clusters 

 Yong and Chi62 have recently shown using B3LYP, B3PW91, and CCSD(T) 

calculations that a series of M3
2-, NaM3

-, Na2M3 (M = Zn, Cd, Hg) clusters all have the 

M3
2-, D3h, 1A1’ core, which is π-aromatic.  Like in Hg4

6-, neither 5d- nor 6s-AOs 

participate in the bonding in M3
2-.  Its bonding is due to the a2

”-HOMO, which is 

composed of the outer π-AOs of M.  This is a completely bonding π-MO similar to the 

1a2
”-HOMO in the C3H3

+ cation (Fig. 14-1b).  Thus, in all the M3
2-, NaM3

-, Na2M3 (M = 

Zn, Cd, Hg) systems bonding in the M3
2- core is due to π-aromaticity only, without the 

formation of a σ-framework.  Similar bonding pattern was previously reported for Mg3
2-, 
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NaMg3
- and Na2Mg3 systems by Kuznetsov and Boldyrev.78  Yong and Chi62 also 

calculated a sizable resonance energy of 24.8 kcal/mol (Zn3
2-), 12.9 kcal/mol (Cd3

2-), and 

12.1 kcal/mol (Hg3
2-) (either at CCSD(T)/6-311+G* or CCSD(T)/LANL2DZ), as well as 

large negative values of NICS: -24.86 ppm (Zn3
2-), -19.59 ppm (Cd3

2-), and -15.40 ppm 

(Hg3
2-), further confirming their π-aromaticity.   

 
14-4.  d-AO based aromaticity and antiaromaticity  

in transition metal systems 

Due to the more complicated nodal structure of d-AOs that can form δ-bond in 

addition to σ and π bonds, transition-metal systems can provide a more diverse array of 

aromaticity-antiaromaticity combinations.  We may expect σ-tangential (σt), σ-radial 

(σr), π-tangential (πt), π-radial (πr), and δ-MOs.  For σ- and π-MOs, the counting rules 

are 4n+4 (aromaticity) and 4n+6 (antiaromaticity) for cyclic structures with even number 

of atoms and 4n+2 (aromaticity) and 4n (antiaromaticity) for cyclic structures with odd 

number of atoms.  For δ-MOs the counting rule is 4n+2/4n for 

aromaticity/antiaromaticity.  In general, there can be multiple (σ-, π-, and δ-) aromaticity, 

multiple (σ-, π-, and δ-) antiaromaticity, and conflicting aromaticity (simultaneous 

aromaticity and antiaromaticity among the three types of σ, π, and δ MOs).  So far only 

few transition metal systems with d-AO based aromaticity have been reported.63-66  
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A.  d-AO based σ-aromaticity in the Mo3O9
2– and  

W3O9
2– clusters 

The first cases of d-orbital aromaticity in 4d and 5d transition metal oxide clusters, 

Mo3O9
– and W3O9

–, were reported by Huang et al. by combining photoelectron 

spectroscopy and theoretical calculations.64 They found that the M3O9, M3O9
–, and M3O9

2– 

(M = Mo, W) clusters all have D3h structures and each metal atom is bonded to two 

bridged O atoms and two terminal O atoms (Fig. 14-9). 

The attachment of the first and second electrons to the M3O9 species reduces the 

M-M distance significantly (0.25 Å for Mo3O9
– and 0.29 Å for W3O9

–) and (0.20 Å for 

Mo3O9
2- and 0.19 Å for W3O9

2-).  The large geometry changes induced by addition of one 

or two electrons to the M3O9 species agree with the nature of the HOMO in the singly 

M3O9
- and doubly M3O9

2- charged anions (Fig. 14-10).   

The completely bonding nature of the σ-HOMO in M3O9
– and M3O9

2- species 

renders their σ-aromaticity.  Calculations of NICS at the center of Mo3O9
2-  (-21.5 ppm) 

and W3O9
2-  (-20.5 ppm) also support the presence of aromaticity.  Huang et al.64 also 

estimated a sizable (7.6 kcal/mol) resonance energy for W3O9
-.  These results provide 

solid evidence that the anionic Mo3O9
-, W3O9

-  Mo3O9
2- and W3O9

2-  species with the D3h 

(2A1’ or 1A1’) structure are the first experimentally-confirmed δ-orbital aromatic (σ) 

species.   

 
 
 
 
 



 

 

271 

B.  d-AO based σ-and π- double aromaticity  

in X3
- (X = Sc, Y, La) clusters 

The first systems with double (σ- and π-) aromaticity have been recently reported 

by Chi and Liu.63  They demonstrated using B3LYP, B3PW91, MP2 and CCSD(T) levels 

of theory with 6-311+G* basis sets for Sc and LANL2DZ basis sets with relativistic 

effective core potentials for Y and La, that the D3h (1A1’) structures are the global 

minimum structures for X3
- (X = Sc, Y, La).  All three species have the same valence 

electronic configuration 1a1’21e’41a2”22a1’2, though the order of the MOs varies (Fig. 14-

11).  Here the 1a1’- and 1e’-MOs are formed by the ns-AOs and do not contribute to 

bonding significantly, because all the bonding and antibonding MOs composed of the ns-

AOs are occupied and the bonding effect from the 1a1’-MO is compensated by the 

antibonding effect from the 1e’-MOs.  Valence 1a2”- and 2a1’-MOs are responsible for 

bonding in the X3
- anions.  The 1a2”-MO is a completely bonding p-MO and it renders π-

aromaticity.  The 2a1’-MO is a completely bonding σ-MO and it renders σ-aromaticity in 

X3
-.  Thus all three anions are d-orbital doubly (σ-and π-) aromatic systems.  Chi and 

Liu63 also reported large negative NICS values for all three anions, thus supporting the 

presence of aromaticity in Sc3
-, Y3

-, and La3
-.  
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C.  d-AO based π-and δ- double aromaticity  

in the Ta3O3
– cluster 

 It was shown by Zhai et al.65 using photoelectron spectroscopy and theoretical 

calculations that the Ta3O3
– cluster possesses a global minimum with a perfect D3h (1A1’) 

planar triangular structure  (Fig. 14-12a).   

The structure and bonding in Ta3O3
– can be understood by analyzing their 

molecular orbitals (Fig. 14-12b).  Out of 34 valence electrons in Ta3O3
–, 24 belong to 

either pure oxygen lone pairs or those polarized towards Ta (responsible for the covalent 

contributions to Ta-O bonding).  The other ten valence electrons are responsible for the 

direct metal-metal bonding, as shown in Fig. 14-12b.  Among the five upper MOs, three 

MOs are of σ-type: the partially bonding/antibonding doubly degenerate 4e’ HOMO and 

the completely bonding 3a1’ HOMO-3. The antibonding nature of the completely 

occupied doubly degenerate HOMO significantly reduces the bonding contribution of 

completely bonding HOMO-3 to the σ-bonding in the Ta3 framework.  If the HOMO 

(4e’) and the HOMO-3 (3a1’) were composed of the same s-d hybrid functions, bonding 

due to these MOs would be completely canceled.  However, the hybridization in the 4e’ 

and 3a1’ orbitals is somewhat different.  Therefore, there should remain some σ-aromatic 

bonding in Ta3O3
-.  In the Ta3O3

- anion, the HOMO-2 (2a2”) is a completely bonding π 

orbital composed primarily out of the 5d orbitals of Ta, giving rise to π-aromatic 

character according to the (4n + 2) Hückel rule for π-aromaticity for ring molecules with 

odd numbers of atoms in the ring.  Here, we apply the (4n + 2) counting rule (odd 
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number of atoms in the metal cycle) separately for each type of aromaticity 

encountered in a particular planar system, i. e. separately for σ-, π-, and δ-type molecular 

orbitals. 

The HOMO-1 (4a1’), which is a completely bonding orbital mainly coming from 

the overlap of the dz
2 orbital on each Ta atom is in fact a δ-aromatic orbital.  This orbital 

has the “appearance” of a π orbital with major overlaps above and below the molecular 

plane, but it is not a π-type MO because it is symmetric with respect to the molecular 

plane.  This MO possesses two nodal surfaces perpendicular to the molecular C3 axis, and 

thus it is a d orbital (see detailed discussion in ref. 65).  Therefore, the Ta3O3
– cluster 

possesses an unprecedented multiple (δ and π) aromaticity, which is responsible for the 

metal-metal bonding and the perfect triangular Ta3 framework.  The energy ordering of σ 

(HOMO-3) < π (HOMO-2) < δ (HOMO-1)65 molecular orbitals indicates that the strength 

of the metal-metal bonding increases from δ to π to σ, in agreement with the intuitive 

expectation that σ-type overlap is greater than π-type overlap, and δ-type overlap is 

expected to be the weakest.  

 
D. d-AO based σ-, π-and δ- triple aromaticity  

in the Hf3
 cluster 

Averkiev and Boldyrev66 theoretically predicted that the Hf3 cluster in the D3h, 

1A1’ (1a1’22a1’21e’41a2”23a1’2) state possesses triple (σ-, π-, and δ-) aromaticity. The 

valence 1a1’- and 1e’-MOs are primarily composed out of 6s-AOs of Hf and as in Ta3O3
- 

do not contribute to bonding significantly (Fig. 14-13). The six d-electrons populate 
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completely bonding delocalized σ-MO (2a1’), π-MO (1a2”), and δ-MO (3a1’) (Fig. 

14-13b).  The former three MOs render σ-, π-, and δ-aromaticity just like the completely 

bonding π-delocalized MO in C3H3
+ renders π-aromaticity in C3H3

+.  Thus the Hf3 cluster 

in the D3h, 1A1’ state represents the first example of a chemical system with the triple 

aromaticity.   

 
14-5.  Summary and overview 

 The goal of this review is to demonstrate that the concepts of aromaticity and 

antiaromaticity, initially introduced in organic chemistry, can and should be applied to 

the description of chemical bonding in transition metal systems.  At the present, systems 

containing transition metal clusters are being actively studied both experimentally and 

theoretically in chemistry and biochemistry.  Apparently there is a need for convenient 

tools that connect electronic structure with molecular properties of such systems.  We 

have shown that aromaticity and antiaromaticity indeed are useful tools for explaining 

and understanding chemical bonding in transition metal systems.   

 Aromaticity and antiaromaticity have been established in the gas phase Cu3
+ and 

Cu3
- clusters.  The aromaticity in Cu3

+ helped to explain its high symmetry (D3h) structure, 

high atomization and resonance energies, and high negative value of NICS.  The 

aniaromaticity of Cu3
- helped to explain its linear structure and low atomization energy.   

 Similarly, aromaticity in cyclo-CunHn (n = 3-6),  cyclo-MnHn (M = Ag, Au; n=3-

6), cyclo-Au3LnH3-n (L = CH3, NH2, OH, and Cl; n = 1-3), cyclo-CunAg3-nHn (n = 1-3), 

cyclo-CunAg4-nHn (n = 1-4), and cyclo-CunAg5-nHn (n = 1-5) helped explain the planar 
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cyclic structure of these species, high binding energies, and negative NICS.  Also, 

aromaticity in these model systems was used to rationilize the planar cyclic organocopper 

(I) compounds in condense phase.  The recognition of aromaticity in the gas phase 

Au5Zn+ cluster helped to understand high abundance observed in the mass spectrum.  The 

presence of aromaticity in gas phase clusters M4Li2 (M = Cu, Ag, Au), M4L2 and M4L- (M 

= Cu, Ag, Au; L=Li, Na) allowed us to understand the planar square structure of Cu4
2- 

and Ag4
2- structural units.  The presence of double (σ- and π-) aromaticity in the Hg4

6- 

building block of Na3Hg2 amalgam explains the planar square structure as well as 

stability of it in the stabilizing external field of Na+ cations.  π-Aromaticity in M3
2-, 

NaM3
-, Na2M3 (M = Zn, Cd, Hg) is responsible for their stability.  Double (σ- and π-) 

aromaticity in gas phase M3
- (M = Sc, Y, La) clusters is responsible for their high 

symmetry (D3h) structure, high atomization and resonance energies, and high negative 

value of NICS.   

True d-orbital aromaticity was first observed in M3O9
- and M3O9

2- (M = W, Mo) 

metal oxide clusters.  The presence of σ-aromaticity in these anions is responsible for 

their high symmetry (D3h) structure, appreciable resonance energies, and high negative 

value of NICS.  The high symmetry (D3h) of Ta3O3
- and high first VDE could be explain 

on the basis of the presence of double (π- and δ-) aromaticity.  This oxide cluster is the 

first example of δ-aromaticity in a transition metal system.  Finally, the Hf3 cluster in the 

D3h, 1A1’ (1a1’22a1’21e’41a2”23a1’2) state is the first example of triple (σ-, π-, and δ-) 

aromaticity.   
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It is clear that aromaticity and antiaromaticity could be very useful concepts in 

explaining structure, stability and other molecular properties of isolated and embedded 

clusters of transition metals and transition metal oxide clusters.  The chemical bonding in 

transition metal clusters can come from s-AOs, p-AOs, and d-AOs, and can be expressed 

as a variety of multiple aromaticities and antiaromaticities as well as of conflicting 

aromaticities.  We believe that transition metal systems with triple antiaromaticity and all 

types of conflicting aromaticity outlined in the introduction should all exist and should 

represent a research frontier.  Furthermore, atomic f-AOs in lanthanide and actinide 

clusters offer additional possibility to form φ-bonds and thus could lead to systems with 

even richer variety of φ-aromaticity/antiaromaticity.  Such systems have not yet been 

reported and may suggest new research opportunities both computationally and 

experimentally.   

 The counting rules for s-AO based σ-aromaticity are the same as the Huckel 

4n+2/4n rules for aromaticity/anriaromaticity for all cyclic structures.  The counting rules 

for p-AO based σ-aromaticity are 4n+4 (aromaticity) and 4n+6 (antiaromaticity) for 

cyclic structures with even number of atoms and 4n+2 (aromaticity) and 4n 

(antiaromaticity) for cyclic structures with odd number of atoms, because there are two 

types of σ-orbitals: pσ-r- and pσ-t-MOs which should be considered together.  In the 

simplest case of the occupation of just one pσ-r- or one pσ-t-MO the system is also 

aromatic.  For p-AO based π-aromaticity the counting rule are 4n+2/4n for 

aromaticity/antiaromaticity for all cyclic structures.  For d-AO based σ- and π-
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aromaticity the counting rules are 4n+4 (aromaticity) and 4n+6 (antiaromaticity) for 

cyclic structures with even number of atoms and 4n+2 (aromaticity) and 4n 

(antiaromaticity) for cyclic structures with odd number of atoms, because there two types 

of σ-orbitals: dσ-r- and dσ-t-MOs and two types of p-orbitals: dπ-r- and dπ-t-MOs. For d-AO 

based δ-aromaticity the counting rule is 4n+2/4n for aromaticity/antiaromaticity, 

respectively.  

 It is hoped that the introduction of the aromatic and antiaromatic concepts would 

stimulate theoretical analysis of chemical bonding in other known or unknown chemical 

compounds containing transition metal atoms and clusters in both inorganic compounds 

and metallo-biomolecules.  Such analysis may establish simple and robust rules 

connecting electronic and molecular structures with stability and reactivity.  It may be 

possible that aromaticity and antiaromaticity may become as useful concepts in 

deciphering the chemical bonding in transition metal systems as in organic chemistry.   
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Table 14-1.  Criteria for π-Aromaticity and π-Antiaromaticity.33   

Property Aromatic Olefinic/Classical Antiaromatic 
(i) Electronic nature (4n + 2) π-electron 

cyclic conjugation 
No cyclic 
conjugation 

4n π-electron cyclic 
conjugation 

(ii) Energy 
Cyclic conjugation 
Delocalization 
HOMO-LUMO gap 

Stabilization 
Enhanced 
Large 

Standard 
Standard 
Standard 

Destabilization 
Decreased 
Small 

(iii) Geometry    
Bond lengths Equalization Alternation Alternation 
(iv) Magnetic properties 
Anisotropy of 
diamagnetic 
susceptibility 
 

Enhanced  Small 

Susceptibility 
exaltation 

High  Low 

1H NMR shifts Diatropic (low-field 
shift) 

 Paratropic (high-field 
shift) 

NICS (nucleus 
independent chemical 
shift) 

Large negative Close to zero Large positive 

(v) Reactivity    
Chemical example  e.g., benzene e.g., cyclohexadiene e.g., 

cyclooctatetraene 
Retention of structure Electrophilic 

substitution 
Electrophilic addition Addition 

(vi) Spectroscopy    
UV spectra High energy Standard Low energy 
IR/Raman spectra High symmetry  Low symmetry 
Photoelectron spectra High electron 

detachment energies 
Standard Low electron 

detachment energies 
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Table 14-2.  Binding Energies ΔE1 and ΔE2, GIAO-SCF NICS and Electrophicity of 

CunHn (n = 3-6). 

Cluster ΔE1,a kcal/mol ΔE2,b kcal/mol NICS, ppm ω, eV 
Cu3H3, D3h 81.5 260.9 -8.4 1.595 
Cu4H4, D4h 137.0 376.1 -4.2 1.743 
Cu5H5, D5h 180.1 479.0 -1.4 2.040 
Cu6H6, D6h 217.5 576.2 -0.2 2.230 

 

a ΔE1 = E(CuH)n – nE(CuH) 
2 ΔE1 = E(CuH)n – n[E(Cu) + E(H)]. 
 

 

 

Figure 14-1.  (a) The 3a1’-HOMO of Cu3
+ and its schematic representation as a linear 

combination of 4s-AOs of Cu atoms, (b) 1a2”-HOMO of C3H3
+ and its schematic 

representation as a linear combination of 2pz-AOs of C atoms.  
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Figure 14-2.  Optimized structures of Cu4Li2, Ag4Li2, and Au4Li2.59 

 

 

 

 

 

Figure 14-3.  Three reported isomers of Au5Zn+.58 
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Figure 14-4.  Pictures of valence MOs of Au5Zn+ isomers shown in Figure 14-3 a) and 

b). 

 

 

 

 

Figure 14-5.  Optimized planar cyclic structures of CunHn clusters.54 
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Figure 14-6.  (a) σ-MOs, (b) π-MOs, and (c) δ-MOs composed out of d-AOs of Cu in 

Cu4H4 (D4h, 1A1g). 
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 Figure 14-7.  Valence molecular orbitals of Hg4
6-.  

 

 

 

  

Figure 14-8.  Molecular orbital diagram for a) π-MOs and b) σ-MOs for Hg4
6-.  
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Figure 14-9.  Optimized structures for M3O9 (a, d) M3O9
– (b, e) and M3O9

2– (c, f) (M = 

Mo, W) clusters.64   

 

 

 

Figure 14-10.  HOMOs in the M3O9
– and M3O9

2- species (M = Mo and W).64  
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Figure 14-11.  Valence MOs of X3
-  (X = Sc, Y, La) anions.  

 

 

 

 

  

Figure 14-12.  Optimized structure (a) and valence MOs (b) of Ta3O3
-.65  
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Figure 14-13.  Optimized structure (a) and valence MOs (b) of the Hf3 cluster in the D3h, 

1A1’ state. 
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CHAPTER 15 

RECENT ADVANCES IN ALL-TRANSITION METAL AROMATICITY AND 

ANTIAROMATICITY1 

 
Abstract  

Though multiple bonding in transition metal compounds had been discussed in 

the literature for more than four decades, the discovery of aromaticity in all transition 

metal systems (cyclic systems composed out of transition metal atoms) was made only 

few years ago. In the compounds composed out of main group elements one may expect 

sigma-(σ-) and pi-(π-) aromaticity only. In all transition metal systems one may expect 

two new types of aromaticity: delta-(δ-) and fi-(φ-) in addition to σ- and π-aromaticity . 

 
15-1.  Introduction 

Chemical bonding in transition metal compounds is more diverse and complicated 

compared to main group compounds due to participation of d- and f- atomic orbitals. In 

particular, in 1964, Cotton and co-workers published a milestone work on the 

K2[Re2Cl8]·2H2O compound,1 in which they showed the presence of a new type of a 

chemical bond – δ-bond between two Re atoms. This finding was the first example of the 

bond order of four.  This paper and follow-up works led to the establishment of a new 

branch of inorganic chemistry involving multiple metal-metal bonding2 with bond orders 

higher than three, the maximum allowed for main group molecules.  Recently, Power and 

                                                
1 Coauthored by Alina P. Sergeeva, Boris B. Averkiev, and Alexander I. Boldyrev. 
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co-workers reported the synthesis of Ar’CrCrAr’ [where Ar’ is the bulky aryl group 

C6H3-2,6(C6H3-2,6-Pri
2)2] with a quintuple bond (s2p4d4) between two Cr atoms.3 δ-bonds 

between two transition metal atoms suggests that there may exist multi-center transition 

metal species with completely delocalized cyclic δ-bond, thus raising the possibility of δ-

aromaticity analogous to π- or σ-aromaticity in main group systems. Indeed, the first δ-

delocalized bond and δ-aromaticity was recently discovered in the Ta3O3
– cluster.4 

Averkiev and Boldyrev5 theoretically predicted the first example of triple (σ-, π-, and δ-) 

aromaticity - Hf3 cluster in the lowest singlet state. Tsipis, Kefalidis, and Tsipis6 showed 

that the delocalized f electron density in the rings of planar isocyclic and heterocyclic 

uranium clusters could be associated with cyclic electron delocalization, which is a 

characteristic feature of aromaticity. 

Thus, transition metal compounds have the striking feature of chemical bonding - 

the possibility of the multifold nature of aromaticity, antiaromaticity, and conflicting 

aromaticity.7 When only s-atomic orbitals (AOs) are involved in chemical bonding, one 

may expect only σ-aromaticity or σ-antiaromaticity.  If p-AOs are involved, σ-tangential 

(σt-), σ-radial (σr-), and π-aromaticity/antiaromaticity could occur. In this case, there can 

be multiple (σ- and π-) aromaticity, multiple (σ- and π-) antiaromaticity, and conflicting 

aromaticity (simultaneous σ-aromaticity and π-antiaromaticity or σ-antiaromaticity and 

π-aromaticity).  If d-AOs are involved in chemical bonding, σ-tangential (σt-), σ-radial 

(σr-), π-tangential (πt-), π-radial (πr-), and δ-aromaticity/antiaromaticity could occur.  In 

this case, there can be multiple (σ-, π-, and δ-) aromaticity, multiple (σ-, π-, and δ-) 
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antiaromaticity, and conflicting aromaticity (simultaneous aromaticity and 

antiaromaticity among the three σ-, π-, and δ-types). In the follow-up sections we discuss 

in details these new types of bonding as well as we show examples of chemical species 

manifesting these types of aromaticity. 

Complicated nature of aromaticity in all transition metal cyclic systems can be 

understood more easily on simplified models – cyclic triatomic and tetratomic systems as 

examples of cyclic systems composed out of odd or even number of atoms, respectively. 

Counting rules for σ-, π-, δ-, and φ-aromaticity/antiaromaticity for both singlet/triplet 

coupled triatomic and tetratomic systems depend on the nature of atomic orbitals 

involved in the formation of corresponding bonding/antibonding molecular orbitals. 

 
15-2.  Model Consideration of σ-, π-, δ-,  

and φ-Aromaticity/Antiaromaticity 

In order to develop a comprehensive understanding of chemical bonding in all-

transition metal clusters we would like to present concise picture of delocalized bonding 

including s-, p-, d-, f-AO based σ-, π-, δ- and φ-aromaticity/antiaromaticity in model 

triatomic and tetratomic systems. The σ-, π, δ-, and φ-aromatic systems retain high 

symmetry structures whereas σ-, π-, δ-, and φ-antiaromatic systems should undergo Jahn-

Teller distortion. When all bonding, partially bonding and antibonding MOs composed 

out of a particular type of AOs (s-, p-, d-, or f-) are completely occupied, those MOs do 

not contribute to bonding anymore, because all bonding effects will be cancelled by 

corresponding antibonding effects.  
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In Table 15-1 we present schematic molecular orbital diagrams, possible 

electronic configurations and Huckel’s rules for s-, p-, d-, and f-AO based σ-

aromaticity/antiaromaticity, p-, d-, and f-AO based π-aromaticity/antiaromaticity, d-, and 

f-AO based δ-aromaticity/antiaromaticity, and f-AO based φ-aromaticity/antiaromaticity 

of a singlet/triplet model triatomic system as a general example of odd-number cyclic 

systems. The same information for tetratomic system as a general example of even-

number cyclic systems is listed in Table 15-2. In Figures 15-1 – 15-20 we give molecular 

orbital representation performed via Orbital Viewer 1.048 that can be found in the centre 

of the corresponding figure and the schematic representation of those orbitals in terms of 

atomic orbitals (to the left and to the right from molecular orbital representation). 

 
15-2.1.  s-, p-, d-, f-AO based σ-aromaticity/antiaromaticity 

The simplest case is the s-AO based σ-aromaticity/antiaromaticity in a triatomic 

system. Out of three s-AOs (Figure 15-1) one can compose a completely bonding 1a1’-

MO and two partially bonding/antibonding 1e’-MOs. According to the 4n+2 Huckel’s 

rule for aromaticity and 4n Huckel’s rule for antiaromaticity, triatomic systems with the 

electronic configuration 1a1’(2)1e’(0) are σ−aromatic and with the electronic configuration 

1a1’(2)1e’(2) (singlet coupling) are σ−antiaromatic. Whereas the triatomic system with 

electronic configuration 1a1’(2)1e’(2) (triplet coupling) is σ−aromatic, thus satisfying the 4n 

Huckel’s rule for triplet cases. Triplet coupling 1a1’(1)1e’(1) electronic configuration 

should be considered as being σ-antiaromatic (Table 15-1).  
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In a tetratomic system out of four s-AOs (Figure 15-2) one can compose a 

completely bonding 1a1g-MO, two partially bonding/antibonding 1eu-MOs, and one 

completely antibonding 1b1g-MO. Similar to the triatomic systems (see above), tetratomic 

systems with the electronic configurations 1a1g
(2)1eu

(0)1b1g
(0), 1a1g

(2)1eu
(2)1b1g

(0) (triplet 

coupling) and 1a1g
(2)1eu

(4)1b1g
(0) are σ−aromatic, with the electronic configuration 

1a1g
(2)1eu

(2)1b1g
(0) (singlet coupling) are σ−antiaromatic, according to the counting rule 

4n+2/4n//4n/4n+2 (Table 15-2). Triplet coupling 1a1g
(1)1eu

(1) electronic configuration 

should be considered as being σ-antiaromatic. 

In the case of p-AO based σ-aromaticity/antiaromaticity in a cyclic triatomic 

system there are two types of p-AOs: p-sigma-radial (pσ-r-) and p-sigma-tangential (pσ-t-) 

AOs participating in delocalized bonding (Table 15-1 and Figure 15-3). The lowest-lying 

σ-MO (1a1’) is completely bonding formed out of pσ-r- AOs only, whereas the highest-

lying one (1a2’) is completely antibonding composed out of pσ-t- AOs. The doubly 

degenerate 1e’- and 2e’-MOs are composed out of both pσ-r- and pσ-t-AOs. This is the 

reason why pσ-r- and pσ-t-MOs are presented as one set in Figure 15-3. The counting rules 

for aromaticity/antiaromaticity for σ-electrons in cyclic systems with the singlet//triplet 

coupling of electrons and odd number of vertices are 4n+2/4n//4n/4n+2, respectively 

(Table 15-1).    

For the cyclic tetratomic systems p-AO based σ-aromaticity/antiaromaticity is 

more complicated (Figure 15-4, Table 15-2). Now, the two lowest-lying σ-MOs (1a1g and 

1b2g) are completely bonding and they are composed out of either pσ-r- AOs (1a1g) or pσ-t- 
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AOs (1b2g). The highest-lying ones are completely antibonding and they are also 

composed out of either pσ-r- AOs (1b1g) or pσ-t- AOs (1a2g).  The four MOs (1eu and 2eu) in 

the σ-set that are located in between the completely bonding and antibonding MOs are 

doubly degenerate with bonding/antibonding characters. The 1eu- and 2eu-MOs are 

composed of both pσ-r- and pσ-t-AOs. On the basis of this mixing of the pσ-r- and pσ-t-AOs 

the counting rule for σ-electrons for singlet//triplet coupling cyclic systems with even 

number of vertices should be 4n+4/4n+2//4n+6/4n (Table 15-2) for 

aromaticity/antiaromaticity (in the simplest case of the occupation of just one pσ-r- or one 

pσ-t-MO the system is also aromatic). 

d-AO based σ-aromaticity/antiaromaticity in a cyclic triatomic system is based on 

two types of d-AOs: dσ-r- and dσ-t-AOs participating in delocalized bonding (Figure 15-5). 

dσ-r- AOs participate in the formation of the completely bonding lowest-lying σ-MO 

(1a1’), whereas dσ-t- AOs participate in the formation of the completely antibonding 

highest-lying σ-MO (1a2’). Two doubly degenerate 1e’- and 2e’-MOs are composed out 

of both dσ-r- and dσ-t-AOs. The counting rules are 4n+2/4n//4n/4n+2 for 

aromaticity/antiaromaticity for σ-electrons in cyclic systems with the singlet//triplet 

coupling of electrons and odd number of vertices (see Table 15-1). 

There are also two types of d-AOs: dσ-r- and dσ-t-AOs participating in delocalized 

bonding which are responsible for d-AO based σ-aromatic/antiaromatic character in a 

cyclic tetratomic system (Table 15-2 and Figure 15-6). There are two lowest-lying 

completely bonding σ-MOs (1a1g and 1b2g) composed out of either dσ-r- AOs (1a1g) or dσ-t- 
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AOs (1b2g). Similarly, there are two highest-lying completely antibonding σ-MOs 

(1b1g and 1a2g) composed out of either dσ-r- AOs (1b1g) or dσ-t- AOs (1a2g).  The four MOs 

(1eu and 2eu) in the σ-set that are located in between the completely bonding and 

antibonding MOs are doubly degenerate with bonding/antibonding characters.  The 1eu- 

and 2eu-MOs are composed of both dσ-r- and dσ-t-AOs. The counting rules for σ-electrons 

for cyclic singlet//triplet coupling systems with even number of vertices should be 

4n+4/4n+2//4n+6/4n for aromaticity/antiaromaticity (in the simplest case of the singlet 

coupling occupation of just one dσ-r- or one dσ-t-MO the system is also aromatic). 

Cyclic triatomic system exhibiting f-AO based σ-aromaticity/antiaromaticity 

involves fσ-r- and fσ-t-AOs in delocalized bonding (Figure 15-7). The lowest-lying 

completely bonding (1a1’) and the highest-lying completely antibonding (1a2’) σ-MOs 

are formed out of either fσ-r- AOs or fσ-t- AOs, respectively. 1e’- and 2e’-MOs are 

composed out of both fσ-r- and fσ-t-AOs. The counting rules for 

aromaticity/antiaromaticity for σ-electrons in singlet//triplet coupled cyclic systems with 

odd number of vertices are 4n+2/4n//4n/4n+2, respectively (see Table 15-1 for  details).  

f-AO based σ-aromaticity/antiaromaticity in a cyclic tetratomic system involves fσ-r- and 

fσ-t-AOs in delocalized bonding (Table 15-2 and Figure 15-8). The two lowest-lying 

completely bonding (1a1g and 1b2g) and the two highest-lying completely antibonding 

(1b1g and 1a2g) σ-MOs are composed out of either fσ-r- AOs (1a1g, 1b1g) or fσ-t- AOs (1b2g, 

1a2g). The four MOs (1eu and 2eu) in the σ-set have bonding/antibonding characters and 

are composed of both fσ-r- and fσ-t-AOs. The counting rules are 4n+4/4n+2//4n+6/4n 
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(Table 15-2) for σ-electrons for cyclic singlet//triplet coupling systems with even 

number of vertices for aromaticity/antiaromaticity (the singlet coupled system is also 

aromatic in the simplest case of occupation of just one fσ-r- or one fσ-t-MO). 

 
15-2.2.   p-, d-, f-AO based π-aromaticity/antiaromaticity 

In a triatomic system with the p-AO based π-aromaticity/antiaromaticity (Figure 

15-9) there’s one completely bonding 1a2”-MO and two partially bonding/antibonding 

1e”-MOs. Single-coupled triatomic systems with the electronic configuration 1a2”(2)1e”(0) 

are π−aromatic and systems with the electronic configuration 1a2”(2)1e”(2) are π−

antiaromatic (see Table 15-1). Triple-coupled triatomic system with electronic 

configurations 1a2”(2)1e”(2) and 1a2”(1)1e”(1) are π−aromatic and π-antiaromatic, 

respectively (see Table 15-1).  

The set of MOs composed out of four p-AOs in a tetratomic system is the 

following: a completely bonding 1a2u-MO, two partially bonding/antibonding 1eg-MOs, 

and one completely antibonding 1b2u-MO (Figure 15-10). Similar to the triatomic systems 

(see above) tetratomic systems with the electronic configurations 1a2u
(2)1eg

(0)1b2u
(0), 

1a2u
(2)1eg

(2)1b2u
(0) (triplet coupling) and 1a2u

(2)1eg
(4)1b2u

(0) are π−aromatic, with the 

electronic configurations 1a2u
(2)1eg

(2)1b2u
(0) (singlet coupling)  and 1a2u

(1)1eg
(1)1b2u

(0) ((singlet 

coupling) are π−antiaromatic (Table 15-2).  

In a cyclic triatomic system two types of d-AOs: dπ-r- and dπ-t-AOs are responsible 

for d-AO based π-aromaticity/antiaromaticity (Figure 15-11). The lowest-lying π-MO 

(1a2”) is completely bonding formed out of only dπ-r- AOs, the doubly degenerate 1e”- 
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and 2e”-MOs are composed out of both dπ-r- and dπ-t-AOs, and the highest-lying one 

(1a1”) is completely antibonding composed out of dπ-t- AOs. See Table 15-1 for the 

counting rules and possible electronic configurations for aromaticity/antiaromaticity for 

π-electrons in cyclic systems with the singlet//triplet coupling of electrons and odd 

number of vertices.  

Now, let’s consider d-AO based π-aromaticity/antiaromaticity in cyclic tetratomic 

systems (Figure 15-12). Cyclic tetratomic systems have eight MOs corresponding to the 

d-AO based π-aromaticity/antiaromaticity: two completely bonding π-MOs (1a2u and 1b1u) 

composed out of either dπ-r- AOs (1a2u) or dπ-t- AOs (1b1u), set of two partially 

bonding/antibonding doubly degenerate MOs (1eg and 2eg) composed of both dπ-r- and dπ-

t-AOs, and two completely antibonding MOs composed out of either dπ-r- AOs (1b2u) or 

dπ-t- AOs (1a1u). The counting rules and possible electronic configurations for d-AO based 

π-aromaticity/antiaromaticity can be found in Table 15-2. 

In Table 15-1 and Figure 15-13 we summarized the case of f-AO based π-

aromaticity/antiaromaticity in a cyclic triatomic system. There are six π-MO formed out 

of fπ-r- and fπ-t-AOs which are the following: completely bonding fπ-r- AO based 1a2”, 

doubly degenerate bonding/antibonding fπ-r- and fπ-t-AO based 1e”- and 2e”, and finally 

completely antibonding fπ-t- AO based 1a1” (see Table 1 for the counting rules and 

possible electronic configurations for aromaticity/antiaromaticity).  

Similar to cyclic triatomic systems there are two types of f-AOs: fπ-r- and fπ-t-AOs 

participating in delocalized bonding in the case of f-AO based π-
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aromaticity/antiaromaticity in a cyclic tetratomic system (Figure 15-14). This case is 

similar to d-AO based π-aromaticity/antiaromaticity (see Table 15-2 for the counting 

rules and possible electronic configurations for f-AO based π-aromaticity/antiaromaticity 

in a cyclic tetratomic system). 

 
15-2.3.   d-, f-AO based δ-aromaticity/antiaromaticity 

In the d-AO based δ-aromaticity/antiaromaticity in a triatomic system out of three 

d-AOs (Figure 15-15) one can compose a completely bonding 1a1’-MO and two partially 

bonding/antibonding 1e’-MOs. The counting rules, symmetry of molecular orbitals and 

electronic configurations are like those in the case of s-AO based σ-aromaticity in a 

triatomic system (see Table 15-1, as well as Figure 15-1 and 15-15) . 

Out of four d-AOs in a tetratomic system (Figure 15-16) one can compose a 

completely bonding 1a1g-MO, two partially bonding/antibonding 1eu-MOs, and one 

completely antibonding 1b1g-MO which participate in δ-aromaticity /antiaromaticity. 

Tetratomic systems with the electronic configurations 1a1g
(2)1eu

(0)1b1g
(0), and 

1a1g
(2)1eu

(4)1b1g
(0), as well as with electronic configuration 1a1g

(2)1eu
(2)1b1g

(0) (triplet 

coupling) are δ−aromatic. Tetratomic systems with the electronic configurations 

1a1g
(2)1eu

(2)1b1g
(0) (singlet coupling), and 1a1g

(1)1eu
(1) (triplet coupling)  are δ−antiaromatic 

(See Table 15-2 and Figure 15-16 for details).  

f-AO based δ-aromaticity/antiaromaticity in a cyclic triatomic system is based on 

fδ-r- and fδ-t-AOs (Table 15-1 and Figure 15-17). Similar to the cyclic triatomic systems 

exhibiting p-AO based σ-aromaticity/antiaromaticity, in case of f-AO based δ-
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aromaticity/antiaromaticity there are six δ-MOs: 1a1’, 1e’ and 2e’, and 1a2’ which are 

completely bonding, partially bonding/antibonding, and completely antibonding, 

respectively (see Table 15-1 and Figures 15-3 and 15-17 for possible electronic 

configurations and the counting rules for aromaticity/antiaromaticity).  

The fδ-r- and fδ-t- AOs are involved in f-AO based δ-aromaticity/antiaromaticity in 

cyclic tetratomic systems (Table 15-2 and Figure 15-18). There are eight δ-MOs, out of 

which 1a1g and 1b2g are completely bonding, 1eu and 2eu  are partially bonding/anibonding, 

and 1b1g and 1a2g  are completely antibonding. The counting rule for δ-electrons for 

singlet//triplet coupling cyclic systems with even number of vertices should be 

4n+4/4n+2//4n+6/4n for aromaticity/antiaromaticity (in the simplest case of the 

occupation of just one fδ-r- or one fδ-t-MO the system is also aromatic). 

 
15-2.4.    f-AO based φ-aromaticity/antiaromaticity 

Finally, the f-AO based φ-aromaticity/antiaromaticity in a triatomic system is 

based on completely φ-bonding 1a2”-MO and two partially bonding/antibonding 1e”-

MOs (Figure 15-19). Applying Huckel’s rules for aromaticity/antiaromaticity in cyclic 

triatomic systems, one can say that the system with the electronic configurations 

1a2”(2)1e”(0) and 1a2”(2)1e”(2) (triplet coupling) are φ−aromatic, and with the electronic 

configurations 1a2”(2)1e”(2) (singlet coupling) and 1a2”(1)1e”(1) (triplet coupling) are φ−

antiaromatic (Table 15-1).  

As for f-AO based φ-aromaticity/antiaromaticity in tetratomic systems, there are 

four φ- MOs (Figure 15-20): completely bonding 1a2u, two degenerate partially 



 

 

303 

bonding/antibonding 1eg, and one completely antibonding 1b2u-MO. Having taken 

into account Huckel’s rules for aromaticity/antiaromaticity in cyclic tetratomic systems, 

the systems with the electronic configurations 1a2u
(2)1eg

(0)1b2u
(0), 1a2u

(2)1eg
(2)1b2u

(0) (triplet 

coupling) and 1a2u
(2)1eg

(4)1b2u
(0) can be said to be φ−aromatic, and the systems with the 

electronic configuration 1a2u
(2)1eg

(2)1b2u
(0) (singlet coupling) - φ−antiaromatic (Table 15-2).  

The above chemical bonding analysis on model triatomic and tetratomic systems 

can be used for assessing aromaticity/antiaromaticity in real molecules and clusters. 

However, hybridization may complicate this analysis. We will present below a few 

examples, where aromaticity/antiaromaticity in transition metal systems allows us to 

rationalize chemical bonding. 

There have been very few examples on the aromaticity/antiaromaticity in all-

transition metal cyclic systems reported in the literature to this day. In the following 

chapter we give detailed discussion on antiaromaticity/antiaromaticity in Au3
+/Au3

-, 

Na2Zn3, Hg4
6-, Mo3O9

2-, Sc3
-, Hf3, and Ta3

- clusters. 

 
15-3.  Examples of Aromatic/Antiaromatic  

Transition Metal Systems  

We performed chemical bonding analysis in a few representative transition metal 

clusters using recently developed Adaptive Natural Density Partitioning (AdNDP) 

method.9 The AdNDP method is based on the concept of the electron pair as the main 

element of chemical bonding models. Thus, it represents the electronic structure in terms 

of nc-2e bonds. With n spanning the interval from one to the total amount of atoms in the 
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particular atomic assembly, AdNDP recovers both Lewis bonding elements (1c-2e 

and 2c-2e objects, corresponding to the core electrons and lone pairs, and two-center two-

electron bonds) and delocalized bonding elements, which are associated with the 

concepts of aromaticity and antiaromaticity. From this point of view, AdNDP achieves 

seamless description of systems featuring both localized and delocalized bonding without 

invoking the concept of resonance. Essentially, AdNDP is a very efficient and visual 

approach to the interpretation of the molecular orbital-based wave functions.  

 
15-3.1.   s-AO based σ-aromaticity and σ-antiaromaticity  

There were a few works on the prototypical odd-number cyclic systems with s-

AO based σ-aromaticity, namely the Li3
+ (ref. 10-12) and the Cu3

+ (ref. 12) clusters. In 

this chapter we would like to consider s-AO based σ-aromaticity/antiaromaticity in 

triatomic gold clusters Au3
+ and Au3

-, respectively.  

Au3
+, similar to Li3

+ and Cu3
+ clusters, has a D3h, 1A1’ global minimum structure. 

Bonding in Au3
+ is based on 6s-AOs of Au, because all the bonding and antibonding 

MOs composed out of 5d-AOs of Au are occupied, hence the contribution to bonding 

from 5d-AOs of Au is negligible (according to NBO analysis natural electronic 

configuration of Au3
+ cluster is: 6s(0.71)5d(9.93) at B3LYP/LANL2DZ).  The AdNDP 

analysis reveals one 3c-2e σ-bond with occupation number (ON) of 2.00 electrons (2.00 

|e|) composed out of 6s-AOs of three Au atoms (Figure 15-21a). It is completely bonding 

and it is responsible for σ-aromaticity in Au3
+, according to the 4n+2 rule with n=0 (for 
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singlet coupling). The obtained 3c-2e σ-bond can be compared with the 

corresponding model molecular orbital 1a1’ (see Figure 15-1 and Table 15-1). 

For σ-antiaromatic species (with ns-AOs participating in bonding) the counting 

rule is 4n (singlet coupling).  The Au3
- anion is a good example of σ-antiaromatic system 

with four 6s-electrons.  The electronic configuration for the singlet state of Au3
- at the D3h 

symmetry is 1a1'(2)1e'(2) (with the only contribution of 6s AOs to the bonding MOs, 

compare to Figure 15-1 and Table 15-1), and the triangular structure with the singlet 

electronic state must undergo the Jahn-Teller distortion towards linear D∞h structure with 

a 1σg
(2)1σu

(2) valence electronic configuration and that is exactly what we found in our 

calculations. Two σ-delocalized MOs can be approximately localized into two 2c-2e 

bonds with ON = 2.00 |e| and the linear structure of Au3
- can be formally considered as a 

classical structure (Figure 15-21b).  

s-AO based σ-aromaticity in even-number cyclic systems namely M4
2- (M = Cu, 

Ag, Au) dianions as parts of M4Li2 (M = Cu, Ag, Au) neutral species was studied by 

Wannere et al13 and M4X- and M4X2 (M = Cu, Ag, Au; X=Li, Na) was studied by Lin et 

al.14 s-AO based σ-aromaticity in the cyclo-MnHn (M = Cu, Ag, Au; n = 3-6), cyclo-

Au3LnH3-n (L = CH3, NH2, OH, and Cl; n = 1-3), cyclo-CunAgk-nHn (n = 1-k, k = 3-5) 

clusters was studied by group of Tsipis.15-18 We will not discuss these cases because their 

chemical bonding is similar to above Au3
+ case and for those readers who would like to 

look into details we recommend consulting the original papers and the discussion in the 

recent review.7  
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15-3.2.   p-AO based aromaticity and antiaromaticity  

p-AOs participation in delocalized chemical bonding may lead to the phenomenon 

of double (σ- and π-) aromaticity. Chandrasekhar et al.19 introduced simultaneous 

presence of σ- and π-aromaticity to explain the properties of the 3,5-dehydrophenyl 

cation.  Simultaneous presence of aromaticity and antiaromaticity was first used by 

Martin-Santamaria and Rzepa20 to explain chemical bonding in small carbon rings. Later 

the simultaneous presence of aromaticity and antiaromaticity was named as conflicting 

aromaticity.21 Alexandrova et al.22 have also shown an example of a doubly σ- and π-

antiaromatic species – the B6
2- dianion. p-AO based σ-aromaticity/antiaromaticity and p-

AOs based double σ- and π-aromaticity and antiaromaticity was also found in transition 

metal systems.  

Yong and Chi23 have recently shown that a series of M3
2-, NaM3

-, Na2M3 (M = Zn, 

Cd, Hg) clusters have the M3
2- D3h, 1A1’ core, which is p-AOs π-aromatic. Thus, in all the 

M3
2-, NaM3

-, Na2M3 (M = Zn, Cd, Hg) systems bonding in the M3
2- core is due to π-

aromaticity only, without σ-bonding. Similar bonding pattern was previously reported for 

M3
2-, NaM3

-, Na2M3 (M = Be, Mg) systems by Kuznetsov and Boldyrev,24 Chattaraj and 

Giri,25 and Roy and Chattaraj.26 We performed the AdNDP analysis of the Na2Zn3 cluster 

which revealed one 5c-2e π-bond composed out of 4p-AOs of three Zn atoms and 3s-

AOs of two Na atoms with ON = 2.00 |e| (Figure 15-22). The 5c-2e π-bond is similar to 

3c-2e model molecular orbital 1a2” if we exclude contribution from sodium atoms 

(Figure 15-9 and Table 15-1). 4s-AOs of Zn atoms are not responsible for bonding and 



 

 

307 

they form three lone pairs (one per each Zn atom) with ON = 1.90 |e|. Thus, the 

Na2Zn3 species as well as Zn3
2- (with 1a2” occupied HOMO) and NaZn3

- are all π-

aromatic with no contribution from σ-bonding. 

The first example of a solid compound (Na3Hg2 amalgam) containing doubly σ- 

and π-aromatic transition metal cluster Hg4
6- was discovered by Kuznetsov et al.27 

Formation of the Hg4
6- cluster was puzzling since mercury has a closed shell electron 

configuration (6s(2)) and therefore a neutral Hg4 cluster is expected to be a van der Waals 

complex. The stability of the Hg4
6- building block can be explained due to the fact that it 

is isoelectronic to the first all-metal aromatic cluster, Al4
2-.28 Bonding in Hg4

6- is due to 

Hg 6p-AO based MOs and the completely occupied d-AOs of mercury do not contribute 

to the bonding.  Figure 15-23 displays the bonding pattern obtained via AdNDP analysis 

of the square-planar Hg4
6-.   

The AdNDP analysis revealed four lone pairs on Hg atoms with ON = 1.94 |e|, as 

well as delocalized p-AO based 4c-2e σ-radial bond with ON = 2.00 |e|, p-AO based 4c-

2e σ-tangential bond with ON = 2.00 |e|, and p-AO based 4c-2e π-bond with ON = 2.00 

|e|. Thus Hg4
6- should be considered as both p-radial-AO and p-tangential based σ-

aromatic species. Therefore the Hg4
6- cluster satisfies the 4n+4 counting rule for σ-

aromaticity in cyclic systems with even numbers of atoms (see Table 15-2). In addition, 

Hg4
6- should be considered as π-aromatic on the basis of the 4n+2 Huckel rule applied to 

its π-subsystem (see Table 15-2). Thus, Hg4
6- is a doubly σ- and π-aromatic system. The 

p-AO based 4c-2e σ-radial and 4c-2e σ-tangential bonds can be compared to model 



 

 

308 

molecular orbitals 1a1g and 1b2g, respectively (see Figure 15-4). One can compare the 

p-AO based 4c-2e π-bond to the model molecular orbital 1a2u (see Figure 15-10).   

The finding of the double aromaticity in Hg4
6- establishes a solid bridge between our gas-

phase studies of multiply aromatic clusters and bulk materials containing such species.  

 
15-3.3.   d-AO based aromaticity and antiaromaticity  

Due to the more complicated nodal structure of d-AOs that can form δ-bond in 

addition to σ- and π-bonds, transition-metal systems can provide a more diverse array of 

aromaticity-antiaromaticity combinations. However, so far only few transition metal 

systems with d-AO based aromaticity have been reported. 

The first cases of d-AO based σ-aromaticity were reported by Huang et al.29 in 4d 

and 5d transition metal oxide clusters, Mo3O9
– and W3O9

–, by combining photoelectron 

spectroscopy and theoretical calculations. They found that the M3O9, M3O9
–, and M3O9

2– 

(M = Mo, W) clusters all have D3h structures and each metal atom is bonded to two 

bridged O atoms and two terminal O atoms. We performed the AdNDP analysis for 

M3O9
2– cluster and the results are presented in Figure 15-24. 

The following bonding pattern is revealed for the Mo3O9
2– cluster: six 2c-2e Mo-O 

σ-bonds with ON = 2.00 |e|, six 2c-2e Mo-O π-bonds with ON = 1.99 |e|, six 2c-2e Mo-O 

σ-bonds with ON = 1.92 |e|, and one completely delocalized 3c-2e d-AO based σr-bond. 

Thus, each terminal oxygen atom is bound to the closest molybdenum atom by both σ- 

and π-bonds, each bridging oxygen atom is bound to the neighboring molybdenum atoms 

by two σ-bonds, and the molybdenum atoms are bound to each other by completely 
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bonding 3c-2e σ-bond. According to the performed AdNDP analysis, Mo3O9
2– species 

is σ-aromatic. The 3c-2e d-AO based σr-bond in the Mo3 kernel is similar to the 3c-2e 

model d-AO based 1a1’σ-MO in Figure 15-5.  

The first systems with d-AO based double (σ-and π-) aromaticity have been 

reported recently by Chi and Liu.30 They demonstrated that the D3h (1A1’) structures are 

the global minimum structures for X3
- (X = Sc, Y, La).  All three species have the same 

valence electronic configuration 1a1’(2)1e’(4)1a2”(2)2a1’(2), though the order of the MOs 

varies. The AdNDP analysis of the Sc3
- cluster reveals the following bonding pattern: 

there are three 2c-2e Sc-Sc σ-bonds with ON = 1.99 |e| composed out of hybrid 4s,3d-

AOs of Sc, one completely bonding 3c-2e d-radial based σ-bond with ON = 2.00 |e|, and 

one completely bonding 3c-2e d-radial based π-bond with ON = 2.00 |e| (Figure 15-25). 

Therefore the X3
- (X = Sc, Y, La) clusters satisfy the 4n+2 counting rule for σ-

aromaticity and the 4n+2 Huckel rule for π-aromaticity in cyclic systems with odd 

numbers of atoms (see Table 15-1). Thus, all three anions are d-orbital based doubly (σ-

and π-) aromatic systems. The obtained via AdNDP method 3c-2e d-AO based σr-bond  

and 3c-2e d-AO based πr-bond are similar to 3c-2e 1a1’ and 1a2” model molecular orbitals 

presented in Figures 15-5 and 15-11, respectively. 

The first example of δ−aromaticity was found by Zhai et al.4 in joint 

photoelectron spectroscopy and theoretical study.  They showed that the Ta3O3
– cluster 

possesses a global minimum with a perfect D3h (1A1’) planar triangular structure and that 

it’s doubly π- and δ-aromatic species. Averkiev and Boldyrev5 theoretically predicted the 
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first example of triple (σ-, π-, and δ-) aromaticity (Hf3 in the D3h, 1A1’ 

1a1’(2)2a1’(2)1e’(4)1a2”(2)3a1’(2) state). The results of the AdNDP analysis for this system are 

presented in Figure 15-26. The following bonding pattern is revealed for the Hf3 species: 

three 2c-2e Hf-Hf σ-bonds with ON = 1.99 |e| are formed out of hybrid 6s,5d-AOs of Hf 

atoms, and three completely delocalized bonds. They are: one completely bonding 3c-2e 

d-radial based σ-bond with ON = 2.00 |e|, one completely bonding 3c-2e d-radial based 

π-bond ON = 2.00 |e|, and one completely bonding 3c-2e d-AO based δ-bond ON = 2.00 

|e|. Assignment of the triple (σ-, π-, and δ-) aromaticity can be made on the basis of the 

4n+2 Huckel rule (odd number of atoms, see Table 1). One can find the correspondence 

between 3c-2e d-AO based σr-bond, 3c-2e d-AO based πr-bond, 3c-2e d-AO based δ-

bond and 3c-2e 1a1’, 1a2”, and 1a1’ model molecular orbitals shown in Figures 15-5, 15-

11 and 15-15, respectively. 

Wang et al.31 presented joint photoelectron spectroscopy and theoretical study of 

another example of transition metal Ta3
- cluster with triple (σ-, π-, and δ-) aromaticity. 

They have shown that the lowest energy quintet state (D3h, 5A1’) has the following 

electronic configuration: 1a1’(2)2a1’(2)1a2”(2)1e’(4)1e”(2)3a1’(2)2e’(2). Out of these MOs, 1a1’ 

and 1e’ are set of completely bonding and partially bonding/antibonding MOs formed out 

of primarily 6s-AOs of tantalum atoms and should not contribute to bonding 

significantly. 2a1’ is a completely bonding MO formed out of d-sigma-radial (dσ-r-) AOs 

of tantalum atoms. The corresponding partially bonding/antibonding 2e’-MOs composed 

out of d-sigma-radial (dσ-r-) and d-sigma-tangential (dσ-t-) AOs of tantalum atoms. These 
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doubly degenerate MOs are occupied by two electrons with triplet coupling and 

together with two electrons on 2a1’ MO they satisfy the 4n rule for σ-aromaticity (triplet 

coupling) in odd number cyclic systems (see section 15-2.1 and Table 15-1). Similarly, 

1a2” is a completely bonding MO formed out of d-pi-radial (dπ-r-) AOs of tantalum atoms. 

The corresponding partially bonding/antibonding 1e”-MOs composed out of d-pi-radial 

(dπ-r-) and d-pi-tangential (dπ-t-) AOs of tantalum atoms. These doubly degenerate MOs 

are occupied by two electrons with triplet coupling and together with two electrons on 

1a2” MO they satisfy the 4n rule for π-aromaticity (triplet coupling) in odd number cyclic 

systems (see section 15-2.2 and Table 15-1). Finally, 3a1’ is a completely bonding δ-MO 

which is responsible for δ-aromaticity in this system (see section 15-2.3 and Table 15-1). 

Alvarado-Soto et al.32,33 have discussed the concept of aromaticity in Re3Cl9, Re3Br9, 

Re3Cl9
2-, and Re3Br9

2- clusters.  

Though aromaticity in compounds containing a transition-metal atom has already 

been discussed for quite a long time, aromaticity in all-transition metal systems have been 

recognized only recently. There are examples of σ-, π-, and δ-aromaticity based on s-, p-, 

and d-AOs. We derived the counting rules for σ-, π-, δ-, and φ-

aromaticity/antiaromaticity for both singlet/triplet coupled triatomic and tetratomic 

systems so that one could use those to rationalize aromaticity and antiaromaticity in all-

transition metal systems. These rules can be easily extended for any cyclic systems 

composed out of odd or even number of atoms. 
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The concept of aromaticity, antiaromaticity and conflicting aromaticity is an 

important theoretical tool for deciphering chemical bonding in various known and novel 

chemical compounds containing transition metal atoms.  

 
15-4 Summary 

Aromaticity in compounds containing a transition-metal atom has already had a 

long history. Initially, Thorn and Hoffmann34 proposed six-membered ring metallocyclic 

compounds, derivatives of benzene with one C-H moiety replaced by an isolobal 

transition-metal fragment. Three years later the first example of a stable, isolable 

metallobenzene — osmabenzene — was reported by Elliott et al.35 Since then a large 

family of metallobenzenes have been synthesized and characterized.36-38 Profilet et al.39 

reported first synthesis of dimetallobenzenes with two metal atoms incorporated into the 

benzene ring A thorough chemical bonding analysis of metallobenzene has been recently 

performed by Fernandez and Frenking.40 However, in this review we demonstrated that 

aromaticity could be a powerful tool in explaining structure, stability and other molecular 

properties in cyclic systems composed of transition-metal atoms only. 

It is clear that aromaticity and antiaromaticity could be very useful concepts in 

explaining structure, stability and other molecular properties of isolated and embedded 

clusters of transition metals and transition metal oxide clusters.  The chemical bonding in 

transition metal clusters can come from s-AOs, p-AOs, and d-AOs, and can be expressed 

as a variety of multiple aromaticities and antiaromaticities as well as of conflicting 

aromaticities.  
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In a section 15-2 we considered models of σ-, π-, δ-, and φ-

aromaticity/antiaromaticity based on a particular type (s-, p-, d-, or f-) of AOs in both 

even and odd number cyclic systems on an example of triatomic and tetratomic systems, 

respectively. One can compose σ-MOs out of s-AOs, as well as p-sigma-radial (pσ-r-) and 

p-sigma-tangential (pσ-t-) AOs, d-sigma-radial (dσ-r-) and d-sigma-tangential (dσ-t-) AOs, 

f-sigma-radial (fσ-r-) and f-sigma-tangential (fσ-t-) AOs participating in delocalized 

bonding. π-MOs can be composed out of p-AOs, as well as d-pi-radial (dπ-r-) and d-pi-

tangential (dπ-t-) AOs, f-pi-radial (fπ-r-) and f-pi-tangential (fπ-t-) AOs participating in 

delocalized bonding. One can compose δ-MOs out of d-AOs, as well as f-delta-radial 

(fδ-r-) and f-delta-tangential (fδ-t-) AOs participating in delocalized bonding. Finally, φ-

MOs can be composed out of f-AOs. 

The counting rules for s-AO based σ-aromaticity, p-AO based π-aromaticity, d-

AO based δ-aromaticity, and f-AO based φ-aromaticity are 4n+2/4n//4n/4n+2 rules for 

aromaticity/antiaromaticity (singlet//triplet coupling, respectively) for all cyclic 

structures. The counting rules for p-AO based σ-aromaticity, d-AO based σ-aromaticity, 

d-AO based π-aromaticity, f-AO based σ-aromaticity, and f-AO based π-aromaticity are 

4n+2/4n//4n/4n+2 rules for aromaticity/antiaromaticity (singlet//triplet coupling, 

respectively) for cyclic structures with odd number of atoms. The counting rules for p-

AO based σ-aromaticity, d-AO based σ-aromaticity, d-AO based π-aromaticity, f-AO 

based σ-aromaticity, and f-AO based π-aromaticity are 2,4n+4/4n+2//4n+6/4n rules for 
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aromaticity/antiaromaticity (singlet//triplet coupling, respectively) for cyclic 

structures with even number of atoms.  

This model chemical bonding analysis for odd/even-number cyclic systems can be 

used for assessing aromaticity/antiaromaticity in real molecules and clusters. However, 

hybridization may complicate this analysis. For instance, in planar cyclic boron clusters 

the peripheral boron atoms participate in localized 2c-2e B-B σ-bonding and those bonds 

are formed out of hybridized 2p-sigma-tangential (2pσ-t-) and 2s atomic orbitals. 

Therefore, 2pσ-t-AOs should be excluded from the delocalized σ-bonding. Thus, only 2p-

sigma-radial (2pσ-r-) AOs participate in the delocalized σ-bonding and the counting rule 

for σ-aromaticity becomes 4n+2/4n for all cyclic systems.9,41,42  

In the section 15-3 of current work we presented a few examples of 

aromatic/antiaromatic transition metal systems. We have shown that triatomic gold 

clusters Au3
+ and Au3

- are s-AO based σ-aromatic and σ-antiaromatic, respectively. 

Na2Zn3 cluster was shown to have one 5c-2e π-bond composed out of 4p-AOs of three Zn 

atoms and 3s-AOs of two Na atoms, thus, it’s a π-aromatic system with no contribution 

from σ-bonding in the Zn3 kernel. The Hg4
6- cluster is a doubly p-AO based both σ- 

and π-aromatic system. The Mo3O9
2- species renders its d-radial-AO based σ-aromaticity. 

The Sc3
- cluster is an example of a system with d-AO based double (σ-and π-) 

aromaticity with one completely bonding 3c-2e d-radial based σ-bond and one 

completely bonding 3c-2e d-radial π-bond.  
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The Hf3 cluster was theoretically predicted to be the first example of triple (σ-, 

π-, and δ-) aromaticity in the lowest singlet state. The first experimentally observed triply 

aromatic system is Ta3
- in the lowest quintet state. 

Atomic f-AOs in lanthanide and actinide clusters offer additional possibility to 

form φ-bonds and thus could lead to systems with even richer variety of φ-

aromaticity/antiaromaticity.  Tsipis et al.6 have recently presented the first evidence of f-

AO participation in delocalized bonding.  

We hope that the aromaticity, antiaromaticity and conflicting aromaticity concepts 

would stimulate theoretical analysis of chemical bonding in other known and novel 

chemical compounds containing transition metal atoms in clusters, nanoparticles, solid 

compounds and metallo-biomolecules.  
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Table 15-1.  Schematic molecular orbital diagrams, possible electronic configurations 
and Huckel’s rules for aromaticity/antiaromaticity of singlet/triplet model triatomic 
system as a general example of odd-number cyclic systems. 
 

Huckel’s rule for 
aromaticity 

Huckel’s rule for 
antiaromaticity 

 

Schematic  
molecular  

orbital  
diagram 

singlet 
coupling 

triplet 
coupling 

singlet 
coupling 

triplet 
coupling 

s-AO 
based 
σ-

aromaticity  

4n+2 
 

{1a1’(2)1e’(0)} 

4n 
 

{1a1’(2)1e’(2)} 

4n 
 

{1a1’(2)1e’(2)} 

4n+2 
 

{1a1’(1)1e’(1)} 

p-AO 
based 
σ-

aromaticity 
 

4n+2 
 

{1a1’(2)1e’(0)} 
{1a1’(2)1e’(4)} 

{1a1’(2)1e’(4)2e’
(4)} 

 

4n 
 

{1a1’(2)1e’(2)} 
{1a1’(2)1e’(4)2

e’(2)} 
 
 

4n 
 

{1a1’(2)1e’(2)} 
{1a1’(2)1e’(4)2e

’(2)} 
 
 

4n+2 
 
{1a1’(1)1e’(1)} 

{1a1’(2)1e’(3)2e’
(2)} 

 
 

p-AO 
based 
π-

aromaticity  

4n+2 
 

{1a2”(2)1e”(0)} 

4n 
 

{1a2”(2)1e”(2)

} 

4n 
 

{1a2”(2)1e”(2)} 

4n+2 
 

{1a2”(1)1e”(1)} 

d-AO 
based 
σ-

aromaticity 
 

4n+2 
 

{1a1’(2)1e’(0)} 
{1a1’(2)1e’(4)} 

{1a1’(2)1e’(4)2e’
(4)} 

 

4n 
 

{1a1’(2)1e’(2)} 
{1a1’(2)1e’(4)2

e’(2)} 
 
 

4n 
 

{1a1’(2)1e’(2)} 
{1a1’(2)1e’(4)2e

’(2)} 
 
 

4n+2 
 
{1a1’(1)1e’(1)} 

{1a1’(2)1e’(3)2e’
(2)} 

 
 

d-AO 
based 
π-

aromaticity 
 

4n+2 
 

{1a2”(2)1e”(0)} 
{1a2”(2)1e”(4)} 
{1a2”(2)1e”(4)2

e”(4)} 
 

4n 
 
{1a2”(2)1e”(2)

} 
{1a1’(2)1e’(4)2

e’(2)} 
 
 

4n 
 

{1a2”(2)1e”(2)} 
{1a2”(2)1e”(4)2

e”(2)} 
 
 

4n+2 
 
{1a2”(1)1e”(1)} 
{1a2”(2)1e”(3)2

e”(2)} 
 
 

d-AO 
based 
δ-

aromaticity  

4n+2 
 

{1a1’(2)1e’(0)} 

4n 
 

{1a1’(2)1e’(2)} 

4n 
 

{1a1’(2)1e’(2)} 

4n+2 
 

{1a1’(1)1e’(1)} 



 

 

320 

f-AO 
based 
σ-

aromaticity 
 

4n+2 
 

{1a1’(2)1e’(0)} 
{1a1’(2)1e’(4)} 

{1a1’(2)1e’(4)2e’
(4)} 

 

4n 
 

{1a1’(2)1e’(2)} 
{1a1’(2)1e’(4)2

e’(2)} 
 
 

4n 
 

{1a1’(2)1e’(2)} 
{1a1’(2)1e’(4)2e

’(2)} 
 
 

4n+2 
 
{1a1’(1)1e’(1)} 

{1a1’(2)1e’(3)2e’
(2)} 

 
 

f-AO 
based 
π-

aromaticity 
 

4n+2 
 

{1a2”(2)1e”(0)} 
{1a2”(2)1e”(4)} 
{1a2”(2)1e”(4)2

e”(4)} 
 

4n 
 
{1a2”(2)1e”(2)

} 
{1a1’(2)1e’(4)2

e’(2)} 
 
 

4n 
 

{1a2”(2)1e”(2)} 
{1a2”(2)1e”(4)2

e”(2)} 
 
 

4n+2 
 
{1a2”(1)1e”(1)} 
{1a2”(2)1e”(3)2

e”(2)} 
 
 

f-AO 
based 
δ-

aromaticity 
 

4n+2 
 

{1a1’(2)1e’(0)} 
{1a1’(2)1e’(4)} 

{1a1’(2)1e’(4)2e’
(4)} 

 

4n 
 

{1a1’(2)1e’(2)} 
{1a1’(2)1e’(4)2

e’(2)} 
 
 

4n 
 

{1a1’(2)1e’(2)} 
{1a1’(2)1e’(4)2e

’(2)} 
 
 

4n+2 
 
{1a1’(1)1e’(1)} 

{1a1’(2)1e’(3)2e’
(2)} 

 
 

f-AO 
based 
φ-

aromaticity  

4n+2 
 

{1a2”(2)1e”(0)} 

4n 
 

{1a2”(2)1e”(2)

} 

4n 
 

{1a2”(2)1e”(2)} 

4n+2 
 

{1a2”(1)1e”(1)} 
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Table 15-2.  Schematic molecular orbital diagrams, possible electronic configurations 
and Huckel’s rules for aromaticity/antiaromaticity of singlet/triplet model tetratomic 
system as a general example of even-number cyclic systems. 
 

Huckel’s rule for aromaticity Huckel’s rule for antiaromaticity 

 

Schematic  
molecular  

orbital  
diagram 

singlet 
coupling 

triplet 
coupling 

singlet 
coupling 

triplet 
coupling 

s-AO 
based 
σ-

aromaticity 
 

4n+2 
 

{1a1g
(2)1eu

(0)} 
{1a1g

(2)1eu
(4)} 

4n 
 

{1a1g
(2)1eu

(2)} 
 

4n 
 

{1a1g
(2)1eu

(2)} 
 

4n+2 
 

{1a1g
(1)1eu

(1)} 
 

p-AO 
based 
σ-

aromaticity 

 

2, 4n+4 
 

{1a1g
(2)1b2g

(0)} 
{1a1g

(2)1b2g
(2)} 

{1a1g
(2)1b2g

(2)1eu
(4)} 

{1a1g
(2)1b2g

(2)1eu
(4

)2eu
(4)} 
 
 
 

4n+2 
 

{1a1g
(1)1b2g

(1)} 
{1a1g

(2)1b2g
(2)1eu

(2

)} 
{1a1g

(2)1b2g
(2)1eu

(4)2
eu

(2)} 
 
 
 

 

4n+6 
 

{1a1g
(2)1b2g

(2)1eu
(2

)} 
{1a1g

(2)1b2g
(2)1eu

(4

)2eu
(2)} 
 
 
 
 
 

4n 
 

{1a1g
(2)1b2g

(1)1eu
(1)

} 
{1a1g

(2)1b2g
(2)1eu

(3)

2eu
(1)} 
 
 
 
 
 

p-AO 
based 
π-

aromaticity 
 

4n+2 
 

{1a2u
(2)1eg

(0)} 
{1a2u

(2)1eg
(4)} 

4n 
 

{1a2u
(2)1eg

(2)} 
 

4n 
 

{1a2u
(2)1eg

(2)} 
 

4n+2 
 

{1a2u
(1)1eg

(1)} 
 

d-AO 
based 
σ-

aromaticity 

 

2, 4n+4 
 

{1a1g
(2)1b2g

(0)} 
{1a1g

(2)1b2g
(2)} 

{1a1g
(2)1b2g

(2)1eu
(4)} 

{1a1g
(2)1b2g

(2)1eu
(4

)2eu
(4)} 
 
 
 

4n+2 
 

{1a1g
(1)1b2g

(1)} 
{1a1g

(2)1b2g
(2)1eu

(2

)} 
{1a1g

(2)1b2g
(2)1eu

(4)2
eu

(2)} 
 
 
 

 

4n+6 
 

{1a1g
(2)1b2g

(2)1eu
(2

)} 
{1a1g

(2)1b2g
(2)1eu

(4

)2eu
(2)} 
 
 
 
 
 

4n 
 

{1a1g
(2)1b2g

(1)1eu
(1)

} 
{1a1g

(2)1b2g
(2)1eu

(3)

2eu
(1)} 
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d-AO 
based 
π-

aromaticity 

 

2, 4n+4 
 

{1a2u
(2)1b1u

(0)} 
{1a2u

(2)1b1u
(2)} 

{1a2u
(2)1b1u

(2)1eg
(4)} 

{1a2u
(2)1b1u

(2)1eg
(4

)2eg
(4)} 
 
 

4n+2 
 

{1a2u
(1)1b1u

(1)} 
{1a2u

(2)1b1u
(2)1eg

(2

)} 
{1a2u

(2)1b1u
(2)1eg

(4)2
eg

(2)} 
 

 
 

4n+6 
 
{1a2u

(2)1b1u
(2)1eg

(2

)} 
{1a2u

(2)1b1u
(2)1eg

(4

)2eg
(2)} 
 
 
 
 

4n 
 
{1a2u

(2)1b1u
(1)1eg

(1)

} 
{1a2u

(2)1b1u
(2)1eg

(3)

2eg
(1)} 
 
 
 
 

d-AO 
based 
δ-

aromaticity 
 

4n+2 
 

{1a1g
(2)1eu

(0)} 
{1a1g

(2)1eu
(4)} 

4n 
 

{1a1g
(2)1eu

(2)} 
 

4n 
 

{1a1g
(2)1eu

(2)} 
 

4n+2 
 

{1a1g
(1)1eu

(1)} 
 

f-AO 
based 
σ-

aromaticity 

 

2, 4n+4 
 

{1a1g
(2)1b2g

(0)} 
{1a1g

(2)1b2g
(2)} 

{1a1g
(2)1b2g

(2)1eu
(4)} 

{1a1g
(2)1b2g

(2)1eu
(4

)2eu
(4)} 
 
 
 

4n+2 
 

{1a1g
(1)1b2g

(1)} 
{1a1g

(2)1b2g
(2)1eu

(2

)} 
{1a1g

(2)1b2g
(2)1eu

(4)2
eu

(2)} 
 
 
 

 

4n+6 
 

{1a1g
(2)1b2g

(2)1eu
(2

)} 
{1a1g

(2)1b2g
(2)1eu

(4

)2eu
(2)} 
 
 
 
 
 

4n 
 

{1a1g
(2)1b2g

(1)1eu
(1)

} 
{1a1g

(2)1b2g
(2)1eu

(3)

2eu
(1)} 
 
 
 
 
 

f-AO 
based 
π-

aromaticity 

 

2, 4n+4 
 

{1a2u
(2)1b1u

(0)} 
{1a2u

(2)1b1u
(2)} 

{1a2u
(2)1b1u

(2)1eg
(4)} 

{1a2u
(2)1b1u

(2)1eg
(4

)2eg
(4)} 
 
 

4n+2 
 

{1a2u
(1)1b1u

(1)} 
{1a2u

(2)1b1u
(2)1eg

(2

)} 
{1a2u

(2)1b1u
(2)1eg

(4)2
eg

(2)} 
 

 
 

4n+6 
 
{1a2u

(2)1b1u
(2)1eg

(2

)} 
{1a2u

(2)1b1u
(2)1eg

(4

)2eg
(2)} 
 
 
 
 

4n 
 
{1a2u

(2)1b1u
(1)1eg

(1)

} 
{1a2u

(2)1b1u
(2)1eg

(3)

2eg
(1)} 
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f-AO 
based 
δ-

aromaticity 

 

2, 4n+4 
 

{1a1g
(2)1b2g

(0)} 
{1a1g

(2)1b2g
(2)} 

{1a1g
(2)1b2g

(2)1eu
(4)} 

{1a1g
(2)1b2g

(2)1eu
(4

)2eu
(4)} 
 
 
 

4n+2 
 

{1a1g
(1)1b2g

(1)} 
{1a1g

(2)1b2g
(2)1eu

(2

)} 
{1a1g

(2)1b2g
(2)1eu

(4)2
eu

(2)} 
 
 
 

 

4n+6 
 

{1a1g
(2)1b2g

(2)1eu
(2

)} 
{1a1g

(2)1b2g
(2)1eu

(4

)2eu
(2)} 
 
 
 
 
 

4n 
 

{1a1g
(2)1b2g

(1)1eu
(1)

} 
{1a1g

(2)1b2g
(2)1eu

(3)

2eu
(1)} 
 
 
 
 
 

f-AO 
based 
φ-

aromaticity 
 

4n+2 
 

{1a2u
(2)1eg

(0)} 
{1a2u

(2)1eg
(4)} 

4n 
 

{1a2u
(2)1eg

(2)} 
 

4n 
 

{1a2u
(2)1eg

(2)} 
 

4n+2 
 

{1a2u
(1)1eg

(1)} 
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Figure 15-1.  s-AO based σ-MOs for model triatomic system.  

 

 

 

 

Figure 15-2. s-AO based σ-MOs for model tetratomic system.  
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Figure 15-3.  p-AO based σ-MOs for model triatomic system. Here and elsewhere 
molecular orbitals which are composed of both radial and tangential AOs are 
symbolically shown as a sum of two hypothetical MOs built out of either radial or 
tangential AOs. 
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Figure 15-4. p-AO based σ-MOs for model tetratomic system.  
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Figure 15-5. d-AO based σ-MOs for model triatomic system. 
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Figure 15-6. d-AO based σ-MOs for model tetratomic system. 
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Figure 15-7.  f-AO based σ-MOs for model triatomic system. 
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Figure15-8. f-AO based σ-MOs for model tetratomic system. 

 

 

 

Figure15-9 p-AO based π-MOs for model triatomic system. 
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Figure15-10. p-AO based π-MOs for model tetratomic system. 

 

 

 

Figure15-11. d-AO based π-MOs for model triatomic system. 
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Figure15-12. d-AO based π-MOs for model tetratomic system. 
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Figure15-13. f-AO based π-MOs for model triatomic system. 
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Figure15-14. f-AO based π-MOs for model tetratomic system. 
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Figure15-15. d-AO based δ-MOs for model triatomic system. 

 

 

 

 

Figure15-16. d-AO based δ-MOs for model tetratomic system. 
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Figure15-17. f-AO based δ-MOs for model triatomic system. 



 

 

337 

 

 

Figure15-18. f-AO based δ-MOs for model tetratomic system. 
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Figure15-19. f-AO based φ-MOs for model triatomic system. 

 

 

 

Figure15-20.  f-AO based φ-MOs for model tetratomic system. 
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Figure15-21. (a) Geometric structure and 3c-2e s-AO based σ-bond of σ-aromatic Au3
+ 

cluster; (b) Geometric structure and two 2c-2e s-AO based σ-bonds of σ-antiaromatic 
Au3

- cluster. 

 

 

 

Figure15-22. Geometric structure, three 1c-2e lone pairs, and 5c-2e p-AO based π-bond 
of π-aromatic Na2Zn3 cluster. 
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Figure15-23. Geometric structure, four 1c-2e lone pairs, 4c-2e p-AO based σr-bond, 4c-
2e p-AO based σt-bond, and 4c-2e p-AO based π-bond of doubly σ- and π-aromatic Hg4

6- 
cluster. 
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Figure15-24. Geometric structure, six 2c-2e Mo-O σ-bonds, six 2c-2e Mo-O π-bonds, 
six 2c-2e Mo-O σ-bonds, and 3c-2e d-AO based σr-bond of σ-aromatic Mo3O9

2- cluster. 
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Figure15-25. Geometric structure, three 2c-2e Sc-Sc σ-bonds, 3c-2e d-AO based σr-
bond, 3c-2e d-AO based πr-bond of doubly σ- and π-aromatic Sc3

- cluster. 

 

 

 

Figure15-26. Geometric structure, three 2c-2e Hf-Hf σ-bonds, 3c-2e d-AO based σr-
bond, 3c-2e d-AO based πr-bond, and 3c-2e d-AO based δ-bond of triply σ-, π- and δ-
aromatic Hf3 cluster. 
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      CHAPTER 16 

SUMMARY 

 
The main result of dissertation is development of model of chemical bonding in 

clusters on example of AlxN- and AlxN, mixed carbon-boron, and transition-metal 

clusters. This represents the first step toward rational design of nano- and subnano-

structures with tailored properties. 

This is the first systematic theoretical study of AlxN and AlxN- clusters. It was 

shown that for small clusters Al-N interactions define the structure of clusters while 

increasing the number of Al atoms results in increasing of Al-Al interactions, which start 

to be important structure-forming factors in Al5N–. The global minimum structure of 

Al5N– is built upon the square-planar Al4N– structure with the additional Al atom boned to 

one of its four edges outside the first coordination layer. However, a 3D structure, which 

can be viewed as a tetrahedral Al4 cluster bound to an AlN unit, was found to be a low-

lying isomer and was also present in the PES spectra of Al5N–. For Al6N–, we found two 

close low-lying isomers, which appear to optimize both the Al-Al and Al-N interactions. 

For Al7N– and Al7N, our study found only one dominating isomer in which the N atom 

has high coordination number of 6 and 7, respectively. Particularly for Al7N, the seven Al 

atoms are all in the first coordination sphere and bound to the N atom, which seems to 

optimize Al-N interactions. We have also shown that the global minimum structures of 

the Al6N– and Al7N– can be viewed as being evolved from the N-centered Al6N3– 

octahedron.  
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For Al8N–, this Al6N3– octahedron is no longer found as a building block in the 

two lowest-lying isomers.  Instead, the two lowest of Al8N– can both be viewed as a 

distorted Al4N– square bound to four additional Al atoms.  Unlike the 3D structures of 

Al6N– and Al7N–, the Al-Al interactions seem to be dominating in Al8N–. Thus, the more 

complicated Al-Al and Al-N interactions in the larger Al8N– cluster are responsible for its 

structural diversity.  It should also be pointed out that in all the low-lying isomers for 

Al8N– we found that the effective atomic charges on the N atom vary from -2.1 |e| to -2.5 

|e|, indicating the formation of the nearly complete shell 2s22p6 in the ionic limit (N3–).  

From our joint photoelectron spectroscopic and ab initio study we have 

demonstrated that carbon avoids central positions in CB6
2–, CB7

–, CB8, and CB8
–.  We 

have developed a chemical bonding model (using AdNDP analysis), which explains why 

carbon avoids the central position in those species.  According to this model, in the wheel 

type structures the central atom is involved in delocalized bonding only, while atoms at 

the periphery of the wheel structure are involved in both delocalized bonding and 2c-2e 

peripheral σ-bonding. The carbon atom is more electronegative than boron atoms and 

favors peripheral positions where it can participate in 2c-2e σ-bonding.  Thus, wheel-type 

structures with a boron ring are not appropriate for designing planar molecules with a 

hypercoordinate central carbon. However, if the central atom is more electropositive than 

boron, then the wheel type structures are stable and can be either global minimum or low-

lying isomers.  AdNDP analysis of the chemical bonding in the CAl4
2- dianion showed 

that in this case, the favorable central position of the carbon atom is due to essentially 

ionic bonding between a central carbon C4- anion and an Al4
2+ cation with contributions 
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from delocalized σ-bonding and weakly delocalized π-bonding. In order to design a 

chemical species with a central hypercoordinate carbon atom, one should consider 

electropositive ligands, which would have lone pairs instead of forming 2c-2e peripheral 

bonds.  Hence, we presented a chemical bonding model capable of rationalizing and 

predicting structures either with a boron ring or a central planar carbon. 

We utilized the conception of aromaticity to transition metal systems. The striking 

feature of chemical bonding in transition-metal systems is the possibility of the multi-fold 

nature of aromaticity, antiaromaticity and conflicting aromaticity. If d atomic orbitals are 

involved in chemical bonding σ-tangential, σ-radial, π-tangential, π-radial and δ-

aromaticity/antiaromaticity could occur. In this case, there can be multiple (σ-, π- and δ-) 

aromaticity, multiple (σ-, π- and δ-) antiaromaticity and conflicting aromaticity 

(simultaneous aromaticity and antiaromaticity involving σ, π and δ bonds). 

 Separate sets of counting rules have been proposed for cyclic transition-metal 

systems to account for the three types of d-AO aromaticity. Ta3O3
- in 1A1’ D3h state was 

shown to be the first example of δ-aromatic compound. Hf3 in 1A1’ D3h state is the first 

example of triply (σ, π, δ)-aromatic system. We believe that the ideas of aromaticity, 

antiaromaticity, and conflicting aromaticity will be valuable tools for understanding of 

the chemical bonding in transition-metal systems. 

Coalescence Kick Method for finding global minima structure and low-lying 

isomers was implemented and tested. Tests showed that it works faster than other 

methodds and provides reliable results. It finds global minima even for such large clusters 

as B17
- and B19

- in reasonable time. 
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