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ABSTRACT 

A Fully Automatic Segmentation Method for  

Breast Ultrasound Images  

by 

Juan Shan, Doctor of Philosophy 

Utah State University, 2011 

Major Professor: Dr. Heng-Da Cheng 
Department: Computer Science 
 
 

Breast cancer is the second leading cause of death of women worldwide. Accurate 

lesion boundary detection is important for breast cancer diagnosis. Since many crucial 

features for discriminating benign and malignant lesions are based on the contour, shape, 

and texture of the lesion, an accurate segmentation method is essential for a successful 

diagnosis. Ultrasound is an effective screening tool and primarily useful for 

differentiating benign and malignant lesions. However, due to inherent speckle noise and 

low contrast of breast ultrasound imaging, automatic lesion segmentation is still a 

challenging task.   

This research focuses on developing a novel, effective, and fully automatic lesion 

segmentation method for breast ultrasound images. By incorporating empirical domain 

knowledge of breast structure, a region of interest is generated. Then, a novel 

enhancement algorithm (using a novel phase feature) and a newly developed 

neutrosophic clustering method are developed to detect the precise lesion boundary. 
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Neutrosophy is a recently introduced branch of philosophy that deals with paradoxes, 

contradictions, antitheses, and antinomies. When neutrosophy is used to segment images 

with vague boundaries, its unique ability to deal with uncertainty is brought to bear. In 

this work, we apply neutrosophy to breast ultrasound image segmentation and propose a 

new clustering method named neutrosophic l-means. We compare the proposed method 

with traditional fuzzy c-means clustering and three other well-developed segmentation 

methods for breast ultrasound images, using the same database. Both accuracy and time 

complexity are analyzed. The proposed method achieves the best accuracy (TP rate is 

94.36%, FP rate is 8.08%, and similarity rate is 87.39%) with a fairly rapid processing 

speed (about 20 seconds). Sensitivity analysis shows the robustness of the proposed 

method as well. Cases with multiple-lesions and severe shadowing effect (shadow areas 

having similar intensity values of the lesion and tightly connected with the lesion) are not 

included in this study.  

(110 pages) 
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CHAPTER 1 

INTRODUCTION 

Breast cancer is the second leading cause of death for women worldwide, and more 

than 8% of all women will suffer this disease during their lifetime [1]. According to 

cancer statistics 2010, it is estimated that 209,060 new cases of breast cancer will be 

diagnosed and approximately 40,230 deaths are expected in the United States alone [2]. 

Since the causes of breast cancer still remain unknown, early detection is the key to 

reduce the death rate (40% or more) [3]. The earlier the cancers are detected, the better 

the treatment that can be provided. Early detection requires an accurate and reliable 

diagnosis which should also be able to distinguish between benign and malignant tumors. 

Further, a good detection approach should produce both a low false positive rate and a 

false negative rate.  

1.1 Ultrasound Imaging  

Until recently, the most effective modality for detecting and diagnosing has been 

mammography [3, 4]. However, there are limitations of mammography in breast cancer 

detection. Many unnecessary (65–85%) biopsy operations are due to the low specificity 

of mammography [5]. The unnecessary biopsies not only increase the cost, but also make 

the patients suffer from emotional pressure. Mammography has also proven less effective 

in detecting breast cancer in adolescent women with dense breasts. In addition, the 

ionizing radiation of mammography might be harmful for both patients and radiologists. 

Ultrasound (US) imaging is an important alternative to mammography. Researchers 

and practitioners are showing an increasing interest in the use of ultrasound images for 

breast cancer detection [6-8]. Statistics show that more than one out of every four study 
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on breast cancer detection is based on ultrasound images, and the proportion is rapidly  

increasing [9]. Studies have demonstrated that using US images can discriminate benign 

and malignant masses with a high accuracy [10, 11]. Use of ultrasound can increase over 

all cancer detection by17% [12] and reduce the number of unnecessary biopsies by 40% 

which can save as much as $1 billion per year in the United States alone [13]. Breast 

ultrasound (BUS) imaging is superior to mammography in the following ways. (1) Since 

it requires no radiation, ultrasound examination is more convenient and safer than 

mammography for patients and radiologists in daily clinical practice [14]. It is also 

cheaper and faster than mammography. Thus, ultrasound is especially suitable for the 

low-resource countries in different continents [15]. (2) Ultrasound techniques are more 

sensitive than mammography for detecting abnormalities in dense breasts; hence, it is 

more valuable for women younger than 35 years of age [12]. (3) There is a high rate of 

false positives in mammography which causes a lot of unnecessary biopsies [11]. In 

contrast, the accuracy rate of BUS imaging in the diagnosis of simple cysts is much 

higher [10]. Thus, US imaging has become one of the most important diagnostic tools for 

breast cancer detection.  

1.2 Computer-Aided Diagnosis  

Since sonography is much more operator-dependent than mammography, reading 

ultrasound image requires well-trained and experienced radiologists. Further, even well-

trained experts may have a high inter-observer variation rate; therefore, computer-aided 

diagnosis (CAD) is has been investigated to help radiologists in making accurate 

diagnoses. One advantage of a CAD system is that it can obtain some features, such as 
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computational features and statistical features, which cannot be obtained visually and 

intuitively by medical doctors. Another advantage is that CAD can minimize the 

operator-dependent nature inherent in ultrasound imaging [16] and make the diagnosis 

process reproducible. It should be noted that research into the use of CAD is not done so 

with an eye toward eliminating doctors or radiologists, rather the goal is to provide 

doctors and radiologists a second opinion and help them to increase the diagnosis 

accuracy, reduce biopsy rate, and save them time and effort.  

Generally, ultrasound CAD systems for breast cancer detection involve four stages, as 

shown in Figure 1.1.  

 

Figure 1.1. A CAD system for breast cancer diagnosis. 

Ultrasound Image Preprocessing 

Segmentation 

Feature Extraction 
and Selection 

 Classification 
Diagnosis 
Result 
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1. Image preprocessing: The task of image preprocessing is to enhance the image and 

to reduce speckle without destroying the important features of BUS images for 

diagnosis.  

2. Image segmentation: Image segmentation divides the image into non-overlapping 

regions, and it separates the objects (lesions) from the background. The boundaries 

of the lesions are delineated for feature extraction.  

3. Feature extraction and selection: This step is to find a feature set of breast cancer 

lesions that can accurately distinguish lesion/non-lesion or benign/malignant. The 

feature space could be very large and complex, so extracting and selecting the 

most effective features is very important.  

4. Classification: Based on the selected features, the suspicious regions will be 

classified into different categories, such as benign findings and malignancy. Many 

machine learning techniques such as linear discriminant analysis (LDA), support 

vector machine (SVM) and artificial neural network (ANN) have been studied for 

lesion classification.  

1.3 Lesion Segmentation 

Segmentation is an important step of CAD systems. Both automation and accuracy of 

segmentation is crucial. Automation of segmentation is important because it facilitates 

the complete automation of the CAD system. A fully automatic CAD can minimize the 

effect of the operator-dependent nature inherent in ultrasound imaging [16] and make the 

diagnosis process reproducible. Accuracy of segmentation is important because many 

crucial features for discriminating benign and malignant lesions are based on the contour, 



5 
 
shape and texture of the lesion (ACR BI-RADS lexicon [17]). These features can be 

effectively extracted after the lesion boundary is correctly detected. Thus, an accurate 

segmentation method is essential for a correct diagnosis. However, there are 

characteristic artifacts, such as attenuation, speckle, shadows, and signal dropout, which 

make the segmentation task complicated; these artifacts are due to the orientation 

dependence of acquisition that can result in missing boundaries. Further complications 

arise as the contrast between areas of interest is often low [18]. How to do one of the 

oldest image processing tasks, image segmentation, for breast ultrasound, is a challenging 

task.  

Many techniques have been developed for BUS segmentation. They are categorized 

into histogram thresholding, region growing, model-based (active contour, level set, 

Markov random field), machine learning, and watershed methods.  

1.3.1 Histogram Thresholding and Region Growing 

Simple histogram thresholding [19, 20] or region-growing algorithms [21, 22] can find 

the preliminary lesion boundary. In a histogram thresholding method, an intensity 

threshold is chosen at the valley of the image histogram to separate the image into 

background and foreground. For a region growing method, a region is grown from the 

seed point (start point) by adding similar neighboring pixels. Although efficient, these 

methods cannot generate a precise boundary because their over-simplified concepts and 

the high sensitivity to noise. However, they can serve as an intermediate step to provide a 

rough contour [21] or can be combined with post-processing procedures such as 

morphological operations [19, 20, 23], disk expansion [24], Bayesian neural network [12], 
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function optimization [25, 26], etc. For example, in the thresholding algorithm [19, 20], 

firstly, the regions of interest (ROIs) were preprocessed with a 4×4 median filter to 

reduce the speckle noise and to enhance the features. Second, a 3×3 unsharp filter was 

constructed using the negative of a two-dimensional Laplacian filter to emphasize the 

elements with meaningful signal level and to enhance the contrast between object and 

background. Third, the ROIs were converted to a binary image by thresholding. The 

threshold was determined by the histogram of ROIs. If a valley of a histogram between 

33% and 66% of the pixel population could be found, this intensity value was selected as 

the threshold. If there was no such valley in that range, the intensity of 50% of the pixel 

population was selected as the threshold value. Finally, the selected nodule’s boundary 

pixels were obtained using morphologic operations.  

1.3.2 Model-Based Methods 

Model-based methods have strong noise-resistant abilities and are relatively stable at 

sonography demarcation. Commonly used models include level set [27-29], active 

contours [21, 30-33], Markov random fields (MRF) [34-38], etc.  

For instance, Sarti et al. [29] discussed a level set maximum likelihood method to 

achieve a maximum likelihood segmentation of the target. The Rayleigh probability 

distribution was utilized to model gray level behavior of ultrasound images. A partial 

differential equation-based flow was derived as the steepest descent of an energy function 

taking into account the density probability distribution of the gray levels, as well as 

smoothness constraints. A level set formulation for the associated flow was derived to 
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search the minimal value of the model. Finally, the image was segmented according to 

the minimum energy.  

Madabhushi and Metaxas [21] combined intensity, texture information, and empirical 

domain knowledge used by radiologists with an active contour model in an attempt to 

limit the effects of shadowing and false positives. Their method requires training but in 

the small database. Using manual delineation of the mass by a radiologist as a reference, 

and the Hausdorff distance and average distance as boundary error metrics, they showed 

that their method is independent of the number of training samples, shows good 

reproducibility with respect to parameters, and gives a true positive area of 74.7%. Some 

active contour models have been applied to 3-D ultrasound segmentation, such as [30-33].  

Boukerroui et al. [34] used a Markov random field to model the region process and to 

focus on the adaptive characteristics of the algorithm. Their method introduced a function 

to control the adaptive properties of the segmentation process, and took into account both 

local and global statistics during the segmentation process. A new formulation of the 

segmentation problem was utilized to control the effective contribution of each statistical 

component. The merit of MRF modeling is that it provides a strong exploitation of the 

pixel correlations. The segmentation results can be further enhanced via the application 

of maximum a posteriori segmentation estimation scheme based on the Bayesian learning 

paradigm [18].  

In most model-based approaches, an energy function is formulated, and the 

segmentation problem is transformed as finding the minimum (or maximum) of the 

energy function iteratively. However, the iterations on calculating energy functions and 
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reformulating the models are always time-consuming, especially for complex BUS 

images; and many models are semi-automatic with the requirement of pre-labeled ROI or 

manually initialized contour. 

1.3.3 Machine Learning Methods 

Machine learning methods (such as neural network and support vector machine) [39-

43] are popular in image segmentation, which transform the segmentation problem into a 

classification decision based on a set of input features. In [42], Dokur and Ölmez 

proposed a neural network based segmentation method. Images were divided into square 

blocks, and features were extracted from each block using the discrete cosine transform 

(DCT). Then a three-layer hybrid neural network was trained to classify the blocks into 

two categories: background and foreground. The method was applied on the region of 

interest (ROI) which needed to be selected by the user. Kotropoulos and Pitas [39] 

employed a support vector machine with a radial basis function kernel to classify 

different patterns. In this method, patterns were collected by a running window with size 

of 15x15 over the entire image. To train the SVM, 1128 positive patterns (lesion) and 

1128 negative patterns (background) were selected from the training set. Experiments 

showed that the trained SVM could generate reasonable segmentation result.    

For machine learning methods, feature selection and training process are two key steps 

that play an important role on segmentation result. If features are sufficiently 

distinguishable and the method is well trained, machine learning methods can generate 

satisfactory lesion contours. However, over-training or insufficient training (trapped by 
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local minimum) may severely affect the segmentation performance on new data. And the   

training process is usually quite time-consuming.  

1.3.4 Watershed-Based Methods 

Watershed-based approaches have shown promising performances for ultrasound 

image segmentation. The methods consider image as topographic surface wherein the 

grey level of a pixel is interpreted as its altitude. Water flows along a path to finally reach 

a local minimum. The biggest challenge for such methods is over-segmentation; to 

address the problem, many approaches have been proposed and can be categorized into 

two types: marker-controlled [44-46] and cell competition [47-49].  

Marker-controlled methods inundate the gradient landscape of image and define 

watersheds when the flooding of distinct markers rendezvous with each other. Hence, the 

identification of makers is very crucial in solving the over-segmentation problem. The 

method proposed in [44] was a texture-based approach that selected the marker 

candidates as seeds for the water-level immersion. A self-organization map was trained to 

identify the texture of lesions as the flooding markers. Distinctively, the method in [45] 

adopted a thresholding and morphological operation scheme to seek flooding markers. It 

required a heuristic estimation of the best thresholding of markers to achieve the task of 

lesion delineation.  

Cell competition approaches, on the other hand, alleviate the over-segmentation 

problem in a different way. A two-pass watershed transformation [47] was performed to 

generate the cell tessellation on the original ultrasound image or ROI. In this method, a 

competition scheme based on the cell tessellation was carried out by allowing merge and 
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split operations of cells. The cost function was devised to characterize boundary saliency 

and regional homogeneity of an image partition, and it drove the competition process to 

converge to a prominent component structure. However, neither marker-controlled nor 

cell competition approaches guarantee to solve the over-segmentation problem 

completely [48].  

Commonly used segmentation approaches are summarized in Table 1.1. 

Table 1.1. Summary of Segmentation Methods for BUS Images. 

Methods Descriptions Advantages Disadvantages 

Histogram thresholding Threshold value is selected 
to segment the image. 

Simple and fast. Only works for 
bimodal histograms and 
has no good results for 
BUS images 

Region growing Region is grown from the 
seed point by adding 
similar neighboring pixels. 

The concept is 
simple. Multiple 
stop criteria can be 
chosen.  

Seed point is required; 
sensitive to noise. 

Model-based (includes 
active contour, level set, 
Markov random fields) 

A model is used to 
formulate the lesion 
contour, and the model is 
revised based on local 
features such as edges, 
intensity gradient, texture, 
and so on.  

Robust, self-
adapting in search 
of a minimal energy 
state.  

Time-consuming; pre-
labeled ROI or initial 
contour is required; 
easy to get stuck in 
local minima states. 

Machine learning Features to separate the 
lesion from the 
background are extracted 
first, and a machine 
learning method is trained 
to do the classification 
based on pixel-level or 
region-level.  

Stable; different 
lesion 
characteristics can 
be incorporated by 
feature extraction. 

Long training time; 
over-training problem; 
test images should 
come from the same 
platform as the training 
images. 

Watershed (includes 
marker-controlled 
watershed and cell-
competition watershed) 

Considers image as 
topographic surface 
wherein grey level of a 
pixel is interpreted as its 
altitude. Water flows along 
a path to finally reach a 
local minimum. 

It ensures closed 
region boundaries. 

Over-segmentation 
problem is not 
completely solved. 
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In summary, the major drawbacks of current methods are: 1) human interactions such 

as the pre-labeled ROIs or manually initialized contours are required, which impede full 

automation; 2) intensity features are most typically used for boundary detection. Since 

BUS images have low contrast and are degraded by speckle noise, features based on 

intensity gradients are always sensitive to noise and cannot guarantee accurate 

segmentation result; 3) reformulating the models and training the methods are always 

time-consuming, especially for complex BUS images. As the image resolution increases, 

the computational complexity for processing a BUS image also increases. 

1.4 The Proposed Method 

In this research, a novel lesion segmentation method is proposed to overcome the 

above problems. Figure 1.2 shows the flowchart of the proposed method. The method is 

composed of four major steps: ROI generation, speckle reduction, image enhancement 

and neutrosophic l-means clustering. With the exception of the speckle reduction method 

[50], the algorithms in this work are newly proposed. The novelties and contributions of 

this work are: 

1. The method achieves complete automation and accurate segmentation at the same 

time. For medical image segmentation, high accuracy requires more human 

intervention, and realizing complete automation is often at the expense of 

accuracy. The proposed method successfully resolves such dilemmas. 

2. An automatic ROI generation method is developed. The ROI is a relatively small 

rectangular region taken from the original image. Further operations are 
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conducted only on the ROI. Cutting off the complicated background not only 

speeds up the segmentation process, but also increases accuracy.  

Automatic ROI 
Generation 

Speckle Reduction 

Image Enhancement 

NLM 

Input BUS Image 

 ROI Image 

 De-speckled Image 

 PMO Image 

Segmentation 
Result 

  
Figure 1.2. Flowchart of the proposed method. 
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3. An effective enhancement method for BUS images using phase information is 

proposed. Instead of using phase information as an edge detector as is commonly 

done, we propose a novel phase feature to enhance and smooth the lesion and 

background. The produced phase image (called a PMO image) has a more 

homogeneous foreground and background; and most important of all, the granular 

effect caused by speckle noise is greatly reduced.  

4. A novel clustering method, neutrosophic l-means (NLM) based on neutrosophy 

and fuzzy c-means (FCM) is developed to separate the background and 

foreground of BUS images. Neutrosophy is a new branch of philosophy that has 

an excellent ability to deal with uncertainty. Said ability is fully employed to 

segment BUS images with vague boundaries. By defining neutrosophic 

components and incorporating an indeterminate degree in the clustering process, 

NLM can handle pixels with intermediate intensity values effectively. The 

clustering process is not only decided by the distance to the cluster centers and 

membership, but also by the indeterminate degree and neighborhood information.  

5. A sound and fair comparison between different methods using the same database 

is conducted. In the experiment section, the proposed method is compared with 

FCM, and three other BUS image segmentation methods, using multiple 

evaluation metrics.   

In Chapters 2-5, we describe each step of the proposed method. In Chapter 6, database 

and experimental results are discussed. Chapter 7 gives conclusion and future directions.    
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CHAPTER 2 

AUTOMATIC REGION OF INTEREST GENERATION 

Since BUS images contain a lot of different structures (connective tissue, fat, muscles, 

etc.) and the lesion area is usually small compared to the entire image, finding a region of 

interest (ROI) is quite helpful for improving the speed and accuracy of segmentation. 

Many existing BUS image segmentation methods have been developed based on a 

manually selected ROI, not on the whole image. Such a requirement impedes full 

automation. In this section, we describe the development of an automatic ROI generation 

method that facilitates full automation of BUS image segmentation.     

There are two typical ROI definitions: one defines ROI as the rough contour or initial 

contour of the lesion, while the other defines ROI as a rectangular region containing both 

the lesion and some background information. In this work, the automatically generated 

ROI is a rectangular region. Therefore, this ROI generation method can be utilized by any 

other segmentation method as a preprocessing step since it only cuts the redundant 

background while keeping the lesion and nearby surrounding tissues untouched. The ROI 

generation method consists of two steps: automatic seed point selection and region 

growing. Region growing is chosen because it is simple and fast. The lesion boundary 

detected by the region growing method is usually not accurate on BUS images. However, 

the target here is only to roughly locate the lesion rather than find the accurate boundary. 

Therefore, region growing fits our needs very well.   
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2.1 Automatic Seed Point Selection 

A seed point is the starting point for region growing. Its selection is important to the 

segmentation result. If a seed point is selected outside the region of interest (ROI), the 

final segmentation result would definitely be incorrect. Due to the low quality of US 

images, most region growing methods require the seed point be selected manually in 

advance. In order to make the region growing fully automatic, it is necessary to develop 

an automatic seed point selection method for BUS images. However, very little research 

has been done in this area; thus, relevant work is rare and immature. Poonguzhali and 

Ravindran [51] proposed an automatic method to select seed point for masses using both 

the co-occurrence and run length features. The run length features were calculated around 

the points selected by the co-occurrence features. If all the run length features of a 

selected point and its neighborhood points were equal, the point was considered as a seed 

point. In [21], after several preprocessing steps, a seed point score formula was used to 

evaluate a set of randomly selected points. The point with the highest score was 

considered as the seed point. In yet another method [52], after preprocessing and 

morphological operations, a binary image was obtained and the sum of the pixels on each 

row and column are computed. Indexes of the seed point were found as the row and 

column number with the max sums, respectively. All the aforementioned methods took 

into account only the statistics of the texture features for a mass region (i.e., the mass is 

darker than the surrounding tissues and more homogeneous than other regions). They 

failed to consider spatial features of a US mass (such as the fact that a mass frequently 

appears at the upper part of image and is barely connected with the image boundary). 
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Therefore, the probability of a selected seed point outside the lesion is high, especially in 

noisy and low-contrast images. 

In this subsection, we develop a new automatic seed point selection method for BUS 

images [53]. The method not only considers the texture features of a lesion, but also 

incorporates the spatial characteristics of a lesion. We describe our method in details in 

Section 2.1.1. The new method is compared with the automatic seed point selection 

method in [21] using the same database in Section 2.1.2.  

2.1.1 The Proposed Seed Point Selection Algorithm 

Step 1: Speckle reduction. We employ the speckle reducing anisotropic diffusion 

(SRAD) [50] as the de-speckle method. SRAD can iteratively process a noisy image with 

adaptive weighted filters, reduce noise and preserve edges. The diffusion coefficient is 

determined by: 

2 2 2 2
0 0 0

1( )
1 [ ( , ; ) ( )] / [ ( )(1 ( ))]

c q
q x y t q t q t q t

=
+ − +

,                                 (1) 
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The initialized q0(t) is given by: 

0
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( )
( )

z t
q t

z t
= ,                                                       (3) 

where z(t) is the most homogeneous area at t. In our experiments, we set the iteration 

times as 5. Figure 2.1shows the speckle reduction effect on the original BUS image. 
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 (a)

 (b)  

Figure 2.1. (a) Original image. (b) Result after speckle reduction using SRAD [50].  
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Step 2: Iterative threshold selection. Most segmentation methods need to threshold the 

image into background and foreground. The threshold selection greatly affects the final 

segmentation result. Here, we iteratively select thresholds based on the histogram and 

breast lesion’s spatial characteristics. No training or empirical-based threshold value is 

needed. The advantage of this iterative method is that it can be used for a BUS image 

without any requirement for image resource consistence or human interaction to tune a 

reasonable threshold value. Only information regarding the current BUS image is needed 

to determine the proper threshold. 

We first calculate all the local minimums of the image histogram. A good threshold 

that can properly separate the lesion from the background should be one of these local 

minimums. Starting from the smallest to biggest, we evaluate every local minimum until 

we find the proper one. The iteration is described below: 

1. Let t equal the current local minimum of the histogram. Binarize and reverse the 

de-speckled image using threshold t (lesion becomes white and background black) 

to get Ib. If the ratio of the number of foreground points and the number of 

background point is less than 0.1, let t equal the next local minimum. Continue 

until the ratio is no less than 0.1. 

2. Perform dilation and erosion on Ib to remove noise. 

3. Find all the connected components in Ib. If none of the connected components has 

an intersection with the image center region (a window about one-half the size of 

the whole image and centered at the image center), let t equal the next local 
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minimum. Continue until there is a connected component that has an intersection 

with the center window.  

After the above procedures, a proper threshold t is chosen to binarize the image into 

background and foreground. Because the iterative threshold choosing process starts from 

the smallest local minimum and increases gradually based on the possible lesion to image 

ratio, it can avoid problems such as the foreground being too large (lesion is connected 

with other tissues) or too small (lesion is not included into the foreground). Figure 2.2 (a) 

illustrates the result of thresholding the image by the iteratively selected threshold.  

Step 3: Deleting the boundary-connected regions. After image binarization, 

morphological operations are employed to remove noise regions. Then all the connected 

components are labeled again. Each connected component represents a possible lesion 

region. Besides the real lesion region, there are some regions connected with the 

boundary and such kind of boundary-connected regions always have a big area. We 

cannot simply delete all the regions connected with boundary of the image because 

sometimes the lesion region is also connected with the boundary. Therefore, we use the 

center window to evaluate every boundary region. The center window is about 1/2 size of 

the whole image and centered at the image center. If a region has no intersection with the 

center window and it is connected with the image boundaries, this region is deleted from 

the lesion candidate list. Figure 2.2 (b) shows the result of boundary region deletion. 
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(a) 

 (b)  

Figure 2.2. (a) Result after iterative threshold selection. (b) Result after deleting 

boundary-connected region. 
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Step 4: Rank the regions. Now the left regions are either not connected with the 

boundary or they have an intersection with the image center window. We use the 

following score formula to rank each left region. The one with the highest score is 

considered as the lesion region.  

0

, 1,...,
( , ) var( )n

n n

AreaS
dis C C C

=
i

n k=                                     (4) 

where k is the number of regions, Area is the number of pixels in the region, Cn is the 

center of the region, C0 is the center of the image, and var(Cn) is the variance of a small 

circular region centered at Cn. 

Step 5: Determine the seed point. Suppose the minimum rectangle contains the 

winning region [xmin, xmax; ymin,ymax]. For most cases, the center of the winning region 

((xmin+xmax)/2, (ymin+ymax)/2) could be considered as a seed point. However, there are 

cases in which the lesion shape is irregular, and thus the center point might be outside the 

lesion. For these special cases, we choose a seed point by the following rule: 

min max( ) / 2                        
{ | ( , ) lesion region}

seed

seed seed

x x x
y y x y

= +⎧
⎨ = ∀ ∈⎩

                                   (5)   

Figure 2.3(a) illustrates the winning region, while Figure 2.3 (b) illustrates the final 

selected seed point on the original image. 
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 (a)

 (b)
 

Figure 2.3. (a) The winning region. (b) Selected seed point. 
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2.1.2 Experiment Results of the Seed Point 

 Selection Algorithm 

The proposed seed point selection method is tested using our BUS database. The 

database consists of 60 images with various breast lesions. Each lesion’s boundary has 

been manually outlined by radiologists. More detailed information of the database is 

given in Section 6.1. As long as the detected seed point is inside the lesion, we consider 

such case as a true positive (TP). On the other hand, if the seed point is outside the 

manually outlined lesion or on the boundary, we count it as a false positive (FP).  

Furthermore, we separate TP cases into two categories: seed point in the center part of 

the lesion and seed point near the boundary. Although these two categories are not 

strictly distinguished from each other, we can use statistical values to evaluate the quality 

of the seed point selection method, given the assumption that the closer the seed point is 

to the center of the lesion, the better the seed point is.  

Next, we compared our method with the automatic seed point selection method in [21]. 

Seed point selection is one step of the low level processes in the segmentation system 

developed in [21]. The method needs to calculate the pdfs for intensity and texture on a 

training set before seed point selection. To maximize the performance of the method in 

[21], we use all 60 images in the database to train the pdfs, and then use the same 60 

images to test the method. The performance comparison is given in Table 2.1. Figure 2.4 

gives two example results of our method and the method in [21]. 

Based on the experiment results, the proposed algorithm outperforms the seed point 

selection algorithm in [21], not only on accuracy, but also on the seed points’ quality. As 

we mentioned above, the more a seed point is near the center of the lesion, the better the  
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(a) 

 

 
(b) 

Figure 2.4. Results of two cases: (a) and (c) are the results of the proposed seed point 

selection algorithm; (b) and (d) are the results of the seed point selection algorithm in 

[21]. (Continued on next page.) 
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(c) 

 

 
(d) 

Figure 2.4. (cont.) Results of two cases: (a) and (c) are the results of the proposed seed 

point selection algorithm; (b) and (d) are the results of the seed point selection algorithm 

in [21]. 
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Table 2.1. Comparison of the Proposed Seed Point Selection Algorithm  
and the Active Contour Method [21]. 

Method FP TP 

Seed point near center Seed point near boundary

Seed point selection 

method in [21] 

16 

(26.67%)

35 

(58.33%) 

9 

(15.00%) 

The proposed seed point 

selection method 

0 

(0%) 

51 

(85.00%) 

9 

(15.00%) 

 

seed point is for region growing. Therefore, the percentage of seed points with good 

quality found by the proposed algorithm is much higher than that of the algorithm in [21]. 

The percentage of good seed points by the proposed algorithm is 85% and by algorithm 

in [21] is 58.3%. 

2.2 Region Growing 

After a seed point is generated automatically, we employ a region growing method to 

obtain a preliminary lesion boundary. Region growing is a frequently used segmentation 

method in medical image processing. Its main advantage is its fast processing speed, 

while its main disadvantage is that the method cannot guarantee accurate boundary 

detection for BUS images. The reason we choose region growing here is that we only 

need a rough contour to estimate the ROI borders; therefore, we do not employ any 

complicated algorithm but use region growing to save overall processing time.   

The basic criterion of region growing for a simple segmentation task is to compare the 

intensity value of the new pixel v with the intensity mean of the current region, and if 
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they are close enough, pixel v is added into the region. However, it is not enough to use 

only the intensity mean of the current region to control the growth process for a BUS 

image. We find the stop criterion is related to both the intensity mean of the current 

region and the intensity mean of the overall image. Therefore, the following conditions 

are used to control the growing process. Let R represent the set containing all the pixels 

in the region, and p be a pixel in R. At the beginning, set R contains only the seed point S0. 

A pixel v is included in R, if ׌ p א R and satisfies the following condition: 

, ){ ( ) max( min( , ) }  { ( ) ( ) }and 1
2

M
MG b m N p N

b
v v≤ × ∩  ≠ ∅                       (6) 

where G(v) is the intensity value of pixel v, m is the intensity mean of region R, M is the 

intensity mean of the whole image, and b1 and b2 are the parameters tuning the 

relationship between the stop criterion and the intensity means of the current region and 

the overall image. N denotes the type of connectivity of the neighborhood pixels around 

the pixel under consideration. The above operation proceeds until no more pixels 

satisfying Eq. (6) remain. In this work, we used 8-neighborhood connectivity. b1=1.5 and 

b2=1.6 are determined by experiment.  

Based on the region growing result, a rectangular ROI is located from the original 

image. To make sure that the lesion is completely covered by the ROI, we let the 

rectangular region have a 50-pixel expansion surrounding the region growing result. For 

example, suppose the size of the original image is 500*600 as shown in Figure 2.5(a), 

with the lesion area obtained from the region growing area as [150:200, 250:350] (see 

Figure 2.5(b)), then the rectangular region [100:250, 200:400] is finally chosen as the 

ROI (Figure 2.5(c)). In our experiments, the average processing time for ROI generation 
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for each case is 1.97 seconds, using a 3.0 GHz Pentium processor (0.36 seconds for seed 

point selection and 1.61 seconds for region growing).  

 

 

(a) 

Figure 2.5 (a) Original image with seed point marked. (b) Result of region growing.  

(c) ROI. (Continued on next page.) 
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(b) 

 
(c) 

Figure 2.5. Cont. (a) Original image with seed point marked. (b) Result of region growing. 

(c) ROI. 
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CHAPTER 3 

SPECKLE REDUCTION 

Speckle is an inherent characteristic of ultrasound imaging. It takes the form of 

multiplicative noise generated by a number of scatterers with a random phase within the 

resolution cell of an ultrasound beam [54, 55]. The texture of the observed speckle 

pattern does not correspond to the underlying structure. The local brightness of the 

speckle pattern, however, does reflect the local echogenicity of the underlying scatterers. 

There are generally two contrary opinions about speckle. One opinion insists that speckle 

is solely noise to an ultrasound image and should be removed, since speckle significantly 

degrades the image quality, hence making it more difficult for the observer to 

discriminate the fine detail of images [56, 57]. This opinion is commonly accepted. The 

other opinion argues that speckle patterns reflect the local echogenicity of the underlying 

scatters which means speckle has underlying useful characters rather than merely being 

noise [18]. However, very little work has been done to explore the underlying characters 

of speckle.  

In this work, we treat speckle as noise and try to suppress speckle without destroying 

important features of the lesions. Two effective de-speckle methods are taken into 

consideration. One is the speckle reducing anisotropic diffusion (SRAD) [50], and the 

other is a newly published de-speckle method [58]. Both of the methods are good at 

removing the speckle noise and preserving the edges and details of the images at the 

same time. SRAD is a diffusion method in which the diffusion is edge-sensitive for 

speckled images. Its advantage is high speed and a good de-speckle effect. Anisotropic 
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diffusion is frequently used in filtering techniques for speckle reduction. However, edge 

estimation using a gradient operator makes it difficult to handle a multiplicative noisy 

image. In order to eliminate such a disadvantage, SRAD is proposed particularly for 

envelope US images without logarithmic compression. In SRAD, the instantaneous 

coefficient of variation serves as the edge detector. The function exhibits high values at 

edges and produces low values in homogeneous regions. Thus, it ensures the mean-

preserving behavior in the homogeneous regions, and edge-preserving and edge-

enhancing at the edges.   

The method in [58] is a speckle reduction method tailored especially for BUS images. 

It uses the local homogeneity defined by texture information to describe speckle noise. A 

2-D homogeneity histogram is built, and the threshold is obtained using the maximal 

entropy principle. The pixels are divided into a homogenous set and a non-homogenous 

set based on the homogeneity threshold. The pixels in the non-homogeneous set are 

handled by the proposed directional average filters (DAF) iteratively.  

Figure 3.1 shows the results of the two methods. Obviously, the edges are better 

enhanced, and speckle noise is more effectively reduced by the method in [58] than the 

SRAD in [50]. Here a quantitative evaluation metric, the signal-to-mean square error 

(SMSE), is employed to evaluate the de-speckle effect [59]: 
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where is the ith pixel in the original image (speckle-free image), iS l

iS is the ith pixel in 

the image after speckle reduction and K is the image size. A larger SMSE ratio means a 

better noise suppression effect. Since there is no speckle-free ultrasound image in reality; 

we use the method in [60] to approximate the speckle-free images by a homomorphic 

Wiener filter.  

 

 
(a) 

 
Figure 3.1. (a) The ROI cut from the original image. (b) Result of SRAD [50] after 5 

iterations. (c) Result of the method in [58]. (Continued on next page.) 
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(b) 

 

 
(c) 

 

Figure 3.1. Cont. (a) The ROI cut from the original image.  (b) Result of SRAD [50] after 

5 iterations. (c) Result of the method described in [58]. 
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A comparison between the two methods is conducted on the whole database. Both the 

de-speckle effect and time complexities are analyzed. As Table 3.1 shows, the average 

SMSE ratio of the method in [58] is higher than that of the SRAD method (30.80 over 

16.66), while the average processing time of the method in [58] is longer than that of 

SRAD. Considering that the processing time (about 8 seconds) is acceptable for clinical 

application and the de-speckle effect is much better, we choose the method in [58] as the 

speckle reduction algorithm here.  

Table 3.1 Comparison of De-speckle Effect and Time Complexity of the Method 

Described in [58] and SRAD in [50]. 

Methods  SMSE Average processing time/case 

De-speckle method in [58] 30.80 8.46 seconds 

SRAD method in [50] 16.66 0.62 second 
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CHAPTER 4 

IMAGE ENHANCEMENT USING LOCAL PHASE INFORMATION 

Local phase information has been suggested as a robust feature for acoustic boundary 

detection [18]. It characterizes different intensity features in terms of the shape of the 

intensity profile rather than the intensity derivative. For example, at the point of the edge 

transition, all Fourier components are exactly in phase at zero or π depending on whether 

the step is upward or downward (Figure 4.1(a)). Similarly, for an intensity ridge, the  

 

(a) 

 

(b) 

Figure 4.1 (a) Fourier series of a step edge. Dashed lines are the first four Fourier 

components and solid lines are the sum of these components [61]. (b) Fourier series of an 

intensity ridge. Dashed lines are the first four Fourier components and solid lines are the 

sum of these components [61]. 
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phases of all Fourier components are π/2 at its peak (Figure 4.1(b)). The most important 

advantage of local phase is that it is invariant to image illumination and contrast, i.e., the 

local phase does not change no matter whether the contrast between foreground and 

background is low or high. Since acoustic image feature detection should be robust to 

speckle noise and low image contrast, measures based on phase information rather than 

intensity derivatives may be more appropriate for acoustic feature detection [62]. 

4.1 Local Phase 1-D Detection 

To analyze the local phase feature of a 1-D signal, I(x), a signal with step edges and 

intensity ridge (Figure 4.2(a)) is considered. A bank of Log-Gabor filters with increasing 

wavelengths is multiplied to the signal. Let e
sM  and o

sM  denote the even and odd 

symmetric Log-Gabor filters in quadrature at scale s. The original 1-D signal (with DC 

component removed) and its Hilbert transform can be approximated by [62]: 

                
1 1

( ) ( ) ,   ( ) ( )
n n

e o
s s

s s
e x I x M o x I x M

= =

= ∗ = ∗∑ ∑ .                                  (8) 

For each single scale, the local phase is defined as: 

 1( , ) || tan ( ( , ) / ( , )) ||phase x s e x s o x s−=                                        (9) 

where 

                ( , ) ( ) ,   ( , ) ( )e o
s se x s I x M o x s I x M= ∗ = ∗  .                                (10) 

The and are called the even and odd components of the signal at a given 

scale s.  

( , )e x s ( , )o x s

It should be emphasized that when the phase is referred to in this dissertation, it is 

‘local phase’ that is being considered, which is different from the ‘phase’ defined in the 
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frequency domain. Local phase is defined for each position x at the spatial domain after 

the signal is convolved with an analyzing filter (such as the Log-Gabor filter). Conversely, 

phase is obtained from the fast Fourier transform (FFT) of a signal which is defined as 

the phase offsets of the sinusoidal basis functions in the decomposition.  

It is always confusing how to calculate e
sM  and o

sM in the spatial domain. In real 

implementation, the above analysis is done in the Fourier domain by FFT since it is more 

convenient and fast to do convolution operations in the frequency domain. The signal is 

transformed by FFT, and then a bank of Log-Gabor filters is used to analyze the signal. 

The Log-Gabor filters are defined in the frequency domain as:  
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where is related to the bandwidth of the filter and κ 0ω is the center frequency of the filter. 

The value  ensures a constant shape-bandwidth ratio over scales. is set as 

0.55 to get a compromise between filters compact and avoiding aliasing effect [

0/κ ω 0/κ ω

62]. 

After being analyzed by the filters with different scales, the original signal is 

decomposed into a group of sub-signals, while each sub-signal is a copy of the original 

signal after filtering with a Log-Gabor filter with a special scale.  If the bank of Log-

Gabor filters has 64 scales, 64 sub-signals are obtained and each sub-signal picks out a 

special frequency of the original signal. Then, the group of sub-signals is transformed 

back to the spatial domain by an inverse fast Fourier transform (IFFT).  Let I’(x, s) be the 

signal transformed back from the Fourier domain at scale s. Local phase can be 

calculated by:   
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 1( , ) || angle( '( , )) || || tan (imag( , ) / real( , )) ||phase x s I x s x s x s−= =                      (12) 

where imag(x,s) is the imaginary part of the I’(x,s) and real(x,s) is the real part of the I’(x, 

s).  

If we plot the local phase vectors one-by-one along the x dimension, a phase 

scalogram can be derived for better observation of the phase features across different 

scales. Figure 4.2(a) is a 1-D signal I(x). In Figure 4.2(b), the local phase scalogram is 

plotted for distance x along the signal over a range of scale s. Black is the zero phase and 

white is the π radians. Please note that when local phase is calculated by Eq. (12), the 

absolution operator is utilized; therefore, both the positive edge and the negative edge 

correspond to π radians, and intensity ridge corresponds 0 phase. Observe that, at the step 

edge labeled as 1 and 2 in Figure 4.2(a), the corresponding phase values in Figure 4.2(b) 

are consistent at π (shown as the white lines), no matter whether small scales or large 

scales. At the intensity ridge labeled as 3 in Figure 4.2(a), the phase values in Figure 

4.2(b) are consistent at 0 (shown as the black line). Based on such observations, if one 

accumulates all the local phases at different scales, the highest peaks should represent 

step edges and the lowest valley should represent the intensity ridge. The definition of 

local phase accumulation (LPA) is given as: 

 
1

1( ) ( , )
n

s
LPA x phase x s

n =

= ∑                                                  (13) 

where n is the total number of scales, ( , )phase x s is the local phase defined in Eq. (12). 

Figure 4.2(c) plots the LPA with the corresponding step edges 1 and 2, and intensity 

ridge 3 labeled.  
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Figure 4.2 (a) A 1-D signal with step edges (1, 2) and intensity ridge (3). (b) Local phase 

scalogram obtained by a bank of Log-Gabor filters. (c) Local phase accumulation by 

adding up the above local phase scalogram and divided by the total number of scales. 
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A more interesting phenomenon is observed when taking a more detailed view of the 

local phases at different scales. In the local phase scalogram plotted in Figure 4.2, the 

total number of scales is 90 (90 Log-Gabor filters are used), and the wavelength of the 

Log-Gabor filters ranges from 4 to 323. From these scales, we picked out several samples 

and plotted the local phase profiles at the sample scales in Figure 4.3. Notice that the step 

edges in the original signal (labeled 1 and 2) correspond to the consistent π /2 in the local 

phase profiles across different scales (marked by small red circles). In the same way, the 

intensity ridge (labeled 3) in the 1-D signal corresponds to the consistent 0 in the local 

phase profiles across different scales (marked by small blue circles). Besides the edge and 

intensity ridge structures, no other point in the original signal remains consistent 

throughout the different local phase profiles. Such consistency for the edges and intensity 

ridge is kept very well when the wavelength of the Log-Gabor filters is within some 

predefined range. When the wavelength of the filters is too large, the consistency is 

broken. As the last plot in Figure 4.3 shows, when the scale number = 60 and the 

wavelength = 74.7, the local phase consistency at π /2 per step edge has moved up to 

about 3π /4, and the local phase for intensity ridge has moved up, too. In other words, 

local phase consistency is only kept well if the frequency of analyzing filters falls into a 

certain range. If too large a range is chosen, the consistency is weakened.    

Based on the above analysis, we cut the total scales of the bank of Log-Gabor filters 

from 90 to 45. The range of wavelengths therefore is between [4, 36].  Then, we plot the 

new LPA shown in Figure 4.4 for the same original 1-D signal. Compared with Figure  
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Figure 4.3. Local phase profiles at different scales. 
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Figure 4.4 (a) A 1-D signal with step edges (1, 2) and intensity ridge (3). (b) Local phase 

scalogram obtained by a bank of Log-Gabor filters (max wavelength = 36.0). (c) Local 

phase accumulation by adding up the above local phase scalogram and divided by the 

total number of scales. 
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4.3(c), the peaks (corresponds to step edges) and the valley (corresponds to intensity 

ridge) in the LPA profile are more distinguishable.  

Since only the local phases of a step edge and an intensity ridge at different scales keep 

consistency at π/2 and 0, respectively, the edges can be strengthened and intensity ridges 

can be weakened based on their distinguished features in local phase. In an ultrasound 

image, the boundary of a lesion is similar to the step edges and noise is similar to the 

intensity ridge [61]; therefore, we need a function that can strengthen phase at π/2 and 

weaken phase at 0. The cosine function is employed here: 

' [ *cos(2* )] / 2phase π π phase= −                                             (14) 

where is the local phase. The function is plotted in Figure 4.5. After the edge-

strengthening function, the range of local phase is not changed (still between [0, π]) but 

the values at π/2 (for step edges) are strengthened, and values at 0 (for intensity ridges) 

are weakened. 

θ

 

Figure 4.5. Local phase strengthening function (Eq. (14)). 
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After the local phase at every scale is enhanced by the strengthening function, LPA is 

recalculated by: 

 
1

1'( ) '( , )
n

s
LPA x phase x s

n =

= ∑                                                  (15) 

where n is the total number of scales, '( , )phase x s is the enhanced local phase defined in 

Eq. (14). The original LPA and enhanced LPA’ are plotted in Figure 4.6.  

4.2 From 1-D Signal to 2-D Image 

To detect features in images, the above analysis of local phase needs to be extended 

from 1-D to 2-D. One solution is to calculate local phase in a number of separate 

orientations and combine the information to get a single measurement.  

A bank of 2-D Log-Gabor filters is applied to the image in the frequency domain. The 

2-D Log-Gabor filter in a given orientation 0θ is defined as the 1-D Log-Gabor filter 

multiplied by a Gaussian orientation function [62]: 

2 2
0

2 2
0

(log( / )) ( )( , ) exp ( )
2(log( / )) 2

G
θ

ω ω θ θω θ
κ ω σ

−
= − + 0                         (16) 

where θσ defines the spread of the Gaussian orientation function centered at 0θ . In this 

work, 6 orientations (0°, 30°, 60°, 90°, 120°, 150°) are chosen because they achieve a 

good compromise between a complete coverage of the whole spectrum and efficiency. 

The orientation spread θσ is set as 30°. The implementation has refers to Kovesi’s Matlab 

code in [63]. 

Based on the observation on the 1-D signal’s phase scalogram, the local phases keep 

consistent at π/2 for step edges and 0 for intensity ridge. LPA can pinpoint such 
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Figure 4.6. L before and after the strengthening function (Eq. (14)). 
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consistency. In a 2-D image, the LPA has the same characteristics. The only difference is 

that there are 6 LPAs since the image is filtered in 6 orientations. 2-D local phase 

accumulation LPAθ for a single orientation is defined as: 

1

1 '( )
n

s
LPA phase s

n =

= ∑θ                                            (17) 

where θ is the orientation, n is the total number of scales, '( )phase s is the enhanced local 

phase matrix at scale s by Eq.(14).  

As for each orientation, there is a LPA feature matrix; after filtering in 6 orientations, 

there are 6 LPA feature matrixes. How to combine the 6 phase features into a single 

feature is our next task.  

The commonly employed combination method is adding up the phase features for all 

the orientations, then using the summation to pinpoint image features: 

( , ) ( , ),   0 ,  30 ,  60 ,  90 ,  120 ,  150θ
θ

SumPhase i j LPA i j θ= = ° ° ° ° ° °∑                (18) 

In this work, we propose a new aspect to solve the above problem. It is that the phase 

from the orientation with maximum corresponding energy might provide better image 

features than the phase summation from all the orientations. This is because unlike the 1-

D signal, in a 2-D image, the edge has orientation information, and different parts of the 

edge or boundary might have different orientations. Therefore, the LPA in the direction 

of the edge might better characterize the structure than the summation of all the LPAs in 

different orientations. Since local energy characterizes structure information, the 

orientation with the maximum local energy should mostly approximate the direction of 
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the edge. Therefore, a novel 2-D phase feature PMO (phase in max-energy orientation) 

for every pixel (i, j), is defined as: 

0 , 30 , 60 , 90 , 120 , 150
( , ) ( , ),   arg max ( , )PMO i j LPA i j Eng i j

= ° ° ° ° ° °
= =ρ θ

θ
ρ              (19)    

where LPAρ  represents the matrix of local phase accumulation in orientation ρ and 

Engθ represents local energy in orientation . Local energy θ Engθ is calculated by: 

2

1 1

( ( )) ( ( ))
n n

s s

2Eng e s o s
= =

= +∑ ∑θ                                           (20) 

where e(s) and o(s) are the even and odd components of the image after applying Log-

Gabor filter at scale s . 

The result of the above two ideas is shown on a clean image first. Figure 4.7(a) is the 

original image; (b) is the SumPhase feature image that is obtained by Eq. (18); (c) is the 

PMO feature image obtained by Eq. (19). As Figure 4.7 shows, PMO pinpoints the edge 

more clearly than SumPhase, i.e., the local phase from the orientation with maximum 

corresponding energy provides a better edge feature than the phase summation from all 

the orientations. 

Next, the PMO feature image is calculated on a real BUS image. As Figure 4.8 shows, 

a ROI is first generated (Figure 4.8(a)) from the original BUS image, and the de-speckle 

method in [25] is used to suppress noise (Figure 4.8(b)). The PMO feature image (Figure 

4.8(c)) for the real BUS image contains quite complicated information, including the 

edges of the lesion and background tissues. Here, we have a series of post-processing for 

the PMO feature image to make both the lesion and background homogeneous. The PMO 

image is first multiplied by the de-speckled ROI image to unify the lesion region (Figure 
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4.8(d)); then the PMO image is filtered with a 5 ×  5 median filter three times to smooth 

the background (Figure 4.8(e)). After the above operations, the entire image becomes 

smoother and clearer, and the granular appearance is greatly reduced. However, most of 

the pixels are in the intensity range of [0, 0.5]; thus the whole image looks dark and dim. 

A brightening function in Eq. (21) is employed to adjust the intensity range to [0, 1]. To 

further increase the contrast between lesion and background, an intensification function 

in Eq. (22) is employed to make the bright pixels brighter and dark pixels darker. 

Therefore, the contrast between lesion and background is greatly enhanced (Figure 4.8(f)):  

                              
21 4( 0.5)    0 0.5

             1                 0.5< 1  
PMO PMO

PMO
PMO

⎧ − − ≤ ≤
= ⎨

≤⎩
                                   (21) 

                                   
2

2

2                  0 0.5
1 2(1 )     0.5< 1  

PMO PMO
PMO

PMO PMO
⎧ ≤ ≤

= ⎨
− − ≤⎩

                                     (22) 

Figure 4.8 shows the effect of the above operations. The major advantage of a PMO 

image after median filtering (Figure 4.8(e)) is that without much change to the original 

intensity distribution range, the local contrast between foreground and background is 

increased and the texture of the image becomes smoother and clearer. Comparing Figures 

4.8(a) and 4.8(e), we can see that the granular appearance inherent in ultrasound imaging 

is significantly reduced and the lesion boundary becomes clearer. Further contrast 

enhancement (Figure 4.8(f)) provides a better distinction between lesion and background 

for final segmentation. The average time cost of the obtaining the enhanced PMO image 

is 3.49 seconds.  
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(a) 

 

(b) 

Figure 4.7. (a) The original image. (b) Phase summation feature image obtained by Eq. 

(18). (c) PMO feature image obtained by Eq. (19). (Continued on next page.) 
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(c) 

Figure 4.7. Cont. (a) The original image. (b) Phase summation feature image obtained by 

Eq. (18). (c) PMO feature image obtained by Eq. (19). 
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(a) 

 
(b) 

 
Figure 4.8. (a) ROI. (b) De-speckled image by the method in [58]. (c) PMO feature image. 

(d) PMO feature image after multiplying by the de-speckled image in (b). (e) PMO 

feature image after median filtering. (f) Enhanced PMO image after applying Eqs. (21) 

and (22). (Continued on next page.) 
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(d) 

 

Figure 4.8.  Cont. (a) ROI. (b) De-speckled image by the method in [58]. (c) PMO feature 

image. (d) PMO feature image after multiplying by the de-speckled image in (b). (e) 

PMO feature image after median filtering. (f) Enhanced PMO image after applying Eqs. 

(21) and (22). (Continued on next page.) 
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(e) 

 
(f) 

 

Figure 4.8.  Cont. (a) ROI. (b) De-speckled image by the method in [58]. (c) PMO feature 

image. (d) PMO feature image after multiplying by the de-speckled image in (b). (e) 

PMO feature image after median filtering. (f) Enhanced PMO image after applying Eqs. 

(21) and (22).  
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CHAPTER 5 

LESION DETECTION BY NEUTROSOPHIC L-MEANS 

In this section, a neutrosophic l-means (NLM) clustering method is proposed. NLM is 

based on neutrosophy and fuzzy c-means to group pixels into a lesion region and 

background.  

5.1 Fuzzy C-Means 

The fuzzy c-means (FCM) is a soft clustering method wherein a datum is allowed to 

belong to two or more clusters. The algorithm was firstly developed by Dunn in 1973 [64] 

and improved by Bezdek in 1981 [65]. FCM is frequently used as clustering method in 

pattern recognition. It is based on the minimization of the following objective function: 

                                     
2

1 1

,   1
N C

m
m ij i j

i j

J u x c m
= =

= − ≤ <∑∑ ∞                                        (23) 

where m is a real number greater than 1, uij is the membership of xi in cluster j, xi is the 

ith of d-dimensional measured data, cj is the d-dimensional center of the cluster, and ||.|| is 

any norm expressing the similarity between the data and the center.  

Fuzzy partitioning is carried out through iterative optimization of the objective 

function above, with the update of membership uij and the cluster center cj by: 

                                                  2
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This iteration will stop when:  

                                                     { }( 1)max k k
ij ij iju u ε+ − <                                                  (26) 

where ε is a predefined termination criterion between 0 and 1, and k is the iteration step. 

This procedure converges to a local minimum or a saddle point of Jm.   

The algorithm is composed of the following steps: 

Step 1: Initialize U=[uij] matrix as U(0). 

Step 2: At k-step: calculate the centers vector C(k)=[cj] with U(k) : 
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                                                              (27) 

Step 3: Update U(k+1) : 
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                                                     (28) 

Step 4: if ||U(K+1)-U(k)|| < ε, then STOP; otherwise, return to step 2. 

5.2 Neutrosophy 

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope 

of neutralities, as well as their interactions with different ideational spectra [66, 67]. It is 

the basis of neutrosophic logic, a branch of philosophy that generalizes fuzzy logic, and 
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deals with paradoxes, contradictions, antitheses, antinomies. The word neutrosophy, 

taken from the Latin ‘neuter’ – neutral, Greek ‘sophia’ – skill/wisdom was introduced by 

Smarandache in 1980 [66, 68]. It is a generalization of fuzzy logic based on the 

proposition that t true, i indeterminate, and f false. t, i, f  are real values from the ranges T, 

I, F, with no restrictions on them. The following three examples help illustrate how 

neutrosophy is closer to human reasoning than other forms of logic [66].  

1. The proposition "Tomorrow it will be raining" does not mean a fixed-valued 

components structure; this proposition may be, say, 40% true, 50% indeterminate, 

and 45% false at time t1; but at time t2, it may change to 50% true, 49% 

indeterminate, and 30% false (based on new evidence, sources, etc.); and 

tomorrow at, say, time t145 the same proposition may be 100% true, 0% 

indeterminate, and 0% false (if tomorrow it will indeed rain). This is the dynamics: 

the truth value for one given time may change for another given time. 

2. The truth value of a proposition may change from one place to another place. For 

example, the proposition “It is raining” is 0% true, 0% indeterminate and 100% 

false in Albuquerque, New Mexico, but moving to Las Cruces, New Mexico the 

truth value can change, and it may be (1, 0, 0) or some other value. 

3. The truth value depends/changes with respect to the observer (subjectivity is 

another parameter of the functions/operators T, I, F). For example: “John is smart” 

can be (0.35, 0.67, 0.60) according to his boss, but (0.80, 0.25, 0.10) according to 

himself, or (0.50, 0.20, 0.30) according to his secretary, etc. 
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U

Neutrosophic logic can solve some problems that cannot be solved by fuzzy logic [67]. 

For example, a case in which suspected breast cancer is diagnosed by two doctors. They 

both diagnose the case as malignant with 80% assurance. However, the two doctors may 

have different levels of background knowledge and experience. One is an expert, while 

the other is fresh in this field. The same assurance result should not have the same impact 

on the final diagnosis decision. There also exist a lot of other problems with 

indeterminacy, such as weather forecast, political elections, sporting events, etc. Fuzzy 

logic cannot handle indeterminate conditions in such matters very well [69]. Neutrosophy, 

on the other hand, introduces an indeterminacy set to deal with such conditions. 

Definition 1 (Neutrosophic set) [66, 67]. Let U be a universe of disclosure, and A ⊂  . 

An element x is denoted as x(t, i, f), and belongs to A in the following way: it is t% true in 

the set, i% indeterminate, and f% false, where t varies in T, i varies in I, and f varies in F. 

The sets T, I, and F may be any real sub-unitary subsets: discrete or continuous; single-

element, finite, or infinite; union or intersection of various subsets; etc. They may also 

overlap.  

Figure 5.1 illustrates the relationship among a neutrosophic set and other sets. In a 

classical set, I = ׎, T and F have binary values 0 or 1, and T + F =1. In a fuzzy set, I = ׎, 

T and F are real numbers [1 ,0] א, and T + F =1. In a neutrosophic set, I, T, F 1 ,-0[ א+[.  
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Figure 5.1. Relationships among a neutrosophic set and other sets. 

Fuzzy set 

Classical set

Neutrosophic set 

5.3 Definitions of Neutrosophic Components for  
BUS Image Segmentation 

When applying neutrosophy to solve a specific problem, one must map the problem 

into the neutrosophic domain by defining the neutrosophic components. In this proposal, 

the target is segmenting the lesion from the background. There are only two clusters: 

foreground (lesion) and background. For this application, the neutrosophic pixel and its 

neutrosophic components are defined as follows. 

Definition 2 (Neutrosophic pixel) [67]. Let X be a universe of the pixels, and a 

foreground set A  X.  A pixel p is noted as p(t, i, f), and belongs to A in the following 

way: it is t% true in the foreground, i% indeterminate, and f% false, where t varies in T, i 

varies in I, and f varies in F. T, I, and F are real standard sets with the range [0, 1]. 

⊂

Definition 3 (Neutrosophic components for a pixel). In an image, the three neutrosophic 

components T, I, and F for a pixel p at position (u, v) are defined as: 

 ( , ) 1 ( , )T u v G u v= −                                                                 (29) 
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 ( , ) ( , )*(1 ( , ))I u v BLUR u v EDGE u v= −                                      (30) 

 ( , ) 1 ( , )F u v T u v= −                                                              (31) 

where 

                                  (32) 
2(1 ( , ))   ( , ) 0.5

( , )
2 ( , )           ( , ) 0.5

T u v T u v
BLUR u v

T u v T u v
− ≥⎧

= ⎨ <⎩

               (33) 
1   if  is on the edge by sobel edge detector      

( , )
0   if  is not on the edge by sobel edge detector 

p
EDGE u v

p
⎧

= ⎨
⎩

G(u, v) is the intensity value normalized in [0, 1]. The motivation of the neutrosophic 

components definition is discussed below. 

We use the intensity value normalized in [0, 1] and subtracted by 1 as the T value. 

This is because a lesion is dark and the background is bright within the image. F value is 

the complement of T value. Although T and F are easily and simply defined, defining 

indeterminate set I is quite interesting and challenging. One should answer the following 

two questions: 1) what kind of pixels are hard to determine (with high indeterminacy) 

according to a specific task, and 2) how does one best deal with such pixels. In this paper, 

our target is separating pixels into two clusters: foreground and background. The 

foreground represents the lesion region and background includes all the pixels in the 

image except the lesion region. After preprocessing (de-speckle and contrast-

enhancement), the image is composed of a dark lesion region, bright background, dark 

noise regions in the background, and some regions with intensity values somewhere in 

between the foreground and background. How we cluster the pixels with mediate 

intensities will greatly affect the segmentation accuracy. In order to assign high 



60 
 
indeterminacy to such pixels, we calculate a BLUR matrix by Eq. (32). The pixels with 

intensity values around 0.5 have a high indeterminacy value, and the pixels with intensity 

values near the extremes 0 or 1 have a low indeterminacy value. However, not all the 

pixels with mediate intensity should have a high indeterminacy value. If a pixel with 

mediate intensity lies on the lesion’s edge, the pixel should not have a high indeterminate 

value. Otherwise, the edge will be blurred since we use neighborhood mean to replace a 

pixel with high indeterminacy. This is why we calculate an EDGE matrix using the Sobel 

edge detector, where the pixels on sharp edges are equal to 1 and other pixels are 

assigned 0. By multiplying BLUR and (1−EDGE), only the pixels with mediate values 

and not on the edges have high indeterminate values. 

The second question is how to deal with the pixels with high indeterminacy. Here, we 

use the neighborhood mean to replace the pixel with high indeterminate value: 

 
/2/2

/2 /2

1( , )  ( , )
j wi w

s i w t j w

G u v G s t
w w

++

= − = −

=
× ∑ ∑                                       (34) 

where w is the window size and G(u, v) is the intensity value. If we repeat the process, an 

indeterminate pixel inside a lesion will be gradually integrated into the lesion region, 

while an indeterminate pixel in the background will be gradually assimilated into the 

background. Notice that we only apply Eq. (34) for the pixels with high indeterminacy. 

The intensity value of pixels with low indeterminacy will not be changed. The threshold 

to distinguish high and low indeterminacy is discussed in the following section. 
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5.4 Neutrosophic L-Means (NLM) 

Based on fuzzy c-means and the neutrosophic image defined above, a new clustering 

method for BUS image segmentation, called neutrosophic l-means (NLM) is proposed. 

NLM is composed of the following steps: 

Step 1: Initialize membership matrix U(k) = [uij], k = 0. Here, i is the pixel index, j is the 

cluster index, and k is the iteration number.  

Step 2: k = k + 1. At the kth iteration, calculate T(k), I(k), and F(k) for image G(k) (࣯ൈࣰሻ by 

using Eqs. (29) through (31), and transform T(k) and I(k) into vectors VT and VI.  

Step 3: Calculate the center vector L(k) = [lj] using U(k), VT, and VI.  

 1
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where m is the membership parameter and N is the total number of pixels in the image. 

Here, the indeterminate degree VI is used to control a pixel’s contribution to the cluster 

centers. If a pixel’s indeterminate value is high, its contribution to all cluster centers is 

reduced. If a pixel’s indeterminate value is low, its contribution to cluster centers is 

decided by its membership. 

Step 4: Update U(k+1) by: 
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where L is the number of clusters. 

Step 5: Update image G(k+1)  by:       
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where w is the size of the window, (u, v) is the location of the  pixel centered the 

window, and λ is the indeterminacy threshold. 

Step 6: If ( 1) ( )k kU U ε+ − < , stop; otherwise, go to step 2. 

In this work, L = 2 since there are two clusters; ε  = 0.01, m = 2, w = 5, and λ = 0.1 are 

determined by experiments. The output binary image is obtained by: 

      (39) 0 11        If foreground membership >background membership 
( , )

0       Otherwise                                                                              
i iu u

B u v ⎧
= ⎨
⎩

Next, post-processing is conducted to remove false foreground regions. More than one 

connected component in binary image B implies that besides the real lesion region, there 

are false foreground regions. In Figure 5.2, region a is the lesion region which is the true 

foreground, while b, c, and d are the false foregrounds. Assuming there is only one lesion 

in each ROI, the way to find the real foreground is to choose the one that crosses the 

image center, because the lesion is always located at the center of the ROI when utilizing 

our ROI generation method. Therefore, only the connected component that crosses the 

image center is kept in the final output image. The average processing time of the NLM 

algorithm (include post-processing) is 6.51 seconds for one image.  

The proposed method is able to recognize the tumor even when the output of NLM has 

a white hole inside the lesion area (e.g., Figure 5.2).  The intensity value of a pixel with 
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Figure 5.2 True foreground (a) and false foregrounds (b, c and d). 

a high indeterminacy is replaced by the intensity mean of its neighborhood. Therefore, 

the boundary pixels of the bright area are gradually integrated into the dark area, and the 

bright area becomes smaller and smaller during the iterative process. However, if the 

center of the bright area is too bright, it will not completely disappear, and a white hole 

remains inside the lesion (Figure 5.2). The post-processing of the white hole depends on 

the task itself: if we just want to get the contours of the lesion, we can fill in the hole by a 

simple image operation (such as Matlab function ‘imfill’); if we want to keep the 

inhomogeneous information inside the lesion, which might be a useful feature to detect 

cancer, we can leave the hole unchanged. No matter which we prefer, the lesion is always 

recognized as a single lesion. In this work, all the holes inside the lesions are filled by 

morphological operations.   
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CHAPTER 6 

EXPERIMENTAL RESULTS 

To validate the proposed method, we compared it with other segmentation methods. 

The best way to make a fairly comparison among segmentation methods is to use a 

benchmark and evaluate the methods by a commonly accepted criterion. Unfortunately, 

very little published research in medical image segmentation field conducts a fair 

comparison with other methods. Without peer comparison, it is hard to claim how good a 

method is, even if it can achieve a promising performance by using its own database. In 

this section, we overcome this obstacle by conducting comparisons using a common 

database. We also evaluate the results statistically using multiple metrics (7 metrics are 

used here), which measure the segmentation performance comprehensively from different 

aspects.     

6.1 Database 

The database is composed of 60 BUS images: 29 cases are benign, 31 cases are 

malignant as confirmed by pathology. The images were collected by the doctors of the 

Second Affiliated Hospital of Harbin Medical University (Harbin, China), using a VIVID 

7 (GE, Horten, Norway) with a 5-14 MHz linear probe. Informed consent to the protocol 

was obtained from all patients in the study. The average size of the images is 374×472 

pixels. The size of the lesions ranges from 0.8 to 6.5 cm, and average size is 1.8 cm. 

Every lesion is manually outlined by an experienced radiologist. The manual delineations 

serve as the reference standard.  
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6.2 Evaluation Metrics 

6.2.1 Area Error Metrics 

Area error metrics can evaluate how much of the lesion region is correctly covered by 

the generated lesion region and how much is wrongly covered. The true positive (TP) 

area ratio, the false positive (FP) area ratio, the false negative (FN) area ratio [21] and the 

similarity (SI) [28] are calculated: 

                     TP Area Ratio= m

m

aA A
A
∩

                                                      (40) 

                    FP Area Ratio m a m
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A A A
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∪ −
=                                                    (41)  
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                                                          (43) 

Aa is the pixel set of the automatically generated lesion region by the proposed method, 

and Am is the pixel set of the manually outlined lesion region by the radiologist. Figure 

6.1 shows the areas corresponding to TP, FP, and FN, respectively. SI measures how 

much the computer generated lesion region is similar to the radiologist’s delineation, 

which is an overall performance evaluation. Mathematically, if TP area ratio is given, 

there is no need to list the FN area ratio since FN=1-TP. 
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Figure 6.1. Areas corresponding to TP, FP, and FN regions. 

6.2.2 Boundary Error Metrics 

We use two boundary error metrics to analyze the difference between the contours 

generated by the proposed method and the contours marked by the radiologist. The two 

error metrics are Hausdorff distance (HD) and mean absolute distance (MD) [21]. We 

denote the manually delineated boundary as Q = {q1, q2, …, qߛ} and the computer 

segmented result as P = {p1, p2, …, pߤ},  and each element of Q or P is a point on the 

corresponding contour. We find the distances of every point in P to all points in Q, and 

define the shortest distance of pj to contour Q as: 

, 1,...,jp P j∀ ∈ = μ , we find 

( , ) min || || , 1,...,j j ww
d p Q p q w= − = γ                                      (44)     

where|| · || is 2D Euclidean distance. HD and MD are defined as:  
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HD= max ( , ),  1,...,jj
d p Q j = μ                                            (45) 

1
( , )

MD=
j

j
d p Q

=
∑
μ

μ
                                                       (46) 

where γ and ߤ are the numbers of boundary pixels on contours Q and P, respectively. HD 

measures the worst possible disagreement between two contours while the MD measures 

the disagreement averaged over the two boundaries. The corresponding normalized errors 

Norm.HD and Norm.MD [21] are computed by:  

 HDNorm.HD =
γ

, MDNorm.MD =
γ

                                     (47) 

6.3 Comparison of NLM and Fuzzy C-Means 

First, we compare NLM with FCM using the same database. Every preprocessing step 

is carried out exactly the same before applying NLM or FCM. Additionally, the same 

post-processing operations of removing false foreground and noisy regions are applied 

for both NLM and FCM. Figure 6.2(a) is the original image. Figure 6.2(b) is the 

enhanced PMO image. Figures 6.2(c) through (d) are the outputs of FCM and NLM, 

respectively. Figure 6.2(e) is the radiologist’s manual delineation. Figure 6.3 shows 

another example. Table 6.1 provides a statistical analysis of the two methods.  

 



68 
 

(a)
 

Figure 6.2. (a) ROI automatically generated from original image. (b) Manually 

delineation by radiologist. (c) Enhanced PMO image. (d) Output of FCM. (e) Output of 

FCM after post-processing. (f) Output of NLM. (g) Output of NLM after post-processing. 

(Continued on next page.) 
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(b) (c)

(d) (e) 

(g) (f) 
 

Figure 6.2. Cont. (a) ROI automatically generated from original image. (b) Manually 

delineation by radiologist. (c) Enhanced PMO image. (d) Output of FCM. (e) Output of 

FCM after post-processing. (f) Output of NLM. (g) Output of NLM after post-processing. 
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(a)  

Figure 6.3. (a) ROI automatically generated from original image. (b) Manually 

delineation by radiologist. (c) Enhanced PMO image. (d) Output of FCM. (e) Output of 

FCM after post-processing. (f) Output of NLM. (g) Output of NLM after post-processing. 

(Continued on next page.) 
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(b) 

(e) 

(g) 

(d) 

(c) 

(f) 
 

Figure 6.3. Cont. (a) ROI automatically generated from original image. (b) Manually 

delineation by radiologist. (c) Enhanced PMO image. (d) Output of FCM. (e) Output of 

FCM after post-processing. (f) Output of NLM. (g) Output of NLM after post-processing. 
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The major advantage of NLM over FCM is that NLM can deal with indeterminate 

intensity regions effectively and accurately. As Figure 6.2 shows, based on the 

neighborhood information, NLM incorporates the indeterminate regions into background. 

But FCM misclassifies the indeterminate regions into foreground, since it uses only the 

distance to calculate the cluster centers (fuzzy membership is based on distance, too), 

without considering the indeterminate degree. Another advantage of NLM is that it can 

smooth the complex background; therefore, it can prevent the lesion region from 

connecting with the false foregrounds. Figure 6.3 gives such an example. The lesion 

region obtained by NLM (Figure 6.3 (f)) is not connected with any dark region in the 

background. Therefore, after the simple post-processing, the lesion boundary obtained by 

NLM is quite clear and accurate (Figure 6.3 (g)). On the contrary, the output of FCM 

(Figure 6.3(d)) has many false foreground and noisy regions. Although we apply the 

same post-processing operation to FCM, the result still mis-connects with one of the false 

foreground regions (Figure 6.3 (e)). Statistically, 25% of the images in the database mis-

connect with false foregrounds by using FCM. Besides the above two major advantages, 

NLM finds more accurate lesion boundaries than FCM. This can be seen from the 

statistical analysis in Table 6.1.   

Table 6.1. Comparison of NLM and FCM.  

Methods Area error metrics Boundary error metrics Average 

time/case TP(%) FP(%) SI(%) Avg.HD Avg.MD Norm.HD Norm.MD 

 FCM 89.83 8.68 83.49 28.76 5.63 5.64 1.20 3.92s 

 NLM 94.36 8.08 87.39 16.63 3.48 3.17 0.70 6.51s 
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As Table 6.1 shows, NLM outperforms FCM in all the accuracy metrics. The higher 

TP rate (improved from 89.83% to 94.36%) indicates that NLM covers more of the lesion 

region than the other two methods. The lower FP rate (decreased from 9.03% to 8.08%) 

indicates less mis-coverage of the non-lesion regions. SI is an overall evaluation of the 

similarity between the two regions, and an improvement from 83.49% to 87.39% is quite 

remarkable. The better performance of NLM is proven by the boundary error metrics, too. 

Here, we want to emphasize that the average Hausdorff distance (measure the worst 

point-distance between two contours) is reduced from 28.76 to 16.63 pixels, and the 

average mean distance is reduced from 5.63 to 3.48 pixels, which indicate that the 

contours generated by NLM are much closer to the manual delineations. The time cost of 

FCM (3.92 seconds) is faster than that of NLM (6.51 seconds). Although NLM takes 

about 3 seconds longer than FCM for an average case, NLM can achieve much better 

accuracy and its processing speed is quite acceptable for clinical applications. The longer 

processing time is spent on computation of the neutrosophic components for each pixel; 

however, it makes the clustering process more precise.    

6.4 Comparison of the Proposed Method with  
Other BUS Segmentation Methods  

In this section, we compare the proposed method with three other automatic 

segmentation methods for BUS images. The first one is a highly cited BUS segmentation 

method based on active contour [21], that uses low-level texture information to find the 

points on a boundary and employs an active contour model to detect the final lesion 

boundary; the second is a level-set-based method [28], combining both global statistical 
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information and local edge information; the third is a watershed-based segmentation 

method that applies neutrosophy as proposed by Zhang [70].   

Figure 6.4 shows the segmentation results of the four methods. Figure 6.4(a) is the 

original image. Figure 6.4(b) is the manual delineation by a radiologist, which serves as 

the reference standard. Figures 6.4 (c) through (f) are the segmentation results of the 

method in [21], the method in [28], the method in [70], and the proposed method, 

respectively. The lesion boundary detected by the proposed method is much closer to the 

radiologist’s manual delineation and more reasonable than that of the other three methods.   

The statistical analyses of the performances of the four methods are conducted by 

using the same database. Tables 6.2 and 6.3 list the accuracies and time complexities of 

the four methods. Compared with the other three methods, the proposed method achieves 

the best TP, FP, and SI rates. Greatly reduced Hausdorff distance (HD) and other 

boundary error metrics also show the contour generated by the proposed method is closer 

to the ground truth than that of the other three methods on average. Time complexity of 

the proposed method is comparable with that of the active contour method in [21] and 

much more efficient than that of the level-set based method in [28]. The most efficient is 

the watershed based method [70] (only 5 seconds); however, its accuracy is low. All in 

all, the proposed method achieves the best accuracy while keeping a reasonable 

processing time, when compared with the other three methods.  
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(a) 

(b)

 

Figure 6.4. (a) The original image. (b) Manual delineation by radiologist. (c) Output of 

the method in [21]. (d) Output of the method in [28]. (e) Output of the method in [70]. (f) 

Output of the proposed method. (Continued on the next page.) 
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(c)

(d) 
 

Figure 6.4. Cont. (a) The original image. (b) Manual delineation by radiologist. (c) 

Output of the method in [21]. (d) Output of the method in [28]. (e) Output of the method 

in [70]. (f) Output of the proposed method. (Continued on the next page.) 
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(e)

(f) 
 

Figure 6.4. Cont. (a) The original image. (b) Manual delineation by radiologist. (c) 

Output of the method in [21]. (d) Output of the method in [28]. (e) Output of the method 

in [70]. (f) Output of the proposed method.  
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Table 6.2. Comparison of Accuracy of the Active Contour Method [21], Level-Set 

Method [28], Watershed Method [70], and the Proposed Method. 

Methods Area error metrics Boundary error metrics 

TP(%) FP(%) SI(%) Avg.HD Avg.MD Norm.HD Norm.MD

Method in [21] 88.50 9.68 80.51 19.96 5.13 4.03 1.09 

Method in [28] 92.98 9.03 85.98 23.52 4.39 4.75 0.93 

Method in [70] 89.49 19.25 75.54 22.97 7.46 4.52 1.50 

Proposed method 94.36 8.08 87.39 16.63 3.48 3.17 0.70 

 

Table 6.3. Comparison of Time Complexity of the Active Contour Method [21], Level-

Set Method [28], Watershed Method [70], and the Proposed Method. 

  Methods Average time/case 

  Method in [21] 21.90s 

  Method in [28] 60.06s 

  Method in [70] 5.08s 

  Proposed method 20.43s 

 

6.5 Sensitivity Analysis 

A method is robust if its performance is almost insensitive to variation of the 

parameters [71]. We conducted sensitivity analysis by varying the parameters used in the 

proposed method. The tunable parameters are m (for membership calculation), w (for the 

size of window), and λ (for the threshold of indeterminate value).  
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6.5.1 Effect of Tuning Membership Parameter m 

The parameter m is used to calculate membership in Eq. (36). We varied m and 

computed the standard deviations (std) of the area error and boundary error metrics. As 

Table 6.4 shows, none of the area error metrics’ stds exceed 0.2%, and all the boundary 

error metrics’ stds are under 0.4 pixel, i.e., the proposed method is quite robust to 

parameter m.  

Table 6.4 Performance and Standard Deviation for Different Values of m.  

m Area error metrics Boundary error metrics 

TP(%) FP(%) SI(%) Avg.HD Avg.MD Norm.HD Norm.MD

2 94.36 8.08 87.39 16.63 3.48 3.17 0.70 

3 94.07 8.24 86.98 17.42 3.63 3.33 0.74 

4 94.40 8.35 87.22 16.99 3.54 3.25 0.72 

5 94.39 8.36 87.20 17.28 3.56 3.30 0.72 

Std 0.16 0.13 0.17 0.35 0.06 0.07 0.02 

 

6.5.2 Effect of Tuning Window Size w 

The parameter w represents the window size used in NLM algorithm step 5. We varied 

w to calculate the stds. The small stds for all the evaluation metrics shown in Table 6.5 

prove that the proposed method is robust to window size.  
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Table 6.5 Performance and Standard Deviation for Different Values of w. 

w Area error metrics Boundary error metrics 

TP(%) FP(%) SI(%) Avg.HD Avg.MD Norm.HD Norm.MD

3 94.38 8.40 87.17 17.47 3.58 3.35 0.73 

5 94.36 8.08 87.39 16.63 3.48 3.17 0.70 

7 94.06 8.65 86.74 17.72 3.76 3.35 0.75 

9 94.03 9.84 85.83 18.32 4.01 3.49 0.81 

Std 0.19 0.77 0.69 0.70 0.23 0.13 0.05 

 

6.5.3 Effect of Tuning Threshold λ 

We tune indeterminacy threshold λ and record the evaluation results in Table 6.6. The 

small stds for all the evaluation metrics soundly demonstrate that the proposed method is 

robust to parameter λ. 

Table 6.6 Performance and Standard Deviation for Different Values of λ. 

λ Area error metrics Boundary error metrics 

TP(%) FP(%) SI(%) Avg.HD Avg.MD Norm.HD Norm.MD

0.1 94.36 8.08 87.39 16.63 3.48 3.17 0.70 

0.2 94.38 8.27 87.26 17.00 3.52 3.25 0.72 

0.3 94.45 8.32 87.29 17.32 3.54 3.31 0.72 

Std 0.05 0.13 0.07 0.35 0.03 0.07 0.01 
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6.6 Limitations of the Proposed Method 

The proposed method can deal with normal shadowing effect but fails with the images 

having strong posterior shadows. Strong posterior shadows include the cases that the 

intensity values of lesion and shadow are quite close and they are tightly connected. 

These shadowed regions can lead to false-positives (Figure 6.5). Also, the case with 

multiple lesions in one image is not included in this study (Figure 6.6). These problems 

will be the focus of future research.    

(a)

(b) (c)  
Figure 6.5. (a) A case with posterior shadowing. (b) Manual delineation by radiologist.  

(c) Output of the proposed method. 
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(c) 

(a)

(b) 
 

Figure 6.6. (a) A case with multiple lesions. (b) Manual delineation by radiologist.  

(c) Output of the proposed method. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS FOR RESEARCH 

In this dissertation, we study lesion boundary detection for breast ultrasound images 

and propose a novel lesion segmentation method. The proposed segmentation method is 

composed of several steps: automatic ROI generation, speckle reduction, contrast 

enhancement, and neutrosophic l-means clustering (NLM). Automatic ROI (region of 

interest) generation facilitates the full automation of the segmentation method and speeds 

up the segmentation process. Complicated background is removed from the image; hence, 

the method focuses on the lesion area rather than the entire image, and segmentation 

accuracy is improved. Two different speckle reduction methods are studied, and one is 

used in this work as a preprocessing step. A novel local phase feature PMO is proposed 

and utilized to enhance the contrast and quality for the BUS images. In the neutrosophic 

l-means clustering, the neutrosophy, a new branch of philosophy, is applied to image 

segmentation. Through a comparison with traditional fuzzy c-means, the positive effect 

of applying neutrosophy is demonstrated. To evaluate the whole segmentation method 

proposed in this work, a quantitative analysis of both accuracy and efficiency are 

conducted on the database composed of 60 BUS images. Comparison with other BUS 

image segmentation methods using the same database proves the superiority of the 

proposed method. Finally, sensitivity analysis shows the robustness of the newly 

proposed segmentation method.  

The advantages of the proposed method can be summarized as: 

1. It is completely automatic. 
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2. It finds the accurate lesion boundaries even in complicated and low-contrast BUS 

images. 

3. In accuracy, it outperforms the fuzzy c-means clustering as well as three other 

BUS segmentation methods. Experiments are carried out using a common 

database and the performance is evaluated by a set of comprehensive criteria. 

4. The analysis time of the proposed method is about 20 seconds for each case, 

which is more efficient than the active-contour-based method and the level-set-

based method. The watershed-based-method is the fastest, but unfortunately it 

trades speed for accuracy, with its accuracy rate being the lowest among the 

methods studied in this work. 

5. The proposed method is quite robust. 

One limitation of the proposed method is that it sometimes fails in cases containing 

large posterior shadowing areas connected with the lesion. A second limitation of the 

proposed method is that it can detect the contours of only one lesion per image. These 

problems will be addressed in future research. Another future direction is to use this 

method for other applications, such as echocardiography, prostate ultrasound, etc. Since 

this method is based on the characteristics of ultrasound imaging, it should be easily 

adjusted for other ultrasound images. Future work also includes classifying the lesions 

into benign/malignant based on the features extracted from the segmentation results.  
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