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ABSTRACT 

 
 

Visualization, Kriging, and Simulation 
 

of Circular-Spatial Data 
 
 

by 
 
 

William J. Morphet, Doctor of Philosophy 
 

Utah State University, 2009 
 
 

Major Professor: Dr. Jürgen Symanzik 
Department: Mathematics and Statistics 
 
 

The circular dataimage is defined by displaying direction as the color at the same 

direction in a color wheel composed of a sequence of two-color gradients with color 

continuity between gradients.  The resulting image of circular-spatial data is continuous 

with high resolution.  Examples include ocean wind direction, Earth’s main magnetic 

field, and rocket nozzle internal combustion flow.  The cosineogram is defined as the 

mean cosine of the angle between random components of direction as a function of 

distance between observation locations.  It expresses the spatial correlation of circular-

spatial data.  A circular kriging solution is developed based on a model fitted to the 

cosineogram.  A method for simulating circular random fields is given based on a 

transformation of a Gaussian random field.  It is adaptable to any continuous probability 

distribution.  Circular random fields were implemented for selected circular probability 

distributions.  An R software package was created with functions and documentation. 

(391 pages) 
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 Error 000 ˆ uue −=  Vectors ..............................................................................  81 
 
4-3 Effect of Cosine Model on the Kriging Estimate Around 
 the Measurement Location.............................................................................  92 
 
4-4 Effect of Range, Mean Resultant Length ρ , and nugget gn  on 

 the Circular Kriging Variance 2ˆCKσ ..................................................................  100 
 
5-1 Simulated Sample of a von Mises CRF, 8.0=ρ , Range r = 10 ....................  108 

5-2 Mapping a GRV to a CRV via the CDFs ZF  and ΘG .....................................  109 

5-3 Simulated GRF with Spherical Covariance Model and 
 Range r = 10 Corresponding to Figure 5-1.....................................................  109 

5-4 Similar Shapes of Variograms and Inverted Cosineogram Reflect 
 Transformations of the Spatial Correlation of the GRF ..................................  116 
 
5-5 Standardization of the GRV Increases Fit of the GRV and the CRV..............  121 
 
5-6 Variability of Fit of the Simulated Triangular CRV Increases 
 as ρ  Decreases..............................................................................................  123 



 

 

xvi 
LIST OF FIGURES 

 
 

Figure                              Page 
 
5-7 Standardization of the GRV Biases GRF the Covariance ..............................  124 

5-8 Evaluation of a von Mises CRF, 8.0=ρ , Overfit, Range r = 10 ....................  126 
 
6-1 Comprehensive Example - The Trend Model, or the Underlying 
 First Order Component of Variation................................................................  132 
 
6-2 Comprehensive Example - Simulated Sample of a von Mises CRF, 

 5.0,0 == ρµ  with Underlying Trend...........................................................  132 

6-3 Comprehensive Example - Comparison of the Trend Estimate (Tan) 
 with the True Trend (Blue)..............................................................................  133 

6-4 Comprehensive Example - Enlarged View of the Data (Black), Trend 
 Estimate (Tan), and Residual Rotation (Dashed Red) 
 Corresponding to the Green Highlighted Area 
 in Figures 5-9 to 5-11 .....................................................................................  134 
 
6-5 Comprehensive Example - Points of the Cosineogram, and the 
 Exponential, Gaussian, and Spherical Cosine Models 
 of Circular-Spatial Correlation. .......................................................................  135 
 
6-6 Comprehensive Example - Enlarged View of the Kriging (Light Grey) 
 and the Residual Rotations (Red) Corresponding to 
 the Green Highlighted Area in Figures 5-9 to 5-11.........................................  136 
 
6-7 Comprehensive Example - Enlarged View of the Interpolation (Purple) 
 of the Trend Estimate (Tan) Corresponding to the Green 
 Highlighted Area in Figures 5-9 to 5-11..........................................................  137 
 
6-8 Comprehensive Example - Enlarged View of the Circular Spatial Data 
 Estimate (Gold) and the Sample (Black) Corresponding to the 
 Green Highlighted Area in Figures 5-9 to 5-11...............................................  138 
 
6-9 Comprehensive Example – Circular Dataimage (Left) of the 
 Circular Spatial Data Estimate with HSV Color 
 Wheel (Right) of Direction. .............................................................................  139 
 
6-10 Comprehensive Example - Circular Kriging Variance 
 with Measurements on a Regular Grid ...........................................................  140 

C-1 Evaluation of a Cardioid CRF, 25.0=ρ , Overfit, Range r = 10 .....................  161 



 

 

xvii 
LIST OF FIGURES 

 
 

Figure                             Page 
 
C-2 Evaluation of a Triangular CRF, 203.0=ρ , Overfit, Range r = 10 ................  162 

C-3 Evaluation of a Uniform CRF, Overfit, Range r = 10 ......................................  163 

C-4 Evaluation of a Wrapped Cauchy CRF, 5.0=ρ , Overfit, Range r = 10.........  164 

D-1 Evaluation of a Cardioid CRF, 05.0=ρ , Overfit, Range r = 10 .....................  166 

D-2 Evaluation of a Cardioid CRF, 05.0=ρ , Range r = 10..................................  167 

D-3 Evaluation of a Cardioid CRF, 475.0=ρ , Overfit, Range r = 10...................  168 

D-4 Evaluation of a Cardioid CRF, 475.0=ρ , Range r = 10 ...............................  169 

D-5 Evaluation of a Triangular CRF, 05.0=ρ , Overfit, Range r = 10 ..................  170 

D-6 Evaluation of a Triangular CRF, 05.0=ρ , Range r = 10...............................  171 

D-7 Evaluation of a Triangular CRF, 385.0=ρ , Overfit, Range r = 10 ................  172 

D-8 Evaluation of a Triangular CRF, 385.0=ρ , Range r = 10.............................  173 

D-9 Evaluation of a von Mises CRF, 05.0=ρ , Overfit, Range r = 10 ..................  174 

D-10 Evaluation of a von Mises CRF, 05.0=ρ , Range r = 10...............................  175 

D-11 Evaluation of a von Mises CRF, 95.0=ρ , Overfit, Range r = 10 ..................  176 

D-12 Evaluation of a von Mises CRF, 95.0=ρ , Range r = 10...............................  177 

D-13 Evaluation of a Wrapped Cauchy CRF, 05.0=ρ ,  
 Overfit, Range r = 10 ......................................................................................  178 

D-14 Evaluation of a Wrapped Cauchy CRF, 05.0=ρ , Range r = 10 ...................  179 

D-15 Evaluation of a Wrapped Cauchy CRF, 95.0=ρ , 
 Overfit, Range r = 10 ......................................................................................  180 

D-16 Evaluation of a Wrapped Cauchy CRF, 95.0=ρ , Range r = 10 ...................  181 



 

 

xviii 
LIST OF FIGURES 

 
 

Figure  Page 
 
G-1 Visual Verification of Cardioid CDF, 30.0=ρ , 
 Support [ )ππ +− ,  Radians...............................................................................  192 
 
G-2 Visual Verification of Triangular CDF, 30.0=ρ , 
 Support [ )ππ +− ,  Radians...............................................................................  193 
 
G-3 Visual Verification of von Mises CDF, 30.0=ρ , 
 Support [ )ππ +− ,  Radians...............................................................................  195 

H-1 Incorrect Wrapped Cauchy CDF, 75.0=ρ , Support [ )π2,0  Radians ...........  196 
 
H-2 Dataplot WCACDF of Wrapped Cauchy CDF, 75.0=ρ , 

 Support [ )π2,0  Radians .................................................................................  197 
 
H-3 Three Forms of the Wrapped Cauchy CDF, 75.0=ρ , 
 Support [ )ππ +− ,  Radians ...............................................................................  199 
 
H-4 Iterated Wrapped Cauchy CDF, 95.0=ρ , Support [ )ππ ,−  Radians, 
 15 Iterations....................................................................................................  200 
 
H-5 Visual Verification of Wrapped Cauchy CDF, 75.0=ρ , 

 Support [ )ππ ,−  Radians................................................................................  201 

I-1 Visual Verification of Triangular Inverse CDF, 2/4*95.0 πρ = , 
 Support [ )ππ +− ,  Radians ...............................................................................  203 
 
J-1 Mapping a GRF to a CRF via CDFs...............................................................  207 

J-2 Shapes of Variograms and Inverted Cosineogram Show 
 Spatial Correlation Transformed from the GRF 
 with Spherical Covariance and Range r = 10 .................................................  208 
 
J-3 Plots of True Model, Simulated CRF, Data, Fitted Model, and Residuals......  213 

J-4 Distance Between Locations (Red) vs. Angular Distance (Grey) 
 Between Observations ...................................................................................  214 

J-5 Features of the Cosineogram Model ..............................................................  215 

J-6 Cosineocloud..................................................................................................  215 



 

 

xix 
LIST OF FIGURES 

 
 

Figure                              Page 
 
J-7 Empirical Cosineogram ..................................................................................  216 

J-8 Cosine Models for Circular-Spatial Data, Range r = 8 ...................................  218 

J-9 Fitted Cosine Models......................................................................................  222 

J-10 Residual Rotations (Black) Overplotted on the Circular Kriging (Tan) ...........  224 

J-11 Smoothing via the Nugget Not Effective at Data Locations............................  225 

J-12 Smoothing the Kriging Components Is Effective at All Locations...................  226 

J-13 Variability of the Circular Kriging Estimate 
 with Locations on a Regular Grid ...................................................................  227 

J-14 Variability of the Circular Kriging Estimate with Random Locations ...............  228 

J-15 Six Cases of Interpolation Location Indicated by Labeled Red Dots..............  229 

J-16 Effect of Interpolation on Smoothed Average Wind Direction 
 with BGYR Color Wheel .................................................................................  229 
 
J-17 Fitted Model (Black) Overplotted on the Fitted Model Interpolation (Tan)......  231 

J-18 Original Data (Black) Overplotted on the Estimates (Tan) .............................  232 

J-19 Enlargement of Figure J-16............................................................................  233 

J-20 Image Plot of WorldMask ...............................................................................  235 

J-21 Comparison of Arrow and Circular Dataimage Plots 
 of Ocean Wind Average Direction ..................................................................  236 

J-22 Evolution of the YRGB Color Wheel...............................................................  238 

J-23 Initial Display of the GUI, the Circular Dataimage Window 
 (R Graphics Device 2), and the Color Wheel Window....................................  239 

J-24 Display with Circular Dataimage of Average Direction after Inputs Entered ..  240 

J-25 GYRB Color Wheel Rotated 90º, Data Smoothed with Bandwidth 2.5, 
 and Display Coordinates Changed (Zoomed) ................................................  242 

J-26 HSV Color Wheel Rotated 90º, Data Smoothed with Bandwidth 2.5, 
 Color Scale Gap 0.20, and Arrows on............................................................  243 



 

 

xx 
LIST OF FIGURES 

 
 

Figure                              Page 
 
J-27 Mask Restores Land Mass Shapes in Smoothed Data ..................................  244 

J-28 Unit Vector Plot of Ocean Wind Data .............................................................  246 

J-29 Vector Plot of Ocean Wind Data ....................................................................  247 

J-30 Triangle Icon Plot of Ocean Wind Data ..........................................................  247 

M-1 Fitted Covariogram an Unbiased Estimator of Spherical Covariance ...........  340 
 
M-2 Family of Cosine vs. Distance Curves from the GRF 
 with Exponential Covariance .........................................................................  342 
 
M-3 Family of Cosine vs. Distance Curves from the GRF 
 with Gaussian Covariance .............................................................................  343 
 
M-4 Family of Cosine vs. Distance Curves from the GRF 
 with Spherical Covariance .............................................................................  344 
 
M-5 Whittlematern Cosine Model (a=.493) Approximates the Cosine 
 Curve of the von Mises CRF, 95.0=ρ , Transformed 
 from an Exponential GRF, Range=5 ..............................................................  346 

M-6 Whittlematern Cosine Models for 0=ρ .........................................................  348 

M-7 Cauchytbm Cosine Models for 0=ρ .............................................................  349 

M-8 Generalized Cauchy Cosine Models for 0=ρ ..............................................  350 

M-9 Hyperbolic Cosine Models for 0=ρ ..............................................................  351 

M-10 Stable Cosine Models for 0=ρ .....................................................................  352 

N-1 Summary Plots of the Ocean Wind Data........................................................  354 

N-2 Circular Histograms of the Ocean Wind Data.................................................  356 

N-3 Kernel Density Plots of the Ocean Wind Data................................................  358  

N-4 New Cylindrical Plot of PDFs of von Mises Probability Densities...................  359 



 

 

xxi 
LIST OF SYMBOLS, TERMINOLOGY, ACRONYMS 

 
 
Symbols 
 2

CKσ  : Circular kriging variance 
 Θ  : Circular random variable (CRV) 
 θ  : Observation (realization) or simulation of a CRV 
 C : Matrix of cosines of angles between observations of direction 
 c : Vector of cosines of angles between observations and unobserved direction  

  to be estimated 

 ( )dς  : Model of the mean cosine of the angle between random components of   
  direction as a function of distance between observation locations 

 ( )dς̂  : Cosineogram estimate of ( )dς  

 κ  : Concentration parameter of the von Mises distribution 
 gn  : Nugget 

 κ  : Population concentration about the mean direction for von Mises CRV 
 µ  : Population mean resultant vector direction 
 ρ  : Population resultant vector mean length and concentration about the mean  

  direction 
 nR  : Sample resultant mean vector length 
 x : Vector of spatial coordinates 
 
 
 
New Terminology 
 Circular Dataimage 
 Cosineocloud 
 Cosineogram 
 Cosine Model 
 Circular Random Field 
 
 
 
Terminology from Linear Kriging 
 Covariogram 
 Covariance Model 
 Nugget 
 Range 
 Sill 
 Variogram



 

 

xxii 
LIST OF SYMBOLS, TERMINOLOGY, ACRONYMS 

 
 
Acronyms 
 CDF : Cumulative Distribution Function 
 CRF : Circular Random Field 
 CRV : Circular Random Variable 
 CCW: Counterclockwise 
 GRV : Gaussian Random Variable 
 GRF : Gaussian Random Field 
 GUI : Graphical User Interface 
 GYRB: Green Yellow Red Blue 
 HSV : Hue Saturation Value 
 KBWR: BlacK Blue White Red 
 MAD : Mean Absolute difference 
 PDF : Probability Density Function 
 RF : Random Field 
 RGB : Red Green Blue 
 RV : Random Variable 
 YRGB: Yellow Red Green Blue



CHAPTER 1 
 

INTRODUCTION 
 
 

1.1  Introduction to the Circular Random Field and 

Circular Random Variables 

 
This dissertation addresses related and practical aspects of the circular random 

field (CRF) including extracting the spatial correlation, modeling the spatial correlation, 

estimation, simulation, and plotting. 

A random field (RF) is a stochastic process operating over a space of dimension 

1≥ .  A CRF is defined as a RF containing circular random variables (CRVs) at multiple 

observation locations which are spatially correlated.  With Θ the CRV and x the location, 

in 2-dimensional space, the CRF is the set ( ){ }2R, ∈Θ xx .  Circular-spatial correlation is 

defined here as the mean cosine of the angle between random components of directions 

(nonrandom component removed) vs. distance between observation locations.  Spatial 

correlation increases as distance between observation locations decreases.  Hence, 

random components of direction tend to be more similar as distance between 

observation locations decreases. 

A CRV takes random directions with the total probability of all possible directions 

distributed on the circular support (unit circle, [ )π2,0 , or [ )ππ ,− ).  The starting point of 

the support is the same direction as the ending point.  A CRV or direction is expressed 

as either a scalar in units of radians or degrees (º), or as a unit vector (Chapter 4).  Since 

trigonometric functions require angles in radian units, the input for functions of direction 

will be expressed in radian units with values in [ )π2,0  until Chapter 5, where a new 

method requires values in the equivalent support of [ )ππ +− ,  radians.  Maps and 

compasses will use º units, which may be obtained from radian units by multiplying by 
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180º/π .  On a circle, the 0s of the [ )π2,0  radians, the [ )ππ +− ,  radians, and the 

[ )360,0 º scales are aligned.  0 radians, 0º, and the east direction will be aligned to 3 

o’clock.  90º, 2/π  radians, and the north direction will be aligned to 12 o’clock.  π  

radians, 180º, and the west direction will be aligned to 9 o’clock.  These scales of 

direction or angle are shown in Figure 1-1.  Figure 1-1 is a typical plot of the probability 

density function (PDF) of the triangular CRV (density increases linearly toward the 

maximum density at 0). 

Other types of directional random variables include the spherical, axial, and 

vectorial random variables.  A spherical random variable takes random locations on a 

unit sphere.  An axial random variable takes random axis orientations in a plane where 

there is no reason to distinguish a direction from its opposite.    A vectorial random 

variable has both random direction and random magnitude.  Hence, random fields may 

also be defined for axial, vectorial, and spherical random variables. 

 

Figure 1-1.  Circular PDF of the Triangular Circular Probability Distribution.  The density 
( )θf  is often plotted on the outside of a unit circle. 
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Applications of circular random variables and circular random fields include: 

� Astronomy  - Planet orbit inclination 

� Biology - Creature migration and navigation by sun, wind, magnetic fields, etc 

� Chronotherapeutics - Response to a treatment relative to the time of treatment 

� Geography - Compass directions 

� Geology - Crystal and fault orientation 

� Geophysics - Magnetic field direction 

� Meteorology - Wind direction 

� Oceanography - Ocean currents  

� Periodic phenomena - Births/month, deaths/month, eggs produced/month, coats 

sold/month, accidents per hour, accidents per month, sunspots/year, biorhythms 

� Paleomagnetism – Direction of magnetism locked into lava  

� Physics – Dihedral (having or formed by two planes) angles in molecules 

� Rounding errors – Integer atomic weights  

� Structural Geology - Fracture pattern in a region 

This dissertation will treat the cardioid, triangular, uniform, von Mises, and 

wrapped Cauchy circular distributions in alphabetical order in all sections: 

• The cardioid distribution models the direction marbles roll off when dropped on a 

plane inclined to the horizontal. A 0º inclination of the plane produces the circular 

uniform PDF. 

• The triangular distribution has a PDF that increases linearly toward mean direction. 

• The uniform distribution models an honest roulette wheel and provides the null model 

to test the alternatives of unimodal (a single cluster of directions in the data) and 

multimodal distributions (two or more clusters in the data ). 
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• The von Mises distribution is practically interchangeable with the wrapped normal 

circular probability distribution.  The “wrapped normal” distribution is obtained by 

“wrapping” the tails of the normal PDF around a unit circle in opposite directions.   

The probability density at an angle increases with each revolution of the tails by the 

densities of the PDF that overlap the angle.  Originally, the von Mises distribution 

modeled experimental errors arising from determination of atomic weights.  Other 

applications of the von Mises distribution now include the direction of the sum of unit 

vectors representing observations of direction or periodic phenomena.  The wrapped 

normal distribution dominates geology and models Brownian motion on the circle.  

However, inference is easier with the von Mises distribution. 

• The wrapped Cauchy distribution is obtained by “wrapping the tails” of the Cauchy 

distribution on a circle in opposing directions.  The Cauchy distribution is used to 

indirectly simulate the von Mises distribution. 

In this dissertation, an observation is a measurement of direction or a realization 

of a circular random variable, expressed as a unit vector or as an angle, with an angle 

from 0 to 360º, from 0 to 2π, or from - π to π (see Figure 1-1 for details).  The main 

circular statistics are based on computing with direction in unit vector format.  A sample 

consisting of observations of direction  as unit vectors is summarized as the resultant 

vector.  The vector resultant is the sum of the unit vectors representing directions.  Unit 

vectors are summed by attaching the tail of one vector to the head of another.  The main 

circular statistics include the resultant vector mean direction and the resultant vector 

mean length. 

The resultant vector mean direction, nθ , which is the direction of the resultant 

vector, is the measure of central direction.  Why is it necessary to use vectors to 
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determine the average direction?  Figure 1-2 shows that the average or central 

direction of 15º and 345º is not the arithmetic mean = 180º as on a linear scale. 

In Figure 1-2, the sum of these directions is the vector 

 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )0,15cos2

15sin,15cos15sin,15cos

345sin,345cos15sin,15cos

°

=°−°+°°

=°°+°°

 

 which has a direction of 0º.  Hence, the average direction is 0º.  The extensive use of 

trigonometry distinguishes circular statistics from the statistics of linear random 

variables. 

The other main circular statistic is the resultant vector mean length nR .  With n 

the number of observations of direction, the resultant vector mean length nR  of n 

observations of direction is 1/n times the vector resultant length nR .  It is a measure of 

concentration about the mean direction, where the sense of concentration is the 

opposite the sense of variability (a measure of spread).  When variability increases, 

concentration decreases and vice versa.  If all n observations have the same direction, 

the variability is zero, the resultant vector length nRn =  (the unit vector observations of 

direction added tail to head are aligned and n long), and the resultant vector mean 

length 11 == nnn RR , which is the theoretical maximum.  When direction takes random 

values, the variability is greater than 0, nRn < , and 1
1

<= nn R
n

R .  If n is even, and the 

angles between all pairs of adjacent observations of direction are equal, the variability 

(spread) is the theoretical maximum, the horizontal and vertical components of the unit 

vectors cancel, 0=nR , 0
1

== nn R
n

R , and the resultant vector mean direction nθ  is 

undefined. 
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Figure 1-2.  The Arithmetic Mean of 180º Does Not Point in the Central Direction of 0º. 
 
 
The parameter of the circular distribution corresponding to the resultant vector 

mean length of the sample is the population resultant vector mean length ρ .  The 

effects of ρ  on the sample observations of direction and the sample mean resultant 

vector (sample resultant vector scaled by 1/n) are illustrated in Figure 1-3.  The sample 

observations are indicated by tan arrows and the sample mean resultant vectors by 

black arrows.  Circles with unit radius are over plotted in black to indicate a distance of 1.  

Going left-to-right in Figure 1-3, the population resultant vector mean length ρ increases, 

concentration about the mean direction increases, and the length of the mean resultant 

vector of the sample tends to increase.  In the right hand plot with ρ =0.99, the length of 

the sample mean resultant vector gets close to 1, but is not exactly 1 as can be seen in 

the zoom view on the right. 

 

 
  01.0=ρ       50.0=ρ           99.0=ρ        99.0=ρ , zoom 

Figure 1-3.  The Effect of the Population Resultant Vector Mean Length ρ on the Sample 
Mean Resultant Vector (Black) of a Sample (Tan) from the von Mises Circular 
Distribution.  As ρ goes toward 1, concentration about the mean direction increases and 
the length of the mean resultant vector goes toward 1. 
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1.2  A Motivational Example 

 
 

Figure 1-4 shows traditional arrow plots of ocean wind data as circular-spatial 

data (top), which is the focus of the dissertation, and vector-spatial data (bottom).  The 

data are plotted as tan colored arrows and the means as black arrows.  The data were 

freely extracted from the Comprehensive Ocean Atmosphere Data Set (Chapter 2, 

Subsection 2.2.1) at http://iridl.ldeo.columbia.edu/SOURCES/.COADS/.mean/ for 1980 

to 1990, December to March, and for the area of latitude -3° N to +3° N and longitude -

93° E to -87° E.  Note that -3° N means 3° south of the equator, and -93° E means 93° 

west of the Greenwich prime meridian.  The data contain 1934 observations of month, 

year, longitude, latitude, and east and north components of wind velocity.  In the vector-

spatial plot, the mean resultant vectors were computed from the average horizontal and 

vertical velocity components by location.  The circular-spatial data were obtained from 

the vector-spatial data by scaling the vector observations to unit length loosing the 

magnitude information.  In the circular-spatial plot, the mean resultant vectors of the 

circular-spatial data were computed by location, and scaled to unit length.  The 

difference between differently computed means is 9.96° at -87° E and +3° N.  Average 

wind direction is changing smoothly in the south-north direction, rotating clockwise as 

latitude increases and evidencing a global trend. 

 
1.3  Problem Description 

 
The problems addressed in this dissertation include: 

• How may circular-spatial data be efficiently interpolated based on spatial correlation?  

Jammalamadaka and SenGupta summarized many expressions of nonspatial circular 

correlation (2001, Chapter 8).   How could spatial correlation be extracted from circular-

spatial data and modeled to be useful for the interpolation



 

 

8 
 

 
 

-94 -92 -90 -88 -86

-4
-2

0
2

4

Longitude

La
tit

ud
e

 

-94 -92 -90 -88 -86

-4
-2

0
2

4

Longitude

La
tit

ud
e

 

Figure 1-4.  Circular and Vector Spatial Data and Their Means for the Direction the 
Ocean Wind Blows Toward.  Data from 1980 to 1990,  December to March, in the Area 
of Latitude -3° N to +3° N and Longitude -93° E to -87° E.  At each sampling location, the 
raw data are indicated by tan arrows and the means by black arrows. 
 
 

 

Circular-spatial 
data and mean 
directions as 
unit vectors 

Vector-spatial 
data and mean 
resultant vectors 
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 of direction between observation locations? 

• How can a CRF be simulated based on input specifications of a circular 

probability distribution and spatial properties such as the distance at which CRVs 

are no longer correlated, and what are the properties of the simulated CRF? 

• The intelligibility of arrow plots (Figure 1-4) decreases as data density and 

random variation increase.  Intelligibility is also affected by missing values.  How 

can circular-spatial data, interpolations of circular-spatial data, or simulations of a 

CRF be plotted as a heat map that is not color discontinuous at any direction, 

e.g., where the color encoding direction at 0º and 360º are the same?  How can 

these data be plotted with high data density such that both large scale and small 

scale directional structure can be easily recognized? 

 
1.4  Literature Review 

 
1.4.1 Brief History of Circular Statistics 

Circular statistics, the statistics of direction, is a relatively new statistical domain 

as indicated by some history extracted from Fisher (1993, chap. 1).  Circular-spatial 

statistics is very new.  In 1767, John Mitchell, FRS (Fellow of the Royal Society), tested 

the hypothesis that the distribution of angular separations of stars is uniform.  He 

determined that the number of close stars were too many to support this hypothesis.  In 

1802, John Playfair noted that directional data should be analyzed differently from linear 

data, recommending that average direction be the direction of the resultant vector.  In 

1858, Florence Nightingale, chief nurse in the British Army during the Crimean War, 

created the rose diagram (for example, see Figure 1-5, a rose plot of ocean wind 

direction) displaying the effect of sanitation vs. month of year, saving thousands of lives 

in military hospitals.   In 1880, Lord Rayleigh created a statistical test for the hypothesis 
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of the uniform circular distribution vs. the unimodal alternative.  In 1918, von Mises 

defined the circular normal, or von Mises distribution, which is a basis of parametric 

statistical inference for circular data.  In 1938, Reiche introduced what is now called the 

CUSUM chart, which plots cumulative vector direction and average magnitude, to 

indicate when a sufficient amount of vectorial data has been acquired.  In 1939, 

Krumbein introduced the transformation of axial to vectorial data for analysis, and back 

transformation to axial results.  The paper by Watson and Williams (1956) about 

statistical inference for the mean and variability of a sample from the von Mises 

distribution and methods for comparing two or more samples started a period of 

significant theoretical development.  Following developments of the 1960s, Mardia 

(1972) published a comprehensive account of methods for display, summarization, 

goodness of fit, and parametric/nonparametric analyses of circular data.  Batschelet 

(1981) studied methods for bio-circular data analysis.  Large sample theory was 

introduced about a decade after Mardia’s book.  Developments in circular correlation 

and regression, time series analysis, large sample and bootstrap methods, and 

nonparametric density estimation are found in Jupp and Mardia (1989).  McNeill (1993) 

extended geostatistics to circular data.  Thus, most of the theoretical developments in 

the field of circular statistics are relatively recent.  Additional past contributors are listed 

in Mardia (1972). 

The latest books on circular statistics include those written by  Fisher (1993), 

Mardia and Jupp (2000), and Jammalamadaka and SenGupta (2001).  
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Figure 1-5.  Rose Plot of the Circular Data Derived from the Data of Figure 1-4.  The 
angle of the wedge is the bin width and the area of a wedge is proportional to the bin 
count.  The heavy radial line indicates the mean of 106.3° and the short arc indicates the 
95% confidence interval of (104.8°,107.8°). 
 
 
1.4.2 Literature Review for Imaging Circular-Spatial Data 
 

Sources were examined for examples of imaged circular-spatial data including: 

• Visualization displays of computational fluid dynamics (CFD) software: 

o FLUENT (FLUENT 2008) – Software for simulation of fluid flow, heat and mass 

transfer, and related phenomena involving turbulence, reactions, and multiphase 

(liquid and gas) flow. 

o FIELDVIEW (Intelligent Light 2008) – Post-processing software for identification 

of important flow features and characteristics in simulations, and for interactive 

exploration of results. 

o Ensight (CEI 2008) – General tools for visualizing complex datasets. 

• Software for the analysis of circular data: 

o Axis (Pisces Conservation Ltd 2008) – Implements the principal graphical 

methods and statistical tests described by Fisher (1993) for the analysis of 

circular data. 
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o CircStats (Lund and Agostinelli 2007) – This R package implements the 

graphical methods and statistical tests described by Jammalamadaka and 

SenGupta (2001) for the analysis of circular data. 

o Oriana 2 (Kovach Computing 2004) – Calculates statistics, tests, and correlations 

for circular data.  Graphics include the rose diagram, linear and circular 

histograms, the arrow plot with arrow length as frequency or magnitude, stacked 

raw data plots, and circular QQ plots. 

o Surfer 8 (Scientific Software Group 2008) – Converts vector-spatial data into 

contour, surface, wireframe, vector, and shaded relief maps. 

o Vector Rose 3.0 (Zippi 2001) – Calculates circular statistics, tests, and graphics 

(including the rose diagram and the circular histogram) for circular data. 

None of these software packages provide a method of imaging circular-spatial data 

similar to the new circular dataimage of Chapter 2. 

 
1.4.3 Literature Review for Circular-Spatial Correlation 

Bivariate or multivariate data involving CRV is common.  However, the study of 

association or correlation is newer than the relatively new area of circular statistics.  

Further, the study of circular-spatial correlation is newest.  Jammalamadaka and 

SenGupta (2001) described several methods for computing the association and 

correlation of nonspatial CRV and circular data.  These include: 

• The population circular correlation coefficient  

( ) ( ) ( ){ }
( )( ) ( )( )νβµα

νβµα
βαρ

−−

−−
=

sinsin

sinsinE
,

VarVar
c  with E the expectation operator, angle α , 

{ }αµ E= , angle β , { }βυ E= , and Var the variance. 

• Parametric cases of cρ involving specific circular probability distributions. 
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• The sample circular correlation coefficient, 
( ) ( )

( ) ( )∑

∑

=

=

−−

−−
=

n

i ii

n

i ii

ncr

1

22

1
,

sinsin

sinsin

ββαα

ββαα
 

with n the sample size, sample ( ) ( )nn βαβα ,,,, 11 K , and α  and β  the sample mean 

directions. 

• The nonparametric version of ncr ,  with iα  replaced by ( )
π

α
2

n

rank i , and iβ  replaced 

by ( )
π

β
2

n

rank i . 

 
1.4.4   Literature Review for Kriging of Circular-Spatial Data 

1.4.4.1  Terminology 

 Kriging is a body of techniques for predicting spatially correlated data.  Figure 1-

6 shows a heatmap before and after kriging.  The name of the technique is derived from 

Daniel Krige, a South African mining geologist, who originated the method.  Kriging uses 

the measurements, their distances apart, and a model of their spatial dependence based 

on the variogram or covariogram.  The covariogram is the graph of the mean covariance 

between observations a distance d apart vs. d.  The variogram is the graph of the mean 

squared difference of observations a distance d apart vs. d.  In general, the variogram is 

less sensitive to minor departures from the assumption that the process mean is 

independent of location than the covariogram.  The data are called isotropic, as opposed 

to anisotropic, when the spatial dependence is independent of the direction in which 

measurements are taken, and dependent on the distance d only. 
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Figure 1-6.  Kriging, the Estimation of Spatial Data Based on Spatial Correlation. 

 
1.4.4.2 Literature Review for Kriging 
 of Circular-Spatial Data 
 

 A significant body of literature exists for the kriging of circular and vector spatial 

data.  Quimby (1986) estimated an n-vector at a location assuming each location has a 

different mean and variance, and using the multivariate auto covariance-cross 

covariance matrix.  Young (1987) showed that kriging is applicable to 3D vectors 

describing rock fracture orientation assuming each location has the same unknown 

mean, and using a scalar variogram function of vectors.  Young’s method is evaluated 

using cross validation.  Schaeben, Boogaart, and Apel (2001) predicted the polar unit 

vector at a given location, using multivariate variograms and covariance functions, 

assuming a constant mean, and defining different types of isotropy, which lead to 

different simplifications of the general cross-covariance function and kriging procedures.  

A measure of confidence in the estimate was given.  Boogaart and Schaeben (2002a) 

extended prediction to direction, axis, or orientation by embedding a sphere/hemisphere 

in a real vector space.  Boogaart and Schaeben (2002b) predicted rotation by 

embedding the rotations in a real vector space with assumptions of isotropy. 
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McNeill (1993) introduced kriging of circular random variables via trigonometric 

based circular statistics, assuming a common circular probability distribution, isotropic 

spatial correlation, and a variogram as a function of cosines. 

 
1.4.5 Literature Review for Simulation 
 of Circular-Spatial Data 

A RF is a stochastic process operating over a space.  A Gaussian RF (GRF) is a 

RF in which the random variables follow the multivariate normal distribution with 

covariance depending on distance between locations of the random variables.  

References include Gneiting and Schlather (2004), Lantuejoul (2002), and Schlather 

(1999).  The function grf in the R package geoR (Ribeiro and Diggle 2001) generates 

simulations of GRFs for a given covariance model.  The function GaussRF in the R 

package RandomFields (Schlather 2001) generates spatial GRFs and spatial-temporal 

GRFs.  

 
1.5  Dissertation Overview 

 
Chapter 2 extends the graphical methods of spatial statistics.  It details a new 

method for circular-spatial data that produces a continuous image with high resolution 

such that directional structure can be simultaneously recognized on both local and global 

scales.  

Chapter 3 introduces a new graphical method called the cosineogram (graph of 

cosines) and related theory for the extraction of spatial correlation from circular-spatial 

data in the form required by the circular kriging method of Chapter 4.  The empirical 

cosineogram plots the mean cosine of the angle between random components of 

direction a distance d apart vs. d.  The cosineogram is replaced with a fitted positive 

definite function to achieve optimal fit of estimated direction to the actual, but 
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unobserved and unknown direction.  Three main positive definite functions from linear 

kriging are adapted to the cosine behavior of the CRF.  Additional functions are identified 

in Appendix M. 

Chapter 4 provides a detailed linear-algebraic and trigonometric derivation of an 

estimator of direction in an isotropic CRF (correlation same in all directions).  Building on 

the work of McNeill, the derivation proceeds without assuming the variogram as a 

function of cosines and avoids the Taylor series approximation.  This is accomplished by 

minimization of the mean squared length of the error between the estimator and the 

actual, but unknown and unobserved direction.  This derivation produces a new 

expression of circular-spatial correlation as the mean cosine of the angle between 

random components of direction observed at a distance d apart.  Optimality of the 

estimator is proved.  A computationally efficient form of the estimator is derived.  

Chapter 4 also derives a first order estimator of the imprecision of the direction 

estimator, correcting the result of McNeill.  The interpolation is called “exact” in the 

sense that, although undesirable in the presence of noise, the estimate at a location 

where direction is observed equals the observed direction, and the imprecision or 

variability of the estimate goes to zero as distance to an observation location goes to 

zero. 

In Chapter 5, the ideas of GRFs are extended to CRFs.  A method is provided to 

simulate a CRF with a specified circular probability distribution from a GRF with a 

specified spatial covariance model.  Some properties of the simulated CRF are argued 

and others involving one or two nonclosed form transformations are characterized. 

Figure 1-7 summarizes circular-spatial methods of Chapters 1-5.  Chapter 6 provides a 

comprehensive example, which shows each step of Figure 1-7, and connects the 

chapters. 
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Figure 1-7.  Flow Chart of Methods for Circular-Spatial Data. 
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Additional details are given in the appendices.  Appendix A summarizes the 

mathematical notation used.  Appendix B organizes the linear algebra theory and 

subordinate proofs required by the circular kriging derivations of Chapter 4. 

Appendices C – M are relevant to the simulation of circular random fields of 

Chapter 5.  Appendices C and D continue the qualitative evaluations of CRFs of Chapter 

5, Section 5.5.  Circular CDFs are derived in Appendix E for support [ )π2,0 , verified by 

integration in Appendix F, and modified for the equivalent rotated support [ )ππ +− ,  in 

Appendix G.  Rotation of the support from [ )π2,0  to [ )ππ +− ,  is required to map 

standard normal random variables to a CRV with mean direction 0 using the method of 

Chapter 5.  Appendix H corrects a form of the wrapped Cauchy CDF, evaluates three 

forms of the CDF, and selects the form for implementation in the R package CircSpatial 

that is simple and does not have numerical issues at extreme low variability.  Appendix I 

derives the inverse CDF of the triangular circular probability distribution.  It is required to 

simulate triangular CRFs.  The inverse CDFs of the cardioid, von Mises, and wrapped 

Cauchy circular distributions are nonclosed form transformations.  Hence, Appendix M 

characterizes the spatial dependence of CRFs simulated by the method of Chapter 5. 

Appendix J documents the R software package CircSpatial, which covers all the 

chapters and details a method of interpolation of global trend models based on circular-

spatial data.  Estimated direction is obtained by adding the kriging interpolation to the 

global trend model interpolation.  Appendices K and L contain the R function code of the 

R package CircSpatial and the R command line input used to produce many of the 

figures in the dissertation.  Appendix N has graphics for CRV and circular data 

introduced in Chapter 1 including a new cylindrical display of the probability density 

function of CRV. 
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CHAPTER 2 

 
CIRCULAR DATAIMAGE, A HIGH RESOLUTION CONTINUOUS 

 
IMAGE OF CIRCULAR-SPATIAL DATA 

 
 

2.1  Introduction 
 
 

The focus of this chapter is on a new method for imaging circular-spatial data, 

the circular dataimage.  Figure 2-1 is a circular dataimage based on data introduced in 

Subsection 2.2.1 and further discussed in Section 2.4.  The dataimage of Minnotte and 

West (1998), for the imaging of many ordered variables and observational units to show 

correlation structure, motivated the problem of how to image circular-spatial data and 

what this new method should be called.  Moreover, dataimages for linear variables have 

been used extensively in various disciplines.  Heatmaps, as they are called in genomics, 

have been made widely popular by Eisen, Spellman, Brown, and Botstein (1998). 

 

 
 
Figure 2-1.  Circular Dataimages of the Direction Wind Is Blowing Toward, Coded with 
Yellow-Red-Green-Blue (YRGB) Color Wheel (Right).  Average direction is shown in the 
top plot, and  smoothed average direction in the bottom plot.  The circular dataimage 
provides a continuous high resolution image of circular-spatial data with structure 
simultaneously recognizable on a broad range of scales. 
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This chapter is organized as follows:  Section 2.2 introduces the data used 

throughout the chapter and provides an overview of some of the existing methods for the 

display of circular-spatial and vectorial-spatial data.  Section 2.3 describes the “cross 

over” problem of circular data.  Section 2.4 provides a solution to the cross over 

problem, the color wheel scale of direction, and the circular dataimage, with color 

continuity at the cross over point and capable of a high resolution image of circular-

spatial data and statistics.  Section 2.5 compares the circular dataimage with the existing 

method of arrow plots.  Section 2.6 gives an example calculation of a circular color 

wheel for the Red-Green-Blue (RGB) color system.  Section 2.7 provides color 

considerations, and color wheel and circular dataimage variations including a brief 

outlook of how magnitude might be encoded.  Section 2.8 provides additional examples.  

Section 2.9 concludes with the summary and description of future work. 

 
2.2  Overview of Vectorial-Spatial Displays 

 
2.2.1 Data 

The ocean wind data used throughout this paper were freely extracted from the 

International Comprehensive Ocean Atmosphere Data Set (ICOADS) at 

http://dss.ucar.edu/datasets/ds540.1/data/msga.form.html for the El Niño years 1972, 

1976, 1982, 1987, 1991, 1994, and 1997, January through April, and in 1° increments for 

the area of longitude 0.5° E to +359.5° E by latitude -59.5° N to +60.5° N.  Note that -3° 

N equals 3° south of the equator, and  359º E equals 1º W of the prime meridian.  These 

data were selected to provide homogeneous data of the El Niño periods.  El Niño (the 

child) refers to the Christmas season when changes in Pacific Ocean currents usually 

begin.  These changes are often accompanied by severe climate disruptions to countries 

in and adjacent to the Pacific. 
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This dataset comprises 495,688 observations of month, year, longitude, 

latitude, and east and north components of wind velocity in units of 0.01 meters/second 

(m/s).  With 0 to 28 observations per grid cell, average wind direction was computed as 

the quadrant specific inverse tangent of the average vertical component of wind velocity 

in a grid cell divided by the average horizontal component in the cell.  Alternatively, 

hexagon binning has advantages for grouping data (Carr, Littlefield, Nicholson, and 

Littlefield 1987).  All scaled figures in this paper have horizontal scale in º longitude and 

vertical scale in º latitude. 

ICOADS began as COADS (Comprehensive Ocean Atmosphere Data Set) in 

1981 as a cooperative project of the National Climatic Data Center (NCDC), the 

Environmental Research Laboratories, the Cooperative Institute for Research in 

Environmental Sciences, and the National Center for Atmospheric Research.  COADS 

was renamed ICOADS in 2002 to recognize extensive international collaboration.  The 

objective of ICOADS is to provide a consistent and easily used historical record of 

surface marine data beginning 1854.  Seventy million unique reports of 28 variables 

obtained from ships of opportunity and ocean buoys were organized and cleaned of 

outliers.  Trimmed monthly summaries give statistics for observed air and sea surface 

temperatures, wind east and north components in m/s, sea level pressure, humidity, 

cloudiness, and derived variables. 

 
2.2.2 Smoothing Average Wind Data 

The bottom subplot of Figure 2-1 and Figure 2-2 displays smoothed average 

wind data.  The R package fields (Fields Development Team 2009) function 

image.smooth with a smoothing bandwidth of 2.5º was applied separately to the cosines 

and sines of average wind direction to avoid the cross over problem (see Section 2.3, 
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Crossover).  The smoothed direction was computed as the inverse tangent of the 

smoothed vertical component divided by the smoothed horizontal component. 

 
2.2.3 Existing Methods for Displaying Circular 
  and Vectorial-Spatial Data 

Some methods for the display for circular-spatial and vectorial-spatial data are 

shown in Figure 2-2.  These methods were adapted from Ware (2004, pp. 200-205) 

using the R code in Appendix K.7.  In all vectorial, arrow, and triangle icon plots in this 

and other chapters, flow or direction will be from tail to head.  Figure 2-2 contains plots 

of: 

a) Arrows of fixed length on a regular grid (Figure 2-2 (a)). 

b) Jittered arrows of fixed length (Figure 2-2 (b)).  Jittering is implemented here by 

adding values from a uniform distribution to the tail coordinates of the arrow.  

Thus, jittering only randomizes the origin of the arrow so jittered arrows have the 

same directions as nonjittered arrows.  This helps to reduce overplotting and 

improves the sense of flow.  Note that sufficiently large magnitude jitter can 

randomize the structure in directional-spatial data. 

c) Jittered arrows of length proportional to magnitude (Figure 2-2 (c)).  

d) Jittered triangle icons with icon area equal to vector magnitude (Figure 2-2 (d)). 

Other methods discussed in Ware (2004, p. 204), but not shown, include: line 

integral convolution and large arrow heads along a streamline using a regular grid.  

Ware (2004, p. 205) stated "the display problem becomes ... to reveal important aspects 

of the data for a particular set of tasks ...."  So, the choice and effectiveness of a method 

depends on the task to which the method is put.  Within this paper, the task is to 

discover structure in circular-spatial data (all vectors have equal length).  Hence, the 

circular dataimage will be compared to plots of arrows of equal length (method a). 
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Figure 2-2.  Some Existing Methods for Display of Circular and Vectorial-Spatial Data 
Using the Smoothed Ocean Wind Data.  (a) Unit vectors, (b) jittered unit vectors, (c) 
jittered vectors, (d) jittered triangle icons with icon area equal to vector magnitude.  
Jittering helps to reduce overplotting improving the sense of flow. 
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2.3  Cross Over 

 
 

Circular data, as opposed to linear data, is cyclic, i.e., the starting point at 0º 

equals the ending point at 360º.  The distance between values of 0 and 360 on a linear 

scale is 360, but the distance on a circle between 0º and 360º is 0°.  The distance on a 

unit circle between 0 and 2π radians is 0 radians.   In 1802, John Playfair noted that 

directional data should be analyzed differently from linear data, recommending that the 

average direction should be the direction of the vector resultant.  Thus, the average or 

central direction of 1° and 359° is not the arithmetic mean of 180°.  The correct average 

is 0°, which is equal to the direction of the sum of the unit vectors (cos 1°, sin 1°) and 

(cos 359°, sin 359°).  Summing these unit vectors, the equal and opposite vertical 

components annihilate and the equal horizontal components reinforce. 

Historically, this problem arose in automating the summarization of wind data.  It 

has been called the “cross over” problem because it occurs when crossing over 360° on 

a scale of 0° to 360°, or crossing over +180° on a scale of -180° to +180°.  In another 

example, cross over occurs in plotting a circular time series with direction on the vertical 

axis and time on the horizontal axis.  As direction rotates counterclockwise (CCW) past 

360º, direction vanishes at the top of the scale at 360° and instantly reappears at the 

bottom of the scale at 0° at the next time value resulting in a full scale vertical gap 

between plotted points.  In vector field visualization, when direction is coded with a 

single color gradient, e.g. dark blue at -180° to bright red at +180°, image discontinuity 

occurs where direction varies around 180°.  At the cross over point the direction to color 

correspondence is one to two.  An image using this scale would display the 180º 

direction as either red or blue depending on whether direction is increasing or 

decreasing.  To avoid this problem, users may examine subregions where cross over 
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does not occur.  Consequently, the ability to resolve both local and global structure in 

circular-spatial data is reduced, and the overall structure is not seen. 

 
2.4  The Circular Dataimage and Color Wheel 

 
2.4.1 The Color Wheel Solution to Cross Over 

Suppose that a linear color scale, made from a blue-red color gradient to code 

direction from -180º to +180º (Figure 2-3 (a)), is wrapped on a circle with -180º (blue) 

connected to +180º (red) on the left side of the circle.  A red-to-blue color discontinuity 

occurs at the cross over point where the ends of the wrapped scale intersect at +/-180º 

(Figure 2-3 (b)).  To eliminate the discontinuity, a three-color gradient, red to green to 

blue with continuity between gradients, was inserted and centered at +180º.  In Figure 2-

3 (c), each two-color gradient (green-blue, blue-red, red-green) is adjusted to an equal 

arc length of 120º.  Every point on the color wheels (c)  and (d) is color continuous.  The 

color scheme in (b) is discontinuous at the 180º location. 

 

 

 

Figure 2-3.  Evolution of the YRGB Color Wheel.  (a) Blue-red linear color scale, (b) 
color scale (a) wrapped on circle, (c) red-green-blue linear color gradient inserted at 
180º, and (d) blue-yellow-red gradient inserted at 0º and labels added.  The final YRGB 
color wheel (d) aligns the 4 main colors (yellow, red, green, and blue) to the 4 main 
directions (0º, 90º, 180º, 270º). 



 

 

26 
An additional blue-yellow-red color gradient was inserted at 0º and the 

component two-color gradients (green-blue, blue-yellow, yellow-red, red-green) were 

adjusted to 90º arcs (Figure 2-3 (d)).  This particular color wheel is called a YRGB Color 

Wheel.  The four-color color wheel is more intuitive than the three-color color wheel 

because the number of main or pure colors between color gradients equals the number 

of main directions (0º, 90º, 180º, and 270º, or east, north, west, and south), aligning the 

four main colors to the four main directions.  Thus, the information (number of perceived 

color boundaries and degree of color structure) in the dataimage (Subsection 2.4.2) of 

circular-spatial data is increased.  In general, a color wheel can be defined as a 

sequence of three or more two-color gradients with color continuity between connecting 

color gradients.  Hence, the color wheel is color continuous at any point on the color 

scale going clockwise or counterclockwise. 

 
2.4.2 The Circular Dataimage 

To image circular-spatial data, let a direction in a pixel be plotted as the color on 

a color wheel in the direction of the data.  The result is called the circular dataimage.  In 

all circular dataimages in this and other chapters, flow or direction will be from the center 

of the color wheel toward the color on the color wheel.  In Figure 2-1, which was 

constructed using the R code in Appendix K.2, the average direction that ocean wind 

blows toward is coded with the YRGB color wheel at the right.  The YRGB color wheel 

consists of color gradients yellow to red from 0° to 90°, red to green from 90° to 180°, 

green to blue from 180° to 270°, and blue to yellow from 270° to 360°.  The resulting 

circular dataimage shows some interesting features.  In the Pacific Ocean and around 

the equator, wind tends to blow from east to west, which is typical for any year.  The 

pattern of direction on the west side of the Americas is similar to that on the west side of 
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Africa:  wind flows toward the equator from both the north and the south, then turns to 

the west. 

2.5  Comparison of Methods 

 
Figures 2-4-1 and 2-4-2 show  the direction ocean wind is blowing toward 

between 100º and 325º E longitude and between -59.5º and 60.5º N latitude.  Figure 2-

4-1 shows average direction as described in Subsection 2.2.1 computed with 0 to 28 

observations of direction  per location due to missing data.  Figure 2-4-2 shows 

smoothed average direction as described in Subsection 2.2.2. 

As black arrows were hardly visible in some regions when plotted on a 

dataimage using the previously discussed YRGB color wheel, direction is coded via the 

hue, saturation, and value (HSV) color wheel (saturation = 0.5) in the right margin of the 

subplots.  Further discussion on various color spaces will be found in Subsection 2.7.1.  

Missing ocean data is coded by white, and structurally missing values over land by tan.  

Arrows are overplotted at a density of one arrow per 15 cells in the horizontal and 

vertical directions in subplots B and F, and at a density of one arrow per 5 cells in 

Subplots C, D, G, and H. 

The ability to perceive structure via arrow plots depends on the variability of the 

data and the arrow density relative to the plot scale.  In the relatively noisy latitudes 

south of Australia (135º E, -25º N) in Figure 2-4-1 B, the general direction of the arrows 

is difficult to recognize.  The arrows point in random directions due to noise.  Increasing 

the arrow density in Figure 2-4-1 C does not help.  The arrows are more misleading than 

informative.  The use of arrows alone on noisy data in Figure 2-4-1 D is worse. 
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     Figure 2-4-1.  Plots of Average Ocean Wind Direction. 
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   Figure 2-4-2.  Plots of Smoothed Ocean Wind Direction. 
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In Figure 2-4-2 the data are smoothed, which replaces missing values.  Figure 

2-4-2 E shows maximum structural detail.  In Figure 2-4-2 F the general direction in the 

extreme southern latitudes is apparent in the arrow structure.  Increasing the arrow 

density on the smoothed data in Figure 2-4-2 G or using arrows alone in Figure 2-4-2 H  

further increases the perception of structure.  Arrows work well for smooth data at low to 

moderate arrow density. 

In contrast, the circular dataimage shows more structure in noisy data.  The 

general direction in the latitudes south of Australia can be seen as the dominant color in 

Figure 2-4-1 A as approximately west to east.  The colors alone in Figure 2-4-1 A give a 

better overall impression of the structure, general direction, noise, and missing data than 

colors and arrows in Figure 2-4-1 B. 

Figure 2-5 shows average wind direction coded with the Blue-Green-Yellow-Red 

(BGYR) color wheel with missing values displayed in magenta (southern latitudes) and 

continents shown in tan.  The data plotted in the left plots are identical to the data plotted 

in the right plots with decreasing scale (zooming in) top to bottom. 

As we zoom into a smaller area, directional structure in the arrow plots eventually 

becomes recognizable, e.g., Figure 2-5 (e).  With increasing scale (zooming out) and 

constant arrow spacing relative to the data, arrow plots eventually become unintelligible, 

e.g., in Figures 2-5 (a) and (c).  In contrast, the circular dataimage shows overall and 

detailed structure on a wide range of scales, e.g., Figures 2-5 (b), (d), and (f).  Even at a 

scale of a 50º x 50º area (Figure 2-5 (f)), the circular dataimage easily shows structure 

that is not easily obtained from the arrow plot in Figure 2-5 (e). 
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Figure 2-5.  Comparison of Arrow and Circular Dataimage Plots of Average Ocean Wind 
Direction.  Plots (a) and (b) cover 200º of longitude; (c) and (d) cover 100º Of longitude; 
(e) and (f) cover 50º of longitude; and (g) BGYR color wheel.  The ability to recognize 
structure depends on plot type, smoothness of data and density and arrows, and 
distribution of missing data. 

 

New 
Zealand 
(tan) 
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Additional characteristics of circular dataimages and arrow plots include: 

• Missing values can easily be seen as a contrasting color not in the color wheel, or by 

plotting arrows over missing data plotted as an area in contrasting color. 

• Arrows may overplot and obscure geographical boundaries as in Figure 2-5 (c) (New 

Zealand obscured), but boundaries may be overplotted on circular dataimages.  New 

Zealand remains visible in (d). 

• Circular dataimages fill the plot at pixel level resolution.  Arrows cannot. 

The circular dataimage has been defined, compared with arrow plots, and its 

capabilities have been demonstrated.  In Sections 2.6 and 2.7, the use of color will be 

discussed in further detail. 

 
2.6  Calculation of a BGYR Color Wheel 

 
Table 2-1 shows how the color levels of red, green, and blue on a scale of 0 to 1 

were computed for the BGYR color wheel in Figure 2-5.  For example, as direction goes 

CCW from 0° to 90°, the corresponding color is obtained by decreasing the amount of 

blue and increasing the amount of green linearly while the level of red is constant at 

zero.  The reader is invited to experiment with nonlinear color gradients. 

 
Table 2-1.  BGYR Color Wheel Formulae for RGB Space. 

 
Angle (°) 

in 
Color Range Level of Red Level of Green Level of Blue 

[0,90) blue to green 0 Angle / 90 1 – Angle / 90 

[90,180) green to 
yellow 

(Angle - 90) / 90 1 0 

[180, 270) yellow to red 1 1 - (Angle - 180) / 
90 

0 

[270, 360) red to blue 1 - (Angle - 270) / 
90 

0 (Angle - 270) / 
90 
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2.7  Color Considerations and Variations 

 
 

2.7.1 Color Space 

The use of color in computer graphics is described in Foley, Van Dam, Feiner, 

and Huges (1992).  The use of color in presentation graphics is described in Ihaka 

(2003).  The use of color in statistical graphics is described in Zeileis, Hornik, and Murrell 

(2008).  Color spaces include CIEXYZ, RGB, HSV, CIELUV, and HCL.  CIEXYZ is one 

of the first color spaces based on measurements of visual perception and 

mathematically defined.  CIE denotes the Commission Internationale de l’Éclairage, 

2004, which is an international body of scientists whose standards provide for the 

accurate communication of color information.  X, Y and Z values are the levels of the 

primary colors added to match a color.  RGB is a version of CIEXYZ space.  R, G, and B 

are the relative intensities of the red, green, and blue primaries.  HSV is a transformation 

of RGB space to hue (H), saturation (S), and value (V).  However, HSV colors are often 

not considered to be perceptually based because the brightness of colors is not uniform 

over hues and saturations.  CIELUV is a transformation of the CIEXYZ space to the 

perceptual axes of luminance, and the coordinates u and v of the CIE chromaticity map 

of human color perception.  HCL colors are obtained by transforming the rectangular 

coordinates of u and v in the CIELUV space to the polar coordinates of hue H and 

chroma C.  Hue H takes values in the range 0 to 360º with 0º = red, 120º = green, 240º = 

blue, etc.  Within the space's boundaries, the admissible levels of chroma and luminance 

depend on the hue chosen as some hues lead to light and others to dark colors. 

The R contributor package colorspace (Ihaka, Murrell, Hornik, and Zeileis 2009) 

includes the above color spaces together with a variety of HCL based qualitative palettes 

for categorical data, and divergent and sequential palettes for numerical data.  The 

colors of a color wheel, when applied to directional data, define a new class of palette, 
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the circular palette.  The color wheels in this paper use color in the RGB and HSV 

color spaces.  Color wheels based on the HCL color space were not included because 

they are less effective in highlighting and contrasting circular-spatial structure.  Kosara, 

Healey, Interrante, Laidlaw, and Ware (2003) recommend a color sequence with a 

substantial luminance component to reveal form or if detailed patterns need to be 

displayed. 

 
2.7.2 Color Functions 

Different color gradients, different color gradient orders, nonlinear gradients, 

and/or color spaces may be more effective in a particular application.  For scientific 

visualization, Brewer (1997, p. 210) suggested the spectral sequence of red purple, red, 

orange, yellow, green, blue, and purple to arrange adjacent darkest and lightest colors 

which mark hue changes to form visually prominent color boundaries through the color 

sequence.  The modified spectral sequence of purple, red, orange, yellow, green, and 

blue divides the angular range into convenient 60° bins or gradients while enjoying most 

of the benefits of the Brewer spectral sequence.  A diverging color sequence focuses 

attention on a band of directions.  Other color schemes recommended by Brewer (1997) 

can be obtained from the ColorBrewer software tool at http://ColorBrewer.org. 

Another function of color is to distinguish among nonstructural missing data 

(missing ocean data), structurally missing data (land areas), and nonmissing data. In the 

figures of this paper, structurally missing data over the landmasses, which results in the 

well known shape of the continents, are indicated by tan, and missing ocean data (most 

notably in the regions around the South Pole) are indicated by grey or magenta colors.  

If possible, colors for missing data should not duplicate colors for nonmissing data.  

Generally, for structurally missing data over a large area, we suggest neutral colors, e.g., 
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tan (sandy brown), which do not duplicate color wheel colors for data and are 

comfortable to view compared to an intense color like dark blue. 

Various forms of human color impairment exist.  Deuteranopia (reduced 

capability to see green) affects about 5% of males and about 0.5% of females.  

Protanopia (reduced capability to see red) affects about 1% of males.  The tritanopic has 

reduced capability to see blue.  Colors for the color impaired are described at 

http://www.toledo-bend.com/colorblind/index.asp.  For people with red or green color 

deficiency, Brewer (1997) recommended the spectral sequence red, orange, yellow, 

blue-green, blue, and purple-blue (ROYBgBPb). 

In Figure 2-6, the bottom plots are based on a ROYBgBPb color scale (purple-

blue was coded as red + blue).  The top plots are based on the Green-Yellow-Red-Blue 

(GYRB) color scale.  To view these images as a color-deficient person would see them, 

jpeg graphics were uploaded to http://www.vischeck.com/vischeck/vischeckImage.php.  

To the deuteranopic, the left side of Figure 2-6 appears as on the right side.  The bottom 

right plot, with yellow-grey-light blue-blue, shows more structure than the upper right plot 

with indistinguishable yellows for red and green.  Using the Vischeck simulation, colors 

may be varied to develop better color scales for the color impaired. 

 
 

 

Figure 2-6.  Normal and Simulated Deuteranopic Views of Images.  To the deuteranope, 
the left plots appear as on the right with red and green being indistinguishable. 
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2.7.3 Color Wheel Variations 

Figure 2-7 displays a variety of suitable color wheels in the RGB color space to 

show some of the many possibilities and to motivate experimentation to discover 

interesting structure in circular-spatial data.  The top labels indicate which colors are 

used.  From left to right, the continuous color wheels include the GYRB, the Black-Blue-

White-Red (KBWR), and a modified Brewer Divergent, and the discrete color wheels 

include a modified Brewer Divergent, the KBWR, and the Rainbow color wheel.  The 

modified Brewer divergent color wheels were constructed by connecting the ends of the 

Brewer 10-color divergent sequence #6 at http://ColorBrewer.org together, and replacing 

the dark color at one of the ends with an average of the dark colors at both ends.  The 

KBWR discrete sequence was constructed from main colors of black, blue, white, and 

red inserting intermediate colors 1/3 and 2/3 of the way between main colors by varying 

levels of red, green, and blue.    Brewer’s (1994) 3 x 3 arrays of color in “generalized set 

of color schemes” at http://www.personal.psu.edu/cab38/ColorSch/Schemes.html 

provide additional sequences for discrete color wheels by omitting the center color, or by 

cycling around a pair of adjacent rows or columns. 

 
 
 

 
 

Figure 2-7.  Variety of Continuous and Discrete Color Wheels. 
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Figure 2-8 shows the effects of different continuous and discrete color wheels on 

noisy and smoothed data.  The continuous color wheels produce smoother overall 

pictures with "soft" or fuzzy color boundaries and show maximum directional detail.  The 

discrete color wheels provide for exact quantification of regions with similar values via 

"hard" color boundaries between adjacent ranges of direction.  Color wheels with 20 bins 

show more directional detail than color wheels with 10 or 12 bins.  Similar to histogram 

binning, the appearance of the image will vary with the choice of the bin origin and the 

bin width.  The choice of discrete or continuous color wheel depends on the function of 

the circular dataimage. 

More color wheels and effects can be obtained by rotating a color wheel.  In 

Figure 2-9, the amount and direction of rotation is shown at the center of the GYRB color 

wheels.  Missing values are indicated by magenta and tan, which are not in the color 

wheel.  For focus on the equatorial region using the GYRB color wheel, the bottom plot 

(90º) is best and top plot worst.  In the bottom subplot, yellow at 180º indicates wind 

blowing from east to west.  The adjacent colors of green or red shade yellow to indicate 

deviations toward the north or south, respectively.  Choose a rotation that best contrasts 

and highlights structure in an area of interest and is comfortable to view. 
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Figure 2-8.  Effects of Color Wheel and Smoothness of Data.  Color scales rotated 90º: 
(a) GYRB; (b) rainbow;   (c), (d) KBWR;   (e), (f) Brewer divergent.  Choice of a color 
wheel depends on the objective of the circular dataimage. 

 
 

  
 

Figure 2-9.  Effects of Color Wheel Rotation, Color Wheel Labeled with Rotation.  The 
color wheel is rotated to effectively highlight structure in an area of interest.  For focus on 
the equator using the GYRB color wheel, the bottom plot is best and top plot worst. 
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2.7.4 Summary of Benefits to Be Obtained from Using Different Color Schemes 

� The Brewer spectral scheme red-purple, red, orange, yellow, green, blue, and 

purple forms visually prominent color boundaries adding structure to the 

circular dataimage. 

� Diverging color schemes focus attention on a band of directions (Figure 2-7, 

middle four color wheels, and Figure 2-8, bottom). 

� Colors not contained in the color wheel can be used to distinguish 

nonstructural missing data (e.g., missing ocean data), and structurally 

missing data (e.g., land areas) from nonmissing data (Figure 2-8).  Neutral 

colors that are not used in the color wheel, e.g., tan, do not distract from 

colors used for data.  A contrasting color not in the color wheel makes it easy 

to see missing data. 

� The continuous color wheels give "soft" color boundaries and show maximum 

detail (Figure 2-8, left and middle plots).  The discrete color wheels give 

“hard” color boundaries for the exact identification and quantification of 

regions with similar values (Figure 2-8, right plot) for low to moderate number 

of colors. 

� Rotation helps to select a color sequence that contrasts and highlights 

structure in an area of interest (Figure 2-9, bottom, for the equatorial region).  

Changing from a light color, e.g., yellow or green, toward a dark color, e.g., 

blue or red, seems to be more effective than changing from a dark color 

toward a light color.  Special color sequences and rotations increase the 

ability of color impaired viewers to recognize structure in an area of interest. 
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2.7.5 Circular Dataimage Variations 

A single gradient of color could be used to interactively focus on a range of 

directions.  Using the single color gradient black to white with black for the main direction 

and vanishing to white at 45º (or another arbitrarily selected cutoff) away from the main 

direction will give some sense of where the main direction lies, show some structure 

related to the main direction, and eliminate structure in the vanished areas. 

Figure 2-10, which is here named a "focus" plot, augments the black-white color 

gradient by highlighting in green any direction that is within a tolerance of the main 

direction. Interactively, the user enters a "focal" direction and a tolerance in degrees (º).  

In the bottom plot of Figure 2-10, the focal direction is 180º for wind blowing from the 

east to the west and the tolerance is 1º.  The green pixels represent areas with 

directions in the range of 179º to 181º.  The white areas have directions more than 45º 

away from the focal direction.  

 

 

Figure 2-10.  Focus Plots of Smoothed Average Direction with Focal Directions 0 º (Top) 
and 180 º (Bottom).  Shading fades to white at 45º from focal direction.  Areas within 1º 
tolerance of focal direction are colored green. 
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An axial random variable takes a random axis orientation when there is no 

reason to distinguish a direction from its opposite direction, e.g., fault lines.  Figure 2-11 

illustrates an axial focus plot of wind direction that highlights two specific axial directions 

or orientations.  The top of Figure 2-11 combines the top and bottom of Figure 2-10 in 

one single plot.  While this plot type is not particularly useful for the running example of 

ocean wind data, such a plot will make much more sense for true axial-spatial data. 

Overall, this chapter has dealt with direction.  Magnitude will now be briefly 

discussed.  The use of arrows to represent direction and strength has been common 

practice.  For example, see the “Vector Maps” at http://www.ssg-

surfer.com/html/surfer_details.html (Scientific Software Group 2008).  In CFD 

visualization, 3D perspectives of the paths of particles in a flow are colorized by 

magnitude, e.g., temperature or pressure.  For example, see the flow curves at 

http://www.fluent.com/solutions/examples/x209.htm.  

 
 

 
 

Figure 2-11.  Axial Focus Plots of Smoothed Average Direction with Axial Focal 
Directions 0 º (Top) and 90 º (Bottom).  Shading fades to white at 45º from focal 
direction.  Areas within 1º tolerance of focal direction are coded green. 
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Going from arrows to the circular dataimage, vector magnitude is lost.  

However, circular dataimages can be enhanced with magnitude information.  

Suggestions include representing magnitude using alpha-blending or lightness.  In 

Figure 2-12, wind speed is binned by quartiles and coded as quarter values (V) of  the 

HSV scheme.  Direction is binned in 45º intervals and coded as hue (H) in 45º 

increments.  The outer ring represents the fourth quartile of wind strength.  This 

enhancement provides some useful strength structure.  Visual extraction of direction and 

strength was difficult when binning strength by few levels of value with hue a continuous 

function of direction.  Hence, a few levels of value and a few levels of hue are 

suggested.    Traditional methods, e.g., adding contour curves such as in Figure 2-13, 

adding arrows of variable length corresponding to magnitude to a circular dataimage, or 

adding a heatmap (linear dataimage) of magnitude to the side of a circular dataimage 

are effective. 

Finally how can the circular dataimage be used to discover new patterns? 

Changes in pattern may be discovered by imaging the difference of directions with 

respect to two conditions, e.g., El Niño periods vs. other periods, and looking for 

changes in shape and color. 

 

 

Figure 2-12.  Strength Binned by Quartiles and Coded as Value (V) in HSV Scheme.  In 
the color wheel, value increases from center outward in quarters corresponding to 
strength in quartiles.  Direction is binned by hue into 45º bins. 
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Figure 2-13.  Circular Dataimage of Wind with Direction Coded Using HSV Color Wheel 
and Magnitude (m/s) Plotted as Contour Curves. 

 
 

2.8  Other Examples 

 
2.8.1 Earth Main Magnetic H Field Direction 

The International Geomagnetic Reference Field (IGRF) models in Figures 2-14 

and 2-15 were extracted without cost from the National Geophysical Data Center 

(NGDC) at http://www.ngdc.noaa.gov/geomagmodels/IGRFGrid.jsp.  The scientific 

domain of the NGDC spans the distance from the bottom of the sea to the surface of the 

sun, providing data describing the marine, solid Earth, and terrestrial-solar 

environments.  The total magnetic field at any point on the Earth's surface derives from 

multiple sources.  The main field, which generates more than 90% of the total field, is 

generated in Earth's outer core.   For more information, go to Frequently Asked 

Questions at http://www.ngdc.noaa.gov/geomag/faqgeom.shtml. 

Figures 2-14 (a) to (c) image the direction of the Earth main magnetic horizontal 

(H) field for 9/15/2004 and elevation 0 km using 65,340 observations of longitude, 

latitude, and east and north components of the magnetic field in nano Tesla (nT). 
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(a) 

 

    (b)         (c)  

Figure 2-14.  Circular Dataimage of Earth Main Magnetic H Field Direction.  IGRF model 
for elevation 0 km on 9/15/2004 with a GYRB color wheel (green = East = 0°). 
 
 

  The choice of GYRB color wheel results in subtle green and red color shadings 

around yellow to emphasize north and show directional detail.  In Figure 2-14 (a), the 

backward “S” shaped yellow band crossing North and South America codes north.  The 

rectangular plot distorts the pattern of direction, especially at the poles.  Figures 2-14 (b) 

and (c) correct this distortion by mapping the color onto a sphere and displaying it in 

perspective (spherical circular dataimage).  Figure 2-14 (b) shows the northern 

hemisphere.  Starting at the center and going outward, latitude decreases from +90° N 
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to 0° N at the equator.  Figure 2-14 (c) shows the southern hemisphere.  Starting at 

the outside of Figure 2-14 (c) and going toward the center, latitude decreases from 0° N 

to -90° N (+90° S). 

Figure 2-15, which was constructed with rgl (Adler 2009) using the R code in 

Appendix K.17, plots models of Earth horizontal (H) magnetic field intensity for January 

1900, 1950, and 2000.  The surfaces are 3D polar plots of intensity as radius at angles 

of longitude and latitude.  The plot surface color is direction on the GYRB color wheel.  

The heavy red, green, and blue lines are, respectively, 0º longitude and latitude, 90º 

longitude and 0º latitude, and 90º latitude.  The bulge near the South Pole appears to be 

changing shape.  Figure 2-16 shows the asymmetry of the Earth main magnetic H field 

model of 1/1/2000 via 45º rotations about the horizontal red axis, top out of the page. 

 

 
 
Figure 2-15.  3D Polar Plot of Earth Main Magnetic H Field Model with Direction as a 
Color and Magnitude as Radius for 1/1/1900, 1/1/1950, and 1/1/2000. 
 

 
 
Figure 2-16.  Asymmetry of Earth Main Magnetic H Field Model 1/1/2000 Demonstrated 
by 45º Rotations about the Horizontal Axis Through 0º-180º Longitude at the Equator. 
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2.8.2 Space Shuttle Solid Rocket Motor Nozzle 
 Internal Flow 

Each Space Shuttle is boosted by two solid rocket motors (Figure 2-17a), each 

126 feet long and 12 feet in diameter.  Figure 2-17 (b) shows an enlarged upper cross 

section of the nozzle.  Gaseous combustion products with entrained liquid 

aluminum/alumina droplets enter the nozzle at subsonic speeds and accelerate to a 

Mach number of 1.  Maximum compression occurs at the throat where the nozzle 

internal diameter is minimal.  Aft (to the right) of the throat, nozzle diameter increases.  

Gases exiting the throat to the right expand, increase in velocity to supersonic speeds, 

and generate thrust. 

 
 
 
 

 

           (a)      (b) 

Figure 2-17.  Space Shuttle Booster, Nozzle, and Nozzle Internal Combustion Flow.  (a) 
Space Shuttle solid rocket motor booster and section view of nozzle.  (b) enlarged 
nozzle section (black), YRGB color wheel with direction of flow, and circular dataimage 
of internal combustion flow.  Interesting features include two counter-rotating vortices A 
and B, flow impingement on the nozzle surface at C, and a narrow particle shear zone at 
D. 
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The flow direction imaged in Figure 2-17 (b) was computed with FLUENT, 

CFD software (FLUENT 2008), for the Space Shuttle solid rocket motor nozzle at 67 

seconds from ignition (See Appendix O for permissions).  The dataset comprises 30,351 

points of four variables (axial and radial coordinates in meters (m), and axial and radial 

speed in m/sec as computed from the CFD model).  With direction of flow aft (right) = 

yellow, upward = red, forward (left) = green, and down = blue, the large CCW pattern in 

the cavity above the nozzle throat and centered at point A indicates a CCW flow.  The 

smaller pattern at the right end of the cavity and centered at point B indicates a 

clockwise flow.  These two vortices mesh like oppositely rotating gears.  At point C, 

combustion products flowing down impact the nozzle surface, and rapidly turn forward.  

D is a high shear zone where particle breakup occurs.  The circular dataimage easily 

shows much more circular-spatial structure than an arrow plot, although an arrow plot is 

frequently used to plot this rocket nozzle flow data.  In particular, an arrow plot easily 

could miss the narrow high shear zone at D. 

 
2.8.3 Space Shuttle Solid Rocket Motor Nozzle 
 Circular Time Series 

Nozzle direction angle is the angle a nozzle is pointing to in the plane 

perpendicular to the length of the motor (Figure 2-17 (a)).  Figure 2-18 (a) shows the 

red-green-blue-yellow (RGBY) color wheel coding direction.  Figure 2-18 (b) images the 

direction angle of a subset of 176 nozzles from 5 sec to 23 sec after ignition/liftoff in 0.04 

second increments.  Each narrow horizontal strip is a circular time series of the direction 

angle of a nozzle.  The horizontal strips are vertically ordered to show circular-temporal 

structure.  First, the horizontal strips are ordered vertically by left-side nozzle and right-

side nozzle, second by angle in degrees of the Space Shuttle trajectory relative to the 

Earth equatorial plane, and last by orbital altitude in nautical miles (nm).  In bottom half 
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of Figure 2-18 (b), the dominant red indicates that the left-side nozzle tends to vary 

about the 0° location, and the dominant blue above indicates that the right-side rocket 

nozzle tends to vary about the 180° location.  This means that the left and right nozzles 

tend to be pointed toward Earth.  The left-side blue vertical band beginning at about 7.5 

sec signals the turning of the left-side nozzle to initiate the Space Shuttle roll maneuver 

as illustrated in Figure 2-19.  In Figure 2-18 (a), the red diagonal structure of the right-

side nozzle beginning about 15 sec signals the braking of the roll maneuver. 

 

 
Figure 2-18.  Time Series of the Space Shuttle Booster Nozzle Direction Angle.  
Direction angle is the direction the nozzle is pointing toward in a plane perpendicular to 
the booster axis.  (a) RGBY color wheel, (b) circular time series families, and (c) 
enlargement of one time series.  The vertical and diagonal structures in (b) reflect roll 
maneuver as influenced by inclination and altitude. 



 

 

49 

 

Figure 2-19.  Illustration of the Space Shuttle Roll Maneuver vs. Time from Ignition.  The 
time scale is nonlinear to show rotation in equal angular increments. 

 
 

The diagonal structure in Figure 2-18 (b) from the vertical ordering of the 

horizontal strips shows a relationship between the nozzle direction angle and inclination 

and altitude, that without ordering would be obscured by numerical-alpha ordering of the 

nozzles.  Figure 2-18 (c) is an enlargement of the horizontal strip in Figure 2-18 (b) near 

the tail of the large arrow connecting Figures 2-18 (b) and (c). 

The roll maneuver illustrated in Figure 2-19 orients the cargo bay towards the 

Earth to satisfy communication, scientific, and Space Shuttle engineering requirements, 

and provides the astronauts with a spectacular view of Earth (Brown 2003). 
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2.9  Chapter Summary and Future Work 

 
 

Traditional plots of circular-spatial data become less intelligible as random 

variation, missing data, and data density increase.  These issues were solved by the 

circular dataimage.  The circular dataimage was defined by coding direction as the color 

at the same angle on a color wheel, with the color wheel defined as a sequence of three 

or more two-color gradients with the same color between connecting gradients.  The 

circular dataimage eliminated color discontinuity at the cross over point resulting in a 

continuous image of circular-spatial data, and provided an image in which fine detail on 

a small scale and large-scale structure on a global scale could be simultaneously 

recognized.  Various suitable color wheels were shown and compared to motivate 

experimentation, the objective being to effectively contrast and comfortably view 

interesting circular-spatial structure.  The discrete color wheel was constructed from a 

continuous color wheel by holding color in an angular interval to the start color of a 

continuous color wheel in the same interval.  Variations on circular dataimages were 

given, e.g., the focus and axial focus plots, with interactive focus on a narrow band of 

directions or orientations, and direction and magnitude plots including a 3D polar plot 

with magnitude as radius and direction as color.  Examples included global views of 

average wind direction, internal flow of the Space Shuttle solid rocket motor nozzle, 

families of circular time series of rocket nozzle vectoring, and the direction of the Earth 

main magnetic H field. 

Future work includes R package CircSpatial implementation of an improved color 

wheel for deuteranopic color impairment, the focus and axial focus plots (Figures 2-10, 

2-11), overlay of magnitude as contour curves (Figure 2-13) and as variable length 

arrows on circular dataimages, and 3D polar plots (Figure 2-15) with an overlay of 

features, e.g., geographical boundaries. 
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CHAPTER 3 

COSINEOGRAM, A MEASURE OF CIRCULAR-SPATIAL CORRELATION 
 
 

3.1  Introduction 

 
This chapter defines the cosineogram, which is a graph expressing the empirical 

correlation of circular-spatial data.  The positive definite cosine model with best fit to the 

cosineogram characterizes the spatial properties of circular-spatial data.  This model will 

be used for circular kriging.  Circular kriging (Chapter 4) is the estimation of circular-

spatial data based on a model of circular-spatial correlation, which is a function of 

distance between measurement locations.  Cosine models were adapted from three 

common covariance models from linear kriging (estimation of data of a continuous linear 

random variable (RV) based on a model of spatial covariance, which is a function of 

distance between measurement locations). 

This chapter is organized as follows: Section 3.2 introduces the cosineogram and 

model with nugget, range, and sill similar to the nugget, range, and sill of the covariance 

model used for linear kriging.  Section 3.3 derives the result that the theoretical sill is the 

square of the length of the mean resultant vector of the circular probability distribution 

underlying the circular-spatial data.  Section 3.4 determines that the length of the mean 

resultant vector is the parameter, ρ , of the circular probability density function (PDF) for 

the selected circular distributions.  Section 3.5  verifies the theoretical sill by simulation.  

Section 3.6 defines some cosine models (similar to covariance models used for linear 

kriging) for fitting to a cosineogram.  Section 3.7 constructs an example cosineogram for 

ocean wind in a south polar region.  Section 3.8 concludes with the summary and future 

work. 
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3.2  The Cosineogram 

 
Circular-spatial data may have an underlying spatial trend where the mean 

direction depends on location.  The random component of direction contains information 

about the spatial correlation.  The empirical cosineogram is defined as the plot of the 

mean cosine of the angular distance (Figure 3-1, right) between the random components 

of direction vs. the Euclidean or linear distance between observation locations (Figure 3-

1, left). 

Let ( )dς̂  be the estimate of the mean cosine, which depends on the Euclidean 

distance d between measurement locations, ix  and jx  vectors of location coordinates 

of observations i and j, respectively, ij xx −  the Euclidean distance between 

observation locations, ( )dN  the number of pairs of observations separated by a distance 

ij xx −  within a tolerance ε  of d, and iθ  and jθ  the measured directions at ix  and jx , 

respectively.  The cosineogram is the plot of ( ) ( )( ) ( )∑ <−−
−= ε θθς

dij
ijdNd

xx
cosˆ 1  vs. 

d.  The cosine model of spatial correlation underlying the sampling variation in the 

cosineogram are illustrated by Figure 3-2. 

 

 

Figure 3-1.  Euclidean Distance Between Locations  vs. Angular Distance Between 
Observations.  Euclidean and angular distances between observations are indicated by 
red lines. 
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Figure 3-2.  Features of the Cosine Model.  The cosineogram characterizes the 
correlation of random components of direction vs. distance between locations.  For the 
spherical cosine model, the sill is flat at distances beyond the range. 

 
 
The value of the mean cosine of the angle between observations at zero distance 

is defined to be one because the angle between an observation and the same 

observation at the same location is zero.  Measurement error may cause observations at 

locations which are close together (or even at the same location) to be more variable 

resulting in a decrease in the mean cosine.  The difference between 1.0 and the mean 

cosine at distances approximately zero is called the nugget.  As the distance between 

measurement locations increases, the nonrandom or spatial trend component of 

direction may change, and the random component of direction will have less correlation 

resulting in a decrease of the mean cosine of the random components of direction.  For 

the spherical model shown in Figure 3-2, the range is defined as the distance at which 

the random components are no longer correlated.  For other models, the practical range, 

which is a multiple of the range, is the distance at which random components are 

assumed to be uncorrelated.  At distances where observations of direction are 

uncorrelated, the mean cosine is a constant, forming a plateau which is called the sill. 
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The next section will derive the result that the theoretical sill is the square of 

the resultant vector mean length parameter (Chapter 1, Section 1.1) of the circular 

distribution of the CRF (Chapter 1, Section 1.1).  It is based on the new definition that 

the theoretical sill of the CRF is the expectation of the cosines of the small angles 

between pairs of independent CRVs.  This definition parallels the definition of the sill of a 

covariogram in linear kriging.  The covariogram is a plot of the empirical covariance vs. 

distance between observation locations.  At distances where linear RVs are 

uncorrelated, the covariance is zero, forming a sill in the covariogram. 

 
3.3  Derivation of the Sill 

 
 

3.3.1 Review of Circular Probability Distributions and Statistics 

A circular random variable (CRV) takes random directions with the total 

probability of all possible directions distributed on the circular support.  In this chapter, 

direction will be expressed in radian units on the support [ )π2,0  since trigonometric 

functions require angles in radian units.  To determine the properties of a circular 

probability distribution, imagine a point on a unit circle plotting a direction as the 

equivalent unit vector located at the origin of the unit circle with arrow head touching the 

unit circle.  The main properties of a circular probability distribution include the resultant 

vector mean direction µ , which may depend on measurement location, and the resultant 

vector mean length ρ , which is a measure of concentration about the resultant vector 

mean direction and the opposite of variability about the mean, which is a measure of 

spread. 

Let a vector be denoted by a bold lower case letter and a scalar by a nonbolded 

lower case letter.  Let nθθθ ,,, 21 L  be a set of n observations of the corresponding CRVs 
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nΘΘΘ ,,, 21 L  measured in radians.  With ∑ =
=

n

i inC
1
cosθ  and ∑ =

=
n

i inS
1
sinθ , the 

sample mean resultant vector direction θ  is 
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The population resultant vector mean direction is denoted by µ . 

In terms of nC  and nS , the sample resultant vector length is 

               ,22
nnn SCR +=                 (3.2) 

and the sample resultant vector mean length is 

                 .1
nnn RR =                  (3.3) 

If all n observations have the same direction, the variability is zero, the resultant vector 

length nRn =  (the unit vector observations of direction added tail to head are aligned 

and n long), and the resultant vector mean length 11 == nR
nn , which is the theoretical 

maximum.  When direction takes random values, the variability is greater than 0, the 

resultant vector length nRn < , and 1
1

<= nn R
n

R .  If n is even, and the angles between 

all pairs of adjacent observations of direction are equal, the variability (spread) is the 

theoretical maximum, the horizontal and vertical components of the unit vectors cancel, 

0=nR , 0
1

== nn R
n

R , and the resultant vector mean direction nθ  is undefined.  The 

population mean resultant vector length is denoted by ρ .  The circular distributions 

discussed in this dissertation were introduced in Chapter 1, Section 1.1, and are 

characterized in Table 3-1.
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Table 3-1.  Circular Probability Distributions, ,0=µ  πθ 20 <≤ Radians. Circular density 
is plotted as the length of radial between black filled unit circle and outer curve. 
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3.3.2 Assumptions 

The dimension of the stochastic space is 2.  The circular-spatial model consists 

of a spatial trend, with mean direction dependent on location or constant, plus a circular 

random field (CRF).  With Θ the CRV and x the location in 2R , the CRF is the set 

( ){ }2, R∈Θ xx .  

Spatial correlation increases as distance between measurement locations 

decreases, i.e.,  random components of direction (spatial trend removed) tend to be 

more similar as distance between observation locations decreases.  In the form required 

by the circular kriging of Chapter 4, spatial correlation is the mean cosine of the angle 

between random components of directions  vs. distance between observation locations.  

It is assumed that the spatial correlation is isotropic, i.e., it is independent of the 

geographic direction in which sampling is performed.  If the spatial correlation varied with 

geographic direction (anisotropic) and sampling was performed in directions with 

different spatial correlation, the estimate of spatial correlation (mean cosine vs. distance) 

would be some average over geographic directions, and less accurate for a particular 

direction.  Geometric anisotropy, where the sill is constant and the range varies with the 

spatial direction in which observations are taken, requires a directional cosineogram 

(mean cosine computed within a tolerance of a specified geographic direction) and 

applies to the geographic area over which the directional cosineogram is computed . 

 
3.3.3 The Sill a Function of Expectations 

Let Θ  be the CRV of the circular distribution, iΘ  and jΘ be two random 

directions, π2,0 <ΘΘ≤ ji , with equivalent unit vector denoted by i and j .  Also, let E be 

the expectation operator, and D be the smallest angle in radians between two 

independent random directions of a circular probability distribution, π≤≤ D0 . Define the 
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sill as the ( ){ }DcosE .  The sill will be derived for the cases shown in Figure 3-3.  Either 

π<Θ−Θ≤ ij0  (Case 1), or ππ 2<Θ−Θ≤ ij  (Case 2). 

Case 1, :0 π<Θ−Θ≤ ij  

( ){ } { }
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( )[ ]{ }
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Case 2, :2ππ <Θ−Θ≤ ij  
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Figure 3-3.  Cases of Random Directions.  Directions are expressed  in radian units. 
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Hence, complete evaluation of the sill requires knowledge of ( ){ }ΘcosE  and 

( ){ }ΘsinE . 

 
3.3.4 Expectation of the Sines 

With g the PDF of Θ , for the symmetric circular distributions with 0=µ , the PDF 

( ) ( )θθ −= gg .  Hence, the oppositely signed ( )Θsin  and ( )Θ−sin  cancel when 

integrating over the full range and, hence, ( ){ } 0 for0sin ==Θ µE .  Let ρ~  be the 

population mean resultant vector length.  ( ){ } 0 for0sin ==Θ µE , i.e., the vertical 

component of ρ~  is zero.  Hence 

             ( ){ }.cos~ Θ= Eρ             (3.5) 

 
3.4  Expectation of the Cosines 

 
From (3.5), the population mean resultant vector length ( ){ }Θ= cos~ Eρ  for 0=µ .  

To evaluate ( ){ }ΘcosE , the PDFs for circular distributions summarized in Table 3-1 were 

obtained from Mardia (1972), Fisher (1993), and Jammalamadaka and SenGupta 

(2001).  In the subsections 3.4.1 to 3.4.5, it will be shown that ρ~  is the parameter ρ  of 

the circular PDFs for the selected circular probability distributions.  This step is 

necessary as it is not immediately obvious that the parameter ρ  is the population mean 

resultant vector length for the selected distributions, as claimed by Fisher (1993). 
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3.4.1 Cardioid 
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3.4.2 Triangular 
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            ( ){ } ρ=Θ Triangular|cosE                (3.7) 

 
3.4.3 Uniform 

     

( ){ } ( ) [ ]

( )

0

sin
2
1

2cosUniform|cos

2

0

DENSITY

12

0

=

=

==Θ
−

∫

π

π

θ
π

θπθ dE
43421

  

      ⇒=
≡

ρ
ρ 0
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3.4.4 von Mises 
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00 cosexp
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(Jammalamadaka and SenGupta 2001, p. 288), ( ) ( )
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κ
κ

0

1
1

I

I
A =  (Fisher 1993, p. 50, eq. 

3.36). 
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3.4.5 Wrapped Cauchy 

Jammalamadaka and SenGupta (2001, p. 45) prove the equivalence of the PDF 

from Table 3-1 and the form of the PDF used below. 

( ){ } ( ) ( )[ ]

( ) ( ) ( )[ ]

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )∑ ∫∫

∑ ∫

∫ ∑∫

∫ ∑

∫ ∑

∞

=

∞

=

∞

=

∞

=

∞

=

++=

+=

+=

+=

+=Θ

2

2

0

2

0

1

1

2

0

2

0

2

0 1

2

0

2

0 1

2

0

DENSITY

1

coscos
1

coscos
1

0

coscos
1

sin
2
1

coscos2
2
1

cos
2
1

coscos2cos
2
1

cos21
2
1

cosWrCauchy|cos

k

k

k

k

k

k

k

k

k

k

dkd

dk

dkd

dk

dkE

θθθρ
π

θθθρ
π

θθθρ
π

θ
π

θθθρ
π

θθ
π

θθθρθ
π

θθρ
π

θ

ππ

ππ

ππ

π

π

44444 344444 21

 

        

( ) ( )

( )
( )( )

( )
( )( )

[ ] [ ]

⇒=+=

−+−+−+−=



















+
+

+−
−

+














+=

∑

∑

∑

∞

=

∞

=

∞

=

ρ
π

ρπ
π

ρ
π

πρ
π

θθρ
π

θθθρ
π

π

π

2

2

2

0

2

 #317137,- Ap. 1972, Weast

2

0 #302136,- Ap. 1972, Weast

0
11

0000
1

000
1

1sin
12

1
1sin

12
11

5.cossin5.
1

k

k

k

k

k k
k

k
k

44444444 344444444 21

444 3444 21
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3.4.6 Summary of Individual Results 

In summary, from (3.6) to (3.10) for the selected distributions from Table 3-1, the 

population mean resultant vector length ρ~  equals the parameter ρ  of the circular 

probability distribution.  Let the parameter ρ  also denote the mean resultant vector 

length.  Hence, the theoretical sill is  

            ( ){ } .cos 2ρ=DE             (3.11) 

Result (3.11) has two implications.  First, two circular distributions of different 

families (Cardioid, Triangular, von Mises, Wrapped Cauchy) with the same population 

mean resultant vector length, ρ , will have the same theoretical sill, 2ρ .  Hence, with the 

exception of the uniform circular distribution, the correspondence between the sill and a 

circular probability distribution is not unique.  For the uniform circular distribution, 0=ρ  

because all directions have equal probability density.  The second implication is that 

zonal anisotropy (sill varies with direction) cannot occur in a pure CRF with one 

underlying circular probability distribution. 

 
3.5  Verification of the Sill by Simulation 

 
The theoretical sill was computed as 2ρ  for five circular probability distributions 

from Table 3-1.  The results have been summarized in Table 3-2.  The function 1A  in the 

Sill column of the table for the von Mises distribution is given in Subsection 3.4.4.  The 

value of the sill of each distribution was verified by simulation.   

Figures 3-4 to 3-8 were computed using the R code in Appendices K.3 and L.1.  

For each distribution, 1000 simulations were computed.  In each simulation, 100 

independent CRV were computed, the cosines of the angles between all pairs of CRV 

were collected, and the averages were computed for the cumulative collection of 
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Table 3-2.  The Sill of Selected Distributions. 

Distribution 
Parameter 

Range 

Selected 

Parameter Value 

Sill, or ( ){ } 2cos ρ=DE  

(3.11) 

Cardioid 5.00 ≤< ρ  25.0=ρ  062.025.0 22 ==ρ  

Triangular 2/40 πρ ≤<  2/2 πρ =  ( ) 0.041/2
222 == πρ  

Uniform 0=ρ  0=ρ  02 =ρ  

von Mises ( )10

0

<<

∞<<

ρ

κ
 5=κ  (concentration) ( )( ) 0.7985 2

1
2 == Aρ  

Wrapped 

Cauchy 
10 << ρ  ( )1exp −=ρ  ( )( ) 0.1351exp 22 =−=ρ  

 
 

cosines.  Hence, the size of the collection increases with each simulation.  Figures 3-4 to 

3-8 plot the mean cosine of the angle between independent CRV vs. the number of 

simulations, and show that the mean cosine tends to the theoretical sill as the number of 

simulations increases and is consistent with the theoretical sill.  In Figure 3-6, a slightly 

negative mean cosine developed at about 200 simulations.  After 300 simulations, the 

mean cosine trended toward zero.  With the uniform circular distribution all directions are 

equally likely.  Hence, half of the angles are likely to occur between π5.0 and π5.1 .  

These have negative cosines.  A negative mean cosine means there were more 

negative than positive cosines at the completion of a simulation in the sequence of 

simulations. 
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Figure 3-4.  Mean Cosine of the Angle Between Independent Cardioid CRV, 
062.02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
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Figure 3-5.  Mean Cosine of the Angle Between Independent Triangular CRV, 
041.02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
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Figure 3-6.  Mean Cosine of the Angle Between Independent Uniform CRV, 
02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
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Figure 3-7.  Mean Cosine of the Angle Between Independent von Mises CRV, 
798.02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 

theoretical sill. 
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Figure 3-8.  Mean Cosine of the Angle Between Independent Wrapped Cauchy CRV, 

135.02 =ρ , Is Consistent with the Theoretical Sill.  The dashed line represents the 
theoretical sill. 

 
 

3.6  Cosine Models 
 
 
3.6.1 Cosine Model Properties 
 

In the previous sections, the mean cosine of the angle between independent 

CRV was determined to be 2ρ .  We now will consider the CRF.  Covariance models 

used for linear kriging were derived from the semivariance models in Bailey and Gatrell 

(1995, pp. 179-180).  These covariance models are monotonic decreasing and positive 

definite.  Cosine models were adapted from covariance models by scaling and shifting to 

conform to the circular-spatial correlation in a CRF:   

� At distance 0, the mean cosine equals 1. 

� At distance not exactly 0, but close to 0, the mean cosine equals 1 minus the nugget.   

� As distance increases, the mean cosine decreases monotonically to the sill. 

� The sill equals the square of the mean resultant vector length parameter ρ of the 

circular probability distribution. 
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� Applying the cosine model to the matrix of pairwise distances produces a 

symmetric and positive definite matrix, which will be proved.  A positive definite 

matrix is required for linear kriging. 

 
3.6.2 Introductory Cosine Models Adapted 
 from Linear Kriging 

Let ρ  be the mean resultant vector length of the circular probability distribution, 

10 <≤ ρ , and ng be the nugget.  Since the minimum value of the mean cosine is 2ρ , 

the maximum nugget (Figure 3-2) is 21 ρ− .  Hence,  210 ρ−<≤ gn .  With ( )dς  the 

mean cosine of the angle between random components of direction a distance d apart 

and r the range, some introductory cosine models adapted from Bailey and Gatrell 

(1995, pp. 179-180 ) by scaling and shifting, are: 

 

• The Exponential Cosine Model 

         ( ) ( ) ( )
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=
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0,3exp1
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22 drdn
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ς          (3.12) 

� The Gaussian Cosine Model 
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� The Spherical Cosine Model 
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Note that the symbol ( )dς̂  is used for the empirical version of the model, which is the 

cosineogram (Section 3.2). 
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Figures 3-9 to 3-11 show plots of cosine models for  the selected circular 

distributions with range r = 8 and nugget gn = 0.  Values for the parameters ρ  and κ  

have been chosen in accordance with Table 3-2 and with Figures 3-4 to 3-8.  The 

parameter κ of the von Mises (vM) distribution is a measure of concentration about the 

mean direction equal to one half the log of the ratio of the maximum density at the mean 

to the minimum density at the opposite direction.  The exponential model in Figure 3-9 is 

concave up, the Gaussian model in Figure 3-10 is “S” shaped with an inflexion point, and 

the spherical model in Figure 3-11 has a plateau (sill) at distances beyond the range.  

Additional suitable cosine models are given in Appendix M.  

 

 

 

 

 

Figure 3-9.  The Exponential Cosine Model. 
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Figure 3-10.  The Gaussian Cosine Model. 
 
 
 
 
 
 
 

 

Figure 3-11.  The Spherical Cosine Model. 
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3.6.3 The Adapted Cosine Models Are Positive Definite 

Positive definiteness of the matrix of cosines is required by the circular kriging 

solution (Chapter 4, Section 4.3) for an optimal estimate of direction.  In this subsection, 

it will be proven that the cosine models adapted from the positive definite covariance 

functions of linear kriging are positive definite.  For this proof, the equivalent shifted and 

scaled form of the spherical cosine model in (3.14) is required.   
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With ijji dd = the spatial distance between locations of observations i and j, let 

( ) jiji adf =  be a positive definite function of distance, i.e., a covariance function of linear 

kriging.  Then, with k1 and k2 constants, the cosine models structured such as (3.12), 

(3.13), and (3.15) can be expressed as ( )jidfkk 21 +  with 2
1 ρ=k  and ( )2

2 1 ρ−−= gnk .
  

The circular uniform distribution has ρ = 0, which is the minimum mean resultant vector 
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length parameter of all circular distributions.  The  degenerate distribution has ρ = 1, 

which is the theoretical maximum.  For CRV, the range of 2ρ  is 1010 1
2 <≤⇒<≤ kρ . 

( )2
2 1 ρ−−= gnk  is the multiplier of the covariance function in (3.12), (3.13), and 

(3.15).  ( ) ( ) 22
2 11 ρρ −−=−−= gg nnk  is the change in the mean cosine from the sill to 

the nugget.  If spatial correlation does not exist, i.e., there is a “pure nugget,”  

( ) 01 2
2 =−−= ρgnk , and the mean cosine vs. distance is flat.  If spatial correlation 

exists, ( ) 01 2
2 >−−= ρgnk .  When distance d = 0, 2k  is increased to 21 ρ−  because 

the nugget 0=gn  when d = 0.  A nonzero nugget applies at distances d > 0. 

With n the number of observations and J the square n x n matrix of element 1, 

the n x n matrix of cosines C, resulting from the element-wise application of a cosine 

model of the form ( )jidfkk 21 +  to the matrix of pairwise distances is 
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Now it will be proven that the matrix C is positive definite with y any n-element 

non zero vector. 
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Hence, C is positive definite by Appendix B, Section B.2, point 3. 
 
 

3.7  Cosineogram of Ocean Wind in a South Polar Region 
 
 

In this section, circular-spatial correlation will be extracted from ocean wind of a 

south polar region.  A model was computed for longitude 69.5º E to 109.5º E by latitude 

-59.5º N to -40.5º N in 1º increments by averaging the data of Chapter 2, Subsection 

2.2.1 via R package CircSpatial function CircDataimage (Chapter 2, and Appendices 

J.10 and K.2) with input as in Appendix J, Subsection J.10.6, step 1, and smoothing the 

averages with bandwidth 2.5º in the plane of longitude and latitude (J.10.6, step 8).  The 

smoothed average directions from CircDataimage were output to the R workspace in the 

list object Globals.  Appendix L, Section L.2 shows usage of the elements of Globals.  

Figure 3-12 shows the image of this model.  The spatial correlation is expressed in the 

cosineocloud and cosineogram in Figure 3-13.  The cosineocloud (grey points) is 
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here defined as the plot of the cosines of the angles between all pairs of directions vs. 

distance between measurement locations.  The cosineocloud is useful for examination of 

the individual cosines.  The cosineogram (red curve) as defined in Section 3.2,  reduces 

the cosineocloud to the plot of the mean cosine vs. distance.  Between distances of 0 

and 1 on the horizontal axis, spatial correlation is changing rapidly.  At a distance of 

about 3.8, the mean cosine tends to be constant at about 0.45 indicating that direction is 

not correlated.  Hence, the range is 3.8 and the sill is 0.45.     Circular kriging, as 

described in Chapter 4, requires a cosine model which is smooth, continuous, and 

positive definite.  The shape of the cosineogram in Figure 3-13 suggests the exponential 

cosine model in (3.12), which is overplotted as a blue dashed curve over the full range of 

distances for comparison with the empirical cosineogram.  The fit of the model to the 

cosineogram is adequate.  The exponential cosine model characterizes the circular-

spatial correlation in this region of ocean wind data as asymptotic, but without the 

inflexion (S shape) of the gaussian cosine model.  The exponential cosine model is fairly 

linear near the origin and falls to the sill much more quickly than the spherical cosine 

model. 

 
 

Figure 3-12.  Circular Dataimage of Model of Ocean Wind Direction for South Polar 
Region.  Direction, which is coded by the color wheel, is relatively homogeneous and 
varies about the direction of 0 radians. 
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Figure 3-13.  Cosineocloud, Cosineogram, and Exponential Model of South Polar Ocean 
Wind.  The cosineocloud (grey points) shows the cosines of the angles between all pairs 
of directions vs. distance between measurement locations.  The cosineogram (red solid 
curve) reduces the cosineocloud to the plot of the mean cosine vs. distance.  The sill 
(plateau), where the random components of direction are uncorrelated, occurs at a 
distance of about 3.8 at a mean cosine of about 0.45.  The exponential model (blue 
dashed curve) is overplotted for comparison. 

 
 

3.8  Chapter Summary and Future Work 
 
 

In this chapter, we discussed the cosineocloud, the empirical cosineogram, and 

theoretical cosine models.  The cosineogram plots the empirical spatial correlation in 

circular-spatial data as the mean cosine of the angle between random components of 

direction at locations vs. distance d between observation locations.  With ( )dς̂  the mean 

cosine, ix  and jx  vectors of location coordinates of observations i and j, respectively, 

ij xx − the linear distance between locations of observations i and j, and ( )dN  the 

number of pairs of observations of direction separated by a distance within a tolerance 
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ε  of d, the cosineogram is a plot of ( ) ( ) ( )∑ <−−
−= ε θθς

dij
ijdN

d
xx

cosˆ 1  vs. d.  For 

an example, a cosineogram was constructed from homogeneous ocean wind data in a 

south polar region. 

The cosine model fitted to the cosineogram characterizes the spatial correlation 

in a form useful for circular kriging. 

� The mean cosine equals 1 at zero distance. 

� The mean cosine at distances close to 0 may be reduced by measurement error.  

This reduction gn  is called the nugget effect. 

� The range r is a scale parameter.  The range of the spherical cosine model is the 

distance beyond which CRV are uncorrelated.   

� The sill is the mean cosine at distances where CRV are uncorrelated.  The 

theoretical sill is .2ρ  

The theoretical sill was derived as the square of the mean resultant vector length 

of the circular probability distribution underlying the circular-spatial data.  For the circular 

probability distributions cardioid, triangular, uniform ( )0=ρ , von Mises, and wrapped 

Cauchy, the mean resultant vector length equals the parameter ρ  of the underlying 

circular probability distribution.  The theoretical sill was verified by simulation. 

Introductory cosine models, which are required for circular kriging, were adapted 

from the exponential, Gaussian, and spherical covariance functions used for linear 

kriging by shifting and scaling the covariance function.  With d the distance between 

measurement locations, ρ  the mean vector resultant length parameter of the circular 

probability distribution, 10 <≤ ρ , ng the nugget, 210 ρ−<≤ gn , r the range, and c(d, r) 

the covariance function from linear kriging with a maximum of 1, 
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 the general form of the cosine model is  

( ) ( )





>−−+

=
=

.0,),(1

0,1
22 drdcn

d
d

g ρρ
ς  

This form was proven to produce a positive definite cosine matrix. 

Future work includes the development of theoretical foundations of directional 

cosineograms for anisotropic circular-spatial data where the range varies with the 

geographic direction. 
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     CHAPTER 4 

 
CIRCULAR KRIGING 

 
 

4.1  Introduction 
 
 

4.1.1 Objective 

The objective of this chapter is to develop a circular kriging estimate of direction 

with optimum properties based on a sample of circular-spatial data.  Kriging is a body of 

techniques for estimating continuous and spatially correlated data.  The name of the 

technique is derived from Daniel G. Krige, a South African mining geologist, who 

originated the method for linear-spatial data.  The circular kriging estimate is a linear 

combination of observations of direction with weights based on the spatial correlation as 

estimated by the cosine model fitted to the empirical cosineogram (Chapter 3), and may 

be imaged using arrow plots or the circular dataimage (Chapter 2).  Figure 4-1 illustrates 

the kriging of simulated circular-spatial data.  The R package CircSpatial function 

KrigCRF is documented in Appendix J, Section J.5. 

 
 

 

Figure 4-1.  Circular Kriging, the Interpolation of Circular-Spatial Data Based on Spatial 
Correlation.  The left plot shows simulated circular-spatial data.  In the right plot, the 
simulated data (black) is superimposed on the kriged estimate of the simulated data 
(tan). 
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4.1.2 Chapter Organization 

This chapter is organized as follows: Section 4.2 derives the circular kriging 

estimator, correcting the result from McNeill (1993).  Section 4.3 proves that the 

estimator is optimal.  Section 4.4 gives an alternate formula, which is computationally 

efficient.  Section 4.5 shows the kriging behavior around a sampled location, and proves 

that the estimated direction at a sampled location is the observed direction.  This is 

called “exact interpolation” in linear kriging.  Section 4.6 derives the circular kriging 

variance of the circular kriging estimator, correcting the result from McNeill (1993).   

Section 4.7 shows how the circular kriging variance varies with distance and the circular-

spatial correlation model.  Section 4.8 concludes with the summary and description of 

future work. 

 
4.2  Solution 

 
 

4.2.1 A Linear Combination of Observations 

The estimated spatial correlation parameters (see nugget, range, and sill in 

Chapter 3) are assumed to be reasonably accurate.  Inaccuracy increases error and the 

variability of the estimate.  The circular random field (CRF), as introduced in Chapter 1 

and further discussed in Chapter 5, is assumed to be isotropic (spatial correlation 

independent of direction). 

See Appendix A for a description of the notation and Appendix B for referenced 

Equations (B.1) to (B.12).  In Chapter 3, the direction at location 0x  was denoted by the 

scalar 0θ  in radians.  The conversion from the scalar to the unit vector representation of 

direction is 
( )
( )






=

0

0
0 sin

cos

θ

θ
u .  Let 0û  be the unit vector estimate of the direction 0u at the 
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unmeasured location 0x , and ni ,,2,1,i L=u  be observations of direction as unit 

vectors at measured locations ,,,2,1,i ni L=x  respectively. 

Spatially correlated observations contain information about 0u .  Because spatial 

correlation increases as distance decreases, observations nearer to the estimation 

location carry more information about 0u  than observations more distant.  Hence a 

weighted linear combination of the observations ni ,,2,1,i L=u , is required.  Let 

,,,2,1, niw i L=  be the weights with Rw i ∈  (the set of real numbers).  

    nnwww uuuu +++= L22110ˆ  
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                          Uwu =0ˆ                            (4.1) 

w will ultimately be determined by a constrained optimization in Subsection 4.2.7 such 

that 0û is a unit vector.  In general, the length of the vector estimate 0û  for any nR∈w  

is 
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                        .
~ˆ0 wKwu T=                 (4.2) 

* For unit vectors iu , the diagonal elements of UUT  are 
( )

( ) ( ) ( ) ( ) ( ) ( ) 1sincossinsincoscos 22
1.

=+=+= iiiiii

B

i
T
i θθθθθθuu . 

 
4.2.2 Optimality 

Let 0e  be the error vector equal to the unit vector estimate of direction 0û  minus 

the unobserved direction 0u  (unit vector), or 000 ˆ uue −= .  0e , 0û , and 0u  are located at 

0x .  The addition of the unit vector 0u  and 0e  is shown in Figure 4-2 as 

( ) 000000 ˆˆ uuuueu =−+=+ .  In words, the unobserved direction plus the error vector 

equals the estimate of direction.  Hence, 0e is a vector from the head of 0u  to the head 

of 0û , and the length of the error vector is the distance from the head of 0u  to the head 

of 0û .  Let θ  be the angle between these vectors in [ ]π,0 .  When ,0,0 0 == eθ  and 

when .2, 0 == eπθ   Hence, 20 0 ≤≤ e . 

 
 

 
 

Figure 4-2.  Directions Represented by the Unobserved 0u , Estimate 0û , and Error 

000 ˆ uue −=  Vectors.  θ  is the angle between 0u  and 0û . 
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The unit vectors 0u  and 0û  can be visualized as the hands of a clock when 

the tails of the vectors are positioned at the center of a clock.  For any 0u  and 0û , while 

holding θ  and 0e  constant, the minute and hour hands (vectors) can be transposed so 

0û  is counterclockwise of 0u , and the hands can be rotated so that the line joining the 

hands is vertical with 0e  pointing upward.  Since we are interested in 0e  for 

minimization, Figure 4-2 illustrates the case of any 0u  and 0û . 

Uwu =0ˆ , the estimate of the unobserved direction, will be considered optimal 

when the choice of w results a unit vector estimate 0û  with an error vector 0e  of 

minimum squared length over all such estimates.  With θ  the angle between 0û  and 

0u , the squared length of the error vector is 

 
( )[ ]

( )[ ] ⇒=

=−

2

22
00

2sin4

2sin2ˆ 

θ

θuu
  

 

           ( )[ ] .2sin4ˆ 22
00 θ=− uu            (4.3) 

The result (4.3) can be further transformed.  

( ) ( )
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Hence, the squared length of the error vector (4.4) is minimized by maximizing θcos , 

or minimizing the angle between unit vectors 0û and 0u .  With ( )0cos iθ  denoting the 

cosine of the angle between observation iu  and unobserved 0u ,  and referencing 

Appendix B, Equation (B.1), it follows that 

 ( )
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            .~cos cwT=θ                  (4.5) 

4.2.3 Cosineogram 

c~  must be estimated since 0u is unknown.  Also, the eigenvalues of UUK T=
~

 

have been observed to be not all positive indicating that K
~

 is generally not positive 

definite according to Appendix B, Equation (B.3).  However, positive definiteness is 

required for maximum fit (Section 4.3).  This is accomplished by replacing c~ and K
~

 with 

estimates c and K, respectively,  which are computed on smooth and positive definite 

functions as is done in the kriging of linear-spatial data (Bailey and Gatrell 1995). 
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For circular-spatial data, the empirical cosineogram,  a rough plot  of circular-

spatial correlation (Chapter 3, Section 3.2), is modeled by the positive definite cosine 

model (Chapter 3, Section 3.6 and Appendix M) with best fit.  The elements of c and 

K are computed using the selected cosine model and the distances between 

measurement locations.  c , which depends on the estimation location, must be updated 

for each location to be estimated.  K , which depends only on the distances between 

observations, is computed once. 

 
4.2.4 First Iteration of the Circular Kriging Solution w 
 

Recall that cwT  is a linear combination of the expected cosines of the angles 

between the unobserved direction as a unit vector 0u  and the sampled directions 

nii ,,2,1, L=u , with c~  replaced by c in (4.5).  It expresses the fit of 0û to 0u .  wKwT  is 

the squared length of 0û , with K
~

 replaced by K in (4.2).  01=−wKwT  expresses that 

the squared length of 0û is constrained to 1.  The vector of weights w will be solved by 

maximizing cwT  relative to w with the maximization constrained such that wKwT  is 

equal to one.  The method of Lagrange multipliers (Grossman 1988), for finding the 

extrema of a function of several variables subject to a constraint,  introduces a new 

unknown scalar variable, which is called the Lagrange multiplier, and defines a new 

function, which is called the Lagrangian, in terms of the original function, the constraint, 

and the Lagrange multiplier.  At the stationary point, the Lagrange multiplier is the 

proportionality of the gradient of the function to be maximized and the gradient of the 

constraint.  Let ν  be the Lagrange multiplier and q  be the Lagrangian. 

                ( )1
2

−−= wKwcw TTq
ν

               (4.6) 
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ν  is divided by two to simplify a subsequent result. 

Differentiating (4.6) with respect to w according Appendix B, Equations (B.8) and 

(B.9),  

( ) ( )

⇒−=

−−=
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−−

∂

∂ TT          (4.7) 

Setting the derivative (4.7) equal to the zero vector [ ]T000 L=0 , 

.cwK0wKc =⇒=− νν   From the invertibility of K (Appendix B, Equation (B.4)) it 

follows that 

           .11 cKw −−=ν              (4.8) 

ν can be determined from the unit length constraint 1=wKwT . 

          wKwT=1  
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The Lagrange multiplier ν is a scalar representing the proportionality of parallel 

gradient vectors of the function being optimized and the constraint.  The positive sign of 

ν  is selected to maximize fit as will be explained in detail in Section 4.3.  It follows that 

                         ,1cKc −+= Tν                 (4.9) 



 

 

86 

and       
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(4.10) is McNeill’s result (1993, p. 40, eq. 6). 

 
4.2.5 Length of the Estimator 0û  

 Substituting the solution into the estimator, the squared length is 
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Is 0û  a unit vector? 

 
4.2.6 0û Is Likely Not a Unit Vector 

If 
( )

1ˆ 2
0

11.4

=⇒= uKUUT .  However, with UUT  a realization of the continuous 

random matrix VV T , 
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( )
( )

( ) 01ˆ0 0

11.4

==⇒== uKVV yprobabilityprobabilit T .  Thus, it is likely that 0û  is not a 

unit vector (except for a set of Borel-measure 0).  

 
4.2.7 Corrected Circular Kriging Solution w 
 

Equation (4.11) suggests that the matrix of cosines K be scaled by s.  It will be 

shown in Section 4.3 that scaling K by s leads to a unit vector solution.  The revised 

function to maximize is 

          ( ).1
2

−−≡ wKwcw sq TT
s

ν
         (4.12) 
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Setting the derivative (4.13) equal to the zero vector 0, 
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From the constraint 1=wKw sT  in (4.12), and keeping the sign of ν  from  (4.9), 
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Substituting s (4.11) and ν  (4.15) into w (4.14), we arrive at the principal result of this 

chapter. 
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This result differs from McNeill (1993, p. 40, eq. 6), who obtained 
cKc

cK
w

1

1

−

−

=
T

. 

 
4.3  Verification of Optimality 

 
In this section, it will be proven that the estimated direction, which is a linear 

combination of the observations of direction as unit vectors, Uw , is also a unit vector, 

that the expression of constrained optimization of the cosine of the angle between the 

direction to be estimated and the estimator has derivatives of zero at the estimated 

direction, and that the estimated direction has a maximum fit as opposed to a minimum 

fit to the direction being estimated. 
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First, it will be shown that 0û  is a unit vector. 
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Thus, the squared length of the estimate of direction as a vector is one.  Hence, the 

direction estimate is a unit vector such as the observations. 

Next, it will be shown that the vector of derivatives of the expression of 

constrained optimization (4.12) at the solution w is the zero vector 0. 
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Thus, the vector of derivatives at the solution w is the zero vector, 0.  Hence, the 

direction estimate has either a minimum or a maximum fit to the direction being 

estimated. 

Last, it will be shown that the solution has a maximum fit.  The quadratic part of 

(4.12) is ( ) ( )wKwKww ss TT νν 5.05.0 −=− .  K is positive definite (Chapter 3, 

Subsection 3.6.3) and symmetric (Appendix B, Section B.2), hence, K is orthonormally 

diagonalizable.  Let Q be the diagonalizing matrix of eigenvectors of K, and Λ  be the 

diagonal matrix of the eigenvalues of K.  Hence, the diagonalization of the symmetric 

matrix Ksν5.0−  is ( ) ΛQKQQKQ sss TT ννν 5.05.05.0 −=−=− .  By Appendix B, 

Equation (B.3), the eigenvalues of K, which are the elements iλ  of Λ , are all positive.  

Therefore, the eigenvalues of Ksν5.0− , which are the diagonal elements of the matrix 

Λsν5.0− , are all negative.  Since all the eigenvalues are negative, Ksν5.0− is 

negative definite by equivalence (B.7).   The Hessian of (4.12) is Ksν− by Equation 

(B.11).  Hence, the Hessian is also negative definite.  The point of zero derivatives (4.18) 

has a negative definite Hessian.  According to Appendix B, Subsection B.8.1, the point 

of zero derivatives is a maximum.  Hence, the direction estimate has maximum fit to the 

direction being estimated. 

 
4.4  Computationally Efficient Formula 

 
 

From (4.1) and (4.16), cUKUKccUKu 111
0 /ˆ −−−= TT .  The denominator 

cUKUKc 11 −− TT  scales the vector cUK 1−  to a unit vector, but does not affect the signs 

and the ratio of the magnitudes of the components of the vector cUK 1− .  Hence,   

computational efficiency may be obtained by eliminating the computation of 
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cUKUKc 11 −− TT  and computing direction directly from the components of cUK 1− .  

Let h and v be the horizontal and vertical components of the vector cUK 1− , respectively, 

i.e., cUK 1−=








v

h
.  Then, the estimated direction in [ )π2,0  radians at location 0x  is  
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This is called the quadrant specific inverse tangent as in Chapter 3, Subsection 3.3.1, 

(3.1). 

 
4.5  Kriging Behavior Around a Sampled Location 

 
 

The kriging behavior around an observation location depends on which cosine 

model is used.  Figure 4-3, which was constructed using the R code in Appendix L, 

Section L.14, shows the kriging estimate in degrees around a direction of 90º observed 

at location 0 with nearest observations of 0º at a distance of 10 units away, which is the 

range.  The curve of estimated direction from the spherical cosine model is dashed and 

red, the curve from the gaussian cosine model is tan and thick, and the curve from the 

exponential model is solid and black.  The exponential curve of direction vs. location has 

a discontinuity in the derivative of direction with respect to location at the observation 

location.  With nugget=0.0, the Gaussian and spherical curves appear smooth.  With 

nugget = 0.1, the spherical curve is smooth, but the exponential and gaussian curves 

spike with a discontinuity at the observation location.  With or without a nugget, the 

kriging solution produces “exact interpolation” at a sampled location 

(estimate=observation).  Exact interpolation will now be proven. 
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Figure 4-3.  Effect of Cosine Model on the Kriging Estimate Around the Measurement 
Location.  The curve from the spherical cosine model is dashed and red, the curve from 
the gaussian cosine model is tan and thick, and the curve from the exponential model is 
solid and black.  Estimation at a sampled location produces exact interpolation. 

 
 
With ( )jidς  being the mean cosine computed from the cosine model (Chapter 3, 
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The key to this proof is to observe that jc  is the thj  row or column of K. 

With P the diagonalizing orthonormal matrix of eigenvectors (Appendix B, 

Section B.2, point 4) of the positive definite matrix K (Chapter 3, Subsection 3.6.3 ), Λ  

the diagonal matrix of eigenvalues of K (Appendix B, Section B.2, point 4), I the diagonal 

matrix of 1s (the identity matrix), and ( ) j ColM  the thj  column of matrix M, and the fact (1) 

that the thj  column of the product of matrix P post multiplied by a matrix ( )TΛP  equals 

the product of the matrix ( )ΛP  post multiplied by the thj  column of TP , the numerator of 

the solution vector jw  (4.16) is 
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So jcK 1−  is a column vector of 0’s with 1 in the thj  position.  Using this result we will 

see that the estimated direction is the observed direction. 
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Thus, at a sampled location, the estimated direction equals the observed direction, 

which is a unit vector.  This is called “exact interpolation” as in the kriging of linear RVs.   

 
4.6  Circular Kriging Variance, 2

CKσ  
 
 

In this section, let U be the random sample of directions.  Let nii L,2,1, =u  be 

the random direction at location nii L,2,1, =x , iû  be the estimator of iu , and ie  be the 

error vector of iû  (Subsection 4.2.2, Figure 4-2).  Let 0u  be the random direction at 

unobserved (unsampled) location ,0x  0û be the estimator of ,0u  0e  be the random error 

vector equal to 00ˆ uu − (Subsection 4.2.2, Figure 4-2), and Θ  be the random angle 

between 0û  and 0u .  Let 2
CKσ  be called the circular kriging variance and be defined as 

the mean squared length of the error vector, which is a measure of the variability of the 

circular kriging estimator. 

At a sampled location, ii uu =ˆ  (Section 4.5),  0e =i , and 

{ } { } 0EE
222 === 0eiCKσ .  If Θ  were always the maximum of π , per Figure 4-2 0e  

would always be 2 and 2
CKσ  would always be 4.  However, in a circular random field, Θ  

is random and cannot always be π .  Hence,  40 2 <≤ CKσ . 
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The estimate of the circular kriging variance will now be derived.  With vector c 

and matrix K containing real-valued constants computed from the cosine model ς  of 

circular-spatial correlation (Chapter 3, Subsection 3.6.2), let 

                0uUX T=              (4.20) 

          cUKUKc 11 −−= TTY           (4.21) 

          ( ) .,
Y

Yg
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X =            (4.22) 

Note that X is a random vector and Y is a random scalar.  By the above definition of 
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( )Yg ,X  is a nonlinear function of X and Y.  When confronted with a nonlinear 

function,  we can approximate using a method in probability and statistics called the 
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“delta method” or “propagation of errors” (Rice 1995, p. 149).  With ( )Yµ,Xµ  being the 

expectation of ( )Y,X , ( )Yg ,X  is approximated by a Taylor series about the fixed point 

( )Yµ,Xµ  with expansion to the random point ( )Y,X .  The expansion consists of one 

term which is nonrandom and random terms containing powers of the deltas ( )XµX −  

and ( )YµY − .  Hence, the method is called the “delta method.” 

The Taylor series expansion of ( )Yg ,X  to a first order or linear approximation is 
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This approximation improves as the joint probability of X and Y increases in an area of 

the domain of ( )Yg ,X  where ( )Yg ,X  is approximately linear. 

Taking the expectation of the first order linear approximation, 
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( ) 00, ++= Yg µXµ  

{ } { }( )⇒= Yg E,E X  
 
             ( ){ } { } { }( ).E,E,E YgYg XX ≈            (4.24) 
 
In general, ( ){ } { } { }( ).E,E,E YgYg XX ≠   What (4.24) means is that { } { }( )Yg E,E X  is a first 

order linear approximation of ( ){ }.,E Yg X  
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Next, with ( )ijdς  the expectation of the cosine of the angle between 

observations i and j  estimated by the cosine model of circular-spatial correlation 

(Chapter 3, Section 3.6), { } { }( )Yg E,E X  is evaluated. 
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Last, the first order linear approximation of the circular kriging variance will be 

completed. 
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          cKc 12 22ˆ −−= T
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4.7  How Distance and the Cosine Model Affect 2ˆCKσ  

 
 

When direction is estimated at a sample location ,jx  ,,2,1 nj L=  the vector of 

mean cosines jc  is the thj  row or column of the positive definite matrix of mean cosines 

K (Section 4.5).  From p. 90, we know that [ ]T

j 0010001 LL=− cK  with 1 in 

the jth position, hence, 

 {
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           ( ) .0ˆ 2 =jCK xσ            (4.27) 

 
Further, in Section 4.5, it was proven that the estimate of direction at a sampled 

location is the observed direction.  Then, at a sampled location, the error vector 
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njj ,,2,1, L=e  is always the zero vector 0 (Figure 4-2).  Hence, at a sampled location, 

02 =CKσ , and .0ˆ 22 == CKCK σσ   In contrast to result (4.26), McNeill (1993, p. 46) obtained 

cKc 1−T  for the circular kriging variance.  By (4.26), 2ˆCKσ  decreases when cKc 1−T  

increases.  Hence, McNeill’s result is a measure of concentration, which is opposite the 

sense of spread or variance. 

The model parameters are the range, mean resultant length ρ  of the circular 

distribution component of the CRF, and the nugget gn  from measurement error and 

close sampling.  To see their effects, Figure 4-4 was constructed using the R code in 

Appendices K.18 and L.14, which simulates observation one with location at the origin of 

location coordinates, observation two with location at 1 unit of distance due north of 

observation one, and the estimation location at a variable distance due east of 

observation one.  Hence, zero distance corresponds to estimation at the location of 

observation one. 

The shape of the 2ˆCKσ  curve resembles the inverted curve of the circular-spatial 

correlation model identified in the legend.  The spherical curve attains the maximum at 

distances greater than and equal to the range.  The exponential and gaussian curves 

appear to be asymptotic with the gaussian curve exceeding the exponential curve at a 

distance approximately equal to the range. 

The upper left and lower right plots indicate that increasing the range increases 

the distance at which the maximum 2ˆCKσ  occurs.  The upper plots indicate that when ρ  

is increased (the distribution of the CRV is more concentrated), the estimator of 

direction, which depends on the variability of the CRV, is also more concentrated, and 

hence the 2ˆCKσ  is reduced.  The left plots indicate that the nugget introduces a  
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Figure 4-4.  Effect of Range, Mean Resultant Length ρ , and nugget gn  on the Circular 

Kriging Variance 2ˆCKσ . 
 
 
 
 
 
 
discontinuity at zero distance and increases 2ˆCKσ  at small distances relative to the range.  

The maximum precision of the estimator at nonzero distances is limited by the nugget. 
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4.8  Chapter Summary and Future Work 

 
 

The principal result of this chapter is the vector of weights w of the circular 

kriging solution, which is  

cUKUKccKw 111 −−−= TT . 

It was derived in full detail, and shown to be optimal producing a unit vector estimate 

(4.17) at a stationary point (4.18) of maximum fit (Section 4.3).  The approach avoided 

the first order Taylor series approximation of McNeill (1993, p. 39), which results in a 

nonunit vector estimator of direction (4.11). 

A computationally efficient form of the estimator of direction (4.19) was derived 

with elimination of the scalar function cUKUKc 11 −− TT   in the denominator of the kriging 

solution.  The scalar function does not affect the signs and the ratio of the magnitudes of 

the vector components.  With h and v being the horizontal and vertical components of 

the vector cUK 1− , respectively, i.e., cUK 1−=








v

h
, the estimated direction in [ )π2,0  

radians at location 0x  is 
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The estimated direction at a sampled location was proven to be the observed 

direction.  This is called “exact interpolation” as in the kriging of linear RV. 
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The variability of the circular kriging estimator 2

CKσ was defined as the mean 

squared length of the error vector, 40 2 <≤ CKσ .  The  first order linear approximation was 

derived (4.26) as  

cKc 12 22ˆ −−= T
CKσ . 

It was proven that the circular kriging variance at a sampled location is zero.  The effects 

on 2ˆCKσ  of the distance to an observation and the cosine model parameters were shown. 

Future work includes derivation of 2ˆCKσ  to a higher order approximation to 

increase the accuracy.  A nonzero nugget gn such as from measurement error has the 

effect of smoothing the estimates at locations where data does not exist and not 

smoothing the estimates at observation locations (exact interpolation).  This suggests 

deriving a circular kriging solution for estimation “without measurement error” as in linear 

kriging where the smoothing of estimates at all locations varies with the magnitude of the 

nugget. 



 

 

103 
      CHAPTER 5 

 
SIMULATION OF CIRCULAR RANDOM FIELDS 

 
 

5.1  Introduction 
 
 

This chapter defines a new method for simulation of a circular random field 

(CRF) by extending the inverse cumulative distribution function (CDF) method of 

generating a random variable (RV).  A random field (RF) is a stochastic process 

operating over a space.  A CRF is defined as a RF containing spatially correlated 

circular random variables (CRV).  A CRV takes random directions on a unit circle with 

the total probability of all possible directions distributed on the unit circle with support 

[ )π2,0  or equivalent support [ )ππ ,−  (Chapter 1, Figure 1-1).  In this chapter, the support 

is [ )ππ ,− .  Spatial correlation, which is the correlation between RVs a distance d apart, 

increases as distance between measurement locations decreases, i.e.,  rotations from 

the mean direction tend to be more similar as distance decreases.  In the form required 

by the circular kriging derivation of Chapter 4, spatial correlation is defined as the mean 

cosine of the angle between random components of directions (non random or trend 

component removed) vs. distance between measurement locations.  An isotropic CRF is 

a CRF in which spatial correlation is the same in all directions of the sample space. 

This chapter is organized as follows: the background is given in Section 5.2, the 

new method is defined in Section 5.3, the mathematical properties are discussed in 

Section 5.4, qualitative evaluations are given in Section 5.5, the method is extended to 

any continuous RV in Section 5.6, and the chapter summary and future work are given in 

Section 5.7. 
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5.2  Background 

 
 
5.2.1 Random Field 

To describe a type of spatial process, Besag (1974) described the RF as a 

stochastic model consisting of “a finite set of sites, each site having associated with it a 

univariate random variable.”  Mathematically, let 

o The dimension of the space be 1≥d  (usually d = 2 or 3), 

o x be a vector of location coordinates of a measurement location in the d-dimensional 

space of real numbers dR , 

o ( )xY  be a RV at location x, 

o ( )xµ  be the non random or trend component of ( )xY , which is the expected value 

of ( )xY  and a constant or a function of location x, and 

o ( )xε  be the random component of ( )xY  with mean zero. 

Then,  ( ) ( ) ( )xxx εµ +=Y , and the RF is the set ( ){ }dY R, ∈xx . 

Let nxxx ,, ,21 K be a set of locations in dR .  Then, ( ) ( ) ( )( )T

nYYY xxxY ,,, 21 K=  

is a vector of RVs which map to nxxx ,, ,21 K  in dR .  In a spatially correlated RF, the 

covariance of ( )iY x  and ( ) njiY j ,,2,1,, K=x , is a function f which depends on the 

distance and direction between RVs and decreases as the distance between RVs 

increases.  With E the expectation operator, the spatial covariance between ( )iY x  and 

( )jY x  in the direction of ij xx −  is  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ){ }=−−=≡ jjiijiji YYcYYc xxxxxxxx µµE,,  ( )ijf xx − .  The 

covariance of the vector Y is the symmetric and positive definite matrix 
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( )( ) ni,jc ji ,,2,1,, L== xxC .  In an isotropic RF, covariance is a function of distance 

only, i.e., ( ) ( )ijji fc xxxx −=, . 

For completeness, the spatial-temporal RV with the additional coordinate of time 

t is introduced.  ( ) ( ) ( )tttY ,,, xxx εµ += .  Hence, the spatial-temporal RF is the set 

( ) ( ){ }+⊗∈ RR,,, dttY xx .  In the remainder of this chapter, RFs will be considered 

without the coordinate t and with d = 2. 

 
5.2.2 Gaussian Random Field 

Worsley (2002, p. 1674) states (with notation changed for consistency in this 

subsection): 

The definition is simple: the Gaussian random field must be multivariate 
Gaussian at all finite sets of points, that is, ( ) ( )nYY xx ,,1 K  must be multivariate 

Gaussian for all n > 0 and all d
i R∈x .  Since the multivariate Gaussian is 

specified uniquely by its mean vector and variance matrix, then the Gaussian 
random field is defined uniquely by its mean function ( ) ( ){ }xx YE=µ  and its 

covariance function ( ) ( ) ( )( )jiji YYc xxxx ,cov, = .   

 

Let ( ) ( ) ( )( )Tnyyy xxxy ,,, 21 K=  be a sample from ( ) ( ) ( )( )TnYYY xxxY ,,, 21 K= , 

with expectation vector ( ) ( )( )Tnxxµ µµ ,,1 K=  and variance-covariance matrix C.  Note 

that Y (the vector of RVs) has an expectation and covariance, and that y (the vector of 

observations) does not.  Then, a Gaussian random field (GRF) is a RF in which the RVs 

follow the multivariate normal distribution with density 

( )
( ) ( )[ ]µyCµy

C
−−− −1

2
1exp

2

1
2

1
2

T

n

π
. 

Quimby (1986, p. 21) states that simulation of a GRF is accomplished by finding 

a factorization of the desired variance-covariance matrix C.  Thus, the isotropic GRF can 

be simulated as follows: 
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1) Generate a sequence of regular or random locations { } nii ,,2,1, K=x , and an 

equal length sequence of a standard normal RV, { } ( )1,0~, NiidZzi . 

2) Pair the sequence of realizations of Z with the sequence of locations.  For example, 

1z  is paired with location 1x , 2z  is paired with location 2x , etc.  Denote the result as 

( ) ( )21 , xx zz , etc. 

3) With ( ) nixx iii ,,2,1,, 21 K==x , compute the pairwise distances 

( ) ( ) njixxxxd ijijji ,,2,1,,2
22

2
11 K=−+−= ,  

4) With ( )2,; σrdc ji  the desired covariance function of distance jid  between 

measurements locations, and parameters  r the range and 2σ  the variance, the 

positive definite variance-covariance matrix ( ) njic ji ,,2,1,, K==C  is computed with 

elements ( )2,; σrdcc jiij = .    For example, some introductory covariance models are: 

� Exponential: ( ) ( )
r

ddc 3exp2 −= σ  

� Gaussian: ( ) [ ] 





−=

22 3exp
r

ddc σ  

� Spherical: ( )
[ ] [ ]









>

≤





 −−

=

.,0

,
3

2
1

2
322

rd

rd
r

d
r

d
dc

σσ
 

These models were derived from Bailey and Gatrell (1995, pp. 179-180).  The 

computed covariance values in C plotted vs. the corresponding pairwise distance 

coincides with a plot of the desired covariance model vs. distance.  Two RVs are 

uncorrelated at a distance equal to the range parameter of the spherical covariance 

model, and they are assumed to be uncorrelated at the “practical range,” which is a 

distance r2=  for the Gaussian model and a distance r3=  for the exponential 

model.   
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5) The matrix C is factorized such that TCCC
~~

= .  Quimby (1986) states that the 

lower triangular method is computationally fast and numerically stable compared to 

the Cholesky decomposition. 

6) With ( )( ) nii ,,2,1, K== xµ µ , a vector of means, C
~

 a factorization of the desired 

variance-covariance matrix C, 0 the n x n matrix of 0s, I the n x n matrix with 1s in 

the main diagonal and 0 otherwise,  and ( )I0Z =∑, ~ 
n

N  an n-vector of 

independent standard normal RVs, let µZCV +=
~

.  Seber (1977, Theorem 1.1, 

Example 1.8, and Equation 1.4, pp. 8-11) proves that 

� { } { } { } µµ0CµZCµZCV =+=+=+=
~

E
~~

EE , and 

� ( ) ( ) ( ) .
~~~~~

Cov
~~

CovCov CCCCICCZCµZCV ====+= TTT  

7) With the vector ( ) nizi ,,2,1, K==z , containing the realizations of a standard normal 

RV Z from step 1, compute the vector µzCv +=
~

.  Pair the elements of v with the ix  

such that v1 is paired with location 1x , v2 is paired with location 2x , etc.  Let this be 

denoted as ( ) ( )21 , xx vv , etc.  Then, the set ( ){ }niv i ,,2,1, K=x  constitutes a 

simulation or realization of a GRF of mean vector µ  and variance-covariance matrix 

C. 

The function grf in the R package geoR (Ribeiro and Diggle 2001) generates 

simulations of GRFs for many covariance models.  The function GaussRF in the R 

package RandomFields (Schlather 2001) generates simulations of GRFs for additional 

covariance models. 
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5.3  New Method of Generating a CRF 

 
Figure 5-1 shows a simulation of a CRF with the von Mises CRV, parameter 

8.=ρ , which was transformed from a GRF with spherical covariance model and range 

10=r .  It was simulated using the R code in Appendices K.5 and L.3 with 

standardization of the realizations of the Gaussian random variable (GRV), ( )1,0~ NZ , 

to mean 0 and standard deviation 1 for demonstration.  Realizations of the GRV, 

( ) niz i ,,2,1, K=x  with support ( )∞+∞− ,  are mapped to the θ  with support [ )ππ +− ,  as 

illustrated in Figure 5-2.  ( )zFZ  the CDF of Z and ( )θΘG  the CDF of Θ .  The mapping of 

Z to Θ is 

o −∞=iz  has cumulative probability ( ) 0=∞−= Zi Fp  and maps to 

( )( ) ( ) πθ −==∞−= −
Θ

−
Θ 011 GFG Zi  radians, 

o 0=iz  has cumulative probability ( ) 5.00 == Zi Fp  and maps to 

( )( ) ( ) 05.00 11 === −
Θ

−
Θ GFG Ziθ  radians, 

o +∞=iz  has cumulative probability ( ) 1=∞+= Zi Fp  and maps to 

( )( ) ( ) πθ +==∞+= −
Θ

−
Θ 111 GFG Zi  radians. 

 
 

Figure 5-1.  Simulated Sample of a von Mises CRF, 8.0=ρ , Range r = 10. 
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Figure 5-2.  Mapping a GRV to a CRV via the CDFs ZF  and ΘG .  Direction of Θ  is 
expressed in radian units. 
 
 

A CRF may be simulated as follows: 

1) Generate a GRF with the desired covariance model and variance 12 =σ .  For 

visualization of a CRF with closer fit to the desired circular distribution, the observations 

( ) niz i ,,2,1, K=x  may be standardized to mean 0 and standard deviation 1.  Figure 5-3 

shows the standardized sample of the GRF with spherical covariance model, range r = 

10, corresponding to Figure 5-1.  Standardization should not be applied for simulation, 

analysis, or testing purposes as it produces undesirable effects (Subsection 5.4.4), but it 

may be used to obtain a single realization of an almost perfect CRF.  Figure 5-3 was 

constructed with the R code in Appendices K.5 and L.4. 

 
 

Figure 5-3.  Simulated GRF with Spherical Covariance Model and Range r = 10 
Corresponding to Figure 5-1. 
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2) For each realization ( ) niz i ,,2,1, K=x , compute the corresponding cumulative 

probability ( )( )iZi zFp x= . 

3) For the desired CRV Θ  with support [ )ππ +− ,  in Table 5-1, compute the inverse 

CDF ( )( ){ }iZi zFG x1−
Θ=θ  per Table 5-2.  Table 5-1 PDFs are derived in Appendix G,  

and Table 5-2 CDFs are derived in Appendices G and H, Equations (G.1) to (G.4), 

and (H.6).  Note that, with exception to the triangular distribution, the PDFs of the 

selected distributions for support [ )ππ +− ,  are identical to the PDFs for support  

[ )π2,0 +  (Chapter 3, Table 3-1). 

• For the uniform CRV, the exact inverse CDF is ii pππθ 2+−= .  

• For the triangular CRV, iθ  is computed by applying the quadratic solution of 

Appendix I , Equations (I.2), (I.3), and (I.4). 

• For CDFs containing trigonometric functions, e.g., the cardioid, von Mises, and 

wrapped Cauchy distributions (Table 5-2), the inverse CDF does not have a 

closed form.  For CDFs containing trigonometric functions, 

a) Compute a table of the desired circular CDF per Table 5-2 using  a sequence 

of θ  from π−  to π . 

b) Interpolate the iθ  on the table of the circular CDF at ip .  Let Lp  and Up  be 

the lower and upper cumulative probabilities bounding ( )( )iZi zFp x= , and Lθ  

and Uθ  be the corresponding directions in radians in [ )ππ +− , .  Then, 

( )LU

LU

Li
Li

pp

pp
θθθθ −

−

−
+= .  The R implementation is given in the last page of 

Section K.5, Appendix K. 
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Table 5-1.  Circular Probability Distributions in R Package CircSpatial, ,0=µ  πθπ <≤−  
Radians. Circular density is plotted as the length of radial between black filled unit circle 
and outer curve. 
 

Name of 
Distribution 

Circular PDF 
Plot 

Circular PDF 
Function 

Range of 
Parameter ρ  

Value of ρ  
in PDF Plot 

Cardioid 
 

 

( )[ ]θρ
π

cos21
2
1

+  

ρ =mean 
resultant 
length, 

 
5.00 ≤< ρ  

ρ = 0.95 x 0.5 

Triangular 

 
πθθπδ

θπθπδ

π

πρδρπ

<≤−=

<≤−+=

+−

0,

0,
8

24 2

 2

4
0

π
ρ ≤<  

2

4
95.

π
ρ ×=  

Uniform 

 

π2
1  NA NA 

von Mises 

 

( )( )
22

0 !
1

2
2

cosexp

















∑

∞

= j

j

j

κ
π

θκ  

 

κ = 
concentration, 

∞<< κ0  

10.2696=κ  
equivalent 
to 95.=ρ  

  

Wrapped 
Cauchy  

 
( )θρρ

ρ

π cos21

1
2
1

2

2

−+

−
 10 << ρ  ρ = 0.95 x 1 
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Table 5-2.  CDFs and Inverse CDFs for Circular Distributions, πθπµ <≤−= ,0  
Radians. 

 

Distribution CDF Inverse CDF 

Cardioid 
( )

π

θρπθ

2
sin2++

 Interpolate CDF 

Triangular 

πθθ
π

ρπ
θ

ρ

θπθ
π

ρπ
θ

ρ

<≤+
+

+−

<≤+
+

++

0,
2
1

8
4

8

0-,
2
1

8
4

8
2

2

2
2

 Solution in   
Appendix I 

Uniform 
π

πθ

2
+

 ( )( )iZi zF xππθ 2+−=  

von Mises 

( )( )
φ

κ
π

φκθ

π
d

j

j

j

∫
∑

−
∞

= 















22

0 !
1

2
2

cosexp
 

Interpolate CDF 

Wrapped 
Cauchy 

( ) ( )
( )

( ) ( )
( )

πθ
θρρ

ρθρ

π

θπ
θρρ

ρθρ

π

<≤










−+

−+
+

<≤−










−+

−+
−

−

−

0,
cos21

2cos1
cos

2
1

5.

0,
cos21

2cos1
cos

2
1

5.

2

2
1

2

2
1

 Interpolate CDF 

 
 
4) Let the pair ( )ii θ,x  be denoted ( )ixθ .  Then, the set ( ){ }nii ,,1, K=xθ  is a simulation 

of the desired CRF.  The function SimulateCRF in the R package CircSpatial 

(Appendix J, Section J.2) generates CRFs for the circular probability distributions in 

Table 5-1. 

 
5.4  Mathematical Properties of the CRF 

 
In the following subsections, the distributional and spatial properties of the 

circular-spatial data produced by the method of Section 5.3 will be discussed. 
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5.4.1 Distributional Properties of the CRF 

Let Z be a continuous RV with a CDF ZF , and define the random variable V as 

( )ZFV Z= .  Then, as shown by the CDF method in many textbooks in mathematical 

statistics (Rice 1995, p. 60), ( ) ( )1,0~ UZFV Z= , i.e., V is uniformly distributed.  Also, as 

shown by the inverse CDF method in many textbooks in mathematical statistics (Rice 

1995, p. 61), the distribution of Z can be generated by the inverse transformation 

( )VFZ Z
1−= .  This is a popular method for the generation of a random variable when 1−F  

is known in closed form and fast to calculate. 

Now let Z  be a GRV of a GRF, and ( )θΘG  be the CDF of the desired CRV Θ .  

By the CDF method, ( ) ( )1,0~ UZFZ , and by the inverse CDF method,  

                      ( )( ) .~1
Θ

−
Θ GZFG Z                 (5.1) 

This is an extension of the inverse CDF method. 

Given that a simulated GRF is a set of realizations of a GRV, it has a 

corresponding sample the uniform distribution equal to the cumulative probabilities of the 

realizations of the GRV.  When this sample from the uniform distribution is input to the 

circular inverse CDF, the result is a  sample from the desired circular distribution ΘG . 

 
5.4.2 Spatial Properties of the CRF 

Let ( )xΘ  be a CRV at the location x in 2-dimensional real space 2R , ( )xµ  be 

the non random or trend component of ( )xΘ , which is the expected value of ( )xΘ  and a 

constant or a function of location,  and ( )xε  be the random component of ( )xΘ , which 

follows a circular probability distribution.  The parameters of the circular probability 

distribution, which are based on the unit vector form of the CRV, are the mean resultant 

direction µ , and the mean resultant length ρ , which is a measure of concentration 
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about the µ  (Chapter 3, Subsection  3.3.1).  Then, ( ) ( ) ( )xxx εµ +=Θ , and  the 

CRF is the set ( ){ }2, R∈Θ xx . 

As required by the circular kriging derivation of Chapter 4 , circular-spatial 

correlation is expressed as the mean cosine of the angle between random components 

of direction ( )dς  as a function of the distance d between measurement locations 

(isotropic CRF).  Let jiD  (Chapter 3, Figure 3-3) be the angle or circular distance 

between the random components of direction of observations i and j, and n the number 

of observations of a sample, 

( ) ( )( ) ( ) ( )( ) ( ) ( ) njiD ijiijjji ,,2,1,, K=−=−Θ−−Θ= xxxxxx εεµµ , and 

( ) ( ){ } ( ) ( )( ){ } dDd ijijji =−−== xxxx ,cosEcosE εες . 

 
5.4.2.1 Mean Cosine at Distance Zero 

When the distance between measurement locations goes to zero, the mean 

cosine ( )0ς  is taken of the angle between a CRV and itself, i.e., ⇒≡→
→

0iiij DD
ij xx

 

( ){ } ( ){ } 10cosEcosE ==iiD .  Thus, the mean cosine at zero distance is one, which is the 

maximum.  The mean cosine is observed to approach one as distance between 

measurement locations approaches zero. 

Measurement error may cause measurements which are located close together 

to be more different, resulting in a cosineogram with a mean cosine less than one for 

distances close to zero.  This reduction in the mean cosine is called the nugget as in the 

kriging of linear RVs. 
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5.4.2.2 Mean Cosine at Distances Where CRV 
 Are Spatially Correlated 

In a GRF with spatial correlation, observations of the GRV tend to be increasingly 

similar as the distance between measurement locations decreases.  Because the CDF 

of the GRV Z is a one to one and strictly increasing function, the corresponding 

cumulative probabilities of the GRV will also tend to be increasingly similar.  Thus,  

spatially correlated GRV map to spatially correlated cumulative probabilities.  

Conversely, by the extended inverse CDF method of Section 5.3, the transformation 

(5.1) of spatially correlated cumulative probabilities via the one to one and strictly 

increasing circular inverse CDF results in spatially correlated CRV.  The measurement 

location coordinates are not transformed.  Hence, the set of untransformed spatial 

coordinates of the GRF and the corresponding computed CRV constitute a simulated 

CRF. 

Figure 5-4 contains two variograms and one cosineogram (Chapter 3).  In the 

kriging of a linear RV, with 2σ  the variance of the RV, r  the scale parameter, and 

( )rdc ,  the covariance model dependent on the distance d  between measurement 

locations, spatial dependence is expressed as the semivariance ( ) ( )rdcd ,2 −= σγ .  

The variogram is a plot of γ̂  vs. d.  It is a robust alternative to the empirical covariance.  

For the cosineogram, spatial correlation is expressed as the mean cosine of the angle 

between random components of directions.  Where the CRV are uncorrelated, the mean 

cosine and the semivariance form a plateau, which is called the sill. 

Figure 5-4 was constructed using the R code in Appendices K.4 and L.5 with 

standardization of the GRF of spherical covariance and range 10=r , and for a  von 

Mises CRF of 8.0=ρ . 
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Figure 5-4.  Similar Shapes of Variograms and Inverted Cosineogram Reflect 
Transformations of the Spatial Correlation of the GRF.  This figure corresponds to 
Figures 5-1 and 5-3. 
 
 

The cosineogram, an analogue of the covariogram (an inverted variogram), was 

inverted vertically to compare its shape to the shapes of the corresponding variograms.  

Note that the cosine axis labels are reversed in the bottom plot.  The grey vertical lines 

are plotted at the value of the range input parameter of the GRF covariance model.  

Figure 5-4, which corresponds to Figures 5-1 and 5-3, shows that the variogram 

of the sample of the GRF, the variogram of the cumulative probabilities of the 
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realizations of the GRV, and the inverted cosineogram of the CRF, are similar in 

shape.  Hence, the computed CRVs have spatial correlation resembling, but not identical 

to the spatial correlation of the cumulative probabilities and of the GRF.  How may the 

circular-spatial correlation be characterized? 

 The mean cosine function of distance is implicit in the relationship between the 

GRF covariance model and the simulated CRV.  Let’s build up an expression of that 

relationship.  With ( )ii yx ,  and ( )jj yx ,  the coordinates of two measurement locations, 

the distance from location ( )ii yx ,  to location ( )jj yx ,  is ( ) ( )22
jijiji yyxxd −+−= .  

Next, with ( )jidc  the covariance model of the GRF, E the expectation operator, and 

( )ii yxZ ,  and ( )jj yxZ ,  mean 0 variance 1 GRVs of the GRF at ( )ii yx ,  and ( )jj yx , , 

respectively, the covariance function of distance is 

 

( ) ( ) ( )

( ) ( ){ } ( ){ } ( ){ }

( ) ( ){ }.,,E

,E,E,,E

00

22

jjii

jjiijjii

jijiji

yxZyxZ

yxZyxZyxZyxZ

yyxxcdc

=

−=







 −+−=

4342143421
. 

Next, with FZ  the CDF of the GRV Z, and ΘG  the CDF of the CRV ,Θ  apply the method 

of simulating a CRF (Section 5.3).  Hence, ( ) ( )( )( )iiZii yxZFGyx ,, 1−
Θ=Θ  and 

( ) ( )( )( )jjZjj yxZFGyx ,, 1−
Θ=Θ .  Conversely, 

( )( )( ) ( )( )( )( )( ) ( )iiiiZZiiZ yxZyxZFGGFyxGF ,,, 111 ==Θ −
ΘΘ

−
Θ

−  and likewise 

( )( )( ) ( )jjjjZ yxZyxGF ,,1 =ΘΘ
− .  Substituting for ( )ii yxZ ,  and ( )jj yxZ ,  in the covariance 

expression, the expression of the general relationship is 

 ( ) ( ) ( )( )( )
( )

( )( )( )
( ) 
















ΘΘ=





 −+− Θ

−
Θ

−

444 3444 21444 3444 21
jjii yxZ

jjZ

yxZ

iiZjiji yxGFyxGFyyxxc

,

1

,

122 ,,E . 
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For a specific example, let the covariance function be spherical (Subsection 

5.2.2, step 4), point 3) with range r and 12 =σ .  Then,  

( )









>

≤









+−

=

.,0

,5.05.11
3

rd

rd
r

d

r

d

dc

ji

ji

jiji

ji  

Now let the CRV of the CRF mapping from the GRF have a cardioid circular CDF with 

parameter ρ  (Table 5-2).  Then, ( )( ) ( ) ( )( )
π

ρπ

2
,sin2,

, iiii
ii

yxyx
yxG

Θ++Θ
=ΘΘ  .  Hence, 

the complete expression of the relationship between the spherical covariance of the 

GRF and the cardioid CRV of the CRF is 

( ) ( )( ) ( ) ( )( )



















 Θ++Θ







 Θ++Θ −−

π

ρπ

π

ρπ

2

,sin2,

2
,sin2,

E 11 jjjj
Z

iiii
Z

yxyx
F

yxyx
F  










>

≤









+−

=

.,0

,5.05.11
3

rd

rd
r

d

r

d

ji

ji

jiji

 

The problem is then to transform this nonclosed form relationship into an expression of 

the mean cosine of the angle between CRV vs. distance ( )jidς  and the parameters r and 

ρ . 

As an alternative to the derivation of an approximating expression characterizing 

the mean cosine vs. distance produced by the method of Section 5.3, the cosine curve 

may be described by an approximating covariance model of a GRF with translation and 

scaling (Chapter 3, Subsection 3.6.2).  With ρ  the mean resultant length of the circular 

probability distribution, 10 <≤ ρ , ng the nugget, 210 ρ−<≤ gn , and ( )dc the covariance 

function of distance d from linear kriging with a maximum value of one,  
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the cosine model is 

          ( ) ( ) ( )





>−−+

=
=

.0,1

0,1
22 ddcn

d
d

g ρρ
ς               (5.2) 

Hence, the mean cosine is 1 at zero distance, 1 minus the nugget at distances close to 

0, greater than 2ρ  and less than 1 minus the nugget at distances where CRV are 

correlated, and 2ρ  at distances where CRV are uncorrelated (Chapter 3, Equation 

(3.11)).  Some introductory cosine models were given in Chapter 3, Subsection 3.6.2, 

and additional models are tabulated for a wide range of conditions in Appendix M, 

Section M.5. 

Even though cosine models are not fully specified in the CRF domain as closed 

form expressions, but as transformations from the GRF domain, the cosine models 

acquire practical meaning as they apply to real world data (Chapter 3, Section 3.7, 

Figure 3-13). 

 
5.4.2.3 Mean Cosine at Distances Where CRV 
 Are Uncorrelated 

Applying the method of Section 5.3, the location coordinates of the GRV are 

untransformed.  At distances at which the GRV are uncorrelated, the transformations of 

the GRV are also uncorrelated.  Thus, the corresponding cumulative probabilities 

( )( )iZ zF x  and simulated CRV ( ) ( )( )( )iZi zFG xx 1−
Θ=θ  are uncorrelated at distances where 

the GRV are uncorrelated.  Hence, the distance at which the computed CRV are 

uncorrelated equals the distance at which the GRV are uncorrelated.  In the example of 

Figure 5-4 with spherical covariance, the distance at which RVs are uncorrelated is 

approximately the range 10=r . 
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In Chapter 3, Section 3.3, the theoretical sill, which is the expectation of the 

cosine of the angle between independent random components of the CRVs was derived.  

The sill is equal to the square of the mean resultant length of the circular probability 

distribution.  In Chapter 3, Section 3.4, it was determined that the vector resultant mean 

length is the parameter ρ  of the circular distributions examined, which are the cardioid, 

triangular, uniform ( )0=ρ , von Mises, and wrapped Cauchy distributions.  Hence, the sill 

is 2ρ .  Hence, the mean cosine will be 2ρ  at distances at which the GRV are 

uncorrelated. 

 
5.4.3 Overfitting Improves Fit of the Output 
 CRV to the Desired CRV 

The QQ (quantile-quantile) plot is a graphical method in which data are plotted 

against the expected values of a comparison distribution.  The QQ plot shows a linear 

pattern when the data come from the comparison distribution.  In Section 5.3, it is stated 

that the realizations of the GRV can be standardized to mean 0 and standard deviation 

1.  This was motivated by the observation that the variation in the mean and standard 

deviation of the GRV transforms to variation in the mean resultant direction and the 

mean resultant length, respectively, of the output CRF.  Hence, standardizing the 

realizations of the GRV results in a closer fit of the output CRV to the desired CRV.  The 

resulting CRF simulation is over fitted, but useful to demonstrate or visualize a closely 

fitting simulation. 

Figure 5-5 was constructed using the R code in Appendices K.13 and L.6.  For 

each of 30 simulations of a GRF (spherical covariance, range=10, variance=1, with 

standardization of the realizations of the GRV), the point coordinates of the QQ standard 

normal plot and the QQ circular uniform plot were accumulated separately.  At the 

conclusion of the simulations, the point density was computed for each set of points. 
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Figure 5-5.  Standardization of the GRV Increases Fit of the GRV and the CRV.  The 
uniform CRV was transformed from a GRF with spherical covariance and range=10.  
Circular quantiles are expressed in radian units.  QQ density plots for other circular 
distributions with ρ  at mid point of the parameter range allowed by the distribution 
showed results similar to Figure 5-5. 
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The same simulations were repeated without standardization by setting the 

seed of the random number generating process to the seed value prior to the first set of 

simulations.  Again, the QQ plot points were separately accumulated, and the point 

densities computed for each of the two sets of points.  In Figure 5-5, point density is 

shown as color.  The greater the density about a straight line, the closer the realizations 

of a RV are to the comparison distribution.  In the left plots, realizations of the GRV are 

standardized prior to transformation to the CRV (OverFit = TRUE in R package 

CircSpatial function SimulateCRF, Appendix J, Section J.2).  In the right plots,  

realizations of the GRV are not standardized (OverFit = FALSE).  The point mass in the 

left plots is more concentrated along the straight line of equality than the point mass in 

the right plots.  This indicates that standardization results in a closer fit to the desired 

distributions. 

Figure 5-6, which was constructed using the R code in Appendices K.13 and L.7,  

demonstrates the effect of decreasing ρ  without standardization of the GRV on the fit of 

a CRV.  The triangular CRV (Table 5-1) was arbitrarily selected.  As ρ  is decreased, 

dispersal of the QQ point mass increases.  In the bottom plots with =ρ  25% of the 

maximum ( )2425.0 π× , standardization dramatically reduces dispersal of QQ point 

mass in the right plot.  It is apparent that without standardization, the variability of the fit, 

which is indicated by the QQ point mass dispersal, increases as ρ  decreases.  This 

does not mean in general that standardization is desirable.  In the next section, the 

undesirable effects of standardization are discussed. 

 



 

 

123 

 

Figure 5-6.  Variability of Fit of the Simulated Triangular CRV Increases as ρ  
Decreases.  Circular quantiles are expressed in radian units. 
 
 
5.4.4 Overfitting Has Unwanted Effects 

Figure 5-7 was constructed by fitting 400 variograms made from the 400 

simulations of a GRF with spherical covariance, range=10, variance=1.  In the first set of 

simulations, realizations of the GRV were standardized.  The sequence of simulations 

was repeated without standardization by setting the seed of the random number 

generating process to the seed value prior to the first set of simulations.  The right plot 

without standardization has the correct variance of 1 at distance = 10.  The left plot with 

standardization has a biased variance at distance = 10.  If variation in the center and 

scale of the GRV is eliminated by standardization, everything that is derived from the 

CRF is altered.  If a test were constructed based on simulations with standardization, a 

simulation without standardization would more likely appear as unusual and be rejected 

in a test of hypothesis, inflating the type 1 error. 
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Figure 5-7.  Standardization of the GRV Biases the GRF Covariance.  The plots are 
averages of variograms (inverted covariance) of GRF with spherical covariance, 
range=10, and variance=1. 
 
 

In summary, standardization is suitable for demonstration of a CRF with closer fit 

for visualization, but should not be used for the purposes such as simulation, analysis, 

and testing. 

 
5.5  Qualitative Evaluations of Method of Simulating a CRF 

 
 
5.5.1 Review 

In this section, QQ plots will be used to show agreement with the desired 

probability distributions, and the variogram and the cosineogram will be used to show 

agreement with the desired spatial properties.  In the kriging of a linear RV, with 2σ  the 

variance of the RV and ( )rdc ,  the covariance model with range (scale) parameter r  and 

dependent on the distance d  between measurement locations, spatial dependence is 

expressed as the semivariance ( ) ( )rdcd ,2 −= σγ .  The variogram is a plot of γ̂  vs. d.  

It is a robust alternative to the empirical covariance.  For the cosineogram, spatial 

correlation is expressed as the mean cosine of the angle between random components 
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of directions.  Where the CRV are uncorrelated, the mean cosine and the 

semivariance form a plateau, which is called the sill.   

 
5.5.2 Construction of Figure 5-8 

Figure 5-8 was computed using the R code in Appendices K.6 and L.8.  The von 

Mises CRF, 8.0=ρ , was  transformed from a realization of a GRF with spherical 

covariance, range 10=r , with standardization of the realizations of the GRV to 0 mean 

and standard deviation 1 for close fit.  Figure 5-8, which closely corresponds with and is 

based on the same data as Figures 5-1, 5-3, and 5-4, provides qualitative evaluations of 

the standardized GRF and the CRF. 

Per the R function “ppoints”, with k the index of the order statistic, n the number 

of observations, and 




>

≤
=

10,21

10,83

n

n
cn , the theoretical quantile of the QQ plots is 

computed based on the corresponding cumulative probability ( ) ( )nn cnck 21/ −+−= . 

 
5.5.3 Evaluations 
 

In the QQ plots on the left of Figure 5-8, the degree of fit is indicated by proximity 

of the plotted curve to the straight line of equality  through the origin.  Although the QQ 

plot can show clear departures from the comparison distribution as a structured 

deviation from a straight line, minor departures may be indistinguishable from the typical 

variation of sampling from the comparison distribution. 

The upper left plot is the QQ Standard Normal plot of the realizations of the GRV 

of the GRF.  The blue line through the origin represents the standard normal probability 

distribution.  The standardized realizations of the GRV (black curve) display a high 

degree of fit to the standard normal distribution.  The GRV is over fit as described in 

Subsection 5.4.3. 



 

 

126 
 
 
 

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

QQ Standard Normal of
GRV With Spatial Correlation

Theoretical Quantiles

O
rd

er
ed

 G
R

V

10 20 30 40 50

0.
5

1.
0

1.
5

2.
0

Variogram of GRF
 Model=spherical, Range=10, Sill=1, mean=0

Distance

S
em

i V
ar

ia
nc

e

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

QQ von Mises, Rho =0.8
CRV With Spatial Correlation

Theoretical Quantiles (Rad)

O
rd

er
ed

 C
R

V

10 20 30 40 50

0.
4

0.
5

0.
6

0.
7

0.
8

Cosineogram of CRF

Distance

C
os

in
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ Uniform of Cumulative Probabilities
Mean - 1/2=0, Var - 1/12=0.001, Closeness=0.007

Theoretical Quantiles

O
rd

er
ed

 P
ro

ba
bi

lit
ie

s

 
 
Figure 5-8.  Evaluation of a von Mises CRF, 8.0=ρ , Overfit, Range r = 10.  The CRF, 
which was transformed from a GRF with spherical covariance corresponds to Figures 5-
1, 5-3, and 5-4.  The QQ standard normal (top left) plot, the QQ von Mises plot (middle 
left),  and the QQ uniform plot (bottom left) plots show simulations with close fits.  The 
range of the variogram of the GRF (top right) and of the cosineogram (middle right) of 
the CRF match the input range 10.  The square of the sample mean resultant length 
(blue dashed horizontal line) of the cosineogram is visually indistinguishable from 2ρ  
(grey horizontal line). 
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The middle left plot is the QQ circular plot of the simulated CRV of the CRF.  

The title is automatically generated by the input specifications for subsequent reference.  

Thus, the CRF input specifications are von Mises distribution with 8.0=ρ .  The blue 

line through the origin represents the desired distribution, which is the von Mises 

8.0=ρ .  The simulated CRV (black curve) displays a high degree of fit to the desired 

distribution. 

The bottom left plot is the QQ Uniform plot of the cumulative probabilities of the 

realizations of the GRVs.  The QQ Uniform plot displays a high degree of fit to the 

uniform distribution.  According to the inverse CDF method, the high degree of fit 

predicts a high degree of fit for the CRV.  The subtitle is automatically generated with 

three metrics of fit for evaluation.  By the CDF method, the cumulative probabilities of a 

RV are uniformly distributed.  When [ ]1,0~ UX , { } 5.0=XE and 12/1)( =XVar .  Hence, 

the fit of the cumulative probabilities to the uniform distribution may be measured as the 

mean cumulative probability minus 0.5, and as the variance of cumulative probabilities 

minus 1/12.  Then, if the variance minus 1/12 is negative, data are more concentrated in 

the middle.  If the difference is positive, the data are more concentrated toward the tails. 

The deviation of the mean from 0.5 indicates an off center condition with positive 

deviation indicating a shift towards higher values.  Additionally, “closeness” is defined as 

the mean vertical distance between QQ uniform plot points and the line through the 

origin.  Hence, zero indicates a perfect fit.  These metrics provide information to assess 

fit. 

The upper right plot is a variogram reflecting the spatial properties of the GRF.  

The plot subtitle is generated by the input specifications for subsequent reference.  

Hence, the GRF input specifications are spherical covariance, range = 10, sill = 1, and 

mean=0.  The grey vertical line is located at the input range of 10 and the grey horizontal 
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line is located at the input sill of 1.  The variogram has a sill of about 1.0 and a range 

of about 10 consistent with the input specifications. 

The bottom right plot is the cosineogram of the simulated CRF.  The shape of the 

cosineogram is similar to the shape of the inverted variogram (upper right plot).   The 

grey vertical line is the input range.  The cosineogram matches the range input.  The 

grey horizontal line, which is the theoretical sill 2ρ , is visually indistinguishable from the 

blue dotted horizontal line, which is the square of the sample mean resultant length r.  

Thus, the cosineogram sill, the theoretical sill, and the sample mean resultant length 

squared are all close together.  Hence, these observations evidence that the CRF has 

the correct range and sill. 

Additional examples, with ρ  set to one half of the maximum (Table 5-1), with 

standardization of the realizations of the GRV and selected with regard for fit, are shown 

in Appendix C.  Further examples, with ρ  set to the extremes of 5% and 95% of the 

maximum, with and without standardization of the GRV for comparison, and generated 

sequentially without regard for fit, are shown in Appendix D.  The spatial properties were 

scored, and summarized in Table D-1.  The conclusion was that the QQ plots with 

standardization indicated a high degree of fit.  Standardization of the GRF had no 

apparent effect on agreement of the spatial properties of a simulation with the desired 

spatial properties. 

 
5.6  Extension of the Method 

 
The extension of the inverse CDF method to the simulation of circular random 

fields may be applied to any continuous RV whose CDF can be computed, or whose 

inverse CDF exists in closed form following the method of Section 5.3. 
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5.7  Chapter Summary and Future Work 

 
The CRF was defined as a RF consisting of spatially correlated CRVs.  The well 

known inverse CDF method, i.e., the fact that the inverse CDF of the desired RV 

operating on a uniform RV produces the probability distribution of the desired RV, was 

extended to the production of a CRF.  The GRV component of a GRF with spatial 

correlation has spatially correlated cumulative probabilities.  The inverse CDF of the 

desired circular probability distribution operating on the spatially correlated cumulative 

probabilities produces a spatially correlated CRV.  The combination of the computed 

CRV and the untransformed coordinate locations of the corresponding realizations of the 

GRV is a simulation of the CRF.  This method is applicable to any continuous RV. 

The spatial properties of the simulated CRF were discussed.  The spatial 

correlation of circular-spatial data is expressed as the mean cosine of the angle between 

random components of direction observed at a distance d apart vs. d as required by the 

circular kriging solution of Chapter 4.  These properties include: 

1) The mean cosine at distance zero is one.  A discontinuity may exist near zero due to 

measurement error.  The size of the discontinuity is called the nugget. 

2) The mean cosine behavior between distance zero and the distance at which RVs are 

uncorrelated was characterized by closely fitting shifted and scaled positive define 

covariance functions from linear kriging. 

3) The mean cosine at distances where GRV and CRV are uncorrelated is the square 

of the mean resultant length of the CRV component of the CRF.  For the circular 

probability distributions examined, it is 2ρ , with ρ  the mean resultant length 

parameter of the CRV. 
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Standardization of the realizations of the GRV to mean 0 and standard 

deviation 1 was examined.  Standardization results in bias of the GRF variance, over 

fitting of the desired the CRF, and inflated type 1 error in tests based on simulation of 

over fitted realizations.  Hence, over fitting may be used for the purpose of visualization 

of close fit, but should not be used for simulation, testing, or analysis.  Qualitative 

evaluations of over fitted simulations demonstrated that CRFs produced were correct.  

The CRV  component of the CRF had a close fit to the desired circular distribution, the 

sill matched 2ρ ,  and the similarity of shape of the inverted cosineogram and variogram 

indicated that the range of the output CRF matched the desired range.   

Metrics of fit were introduced based on the realizations of the uniformly 

distributed cumulative probabilities corresponding to the realizations of the GRV.  The 

mean vertical distance between the QQ uniform plot points and the line of perfect fit 

through the origin measured the overall fit of the samples of the GRV and the CRV.  The 

mean minus 1/2 measured shift (+ upward, - downward), and the variance minus 1/12 

measured departure from the variance of the uniform RV generating the GRV and the 

CRV (+ more spread, - more concentrated). 

Future work includes:  Implementation of additional circular probability 

distributions for simulating CRFs; analysis of how the cosine behavior of the simulated 

CRF relates to the input spatial covariance model of the GRF; automatic fitting of the 

cosine models such as in Appendix M to the cosineogram with identification of best fit; 

and determination of what metrics of fit would be considered a good fit. 
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      CHAPTER 6 

 
COMPREHENSIVE EXAMPLE 

 
 

6.1  Outline of Circular-Spatial Processes 
 
 

This section combines the results of Chapters 2 - 5 to show that the theory and 

methods produce interpretable, and practical results.  The processes involve: 

1) Modeling the underlying trend component of the simulated circular-spatial data  

2) Simulation of a CRF 

3) Estimation of the spatially correlated random components of direction as the residual 

rotations from the trend estimate 

4) Extracting the circular-spatial correlation as the cosineogram 

5) Modeling the cosineogram for a smooth, continuous, and positive definite function 

6) Kriging the residual rotations using the cosine model 

7) Estimating the circular-spatial data 

8) Plotting the circular-spatial estimate. 

The R code used is located in Appendix L, Section L.9.  References to the R 

package CircSpatial will be given.  Arrow style (color, font, thickness) will be used 

consistently in closely related figures for the same type of information. 

 
6.2  Simulation of a CRF 

 
 

Figure 6-1, shows the trend model.  Figure 6-2 shows a circular-spatial sample 

simulated by adding the trend model to a simulation of the von Mises CRF, 

5.0,0 == ρµ  transformed from a GRF with spherical covariance and range 4 (Section 

5.3) using the R package CircSpatial function SimulateCRF (Appendix J, Section J.2).  

The green highlighted area will be enlarged in subsequent figures. 
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Figure 6-1.  Comprehensive Example – The Trend Model, or the Underlying First Order 
Component of Variation.  Closely related information of the green highlighted area will be 
enlarged in subsequent figures. 
 
 

 
0 2 4 6 8 10 12

0
2

4
6

8
10

12

 
 

Figure 6-2.  Comprehensive Example - Simulated Sample of a Von Mises CRF, 

5.0,0 == ρµ  with Underlying Trend.  Closely related information of the green 
highlighted area will be enlarged in subsequent figures. 



 

 

133 
6.3  Estimation of the Spatial Trend 

 
 

With x the location of a measurement and ( )xθ  the direction at location x, the 

estimate of the underlying trend was computed by regressing the ( )( )xθcos  and the 

( )( )xθsin  on both the horizontal and vertical coordinates of x to avoid the cross over 

issues of Chapter 2, Section 2.3.  The estimates of ( )( )xθcos  and ( )( )xθsin  were 

combined using the quadrant specific inverse tangent of Chapter 3, Subsection 3.3.1, 

Equation (3.1).  Figure 6-3 compares the trend estimate (tan arrows) vs. the true trend 

(blue arrows).  The blue arrows have the same direction as the blue arrows in Figure 6-

1.  The trend estimate resembles the true trend.  Closely related information of the green 

highlighted area will be enlarged in subsequent figures. 
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Figure 6-3.  Comprehensive Example – Comparison of the Trend Estimate (Tan) with 
the True Trend (Blue).  The trend estimate resembles the true trend.  Closely related 
information of the green highlighted area will be enlarged in subsequent figures. 
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6.4  Computation of the Residuals 

 
 

Spatial correlation is encoded in the residuals, which is the angular distance of 

the observed direction from the spatial trend.  The residual at a location is plotted as a 

unit vector.  Its direction equals the observed direction minus the estimated trend 

direction.  The residual is positive [negative] if counterclockwise [clockwise] rotation is 

required to rotate the trend estimate vector into alignment with the observed direction 

vector.  Figure 6-4 shows the observed direction as black-solid arrows corresponding to 

Figure 6-2, the trend estimate as tan arrows corresponding to Figure 6-3, and the 

residual rotation as red-dashed arrows.  The plotted area corresponds to the green 

highlighted area in Figures 6-1 to 6-3.  Figure 6-4 was computed using the R package 

CircSpatial function CircResidual (Appendix J, Section J.3). 
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Figure 6-4.  Comprehensive Example - Enlarged View of the Observed Direction (Black), 
Trend Estimate (Tan), and Residual Rotation (Dashed Red) Corresponding to the Green 
Highlighted Area in Figures 6-1 to 6-3.  The residual at a location is plotted as a unit 
vector with direction equal to the observed direction minus the trend estimate direction.  
The residual is positive if counterclockwise rotation is required to rotate the trend 
estimate vector (tan) into alignment with the observed direction vector (black). 

+ residual 

- residual 
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6.5  Plotting and Modeling the Cosineogram 

 
 

Figure 6-5 shows the points of the cosineogram, and the exponential, gaussian, 

and spherical cosine models of circular-spatial correlation.  To determine the best fit of 

the cosine models, the sill (plateau) was set to 0.674 to approximately center the sill of 

the models within the cosineogram points on the right.  Then, the distance between 

points of evaluation of the cosineogram was varied to obtain a smooth sequence of 

points below the range.  The range was adjusted for a best overall fit for each model.  

The spherical cosine model of Chapter 3, Subsection 3.6.2, Equation (3.14), with sill = 

0.674 and range 07.3=r  was selected for best overall fit.  Figure 6-5 was computed 

using the R package CircSpatial function CosinePlots (Appendix J, Section J.4). 
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Figure 6-5.  Comprehensive Example - Points of the Cosineogram, and the Exponential, 
Gaussian, and Spherical Cosine Models of Circular-Spatial Correlation.  The spherical 
cosine model with range 3.07 and sill 0.674 was selected for best overall fit to the 
cosineogram points. 
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6.6  Kriging the Residuals 

 
 

The estimates of the random components of direction were computed using the 

solution of Chapter 4, Subsection 4.2.7, Equation (4.16) with spherical cosine model, 

range r = 3.07, and sill = 0.674 as determined in Section 6.5.  In Figure 6-6 

corresponding to the green highlighted area in Figures 6-1 to 6-3, the kriging estimates 

are plotted as light grey arrows, and the residuals are plotted as red arrows.  The red 

arrows match the direction of the residuals in Figure 6-4.  The residuals coincide with the 

kriging estimates at measurement locations.  This was proven in Chapter 4, Section 4.5, 

and is called “exact interpolation” in linear kriging by the spatial statistics community.  

Figure 6-6 was computed using the R package CircSpatial function KrigCRF (Appendix 

J, Section J.5). 
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Figure 6-6.  Comprehensive Example - Enlarged View of the Kriging (Light Grey) and the 
Residual Rotations (Red) Corresponding to the Green Highlighted Area in Figures 6-1 to 
6-3.  The solution of Chapter 4 produces “exact interpolation”, i.e., the kriging equals the 
residual where the kriging location equals the measurement location. 
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6.7  Interpolation of the Trend Estimate 

 
 

To avoid cross over (Chapter 2, Section 2.3), interpolation of the trend estimate 

is obtained by separately interpolating the cosines and sines of the directions of the 

trend estimate.  A plane is fitted to the three cosine values of the triangular partition of 

the grid cell of the trend estimate in which an interpolation location occurs.  The 

interpolated cosine is the elevation of the plane at the interpolation location.  The sine is 

interpolated by the same method.  The interpolated direction is obtained by applying the 

quadrant specific inverse tangent of Chapter 3, Subsection 3.3.1, Equation (3.1) to the 

interpolated sines and cosines.  In Figure 6-7, corresponding to the green highlighted 

area in Figures 6-1 to 6-3, the interpolated direction (purple) matches the direction of the 

trend estimate (tan) at a measurement location.  The tan arrows match the tan arrows in 

Figures 6-3 and 6-4.  Figure 6-7 was computed using the R package CircSpatial function 

InterpDirection (Appendix J, Section J.6). 
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Figure 6-7.  Comprehensive Example – Enlarged View of the Interpolation (Purple) of 
the Trend Estimate (Tan) Corresponding to the Green Highlighted Area in Figures 6-1 to 
6-3.  The interpolation coincides with the trend estimate at a measurement location. 
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6.8  Computing The Circular-Spatial Estimate 

 
 

Figure 6-8, which was constructed using the R code in Appendix L, Section L.9, 

and corresponds to the green highlighted area in Figures 6-1 to 6-3, shows that the data 

(black arrows) coincide exactly with the circular-spatial estimate (gold arrows) at sample 

locations.  This is a result of exact interpolation of both the kriging estimate and the 

spatial trend model.  The black arrows match the black arrows in Figures 6-2 and 6-4.  

The opposing data at (10, 8) and (10,  9) cause the estimates of direction to collide 

around (10, 8.5).   
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Figure 6-8.  Comprehensive Example – Enlarged View of the Circular Spatial Data 
Estimate (Gold) and the Sample (Black) Corresponding to the Green Highlighted Area in 
Figures 6-1 to 6-3.  At a sample location, the estimate equals the observed direction. 
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6.9  Imaging the Circular-Spatial Estimate 

 
 

Figure 6-9 plots the circular-spatial estimate as the circular dataimage of Chapter 

2.  Figure 6-9 was computed using the R package CircSpatial function CircDataimage 

(Appendix J, Section J.10) with color wheel rotation = -105º, arrow length multiplier = 

0.8, and arrow spacing of one arrow per 3 pixels horizontally and vertically starting at the 

lower left corner.  The black arrows coincide with the black arrows of Figures 6-2, 6-4, 

and 6-8 where an arrow location coincides with a sample location, e.g., at (8,8). 

 
6.10  Computing the Circular Kriging Variance 

 
 

The circular kriging variance 2
CKσ provides a measure of imprecision of the 

circular-spatial estimate.  40 2 <≤ CKσ  (Chapter 4, Section 4.6).  2ˆCKσ , the first order 

approximation of 2
CKσ , was given in Equation (4.26). 

  
 

Figure 6-9.  Comprehensive Example – Circular Dataimage (Left) of the Circular Spatial 
Data Estimate with HSV Color Wheel (Right) of Direction. 
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Figure 6-10 shows 2ˆCKσ  for the estimated circular-spatial data shown in Figure 

6-9 corresponding to the measurements on a regular grid shown in Figure 6-2.  The 

measurement locations are indicated by black dots at the center of the green areas.  The 

variability, which is indicated by the linear color scale, decreases as distance to 

measurement locations decreases.  At a measurement location, the estimate equals the 

data (exact interpolation).  Hence, the circular kriging variance is 0 at a measurement 

location.  Figure 6-10 was computed using the R package CircSpatial function KrigCRF 

(Appendix J, Section J.5).  An example of a plot of circular kriging variance with random 

locations is given in Appendix J, Subsection J.5.4, Figure J-14. 

 

 

 

 
 

Figure 6-10.  Comprehensive Example - Circular Kriging Variance.  The circular kriging 
variance is highly structured with observation locations (black dots) on a regular grid, 
and decreases to zero as the distance to any measurement location decreases to zero 
due to “exact interpolation.” 
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      CHAPTER 7 

 
SUMMARY 

 
 

This chapter summarizes new methods and theory for circular random fields 

(CRF) and circular-spatial data: the circular dataimage for visualization, the empirical 

cosineogram for extraction of spatial correlation, the fitted cosineogram model to provide 

a positive definite estimate of the circular-spatial correlation, a circular kriging solution 

with variance estimate, and possibly the first method to simulate circular random fields. 

Chapter 1,  which is the foundation for subsequent chapters, introduced the 

circular random variable (CRV) and the CRF.  The CRF was defined as a space 

containing spatially correlated CRVs.  With Θ the circular RV and x the location in 2 

dimensional space, the CRF is the set ( ){ }2R, ∈Θ xx .  A CRV takes random directions 

with the total probability of all possible directions distributed on the circular support 

[ )π2,0  or [ )ππ ,− .  Spatial correlation increases as distance between measurement 

locations decreases, i.e.,  the random components of direction tend to be more similar.  

An isotropic CRF was defined as a CRF in which spatial correlation is the same in all 

directions in space.  Circular-spatial methods were summarized in a flow chart. 

Chapter 2 introduced the circular dataimage.  Traditional plots of circular-spatial 

data become less intelligible as random variation, missing data, and data density 

increase.  These issues were resolved by the circular dataimage.  The circular 

dataimage was defined by coding direction as the color at the same angle on a color 

wheel, with the color wheel defined as a sequence of three or more two-color gradients 

with the same color between connecting gradients.  This eliminated color discontinuity at 

the cross over point 0 and π2 (or π−  and π ) resulting in a high resolution continuous 

image of circular-spatial data in which fine detail on a small scale and large-scale 
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structure on a global scale can be simultaneously recognized.  Various suitable color 

wheels were shown and compared to motivate experimentation, the objective being to 

effectively contrast  and highlight interesting circular-spatial structure.  The discrete color 

wheel was constructed from a continuous color wheel by holding color in an angular 

interval to the start color of the interval of the continuous color wheel.  The advantages 

of various color schemes were summarized.  Circular dataimage examples included: 

1) Global and zoomed views of average wind direction 

2) Internal flow of the Space Shuttle solid rocket motor nozzle 

3) Families of circular time series of rocket nozzle vectoring direction angle vs. time 

4) Direction of the Earth main magnetic horizontal (H) field 

5) Deuteranopic (red-green color impairment) simulations 

6) Highlighting a narrow band of directions (focus plot) 

7) Overlay of magnitude as contour curves on circular dataimages 

8) 3D polar plots of Earth main magnetic H field with magnitude as radius, and direction 

coded as color in a color wheel, and magnitude and direction depending on longitude 

and latitude. 

Chapter 3 defined the empirical cosineogram.  The cosineogram expresses the 

spatial correlation in circular-spatial data in a form consistent with the circular kriging 

solution of Chapter 4.  The circular kriging solution requires the mean cosine of the 

angles between the random components of direction as a function of the distance 

between observation locations d.  In the presence of a spatial trend, the random 

component equals the observed direction minus the mean direction at the observation 

location.  In the absence of a spatial trend, the random component equals the observed 

direction.  With ( )dς̂  the mean cosine, ij xx −  the linear distance between observations i 

and j, and ( )dN  the number of pairs of observations of direction 
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separated by a distance within a tolerance ε  of d, the cosineogram is the plot of     

          ( ) ( ) ( )∑ <−−
−=

ε
θθς

d ij
ijdN

d
xx

cos1ˆ                        (7.1) 

vs. d.  For a example, a cosineogram was computed from homogeneous ocean wind 

data in a south polar region. 

The cosine model fitted to the cosineogram characterizes the spatial correlation 

as a smooth, continuous, and positive definite function with 

• The mean cosine equals 1 at zero distance 

• A reduction in the mean cosine at distance close to 0, which is called the nugget 

effect 

• The range (scale parameter, which is also the distance CRV are uncorrelated when 

the input spatial covariance function is spherical) 

• The sill (mean cosine at distances where CRV are uncorrelated). 

The theoretical sill was derived as the square of the resultant vector mean length 

parameter of the circular probability distribution underlying the circular-spatial data.  For 

the circular probability distributions uniform ( )0=ρ , cardioid, triangular, von Mises, and 

wrapped Cauchy, it was determined that the resultant vector mean length equals the 

parameter ρ  of circular probability distributions.  The theoretical sill was verified by 

simulation. 

Introductory cosine models for fitting to the empirical cosineogram were adapted 

from covariance functions for linear kriging by shifting and scaling.  With ( )dc  the mean 

cosine of the angle between random components of direction a distance d apart, ρ  the 

resultant vector mean length of the circular probability distribution, 10 <≤ ρ , ng the 

nugget, 210 ρ−≤≤ gn , and ( )dc  the covariance function with a maximum of 1, 
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the general form of the cosine model is 

          ( ) ( )





>−−+

=
=

.0,)(1

0,1
22 ddcn

d
d

g ρρ
ς               (7.2) 

The general cosine model was proved to be positive definite for optimum circular kriging. 

Chapter 4 developed a circular kriging solution.  With w a computed vector of 

weights based on the circular-spatial correlation, the estimated direction is the matrix of 

observed directions U (each column is an observation of direction as a unit vector) post 

multiplied by w.  The approach avoided the first order Taylor series approximation of 

McNeill (1993), which results in a nonunit vector estimator.  The solution was derived in 

full detail, and verified to produce a unit vector of maximum fit.  With K the positive 

definite matrix of cosines equal to the cosine model of the matrix of pairwise distances, 

and c the vector of cosines between the estimation location and sample locations, the 

weight vector w is 

        .111 cUKUKccKw −−−= TT                (7.3) 

A computationally efficient form of the estimator of direction was derived by 

omitting the denominator of (7.3).  With h and v being the horizontal and vertical 

components of the vector cUK 1− , respectively, the estimated direction in [ )π2,0  radians 

at location 0x  is 
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The estimated direction at a sampled location was proven to be the observed direction. 
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An estimate of the circular kriging variance 2ˆCKσ was defined as the mean 

squared length of the error vector between the estimator and the unobserved direction. 

4ˆ0 2 <≤ CKσ .  It was approximated by a first order Taylor’s series.  The circular kriging 

variance approximation is 

              .22ˆ 12 cKc −−= T
CKσ                 (7.5) 

McNeill’s (1993) estimate cKc 12ˆ −= T
CKσ  is actually proportional to concentration, which 

is in a sense opposite to variance, i.e., as concentration about the mean direction 

increases, variance about the mean direction decreases.  The estimate at a sampled 

location is exact and has zero variance. 

In Chapter 5, the CRF was defined as a set of ( )x,θ  of where θ  denotes 

direction and x denotes the location of observation.  In a CRF with spatial correlation, 

the mean cosine of the angle between random components of directions (nonrandom 

component removed) increases as the distance between observation locations 

decreases.  The nonrandom component is removed so spatial correlation is not 

confused with a global or first order trend  The well known inverse cumulative distribution 

function (CDF) method was extended to the simulation of a CRF by applying the inverse 

CDF of a circular probability distribution to the cumulative probabilities of observations of 

the Gaussian random variables (GRV) of a Gaussian random field (GRF).  The inverse 

CDF of a circular distribution is either a closed form expression, or interpolated from the 

CDF.  The set of a CRV transformed from a GRV and the corresponding GRV 

observation location constitute a simulation of the CRF. 

The mathematical properties of the simulated CRF were discussed: 

1) The mean cosine at distance zero is defined as one. 
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2) The cosine at distances where GRV or CRV are uncorrelated is the square of the 

resultant vector mean length parameter of the CRV ρ  as derived in Chapter 3. 

3) At all other distances, correlation varies with distance.  Spatially correlated 

observations of a GRF have spatially correlated cumulative probabilities because the 

CDF is monotonic increasing.  Hence, observations which are close together have 

cumulative probabilities which are close together.  Conversely, spatially correlated 

cumulative probabilities have spatially correlated CRV because the inverse CDF is 

also monotonic increasing.  Depending on which circular distribution is being 

produced, this process involves 1 to 2 non closed form transformations which 

reshape the covariance function of the GRF.  The resultant cosine curves were 

characterized as fitted positive define functions adapted from the R package 

RandomFields (Schlather 2001) function CovarianceFct using the general form of the 

cosine model (7.2). 

The effect of standardizing the observations of the GRF (center by subtracting 

the mean, and scale by dividing by the standard deviation) prior to evaluating the 

cumulative probabilities was considered. The effects of standardization include over 

fitting, bias of the spatial covariance function of the GRF, and inflated type 1 error rates 

in tests based on over fitted circular distributions.  Standardization should not be used 

for analysis or development of tests.  Qualitative evaluations with standardization 

demonstrated that a CRF was produced with very close and consistent distributional fit, 

and range consistent with the input specifications.   The sill was consistent with both 

input specifications and expected value derived in Chapter 3. 

Chapter 6 provides a comprehensive example combining the results of and 

connecting Chapters 2 – 5. 
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      Appendix A 

 
Notation 

 
 

A nonbolded lower case letter indicates a scalar.  For example, λ  is the scalar 

Lagrange multiplier, iθ  is the thi observed direction in radians, and jiθ  is the angle 

between the thi  and the thj  observed directions in radians. 

A bolded lower case letter indicates a vector.  For example, with superscript “T” 

indicating the transpose, [ ]T

nwww L21=w is an  n-component column vector 

containing real scalar weights iw .  ,,,0, nii K=x  are vectors of physical locations where 

direction is measured.  Location will be used to determine the distance between 

measurement locations, which in turn, will be used to estimate the spatial correlation 

structure.  ,,,1, nii K=u  are 2-component unit vectors of observed direction at 

location ix . 

A bolded capital letter indicates a matrix.  

[ ]
( ) ( ) ( )
( ) ( ) ( )






==

n

n
n

θθθ

θθθ

sinsinsin

coscoscos

21

21
21

L

L
L uuuU is a sample as a matrix whose 

columns are directions as unit vectors.  The first row  is a vector of the horizontal 

components.  The second row is a vector of the vertical components. 

Equation numbers are denoted by (m.n) with m the chapter number or appendix 

letter, and n a sequential number. 
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     Appendix B 

 
Linear Algebra  

 
 
B.1 Identities for Vectors 

Let iu and ju  be unit vectors in 2R  with directions iθ  and jθ  in radians, and ijθ  

be the angle in radians between iu and ju . 

( ) ( ) ( ) ( ) ( )
 VectorsUnitIdentity  Trig

sinsincoscoscos =+=− jijiji θθθθθθ  

                  ( )ij

ji

j
T
i

j
T
ijiji uuuu θcos

 VectorsUnit

2211

∗∗∗
===+

uu

uu
uu        (B.1) 

* (Edwards and Penney 1988, p. 211, eq. 1), ** (Edwards and Penney 1988, p. 142, eq. 

6)  

               vvv T=             (B.2) 

 
B.2 Some Properties of the Positive Definite Matrix K 

• A matrix K is positive definite (P. D.) if and only if there exists an invertible matrix P 

such that TPPK = . 

• ( ) ⇒=== KPPPPK TTTT  K symmetric. 

• 0cKccKddcPPcKcc
0c

≠∀>⇒⇒>=≡=
≠−

∑ ,0 D. P. 0
 singular,non

2 T
 P

i

i
TTTT d  

• Let Q and Λ  be the eigenvector and diagonal eigenvalue matrices of K.  

  Kxx
0x

T
≠∀

<0  

       xQQΛx TT=  

    Λyy
xQy
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=  

     ∑
Λ
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iiy λ2
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        ⇒>⇒

=

0

, Let

i

vector elementary
j

λ

ey

 

           0 of D. P. >⇒ ΛK iλ  

Reversing the order of the proof, leads to 

         D. P.0 of KΛ ⇔>iλ            (B.3) 

 
B.3 Theorem: The P. D. Matrix Has an Inverse 

          ⇒= T
B

PPK
2.
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B.4 Theorem: The Inverse of P. D. Matrix Is Symmetric 
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B.5 Theorem: The Inverse of P. D. Matrix Is P. D. 
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( ) 11
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D. P.  1 Tinvertible QQKQ =⇒ −  
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B.6 Some Properties of the Negative Definite Matrix 

• A matrix K is negative definite (N. D.) if 0cKcc ≠∀< 0T . 

• K N. D. ( ) KKMMKMK ⇒=−=−=⇒≡−⇒
TTD. P. symmetric. 

• This Th. will prove that the eigenvalues of a N. D. matrix are negative.  Let Q and Λ  

be the eigenvector and diagonal eigenvalue matrices of K, respectively. 
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Reversing the order of the proof, leads to 

          D. N.0 of KΛ ⇔<iλ            (B.7)  

 
B.7 Derivatives Required for Kriging 
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The following derivative is required by (B.11).  Let jj iji wKy ∑=⇒= Kwy .   
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B.8 The Requirements for Maximization 

Theorems 1.51 and 1.52 (a) from Rencher (1975) are required to show that the 

kriging solution is a maximum. 

 
B.8.1 Theorem 1.51 

“If ( )nwwwfu ,,, 21 K=  is such that all the first and second partial derivatives are 

continuous, and if B is the matrix whose ( )th
ji,  element is 

ji ww

u

∂∂

∂2

, then at the point 

where 0
w

=
∂

∂u
, u has a minimum if B is positive definite and a maximum if B is negative 

definite.”  In one-dimensional calculus, the first derivative of a function is decreasing 

where the second derivative is negative.  Hence, at the point where the first derivative is 

zero and the second derivative is negative, the function is at a maximum.  In multi-

dimensional calculus, the corresponding second derivative is a matrix of second partial 

derivatives called the Hessian.  Where the first derivatives are zero and the Hessian is 

negative definite, the function is at a maximum. 

 
B.8.2 Theorem 1.52 

“If ( ) dwwwfu TT
n ++== cwwKw,,, 21 K , where K is positive definite and d is a 

scalar, then the matrix KB 2
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B.9 Expectation 

With Z a random matrix of elements ijZ , or ( )][ ijZ=Z , and E the expectation 

operator, Seber (1977, p. 8) defined the expectation of a matrix as 

         { } ( ){ } { }( )[ ].EEE ][ ijij ZZ ==Z         (B.12) 
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Appendix C 

 
Qualitative Evaluations of Other CRFs with Standardization 

 
 

Appendix C extends the example of Chapter 5, Section 5.5, Figure 5-9, to other 

circular distributions: cardioid, triangular, uniform, and wrapped Cauchy.  The purpose of 

these figures is to show that the method produces the desired distributional and spatial 

properties of the CRF.  Figures C-1 to C-4 show the distributional fits on the left as QQ 

plots and the spatial properties of the samples on the right.  Details of the interpretation 

are given in Chapter 5, Subsection 5.5.3.  These figures were constructed as described 

in Chapter 5, Subsection 5.5.2 using the R code in Appendix L, Section L.8.  To facilitate 

verification of the desired spatial properties, the spherical covariance model was chosen 

for the gaussian random field (GRF).  With the spherical covariance, the sill (the plateau 

formed by the mean cosine at distances where the CRV are uncorrelated) and the range 

(the distance at which the mean cosine forms the sill) are easily recognized.  The 

realizations of the GRF were standardized according to Chapter 5, Section 5.3, step 1) 

(Subsections 5.4.3 and 5.4.4).  The mean resultant length parameter ρ  was set to ½ of 

the maximum, which depends on the distribution (Table 5-1). 

Generally, the resulting QQ plots were highly linear, indicating a high degree of 

fit.  The spatial properties of the cosineogram on the bottom right are a mirror of the 

variogram, approximately.  When sampling variation resulted in a GRF realization with 

less than ideal spatial properties, these properties were mirrored from the variogram plot 

of linear-spatial properties of the GRF to the cosineogram plot of the circular-spatial 

properties of the CRF.  An assessment of each figure is given in the figure caption. 

The examples in Appendix C were selected for close fit to the desired distribution 

and spatial properties.  In Appendix D, the circular distribution parameters were set to 
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extremes, the figures were generated sequentially with random seeds, both 

nonstandardized and standardized results were computed, and the distributional and 

spatial properties were scored. 
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Figure C-1.  Evaluation of a Cardioid CRF, 25.0=ρ , Overfit, Range r = 10.  The linearity 
of the QQ plots indicates that the distributional fits are close.  The spatial plots on the 
right show agreement with the desired spatial properties (range r =10, sill 2ρ≈ ). 
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Figure C-2.  Evaluation of a Triangular CRF, 203.0=ρ , Overfit, Range r = 10.  The 
linearity of the QQ plots indicates that the distributional fits are close.  The sill is not well 
defined in the spatial plots on the right.  The range is between 10 and 20. 
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Figure C-3.  Evaluation of a Uniform CRF, Overfit, Range r = 10.  The linearity of the QQ 
plots indicates that the distributional fits are close.  The spatial plots on the right show 
agreement with the desired spatial properties (range r =10, sill=0). 
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Figure C-4.  Evaluation of a Wrapped Cauchy CRF, 5.0=ρ , Overfit, Range r = 10.  The 
linearity of the QQ plots indicates that the distributional fits are close.  The sill is not well 
defined in the spatial plots on the right.  The sill of the variogram is high and the sill of 
the cosineogram is low.  The range is  between 10 and 15.   
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Appendix D 

 
Qualitative Evaluations of CRFs Near Parameter Extremes 

 
 

Appendix D extends the examples of Chapter 5, Section 5.5, Figure 5-8, and 

Appendix C to the selected circular distributions with mean resultant length parameter ρ  

at extremes of 0.05 and 95% of the maximum (Table 5-1).  The purpose of these figures 

is to show that the method produces the desired distributional and spatial properties of 

the CRF.  Standardized and nonstandardized realizations of the GRF with the same 

parameters were computed using the same random seed.  Figures D-1 to D-16 show the 

distributional fits on the left as QQ plots and the spatial properties of the samples on the 

right.  The interpretation is given in Chapter Subsection 5.5.3.  These figures were 

constructed as described in Subsection 5.5.2 using the R code in Appendix L, Section 

L.8.  To facilitate verification of the desired spatial properties, the spherical covariance 

model was chosen for the gaussian random field (GRF) because the spatial properties 

are easily recognized. 

Generally, the QQ plots with standardization were highly linear, indicating a high 

degree of fit, but the QQ plots based on nonstandardized realizations showed typical 

sampling variation.  The QQ wrapped Cauchy plot at high ρ  showed a significant lack of 

distribution fit regardless of standardization.  An assessment of each figure is given in 

the figure caption. 

The cosineogram plot of circular-spatial properties mirrored the variogram plot of 

linear-spatial properties.  When sampling variation resulted in a realization of the GRF 

with less than ideal spatial properties, these properties were mirrored in the cosineogram 

plot of the circular-spatial properties.  The spatial assessments in the figure captions are 

summarized at the end of Appendix D.  Standardization of the GRF had no apparent 
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effect on agreement of the spatial properties of a simulation with the desired spatial 

properties. 
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Figure D-1.  Evaluation of a Cardioid CRF, 05.0=ρ , Overfit, Range r = 10.  The linearity 
of the QQ plots indicates that the distributional fits are close.  The sill is not well defined 
in the spatial plots on the right.  The sill of the cosineogram is 0.  Hence, the range is 
about 10.   
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Figure D-2.  Evaluation of a Cardioid CRF, 05.0=ρ , Range r = 10.  The lack of linearity 
of the QQ plots is due to typical sampling variation.  The sill is not well defined in the 
spatial plots on the right.  The middle red line in the variogram may be the sill.  Then, the 
range is about 10. 
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Figure D-3.  Evaluation of a Cardioid CRF, 475.0=ρ , Overfit, Range r = 10.  The 
linearity of the QQ plots indicates that the distributional fits are close.  The spatial plots 
on the right indicate that the range is around 10 and the sill of the cosineogram is 2ρ≈ . 
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Figure D-4.  Evaluation of a Cardioid CRF, 475.0=ρ , Range r = 10.  The lack of 
linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right indicate that the range is around 10 and the sill of the cosineogram is about 2ρ . 
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Figure D-5.  Evaluation of a Triangular CRF, 05.0=ρ , Overfit, Range r = 10.  The 
linearity of the QQ plots indicates that the distributional fits are close.  The spatial plots 
on the right indicate that the range is about 10 and the sill of the cosineogram is 0. 
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Figure D-6.  Evaluation of a Triangular CRF, 05.0=ρ , Range r = 10.  The lack of 
linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right indicate that the range is around 10 and the sill is about 0. 
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Figure D-7.  Evaluation of a Triangular CRF, 385.0=ρ , Overfit, Range r = 10.  The 
linearity of the QQ plots indicates that the distributional fits are close.  The right plots 
indicate a range is about 10 and a sill of about 0.12 2ρ≈ . 
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Figure D-8.  Evaluation of a Triangular CRF, 385.0=ρ , Range r = 10.  The lack of 
linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right indicate that the range is about 10 and the sill is about 0.2 . 
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Figure D-9.  Evaluation of a von Mises CRF, 05.0=ρ , Overfit, Range r = 10.  The 
linearity of the QQ plots indicates that the distributional fits are close.  The cosineogram 
plot shows agreement with the desired spatial characteristics (range r =10, sill 2ρ≈ ). 
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Figure D-10.  Evaluation of a von Mises CRF, 05.0=ρ , Range r = 10.  The lack of 
linearity of the QQ plots is due to typical sampling variation.  The sill is not well defined in 
the right plots.  The variogram suggest that the range is around 15. 
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Figure D-11.  Evaluation of a von Mises CRF, 95.0=ρ , Overfit, Range r = 10.  The 
linearity of the QQ plots indicates that the distributional fits are close.  The spatial plots 
on the right show agreement with the desired spatial characteristics (range r =10, 
sill 2ρ≈ ). 
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Figure D-12.  Evaluation of a von Mises CRF, 95.0=ρ , Range r = 10.  The lack of 
linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right show agreement with the desired spatial characteristics (range r =10, sill= 

290.0 ρ≈ ). 
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Figure D-13.  Evaluation of a Wrapped Cauchy CRF, 05.0=ρ , Overfit, Range r = 10.  
The linearity of the QQ plots indicates that the distributional fits are close.  The spatial 
plots on the right show agreement with the desired spatial characteristics (range r =10, 
sill=0). 
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Figure D-14.  Evaluation of a Wrapped Cauchy CRF, 05.0=ρ , Range r = 10.  The lack 
of linearity of the QQ plots is due to typical sampling variation.  The spatial plots on the 
right show agreement with the desired spatial characteristics (range r =10, sill=0). 
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Figure D-15.  Evaluation of a Wrapped Cauchy CRF, 95.0=ρ , Overfit, Range r = 10  
The QQ plots show that the GRV and uniform samples (cumulative probabilities) were a 
close fit to the corresponding distributions, but the wrapped Cauchy circular sample at 
high ρ  had less fit than the other circular samples.  Since the linear Cauchy distribution 
gives samples with poor fit, it is not surprising that sampling from the linear Cauchy 
wrapped on a circle, or the wrapped Cauchy distribution, also gives samples with poor 
fit.  The cosineogram on the right indicates a range of about 10 and a sill of about 0.94, 
which is slightly higher than 2ρ . 
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Figure D-16.  Evaluation of a Wrapped Cauchy CRF, 95.0=ρ , Range r = 10. The lack 
of linearity of the QQ plots is due to typical sampling variation.  The wrapped Cauchy 
circular sample at high ρ  had poor fit similar to Figure D-15.  The cosineogram on the 
right shows agreement with the desired spatial characteristics (range r =10, 
sill=0.9 2ρ= ). 
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The spatial properties of Figures D-1 to D-16 were scored and tabulated in 

Table D-1.  The figures were scored based on the assessments in the figure captions: 

• Good = Figure caption contains “agreement with the desired spatial characteristics”  

• OK = Range and sill quantified 

• Poor = Figure caption contains “sill is not well defined”. 
 
 

Table D-1.  Spatial Property Scores of Figures D-1 to D-16 
 

Overfit Good OK Poor 
Yes 3 4 1 
No  3 3 2 
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Appendix E 

 
Derivations of the CDF Formulae for Support [ )π2,0  

 
 

In Chapter 5, a Gaussian random field (GRF) is mapped to a circular random 

field (CRF) via the CDFs.  The CDFs are derived for four circular distributions with 

( )θΘG  the cumulative probability distribution function of Θ , ρ  the mean resultant length 

parameter and κ the concentration parameter for the von Mises distribution, and 

πθθ 20 21 <<≤ .  To simplify calculation, the mean direction is assumed to be 0.  With 

exception to the circular uniform distribution, the mean direction of the CRF may be set 

to an arbitrary direction by adding the direction minus the sample mean direction to the 

direction of each of the observations.  Probability density functions were obtained from 

Mardia (1972), Fisher (1993), and Jammalamadaka and Sengupta (2001).  The derived 

cumulative distribution function (CDF) formulae of Appendix E will be verified by 

integration over the support [ )π2,0  in Appendix F, and mapped to support [ )ππ +− ,  in 

Appendices G and H. .  The CDFs will be denoted  ( )θUG  for the uniform, ( )ρθ;TG  for 

the triangular, ( )ρθ;CG  for the cardioid, ( )ρθ;vMG  for the von Mises, and ( )ρθ;WCG  for 

the wrapped Cauchy distributions. 
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E.1 Cardioid 

The probability density function (PDF) is given in Mardia (1972, p. 51, eq. 3.4.11) 

and the CDF is given in Fisher (1993, p. 45, eq. 3.22).  With 2
10 ≤< ρ , 
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E.2 Triangular 

The PDF was obtained from Mardia (1972, p. 51, eq. (3.4.13).  The CDF and 

derivation were not found in the cited texts, and may be a new result.  With 2
40

π
ρ ≤< , 
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Case 1, πθθ ≤<≤ 210  
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Case 2, πθθπ 221 ≤<≤  
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Case 3, πθπθ 20 21 ≤≤<≤  
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E.3 Uniform 
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E.4 von Mises 

The CDF for the von Mises distribution is not derived because CircStats provides 

the function pvm for the von Mises CDF. 
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E.5 Wrapped Cauchy 

The PDF was obtained from Mardia (1972, p. 56, eq. 3.4.33).  The following form 

of the CDF and its derivation were not found in the referenced texts, and may be a new 

result.  With 10 << ρ , 
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Appendix F 

 
Verification by Evaluation of the CDF Formulae with Support [ )π2,0   

 
 
F.1 Cardioid 
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F.2 Triangular 

Case 1, πθθ ≤<≤ 210  

        ( ) ( )
( ) ( ) ( )

πθ

θ

θθ
π

θθπρρπ
ρθρπθ

=

=












−








 +−+
==−=

2

1 0

12
12

22.

8
4

;0;
E

TT GG  

                 

( ) ( )

( )

⇒=










 −+
=

−








 +−+
=

5.0

8
4

0
8

04

2

2

π
π

ππρρπ

π
π

ππρρπ

 

 
( ) ( ) 5.0;0; ==−= ρθρπθ TT GG  

 
Case 2, πθθπ 221 ≤<≤  
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( ) ( ) 5.0;;2 ==−= ρπθρπθ TT GG  

 
Case 3, πθπθ 20 21 <≤<≤  
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F.3 Uniform 

       ( ) ( )
( ) πθ

θ
π

θθ
θπθ

2

0

12
5. 2

1
2

02
=

=

−
==−=

E

UU GG  

          

⇒=

−
=

1
2

02
π

π
 

( ) ( ) 102 ==−= θπθ UU GG  

 
F.4 Von Mises 

 See E.4. 
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F.5 Wrapped Cauchy 
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     Appendix G 

 
Modification of the PDF and CDF Formulae for Rotated Support [ )ππ +− ,  

 
 

In Appendices G and H, the CDF formulae of Appendix E will be modified to 

rotate the support from [ )π2,0  to [ )ππ +− ,  radians on the unit circle.  In Appendix G, the 

PDF formulae will also be modified to rotate the support from [ )π2,0  to [ )ππ +− , . 

Rotation of the CDF support is required to map a GRV to a CRV with mean 

direction 0 (Chapter 5, Section 5.3).  Unlike the CDF of a linear random variable (RV), 

the circular CDF does not have a single origin.  Let the support be [ )ππ +− , .  Then, by 

means of the CDF –  Inverse CDF transformation (Figure 5-2), the most negative values 

of the standard GRV map to the most negative values of a CRV, the modes coincide, 

and the most positive values of the GRV map to the most positive values of the CRV.  

Thus, the circular CDF has ( ) 0=−=Θ πθG , ( ) 5.00 ==Θ θG , and ( ) 0.1==Θ πθG . 

The uniform PDF is ( ) πθ 21=g  for all angles.  Hence, it is independent of the 

choice of support, and the same for both supports.  The cardioid, von Mises, and 

wrapped Cauchy distributions are functions of ( )θcos .  To transform the part of the 

support πθπ 2<≤  to the corresponding part 0<≤− φπ , let πφθ 2+= .  Then,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )φθφπφπφπφθ gg =⇒=−=+= cos2sinsin2coscos2coscos
01
4342143421

.  Thus, the 

circular PDF for the uniform, cardioid, von Mises, and wrapped Cauchy distributions do 

not change with rotated support.  For πθ <≤0 , the PDF of the triangular distribution is 

( ) ( )( )θππρρπ
π

θ −+−= 24
8
1 2g .  For the part of the rotated support 0<≤− φπ , ( ) =θg  

( )( ) ( )( ) ( )( )πφπρρπ
π

ππφπρρπ
π

πθπρρπ
π

++−=−++−=−+− 24
8
1

224
8
1

24
8
1 222 .  

This is given in Table 5-1 with 0, <≤−+= θπθπδ , and πθθπδ <≤−= 0, . 
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G.1 Cardioid 
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Figure G-1, which verifies the cardioid CDF with support [ )ππ +− , , was plotted 

using the following R code: 

par(mai=c(.8,.75,.1,.1)); r<-0.3 
theta <- seq(-pi, pi, length=201) 
GC <- (theta + pi + 2*r*sin(theta))/(2*pi) 
plot(theta, GC, ty=”l”)  
 
 
 
 
 
 

 

Figure G-1.  Visual Verification of Cardioid CDF, 30.0=ρ , Support [ )ππ +− ,  Radians.  
Slope is changing as expected with maximum slope occurring at zero radians. 
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G.2 Triangular 
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Figure G-2, which verifies the triangular CDF with support [ )ππ +− , , was plotted 

using the following R code: 

par(mai=c(.8,.75,.1,.1)); r<-0.3 
theta1 <- seq(-pi,0,length=100); theta1 <- theta1[-100]; theta2 <- seq(0,pi,length=100) 
GT1 <- (4-3*pi^2*r + pi*r*(theta1+ 3*pi))*(theta1+pi)/(8*pi) 
GT2 <- 0.5 + (4 + pi^2*r - pi*r*theta2)*theta2/(8*pi) 
plot(c(theta1,theta2), c(GT1, GT2), ty=”l”) 
 
 
 
 
 
 

 
 

Figure G-2.  Visual Verification of Triangular CDF, 30.0=ρ , Support [ )ππ +− ,  Radians.  
Slope is changing as expected with maximum slope occurring at zero radians. 
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G.3 Uniform 
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G.4 von Mises 

The von Mises cumulative probabilities computed via function pvm in R package 

CircStats (Lund and Agostinelli 2006): 

> pvm(theta = -pi, mu=0, kappa=1) 
[1] 0.5 
> pvm(theta = -.0000001, mu=0, kappa=1) 
[1] 1 
> pvm(theta = 0, mu=0, kappa=1) 
[1] 0 
> pvm(theta = pi, mu=0, kappa=1) 
[1] 0.5 
> pvm(theta = 2*pi, mu=0, kappa=1) 
[1] 0 
 
> pvm(theta = 2*pi -.0000001, mu = 0, kappa = 1) 
[1] 1 
inspection

⇒  
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Figure G-3, which verifies the von Mises CDF with support [ )ππ +− , , was plotted 

using the following R code: 

require(CircStats) 
r<-0.3; k<-A1inv(r) 
par(mai=c(.8,.75,.1,.1)) 
theta1 <- seq(-pi,0,length=100); theta1 <- theta1[-100]; theta2 <- seq(0,pi,length=100) 
GvM1 <- pvm(theta1, mu=0, kappa=k ) - 0.5 
GvM2 <- pvm(theta2, mu=0, kappa=k ) + 0.5 
plot(c(theta1,theta2), c(GvM1, GvM2), ty=”l”) 
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Figure G-3.  Visual Verification of von Mises CDF, 30.0=ρ , Support [ )ππ +− ,  Radians.  
Slope is changing as expected with maximum slope occurring at zero radians. 
 

G.5 Wrapped Cauchy 

Additional forms of the wrapped Cauchy CDF were discovered after the 

completion of Chapter 3.  One of these forms is incorrect.  Due to the complexity of the 

issues arising from the multiple forms of the wrapped Cauchy CDF, these forms will be 

treated in Appendix H. 
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Appendix H 

 
Wrapped Cauchy CDF 

 
 

H.1 Additional Forms of the CDF 
 
H.1.1 Incorrect CDF 

This distribution was introduced by Lévy (1939).  (H.1) was taken from Mardia 

(1972, p. 57, eq. 3.4.36), and repeated in Fisher (1993, p. 46, 3.27).  With 0=µ , it is 
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(H.1) is plotted in Figure H-1 with the following code: 

theta <- seq(0, 2*pi, length = 197); r <- 0.75 # rho 
G <- acos(((1+r^2)*cos(theta)-2*r)/(1+r^2-2*r*cos(theta)))/(2*pi) 
plot(theta, G, ty = ”l”, cex.lab=1.6, cex.axis=1.2)  
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Figure H-1.  Incorrect Wrapped Cauchy CDF, 75.0=ρ , Support [ )π2,0  Radians.  A 
correct CDF is monotonic increasing. 
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H.1.2 WCACDF 
 

WCACDF was obtained from National Institute of Standards and Technology 

(NIST), Statistical Engineering Division, Dataplot, at 

http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/wcacdf.pdf, eq. Aux-326.  

With 0=µ , it is 

( ) =ρθ ;WCG  
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They cite Johnson, Kotz, and Balakrishnan (1994), which is a principle reference for 

looking up details on distributions.  (H.2), as shown in Figure H-2,  was plotted with the 

following code: 

theta1 <- seq(pi, 2*pi, length = 100); theta2 <- seq(0, pi, length = 100) 
theta3 <- seq(-pi, 0, length = 100); r <- 0.75 
G <- function(theta) {(atan((-1-r)*sin(.5*theta)/((-1+r)*cos(.5*theta)) ) 
 - atan( (1+r)*sin(.5*theta)/((r-1)*cos(.5*theta))))/(2*pi)} 
plot(c(theta2, theta1), c(G(theta2), 1-G(2*pi-theta1)), ty = ”l”, cex.lab=1.6, cex.axis=1.2) 
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Figure H-2.  Dataplot WCACDF of Wrapped Cauchy CDF, 75.0=ρ , Support [ )π2,0  
Radians.  The slope changes with maximum rate at zero radians as expected. 
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H.2 Alternate Forms with Support [ )π2,0  

This section will modify the CDF formulae of Section H.1 and Appendix E, 

Section E.5 to facilitate evaluation.  These circular CDFs, going counterclockwise, will 

have ( ) 0; == ρπθWCG , ( ) 5.0;2 == ρπθWCG , ( ) 5.0;0 == ρθWCG , and 

( ) 0.1; == ρπθWCG . 
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H.2.2 Revised (H.1) 
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H.2.3 WCACDF 
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H.3 Evaluation of Alternate Forms 

H.3.1 Forms of  Wrapped Cauchy CDF Visually Indistinguishable 

In Figure H-3, the circular CDFs are computed over [ ) [ )πππ ,02, U  and plotted 

over the equivalent support [ )ππ +− ,  using the following R code: 

theta1 <- seq(pi, 2*pi, length = 100); theta1 <- theta1[-100] 
theta2 <- seq(0, pi, length = 100);     theta2 <- theta2[-100] 
theta3 <- seq(-pi,0, length = 100);     theta3 <- theta3[-100]; r <- 0.75 
# Iterated CDF with total 15 iterations 
GI1 <- (theta1-pi+2*r*sin(theta1))/(2*pi); GI2 <- 0.5 + (theta2+2*r*sin(theta2))/(2*pi) 
GI <- function(theta) 
{ sum.iter <- 0; for (k in 2:15) { sum.iter <- sum.iter + (1/pi)*(r^k)*(1/k)*sin(k*theta)} 
 return(sum.iter) } 
GI1 <- GI1 + GI(theta1); GI2 <- GI2 + GI(theta2) 
par(mai=c(.65,.6,.1,.1), mgp=c(2,1,0),cex.axis=.7, cex.lab=.8) 
plot(c(theta3, theta2), c(GI1, GI2), ty = ”l”) 
# Corrected wrapped Cauchy CDF 
GM1 <- .5 - acos(((1+r^2)*cos(theta1)-2*r)/(1+r^2-2*r*cos(theta1)))/(2*pi) 
GM2 <- .5 +acos(((1+r^2)*cos(theta2)-2*r)/(1+r^2-2*r*cos(theta2)))/(2*pi) 
plot(c(theta3, theta2), c(GM1, GM2), ty = ”l”) 
F <- function(theta) {(atan((-1-r)*sin(.5*theta)/((-1+r)*cos(.5*theta)) ) 
 - atan( (1+r)*sin(.5*theta)/((r-1)*cos(.5*theta))))/(2*pi)} 
GD1 <- .5 - F(2*pi-theta1); GD2 <- F(theta2) + 0.5 
plot(c(theta3, theta2), c(GD1, GD2), ty = ”l”) 
 

In Figure H-3, the revised wrapped Cauchy CDF, WCACDF, and the iterative 

formula with 15 iterations are visually indistinguishable. 

 

 
    Iterative        Revised Formula      WCACDF Formula 

Figure H-3.  Three Forms of the Wrapped Cauchy CDF, 75.0=ρ , Support [ )ππ ,−  
Radians.  Visually, the three forms are indistinguishable. 
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H.3.2 Proximity of Alternative CDF Formulae 
 

With 198 points, the revised CDF and WCACDF total absolute difference is about 

e-14.  The iterated CDF achieves the similar accuracy when the number of iterations is 

increased to about 160 iterations. 

# Compare iterative to WCACDF 
sum(abs(c(GI1, GI2) – c(GD1,GD2)))  
[1] 0.02960684 
 
# Compare iterative to revised CDF  
sum(abs(c(GI1, GI2) – c(GM1,GM2))) 
[1] 0.02960684 
 
# Compare WCACDF to revised CDF 
sum(abs(c(GD1, GD2) – c(GM1,GM2))) 
[1] 3.375078e-14 
 

The accuracy of the iterated wrapped Cauchy CDF (H.3) depends on ρ  and the 

number of iterations.   As rho increases, the number of iterations must increase to 

maintain accuracy.  The need for additional iterations at high rho (0.95) is demonstrated 

in Figure H-4, which was plotted with the following R code: 

r <- 0.95; GI1 <- (theta1-pi+2*r*sin(theta1))/(2*pi); GI2 <- 0.5 + (theta2+2*r*sin(theta2))/(2*pi) 
GI1 <- GI1 + GI(theta1); GI2 <- GI2 + GI(theta2); plot(c(theta3, theta2), c(GI1, GI2), ty = ”l”) 

 
 
 

 

Figure H-4.  Iterated Wrapped Cauchy CDF, ,95.0=ρ  Support [ )ππ ,−  Radians, 15 

Iterations.  The iterative form gets rough as 1→ρ  and computation time increases. 
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H.4 Selected Form for Rotated Support [ )ππ +− ,  
 

The revised CDF (H.4) is more simple than the WCACDF (H.5), and does not 

have the inaccuracy of the iterative form (H.3) at high rho.  Hence, the selected wrapped 

Cauchy CDF for support [ )ππ +− ,  is: 
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 (H.6), as shown in Figure H-5,  was plotted with the following code: 

par(mai=c(.8,.75,.1,.1)) 
r <- 0.75 
theta1 <- seq(-pi,0, length = 100); theta1 <- theta1[-100] 
theta2 <- seq(0, pi, length = 100) 
GM1 <- .5 - acos(((1+r^2)*cos(theta1)-2*r)/(1+r^2-2*r*cos(theta1)))/(2*pi) 
GM2 <- .5 +acos(((1+r^2)*cos(theta2)-2*r)/(1+r^2-2*r*cos(theta2)))/(2*pi) 
plot(c(theta1, theta2), c(GM1, GM2), ty = ”l”) 

 
 
 
 
 

 

Figure H-5.  Visual Verification of Wrapped Cauchy CDF, 75.0=ρ , Support [ )ππ ,−  
Radians.    The slope changes with maximum rate at zero radians as expected. 
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      Appendix I 

Triangular Inverse CDF 

 
The inverse CDF is computed in order to map a Gaussian random field to a 

circular random field according to the method of Chapter 5, Section 5.3.  For the 

cumulative probability ( )( )xzFu Z= , and the triangular CDF ( )ρθ ;TG , ( )ρθ ;TGu ≡ . 
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From (I.1), let        ucba −=
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Applying the quadratic solution of Press, Flannery, Teukolsky, and Vetterling (1986) for 

an accurate solution when a, c, or both are small (when 5.0,0 ≈≈ uρ , the familiar 

quadratic solution ( )aacbb 2/42 




 −±−=θ  does not work), 
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Figure I-1, which was plotted with the following R code, verifies this result. 

 
rho=.95*4/pi^2 
u1 <-seq(0,.5,length=20) 
a <- rho/8 
b <- (4+pi^2*rho)/(8*pi) 
c <- 0.5 - u1 
q <- -.5*(b+sqrt(b^2-4*a*c)) 
x1 <- c/q  
 
u2 <-seq(.5,1,length=20) 
a <- -1*rho/8 
b <- (4+pi^2*rho)/(8*pi) 
c <- 0.5 - u2 
q <- -.5*(b+sqrt(b^2-4*a*c)) 
x2 <- c/q 
 
plot(c(u1,u2), c(x1,x2), ty=”l”) 
 

 

 
 
 

 

Figure I-1.  Visual Verification of Triangular Inverse CDF, 2/4*95.0 πρ = , Support 
[ )ππ ,−  Radians. 
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    Appendix J 

 
R Package Documentation 

 
 

J.1 Introduction and Installation 

 
J.1.1 Introduction 

Vectors and periodic phenomena (e.g., traffic concentration vs. time) have 

direction on a circular scale of 360º.  Circular-spatial data consists of location and 

direction.  Circular random fields generate circular-spatial data.  A circular RF (CRF) is 

defined as a space containing circular random variables (CRV) with spatial correlation.  

In 2 dimensional space, the CRF is the set ( ){ }2R, ∈Θ xx  with Θ the circular RV and x 

the location.  A CRV takes random directions on a unit circle with the total probability of 

all possible directions distributed on the unit circle with support [ )π2,0  or [ )ππ ,− .  The 

starting point of the support is the same direction as the ending point.  A CRV is 

expressed as either a scaler in units of radians or degrees (º), or as a unit vector.  

Spatial correlation increases as distance between measurement locations decreases, 

i.e.,  rotations from the mean direction tend to be more similar.  In the form required by 

the circular kriging solution of chapter 4, spatial correlation is defined as the mean 

cosine of the angle between random components of directions (nonrandom component 

removed) vs. distance between measurement locations.  An isotropic CRF is defined as 

a CRF in which spatial correlation is the same in all directions in space.  A geometric 

anisotropic CRF is defined as a CRF in which spatial correlation varies with direction in 

space. 

The main functions of package CircSpatial include: 

• SimulateCRF: Simulate a circular random field (CRF).   (Appendix J.2) 
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• CircResidual: Compute rotational residuals (deviations) from the mean direction 

in radians.  (Appendix J.3) 

• CosinePlots: Plot the empirical and fitted cosineograms of the spatial correlation of 

circular-spatial data. (Appendix J.4) 

• KrigCRF: Krig and smooth the circular-spatial residuals. (Appendix J.5) 

• InterpDirection: Interpolate the model of mean direction at each kriging location. 

(Appendix J.6) 

• CircDataimage: Generate a graphical user interface (GUI) for interactive circular 

dataimages. (Appendix J.10) 

• PlotVectors: Traditional plots of vector-spatial data. (Appendix J.11) 

 
J.1.2 PC Windows Installation 

An R Package provides a mechanism for loading code and documentation.  To 

install the R package CircSpatial from zip files: 

1) Download and unzip the SupportingPackages.zip file under Software at 

http://home.comcast.net/~morphwj/site/?/page/Dissertation/ (username=dissertation 

and password=JuergenS).  Copy the extracted folders to the R library folder, e.g. in 

C:\Program Files\R\R-2.8.0\library (update path as necessary).  CircSpatial 

depends on R packages CircStats, fields, geoR, RandomFields, sp, and spam. 

2) Download and unzip the CircSpatial_1.0.zip.  Copy the extracted CircSpatial folder to 

the R library.  If unable to open the Help CircSpatial.chm file, open the file 

properties.  If you see , click Unblock, Apply, 

and OK. 

3) Install the current version of Active State Tcl from 

http://downloads.activestate.com/ActiveTcl/Windows/ to the root directory C:\ 
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(recommended).  This installation is required to access the img function to add 

graphics to the CircDataimage GUI.  The img function is not included in the R 

distribution of Tcl. 

4) The first time R is started after copying the dependent packages to the R library, 

update these packages from the R menu bar by selecting “Packages” and “Update 

package(s)...” 

5) To load package CircSpatial from the R prompt, enter require(CircSpatial). 

6) Before using CircDataimage tell R where to find the special Tcl function  img.  

Update the highlighted input and enter the following commands from the R prompt: 

 require(tcltk, quietly=TRUE, warn.conflicts=TRUE) 
 Sys.setenv("TCL_LIBRARY"="C:/Tcl/lib/tcl8.5") 
 Sys.setenv("MY_TCLTK"="Yes") 
 addTclPath(path = "C:/Tcl/lib/teapot/package/win32-ix86/lib") 
 tclRequire("img::jpeg") 
 
 These commands were not embedded in the build of CircSpatial to make the build 

 independent of the user installation path and version of Active State Tcl . 

 
J.2 SimulateCRF 

Generate an isotropic (depends on distance only) or geometric anisotropic 

(depends on distance and direction) CRF in a plane.  An isotropic CRF is a space of 

circular random variables (CRV) with spatial correlation only dependent on distance.  

CRFs are implemented for the circular distributions uniform (U), triangular (Tri), cardioid 

(Card), von Mises (vM), or wrapped Cauchy (WrC), with mean resultant direction (mu) of 

zero (default), and specified mean resultant length (rho) and range (distance at which 

CRV are uncorrelated) of spatial correlation.  Spatial correlation means that as the 

distance between measurement locations decreases, random rotations of direction from 

the mean direction tend to be more similar.  
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J.2.1 Principle 

As shown in Figure J-1, the CRF is obtained by transforming a Gaussian random 

field (GRF), which is generated by package geoR or Random Fields (if N > 500), via the 

inverse cumulative distribution function (CDF) of the CRV operating on the CDF of the 

GRV, which in turn, operates on observations of the GRV in the GRF.  Because spatially 

dependent random variables tend to be similar at short distances and the CDF is 

monotonic increasing, their cumulative probabilities also tend to be similar.  Thus, spatial 

correlation is transformed from the GRF to the normal cumulative probabilities as shown 

in Figure J-2.  In turn, similarity of cumulative probabilities transforms to similarity of CRV 

via the monotonic inverse CDF of the CRV.  Details of the GRF are available in the Help 

files of packages geoR and RandomFields.  The direction of the inverse circular CDF is 

obtained via interpolation of the circular CDF on a fine scale.  For additional information, 

see Chapter 5,  Simulation Of A Circular Random Field. 

 

 

 
 

 

Figure J-1.  Mapping a GRF to a CRF via CDFs.  ( ){ }ρθ ;1
iZi zFG−

Θ= .    Direction of Θ  is 

expressed in radian units. 
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Figure J-2.  Shapes of Variograms and Inverted Cosineogram Show Spatial Correlation 

Transformed from the GRF with Spherical Covariance and Range r = 10. 

 
J.2.2 Usage and Input Arguments 

SimulateCRF(N=100, CircDistr, Rho, Mu=0, Range, Ext=1, CovModel, Grid=NULL, 
Anisotropy=NULL, OverFit=FALSE, Resolution=.01) 
 
N: The number of observations to simulate.  
 
CircDistr: Name of circular distribution “Card”, “Tri”, “U”, “vM”, or “WrC”.  Circular random 
fields are implemented for the uniform, von Mises, cardioid, triangular, and wrapped 
Cauchy distributions. 
 
Rho: Mean resultant length parameter ρ  of the circular distribution: Wrapped Cauchy, 

10 << ρ ; von Mises, 10 << ρ ; cardioid, 5.00 ≤< ρ ; triangular, 2/40 πρ ≤< ; uniform, 
0=ρ  (all directions have equal density) 

 
Mu: Mean resultant direction of circular distribution (rad).  πµ ≤ . 

 
Range: Distance at which CRV are not correlated.  
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Ext: Ext >= 1. Range x Ext (Extension) is the horizontal and vertical width of square 
sample space.  Simulation at distances beyond the range (distance at which CRV are no 
longer spatially dependent) reduces edge effect at the range resulting in a more 
accurate representation of the sill (mean cosine of independent CRV) near the range.  
 
CovModel: Name of a spatial correlation function from package geoR function 
cov.spatial, e.g., “exponential”.  
 

Grid: An n x 2 matrix of regular or irregular location coordinates of the simulated data. 
Grid overrides N and Ext. 
 
Anisotropy: Vector of geometric anisotropy (angle, ratio).  Angle in radians, ratio ≥  1.  
See R Help for package geoR function grf. 
 
OverFit: If TRUE, realizations of the GRV are standardized (centered to mean 0 and 
scaled to standard deviation 1) prior to the transformation to a CRF.  Standardization 
stabilizes realizations of the GRV, enhancing the fit of the output CRF to the specified 
circular distribution.  Standardization is suitable for demonstration with closer fit, 
visualization, and illustrations.  Undesirable effects include loss of independence of the 
marginal GRVs, biased GRF covariance, and biased testing.  If FALSE (default), the 
realizations are not standardized.  Non standardization includes expected variation from 
transformation of variation in mean and standard deviation of the realization of the GRV 
of the GRF.  OverFit=FALSE is recommended for the purposes of simulation, analysis, 
and testing. 
 
Resolution: For nonclosed form inverse CDF, circular quantiles are interpolated at 
resolution Resolution.  0.001 ≤  Resolution ≤  0.01 recommended. 
 
 
J.2.3 Output List 
 
x: Vector of x coordinates of simulated observations.  
 
y: Vector of y coordinates of simulated observations.  
 
direction: Vector of direction of simulated observations in radians.  To change mean 
direction, add a constant. 
 
Z: Vector of simulated observations of the GRV of the GRF. 

 
J.2.4 Example 
 
## Compute isotropic vM CRF of 121 observations, Rho=sqrt(0.5) so sill about 0.5, 
## from GRF (Range=4, spherical covariance) with OverFit=TRUE for demonstration. 
 
require(CircSpatial) 
x1<- 1:11; y1 <- 1:11; y1 <- rep(y1, 11); x1 <- rep(x1, each=11) 
set.seed(666) 
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crf1<- SimulateCRF(CircDistr="vM", Rho=sqrt(0.5), Range=4, CovModel="spherical", 
 Grid=cbind(x1, y1))  
plot(crf1$x, crf1$y, type="n", xlab="", ylab="", asp=1) 
arrow.plot(a1=crf1$x, a2=crf1$y, u=cos(crf1$direction), v=sin(crf1$direction), arrow.ex=0.1,   
 xpd=TRUE, true.angle=TRUE, length=.1) 
 
 
J.2.5 Additional Examples 
 
## Compute isotropic Cardioid CRF of 200 observations, Rho=0.4 so sill about 0.16, 
## from GRF(exponential covariance, Range=5) 
crf2 <- SimulateCRF(N=200, CircDistr="Card", Rho=0.4, Range=5, Ext=3, 
 CovModel="exponential") 
 
## Compute isotropic uniform CRF of 100 observations, sill about 0, 
## from GRF(Gaussian covariance, Range=8) 
crf3 <- SimulateCRF(CircDistr="U", Range=8, Ext=3, CovModel="gaussian") 
 
## Compute isotropic triangular CRF of 100 observations, sill about 0.04, 
## from GRF(spherical covariance, Range=8) 
crf4 <- SimulateCRF(CircDistr="Tri", Rho=0.5*4/pi^2, Range=8, Ext=3, 
 CovModel="spherical") 
 
## Compute isotropic wrapped Cauchy CRF of 100 observations, sill about 0.8, 
## from GRF(exponential covariance, Range=8) 
crf5 <- SimulateCRF(CircDistr="WrC", Rho=sqrt(0.8), Range=8, Ext=3,  
 CovModel="exponential") 
 
## Compute anisotropic wrapped Cauchy CRF of 400 observations, sill about 0.95, 
## from GRF(spherical covariance, Range=8) with anisotropy angle pi/4 and ratio 3 
crfaniso <- SimulateCRF(N=400, CircDistr="WrC", Rho=sqrt(0.95), Range=8, Ext=3,  
 CovModel="spherical",  Anisotropy=c(pi/4, 3)) 
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J.3 CircResidual 

The first order trend, if any, must be removed from the data via an appropriate 

fitted model.  Separately fit the cosine and sine components of direction to functions of 

the spatial coordinates to avoid the cross over problem (direction of 0º equals direction 

of 360º).  Then, the fitted direction is obtained using R function atan2(fitted sines, fitted 

cosines).  Spatial correlation is encoded in the residual rotations = the rotation in radians 

from the fitted model direction to the data direction.  A positive residual rotation indicates 

that counterclockwise (CCW) rotation is required to rotate the fitted model direction to 

the data direction.  A negative residual rotation indicates that CW rotation is required.  

CircResidual returns the residuals in radians, or plots data, model, and residuals with 

black, thick tan, and dashed red arrows, respectively.  Figures J-3 (a) to (e) show the 

succession of model, CRF, sample, fitted model, and residual directions. 

 

J.3.1 Usage and Input Arguments 
 
CircResidual(X, Y, Raw, Trend, Plot=FALSE, AdjArrowLength=1,  ...) 
 
X: Vector of horizontal coordinates of observation and trend locations. 
 
Y: Vector of vertical coordinates of observation and trend locations. 
 
Raw: Vector of direction of observations in radians. 
 
Trend: Vector of fitted direction in radians.  NAs not allowed. 
 
Plot: If FALSE return output list.  If TRUE, plot data (black), model (tan), and residuals 
(dashed black) with asp=1. 
 
AdjArrowLength: Multiplies length of arrows in plots. 
 
. . .  : Additional plot parameters. 
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J.3.2 Output List 
 
x: Vector of horizontal coordinates of residuals.  
 
y: Vector of vertical coordinates of residuals. 
 
direction: Vector of direction residuals in radians. 
 
 
J.3.3 Examples 
 
require(CircSpatial) 
## Construct Trend Model of 121 locations 
x1<- 1:11; y1 <- 1:11; y1 <- rep(y1, 11); x1 <- rep(x1, each=11) 
model.direction1 <- matrix(data=c( 
    157, 141, 126, 113, 101, 90, 79, 67, 54, 40, 25, 152, 137, 123, 111, 100, 90, 80, 69, 57, 44, 30, 
    147, 133, 120, 109,   99, 90, 81, 71, 60, 48, 35, 142, 129, 117, 107,   98, 90, 82, 73, 63, 52, 40, 
    137, 125, 114, 105,   97, 90, 83, 75, 66, 56, 45, 132, 121, 111, 103,   96, 90, 84, 77, 69, 60, 50, 
    127, 117, 108, 101,   95, 90, 85, 79, 72, 64, 55, 122, 113, 105,   99,   94, 90, 86, 81, 75, 68, 60, 
    117, 109, 102,   97,   93, 90, 87, 83, 78, 72, 65, 112, 105,   99,   95,   92, 90, 88, 85, 81, 76, 70, 
    107, 101,   96,   93,   91, 90, 89, 87, 84, 80, 75), ncol=11, byrow=TRUE) 
model.direction1 <- as.vector(model.direction1)*pi/180 
 
## Plot Trend Model, See Figure J-3 (a) 
plot(x1, y1, type="n", xlab="", ylab="", asp=1) 
arrow.plot(x1, y1, u=cos(model.direction1), v=sin(model.direction1), arrow.ex=0.1, xpd=TRUE, 
 true.angle=TRUE,  length=.1) 
 
## Compute vM CRF of 121 observations, Rho=sqrt(0.5) so sill about 0.5, 
## from GRF (Range=4, spherical covariance). 
set.seed(666) 
crf1<- SimulateCRF(CircDistr="vM", Rho=sqrt(0.5), Range=4, CovModel="spherical", 
 Grid=cbind(x1, y1), OverFit=TRUE) 
 
## Plot CRF, See Figure J-3 (b) 
par(mai=c(0.4, 0.35, .25, 0.25)) 
plot(crf1$x, crf1$y, type="n", xlab="", ylab="", asp=1) 
arrow.plot(a1=crf1$x, a2=crf1$y, u=cos(crf1$direction), v=sin(crf1$direction), arrow.ex=0.1, 
 xpd=TRUE, true.angle=TRUE, length=.1) 
 
# Make sample 
sample.direction1 <- model.direction1 + crf1$direction 
 
## Plot Sample, See Figure J-3 (c) 
sample.direction1 <- model.direction1 + crf1$direction 
plot(x1, y1, type="n", asp=1) 
arrow.plot(a1=x1, a2=y1, u=cos(sample.direction1), v=sin(sample.direction1), arrow.ex=0.125, 
 xpd=TRUE, true.angle=TRUE, length=.1) 
 
## Fit An Appropriate Model 
## Code for median polish is contained in Appendix K, Section K.12 
FitHoriz1 <- lm(cos(sample.direction1) ~ (x1 + y1)) 
FitVert1 <- lm(sin(sample.direction1)  ~ (x1 + y1)) 
fitted.direction1 <- atan2(FitVert1$fitted.values, FitHoriz1$fitted.values) 
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   (a) True Model     (b) Simulated CRF       (c) Data 
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         (d) Fitted Model      (e) Data, Fitted Model, And Residual 

Figure J-3.  Plots of True Model, Simulated CRF, Data, Fitted Model, and Residuals.  In 
(e), the data black, the fitted model labeled is tan, and residuals are dashed red.  A 
negative residual rotation = data – model is a clockwise rotation from the model to the 
data. 
 
 
## Plot Fitted Model, See Figure J-3 (d) 
plot(x1, y1, type="n", asp=1, xlab="", ylab="") 
arrow.plot(x1, y1, u=cos(fitted.direction1), v=sin(fitted.direction1), arrow.ex=0.1, xpd=TRUE, 
 true.angle=TRUE,  length=.1) 
## The estimated model in Figure J.3 (d) well approximates true model in Figure J.3 (a). 
 
## Compute Residuals 
resids1 <- CircResidual(X=x1, Y=y1, Raw=sample.direction1, Trend=fitted.direction1, 
Plot=FALSE) 
 
## Plot Sample, Fitted Model, and Residual Rotations, See Figure J-3 (e) 
CircResidual(X=x1, Y=y1, Raw=sample.direction1, Trend=fitted.direction1, Plot=TRUE, 
 xlim=c(3,7), ylim=c(3,7)) 
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J.4 CosinePlots 

The empirical omnidirectional cosineogram expresses the spatial correlation of 

an isotropic CRF (spatial correlation depends on distance not direction) as the mean 

cosine of the angular distances (Figure J-4) between random components of direction as 

a function of the linear distance between measurement locations. 

 
J.4.1 Definitions 

The nugget, range, sill, and cosine model, as shown in Figure J-5, are 

incorporated into the circular kriging solution.  At the distance of zero, the mean cosine is 

1.  Close to 0 distance , the mean cosine is 1 minus the nugget.  As distance increases 

spatial correlation decreases.  This is reflected in a decreasing mean cosine.  The range 

is a scale parameter.  For the spherical covariance function, it is the distance at which 

rotations are no longer spatially dependent.  The sill is the mean cosine at distances 

where CRV are not correlated.  Theoretically, the sill is the square of the mean resultant 

length of the circular probability distribution (See Chapter 3, Section 3.3, for an extensive 

derivation of this result). 

 
 
 
 
 

 

Figure J-4.  Distance Between Locations (Red) vs. Angular Distance (Grey) Between 
Observations.  



 

 

215 

 

Figure J-5.  Features of the Cosineogram Model.  The cosineogram characterizes the 
correlation of random components of direction relative to distance between locations. 
 
 

The cosineocloud plot, Figure J-6, which derives its name from the variocloud 

plot for linear kriging, may be useful to identify outliers that may be excluded from 

subsequent calculations.  It shows all the cosine values computed from all pairs of 

directional observations. 
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Figure J-6.  Cosineocloud.  The cosineocloud is a plot of cosines of pairs of random 
components of direction vs. distance between pairs.  It is a diagnostic useful to identify 
outliers. 
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The empirical omnidirectional cosineogram captures spatial correlation of 

directional data or rotational residuals (when the first order trend is removed) as 

( ) ( ) ( )( )
∑ =

∆=
distancen

i idistancendistance
1

cos/1ς̂  with i∆ the circular distance between the 

ith pair of residual rotations.  Typically, range and sill are determined visually. The nugget 

may be determined by linear regression of initial points of the empirical cosineogram.  

Figure J-7 indicates a range of about 4 and a sill of about 0.5, which is consistent with 

the CRF (CircDistr="vM", Rho=sqrt(0.5), Range=4) with the sill 2ρ= .  The number of lag 

points and bin width of the cosineogram are described in detail in Subsection J.4.5. 

 
J.4.2 Cosine Models 

The empirical cosineogram may be overplotted with exponential, Gaussian, and 

spherical cosine models to help fit a model.    The cosine model is a monotonic 

decreasing function of increasing distance between measurement locations up to the 

range, and produces a positive definite matrix of cosines, which is required for circular 

kriging, when applied to the pairwise distances between measurement locations. 
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Figure J-7.  Empirical Cosineogram.  It reflects the circular-spatial correlation with range 
(distance at which cosine plateaus) of about 4 and sill (elevation of plateau) of about 0.5. 
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Cosineogram models, which were adapted from covariance models for linear 

kriging (Chapter 3, Section 3.6), have mean cosine = 1 at distance = 0, and sill 2ρ= .  

With ( ) =dς  mean cosine function of d, d = linear distance between measurement 

locations, ρ  the mean resultant length of the circular probability distribution, ng the 

nugget ( 210 ρ−≤≤ gn ), and r = range, the implemented cosine models are: 

 
 Exponential (3.12): 

        ( ) ( ) ( )





>−−−+

=
=

0,3exp1

0,1
22 drdn

d
d

g ρρ
ς          (J.1) 

 
Gaussian (3.13): 
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Spherical (3.14): 
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Plots of the implemented cosine models are shown in Figure J-8.  Additional suitable 

functions are given in Appendix M, Section M.5. 
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J.4.3 Cosine Model Plots 

 

 

 

 
Figure J-8.  Cosine Models for Circular-Spatial Data, Range r = 8. 

 Exponential Model 

 Gaussian Model 

 Spherical Model 
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J.4.4 Usage and Input Arguments 
 
CosinePlots(x, y, directions, Lag=NULL, Lag.n.Adj=1, BinWAdj=1, Plot=TRUE, 
Cloud=FALSE, Model=FALSE, nugget=0, Range =NULL, sill =NULL, x.legend=0.6, 
y.legend=1.0, TrimMean=0.1, ...) 
 
x: Vector of horizontal coordinates of observations. 
 
y: Vector of vertical coordinates of observations. 
 
directions: Vector of direction of observations or residual rotations in radians. 
 
Lag: Vector of ascending distances, beginning with zero, where mean cosine is to be 
computed. 
 
Lag.n.Adj: Multiplier (> 0) of the number of lag points.  Value > 1 increases the number 
of points for more detail.  Value < 1 decreases the number of points for less detail. 
 
BinWAdj: Multiplier ( ≥ 1) of bin width.  Value > 1 has a smoothing effect. 
 
Plot: See Table J-1. 
 
Cloud: See Table J-1. 
 
Model: See Table J-1. 
 
nugget: Model nugget or mean cosine near zero distance.  1nugget0 ≤≤ . 
 
Range: Model range. 
 
sill: Model sill. 
 
x.legend: Model plot legend horizontal location as fraction of horizontal maximum 
coordinate. 
 
y.legend: Model plot legend vertical coordinate. 
 
TrimMean: Apply trimmed mean (0.0 to 0.5) in computing the mean cosine at a distance.    
See R Help for mean. 
 
. . . : Additional plotting parameters. 
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J.4.5 Binning Details 

The number of lag points (distances at which mean cosine is evaluated) and distance 

bin width are determined in a sequence: 

1) Sturges rule determines nBins, the number of bins. 

2) nBins and Lag.n.Adj determine Lag.n, the number of distances (lag points) to evaluate 

the mean cosine. 

3) nBins is adjusted to Lag.n - 1 (To make bins narrower increase Lag.n.adj.). 

4) nBins and BinWAdj determine bin width. 

 
J.4.6 Output 
 

Typically, range and sill are determined visually.  When Plot=Model=TRUE, vary 

the range and sill parameters to fit.  The nugget may be determined by linear regression 

of initial empirical cosineogram points. 

 

 

 

 

Table J-1.  Output of CosinePlots. 
 

Plot Cloud   Model   Value 
FALSE   TRUE   FALSE   List of cosineocloud coordinates 
FALSE   FALSE   FALSE   List of cosineogram coordinates 
TRUE   TRUE   FALSE   Cosineocloud Plot 
TRUE FALSE FALSE Cosineogram Plot 
TRUE FALSE TRUE Cosineogram overplotted with cosine models 
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J.4.7 Examples 

require(CircSpatial) 
## Construct Trend Model of 121 locations 
x1<- 1:11; y1 <- 1:11; y1 <- rep(y1, 11); x1 <- rep(x1, each=11) 
model.direction1 <- matrix(data=c( 
    157, 141, 126, 113, 101, 90, 79, 67, 54, 40, 25, 152, 137, 123, 111, 100, 90, 80, 69, 57, 44, 30, 
    147, 133, 120, 109,   99, 90, 81, 71, 60, 48, 35, 142, 129, 117, 107,   98, 90, 82, 73, 63, 52, 40, 
    137, 125, 114, 105,   97, 90, 83, 75, 66, 56, 45, 132, 121, 111, 103,   96, 90, 84, 77, 69, 60, 50, 
    127, 117, 108, 101,   95, 90, 85, 79, 72, 64, 55, 122, 113, 105,   99,   94, 90, 86, 81, 75, 68, 60, 
    117, 109, 102,   97,   93, 90, 87, 83, 78, 72, 65, 112, 105,   99,   95,   92, 90, 88, 85, 81, 76, 70, 
    107, 101,   96,   93,   91, 90, 89, 87, 84, 80, 75), ncol=11, byrow=TRUE) 
model.direction1 <- as.vector(model.direction1)*pi/180 
 
## Compute vM CRF of 121 observations, Rho=sqrt(0.5) so sill about 0.5, 
## from GRF (Range=4, spherical covariance). 
set.seed(666) 
crf1<- SimulateCRF(CircDistr="vM", Rho=sqrt(0.5), Range=4, CovModel="spherical", 
 Grid=cbind(x1, y1), OverFit=TRUE) 
 
# Make sample 
sample.direction1 <- model.direction1 + crf1$direction 
 
## Fit An Appropriate Model 
## Code for median polish is contained in Appendix K, Section K.12 
FitHoriz1 <- lm(cos(sample.direction1) ~ (x1 + y1)) 
FitVert1 <- lm(sin(sample.direction1)  ~ (x1 + y1)) 
fitted.direction1 <- atan2(FitVert1$fitted.values, FitHoriz1$fitted.values) 
 
## Compute Residuals 
resids1 <- CircResidual(X=x1, Y=y1, Raw=sample.direction1, Trend=fitted.direction1, 
 Plot=FALSE) 
 
## Output list of cosineogram coordinates for fitting analytically 
cosineogram.out <- CosinePlots(x=resids1$x, y=resids1$y, directions=resids1$direction, 
 Lag.n.Adj=1, BinWAdj=1, Plot=FALSE, Cloud=FALSE,  Model=FALSE) 
 
## Cosineocloud, Figure J-6 
CosinePlots(x=resids1$x, y=resids1$y, directions=resids1$direction, Lag.n.Adj=1, BinWAdj=1, 
 Plot=TRUE, Cloud=TRUE) 
 
## Cosineogram, Figure J-7. 
CosinePlots(x=resids1$x, y=resids1$y, directions=resids1$direction, Lag.n.Adj=1, BinWAdj=1, 
 Plot=TRUE, Cloud=FALSE,  Model=FALSE) 
abline(h=0.56, col=2); abline(v=4, col=2) 
 
## Fit cosine Models, Figure J-9 
CosinePlots(x=resids1$x, y=resids1$y, directions=resids1$direction, Lag.n.Adj=1, BinWAdj=1, 
 Plot=TRUE, Cloud=FALSE, Model=TRUE,  nugget=0, Range=4.0,  sill=0.56, x.legend=.2, 
 y.legend=0.3, xlim=c(0,8), ylim=c(0,1)) 

 

 
 
 

green highlighted 
code same as 
section J.3.3 
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Figure J-9.  Fitted Cosine Models.  The exponential model with nugget 0.0, range 4.0 
and a sill 0.56 has an adequate fit to the data at distances up to the range.  The cosine 
may decrease or increase beyond the range. 
 
 
J.5 KrigCRF 

KrigCRF estimates circular-spatial data of an isotropic CRF with “exact interpolation” 

(estimate equals observed at measured locations).  The solution is a linear combination 

of directional observations or residual rotations (when the first order trend is removed) 

that minimizes the squared length of the error vector.  This is accomplished by 

incorporation of the spatial correlation (nugget, range, sill, and cosine model) as 

estimated by the cosineogram model fitted to the cosineogram.  The circular kriging 

variance is an estimate of the mean squared length of the error vector.  To avoid cross 

over, KrigCRF also separately applies image.smooth of R package fields to the 

horizontal and vertical components of kriged direction.  The smoothed kriged direction is 

quadrant specific inverse tangent of the smoothed components.   The circular kriging 

estimate can be combined with an interpolation of the fitted model.  For additional 

information, see Chapter 4, Circular Kriging.
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J.5.1 Solutions 

With U the matrix of unit vector observations, row 1 the cosines, row 2 the sines, and 

one observation per column, 1−K  the inverse of matrix of model cosines dependent on 
pairwise distances between measurement locations, and c  the vector of model cosines 
dependent on distance between estimation location 0 and measurement locations 1, 2, 
3,  ..., n, the solutions are: 
 

0û : Estimated direction as a unit vector, ( )[ ] ( )[ ]( )1,22atanˆ 11
0 cUKcUKu −−=  

2ˆCKσ : Circular kriging error variability, .22ˆ 12 cKc −−= T
CKσ  

 
 
J.5.2 Usage and Input Arguments 
 
KrigCRF(krig.x, krig.y, resid.x, resid.y, resid.direction, Model, Nugget=0, Range, sill, 
Smooth=FALSE, bandwidth,  Plot=FALSE, PlotVar=FALSE, Xlim=NULL, Ylim=NULL,  
...) 
 
krig.x: Vector of horizontal coordinates of kriging locations. 
 
krig.y: Vector of vertical coordinates of kriging locations corresponding to krig.x. 
 
resid.x: Vector of horizontal coordinates of rotational residuals or data. 
 
resid.y: Vector of vertical coordinates of rotational residuals or data. 
 
resid.direction: Vector of direction in radians of rotational residuals or data. 
 
Model: Covariance model of R package RandomFields function CovarianceFct best 
fitting the empirical cosineogram. 
 
Nugget: 1 - mean cosine at distance close to zero due to measurement error, micro 
scale variation or sampling. 
 
Range: Distance at which spatially correlated CRV are not correlated for the spherical 
model, or scale factor of other models. 
 
sill: Mean cosine at the Range. 
 
Plot: See Table J-2.  Xlim and Ylim are the plot limits. 
 
PlotVar: Plot circular kriging variance.  See Table J-2. 
 
Smooth: See Table J-2. 
 
bandwidth: Kernel smoothing bandwidth (>0). 
 
... : Additional model parameters. 
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J.5.3 Output 

 
 

Table J-2.  Output of KrigCRF. 
 

Plot PlotVar Smooth Value 
FALSE TRUE/FALSE FALSE Vectors of x, y, and kriged direction (rad) 
FALSE TRUE/FALSE TRUE Vectors of x, y, and smoothed direction 
TRUE FALSE FALSE Arrow plot of kriged direction 
TRUE FALSE TRUE Arrow plot of smoothed kriged direction 
TRUE TRUE TRUE/FALSE Filled contour plot of circular kriging error 
 
 
J.5.4 Examples 
 
require(CircSpatial) 
## Using the residuals resids1 from Subsection J.4.7 
x2 <- seq(1,11, by=0.2); y2 <- x2 ## Kriging locations 
 
## Krig to residuals using range and sill estimate from Figure J-9 
krig2 <- KrigCRF(krig.x=x2, krig.y=y2, resid.x=resids1$x, resid.y=resids1$y, 
 resid.direction=resids1$direction,  Model="exponential", Nugget=0.0,  Range=4, sill=0.56, 
 Plot=FALSE) 
 
## Plot Kriging, Residuals Overploted In Black, See Figure J-10 
require(fields) 
plot(krig2$x, krig2$y, ty="n", xlab="", ylab="", xlim=c(5, 8), ylim=c(5, 8), asp=1) 
arrow.plot(krig2$x, krig2$y, u = cos(krig2$direction), v = sin(krig2$direction), arrow.ex = 0.06, 
 xpd=FALSE, true.angle = TRUE, length=.05, col="tan") 
arrow.plot(resids1$x, resids1$y, u = cos(resids1$direction), v = sin(resids1$direction), arrow.ex = 
 0.09, xpd=FALSE, true.angle = TRUE, length=.05, col=1) 
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Figure J-10.  Residual Rotations (Black) Overplotted on the Circular Kriging (Tan).  The 
kriged direction appears to be equal to the residual direction at sample locations.  This is 
called “exact interpolation”. 
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Figure J-11 shows that increasing the nugget smoothes the kriging 

component of estimated direction at unsampled locations.  The kriging estimate at 

sample locations is “exact”.  At the maximum nugget, the data are uncorrelated, the 

unsampled locations are uncorrelated to the sample locations, and the kriging 

component of estimated direction at unsampled locations is zero.  The kriging 

component is added to the fitted model direction.  At uncorrelated locations, the 

estimated direction is the fitted direction. 

KrigCRF(krig.x = x2, krig.y = y2, resid.x= resids1$x, resid.y= resids1$y, resid.direction= 
 resids1$direction, Model="exponential", Nugget=0.0,   Range=4, sill=0.56, Plot=TRUE, 
 Xlim=c(7,10), Ylim=c(7,10))  
# Repeat with Nugget = 0.15 and 0.3  
KrigCRF(krig.x = x2, krig.y = y2, resid.x=resids1$x, resid.y=resids1$y, resid.direction= 
 resids1$direction, Model="exponential", Nugget=0.44, Range=4, sill=0.56, Plot=TRUE, 
 Xlim=c(7,10), Ylim=c(7,10))  
arrow.plot(resids1$x, resids1$y, u =cos(resids1$direction), v = sin(resids1$direction), arrow.ex = 
 0.09, xpd = F, true.angle = T,  length=.05, col=2) 

 
 

 

Figure J-11.  Smoothing via the Nugget Not Effective at Data Locations.  Red out of line 
arrows in the lower right panel are the residual rotations.  This smoothing method does 
not affect estimates at data locations. 
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Smoothing applied to the kriging component of estimated direction smoothes 

direction over all points.  See Figure J-12. 

 KrigCRF(krig.x = x2, krig.y = y2, resid.x= resids1$x, resid.y= resids1$y, resid.direction= 
 resids1$direction, Model="exponential", Nugget=0.0,  Range=4, sill=0.56, Plot=TRUE, 
 Xlim=c(7,10), Ylim=c(7,10), Smooth=TRUE, bandwidth=0.1)  
KrigCRF(krig.x = x2, krig.y = y2, resid.x= resids1$x, resid.y= resids1$y, resid.direction= 
 resids1$direction, Model="exponential", Nugget=0.0,  Range=4, sill=0.56, Plot=TRUE, 
 Xlim=c(7,10), Ylim=c(7,10),  Smooth=TRUE, bandwidth=2)  
KrigCRF(krig.x = x2, krig.y = y2, resid.x= resids1$x, resid.y= resids1$y, resid.direction= 
 resids1$direction, Model="exponential", Nugget=0.0,  Range=4, sill=0.56, Plot=TRUE, 
 Xlim=c(7,10), Ylim=c(7,10), Smooth=TRUE, bandwidth=4)  
KrigCRF(krig.x = x2, krig.y = y2, resid.x=resids1$x, resid.y=resids1$y, resid.direction= 
 resids1$direction, Model="exponential", Nugget=0.0,  Range=4, sill=0.56, Plot=TRUE, 
 Xlim=c(7,10), Ylim=c(7,10), Smooth=TRUE, bandwidth=10) 
 

 
 
 
 
 

 

Figure J-12.  Smoothing the Kriging Components is Effective at All Locations. 
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## Plot kriging estimate variability at sample locations on a regular grid, See Figure J-13 
KrigCRF(krig.x = x2, krig.y = y2, resid.x= resids1$x, resid.y= resids1$y, resid.direction= 
 resids1$direction, Model="exponential", Nugget=0.0,  Range=4, sill=0.56, Plot=TRUE, 
 Smooth=FALSE, PlotVar=TRUE) 
 
## Plot kriging estimate variability with random sample locations, See Figure J-14. 
set.seed(13) 
crf6 <- SimulateCRF(N=400, CircDistr="Card", Rho= 0.4, Range=4, Ext=3, 
 CovModel="spherical") 
## Best fit is spherical with range=2.85 and sill=0.15 
CosinePlots(x=crf6$x, y=crf6$y, directions=crf6$direction, Lag.n.Adj=1.5, BinWAdj=1, 
 Plot=TRUE, Cloud=FALSE, Model=TRUE, nugget=0, Range=2.85, sill=0.15, x.legend=.14, 
 y.legend=0.75, xlim=c(0,6), ylim=c(0,1)) 
x6 <- seq(4,7, by=0.02); y6 <- x6 
# This may take a long time 
KrigCRF(krig.x =x6, krig.y =y6, resid.x=crf6$x, resid.y=crf6$y, resid.direction=crf6$direction, 
 Model="spherical", Nugget=0.0,  Range=2.85, sill=0.15, Plot=TRUE, PlotVar=TRUE) 
 
 
 
 
 
 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Circ Krig 
Variance

2 4 6 8 10

2

4

6

8

10

 

Figure J-13.  Variability of the Circular Kriging Estimate with Locations on a Regular 
Grid.  Measurement locations are indicated by black points.  Estimate variability is zero 
at a sample location.  40 2 <≤ CKσ  (Chapter 4, Section 4.6). 
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Figure J-14.  Variability of the Circular Kriging Estimate with Random Locations. 
Measurement locations are indicated by black points.  Estimate variability is zero at a 
sample location.  40 2 <≤ CKσ  (Chapter 4, Section 4.6). 
 
 
J.6 InterpDirection 

The interpolated model direction is added to the kriged, or smoothed kriged 

residuals, to obtain the estimated direction.  To avoid cross over, the cosine and the sine 

of the model direction are separately interpolated.  The algorithm has 6 cases of 

interpolation location as indicated by the labeled red dots in Figure J-15.  The corners of 

the grey rectangle are observation locations with observations indicated by the blue unit 

vectors.  For example, assume the interpolation location falls in the lower triangle with 

label f.  For the interpolation of the cosine, a plane is fitted to the three points 

( )( ) ( )( ) ( )( ){ }333222111 cos,,,cos,,,cos,, θθθ yxyxyx .  The interpolated value is the elevation 

of the plane at the interpolation location. The inverse tangent is applied to the 

interpolated cosine and sine components.  Figure J-16 shows the result of interpolating 

smoothed average wind direction.  Interpolation outside the model gives an error. 
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Figure J-15.  Six Cases of Interpolation Location Indicated by Labeled Red Dots.  The 
corners of the grey rectangle are observation locations.  Planes are fitted to the 
triangular partitions.  The interpolated component, cosine or sine, is the elevation of the 
plane at the location of interpolation. 
 
 
 
 
 

 

 
 

Figure J-16.  Effect of Interpolation on Smoothed Average Wind Direction with BGYR 
Color Wheel. 
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J.6.1 Usage and Input Arguments 

InterpDirection(in.x, in.y, in.direction, out.x, out.y) 
 
in.x: Vector of input horizontal coordinates. 
 
in.y: Vector of input vertical coordinates. 
 
in.direction: Vector of input direction in radians. 
 
out.x: Vector of output horizontal coordinates. 
 
out.y: Vector of output vertical coordinates. 
 
 
J.6.2 Output List 
 
x: out.x. 
 
y: out.y. 
 
direction: Vector of interpolated direction in radians. 
 
 
J.6.3 Examples 
 
require(CircSpatial) 
## Construct Trend Model of 121 locations 
x1<- 1:11; y1 <- 1:11; y1 <- rep(y1, 11); x1 <- rep(x1, each=11) 
model.direction1 <- matrix(data=c( 
    157, 141, 126, 113, 101, 90, 79, 67, 54, 40, 25, 152, 137, 123, 111, 100, 90, 80, 69, 57, 44, 30, 
    147, 133, 120, 109,   99, 90, 81, 71, 60, 48, 35, 142, 129, 117, 107,   98, 90, 82, 73, 63, 52, 40, 
    137, 125, 114, 105,   97, 90, 83, 75, 66, 56, 45, 132, 121, 111, 103,   96, 90, 84, 77, 69, 60, 50, 
    127, 117, 108, 101,   95, 90, 85, 79, 72, 64, 55, 122, 113, 105,   99,   94, 90, 86, 81, 75, 68, 60, 
    117, 109, 102,   97,   93, 90, 87, 83, 78, 72, 65, 112, 105,   99,   95,   92, 90, 88, 85, 81, 76, 70, 
    107, 101,   96,   93,   91, 90, 89, 87, 84, 80, 75), ncol=11, byrow=TRUE) 
model.direction1 <- as.vector(model.direction1)*pi/180 
 
## Compute vM CRF of 121 observations, Rho=sqrt(0.5) so sill about 0.5, 
## from GRF (Range=4, spherical covariance). 
set.seed(666) 
crf1<- SimulateCRF(CircDistr="vM", Rho=sqrt(0.5), Range=4, CovModel="spherical", 
 Grid=cbind(x1, y1), OverFit=TRUE) 
 
# Make sample 
sample.direction1 <- model.direction1 + crf1$direction 
 
## Fit An Appropriate Model 
## Code for median polish is contained in Appendix K, Section K.12 
FitHoriz1 <- lm(cos(sample.direction1) ~ (x1 + y1)) 
FitVert1 <- lm(sin(sample.direction1)  ~ (x1 + y1)) 
fitted.direction1 <- atan2(FitVert1$fitted.values, FitHoriz1$fitted.values) 

green highlighted 
code matches 
previous sections 
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## Compute Residuals 
resids1 <- CircResidual(X=x1, Y=y1, Raw=sample.direction1, Trend=fitted.direction1, 
 Plot=FALSE) 
 
## Fit cosine Models 
CosinePlots(x=resids1$x, y=resids1$y, directions=resids1$direction, Lag.n.Adj=1, BinWAdj=1, 
 Plot=TRUE, Cloud=FALSE, Model=TRUE,  nugget=0, Range=4.0,  sill=0.56, x.legend=0.2, 
 y.legend=0.4, xlim=c(0,8), ylim=c(0,1)) 
 
## Krig to residuals using cosine Model (Figure J-9) 
x2 <- seq(1,11, by=0.2); n <- length(x2); y2 <- x2; y2 <- rep(y2, n); x2 <- rep(x2, each=n); rm(n) 
krig2 <- KrigCRF(krig.x=x2, krig.y=y2, resid.x=resids1$x, resid.y=resids1$y, resid.direction= 
resids1$direction, Model="exponential", Nugget=0.0, Range=4, sill=0.56, Plot=FALSE) 
 
## Interpolate Fitted Model 
interp2 <- InterpDirection(in.x=x1, in.y=y1, in.direction=fitted.direction1, out.x=krig2$x, 
out.y=krig2$y) 
 
## Plot Interpolated Fitted Model and Overplot Fitted Model.  See Figure J-17. 
plot(interp2$x, interp2$y, type="n", asp=1, xlim=c(5,8), ylim=c(5,8), xlab="", ylab="") 
arrow.plot(interp2$x, interp2$y, u=cos(interp2$direction), v=sin(interp2$direction), arrow.ex=0.09, 
 xpd=FALSE, true.angle=TRUE, length=.1, col="tan") 
arrow.plot(x1, y1, u =cos(fitted.direction1), v=sin(fitted.direction1), arrow.ex=0.06, xpd=FALSE, 
 true.angle=TRUE, length=.1, col=1) 
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Figure J-17.  Fitted Model (Black) Overplotted on the Fitted Model Interpolation (Tan).  
The fitted model is an enlargement of Figure J-3 (d).  The interpolated direction is the 
same as the model direction at model locations, i.e.  the interpolation is “exact”. 
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## Plot Estimate Of Direction And Overplot Sample.  See Figure J-18. 
estimate2=interp2$direction + krig2$direction 
plot(interp2$x, interp2$y, type="n", xlab="", ylab="", asp=1) 
arrow.plot(interp2$x, interp2$y, u=cos(estimate2), v= sin(estimate2), arrow.ex=0.05, xpd=FALSE, 
 true.angle=TRUE, length=.05, col="tan") 
arrow.plot(x1, y1, u=cos(sample.direction1), v=sin(sample.direction1), arrow.ex=0.05, 
 xpd=FALSE, true.angle=TRUE, length=.05, col=1) 
 
## Zoom.  See Figure J-19. 
plot(interp2$x, interp2$y, type="n", xlab="", ylab="", asp=1, xlim=c(3,6), ylim=c(3,6)) 
arrow.plot(interp2$x, interp2$y, u=cos(estimate2), v=sin(estimate2), arrow.ex=0.075, 
 xpd=FALSE, true.angle=TRUE, length=.05, col="tan") 
arrow.plot(x1, y1, u=cos(sample.direction1), v=sin(sample.direction1), arrow.ex=0.05, 
 xpd=FALSE, true.angle=TRUE, length=.05, col=1) 
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Figure J-18.  Original Data (Black) Overplotted on the Estimates (Tan). 
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Figure J-19.  Enlargement of Figure J-18.  The estimate (tan) equals the sample 

direction (black) at sample locations.  This is called “exact interpolation”. 

 
 
J.7 TestPattern 

The function TestPattern (Appendix K, Section K.1) makes an intuitive simple 

test pattern to explore the function CircDataimage, which produces a GUI for interactive 

imaging of circular-spatial data.  TestPattern computes direction such that the direction 

at any point is the angle between the line from origin to point and the horizon. 

 
J.7.1 Usage 
 
testpattern <- TestPattern() 
 
 
J.7.2 Output Dataframe 
 
x: Vector of horizontal location coordinates. 
 
y: Vector of vertical location coordinates. 
 
u: Vector of horizontal component of cosines of direction. 
 
v: Vector of vertical component of sines of direction. 
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J.8 OceanWind 
 

OceanWind provides a large dataset (495,688 observations) to further explore 

the function CircDataimage.  The OceanWind data was freely obtained from ICOADS at  

http://dss.ucar.edu/datasets/ds540.1/data/msga.form.html for the El Nino years 1972, 

1976, 1982, 1987, 1991, 1994, and 1997, January through April, in 1º increments for the 

area of longitude 0.5º E to +359.5º E by latitude -59.5º N to +60.5º N. See Chapter 2, 

Subsection 2.2.1. 

 
J.8.1 Usage 

data(OceanWind) 

 
J.8.2 Dataframe 
 
year: Vector of time of observation = year + month/12, month in [1972.083, 1997.333] 
 
x: Vector of longitude. 
 
y: Vector of latitude. 
 
u: Vector of east component of wind (0.01 meters/second). 
 
v: Vector of north component of wind (0.01 meters/second). 
 
 
J.9 WorldMask 

WorldMask is used by function CircDataimage to restore land contours to the 

circular dataimage of smoothed OceanWind.  WorldMask was derived from the R 

package fields dataset world.dat. 

 
J.9.1 Usage 

data(WorldMask) 



 

 

235 
J.9.2 Value 

WorldMask is a matrix of 360 rows (0.5º to 359.5º longitude) x 121 columns  

(-59.5º to +60.5º latitude) suited to OceanWind, with elements NA where wind data is not 

missing and 1 where wind data is missing.  Figure J-20 is an image plot of WorldMask. 

 
J.10  CircDataimage 

 
CircDataimage generates a GUI for interaction with circular dataimages to 

facilitate the discovery of structure in circular-spatial data. 

 
J.10.1 Introduction 

The circular dataimage is useful for visualization of random, model, and kriged 

circular-spatial data.  The circular dataimage is constructed by displaying direction as the 

color in a color wheel at the same angle.  This implementation of color provides for 

simultaneous recognition of fine circular-spatial structure on a small scale and large-

scale circular-spatial structure on a global scale (Figure J-21 b, d, f).  Depending on data 

density and smoothness, this structure is lost traditional arrow plots (Figure J-21 a, c). 

 
 
 
 
 

 
 

Figure J-20.  Image Plot of WorldMask.  Land masses are tan. 
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Figure J-21.  Comparison of Arrow and Circular Dataimage Plots of Ocean Wind 
Average Direction.  Plots (a), (b) cover 200º of longitude; (c), (d) cover 100º Of longitude; 
(e), (f) cover 50º of longitude; (g) BGYR Circular Color Wheel.  Ability to recognize 
structure depends on plot type, smoothness and density of data and arrows, and 
distribution of missing data. 
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J.10.2 The Color Wheel 

The color wheel evolved as shown in Figure J-22.  In Figure J-22 (d) every point 

on the color wheel is color continuous, every direction is represented by a unique color, 

and the color change is linear.  The resulting color wheel is named a Yellow-Red-Green-

Blue (YRGB) Color Wheel.  In general, the color wheel is composed of a sequence of 

color gradients with continuity between connecting color gradients such that the color 

coding the 0º direction is the same as the color coding the 360º direction.  Thus, image 

discontinuity from using a single color gradient for visualization of circular-spatial data is 

eliminated.  Package provides 7 continuous color wheels with 1 for red-green color 

impaired, 1 Hue Saturation Value (HSV), and 2 divergent, and 6 discrete color wheels 

with 3 divergent.  For additional information, see Chapter 2, Circular Dataimage, A High 

Resolution Image Of Circular-Spatial Data. 

 
J.10.3 Input Requirements 

The input data.frame entered into the GUI Input Dataframe entry box contains: 

x: Vector of measurement location horizontal coordinates on regular grid. 

y: Vector of measurement location vertical coordinates on regular grid. 

u: Vector of horizontal component of measured vector. NA is not allowed. 

v: Vector of vertical component of measured vector. NA is not allowed. 

Note: The input data are measured on a regular grid.  The vertical and horizontal 

grid spacing may be different.  Spacing is computed from the data as the second 

smallest location coordinate minus minimum location coordinate.  Multiple observations 

at the same location will be replaced with the mean resultant = vector resultant/number 

of observations.  Missing data are permitted, but  a data.frame with rows of (x, y, NA, 

NA) are not allowed.  u=v=0 OK. 



 

 

238 

 
Figure J-22.  Evolution of the YRGB Color Wheel.  (a) Blue-red linear color scale, (b) 
Color scale (a) wrapped on circle, (c) red-green-blue linear color gradient inserted at 
180º, and (d) blue-yellow-red gradient inserted at 0º.  The YRGB color wheel (d) aligns 
the 4 main colors to the 4 main directions (0, 90, 180, 270º). 
 
 

The mask matrix entered into the GUI Mask Matrix entry box is optional (See J.9 

WorldMask).  It must have rows and columns equal to the rows and columns of the 

measurement grid, respectively.  Mask cell values are NA where pixel is not to be 

masked and 1 where a pixel is to be masked. 

 
J.10.4 Output 

The list object Globals, which contains the GUI inputs and results of 

computations, is written into the R workspace. 

 
J.10.5 Startup Example 
 
## Consider setting the R GUI preference to SDI 
require(CircSpatial) 
data(OceanWind)  
data(WorldMask) 
wind.subset <- OceanWind[, -1] # Using all the data, about 500k records 
CircDataimage() 
 
 
J.10.6 GUI Demonstration Using Ocean Wind Data 
 

The initial display appears as in Figure J-23.  “unknown” or an empty Input 

Dataframe (bolding indicates a GUI element in the referenced figure) entry box or  Mask 

Matrix entry box indicate the absence of input.  
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Figure J-23.  Initial Display of the GUI, the Circular Dataimage Window (R Graphics 
Device 2), and the Color Wheel Window. 
 
 
1 Enter the name of the data.frame wind.subset in the Input Dataframe entry box.  

Enter the example optional mask matrix WorldMask in the Mask Matrix entry box.  

N.B.: The input data.frame and optional mask must be input before other GUI 

controls will function correctly.  After data is input, the controls may be operated in 

any order. 

2 Check the Obs Per Cell > 1 checkbox because wind.subset has more than one 

observation per location. When the observations per cell <= 1, the looping structure 

is replaced with vector-matrix expression to reduce computation time. 
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3 To accept the input data and optional mask, click the OK button at the right of 

the mask entry box.  The OK button will remain depressed until processing is 

complete.  If the Obs Per Cell > 1 checkbox is checked, the message “The 

computations necessarily may take significant time” is sent to the R GUI.  The 

computation of average wind direction over the 500k observations of wind.subset is 

relatively slow.  However, testpattern (J.2) is imaged instantaneously (Obs Per Cell 

> 1 checkbox is unchecked). 

4 The display now appears as in Figure J-24.  The circular dataimage appears in R 

Graphics: Device 2 and the current color wheel in R Graphics: Device 3.   The 

Display Coordinates and reference global (extreme) coordinates to the right are 

updated.  The Smooth Bandwidth is set to 0, and the Arrows and Mask check 

buttons are unchecked.  Arrange the windows as necessary. 

 

 

Figure J-24.  Display with Circular Dataimage of Average Direction after Inputs Entered. 
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5 Select any color wheel scale by clicking the radio button next to the color wheel 

label and graphic, and the circular dataimage and color wheel (R Graphics: Device 

3) are quickly updated. 

6 Rotation is used to highlight structure in the displayed area of interest.  The selected 

color wheel may be varied by moving the Color Scale Rotation slider.  As the slider 

is moved, the label above the slider updates.  When the mouse button (left) is 

released, the displayed color wheel rotation angle is processed with a positive value 

resulting in a counterclockwise rotation of the color wheel by the displayed value.  

The circular dataimage and color wheel are updated, but the data are unchanged.  

7 Coordinates are entered to pan and zoom.  Display coordinates reference the center 

of a pixel.  Enter display coordinates into the Display Coordinates entry box.  The 

user may enter any value, but entry box coordinates will snap to the coordinates of 

the nearest datum.  Thus, coordinates outside the range of data are adjusted to the 

extremes of the data.  A zoomed display may be reduced to as few as 2*2 pixels.  

2*1, 1*1, and 1*2 pixel displays result in nonmatrix input to the image plot function 

and an image plot error message.  Enter Min X=100 and Max X=275.  Click OK to 

process the entered coordinates.  The displayed coordinates in the entry boxes 

snap to Min X = 99.5 and Max X=274.5 because the input data.frame has longitude 

from 0.5º to 359.5º in 1º increments. 

8 Smoothing is useful to reduce visual noise.  Smoothing applies image.smooth of 

package fields separately to the horizontal and vertical components of the mean 

vector resultant to avoid “cross over”.  The smoothed direction is obtained by 

applying the R function atan2 to the smoothed components.  Enter a smooth 

bandwidth in the Smooth Bandwidth entry box and click OK.  The OK button will 

remain depressed until processing is complete. 
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9 The result of selecting the Green-Yellow-Red-Blue (GYRB) color wheel with a 

+90º rotation (blue in the color wheel has rotated 90º CCW), and entering a smooth 

bandwidth=2.5 º longitude and latitude is shown in Figure J-25.  Choice of 

bandwidth is determined by experimentation on the data. 

10 Color scale gap increases the contrast at the boundaries of areas of similar direction 

(in the same color gradient component of the color wheel) by truncating the upper 

fraction of the gradient (stretching out the lower fraction or retarding the terminal 

color).  For example, a 4 color-gradient, e.g., GBYR with Color Scale Gap=1 codes 

all directions in the range 0º to 90º as pure green.  Move the slider of Color Scale 

Gap and the label above the slider updates.  When the mouse button is released, 

the displayed color wheel gap is processed, and the color wheel and circular 

dataimage are updated. 

11 Now select the HSV color wheel. 

 

Figure J-25.  GYRB Color Wheel Rotated 90º, Data Smoothed with Bandwidth 2.5, and 
Display Coordinates Changed (Zoomed). 
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12 To add arrows check the Arrows check box.  An arrow is plotted if the value of 

direction at the arrow location is not NA, or the NA value is replaced by smoothing 

and the location is not a masked.  Arrow Spacing in Pixels is the horizontal and 

vertical spacing between arrows.  Valid values of Arrow Spacing in Pixels are 

indicated by the label to the right of the entry box, i.e., 1, 2, 3, ... .  The minimum 

value of Arrow Spacing in Pixels of 1 results in the maximum possible arrow density 

with one arrow per datum.  At some “large” spacing and with missing data, no 

arrows may be displayed.  If no arrows are displayed, the message “No arrows can 

be displayed at current spacing” is displayed in the R GUI.  Increase arrow density 

by entering 5 in the Arrow Spacing in Pixels entry box and click OK.  As arrow 

density is increased, arrow length can be decreased by decreasing the Arrow 

Length Multiplier to a value > 0.  Enter 0.5 in the Arrow Length Multiplier entry box 

and click OK.  The current result should appear as in Figure J-26. 

 

Figure J-26.  HSV Color Wheel Rotated 90º, Data Smoothed with Bandwidth 2.5, Color 
Scale Gap 0.20, and Arrows on. 
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13 Smoothing replaces missing data (land in the wind.subset).  The function of 

mask WorldMask is to restore the outlines of land masses.  Pixels corresponding to 

matrix cells of 1 are overplotted in tan, and pixels corresponding to matrix cells of 

NA remain unchanged.  If a mask matrix was not entered and the mask checkbox is 

clicked, nothing happens.  Now check the Mask check box.  The current result 

should appear as in Figure J-27. 

14 Click the X in the upper right corners to exit. 

 
J.11 PlotVectors 

PlotVectors plots vector-spatial data as unit vectors, vectors, or triangle icons 

(Ware, 2004) with or without jittering.  Triangle icons have area proportional to vector 

magnitude.  Jittering can be help clarify structure when vectors overlap.  However, 

excessive jitter can obscure directional structure.  The underlying fields function arrows 

will not plot any arrow of length less than 0.001 inch. 

 

Figure J-27.  Mask Restores Land Mass Shapes in Smoothed Data. 
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J.11.1 Usage and Input Arguments 
 
PlotVectors(x, y, h, v, UnitVector=TRUE, TriIcon=FALSE, AdjArrowLength=1, 
 AdjHeadLength=1, TriIconAdj=1, TriRatio=4, JitterPlot=FALSE, Jitter=1, \dots) 
 
x: Vector of x coordinates. 
 
y: Vector of y coordinates. 
 
h: Vector of horizontal component.  Missing values are permitted. 
 
v: Vector of vertical component.  Missing values are permitted. 
 
UnitVector: TRUE or FALSE. See Table J-3. 
 
TriIcon: TRUE or FALSE. See Table J-3. 
 
AdjArrowLength: Arrow length multiplier. 
 
AdjHeadLength: Arrow head length multiplier. 
 
TriIconAdj: Multiplies size of icons. 
 
TriRatio: Length to width ratio of triangle icon. 
 
JitterPlot: If TRUE, add jitter to location coordinates. 
 
Jitter: Amount of jitter = Jitter x runif value. 
 
. . . : Additional plot parameters. 
 
 
J.11.2 Output 
 
 

Table J-3.  Output of PlotVectors. 
 

UnitVector TriIcon Plot Type 
FALSE FALSE Direction and magnitude as variable length arrow 
TRUE FALSE Direction as constant length arrow 
FALSE TRUE Triangle icons with area proportional to magnitude 
TRUE TRUE Direction as constant length arrow 
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J.11.3 Examples 
 
require(CircSpatial) 
data(OceanWind) 
wind.1997.Jan <- OceanWind[OceanWind$year>1997 & OceanWind$year<1997.1,-1] 
 
 
## Direction Only, Figure J-28 
PlotVectors(x=wind.1997.Jan$x, y=wind.1997.Jan$y, h=wind.1997.Jan$u, v=wind.1997.Jan$v, 
UnitVector=TRUE, AdjArrowLength=0.75, AdjHeadLength=0.75, xlim=c(320,350), ylim=c(0,30)) 
 
## Direction and Magnitude, Figure J-29 
# fields function arrows omits arrowheads with a warning on 
# any arrow of length less than 0.001 inch. 
PlotVectors(x=wind.1997.Jan$x, y=wind.1997.Jan$y, h=wind.1997.Jan$u, v=wind.1997.Jan$v, 
UnitVector=FALSE, TriIcon=FALSE, AdjArrowLength=3, AdjHeadLength=0.4, xlim=c(320,350), 
ylim=c(0,30)) 
 
## Triangle Icons, Figure J-30 
PlotVectors(x=wind.1997.Jan$x, y=wind.1997.Jan$y, h=wind.1997.Jan$u, v=wind.1997.Jan$v, 
UnitVector=FALSE, TriIcon=TRUE, TriIconAdj=0.25, TriRatio=4, xlim=c(320,350), 
 ylim=c(0,30)) 

 
 
 
 
 
 

 
 

Figure J-28.  Unit Vector Plot of Ocean Wind Data. 



 

 

247 

 
 

Figure J-29.  Vector Plot of Ocean Wind Data. 
 

 
 

 
 

Figure J-30.  Triangle Icon Plot of Ocean Wind Data.
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Appendix K 
 

R Function 
 
 

K.1 TestPattern 
 

n this appendix, some liberties have been taken with format.  Titles match code names, which are case sensitive.  To be readable, the 

code is structured.  To fit, the structured code is in landscape orientation and single spaced.  N.B.: The following code reflects the content of the R 

package.  To run the code outside of the R package, paste the code into an R GUI taking care to correct double quotes “ as necessary.  

Sometimes the double quotes in Word are misinterpreted in the R GUI, e.g., 

. 

 
TestPattern <- function() 
{ 
 x <- seq(-1,1,length = 251) 
 y <- x 
 x <- rep(x, 251) 
 y <- rep(y, ea = 251) 
 dir <- atan2(y,x) 
 dir[x == 0] <- NA 
 dir[y == 0] <- NA 
 u <- cos(dir) 
 v <- sin(dir) 
 return(as.data.frame(list(x = x, y = y, u = u, v = v))) 
} 
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 K.2  CircDataimage 
 

The function CircDataimage embeds jpegs in the R package into the GUI.  To paste this function into an R GUI,  remove the green 
highlighted/bolded code on this page and on the 14th through 16th pages of this code.  However, it is recommended that the R package CircSpatial 
be installed for examination.  The Tcl path statements must match the user installation path of Active State Tcl from 
http://downloads.activestate.com/ActiveTcl/Windows/ 
 
CircDataimage <- function() 
{ 
 # 2008-11-12.1919 
 require(tcltk, quietly=TRUE, warn.conflicts=TRUE) 
 require(fields, quietly=TRUE, warn.conflicts=TRUE) 
 
 # Sys.setenv("TCL_LIBRARY"="C:/Tcl/lib/tcl8.5") 
 # Sys.setenv("MY_TCLTK"="Yes") 
 # addTclPath(path = "C:/Tcl/lib/teapot/package/win32-ix86/lib") 
 # tclRequire("img::jpeg") 
 
 # Make color wheel data 
 x <- seq(-1,1,length=201) # x must be consistent with next image statement 
 y <- x 
 x2 <- rep(x, 201) 
 y2 <- rep(y, ea=201) 
 dir <- atan2(y2,x2) 
 dir[dir<0] <- dir[dir<0] + 2*pi # Directions in [0, 2*pi) 
 Dist <- sqrt(x2^2 + y2^2) # distance from origin 
 filter <- Dist > 1 
 dir[filter] <- NA 
 wheel <- matrix(data=dir, nrow=201, ncol=201, byrow=FALSE) 
 
 # Make FirstColorVector 
 Angles1 <- 0:89 
 Angles2 <- 90:179 
 Angles3 <- 180:269 
 Angles4 <- 270:359 
 Dist1 = 255*Angles1/90 
 Dist2 = 255*(Angles2-90)/90 
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 Dist3 = 255*(Angles3-180)/90 
 Dist4 = 255*(Angles4-270)/90 
 Q1 <- rgb(0, 255-Dist1, Dist1, maxColorValue=255) 
 Q2 <- rgb(Dist2, Dist2, 255-Dist2, maxColorValue=255) 
 Q3 <- rgb(255, 255-Dist3, 0, maxColorValue=255) 
 Q4 <- rgb(255-Dist4, Dist4, 0, maxColorValue=255) 
 FirstColorVector <- c(Q1,Q2,Q3,Q4) # GBYR 
 if(is.null(dev.list())) dev.image=2 else dev.image= max(dev.list()) + 1 
 dev.wheel = dev.image + 1 
  windows() # device dev.image 
 windows(width = 1.15, height = 1, pointsize = 7) # device 3, width so menu bar on one row 
 # Current device is dev.wheel 
 par(plt=c(0.03,0.97,0.03,0.97)) # Applies to current device, min margin between labels and window 
 angles=seq(0, 315, by=45) 
 plot(x=1.2*cos(angles*pi/180), y=1.2*sin(angles*pi/180), type="n", asp=1, xaxt="n", yaxt="n", xlab="", ylab="", 
  bty="n") 
 text(x=1.2*cos(angles*pi/180), y=1.2*sin(angles*pi/180), labels=as.character(angles)) 
 image(x, y, z= wheel, col= FirstColorVector, add=TRUE) 
 Globals <<- list() # This erases content of Globals if Globals exists from previous session 
########################################################################################################### 
R1.Prime <- function() 
{ 
 #2007-08-20.1347 
 # The following global variables are not dependent on data 
 R1.WriteBinColorVectors() # 360 elements for each color vector 
 Globals$ColorGap <<- 0 
 R1.WriteContColorVectors() # Must come after Globals$ColorGap 
  
 Globals$ColorVector.g <<- Globals$GBYR # Must come after R1.WriteContColorVectors 
 Globals$ColorVector   <<- Globals$GBYR 
 Globals$ColorVectorID <<- 1 
 Globals$ColorRotation <<- 0 
 Globals$PlotArrows <<- FALSE 
 Globals$ArrowAdj <<- 1 
 Globals$cpa <<- 15 
 Globals$Mask <<- NULL 
 Globals$PlotMask <<- FALSE 
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} 
########################################################################################################### 
R1.WriteBinColorVectors <- function() 
{ 
 # 2007-08-04.1103 
 # Each vector has 360 elements for each of 360 degrees (º) 
 Q1 <-  rep(rgb(  0, 235,  35, maxColorValue=255), 18) 
 Q2 <-  rep(rgb(  0, 245,   0, maxColorValue=255), 18) 
 Q3 <-  rep(rgb(102, 250,   0, maxColorValue=255), 18) 
 Q4 <-  rep(rgb(153, 255,   0, maxColorValue=255), 18) 
 Q5 <-  rep(rgb(204, 255,   0, maxColorValue=255), 18) 
 Q6 <-  rep(rgb(255, 255,   0, maxColorValue=255), 18) 
 Q7 <-  rep(rgb(255, 204,   0, maxColorValue=255), 18) 
 Q8 <-  rep(rgb(255, 153,   0, maxColorValue=255), 18) 
 Q9 <-  rep(rgb(255, 102,   0, maxColorValue=255), 18) 
 Q10 <- rep(rgb(255,   0,   0, maxColorValue=255), 18) 
 Q11 <- rep(rgb(230,   0,  20, maxColorValue=255), 18) 
 Q12 <- rep(rgb(195,   0,  51, maxColorValue=255), 18) 
 Q13 <- rep(rgb(153,   0, 102, maxColorValue=255), 18) 
 Q14 <- rep(rgb(102,   0, 153, maxColorValue=255), 18) 
 Q15 <- rep(rgb(  0,   0, 150, maxColorValue=255), 18) 
 Q16 <- rep(rgb( 51,   0, 175, maxColorValue=255), 18) 
 Q17 <- rep(rgb(  0,  51, 204, maxColorValue=255), 18) 
 Q18 <- rep(rgb(  0, 102, 153, maxColorValue=255), 18) 
 Q19 <- rep(rgb(  0, 153, 102, maxColorValue=255), 18) 
 Q20 <- rep(rgb(  0, 204,  51, maxColorValue=255), 18) 
 Globals$Rainbow.20Bin <<- c(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18, Q19, Q20)  
 
 Q1 <-  rep(rgb(  0,   0, 128, maxColorValue=255), 30) 
 Q2 <-  rep(rgb(  0,   0, 192, maxColorValue=255), 30) 
 Q3 <-  rep(rgb(  0,   0, 255, maxColorValue=255), 30) 
 Q4 <-  rep(rgb(128, 128, 255, maxColorValue=255), 30) 
 Q5 <-  rep(rgb(192, 192, 255, maxColorValue=255), 30) 
 Q6 <-  rep(rgb(255, 255, 255, maxColorValue=255), 30) 
 Q7 <-  rep(rgb(255, 219, 219, maxColorValue=255), 30) 
 Q8 <-  rep(rgb(255, 128, 128, maxColorValue=255), 30) 
 Q9 <-  rep(rgb(255,   0,   0, maxColorValue=255), 30) 
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 Q10 <- rep(rgb(192,   0,  32, maxColorValue=255), 30) 
 Q11 <- rep(rgb(130,   0,   0, maxColorValue=255), 30) 
 Q12 <- rep(rgb(  0,   0,   0, maxColorValue=255), 30) 
 Globals$KBWR.12Bin <<- c(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12) 
 
 Q1 <-  rep(rgb(103,   0,  31, maxColorValue=255), 36) 
 Q2 <-  rep(rgb(178,  24,  43, maxColorValue=255), 36) 
 Q3 <-  rep(rgb(214,  96,  77, maxColorValue=255), 36) 
 Q4 <-  rep(rgb(244, 165, 130, maxColorValue=255), 36) 
 Q5 <-  rep(rgb(253, 219, 199, maxColorValue=255), 36) 
 Q6 <-  rep(rgb(224, 224, 224, maxColorValue=255), 36) 
 Q7 <-  rep(rgb(186, 186, 186, maxColorValue=255), 36) 
 Q8 <-  rep(rgb(135, 135, 135, maxColorValue=255), 36) 
 Q9 <-  rep(rgb( 77,  77,  77, maxColorValue=255), 36) 
 Q10 <- rep(rgb( 64,  13,  28, maxColorValue=255), 36)  
 Globals$Brewer10Div6.10Bin <<- c(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10) 
 
 Q1 <- rep(rgb(255,     255,      0,       maxColorValue=255),23) # yellow 
 Q2 <- rep(rgb(255,     255*0.65, 0,       maxColorValue=255),45) # orange 
 Q3 <- rep(rgb(255,     0,        0,       maxColorValue=255),45) # red 
 Q4 <- rep(rgb(255*0.75, 0,       0,       maxColorValue=255),45) # dark red 
 Q5 <- rep(rgb(0,       255,      0,       maxColorValue=255),45) # green 
 Q6 <- rep(rgb(0,       255*0.6,  0,       maxColorValue=255),45) # dark green 
 Q7 <- rep(rgb(0,       255*.75,  255,     maxColorValue=255),45) # blue 
 Q8 <- rep(rgb(0,       0,        255,     maxColorValue=255),45) # dark blue 
 Q9 <- rep(rgb(255,     255,      0,       maxColorValue=255),22) # yellow 
 Globals$YRGB.8Bin <<- c(Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9) 
 
 Q1 <-  rep(rgb(140,  81,  10, maxColorValue=255), 45) 
 Q2 <-  rep(rgb(191, 129,  45, maxColorValue=255), 45) 
 Q3 <-  rep(rgb(223, 194, 125, maxColorValue=255), 45) 
 Q4 <-  rep(rgb(246, 232, 195, maxColorValue=255), 45) 
 Q5 <-  rep(rgb(199, 234, 229, maxColorValue=255), 45) 
 Q6 <-  rep(rgb(128, 205, 193, maxColorValue=255), 45) 
 Q7 <-  rep(rgb( 53, 151, 143, maxColorValue=255), 45) 
 Q8 <-  rep(rgb(  1, 102,  94, maxColorValue=255), 45) 
 Globals$Brewer8Div2.8Bin <<- c(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) 
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 Q1 <-  rep(rgb(255, 0,   0, maxColorValue=255), 60) # red 
 Q2 <-  rep(rgb(255, 0,   255, maxColorValue=255), 60) # magenta 
 Q3 <-  rep(rgb(0,   0,   255, maxColorValue=255), 60) # blue 
 Q4 <-  rep(rgb(0,   255, 0, maxColorValue=255), 60) # green 
 Q5 <-  rep(rgb(255, 255, 0, maxColorValue=255), 60) # yellow 
 Q6 <-  rep(rgb(255, 165, 0, maxColorValue=255), 60) # orange 
 Globals$RMBGYO.6Bin <<- c(Q1, Q2, Q3, Q4, Q5, Q6) 
} 
######################################################################################################## 
R1.WriteContColorVectors <- function() 
{ 
 # 2007-09-11.1943 
 # Each vector has 360 elements for each of 360º 
  
 gap <- Globals$ColorGap 
 Angles1 <- 0:89 
 Angles2 <- 90:179 
 Angles3 <- 180:269 
 Angles4 <- 270:359 
 Dist1 = (1-gap)*255*Angles1/90 
 Dist2 = (1-gap)*255*(Angles2-90)/90 
 Dist3 = (1-gap)*255*(Angles3-180)/90 
 Dist4 = (1-gap)*255*(Angles4-270)/90 
 Q1 <- rgb(0, 255-Dist1, Dist1, maxColorValue=255) 
 Q2 <- rgb(Dist2, Dist2, 255-Dist2, maxColorValue=255) 
 Q3 <- rgb(255, 255-Dist3, 0, maxColorValue=255) 
 Q4 <- rgb(255-Dist4, Dist4, 0, maxColorValue=255) 
 Globals$GBYR <<- c(Q1,Q2,Q3,Q4) 
 
 Q1 <- rgb(Dist1, 255, 0, maxColorValue=255) 
 Q2 <- rgb(255, 255-Dist2, 0, maxColorValue=255)   
 Q3 <- rgb(255-Dist3, 0, Dist3, maxColorValue=255) 
 Q4 <- rgb(0, Dist4, 255-Dist4, maxColorValue=255) 
 Globals$GYRB <<- c(Q1,Q2,Q3,Q4) 
 Q1 <- rgb(Dist1, 255, 0, maxColorValue=255) 
 Q2 <- rgb(255-Dist2, 255-Dist2, Dist2, maxColorValue=255) 
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 Q3 <- rgb(Dist3, 0, 255-Dist3, maxColorValue=255)  
 Q4 <- rgb(255-Dist4, Dist4, 0, maxColorValue=255) 
 Globals$GYBR <<- c(Q1,Q2,Q3,Q4) 
 
 Q1 <- rgb(0, 0, Dist1, maxColorValue=255) 
 Q2 <- rgb(Dist2, Dist2, 255, maxColorValue=255) 
 Q3 <- rgb(255, 255-Dist3, 255-Dist3, maxColorValue=255) 
 Q4 <- rgb(255-Dist4, 0, 0, maxColorValue=255) 
 Globals$KBWR <<- c(Q1,Q2,Q3,Q4) 
 
 Dist1 = (1-gap)*Angles1/360 
 Dist2 = 0.25 + (1-gap)*0.25*(Angles2 -90)/90 
 Dist3 = 0.50 + (1-gap)*0.25*(Angles3-180)/90 
 Dist4 = 0.75 + (1-gap)*0.25*(Angles4-270)/90 
 Q1 <- hsv(h=Dist1, s=0.5, v=1) 
 Q2 <- hsv(h=Dist2, s=0.5, v=1) 
 Q3 <- hsv(h=Dist3, s=0.5, v=1) 
 Q4 <- hsv(h=Dist4, s=0.5, v=1) 
 Globals$HSV <<- c(Q1,Q2,Q3,Q4) 
 
 Angles1 <- 0:59 
 Angles2 <- 60:119 
 Angles3 <- 120:179 
 Angles4 <- 180:239 
 Angles5 <- 240:299 
 Angles6 <- 300:359 
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 Dist1 = (1-gap)*255*Angles1/60 
 Dist2 = (1-gap)*255*(Angles2-60)/60 
 Dist3 = (1-gap)*255*(Angles3-120)/60 
 Dist4 = (1-gap)*255*(Angles4-180)/60 
 Dist5 = (1-gap)*255*(Angles5-240)/60 
 Dist6 = (1-gap)*255*(Angles6-300)/60 
 Q1 <- rgb(0, 0, Dist1, maxColorValue=255) 
 Q2 <- rgb(0, Dist2, 255, maxColorValue=255) 
 Q3 <- rgb(Dist3, 255, 255, maxColorValue=255) 
 Q4 <- rgb(255, 255, 255-Dist4, maxColorValue=255) 
 Q5 <- rgb(255, 255-Dist5, 0, maxColorValue=255) 
 Q6 <- rgb(255-Dist6, 0, 0, maxColorValue=255) 
 Globals$KBCWYR <<- c(Q1, Q2, Q3, Q4, Q5, Q6) 
 
 Angles1 <- 0:59 
 Angles2 <- 60:119 
 Angles3 <- 120:179 
 Angles4 <- 180:239 
 Angles5 <- 240:299 
 Angles6 <- 300:359 
 Dist1 = (1-gap)*(Angles1-  0)/60 
 Dist2 = (1-gap)*(Angles2- 60)/60 
 Dist3 = (1-gap)*(Angles3-120)/60 
 Dist4 = (1-gap)*(Angles4-180)/60 
 Dist5 = (1-gap)*(Angles5-240)/60 
 Dist6 = (1-gap)*(Angles6-300)/60 
 
 Q1 <- rgb(               255,                  165*Dist1,                    0, maxColorValue=255) 
 Q2 <- rgb(               255, 165+(255-165)*Dist2,                   0, maxColorValue=255) 
 Q3 <- rgb(255*(1-Dist3),                            255,      255*Dist3, maxColorValue=255) 
 Q4 <- rgb(                   0,             255*(1-Dist4),                255, maxColorValue=255) 
 Q5 <- rgb(      255*Dist5,                               0,                 255, maxColorValue=255) 
 Q6 <- rgb(               255,                                0, 255*(1-Dist6), maxColorValue=255) 
 Globals$ROYBgBPb <<- c(Q1, Q2, Q3, Q4, Q5, Q6) 
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 Angles1 <- 0:35 
 Angles2 <- 36:71 
 Angles3 <- 72:107 
 Angles4 <- 108:143 
 Angles5 <- 144:179 
 Angles6 <- 180:215 
 Angles7 <- 216:251 
 Angles8 <- 252:287 
 Angles9 <- 288:323 
 Angles10 <- 324:359 
 Dist1 = (1-gap)*Angles1/36 
 Dist2 = (1-gap)*(Angles2-36)/36 
 Dist3 = (1-gap)*(Angles3-72)/36 
 Dist4 = (1-gap)*(Angles4-108)/36 
 Dist5 = (1-gap)*(Angles5-144)/36 
 Dist6 = (1-gap)*(Angles6-180)/36 
 Dist7 = (1-gap)*(Angles7-216)/36 
 Dist8 = (1-gap)*(Angles8-252)/36 
 Dist9 = (1-gap)*(Angles9-288)/36 
 Dist10 = (1-gap)*(Angles10-324)/36 
 Q1 <- rgb(103+(178-103)*Dist1,   0   +(24-0)*Dist1,    31+(43-31)*Dist1, maxColorValue=255) 
 Q2 <- rgb(178+(214-178)*Dist2,  24  +(96-24)*Dist2,    43+(77-43)*Dist2, maxColorValue=255) 
 Q3 <- rgb(214+(244-214)*Dist3,  96+(165- 96)*Dist3,   77+(130-77)*Dist3, maxColorValue=255) 
 Q4 <- rgb(244+(253-244)*Dist4, 165+(219-165)*Dist4, 130+(199-130)*Dist4, maxColorValue=255) 
 Q5 <- rgb(253+(224-253)*Dist5, 219+(224-219)*Dist5, 199+(224-199)*Dist5, maxColorValue=255) 
 Q6 <- rgb(224+(186-224)*Dist6, 224+(186-224)*Dist6, 224+(186-224)*Dist6, maxColorValue=255)  
 Q7 <- rgb(186+(135-186)*Dist7, 186+(135-186)*Dist7, 186+(135-186)*Dist7, maxColorValue=255) 
 Q8 <- rgb(135 +(77-135)*Dist8, 135 +(77-135)*Dist8,  135+(77-135)*Dist8, maxColorValue=255) 
 Q9 <- rgb( 77  +(64-77)*Dist9,  77  +(13-77)*Dist9,   77 +(28-77)*Dist9, maxColorValue=255) 
 Q10 <- rgb(64+(103-64)*Dist10,  13  +(0-13)*Dist10,   28+(31-28)*Dist10, maxColorValue=255) 
 Globals$Brewer10Div6 <<- c(Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10) 
} 
########################################################################################################### 
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R1.Initialize <- function(data.name2, mask.name2, nObs.cb.value2) 
{ 
 # 2007-09-12.1930 
 # Variable name suffix ".g" indicates variable is global, i.e. at limits of data 
 # Variable name suffix ".d" indicates variable has been subset for display 
 # Coordinates and direction will apply at center of pixel 
 InputData <- as.matrix(eval(parse(file="", text=as.character(tclvalue(data.name2))))) # Must be matrix for loop below 
 mask <- as.character(tclvalue(mask.name2)) 
 if(mask == "unknown" | mask == "") Globals$Mask <<- NULL else Globals$Mask <<- as.matrix(eval(parse(file="", text=mask))) 
  
 Globals$Data <<- InputData 
 x <- sort(unique(InputData[,1])) # Ascending unique horizontal coordinates of sampling locations. 
 y <- sort(unique(InputData[,2])) # Ascending unique vertical coordinates of sampling locations. 
 Globals$MinX.g <<- min(x) # Global minimum X. 
 Globals$MaxX.g <<- max(x) # Global maximum X. 
 Globals$MinY.g <<- min(y) # Global minimum Y. 
 Globals$MaxY.g <<- max(y) # Global maximum Y. 
 # Measurement location horizontal spacing assumed to be constant in X. 
 # Grid vertical spacing assumed to be constant in Y.  Horiz and vert spacing do not have to be equal. 
 Globals$DX <<- x[2] - x[1] # Horizontal spacing of sampling grid. 
 Globals$DY <<- y[2] - y[1] # Vertical spacing of sampling grid. 
 # Simple check 
 DX2 <- x[3] - x[2] 
 DY2 <- y[3] - y[2] 
 if(DX2 != Globals$DX | DY2 != Globals$DY) stop("Measurement spacing not constant") 
 Globals$nx.g <<- round((Globals$MaxX.g-Globals$MinX.g)/Globals$DX + 1, digits = 0) 
 Globals$ny.g <<- round((Globals$MaxY.g-Globals$MinY.g)/Globals$DY + 1, digits = 0) 
 Globals$x.g <<- seq(from=Globals$MinX.g, to=Globals$MaxX.g,length=Globals$nx.g) 
 Globals$y.g <<- seq(from=Globals$MinY.g, to=Globals$MaxY.g,length=Globals$ny.g) 
  
 # for display if Pan() not invoked 
 Globals$MinX.d <<- Globals$MinX.g 
 Globals$MaxX.d <<- Globals$MaxX.g 
 Globals$MinY.d <<- Globals$MinY.g 
 Globals$MaxY.d <<- Globals$MaxY.g 
 # The number of rows of the matrix will be = Globals$nx.g = length(Globals$x.g) 
 Globals$StartRow <<- 1 
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 Globals$EndRow <<- Globals$nx.g 
 Globals$StartCol <<- 1 
 Globals$EndCol <<- Globals$ny.g 
 if(as.character(tclvalue(nObs.cb.value2)) == "0") 
 { 
  u.g <- matrix(data=NA,nrow=Globals$nx.g,ncol=Globals$ny.g) # u accumulator, because atan2(0,0)=0 
  v.g <- u.g # v accumulator 
  Rows    <- round((InputData[, 1]- Globals$MinX.g)/Globals$DX + 1, digits = 0) # Indexing vector 
  Columns <- round((InputData[, 2]- Globals$MinY.g)/Globals$DY + 1, digits = 0) # Indexing vector 
  u.g[cbind(Rows, Columns)] <- InputData[, 3] 
  v.g[cbind(Rows, Columns)] <- InputData[, 4] 
 } else 
 { 
  cat("The initial computations necessarily may take significant time\n") 
  u.g <- matrix(data=0, nrow=Globals$nx.g, ncol=Globals$ny.g) # u accumulator 
  v.g <- u.g # v accumulator 
  N.g <- u.g # Number of observations per cell 
  Row    <- round((InputData[, 1]- Globals$MinX.g)/Globals$DX + 1, digits = 0) # Indexing scalar 
  Column <- round((InputData[, 2]- Globals$MinY.g)/Globals$DY + 1, digits = 0) # Indexing scalar 
  for (i in 1:nrow(InputData)) 
  {  
   u.g[Row[i], Column[i]] <- u.g[Row[i], Column[i]] + InputData[i, 3] 
   v.g[Row[i], Column[i]] <- v.g[Row[i], Column[i]] + InputData[i, 4] 
   N.g[Row[i], Column[i]] <- N.g[Row[i], Column[i]] + 1 
  } 
  # Averages 
  filter1 <- N.g > 0 
  u.g[filter1] <- u.g[filter1]/N.g[filter1] 
  v.g[filter1] <- v.g[filter1]/N.g[filter1] 
  # Replace 0’s with NAs where there are no observations 
  u.g[!filter1] <- NA 
  v.g[!filter1] <- NA 
 } 
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 Globals$u.g <<- u.g # Cell contains average u or NA 
 Globals$v.g <<- v.g 
 Globals$Direction.g <<- R1.Standardize(atan2(v.g, u.g)) # atan2(NA,NA)=NA 
 Globals$Direction <<- Globals$Direction.g 
 R1.SubsetColorScale(Globals$Direction[Globals$StartRow:Globals$EndRow, Globals$StartCol:Globals$EndCol]) 
 Globals$PlotMask <<- FALSE 
 Globals$PlotArrows <<- FALSE 
 R1.PlotImage() 
} 
######################################################################################################## 
R1.Standardize <- function(Input) 
{ 
 # 2007-08-05.1218 
 # Input and Output in radians 
 filter <- !is.na(Input) 
 temp <- Input[filter] 
 temp[temp < 0] <- temp[temp < 0] + 2*pi 
 temp[temp > 2*pi] <- temp[temp > 2*pi] - 2*pi 
 Input[filter] <- temp 
 return(Input) 
} 
########################################################################################################### 
R1.SubsetColorScale <- function(Input) 
{ 
 # 2007-08-20.1331 
 filter <- !is.na(Input) 
 Range <- floor(range(Input[filter]*180/pi)) 
 a <- which((0:359) == Range[1]) 
 b <- which((0:359) == Range[2]) 
 Globals$ColorFilter <<- a:b  
} 
########################################################################################################### 
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R1.PlotImage <- function() 
{ 
 # 2007-09-14.1720 
 # Composite image = data overplotted with arrows overplotted with mask 
 dev.set(which=dev.image) 
 # The image color vector is subset based on range of data. 
 image(x= Globals$x.g[Globals$StartRow:Globals$EndRow], 
       y= Globals$y.g[Globals$StartCol:Globals$EndCol], 

       z= Globals$Direction[Globals$StartRow:Globals$EndRow, Globals$StartCol:Globals$EndCol], 
       col= Globals$ColorVector[Globals$ColorFilter], xlab="X", ylab="Y", asp=1) 
  
 if(Globals$PlotMask) R1.PlotMask() 
 if(Globals$PlotArrows) R1.PlotArrows()  
} 
######################################################################################################## 
R1.PlotArrows <- function() 
{ 
 # 2007-09-20.2244 
 x <- Globals$x.g[Globals$StartRow:Globals$EndRow] 
 y <- Globals$y.g[Globals$StartCol:Globals$EndCol] 
 Directions <- Globals$Direction[Globals$StartRow:Globals$EndRow, Globals$StartCol:Globals$EndCol] 
 nx=length(x) 
 ny=length(y) 
 x <- rep(x, ny) 
 y <- rep(y, each=nx) 
 Directions <- as.vector(Directions) 
 filter1 <- rep(rep(Globals$cpa:1, length=nx), ny) == Globals$cpa 
 filter2 <- as.vector(t(matrix(data=rep(rep(Globals$cpa:1, length=ny), nx), nrow=ny))) == Globals$cpa 
 if(!Globals$PlotMask | is.null(Globals$Mask)) filter <- !is.na(Directions) & filter1 & filter2 
 if(Globals$PlotMask & !is.null(Globals$Mask)) 
 { 
  mask.boolean <- matrix(data=TRUE, nrow=Globals$nx.g, ncol=Globals$ny.g) 
  mask.boolean[!is.na(Globals$Mask)] <- FALSE 
  mask.boolean <- mask.boolean[Globals$StartRow:Globals$EndRow, Globals$StartCol:Globals$EndCol] 
  filter <- !is.na(Directions) & filter1 & filter2 & as.vector(mask.boolean) 
 } 
 if(sum(filter) > 0) 
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 { 
  x <- x[filter] 
  y <- y[filter] 
  Directions <- Directions[filter] 
  arrow.plot(x, y, u = cos(Directions), v = sin(Directions), arrow.ex = 0.05*Globals$ArrowAdj,  xpd = FALSE, 
   true.angle = TRUE, arrowfun=arrows, length=.05, angle=15, col=1) 
 } else cat("No arrows can be displayed at current spacing\n") 
} 
########################################################################################################### 
R1.PlotMask <- function() 
{ 
 #2007-08-09.2013 
 image(x=Globals$x.g[Globals$StartRow:Globals$EndRow], 
       y=Globals$y.g[Globals$StartCol:Globals$EndCol], 
       z=Globals$Mask[Globals$StartRow:Globals$EndRow, Globals$StartCol:Globals$EndCol], 
       col= "tan", add=TRUE) 
} 
######################################################################################################## 
R1.PlotWheel <- function() 
{ 
 dev.set(which=dev.wheel) 
 # The image color vector is not subset based on range of data. 
 image(x=seq(-1,1,length=201), y=seq(-1,1,length=201), z= wheel, col= Globals$ColorVector, add=TRUE) 
} 
######################################################################################################## 
R1.Pan <- function() 
{ 
 # 2007-09-11.2139 
 Globals$StartRow <<- round((Globals$MinX.d - Globals$MinX.g)/Globals$DX + 1, digits=0) 
 Globals$EndRow   <<- round((Globals$MaxX.d - Globals$MinX.g)/Globals$DX + 1, digits=0) 
 Globals$StartCol <<- round((Globals$MinY.d - Globals$MinY.g)/Globals$DY + 1, digits=0) 
 Globals$EndCol   <<- round((Globals$MaxY.d - Globals$MinY.g)/Globals$DY + 1, digits=0) 
 R1.SubsetColorScale(Globals$Direction[Globals$StartRow:Globals$EndRow, Globals$StartCol:Globals$EndCol]) 
 R1.PlotImage() 
} 
########################################################################################################### 
R1.ChangeColorWheel <- function() 
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{ 
 # 2007-08-20.1903 
 ID <- Globals$ColorVectorID 
 if(ID == "1")  Globals$ColorVector.g <<- Globals$GBYR 
 if(ID == "2")  Globals$ColorVector.g <<- Globals$GYRB 
 if(ID == "3")  Globals$ColorVector.g <<- Globals$ROYBgBPb 
 if(ID == "4")  Globals$ColorVector.g <<- Globals$HSV 
 if(ID == "5")  Globals$ColorVector.g <<- Globals$KBWR 
 if(ID == "6")  Globals$ColorVector.g <<- Globals$KBCWYR 
 if(ID == "7")  Globals$ColorVector.g <<- Globals$Brewer10Div6 
 if(ID == "8")  Globals$ColorVector.g <<- Globals$Rainbow.20Bin 
 if(ID == "9")  Globals$ColorVector.g <<- Globals$KBWR.12Bin 
 if(ID == "10") Globals$ColorVector.g <<- Globals$Brewer10Div6.10Bin 
 if(ID == "11") Globals$ColorVector.g <<- Globals$YRGB.8Bin 
 if(ID == "12") Globals$ColorVector.g <<- Globals$Brewer8Div2.8Bin 
 if(ID == "13") Globals$ColorVector.g <<- Globals$RMBGYO.6Bin 
 R1.AutoRotateColorWheel() 
 R1.PlotImage() 
 R1.PlotWheel() 
} 
########################################################################################################### 
R1.AutoRotateColorWheel <- function() 
{ 
 # 2007-08-06.1603 
 Rotation <- Globals$ColorRotation 
 if(Rotation > 0) 
 { 
  a <- (360-Rotation+1):360 
  Globals$ColorVector <<- c(Globals$ColorVector.g[a], Globals$ColorVector.g[-a]) 
 } else 
 if(Rotation == 0) {Globals$ColorVector <<- Globals$ColorVector.g} else 
 {Globals$ColorVector <<- c(Globals$ColorVector.g[-1:Rotation], Globals$ColorVector.g[1:-Rotation])} 
} 
########################################################################################################### 
R1.RotateColorWheel <- function() 
{ 
 # 2007-08-20.1933 
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 # To return to unrotated color wheel, enter zero for rotation. 
 Rotation <- Globals$ColorRotation 
 if(Rotation > 0) 
 { 
  a <- (360-Rotation+1):360 
  Globals$ColorVector <<- c(Globals$ColorVector.g[a], Globals$ColorVector.g[-a]) 
 } else 
 if(Rotation == 0) {Globals$ColorVector <<- Globals$ColorVector.g} else 
 {Globals$ColorVector <<- c(Globals$ColorVector.g[-1:Rotation], Globals$ColorVector.g[1:-Rotation])} 
 R1.PlotImage() 
 R1.PlotWheel() 
} 
########################################################################################################### 
R1.ChangeColorGap <- function() 
{ 
 # 2007-08-11.1223 
 R1.WriteContColorVectors() # Recompute with gap 
 if(Globals$ColorVectorID == 1)  Globals$ColorVector.g <<- Globals$GBYR 
 if(Globals$ColorVectorID == 2)  Globals$ColorVector.g <<- Globals$GYRB 
 if(Globals$ColorVectorID == 3)  Globals$ColorVector.g <<- Globals$ROYBgBPb 
 if(Globals$ColorVectorID == 4)  Globals$ColorVector.g <<- Globals$HSV 
 if(Globals$ColorVectorID == 5)  Globals$ColorVector.g <<- Globals$KBWR 
 if(Globals$ColorVectorID == 6)  Globals$ColorVector.g <<- Globals$KBCWYR 
 if(Globals$ColorVectorID == 7)  Globals$ColorVector.g <<- Globals$Brewer10Div6 
 R1.AutoRotateColorWheel() 
 R1.PlotImage() 
 R1.PlotWheel() 
} 
########################################################################################################### 
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R1.Prime() 
    
Top <- tktoplevel() 
tkwm.geometry(Top,"565x600") 
tkwm.title(Top,"Circular Dataimage") 
FontHeading <- tkfont.create(family="arial", size=8, weight="bold") 
FrameTop <- tkframe(Top, relief="flat", borderwidth=2) 
data.name <- tclVar("unknown") 
data.name.entry <-tkentry(FrameTop, width="15", textvariable=data.name) 
mask.name <- tclVar("unknown") 
mask.name.entry <- tkentry(FrameTop, width="15",textvariable=mask.name) 
nObs.cb.value <- tclVar("0") 
nObs.cb <- tkcheckbutton(FrameTop); tkconfigure(nObs.cb,variable=nObs.cb.value) 
Input.but <- tkbutton(FrameTop, text="OK", command=function(){ 
 R1.Initialize(data.name, mask.name, nObs.cb.value) 
 tclvalue(MinX.g) <- as.character(Globals$MinX.g) 
 tclvalue(MaxX.g) <- as.character(Globals$MaxX.g) 
 tclvalue(MinY.g) <- as.character(Globals$MinY.g) 
 tclvalue(MaxY.g) <- as.character(Globals$MaxY.g) 
 tclvalue(MinX) <- as.character(Globals$MinX.g) 
 tclvalue(MaxX) <- as.character(Globals$MaxX.g) 
 tclvalue(MinY) <- as.character(Globals$MinY.g) 
 tclvalue(MaxY) <- as.character(Globals$MaxY.g) 
 tclvalue(Smooth) <- "0" 
 tclvalue(arrow.cb.value) <- "0" 
 tclvalue(mask.cb.value) <- "0" 
 } 
) 
tkgrid(tklabel(FrameTop, text="Input Dataframe"), data.name.entry, tklabel(FrameTop,text="     "), 
tklabel(FrameTop,text="Mask Matrix"), mask.name.entry,      tklabel(FrameTop,text="     "), 
tklabel(FrameTop,text="Obs Per Cell > 1"), nObs.cb,         tklabel(FrameTop,text="     "), 
Input.but, sticky="w") 
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FrameLeft <- tkframe(Top, relief="groove", borderwidth=2) 
tkgrid(tklabel(FrameLeft,text="Continuous Color Scales", font=FontHeading), sticky="e") 
image1 <- tclVar(); image2 <- tclVar(); image3 <- tclVar(); image4 <- tclVar(); image5 <- tclVar(); image6 <- tclVar() 
image7 <- tclVar(); image8 <- tclVar(); image9 <- tclVar(); image10 <- tclVar(); image11 <- tclVar(); image12 <- tclVar() 
image13 <- tclVar() 
tcl("image", "create", "photo", image1,  file=system.file("graphics", "GBYR.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image2,  file=system.file("graphics", "GYRB.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image3,  file=system.file("graphics", "ROYBgBPb.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image4,  file=system.file("graphics", "HSV.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image5,  file=system.file("graphics", "KBWR.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image6,  file=system.file("graphics", "KBCWYR.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image7,  file=system.file("graphics", "BREWER10D6.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image8,  file=system.file("graphics", "Rainbow.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image9,  file=system.file("graphics", "KBWR.12.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image10, file=system.file("graphics", "Brewer10D6.10.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image11, file=system.file("graphics", "YRGB.8.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image12, file=system.file("graphics", "Brewer8D2.8.jpeg", package="CircSpatial")) 
tcl("image", "create", "photo", image13, file=system.file("graphics", "RMBGYO.6.jpeg", package="CircSpatial")) 
wheel1 <-  tklabel(FrameLeft, image=image1) # Image as label 
wheel2 <-  tklabel(FrameLeft, image=image2) 
wheel3 <-  tklabel(FrameLeft, image=image3) 
wheel4 <-  tklabel(FrameLeft, image=image4) 
wheel5 <-  tklabel(FrameLeft, image=image5) 
wheel6 <-  tklabel(FrameLeft, image=image6) 
wheel7 <-  tklabel(FrameLeft, image=image7) 
wheel8 <-  tklabel(FrameLeft, image=image8) 
wheel9 <-  tklabel(FrameLeft, image=image9) 
wheel10 <- tklabel(FrameLeft, image=image10) 
wheel11 <- tklabel(FrameLeft, image=image11) 
wheel12 <- tklabel(FrameLeft, image=image12) 
wheel13 <- tklabel(FrameLeft, image=image13) 
rb1 <- tkradiobutton(FrameLeft) 
rb2 <- tkradiobutton(FrameLeft) 
rb3 <- tkradiobutton(FrameLeft) 
rb4 <- tkradiobutton(FrameLeft) 
rb5 <- tkradiobutton(FrameLeft) 
rb6 <- tkradiobutton(FrameLeft) 



 

 

266

rb7 <- tkradiobutton(FrameLeft) 
rb8 <- tkradiobutton(FrameLeft) 
rb9 <- tkradiobutton(FrameLeft) 
rb10 <- tkradiobutton(FrameLeft) 
rb11 <- tkradiobutton(FrameLeft) 
rb12 <- tkradiobutton(FrameLeft) 
rb13 <- tkradiobutton(FrameLeft) 
rbValue <- tclVar("1") 
ChangeColor <- function() {Globals$ColorVectorID <<- as.character(tclvalue(rbValue)); R1.ChangeColorWheel()} 
tkconfigure(rb1, variable=rbValue,value="1", command=ChangeColor) 
tkconfigure(rb2, variable=rbValue,value="2", command=ChangeColor) 
tkconfigure(rb3, variable=rbValue,value="3", command=ChangeColor) 
tkconfigure(rb4, variable=rbValue,value="4", command=ChangeColor) 
tkconfigure(rb5, variable=rbValue,value="5", command=ChangeColor) 
tkconfigure(rb6, variable=rbValue,value="6", command=ChangeColor) 
tkconfigure(rb7, variable=rbValue,value="7", command=ChangeColor) 
tkconfigure(rb8, variable=rbValue,value="8", command=ChangeColor) 
tkconfigure(rb9, variable=rbValue,value="9", command=ChangeColor) 
tkconfigure(rb10,variable=rbValue,value="10", command=ChangeColor) 
tkconfigure(rb11,variable=rbValue,value="11", command=ChangeColor) 
tkconfigure(rb12,variable=rbValue,value="12", command=ChangeColor) 
tkconfigure(rb13,variable=rbValue,value="13", command=ChangeColor) 
tkgrid(tklabel(FrameLeft,text="GBYR "), wheel1, rb1, sticky="e") 
tkgrid(tklabel(FrameLeft,text="GYRB "), wheel2, rb2, sticky="e") 
tkgrid(tklabel(FrameLeft,text="ROYBgBPb "), wheel3, rb3, sticky="e") 
tkgrid(tklabel(FrameLeft,text="HSV "), wheel4, rb4, sticky="e") 
tkgrid(tklabel(FrameLeft,text="KBWR "), wheel5, rb5, sticky="e") 
tkgrid(tklabel(FrameLeft,text="KBCWYR "), wheel6, rb6, sticky="e") 
tkgrid(tklabel(FrameLeft,text="Brewer divergent #6 "), wheel7, rb7, sticky="e") 
tkgrid(tklabel(FrameLeft,text="           "), column=1) 
tkgrid(tklabel(FrameLeft,text="Binned Color Scales", font=FontHeading), sticky="e") 
tkgrid(tklabel(FrameLeft,text="Rainbow 20 bins "), wheel8, rb8, sticky="e") 
tkgrid(tklabel(FrameLeft,text="KBWR 12 bins "), wheel9, rb9, sticky="e") 
tkgrid(tklabel(FrameLeft,text="Brewer divergent #6 10 bins "), wheel10, rb10, sticky="e") 
tkgrid(tklabel(FrameLeft,text="YRGB 8 bins "), wheel11, rb11, sticky="e") 
tkgrid(tklabel(FrameLeft,text="Brewer divergent #2 8 bins "), wheel12, rb12, sticky="e") 
tkgrid(tklabel(FrameLeft,text="RMBGYO 6 bins "), wheel13, rb13, sticky="e") 
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tkgrid(tklabel(FrameLeft,text="           ")) 
SliderValue1 <- tclVar("0") 
SliderValueLabel1 <- tklabel(FrameLeft,text=as.character(tclvalue(SliderValue1))) 
tkconfigure(SliderValueLabel1,textvariable=SliderValue1) 
slider1 <- tkscale(FrameLeft, from=-180, to=180, showvalue=TRUE, variable=SliderValue1, resolution=5, orient="horizontal", length="1.15i") 
tkbind(slider1,"<ButtonRelease-1>", function() {Globals$ColorRotation <<- as.numeric(tclvalue(SliderValue1)); R1.RotateColorWheel()}) 
tkgrid(tklabel(FrameLeft,text="Color Scale Rotation", font=FontHeading), column=0, sticky="e") 
tkgrid(slider1, column=0, sticky="e") 
tkgrid(tklabel(FrameLeft,text="-180                       +180"), sticky="e") 
FrameRight <- tkframe(Top, relief="groove", borderwidth=2) 
tkgrid(tklabel(FrameRight, text="Display Coordinates", font=FontHeading)) 
MinX <- tclVar("") 
MinX.entry <-tkentry(FrameRight, width="12",textvariable= MinX) 
MinX.g <- tclVar("unknown") 
MinX.g.label <- tklabel(FrameRight,text=tclvalue(MinX.g)) 
tkconfigure(MinX.g.label, textvariable=MinX.g) 
tkgrid(tklabel(FrameRight,text="Min X"), MinX.entry, tklabel(FrameRight, text="Global Min  X ="), MinX.g.label, sticky="e") 
MaxX <- tclVar("") 
MaxX.entry <-tkentry(FrameRight, width="12",textvariable= MaxX) 
MaxX.g <- tclVar("unknown") 
MaxX.g.label <- tklabel(FrameRight,text=tclvalue(MaxX.g)) 
tkconfigure(MaxX.g.label, textvariable=MaxX.g) 
tkgrid(tklabel(FrameRight,text="Max X"), MaxX.entry, tklabel(FrameRight, text="Global Max X ="), MaxX.g.label, sticky="e") 
MinY <- tclVar("") 
MinY.entry <-tkentry(FrameRight, width="12",textvariable= MinY) 
MinY.g <- tclVar("unknown") 
MinY.g.label <- tklabel(FrameRight,text=tclvalue(MinY.g)) 
tkconfigure(MinY.g.label, textvariable=MinY.g) 
tkgrid(tklabel(FrameRight,text="Min Y"), MinY.entry, tklabel(FrameRight, text="Global Min  Y ="), MinY.g.label, sticky="e") 
MaxY <- tclVar("") 
MaxY.entry <-tkentry(FrameRight, width="12",textvariable= MaxY) 
MaxY.g <- tclVar("unknown") 
MaxY.g.label <- tklabel(FrameRight,text=tclvalue(MaxY.g)) 
tkconfigure(MaxY.g.label, textvariable=MaxY.g) 
tkgrid(tklabel(FrameRight,text="Max Y"), MaxY.entry, tklabel(FrameRight, text="Global Max Y ="), MaxY.g.label, sticky="e") 
Coord.but <- tkbutton(FrameRight,text="OK", command=function(){ 
 Globals$MinX.d <<- as.numeric(tclvalue(MinX)) 
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 Globals$MaxX.d <<- as.numeric(tclvalue(MaxX)) 
 Globals$MinY.d <<- as.numeric(tclvalue(MinY)) 
 Globals$MaxY.d <<- as.numeric(tclvalue(MaxY)) 
 indexClosest <- which.min(abs(Globals$x.g - Globals$MinX.d)); Globals$MinX.d <<- Globals$x.g[indexClosest] 
 indexClosest <- which.min(abs(Globals$x.g - Globals$MaxX.d)); Globals$MaxX.d <<- Globals$x.g[indexClosest] 
 indexClosest <- which.min(abs(Globals$y.g - Globals$MinY.d)); Globals$MinY.d <<- Globals$y.g[indexClosest] 
 indexClosest <- which.min(abs(Globals$y.g - Globals$MaxY.d)); Globals$MaxY.d <<- Globals$y.g[indexClosest] 
  
 tclvalue(MinX) <- as.character(Globals$MinX.d) 
 tclvalue(MaxX) <- as.character(Globals$MaxX.d) 
 tclvalue(MinY) <- as.character(Globals$MinY.d) 
 tclvalue(MaxY) <- as.character(Globals$MaxY.d) 
 R1.Pan() 
    } 
) 
tkgrid(Coord.but, column=1, sticky="e") 
tkgrid(tklabel(FrameRight,text="           ")) 
tkgrid(tklabel(FrameRight,text="           ")) 
Smooth <- tclVar("0") 
Smooth.function <- function() 
{ 
 Bandwidth <- as.numeric(tclvalue(Smooth)) 
 if(Bandwidth > 0) 
 { 
  XVEC <- rep(Globals$x.g, Globals$ny.g) 
  YVEC <- rep(Globals$y.g, ea=Globals$nx.g) 
  ImageList.x <- as.image(as.vector(Globals$u.g), x=data.frame(lon=XVEC, lat=YVEC), 
   nrow= Globals$nx.g, ncol= Globals$ny.g, boundary.grid=FALSE, na.rm=TRUE) 
  u.g.Smooth <- image.smooth(ImageList.x, theta = Bandwidth) 
  ImageList.y <- as.image(as.vector(Globals$v.g), x=data.frame(lon=XVEC, lat=YVEC), 
   nrow= Globals$nx.g, ncol= Globals$ny.g, boundary.grid=FALSE, na.rm=TRUE) 
  v.g.Smooth <- image.smooth(ImageList.y, theta = Bandwidth) 
  Globals$Direction <<- R1.Standardize(atan2(v.g.Smooth$z, u.g.Smooth$z)) 
 } else Globals$Direction <<- Globals$Direction.g 
 R1.SubsetColorScale(Globals$Direction[Globals$StartRow:Globals$EndRow, Globals$StartCol:Globals$EndCol]) 
 R1.PlotImage() 
} 
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Smooth.entry <-tkentry(FrameRight, width="12", textvariable=Smooth) 
Smooth.but <- tkbutton(FrameRight,text="OK", command=Smooth.function) 
tkgrid(tklabel(FrameRight,text="Smooth Bandwidth", font=FontHeading), Smooth.entry, sticky="e") 
tkgrid(Smooth.but, column=1, sticky="e") 
tkgrid(tklabel(FrameRight,text="           ")) 
tkgrid(tklabel(FrameRight,text="           ")) 
SliderValue2 <- tclVar("0") 
SliderValueLabel2 <- tklabel(FrameRight,text=as.character(tclvalue(SliderValue2))) 
tkconfigure(SliderValueLabel2,textvariable=SliderValue2) 
slider2 <- tkscale(FrameRight, from=0, to=1, showvalue=TRUE, variable=SliderValue2, resolution=.05, orient="horizontal", length=".8i") 
tkbind(slider2,"<ButtonRelease-1>", function() {Globals$ColorGap <<- as.numeric(tclvalue(SliderValue2)); R1.ChangeColorGap()}) 
tkgrid(tklabel(FrameRight,text="Color Scale Gap", font=FontHeading), column=0, sticky="e") 
tkgrid(slider2, column=1, sticky="e") 
tkgrid(tklabel(FrameRight,text="0                       1"), column=1) 
tkgrid(tklabel(FrameRight,text=" "), sticky="e") 
tkgrid(tklabel(FrameRight,text=" "), sticky="e") 
arrow.cb.value <- tclVar("0") 
arrow.cb.function <- function() 
{ 
 cbVal <- as.character(tclvalue(arrow.cb.value)) 
 if (cbVal=="1") {Globals$PlotArrows <<- TRUE; R1.PlotImage()} 
 if (cbVal=="0") {Globals$PlotArrows <<- FALSE; R1.PlotImage()} 
} 
arrow.cb <- tkcheckbutton(FrameRight, command=arrow.cb.function) 
tkconfigure(arrow.cb, variable=arrow.cb.value) 
tkgrid(tklabel(FrameRight,text="Arrows", font=FontHeading), sticky="e") 
tkgrid(arrow.cb, row=17, column=1, sticky="w") 
arrow.length <- tclVar("1") 
arrow.density <- tclVar("15") 
arrow.function <- function() 
{ 
 Globals$ArrowAdj <<- as.numeric(tclvalue(arrow.length)) 
 Globals$cpa <<- as.numeric(tclvalue(arrow.density)) 
 R1.PlotImage() 
} 
arrow.length.entry <-tkentry(FrameRight, width="6",textvariable=arrow.length) 
tkgrid(tklabel(FrameRight,text="Arrow Length Multiplier"), arrow.length.entry, 
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 tklabel(FrameRight, text=">   0                "), sticky="e") 
arrow.density.entry <-tkentry(FrameRight, width="6",textvariable=arrow.density) 
tkgrid(tklabel(FrameRight,text="Arrow Spacing in Pixels"), arrow.density.entry, 
 tklabel(FrameRight, text="1, 2, 3, ...        "), sticky="e") 
Arrow.but <- tkbutton(FrameRight,text="OK", command=arrow.function) 
tkgrid(Arrow.but, column=1, sticky="e") 
tkgrid(tklabel(FrameRight,text="           ")) 
tkgrid(tklabel(FrameRight,text="           ")) 
mask.cb.value <- tclVar("0") 
mask.cb.function <- function() 
{ 
 cbVal <- as.character(tclvalue(mask.cb.value)) 
 if (cbVal=="1") {if(!is.null(Globals$Mask)) {Globals$PlotMask <<- TRUE; R1.PlotImage()}} 
 if (cbVal=="0") {Globals$PlotMask <<- FALSE; R1.PlotImage()} 
} 
mask.cb <- tkcheckbutton(FrameRight, command=mask.cb.function) 
tkconfigure(mask.cb, variable=mask.cb.value) 
  
tkgrid(tklabel(FrameRight,text="Mask", font=FontHeading), sticky="e") 
tkgrid(mask.cb, row=23, column=1, sticky="w") 
tkgrid(tklabel(FrameRight,text="           ")) 
tkgrid(tklabel(FrameRight,text="           ")) 
tkpack(FrameTop, side="top", fill="x") 
tkpack(FrameLeft, side="left", fill="both", expand=TRUE) 
tkpack(FrameRight, side="right", fill="both", expand=TRUE) 
} 
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K.3 SimulateSill 
 
SimulateSill <- function() 
{ 
 require(CircStats) 
 
 CircDist <- function(alpha,beta) 
 { 
  alpha[alpha < 0] <- 2*pi + alpha[alpha < 0] 
  beta[beta < 0] <- 2*pi + beta[beta < 0] 
  theta <- abs(alpha - beta) 
  theta[theta > pi] <- 2*pi - theta[theta > pi] 
  return(theta) 
 } 
 
 VM <- c(); U <- c(); C <- c(); WC <- c(); T <- c() 
 Cavg  <- vector(mode="numeric", length=1000) 
 Tavg  <- vector(mode="numeric", length=1000) 
 Uavg  <- vector(mode="numeric", length=1000) 
 VMavg <- vector(mode="numeric", length=1000) 
 WCavg <- vector(mode="numeric", length=1000) 
 
 filter <- upper.tri(matrix(data=NA, nrow=100, ncol=100), diag = F) 
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 for (i in 1:1000) 
 { 
  Sample <- rcard(n=100,mu=0,r=.25); cosines <- cos(outer(Sample, Sample, FUN="CircDist")) 
  C <- c(C, cosines[filter]) 
  Cavg[i] <- mean(C) 
 
  Sample <- rtri(n=100, r=.5*4/pi^2); cosines <- cos(outer(Sample, Sample, FUN="CircDist")) 
  T <- c(T, cosines[filter]) 
  Tavg[i] <- mean(T) 
 
  Sample <- 2*pi*runif(100); cosines <- cos(outer(Sample, Sample, FUN="CircDist")) 
  U <- c(U, cosines[filter]) 
  Uavg[i] <- mean(U) 
 
  Sample <- rvm(n=100, mean=0, k=5); cosines <- cos(outer(Sample, Sample, FUN="CircDist")) 
  VM <- c(VM, cosines[filter]) 
  VMavg[i] <- mean(VM) 
 
  Sample <- rwrpcauchy(n=100,location=0,rho=exp(-1)); cosines <- cos(outer(Sample, Sample, FUN="CircDist")) 
  WC <- c(WC, cosines[filter]) 
  WCavg[i] <- mean(WC) 
 } 
 return(list(Cavg=Cavg, Tavg=Tavg, Uavg=Uavg, VMavg=VMavg, WCavg=WCavg)) 
} 
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K.4 CorrelationTransfer 
 
CorrelationTransfer <- function(nPoints=50, CircDistr2="vM", Rho2=.75, Range2=10, Ext2=2, CovModel2="spherical", GRID=NULL, 
OVERFIT=TRUE) 
{ 
 # 2008-8-10.1356 
 # Circular parameters: Triangular, 0 < Rho <= 4/pi^2; cardioid, 0 < Rho <= 0.5; vM and wrapped Cauchy, 0 < Rho < 1; uniform, Rho = 0 
 # nPoints= number of points per simulation 
 # OverFit=TRUE, or standardization (centering and rescaling realization of the GRV to mean 0 sd 1) results in closer fit 
 #   for qualitative evaluation of the CRV.  Undesirable effects are loss of independence of the marginal GRVs, biased GRF 
 #   covariance, and biased testing.  Standardization is suitable for demonstration with closer fit, visualization, and 
 #   illustrations.  Do not standardize for purposes of simulation and testing.  OverFit=FALSE, or non-standardization (default) 
 #   includes expected variation from transformation of variation in mean and sd of sample of GRV. 
 
 if(is.null(GRID)) {output <- SimulateCRF(N=nPoints, CircDistr=CircDistr2, Rho=Rho2, Range=Range2, Ext=Ext2, 
  CovModel=CovModel2, OverFit=OVERFIT)} else {output <- SimulateCRF(CircDistr=CircDistr2, Rho=Rho2, Range=Range2, 
  CovModel= CovModel2, OverFit=OVERFIT, Grid=GRID)} 
 par(mfrow=c(3,1), mgp=c(1.5,.5,0), mai=c(.4,.4,.3,.1)) 
 
 # GRF variogram 
 vario.z <- variog(coords = cbind(output$x, output$y), data = output$Z, option = "bin", uvec=seq(2,54,by=2)) 
 plot(vario.z$u, vario.z$v, main="Variogram of GRF", cex.main=1.2, xlab="Distance", ylab="Semi Variance", ylim=c(0, 2)) 
 abline(v=Range2, col="grey") 
 
 # Cumulative Probability variogram 
 vario.p <- variog(coords = cbind(output$x, output$y), data =pnorm(output$Z, mean=0, sd=1, lower.tail = TRUE), 
  option = "bin", uvec=seq(2,54,by=2)) 
 plot(vario.p$u, vario.p$v, main="Variogram of Cumulative Probabilities of GRV", cex.main=1.2, xlab="Distance", ylab="Semi Variance",   
 ylim=c(0,0.2)) 
 abline(v=Range2, col="grey") 
   
 # Cosineogram 
 CosinePlots(x=output$x, y=output$y, directions=output$direction, Lag.n.Adj= 1, Lag=vario.p$u, 
  main="Cosineogram of CRF", cex.main=1.2, ylim=c(0,1)) 
 abline(v=Range2, col="grey") 
}  
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K.5 SimulateCRF 
 
SimulateCRF <-function(N=100, CircDistr, Rho, Mu=0, Range, Ext=1, CovModel, Grid=NULL, Anisotropy=NULL, OverFit=FALSE, 
Resolution=0.01) 
{ 
 # 2008-11-10.2001 
 # Simulate CRF ~ (Range, CircDistr, Rho, mu=0) 
 
 # Input Arguments 
 # N: Number of spatial locations to simulate 
 # CircDistr: Circular distribution in {U, vM, WrC, Tri, Card}, 
 # Rho: Mean resultant length parameter 
 #        For triangular, 0 < Rho <= 4/pi^2 
 #        For cardioid, 0 < Rho <= 0.5 
 #        For vM and wrapped Cauchy, 0 < Rho < 1, 1== degenerate 
 #        For uniform, Rho = 0 
 # Range: Distance at which CRV independent 
 # Ext: Range*Ext is horizontal and vertical length of sample space 
 # CovModel: Name of spatial correlation function, see package geoR Help cov.spatial 
 # Grid: Regular or irregular N x 2 matrix of simulation locations, overides N and Ext 
 # Anisotropy: Vector of geometric anisotropy angle in radians, ratio > 1. 
 # OverFit=TRUE, or standardization (centering and rescaling realization of the GRV to mean 0 sd 1) results in closer fit 
 #   for qualitative evaluation of the CRV.  Undesirable effects are loss of independence of the marginal GRVs, biased GRF 
 #   covariance, and biased testing.  Standardization is suitable for demonstration with closer fit, visualization, and 
 #   illustrations.  Do not standardize for the purposes of simulation and testing.  OverFit=FALSE, or non-standardization (default) 
 #   includes expected variation from transformation of variation in mean and sd of sample of GRV. 
 
 # Values 
 # x,y: Vectors of location coordinates 
 # direction: Vector of directions 
 # Z: Vector of simulated observations of the associated GRV 
 
 # Note: 
 # At n > 500, geoR transfers processing the the package Random Fields because the option RF is set. 
 
 if(CircDistr !="U" & CircDistr !="vM" & CircDistr !="WrC" & CircDistr !="Tri" & CircDistr !="Card") 
  stop("CRF not implemented for input CircDistr") 
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 if(CircDistr =="U") Rho = 0 
 if(abs(Mu) > pi) stop("abs(Mu) <= pi") 
 
 if(!is.null(Grid)) { 
  if(class(Grid) != "matrix") stop("Grid not a matrix") 
  if(dim(Grid)[2] !=2) stop("Grid not a N x 2 matrix") 
  N <- dim(Grid)[1]} 
 if(!is.null(Anisotropy)) { 
  if(length(Anisotropy) != 2) stop("Anisotropy is not a 2 element vector.  See geoR Help") 
 } 
 
 if(N <=0 | Rho < 0 | Range < 0| Ext <=0 | Resolution <= 0) stop("Improper numeric input") 
 
 direction <- vector(mode="numeric", length=N) 
 
 require(CircStats) 
 require(geoR) 
 # Standard normal GRF, see Help geoR grf 
 if(is.null(Grid)) { 
  GRF <- grf(n=N, xlims=c(0, Range*Ext), ylims=c(0, Range*Ext), cov.model=CovModel, 
   nugget=0, cov.pars=c(1, Range), aniso.pars=Anisotropy, RF=TRUE, messages=FALSE) } else { 
  GRF <- grf(grid=Grid, cov.model=CovModel, 
   nugget=0, cov.pars=c(1, Range), aniso.pars=Anisotropy, RF=TRUE, messages=FALSE)} 
 
 XY <- GRF$coords # N x 2 matrix 
 x <- XY[,1]; y <- XY[,2] 
 Z <- GRF$data # Vector of GRV 
 if(OverFit) {Z <- (Z - mean(Z))/sd(Z); GRF$data <- Z} 
 CumProbZ <- pnorm(Z, mean=0, sd=1, lower.tail = TRUE) 
 
 if(CircDistr=="U") {direction <- -pi + 2*pi*CumProbZ} else 
 if(CircDistr == "Tri") 
 { 
  if(Rho==0 | Rho > 4/pi^2) stop("Tri: 0 < Rho <= 4/pi^2") 
  filter <- CumProbZ < 0.5 
  u1 <- CumProbZ[filter] 
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  a <- Rho/8 
  b <- (4+pi^2*Rho)/(8*pi) 
  c <- 0.5 - u1 
  q <- -.5*(b+sqrt(b^2-4*a*c)) 
  direction[filter] <- c/q  
 
  u2 <- CumProbZ[!filter] 
  a <- -Rho/8 
  b <- (4+pi^2*Rho)/(8*pi) 
  c <- 0.5 - u2 
  q <- -.5*(b+sqrt(b^2-4*a*c)) 
  direction[!filter]<- c/q 
 } else 
 { 
  # For OTHER circular distributions compute table of circular CDF and interpolate 
  CircScale <- seq(-pi, pi, length=2*pi/Resolution) 
  # With resolution=.01, circular support from -pi to +pi has 629 elements, delta ~0.01000507, CircScale[315] = 0 
  n <- length(CircScale) 
  if(CircDistr == "vM") 
  { 
   if(Rho==0 | Rho >= 1) stop("vM: 0 < Rho < 1") 
   CircProb <- rep(-1, n) 
   Kappa=A1inv(Rho) # N. I Fisher, Statistical Analysis of Circular Data, 2000 p. 49 
   # As direction increases from -pi, pvm increases from .5 
   for(i in 1:length(CircScale)) CircProb[i] <- pvm(CircScale[i], mu=0, kappa=Kappa) 
   filter <- CircScale < 0 
   CircProb[filter] <- CircProb[filter] - 0.5 
   CircProb[!filter] <- CircProb[!filter] + 0.5  
  } else 
  if(CircDistr == "Card")  
  { 
   if(Rho==0 | Rho > 0.5) stop("Cardioid: 0 < Rho <= 0.5")  
   CircProb <- (CircScale + pi + 2*Rho*sin(CircScale))/(2*pi) 
  } else 
  if(CircDistr == "WrC")  
  { 
   if(Rho==0 | Rho >= 1) stop("Wrapped Cauchy: 0 < Rho < 1 ") 
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   Angles1 <- CircScale[CircScale < 0] 
   Angles2 <- CircScale[CircScale >= 0] 
   prob1 <- 0.5 - acos(((1+Rho^2)*cos(Angles1) - 2*Rho)/(1 + Rho^2 - 2*Rho * cos(Angles1)))/(2*pi) 
   prob2 <- 0.5 + acos(((1+Rho^2)*cos(Angles2) - 2*Rho)/(1 + Rho^2 - 2*Rho * cos(Angles2)))/(2*pi) 
   CircProb <-c(prob1, prob2) 
  } 
  CircProb[1] <- 0; CircProb[n] <- 1 
 
  # Interpolation 
  DeltaTh <- CircScale[2] + pi 
  for(i in 1:N) 
  { 
   p <- CumProbZ[i]  # Cumulative prob of GRV 
   a <- max((1:n)[CircProb <= p]) # Index 
   if(a==n) {r <- 0} else 
   { 
    if(CircProb[a]==p) {r <- 0} else {r <- (p -CircProb[a])/( CircProb[a+1] -CircProb[a])} 
   } 
   direction[i] <- CircScale[a] + r*DeltaTh 
  } 
 } 
 
 direction <- direction + Mu 
 return(list(x=x, y=y, direction=direction, Z=Z)) 
} 
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K.6 AssessCRF 
 
AssessCRF <- function(nPoints=100, CircDistr2="vM", Rho2=.75, Range2=10, Ext2=3, CovModel2="spherical", GRID=NULL, OVERFIT=TRUE) 
{ 
 # 2008-2-15.0600 
 # Generate a nPoints x nPoints and compare QQ Circ plots to QQ norm plots 
 # range of parameters 
 #   For triangular, 0 < Rho <= 4/pi^2 
 #   For cardioid, 0 < Rho <= 0.5 
 #   For vM and wrapped Cauchy, 0 < Rho < 1, 1== degenerate 
 #   For uniform, Rho = 0 
 # nPoints= number of points 
 # OverFit=TRUE, or standardization (centering and rescaling realization of the GRV to mean 0 sd 1) results in closer fit 
 #   for qualitative evaluation of the CRV.  Undesirable effects are loss of independence of the marginal GRVs, biased GRF 
 #   covariance, and biased testing.  Standardization is suitable for demonstration with closer fit, visualization, and 
 #   illustrations.  Do not standardize for purposes of simulation and testing.  OverFit=FALSE, or non-standardization (default) 
 #   includes expected variation from transformation of variation in mean and sd of sample of GRV. 
 
 require(CircStats) 
 if(is.null(GRID)) {output <- SimulateCRF(N=nPoints, CircDistr=CircDistr2, Rho=Rho2, Range=Range2, Ext=Ext2, 
  CovModel=CovModel2, OverFit=OVERFIT)} else {output <- SimulateCRF(CircDistr=CircDistr2, Rho=Rho2, Range=Range2, 
  CovModel= CovModel2, OverFit=OVERFIT, Grid=GRID); nPoints <- nrow(GRID) } 
 
 Z <- output$Z 
 Zsort <- sort(Z) 
 a <- ifelse(nPoints <= 10, 3/8, 1/2) 
 CumProb <- ((1:nPoints)- a)/(nPoints + 1 - 2*a) # Vector of symmetric cumulative probabilities for QQ plots 
 ZQuantiles <- qnorm(CumProb, mean=0, sd=1, lower.tail = TRUE) 
 
 Theta <- output$direction 
 Thetasort <- sort(Theta)  
 # Compute theta quantiles 
 if(CircDistr2=="U") { ThetaQuantiles <- -pi + 2*pi*CumProb } else 
 { 
  # For non-uniform circular distributions use circular CDF to get ThetaQuantiles 
  CircScale <- seq(-pi, pi, length=2*pi/.01) # Circular support from -pi to +pi, 629 elements, d~.01, CircScale[315] is zero 
  n <- length(CircScale) 
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  if(CircDistr2=="vM") 
  { 
   if(Rho2==0 | Rho2 >= 1) stop("vM: 0 < Rho < 1") 
   CircProb <- rep(-1, n) 
   Kappa=A1inv(Rho2) # N. I Fisher, Statistical Analysis of Circular Data, 2000 p. 49 
   # As theta increases from -pi, pvm increases from .5 
   for(i in 1:n) {CircProb[i] <- pvm(CircScale[i], mu=0, kappa=Kappa)} 
   filter <- CircScale < 0 
   CircProb[filter] <- CircProb[filter] - 0.5 
   CircProb[!filter] <- CircProb[!filter] + 0.5  
  } else 
  if(CircDistr2=="Tri")  
  { 
   if(Rho2==0 | Rho2 > 4/pi^2) stop("Tri: 0 < Rho <= 4/pi^2") 
   Angles1 <- CircScale[CircScale < 0] + 2*pi 
   Angles2 <- CircScale[CircScale >= 0] 
   CircProb <- c( (4 - 3*pi^2*Rho2 + pi*Rho2*(Angles1 + pi))*(Angles1-pi)/(8*pi), 
   .5 + (4 +   pi^2* Rho2 - pi*Rho2 * Angles2) * Angles2/(8*pi) ) 
  } else 
  if(CircDistr2=="Card")  
  { 
   if(Rho2==0 | Rho2 > 0.5) stop("Cardioid: 0 < Rho <= 0.5")  
   Angles1 <- CircScale[CircScale < 0] + 2*pi 
   Angles2 <- CircScale[CircScale >= 0] 
   CircProb <- c( (Angles1 - pi + 2*Rho2*sin(Angles1))/(2*pi), 0.5 + (Angles2 + 2*Rho2*sin(Angles2))/(2*pi) ) 
  } else 
  if(CircDistr2=="WrC")  
  { 
   if(Rho2==0 | Rho2 >= 1) stop("Wrapped Cauchy: 0 < Rho < 1") 
   Angles1 <- CircScale[CircScale < 0] + 2*pi 
   Angles2 <- CircScale[CircScale >= 0] 
   CircProb <-c( 0.5 - acos(((1+Rho2^2)*cos(Angles1) - 2*Rho2)/(1 + Rho2^2 - 2*Rho2 *  
   cos(Angles1)))/(2*pi), 0.5 + acos(((1+Rho2^2)*cos(Angles2) - 2*Rho2)/(1 + Rho2^2 - 2*Rho2 * cos(Angles2)))/(2*pi) ) 
  } 
  CircProb[1] <- 0; CircProb[n] <- 1 # For any numerical imprecision 
 
  # Quantiles From Inverse Circular CDF 
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  ThetaQuantiles <- vector(mode="numeric", length=nPoints) 
  DeltaTh <- CircScale[2] + pi 
  for(i in 1:nPoints) 
  { 
   p <- CumProb[i] 
   a <- max((1:n)[CircProb <= p]) # Left index 
   if(a==n) { r <- 0} else { if(CircProb[a]==p) {r <- 0} else {r <- (p - CircProb[a])/( CircProb[a+1]- CircProb[a])} } 
   ThetaQuantiles[i] <- CircScale[a] + r*DeltaTh 
  } 
 } 
 par(mfrow=c(3,2), mgp=c(2,1,0), mar=c(4.1,3.1,3.1,1.1)) 
 
 # QQ std norm 
 plot(ZQuantiles, Zsort, main=paste("QQ Standard Normal of", "\nGRV With Spatial Correlation", sep=""), cex.main=1, 
  xlab="Theoretical Quantiles", ylab="Ordered GRV", col=1, xlim=c(-pi,pi),ylim=c(-pi,pi), ty='l') 
 abline(0,1,col=4); abline(v=0, col="grey"); abline(h=0, col="grey") 
 
 # GRF variogram 
 vario.b <- variog(coords = cbind(output$x, output$y), data = Z, option = "bin") 
 plot(vario.b$u, vario.b$v, main=paste("Variogram of GRF", "\n Model=",  CovModel2, ", Range=", Range2, ", Sill=1", ", mean=0", sep=""), 
  cex.main=1, xlab="Distance", ylab="Semi Variance") 
 abline(v=Range2, col="grey") 
 abline(h=1, col="grey") 
 
 # QQ Circ probability law 
 if(CircDistr2=='U') {Distrib = "Uniform"} else 
 if(CircDistr2=='vM') {Distrib = "von Mises"} else 
 if(CircDistr2=='WrC') {Distrib = "Wrapped Cauchy"} else 
 if(CircDistr2=='Tri') {Distrib = "Triangular"} else 
 if(CircDistr2=='Card') {Distrib = "Cardioid"} 
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 if(CircDistr2=='U') {title.rho=""} else {title.rho=paste(", Rho =", round(Rho2, digits=3), sep="")} 
 plot(ThetaQuantiles, Thetasort, main=paste( "QQ ", Distrib, title.rho, "\nCRV With Spatial Correlation",sep="" ), cex.main=1, 
  xlab="Theoretical Quantiles (Rad)", ylab="Ordered CRV", col=1, xlim=c(-pi,pi),ylim=c(-pi,pi), ty='l') 
 lines(c(-pi,pi), c(-pi,pi), col=4); abline(v=0, col="grey"); abline(h=0, col="grey") 
  
 # Cosineogram 
 CosinePlots(x=output$x, y=output$y, directions=output$direction, Lag.n.Adj= 1, Lag=vario.b$u, main="Cosineogram of CRF") 
 if(CircDistr2!="U") abline(h=Rho2^2, col="grey") else abline(h=0, col="grey") 
 abline(h= est.rho(Theta)^2, col=4, lty=3) # Sample mean resultant length 
 abline(v=Range2, col="grey") 
 
 # Uniformity plot 
 probabilities <- pnorm(Z, mean=0, sd=1, lower.tail = TRUE) 
 uniformity <- mean(abs(CumProb - sort(probabilities))) # Mean absolute deviation 
 plot(CumProb, sort(probabilities) , main=paste( "QQ Uniform of Cumulative Probabilities", 
  "\nMean - 1/2=", round(mean(probabilities)-.5, digits=3), ", Var - 1/12=", round((sd(probabilities))^2-1/12, digits=3), 
  ", Closeness=", round(uniformity, digits=3), sep="" ), cex.main=1, 
  xlab="Theoretical Quantiles", ylab="Ordered Probabilities", col=1, xlim=c(0,1),ylim=c(0,1), ty='l') 
 lines(c(0,1), c(0,1),col=4); abline(v=.5, col="grey"); abline(h=.5, col="grey") 
}  
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K.7 PlotVectors 
 
PlotVectors <- function(x, y, h, v, UnitVector=TRUE, TriIcon=FALSE, AdjArrowLength=1, AdjHeadLength=1, TriIconAdj=1, 
 TriRatio=4, JitterPlot=FALSE, Jitter=1, ...) 
{ 
 # 2008-11-11.1535 
 # Arrows do not plot where data is missing. 
 require(fields) 
 
 if( (length(x) != length(y)) | (length(h) != length(v)) | (length(x) != length(h)) ) stop("lengths of vector inputs unequal") 
 
 filter <- is.na(h) | is.na(v) | (h==0 & v==0) 
 x <- x[!filter]; y <- y[!filter]; h <- h[!filter]; v <- v[!filter] 
 # fields function arrows omits arrowheads with a warning on any arrow of length less than 1/1000 inch. 
 
 Dir <- atan2(v, h) 
 Dir[Dir<0] <- Dir[Dir<0]+2*pi 
 if(JitterPlot==TRUE) 
 { 
  x <- x + Jitter*runif(length(x)) 
  y <- y + Jitter*runif(length(y)) 
 } 
 plot(x, y, ty="n", asp=1, ...) 
 
 if(UnitVector) 
 { arrow.plot(x, y, cos(Dir), sin(Dir), true.angle=TRUE, arrow.ex=AdjArrowLength*0.05, length=AdjHeadLength*0.125, 
  angle=20, xpd=FALSE) 
 } else 
 { 
  if(TriIcon) 
  { 
   m <- sqrt(h^2 + v^2) # magnitude 
   w = sqrt(m/TriRatio) 
   n <- length(x) 
   xa <- x + TriIconAdj*      w*cos(Dir+pi/2) 
   ya <- y + TriIconAdj*      w*sin(Dir+pi/2) 
   xb <- x + TriIconAdj*TriRatio*w*cos(Dir) 
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   yb <- y + TriIconAdj*TriRatio*w*sin(Dir) 
   xc <- x + TriIconAdj*      w*cos(Dir-pi/2) 
   yc <- y + TriIconAdj*      w*sin(Dir-pi/2) 
 
   for(i in 1:n) polygon(x=c(xa[i], xb[i], xc[i]), y=c(ya[i], yb[i], yc[i]), density=-1, col=1) 
  } else arrow.plot(x, y, h, v, true.angle=TRUE, arrow.ex=AdjArrowLength*0.05, length=AdjHeadLength*0.125, 
   angle=20, xpd=FALSE) 
 } 
} 
 



 

 

284

K.8 CircResidual 
 
CircResidual <- function(X, Y, Raw, Trend, Plot = FALSE, AdjArrowLength = 1, ...) 
{ 
 # 2008-11-10.2053 
 # Assumptions: Raw may have NAs, trend has no NAs.  Trend locations and Raw locations are identical to compute residuals. 
 require(fields) 
 if((length(X) != length(Y)) | (length(X) != length(Raw)) | (length(X) != length(Trend)) | (length(Y) != length(Raw)) | 
  (length(Y) != length(Trend)) | (length(Raw) != length(Trend))) stop("lengths of vector inputs unequal") 
 if(AdjArrowLength <= 0) stop("AdjArrowLength invalid") 
 if(sum(is.na(Trend)) > 0) stop("NAs not allowed in Trend") 
 
 FilterNA <- is.na(Raw) 
 x <- X[!FilterNA]; y <- Y[!FilterNA]; raw <- Raw[!FilterNA]; trend <- Trend[!FilterNA] 
 raw[raw < 0] <- raw[raw < 0] + 2*pi # Like R1.Standardize in CircDataimage 
 trend[trend < 0] <- trend[trend < 0] + 2*pi 
 circdist <- abs(raw - trend) # Linear distance in radians with NAs where raw has NAs 
 circdist[circdist > pi] <- 2*pi - circdist[circdist > pi] # Circular distance in radians 
 resids <- circdist 
 filter <- (trend>raw) & (trend-raw)<pi | (raw >trend) & (raw-trend)>pi 
 resids[filter] <- -1* circdist[filter] 
 if(Plot==TRUE) 
 { 
  plot(X, Y, type="n", xlab="", ylab="", asp=1, ...) 
  arrow.plot(x, y, u=cos(raw), v=sin(raw), xpd=FALSE, true.angle=TRUE, arrow.ex=.15*AdjArrowLength, length=.1,col=1) 
  arrow.plot(X, Y, u=cos(Trend), v=sin(Trend), xpd=FALSE, true.angle=TRUE, arrow.ex=.15*AdjArrowLength, length=.1, 
   col="tan", lwd=3) 
  arrow.plot(x, y, u=cos(resids), v=sin(resids), xpd=FALSE, true.angle=TRUE, arrow.ex=.15*AdjArrowLength, length=.1, 
   col=2, lty=2) 
 } else return(list(x=x, y=y, direction=resids)) 
} 
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K.9 CosinePlots 
 
CosinePlots <- function(x, y, directions, Lag=NULL, Lag.n.Adj = 1, BinWAdj=1, Plot = TRUE, 
 Cloud = FALSE, Model=FALSE, nugget=0, Range=NULL, sill=NULL, x.legend=0.6, y.legend=1.0, TrimMean=0.1, ...) 
{ 
 # 2008-11-11.1050 
 # Assumption: Isotropic circular random field 
 # x, y are vectors of location coordinates, directions is a vector of directions in radians. 
 # Lag is a vector of lag points.  Lag.n.Adj > 0 multiplies the number of lag points. 
 # BinWAdj >= 1 multiplies bin width (to make bins narrower increase Lag.n.adj).  Sturges rule determines nBins. 
 # nBins and Lag.n.Adj determine Lag.n.  Lag.n adjusts nBins.  nBins and BinWAdj determine bin width. 
 # Plot = TRUE plot cosineocloud or cosineogram, else ouput list of points.  Cloud = TRUE plots cosineocloud, else cosineogram. 
 # Model = TRUE overplots exponential, gaussian, and spherical models with nugget, Range, and sill parameters. 
 # x.legend and y.legend adjust legend location. 
 # TrimMean = 0.1 applies trimmed mean in computing mean cosine. 
 
 if( (length(x) != length(y)) | (length(x) != length(directions)) | (length(y) != length(directions)) ) 
  stop("lengths of vector inputs unequal") 
 if(Lag.n.Adj <= 0) stop("Lag.n.Adj invalid") 
 if( (nugget < 0) | (nugget > 1) ) stop("nugget invalid") 
 if(!is.null(Range)) {if(Range <= 0) stop("Range negative")} 
 if(!is.null(sill)) { 
  if( (sill < 0) | (sill >=1) ) stop("sill invalid") 
  if(1-nugget < sill) stop("1-nugget < sill")} 
 
 # Repair Input and Remove missings 
 if(BinWAdj < 1) BinWAdj <- 1 # points will fall out of bins if adjust < 1 
 filter <- !is.na(directions) 
 x <- x[filter]; y <- y[filter]; directions <- directions[filter] 
 
 # Pairwise cosines 
 # Subroutine to compute circular distances in radians 
 CircDist <- function(alpha,beta) 
 { 
  alpha[alpha < 0] <- 2*pi + alpha[alpha < 0] 
  beta[beta < 0] <- 2*pi + beta[beta < 0] 
  theta <- abs(alpha - beta) 
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  theta[theta > pi] <- 2*pi - theta[theta > pi] 
  return(theta) 
 } 
 Cosines <- cos(outer(directions, directions, FUN="CircDist")) 
 filter.tri <- upper.tri(Cosines) 
 Cosines <- Cosines[filter.tri] 
 
 # Pairwise distances 
 Distances <- as.matrix(dist(cbind(x, y))) # Diagonal of zero distances 
 X <- Distances[filter.tri] # vector of distances corresponding to vector of cosines Cosines 
 
 if(Cloud) {Y <- Cosines} else 
 { 
  if(!is.null(Lag)) 
  { 
   # Assumes equally spaced lags, except for first lag point 
   HalfBinWidth <- BinWAdj * 0.5 * (Lag[2] - Lag[1]) 
   Lag.n <- length(Lag) 
  } else 
  { 
   nBins <- trunc(log2(sum(filter.tri)) + 1) # Sturges rule 
   Lag.n <- trunc(Lag.n.Adj*(nBins + 1)) 
   nBins <- Lag.n - 1 
   distance.max <- max(X) 
   HalfBinWidth <- BinWAdj * 0.5 * distance.max/nBins 
   Lag <- seq(0, distance.max, length.out= Lag.n) 
  } 
 
  Y <- vector(mode = "numeric", length = Lag.n) 
  if(Lag[1] == 0) {Y[1] <- 1; i1 <- 2} else i1 <- 1 
  for (i in i1:Lag.n) 
  { 
   filter <- abs(X - Lag[i]) <= HalfBinWidth 
   Y[i] <- mean(Cosines[filter], trim=TrimMean) 
  } 
 
  X <- Lag # Cloud=FALSE filtered distances replaced by lag vector 
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 } 
 if(Plot) 
 { 
  plot(X, Y, xlab = "Distance", ylab = "Cosine", cex.main=1, ...) 
  if(Cloud == FALSE & Model == TRUE) 
  { 
   xx <- seq(min(X), max(X), length.out=101) 
   c.e <- 1-nugget -(1-nugget-sill)*(1-exp(-3*xx/Range)) 
   c.g <- 1-nugget -(1-nugget-sill)*(1-exp(-3*(xx/Range)^2)) 
   X1 <- xx[xx <= Range] 
   c.s <- 1-nugget -(1-nugget-sill)*(1.5*X1/Range-0.5*(X1/Range)^3) 
   X2 <- xx[xx > Range] 
   c.s <- c(c.s, rep(sill, length(X2))) 
   lines(xx, c.e, col=2,     lty=1, lwd=1) 
   lines(xx, c.g, col="tan", lty=1, lwd=3) 
   lines(xx, c.s, col=4,     lty=2, lwd=1) 
 
   legend(x=x.legend*max(X), y=y.legend, c("Exponential","Gaussian","Spherical"), 
   lty = c(1, 1, 2), col=c(2, "tan", 4), lwd=c(1, 3, 1), cex=1.1) 
  } 
 } else {return(list(distance = X, cosine = Y))} 
} 
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K.10 KrigCRF 
 
KrigCRF <- function(krig.x, krig.y, resid.x, resid.y, resid.direction, Model, Nugget=0, Range, sill, 
 Smooth=FALSE, bandwidth, Plot=FALSE, Xlim=NULL, Ylim=NULL, PlotVar=FALSE, ...) 
{ 
 # 2008-11-11.1213 
 # select model from covariance models in R package Random Fields functin CovarianceFct 
 # resid.x and resid.y have no NAs 
 
 if( (length(krig.x) != length(krig.y)) | (length(resid.x) != length(resid.y)) | (length(resid.x) != length(resid.direction)) | 
  (length(resid.y) != length(resid.direction)) ) stop("lengths of vector inputs unequal") 
 if( (Nugget < 0) | (Nugget > 1) ) stop("Nugget invalid") 
  
 # fix the order of the kriging coordinates 
 xx <- sort(unique(krig.x)); yy <- sort(unique(krig.y)) 
 nx <- length(xx); ny <- length(yy) # rectangular or square grid 
 krig.y <- rep(yy, nx); krig.x <- rep(xx, each=ny) 
 
 require(fields) 
 require(RandomFields) 
 
 Distances <- as.matrix(dist(cbind(resid.x, resid.y))) 
 Ncol <- ncol(Distances) 
 K <- c() 
 for (i in 1:Ncol) 
 { 
  K <- cbind(K, sill + (1 - Nugget - sill)*CovarianceFct(x=Distances[, i]/Range, model=Model, 
   param=c(mean=0,variance=1,nugget=0,scale=1, ...), dim=1, fctcall="Covariance")) 
 } 
 diag(K) <- 1 # TRUE even if nugget > 0 for any model 
 Kinv <- solve(K) 
 
 U <- t(cbind(cos(resid.direction), sin(resid.direction))) 
 # V <- t(U) %*% U 
 
 n <- length(krig.x) # krig.x=krig.y for square or rect grid  
 krig.direction <- vector(mode="numeric", length=n) 
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 krig.variance <- krig.direction 
  
 for(i in 1:n) 
 { 
  distances <- sqrt((krig.x[i]-resid.x)^2 + (krig.y[i]-resid.y)^2) 
  c <- sill + (1 - Nugget - sill)*CovarianceFct(x=distances/Range, model=Model, 
   param=c(mean=0,variance=1,nugget=0,scale=1, ...), dim=1, fctcall="Covariance") 
  c[distances == 0] <- 1 # TRUE even if nugget > 0 for any model 
  w <- Kinv %*% c 
 
  # w <- (Kinv %*% c)/sqrt(as.numeric(t(c) %*% Kinv %*% V %*% Kinv %*% c)) # gives same directions 
  u <- U %*% w 
  krig.direction[i] <- atan2(u[2],u[1]) 
  krig.variance[i] <- 2 - 2*sqrt(as.numeric(t(c) %*% Kinv %*% c)) 
 } 
 
 if(Smooth) 
 { 
  xx.dx <- xx[2] - xx[1]; yy.dy <- yy[2] - yy[1] 
  # as.image loads the matrix by row 
  ImageList.x <- as.image(cos(krig.direction), x=data.frame(krig.x, krig.y), nrow=nx, ncol=ny, boundary.grid=FALSE) 
  smooth.x <- image.smooth( ImageList.x, theta = bandwidth) 
  ImageList.y <- as.image(sin(krig.direction), x=data.frame(krig.x, krig.y), nrow=nx, ncol=ny, boundary.grid=FALSE) 
  smooth.y <- image.smooth( ImageList.y, theta = bandwidth) 
  krig.direction <- as.vector(t(atan2(smooth.y$z, smooth.x$z))) 
 } 
 
 if(Plot) 
 { 
  if(!PlotVar) 
  { 
   plot(krig.x, krig.y, ty="n", xlab="", ylab="", asp=1, xlim=Xlim, ylim=Ylim) 
   arrow.plot(a1=krig.x, a2=krig.y, u=cos(krig.direction), v=sin(krig.direction), arrow.ex=0.06, 
    xpd=FALSE, true.angle=TRUE, length=.05, col=1) 
  } else 
  { 
   krig.variance.matrix <- matrix(data=krig.variance, nrow=nx, ncol=ny, byrow=TRUE) 
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   if(!is.null(Xlim)) 
   { 
    filled.contour(x = xx, y = yy, z = krig.variance.matrix, xlim=Xlim, ylim=Ylim, 
    color = terrain.colors, key.title = title(main="Circ Krig \nVariance", cex.main=0.8), 
    asp = 1, plot.axes={axis(1); axis(2); points(resid.x, resid.y, pch=20, cex=.65)}) 
   } else { 
    filled.contour(x = xx, y = yy, z = krig.variance.matrix, 
    color = terrain.colors, key.title = title(main="Circ Krig \nVariance", cex.main=0.8), 
    asp = 1, plot.axes={axis(1); axis(2); points(resid.x, resid.y, pch=20, cex=.65)}) 
   } 
  } 
 } else return(list(x=krig.x, y=krig.y, direction=krig.direction, variance=krig.variance)) 
} 
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K.11 InterpDirection 
 
InterpDirection <- function(in.x, in.y, in.direction, out.x, out.y) 
{ 
 # 2008-11-11.1444 
 # Interpolate models of direction cosines and sines, separately to avoid cross over.  Fit plane to triangular half of cell 
 # (rectangular element of regular grid of measurement locations) in which interpolation location occurs. 
 # Assumptions - Locations to interpolate are within range of (in.x, in.y), inputs have no missing. 
 
 # Arguments 
 # in.x vector of input horizontal coordinates 
 # in.y vector of input vertical   coordinates 
 # in.direction vector of input direction in radians 
 
 # Value 
 # out.x vector of interpolation output horizontal coordinates 
 # out.y vector of interpolation output vertical   coordinates 
 # out.direction vector of interpolation output direction 
 
 # Verify input 
 minx.in <- min(in.x); maxx.in <- max(in.x); miny.in <- min(in.y); maxy.in <- max(in.y) 
 minx.out <- min(out.x); maxx.out <- max(out.x); miny.out <- min(out.y); maxy.out <- max(out.y) 
 if(minx.out < minx.in | maxx.out > maxx.in | miny.out < miny.in | maxy.out > maxy.in) 
  stop("Interpolation range exceeds range of (in.x, in.y)") 
 
 if( (length(in.x) != length(in.y)) | (length(in.x) != length(in.direction)) | (length(in.y) != length(in.direction))) 
  stop("lengths of vector inputs unequal") 
 
 if( length(out.x) != length(out.y) ) stop("lengths of vector outputs unequal") 
 
 # Organize model data 
 X <- sort(unique(in.x), decreasing = FALSE) # Increases left to right 
 m <- length(X) 
 Y <- sort(unique(in.y), decreasing = TRUE) # Decreases top to bottom 
 n <- length(Y) 
 # Col of matrix of directions reflects the horiz or west to east component location 
 xmin <- min(X); deltax <- X[2] - X[1]; ymax <- max(Y); deltay <- Y[1] - Y[2] 
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 Col <- 1 + (in.x -xmin)/deltax 
 Row <- 1 + (ymax - in.y)/deltay 
 directions <- matrix(data = NA, nrow=n, ncol=m) 
 directions[cbind(Row, Col)] <- in.direction # matrix of organized directions 
 U <- cos(directions) # matrix of organized cosines of directions 
 V <- sin(directions) # matrix of organized sines of directions 
 
 n <- length(out.x) 
 
 CosOut <- rep(NA, n) # for interpolated cosine 
 SinOut <- CosOut # for interpolated sin 
 
 p <- 1:length(X) 
 q <- 1:length(Y) 
 
 for(i in 1:n) 
 { 
  xx <- out.x[i] 
  yy <- out.y[i] 
  Vert=FALSE; Horiz=FALSE 
  if(sum(X==xx)==1) Vert=TRUE 
  if(sum(Y==yy)==1) Horiz=TRUE 
 
  if(Vert==FALSE & Horiz==FALSE) 
  { 
   west <- max(p[X <= xx]) 
   east <- west + 1 
   south <- min(q[Y <= yy]) 
   north <- south - 1 
   x.west <- X[west] 
   x.east <- X[east] 
   y.south <- Y[south] 
   y.north <- Y[north] 
   cos.nw <- U[north,west] 
   cos.ne <- U[north,east] 
   cos.sw <- U[south,west] 
   cos.se <- U[south,east] 
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   sin.nw <- V[north,west] 
   sin.ne <- V[north,east] 
   sin.sw <- V[south,west] 
   sin.se <- V[south,east] 
 
   m <- (y.north-y.south)/(x.east-x.west) # 1 if vert res=horiz res 
   b <- y.north-m*x.east 
   ydiag <- m*xx+ b 
   if(yy <= ydiag) # On diagonal or in lower triangular 
   { 
    # Fit plane to lower triangular 
    AB <- c(x.east-x.west, 0, cos.se-cos.sw) 
    AC <- c(x.east-x.west, y.north-y.south, cos.ne-cos.sw) 
    # Coefficients of cross product AB X AC 
    a <- AB[2]*AC[3]-AB[3]*AC[2] 
    b <- AB[3]*AC[1]-AB[1]*AC[3] 
    c <- AB[1]*AC[2]-AB[2]*AC[1] 
    CosOut[i] <- cos.sw + (a*(x.west-xx) + b*(y.south-yy))/c 
    # Fit plane to lower triangular 
    AB <- c(x.east-x.west, 0, sin.se-sin.sw) 
    AC <- c(x.east-x.west, y.north-y.south, sin.ne-sin.sw) 
    # Coefficients of cross product AB X AC 
    a <- AB[2]*AC[3]-AB[3]*AC[2] 
    b <- AB[3]*AC[1]-AB[1]*AC[3] 
    c <- AB[1]*AC[2]-AB[2]*AC[1] 
    SinOut[i] <- sin.sw + (a*(x.west-xx) + b*(y.south-yy))/c 
   } 
   else 
   { 
    # In upper triangular 
    AC <- c(x.east-x.west, y.north-y.south, cos.ne-cos.sw) 
    AD <- c(0,y.north-y.south, cos.nw-cos.sw) 
    a <- AC[2]*AD[3]-AC[3]*AD[2] 
    b <- AC[3]*AD[1]-AC[1]*AD[3] 
    c <- AC[1]*AD[2]-AC[2]*AD[1] 
    CosOut[i] <- cos.sw + (a*(x.west-xx) + b*(y.south-yy))/c 
    AC <- c(x.east-x.west, y.north-y.south, sin.ne-sin.sw) 
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    AD <- c(0,y.north-y.south, sin.nw-sin.sw) 
    a <- AC[2]*AD[3]-AC[3]*AD[2] 
    b <- AC[3]*AD[1]-AC[1]*AD[3] 
    c <- AC[1]*AD[2]-AC[2]*AD[1] 
    SinOut[i] <- sin.sw + (a*(x.west-xx) + b*(y.south-yy))/c 
   } 
  } 
  else if(Vert==TRUE & Horiz==FALSE) 
  { 
   p1 <- p[X==xx] # Column of vert grid line 
   q1 <- min(q[Y < yy]) # Even spacing is not assumed 
   q2 <- q1 - 1 
   cos1 <- U[q1, p1] 
   cos2 <- U[q2, p1] 
   CosOut[i] <- cos1 + (cos2-cos1)*(yy-Y[q1])/(Y[q2]-Y[q1]) 
   sin1 <- V[q1, p1] 
   sin2 <- V[q2, p1] 
   SinOut[i] <- sin1 + (sin2- sin1)*(yy-Y[q1])/(Y[q2]-Y[q1]) 
  } 
  else if(Vert==FALSE & Horiz==TRUE) 
  { 
   q1 <- q[Y==yy] # Row of horiz grid line 
   p1 <- max(p[X < xx]) 
   p2 <- p1 + 1 
   cos1 <- U[q1, p1] 
   cos2 <- U[q1, p2] 
   CosOut[i] <- cos1 + (cos2-cos1)*(xx-X[p1])/(X[p2]-X[p1]) 
   sin1 <- V[q1, p1] 
   sin2 <- V[q1, p2] 
   SinOut[i] <- sin1 + (sin2-sin1)*(xx-X[p1])/(X[p2]-X[p1]) 
  } 
  else # Vert==TRUE & Horiz==TRUE 
  { 
   CosOut[i] <- U[q[Y==yy], p[X==xx]] 
   SinOut[i] <- V[q[Y==yy], p[X==xx]] 
  } 
 } 
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 dir <- atan2(SinOut, CosOut) 
 return(list(x=out.x, y=out.y, direction=dir)) 
}  
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K.12 CircMedianPolish 
 
CircMedianPolish <- function(x, y, h, v, delta, MaxIter=20, tol=0.01) 
{ 
 # 2007-07-06 
 # Inputs: 
 #  x = vector of longitudes (x coordinates); y=vector of latitudes (y coordinates). 
 #           h = vector of Horizontal components of vectors; v=vector of Vertical component of vectors. 
 # delta is lattice horizontal and vertical spacing.  Why should the horiz & vert spacings be different? 
 # Assumptions: 
 # Direction measured on regular lattice, but doesn’t have a specific order.  Outputs are ordered in the code. 
 # Process: 
 # 1) Vector h is organized into matrix H.  Vector v is organized into matrix V. 
 #  2) Median polish is performed on matrices H and V separately. 
 #  3) Polished direction is determined by applying atan2 to (V, H). 
 # Outputs: 
 #           X = vector of ordered longitudes 
 #           Y = vector of ordered latitudes 
 #           polished.dir = vector of ordered polished directions 
 # raw.dir = vector of ordered raw directions, which may have NAs 
 
 MinX <- min(x); MaxX <- max(x); MinY <- min(y); MaxY <- max(y) 
 Cols <- 1 + (x -MinX)/delta # For indexing h and v into matrix format 
 Rows <- 1 + (MaxY - y)/delta # For indexing h and v into matrix format 
 H <- matrix(data = NA, nrow=1 +(MaxY-MinY)/delta, ncol=1+ (MaxX-MinX)/delta); V <- H; Dirs <- H 
 # Organize the components and data 
 H[cbind(Rows, Cols)] <- h 
 V[cbind(Rows, Cols)] <- v 
 Dirs[cbind(Rows, Cols)] <- atan2(v,h) 
 
 polish.H <- medpolish(H, maxiter=MaxIter, trace.iter=TRUE, na.rm=T, eps=tol) # Convergence progress reported 
 polish.V <- medpolish(V, maxiter=MaxIter, trace.iter=TRUE, na.rm=T, eps=tol) 
 # polished.H1 <- H - polish.H$residuals; polished.V1 <- V - polish.V$residuals # NAs 
 polished.H <- polish.H$overall + outer(polish.H$row, polish.H$col, FUN=”+”) # no NAs 
 polished.V <- polish.V$overall + outer(polish.V$row, polish.V$col, FUN=”+” ) 
 polished.dir <- atan2(polished.V, polished.H) 
 polished.dir <- as.vector(polished.dir) 
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 polished.dir[polished.dir < 0] <- polished.dir[polished.dir < 0] + 2*pi 
 polished.dir[polished.dir > 2*pi] <- polished.dir[polished.dir > 2*pi] - 2*pi 
 
 raw.dir <- as.vector(Dirs) # has NAs, is organized 
 filterNA <- is.na(raw.dir) 
 raw.dir2 <- raw.dir[!filterNA] 
 raw.dir2[raw.dir2 < 0] <- raw.dir2[raw.dir2 < 0] + 2*pi 
 raw.dir2[raw.dir2 > 2*pi] <- raw.dir2[raw.dir2 > 2*pi] - 2*pi 
 raw.dir[!filterNA] <- raw.dir2 
 
 x <- rep(seq(MinX, MaxX, by=delta), each=1 + (MaxY-MinY)/delta) 
 y <- rep(seq(MaxY, MinY, by=-delta), 1 + (MaxX-MinX)/delta) 
 return(list(x=x, y=y, polished.dir=polished.dir)) 
} 
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K.13  AssessStandardization 
 
AssessStandardization <- function(CircDistr2="vM", Rho2=.75, CovModel2="spherical", Range2=10, Ext2=3, nSim=30, nPoints=400, 
 OVERFIT=TRUE, ZLevels, CircLevels) 
{ 
 # 2008-2-15.0600 
 # Generate a nPoints x nSim and compute bivkde of QQ plots Standard Norm, Circular, Unif 
 # CircDistr2 = circular probability distribution in {"U", "vm", "Tri", "WrC", "Card"} 
 #     to visually compare mean and variability with and without standardization 
 # Range of parameter Rho2 
 #     For triangular, 0 < Rho2 <= 4/pi^2 
 #     For cardioid, 0 < Rho2 <= 0.5 
 #     For vM and wrapped Cauchy, 0 < Rho2 < 1, 1== degenerate 
 #     For uniform, Rho2 = 0 
 # CovModel2 = Any covariance model valid in geoR or RandomFields 
 # Range2 = Distance at which RV are not correlated 
 # Ext2 = Multiplies Range2.  Range2 x Ext2 is width and height of RF.  Default protects sill against edge effects. 
 # nSim = Number of simulations 
 # ZLevels = Number of color bins for filled.contour plots of QQ norm density 
 # CircLevels = Number of color bins for filled.contour plots of QQ circular density 
 # nPoints = Number of points per simulation 
 # OverFit=TRUE, or standardization (centering and rescaling realization of the GRV to mean 0 sd 1) results in closer fit 
 #     for qualitative evaluation of the CRV.  Undesirable effects are loss of independence of the marginal GRVs, biased GRF 
 #     covariance, and biased testing.  Standardization is suitable for demonstration with closer fit, visualization, and 
 #     illustrations.  Do not standardize for purposes of simulation and testing.  OverFit=FALSE, or non-standardization (default) 
 #     includes expected variation from transformation of variation in mean and sd of sample of GRV. 
 
 a <- ifelse(nPoints <= 10, 3/8, 1/2) 
 CumProb <- ((1:nPoints)- a)/(nPoints + 1 - 2*a) # Vector of symmetric cumulative probabilities for QQ plots 
 ZQuantiles <- qnorm(CumProb, mean=0, sd=1, lower.tail = TRUE) 
 ZQuantiles <- rep(ZQuantiles, nSim) 



 

 

299

 
 # Compute circular quantiles 
 ThetaQuantiles <- vector(mode="numeric", length=nPoints) 
 if(CircDistr2=="U") { ThetaQuantiles <- -pi + 2*pi*CumProb } else 
 if(CircDistr2 == "Tri") 
 { 
  if(Rho2==0 | Rho2 > 4/pi^2) stop("Tri: 0 < Rho <= 4/pi^2") 
  filter <- CumProb < 0.5 
  u1 <- CumProb[filter] 
  a <- Rho2/8 
  b <- (4+pi^2*Rho2)/(8*pi) 
  c <- 0.5 - u1 
  q <- -.5*(b+sqrt(b^2-4*a*c)) 
  ThetaQuantiles[filter] <- c/q  
 
  u2 <- CumProb[!filter] 
  a <- -Rho2/8 
  b <- (4+pi^2*Rho2)/(8*pi) 
  c <- 0.5 - u2 
  q <- -.5*(b+sqrt(b^2-4*a*c)) 
  ThetaQuantiles[!filter]<- c/q 
 } else 
 { 
  # For non-uniform circular distributions first get circular CDF in order to get ThetaQuantiles 
  CircScale <- seq(-pi, pi, length=2*pi/.01) # Circular support from -pi to +pi, 629 elements, d~.01, CircScale[315] is zero 
  n <- length(CircScale) 
  if(CircDistr2=="vM") 
  { 
   if(Rho2==0 | Rho2 >= 1) stop("vM: 0 < Rho < 1") 
   require(CircStats) 
   CircProb <- rep(-1, n) 
   Kappa=A1inv(Rho2) # N. I Fisher, Statistical Analysis of Circular Data, 2000 p. 49 
   # As theta increases from -pi, pvm increases from .5 
   for(i in 1:n) {CircProb[i] <- pvm(CircScale[i], mu=0, kappa=Kappa)} 
   filter <- CircScale < 0 
   CircProb[filter] <- CircProb[filter] - 0.5 
   CircProb[!filter] <- CircProb[!filter] + 0.5  
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  } else 
  if(CircDistr2=="Card")  
  { 
   if(Rho2==0 | Rho2 > 0.5) stop("Cardioid: 0 < Rho <= 0.5")  
   CircProb <- (CircScale + pi + 2*Rho2*sin(CircScale))/(2*pi) 
  } else 
  if(CircDistr2=="WrC")  
  { 
   if(Rho2==0 | Rho2 >= 1) stop("Wrapped Cauchy: 0 < Rho < 1") 
   Angles1 <- CircScale[CircScale < 0] + 2*pi 
   Angles2 <- CircScale[CircScale >= 0] 
   prob1 <- 0.5 - acos(((1+Rho^2)*cos(Angles1) - 2*Rho)/(1 + Rho^2 - 2*Rho * cos(Angles1)))/(2*pi) 
   prob2 <- 0.5 + acos(((1+Rho^2)*cos(Angles2) - 2*Rho)/(1 + Rho^2 - 2*Rho * cos(Angles2)))/(2*pi) 
   CircProb <-c(prob1, prob2) 
  } 
  CircProb[1] <- 0; CircProb[n] <- 1 # For any numerical imprecision 
 
  # Get Quantiles From Inverse Circular CDF for distributions not uniform 
  DeltaTh <- CircScale[2] - CircScale[1] 
  for(i in 1:nPoints) 
  { 
   p <- CumProb[i] 
   a <- max((1:n)[CircProb <= p]) # Left index 
   if(CircProb[a]==p) {r <- 0} else {r <- (p - CircProb[a])/(CircProb[a+1]- CircProb[a])} 
   ThetaQuantiles[i] <- CircScale[a] + r*DeltaTh 
  } 
 } 
  
 ThetaQuantiles <- rep(ThetaQuantiles, nSim) 
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 Thetasort <- Zsort <- matrix(data = NA, nrow = nPoints, ncol = nSim) 
 for(i in 1:nSim) 
 { 
  output <- SimulateCRF(N=nPoints, CircDistr=CircDistr2, Rho=Rho2, Range=Range2, Ext=Ext2, CovModel= CovModel2,     
 OverFit=OVERFIT) 
  Z <- output$Z 
  Zsort[,i] <- sort(Z) 
 
  Theta <- output$direction 
  Thetasort[,i] <- sort(Theta) 
 } 
 
 require(KernSmooth) 
 biv.Z <- bkde2D(x=cbind(ZQuantiles, as.vector(Zsort)), bandwidth=c(0.1,0.1), range.x=list(c(-3,3), c(-3,3))) 
 biv.C <- bkde2D(x=cbind(ThetaQuantiles, as.vector(Thetasort)), bandwidth=c(0.1,0.1), range.x=list(c(-pi,pi), c(-pi,pi))) 
 
 # QQ Standard Normmal 
 dev.set(which=2) 
 par(mgp=c(1.5,.5,0), mar=c(3.2,2.8,1.7,0.1), cex.main=.75, cex.lab=.75, cex.axis=.75) 
 filled.contour(biv.Z$x1, biv.Z$x2, biv.Z$fhat, color = terrain.colors, levels=ZLevels, 
  plot.title = title(main = "Density of QQ Standard Normal Points", xlab = "Theoretical Quantile", ylab = "Sample Quantile")) 
  
 # QQ Circular 
 dev.set(which=3) 
 par(mgp=c(1.5,.5,0), mar=c(3.2,2.8,1.7,0.1), cex.main=.75, cex.lab=.75, cex.axis=.75) 
 filled.contour(biv.C$x1, biv.C$x2, biv.C$fhat, color = terrain.colors, xlim=c(-pi,pi), ylim=c(-pi,pi), levels=CircLevels, 
  plot.title = title(main = "Density of QQ Circular Points", xlab = "Theoretical Quantile", ylab = "Sample Quantile")) 
}  
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K.14 MakeCosineData 
 
MakeCosineData <-function(nSim=400, N=400, model, Range, Ext=2, CircDistr, Rho, Resolution=0.01, ...) 
{ 
 # 2008-8-14.0550 
 # Make cosine data from transformation of standard normal GRF to fit cosine models 
 
 # Input Arguments 
 # nSim: Number of simulations 
 # N: Number of spatial locations per simulation 
 # model: Name of spatial correlation function, see package geoR Help cov.spatial 
 # Range: The range parameter of the covariance model 
 # Ext: Range*Ext is horizontal and vertical length of sample space 
 # CircDistr: Circular distribution in {U, vM, WrC, Tri, Card}, 
 # Rho: Mean resultant length parameter 
 #        For triangular, 0 < Rho <= 4/pi^2 
 #        For cardioid, 0 < Rho <= 0.5 
 #        For vM and wrapped Cauchy, 0 < Rho < 1, 1== degenerate 
 #        For uniform, Rho = 0, not required 
 # Resolution: For interpolation of theta on CDF for non-closed form inverse CDFs 
  
 # Values 
 # matrix of lag distances in column 1 and cosineogram ordinates in column 2 
  
 require(CircStats) 
 require(RandomFields) 
 require(KernSmooth) 
 x <- c() 
 CosineoG <- c() 
 mean <- 0 
 variance <- 1 
 nugget <- 0 
 
 for (i in 1:nSim) 
 { 
  direction <- vector(mode="numeric", length=N) 
  X= runif(N, max=Range*Ext) 
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  Y= runif(N, max=Range*Ext) 
  GRV <- GaussRF(grid=FALSE, x=X, y=Y, model=model, param=c(mean, variance, nugget, scale=Range, ...)) 
  CumProbZ <- pnorm(GRV, mean=0, sd=1, lower.tail = TRUE) 
 
  if(CircDistr=="U") {direction <- -pi + 2*pi*CumProbZ} else 
  if(CircDistr == "Tri") 
  { 
   if(Rho==0 | Rho > 4/pi^2) stop("Tri: 0 < Rho <= 4/pi^2") 
   filter <- CumProbZ < 0.5 
   u1 <- CumProbZ[filter] 
   a <- Rho/8; b <- (4+pi^2*Rho)/(8*pi); c <- 0.5 - u1 
   q <- -.5*(b+sqrt(b^2-4*a*c)) 
   direction[filter] <- c/q  
 
   u2 <- CumProbZ[!filter] 
   a <- -Rho/8; b <- (4+pi^2*Rho)/(8*pi); c <- 0.5 - u2 
   q <- -.5*(b+sqrt(b^2-4*a*c)) 
   direction[!filter]<- c/q 
  } else 
  { 
   # For OTHER circular distributions compute table of circular CDF and interpolate 
   CircScale <- seq(-pi, pi, length=2*pi/Resolution) 
   # With resolution=.01, circular support from -pi to +pi has 629 elements, delta ~0.01000507, CircScale[315] = 0 
   n <- length(CircScale) 
   if(CircDistr == "vM") 
   { 
    if(Rho==0 | Rho >= 1) stop("vM: 0 < Rho < 1") 
    CircProb <- rep(-1, n) 
    Kappa=A1inv(Rho) # N. I Fisher, Statistical Analysis of Circular Data, 2000 p. 49 
    # As direction increases from -pi, pvm increases from .5 
    for(i in 1:length(CircScale)) CircProb[i] <- pvm(CircScale[i], mu=0, kappa=Kappa) 
    filter <- CircScale < 0 
    CircProb[filter] <- CircProb[filter] - 0.5 
    CircProb[!filter] <- CircProb[!filter] + 0.5  
   } else 
   if(CircDistr == "Card")  
   { 
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    if(Rho==0 | Rho > 0.5) stop("Cardioid: 0 < Rho <= 0.5")  
    CircProb <- (CircScale + pi + 2*Rho*sin(CircScale))/(2*pi) 
   } else 
   if(CircDistr == "WrC")  
   { 
    if(Rho==0 | Rho >= 1) stop("Wrapped Cauchy: 0 < Rho < 1 ") 
    Angles1 <- CircScale[CircScale < 0] 
    Angles2 <- CircScale[CircScale >= 0] 
    prob1 <- 0.5 - acos(((1+Rho^2)*cos(Angles1) - 2*Rho)/(1 + Rho^2 - 2*Rho * cos(Angles1)))/(2*pi) 
    prob2 <- 0.5 + acos(((1+Rho^2)*cos(Angles2) - 2*Rho)/(1 + Rho^2 - 2*Rho * cos(Angles2)))/(2*pi) 
    CircProb <-c(prob1, prob2) 
   } 
   CircProb[1] <- 0; CircProb[n] <- 1 
 
   # Interpolation 
   DeltaTh <- CircScale[2] + pi 
   for(i in 1:N) 
   { 
    p <- CumProbZ[i]  # Cumulative prob of GRV 
    a <- max((1:n)[CircProb <= p]) # Index 
    if(a==n) {r <- 0} else 
    { 
     if(CircProb[a]==p) {r <- 0} else {r <- (p -CircProb[a])/( CircProb[a+1] -CircProb[a])} 
    } 
    direction[i] <- CircScale[a] + r*DeltaTh 
   } 
  } 
  cosineog.out <- CosinePlots(x=X, y=Y, directions=direction, Lag.n.Adj=1, Lag=seq(0, Range, by=0.25), Plot=FALSE) 
  CosineoG <- c(CosineoG, cosineog.out$cosine) 
 } 
 
 fitCosineoG <- locpoly(rep(seq(0, Range, by=0.25),nSim), CosineoG, bandwidth = 0.15) 
 return(list(fitCosineoG=fitCosineoG, CosineoG=CosineoG )) 
} 
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K.15 FitCosineData 
 
FitCosineData <- function(output=U.s.5$fitCosineoG, output.distr="U", code="0.5", GRF.model="spherical", ...) 
{ 
 # 2008-11-08.0759 
  
 require(RandomFields) 
 
 rhoMax <- 1 # WrC, vM 
 if(output.distr=="card") rhoMax <- .5 
 if(output.distr=="tri") rhoMax <- 4/pi^2 
 if(output.distr=="U") rhoMax <- 0 
 
  if(code == "0.5")   {Fraction=0.00; Range=5} 
 if(code == "0.10")  {Fraction=0.00; Range=10} 
 if(code == "05.5")  {Fraction=0.05; Range=5} 
 if(code == "05.10") {Fraction=0.05; Range=10} 
 if(code == "95.5")  {Fraction=0.95; Range=5} 
 if(code == "95.10") {Fraction=0.95; Range=10} 
  
 Xlim=c(0, Range); Ylim=c(0, 1) 
 Rho <- Fraction*rhoMax 
 
 u <- output$x/Range # Standardized distance required vy CovarianceFct 
 v <- Rho^2+(1-Rho^2)*CovarianceFct(x=u, model=GRF.model, param=c(mean=0,variance=1,nugget=0,scale=1, ...), 
  dim=1, fctcall="Covariance") 
 par(mfrow=c(2,1)) 
 plot(u,v, xlim=Xlim, ylim=Ylim, ty="l", col=2, lwd=2, xlab="Distance", ylab="Cosines") 
 lines(output, col=1) 
 abline(h=1, col="grey");  abline(h=Rho^2, col="grey"); abline(v=0, col="grey"); abline(v=Range, col="grey") 
 plot(u, output$y-v, xlim=Xlim, ty="l", main=paste("Mean Abs Difference= ", round(mean(abs(output$y-v)),6)), 
  xlab="Distance", ylab="Difference of Cosines") 
 abline(h=0, col="grey") 
} 
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K.16 FitOceanWind 
 
# For Figure 4-8 
 
FitOceanWind <- function(input, Rho, Nugget, Range, GRF.model, ...) 
{ 
 # 2008-11-08.0759 
 require(RandomFields) 
 delta <- seq(0, .95, by=.05) 
 u <- c(delta, input$x)/Range 
 v <- Rho^2+(1-Rho^2-Nugget)*CovarianceFct(x=u, model=GRF.model, param=c(mean=0,variance=1,nugget=0,scale=1, ...), 
  dim=1, fctcall="Covariance") 
 par(mfrow=c(2,1)) 
 plot(c(delta, input$x), v, ty="l", col=2,lwd=2, xlab="Distance", ylab="Cosines", xlim=c(0, Range), ylim=c(0,1)) 
 lines(input, col=1) 
 abline(h=1, col="grey") 
 abline(h=Rho^2, col="grey") 
 abline(v=0, col="grey") 
 abline(v=Range, col="grey") 
 
 v2 <- v[-c(1:length(delta))] 
 filter <- input$x <= Range 
 MAD <- round(mean( abs( v2[filter]-input$y[filter] ) ), 6) 
 plot(input$x, v2 - input$y, ty="l", main=paste("Mean Abs Difference= ", MAD), 
  xlab="Distance", ylab="Difference of Cosines", xlim=c(0,Range)) 
 abline(h=0, col="grey") 
} 
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K.17 3DPolarMainMagnetic 
 
MainMagnetic <- function(Data="1900.dat") 
{ 
        # 2008-06-23 
        # The data must be sorted first by latitude decreasing and second by longitude increasing: north to south, and west to east. 
        # 
        # Variables: 
        # id    long    lat     direction       magnitude       x.north y.east  z.vertical 
        # id is a sequential integer. 
        # long is longitude from -180º to +180º by 1º. 
        # lat is latitude from -89º to +89º by 1º.  Data are not defined at poles. 
        # Direction is from 0 to 2pi radians. 
        # Magnitude is the magnitude of the resultant of the east and north components. 
 
        require(rgl) 
        require(fields) 
        data <- read.table(file=Data,header=T) 
        long <-  data[,2]*pi/180 # longitude in radians 
        colat <- (90 - data[,3])*pi/180 # colatitude in radians 
        Direction <- data[,4]*180/pi # Direction in degrees 
        Magnitude <- data[,5] 
        MaxMag <- max(Magnitude[!is.na(Magnitude)]) 
 
        # VERTICES 
        x <- Magnitude*sin(colat)*cos(long) 
        y <- Magnitude*sin(colat)*sin(long) 
        z <- Magnitude*cos(colat) 
 
        # Color of direction from GYRB color wheel 
        c <- vector(mode="character", length=length(x)) 
 
        filter <- (Direction < 90); ZeroToOne <- Direction[filter]/90 
        c[filter] <- rgb(255*ZeroToOne, 255, 0, maxColorValue=255) 
 
        filter <- (Direction >= 90 & Direction < 180); ZeroToOne <- (Direction[filter]-90)/90 
        c[filter] <- rgb(255, 255*(1 - ZeroToOne), 0, maxColorValue=255) 
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        filter <- (Direction >= 180 & Direction < 270); ZeroToOne <- (Direction[filter] - 180)/90 
        c[filter] <- rgb(255*(1 - ZeroToOne), 0, 255*ZeroToOne, maxColorValue=255) 
 
        filter <- (Direction >= 270); ZeroToOne <- (Direction[filter] - 270)/90 
        c[filter] <- rgb(0, 255*ZeroToOne, 255*(1 - ZeroToOne), maxColorValue=255) 
 
        # Matrix rows are lat 89, 88, 87, ..., -88, -89 
        X <- matrix(data=x, byrow=T, ncol=361)# 179 rows x 361 cols 
        Y <- matrix(data=y, byrow=T, ncol=361) 
        Z <- matrix(data=z, byrow=T, ncol=361) 
        C <- matrix(data=c, byrow=T, ncol=361) 
 
        # Add continental profiles for reference 
        data(world.dat) # range of longitude (x) is -180, +180; range of latitude (y) is -78.5, 83.7 
        filter <- !is.na(world.dat$x) 
        xx <- world.dat$x[filter] 
        yy <- world.dat$y[filter] 
        C[cbind(90 - round(yy,0), 181 + round(xx,0))] <- rgb(0,0,0) 
 
        # q=quadrilateral primitive 
        Xq <- vector(mode="numeric", len=178*360*4); Yq <- Xq; Zq <- Xq 
        Cq <- vector(mode="character", len=178*360*4) 
        QuadFilter <- c( rep(c(1,2,3,4), 178*360) ) # Earth magnetic at 1º resolution + no poles has 64,080 quads. 
 
        Xq[QuadFilter == 1] <- X[-179,-361] 
        Yq[QuadFilter == 1] <- Y[-179,-361] 
        Zq[QuadFilter == 1] <- Z[-179,-361] 
        Cq[QuadFilter == 1] <- C[-179,-361] 
 
        Xq[QuadFilter == 2] <- X[-179,-1] 
        Yq[QuadFilter == 2] <- Y[-179,-1] 
        Zq[QuadFilter == 2] <- Z[-179,-1] 
        Cq[QuadFilter == 2] <- C[-179,-1] 
 
        Xq[QuadFilter == 3] <- X[-1,-1] 
        Yq[QuadFilter == 3] <- Y[-1,-1] 
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        Zq[QuadFilter == 3] <- Z[-1,-1] 
        Cq[QuadFilter == 3] <- C[-1,-1] 
 
        Xq[QuadFilter == 4] <- X[-1,-361] 
        Yq[QuadFilter == 4] <- Y[-1,-361] 
        Zq[QuadFilter == 4] <- Z[-1,-361] 
        Cq[QuadFilter == 4] <- C[-1,-361] 
        rgl.quads(Xq,Yq,Zq,color=Cq,lit=FALSE) 
        L <- 1.33*MaxMag 
        rgl.lines(c(0,L), c(0,0), c(0,0), color=2, size=4) 
        rgl.lines(c(0,0), c(0,L), c(0,0), color=3, size=4) 
        rgl.lines(c(0,0), c(0,0), c(0,L), color=4, size=4) 
        rgl.lines(c(0,-L), c(0,0), c(0,0), color=2, size=1) 
        rgl.lines(c(0,0), c(0,-L), c(0,0), color=3, size=1) 
        rgl.lines(c(0,0), c(0,0), c(0,-L), color=4, size=1) 
 
        rgl.viewpoint(fov=1) 
} 
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K.18 Circular Kriging Variance 
 
PlotCKVar <- function(rho=0, ng=0, range=8, x.legend=1, y.legend=1) 
{ 
 d01 <- seq(0,10,0.05); d02 <- sqrt(d01^2 + 1) # distance between observations=1 
 c01.e <- rho^2 + (1-ng-rho^2)*exp(-3*d01/range) 
 c02.e <- rho^2 + (1-ng-rho^2)*exp(-3*d02/range) 
 c.e <- rbind(c01.e, c02.e) 
 k.e <- rho^2 + (1-ng-rho^2)*exp(-3*1/range) 
 K.e <- matrix(data=c(1,k.e,k.e,1), ncol=2, byrow=TRUE) 
 K.e.inv <-solve(K.e) 
 ckvar.e <- 2 - 2*sqrt(  diag(t(c.e) %*% K.e.inv %*% c.e)  ) 
 
 c01.g <- rho^2 + (1-ng-rho^2)*exp(-3*(d01/range)^2) 
 c02.g <- rho^2 + (1-ng-rho^2)*exp(-3*(d02/range)^2) 
 c.g <- rbind(c01.g, c02.g) 
 k.g <- rho^2 + (1-ng-rho^2)*exp(-3*(1/range)^2) 
 K.g <- matrix(data=c(1,k.g,k.g,1), ncol=2, byrow=TRUE) 
 K.g.inv <-solve(K.g) 
 ckvar.g <- 2 - 2*sqrt( diag(t(c.g) %*% K.g.inv %*% c.g) ) 
 
 c01.s <- 1 - ng - (1-ng-rho^2)*(1.5*d01/range - 0.5*(d01/range)^3); c01.s[d01 > range] <- rho^2 
 c02.s <- 1 - ng - (1-ng-rho^2)*(1.5*d02/range - 0.5*(d02/range)^3); c02.s[d02 > range] <- rho^2 
 c.s <- rbind(c01.s, c02.s) 
 k.s <- 1 - ng - (1-ng-rho^2)*(1.5*1/range - 0.5*(1/range)^3) 
 if(1 > range) k.s <- rho^2 
 K.s <- matrix(data=c(1,k.s,k.s,1), ncol=2, byrow=TRUE) 
 K.s.inv <-solve(K.s) 
 ckvar.s <- 2 - 2*sqrt( diag(t(c.s) %*% K.s.inv %*% c.s) ) 
 
 plot(d01, ckvar.e, ty="l", col=1, ylim=c(0,2), xlab="Distance", 
  ylab="Circular Kriging Variance") 
 lines(d01, ckvar.g, col="tan", lwd=3); lines(d01, ckvar.s, col=2, lty=2) 
 legend(x=x.legend, y=y.legend, c("Exponential","Gaussian","Spherical"), 
  lty = c(1, 1, 2), col=c(1, "tan", 2), lwd=c(1, 3, 1), cex=1.1) 
} 
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Appendix L 
 

R Command Line Input 
 
 
L.1 Figures 3-4 to 3-8 
 
out <- SimulateSill() 
 
plot(1:1000, out$Cavg, type="l", xlab="Number of Simulations", ylab="Mean Cosine", main="Cardioid", ylim=c(0.05,0.10)) 
abline(h=0.25^2, lty=2) 
 
plot(1:1000, out$Tavg, type="l", xlab="Number of Simulations", ylab="Mean Cosine", main="Triangular", ylim=c(0.02,0.07)) 
abline(h=(.5*4/pi^2)^2, lty=2) 
 
plot(1:1000, out$Uavg, type="l", xlab="Number of Simulations", ylab="Mean Cosine", main="Uniform", ylim=c(-0.01,0.04)) 
abline(h=0, lty=2) 
 
plot(1:1000,out$VMavg, type="l", xlab="Number of Simulations", ylab="Mean Cosine", main="Von Mises", ylim=c(0.77,0.82)) 
abline(h=0.798, lty=2) 
 
plot(1:1000,out$WCavg, type="l", xlab="Number of Simulations", ylab="Mean Cosine", main="Wrapped Cauchy", ylim=c(0.1,0.15)) 
abline(h=exp(-2), lty=2) 
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L.2 Figure 3-13 
 
years <- sort(unique(OceanWind[,1])) 
 
# Smoothed average direction from CircDataimage 
model.x <- Globals$x.g[Globals$StartRow:Globals$EndRow] 
n.x <- length(model.x) 
xmin <- min(model.x); xmax <- max(model.x) 
model.y <- Globals$y.g[Globals$StartCol:Globals$EndCol] 
n.y <- length(model.y) 
ymin <- min(model.y); ymax <- max(model.y) 
model.dir <- Globals$Direction[Globals$StartRow:Globals$EndRow, Globals$StartCol:Globals$EndCol] # in radians 
 
## Slice matrix and stack into vectors 
model.xv <- rep(model.x, n.y) 
model.yv <- rep(model.y, each=n.x) 
model.dirv <- as.vector(model.dir) 
 
## subset data to longitude and latitude once 
filter1 <- OceanWind[ , 2]>=xmin & OceanWind[ , 2]<= xmax & OceanWind[ , 3]>=ymin & OceanWind[ , 3]<=ymax 
data1 <- OceanWind[filter1, ] 
 

SouthPolarCorr <- function(trend) 
{ 
 #  Vectors of the sequence of ordinates of cosineograms are column binded 
 Cosines <- c() 
 for(year in years) 
 { 
  ## subset the data to year 
  filter2 <- data1[,1] == year; data2 <- data1[filter2,-1] # year value omitted 
  
  ## Organize data into a matrix using vector expressions 
  u <- matrix(data=NA, nrow=n.x, ncol=n.y); v <- u 
  Rows    <- round((data2[, 1] - xmin) + 1, digits = 0) # Indexing vector 
  Columns <- round((data2[, 2] - ymin) + 1, digits = 0) # Indexing vector 
  ## test one observation per cell 
  if (max(table(data2[,c(1,2)])) > 1) stop(paste("Duplicate observation in year ", year)) 
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  u[cbind(Rows, Columns)] <- data2[, 3];  v[cbind(Rows, Columns)] <- data2[, 4] 
 
  ## convert u and v to direction in 0 to 2pi, and slice and stack matrix to vector 
  data.dir <- atan2(v, u); data.dirv <- as.vector(data.dir) 
 
  residuals <- CircResidual(X=model.xv, Y=model.yv, Raw=data.dirv, Trend=trend, Plot=FALSE) 
 
  cosines <- CosinePlots(x=residuals$x, y=residuals$y, directions=residuals$direction, Lag=1:40, Lag.n.Adj = 1, BinWAdj=1,    
 Plot=FALSE)$cosine 
  Cosines <- cbind(Cosines, cosines) 
 } 
 return(Cosines) 
} 
  
Cosineograms <- SouthPolarCorr(trend=model.dirv) 
Mean <- function(x) { mean(x, na.rm=TRUE, trim=0.2) } 
 
par(mai=c(0.95, 0.75, 0.25, 0.25)) 
d <- 1:40 
plot(rep(d,28), Cosineograms, xlab=”Distance In Degrees Of Longitude And Latitiude”, ylab=”Cosines”, col=”grey”, xlim=c(0, 15)) 
lines(c(0,d), c(1, apply(Cosineograms, 1, Mean)), col=2, lw=3) 
 
# Exponential model 
d2 <- seq(0, 40, by=0.25) 
r = 3.8 # range 
rho = sqrt(0.45) # mean resultant length 
lines(d2, rho^2 + (1 - rho^2)*exp(-3*d2/r), col=4, lty=2, lwd=3 ) 
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L.3 Figure 5-1, Simulated CRF 
 
ygrid <- xgrid <- seq(-20,20,length=21) 
xgrid <- rep(xgrid, 21) 
ygrid <- rep(ygrid, each=21) 
set.seed(9) # So Figures 5-1, 5-3, 5-4, and 5-7 will be consistent 
crf1 <- SimulateCRF(CircDistr="vM", Rho=0.8, Mu=0, Range=10, CovModel="spherical", Grid=cbind(xgrid, ygrid), OverFit=TRUE) 
require(CircSpatial) 
par(mgp=c(2,1,0), mar=c(3.1, 3.1, 0.5, 0.5), cex=.8) 
PlotVectors(x=crf1$x, y=crf1$y, h=cos(crf1$direction), v=sin(crf1$direction), AdjArrowLength=1.25, AdjHeadLength=.7) 
 
 
L.4 Figure 5-3, Image of GRF 
 
ygrid <- xgrid <- seq(-20,20,length=21) 
xgrid <- rep(xgrid, 21); ygrid <- rep(ygrid, each=21) 
set.seed(9) 
crf1 <- SimulateCRF(CircDistr="vM", Rho=0.8, Mu=0, Range=10, CovModel="spherical", Grid=cbind(xgrid, ygrid), OverFit=TRUE) 
image(seq(-20,20,length=21), seq(-20,20,length=21), matrix(data=crf1$Z, nrow=21, ncol=21, byrow=FALSE), col = terrain.colors(12), 
 xlab=”x”, ylab=”y”) 
 
 
L.5 Figure 5-4, Variogram and Inverted Cosineogram Similar 
 
ygrid <- xgrid <- seq(-20,20,length=21) 
xgrid <- rep(xgrid, 21) 
ygrid <- rep(ygrid, each=21) 
set.seed(9); CorrelationTransfer(CircDistr2="vM", Rho2=0.8, Range2=10, CovModel2="spherical", GRID=cbind(xgrid, ygrid), OVERFIT=TRUE) 
 
 



 

 

315

L.6 Figure 5-5, Standardization 
 
# Figure constructed from GRV and CRV windows 
 
windows(); windows() 
set.seed(10); AssessStandardization(CircDistr2="U", ZLevels=seq(0,.8,length=16), CircLevels=seq(0,0.34,length=16), OVERFIT=TRUE) 
set.seed(10); AssessStandardization(CircDistr2="U", ZLevels=seq(0,.8,length=16), CircLevels=seq(0,0.34,length=16), OVERFIT=FALSE) 
 
 
L.7 Figure 5-6, Variabiliy vs. ρ 
 
# Figure constructed from CRV windows 
 
windows(); windows() 
set.seed(20); AssessStandardization(CircDistr2="Tri", Rho2=.95*4/pi^2, ZLevels=seq(0,.8,length=16), CircLevels=seq(0,0.4,length=16), 
 OVERFIT=TRUE) 
set.seed(20); AssessStandardization(CircDistr2="Tri", Rho2=.50*4/pi^2, ZLevels=seq(0,.8,length=16), CircLevels=seq(0,0.4,length=16), 
 OVERFIT=TRUE) 
set.seed(20); AssessStandardization(CircDistr2="Tri", Rho2=.25*4/pi^2, ZLevels=seq(0,.8,length=16), CircLevels=seq(0,0.4,length=16), 
 OVERFIT=TRUE) 
set.seed(20); AssessStandardization(CircDistr2="Tri", Rho2=.25*4/pi^2, ZLevels=seq(0,.8,length=16), CircLevels=seq(0,0.4,length=16), 
 OVERFIT=FALSE) 
 
 
L.8 Figure 5-8 and the Figures in Appendices C and D 
 
ygrid <- xgrid <- seq(-20,20,length=21) # Source CosinePlots before running the following code 
xgrid <- rep(xgrid, 21); ygrid <- rep(ygrid, each=21) 
set.seed(9); AssessCRF(CircDistr2="vM",  Rho2=0.8,  Range2=10, CovModel2="spherical", GRID=cbind(xgrid, ygrid), OVERFIT=TRUE) 
 
# Appendix C 
AssessCRF(nPoints=400, CircDistr2="Card", Rho2=0.5*0.5, Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=TRUE) 
AssessCRF(nPoints=400, CircDistr2="Tri",    Rho2=0.5*4/pi^2, Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=TRUE) 
AssessCRF(nPoints=400, CircDistr2="U",      Range2=10, Ext2=3,CovModel2="spherical", OVERFIT=TRUE) 
AssessCRF(nPoints=400, CircDistr2="WrC", Rho2=0.5,  Range2=10, Ext2=3,CovModel2="spherical", OVERFIT=TRUE) 
 
# Appendix D 
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S=1000*runif(1) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="Card", Rho2=0.05,          Range2=10, Ext2=3,  CovModel2="spherical", OVERFIT=TRUE) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="Card", Rho2=0.05,          Range2=10, Ext2=3,  CovModel2="spherical", OVERFIT=FALSE) 
 
S=1000*runif(1) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="Card", Rho2=0.95*0.5,    Range2=10, Ext2=3,  CovModel2="spherical", OVERFIT=TRUE) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="Card", Rho2=0.95*0.5,    Range2=10, Ext2=3,  CovModel2="spherical", OVERFIT=FALSE) 
 
S=1000*runif(1) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="Tri",    Rho2=0.05,           Range2=10, Ext2=3,  CovModel2="spherical", OVERFIT=TRUE) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="Tri",    Rho2=0.05,           Range2=10, Ext2=3,  CovModel2="spherical", OVERFIT=FALSE) 
 
S=1000*runif(1) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="Tri",    Rho2=0.95*4/pi^2, Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=TRUE) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="Tri",    Rho2=0.95*4/pi^2, Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=FALSE) 
S=1000*runif(1) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="vM",   Rho2=0.05,            Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=TRUE) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="vM",   Rho2=0.05,            Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=FALSE) 
 
S=1000*runif(1) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="vM",   Rho2=0.95,            Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=TRUE) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="vM",   Rho2=0.95,            Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=FALSE) 
 
S=1000*runif(1) 
set.seed(S) 
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AssessCRF(nPoints=400, CircDistr2="WrC", Rho2=0.05,           Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=TRUE) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="WrC", Rho2=0.05,           Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=FALSE) 
 
S=1000*runif(1) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="WrC", Rho2=0.95,           Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=TRUE) 
set.seed(S) 
AssessCRF(nPoints=400, CircDistr2="WrC", Rho2=0.95,           Range2=10, Ext2=3, CovModel2="spherical", OVERFIT=FALSE) 
 
 
L.9 Figures 6-1 to 6-10 
 
require(CircSpatial) 
 
# Figure 6-1, Comprehensive Example - Global Trend Model of 121 Locations 
 
model1.x<- 1:11; model1.y <- 11:1; model1.y <- rep(model1.y, 11); model1.x <- rep(model1.x, each=11) 
model1.direction <- matrix(data=c( 
    157, 141, 126, 113, 101, 90, 79, 67, 54, 40, 25, 152, 137, 123, 111, 100, 90, 80, 69, 57, 44, 30, 
    147, 133, 120, 109,   99, 90, 81, 71, 60, 48, 35, 142, 129, 117, 107,   98, 90, 82, 73, 63, 52, 40, 
    137, 125, 114, 105,   97, 90, 83, 75, 66, 56, 45, 132, 121, 111, 103,   96, 90, 84, 77, 69, 60, 50, 
    127, 117, 108, 101,   95, 90, 85, 79, 72, 64, 55, 122, 113, 105,   99,   94, 90, 86, 81, 75, 68, 60, 
    117, 109, 102,   97,   93, 90, 87, 83, 78, 72, 65, 112, 105,   99,   95,   92, 90, 88, 85, 81, 76, 70, 
    107, 101,   96,   93,   91, 90, 89, 87, 84, 80, 75), ncol=11, byrow=TRUE) 
model1.direction <- as.vector(model1.direction)*pi/180 
 
par(mai=c(0.5, 0.5, 0.15, 0.15), ps=11) 
plot( x=model1.x,y=model1.y, type='n', xlim=c(0,12), ylim=c(0,12), asp=1, xlab='', ylab='') 
arrow.plot(a1=model1.x, a2=model1.y, u=cos(model1.direction),v=sin(model1.direction), arrow.ex=.06, length=.07, col='blue3', lwd=1, angle=18)
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# Figure 6-2, Comprehensive Example - Simulated Sample of a Von Mises CRF, 5.0=ρ  
 
# Compute vM CRF of 121 observations, Rho=sqrt(0.5) so sill about 0.5, from GRF (Range=4, spherical covariance). 
set.seed(666) 
crf1<- SimulateCRF(CircDistr="vM", Rho=sqrt(0.5), Range=4, CovModel="spherical", Grid=cbind(model1.x, model1.y), OverFit=FALSE) 
names(crf1) #  [1] "x"         "y"         "direction" "Z" 
 
# Make sample 
sample1.direction <- model1.direction + crf1$direction 
par(mai=c(0.5, 0.5, 0.15, 0.15), ps=11) 
plot( x=crf1$x,y=crf1$y, type='n', xlim=c(0,12), ylim=c(0,12), asp=1, xlab='', ylab='') 
arrow.plot(a1=crf1$x, a2=crf1$y, u=cos(sample1.direction),v=sin(sample1.direction), arrow.ex=.06, length=.07, col=1, lwd=1, angle=18) 
 
 
# Figure 6-3, Comprehensive Example - Estimate of the Global Trend Model 
 
FitHoriz1 <- lm(cos(sample1.direction) ~ (model1.x + model1.y)^2) 
FitVert1 <- lm(sin(sample1.direction)  ~ (model1.x + model1.y)^2) 
fitted1.direction <- atan2(FitVert1$fitted.values, FitHoriz1$fitted.values) 
 
plot( x=crf1$x,y=crf1$y, type='n', xlim=c(0,12), ylim=c(0,12), asp=1, xlab="", ylab="") 
arrow.plot(a1=model1.x, a2=model1.y, u=cos(fitted1.direction),v=sin(fitted1.direction), arrow.ex=.06, length=.07, col="tan", lwd=3, angle=18) 
arrow.plot(a1=model1.x, a2=model1.y, u=cos(model1.direction),v=sin(model1.direction), arrow.ex=.06, length=.07, col="blue3", lwd=1, angle=18) 
 
 
# Figure 6-4, Comprehensive Example - Enlarged View of the Data, Model, and Residual Rotation 
 
par(mai=c(0.45, 0.45, 0.1, 0.1), ps=11) 
CircResidual(X=model1.x, Y=model1.y, Raw=sample1.direction, Trend=fitted1.direction, Plot=TRUE, AdjArrowLength=.9, xlim=c(8.0, 11.0), 
 ylim=c(8, 11)) 
 
resids1 <- CircResidual(X=model1.x, Y=model1.y, Raw=sample1.direction, Trend=fitted1.direction, Plot=FALSE) 
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# Figure 6-5, Comprehensive Example - Points of the Cosineogram, and the Exponential, Gaussian, 
# and Spherical Cosine Models of Spatial Correlation 
 
par(mai=c(0.85, 0.75, 0.15, 0.15), ps=11) 
CosinePlots(x=resids1$x, y=resids1$y, directions=resids1$direction, Plot=TRUE, Cloud=FALSE, Model=TRUE, nugget=0, Range=3.07, 
sill=0.674, x.legend=0.4, y.legend=0.95, Lag=seq(0, 8, by=.375), BinWAdj=1) 
 
 
# Figure 6-6, Enlarged View of The Kriging and the Residual Rotations 
 
x2 <- seq(1,11, by=0.2); n <- length(x2); y2 <- x2; y2 <- rep(y2, n); x2 <- rep(x2, each=n) 
krig1 <- KrigCRF(krig.x=x2, krig.y=y2, resid.x=resids1$x, resid.y=resids1$y, resid.direction= resids1$direction, Model="spherical", Nugget=0.0, 
 Range=3.07, sill=0.674, Plot=FALSE) 
par(mai=c(0.45, 0.45, 0.1, 0.1), ps=11) 
plot(x=krig1$x, y=krig1$y, ty="n", xlim=c(8.0, 11.0), ylim=c(8.0, 11.0), asp=1) 
arrow.plot(a1=krig1$x, a2=krig1$y, u=cos(krig1$direction), v=sin(krig1$direction), col="light grey", arrow.ex=0.08, xpd=FALSE, 
 length = 0.08, angle=15) 
arrow.plot(a1=resids1$x, a2=resids1$y, u=cos(resids1$direction), v=sin(resids1$direction), arrow.ex=0.05, xpd=FALSE, length= 0.06, 
 col=2, lty=1, lwd=1) 
 
 
# Figure 6-7, Comprehensive Example – Enlarged View of the Interpolation of the Global Trend Model 
 
interp1 <- InterpDirection(in.x=model1.x, in.y=model1.y, in.direction=fitted1.direction, out.x=krig1$x, out.y=krig1$y) 
plot(x=interp1$x, y=interp1$y, ty="n", xlim=c(8, 11.0), ylim=c(8.0, 11.0), asp=1) 
arrow.plot(a1=model1.x, a2=model1.y, u=cos(fitted1.direction), v=sin(fitted1.direction), arrow.ex=0.09, xpd=FALSE, length = 0.09, 
 col="tan", lwd=2, angle=17) 
arrow.plot(a1=interp1$x, a2=interp1$y, u=cos(interp1$direction), v=sin(interp1$direction), col="purple", arrow.ex=0.05, xpd=FALSE, 
 length = 0.06, angle=17) 
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# Figure 6-8, Comprehensive Example – Arrow Plot of the Circular Spatial Data Estimate, Enlarged View 
 
estimate1.direction=interp1$direction + krig1$direction 
par(mai=c(0.45, 0.45, 0.1, 0.1), ps=11) 
plot(x=interp1$x, y=interp1$y, ty="n", xlim=c(8.0, 11.0), ylim=c(8.0, 11.0), asp=1) 
arrow.plot(a1=interp1$x, a2=interp1$y, u=cos(estimate1.direction), v=sin(estimate1.direction), arrow.ex=0.09, xpd=FALSE, 
 length = 0.09,col="gold", lwd=1, angle=17) 
arrow.plot(a1=model1.x, a2=model1.y, u=cos(sample1.direction), v=sin(sample1.direction), col=1, arrow.ex=0.05, xpd=FALSE, 
 length = 0.06, angle=17) 
 
 
# Figure 6-9, Comprehensive Example – Circular Dataimage of the Circular Spatial Data Estimate 
 
output1 <- data.frame(x=interp1$x, y=interp1$y, u=cos(estimate1.direction), v=sin(estimate1.direction), check.rows=TRUE, check.names=TRUE) 
CircDataimage() # Use HSV Color Wheel, -105 rotation, arrow length multiplier 0.8, arrow spacing in pixels 3 
 
 
# Figure 6-10, Comprehensive Example - Circular Kriging Variance with Observations on a Regular Grid 
 
KrigCRF(krig.x=x2, krig.y=y2, resid.x=resids1$x, resid.y=resids1$y, resid.direction= resids1$direction, Model="spherical", Nugget=0.0, 
 Range=3.07, sill=0.674, Plot=TRUE, PlotVar=TRUE) 



 

 

321

L.10 Make Cosine Datasets 
 
range <- 5 
 
U.s.5 <- MakeCosineData(model="spherical",   CircDistr="U", Range=range) 
U.e.5 <- MakeCosineData(model="exponential", CircDistr="U", Range=range) 
U.g.5 <- MakeCosineData(model="gauss",    CircDistr="U", Range=range) 
gc() 
 
RhoMax <- 0.5 
Distr <- "Card" 
card.s.05.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
card.s.25.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
card.s.50.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
card.s.75.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
card.s.95.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
card.e.05.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
card.e.25.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
card.e.50.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
card.e.75.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
card.e.95.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
card.g.05.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
card.g.25.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
card.g.50.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
card.g.75.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
card.g.95.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
gc() 
 
RhoMax <- 4/pi^2 
Distr <- "Tri" 
tri.s.05.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
tri.s.25.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
tri.s.50.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
tri.s.75.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
tri.s.95.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
tri.e.05.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
tri.e.25.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
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tri.e.50.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
tri.e.75.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
tri.e.95.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
tri.g.05.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
tri.g.25.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
tri.g.50.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
tri.g.75.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
tri.g.95.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
gc() 
 
RhoMax <- 1 
Distr <- "vM" 
vM.s.05.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
vM.s.25.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
vM.s.50.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
vM.s.75.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
vM.s.95.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
vM.e.05.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
vM.e.25.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
vM.e.50.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
vM.e.75.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
vM.e.95.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
vM.g.05.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
vM.g.25.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
vM.g.50.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
vM.g.75.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
vM.g.95.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
gc() 
 
RhoMax <- 1 
Distr <- "WrC" 
WrC.s.05.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
WrC.s.25.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
WrC.s.50.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
WrC.s.75.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
WrC.s.95.5 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
WrC.e.05.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
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WrC.e.25.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
WrC.e.50.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
WrC.e.75.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
WrC.e.95.5 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
WrC.g.05.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
WrC.g.25.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
WrC.g.50.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
WrC.g.75.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
WrC.g.95.5 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
gc() 
 
range <- 10 
 
U.s.10 <- MakeCosineData(model="spherical",   CircDistr="U", Range=range) 
U.e.10 <- MakeCosineData(model="exponential", CircDistr="U", Range=range) 
U.g.10 <- MakeCosineData(model="gauss",    CircDistr="U", Range=range) 
gc() 
 
RhoMax <- 0.5 
Distr <- "Card" 
card.s.05.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
card.s.25.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
card.s.50.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
card.s.75.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
card.s.95.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
card.e.05.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
card.e.25.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
card.e.50.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
card.e.75.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
card.e.95.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
card.g.05.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
card.g.25.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
card.g.50.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
card.g.75.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
card.g.95.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
gc() 
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RhoMax <- 4/pi^2 
Distr <- "Tri" 
tri.s.05.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
tri.s.25.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
tri.s.50.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
tri.s.75.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
tri.s.95.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
tri.e.05.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
tri.e.25.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
tri.e.50.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
tri.e.75.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
tri.e.95.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
tri.g.05.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
tri.g.25.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
tri.g.50.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
tri.g.75.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
tri.g.95.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
gc() 
 
RhoMax <- 1 
Distr <- "vM" 
vM.s.05.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
vM.s.25.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
vM.s.50.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
vM.s.75.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
vM.s.95.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
vM.e.05.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
vM.e.25.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
vM.e.50.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
vM.e.75.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
vM.e.95.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
vM.g.05.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
vM.g.25.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
vM.g.50.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
vM.g.75.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
vM.g.95.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
gc() 
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RhoMax <- 1 
Distr <- "WrC" 
WrC.s.05.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
WrC.s.25.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
WrC.s.50.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
WrC.s.75.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
WrC.s.95.10 <- MakeCosineData(model="spherical",   CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
WrC.e.05.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
WrC.e.25.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
WrC.e.50.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
WrC.e.75.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
WrC.e.95.10 <- MakeCosineData(model="exponential", CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
WrC.g.05.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.05*RhoMax, Range=range) 
WrC.g.25.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.25*RhoMax, Range=range) 
WrC.g.50.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.50*RhoMax, Range=range) 
WrC.g.75.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.75*RhoMax, Range=range) 
WrC.g.95.10 <- MakeCosineData(model="gauss",    CircDistr=Distr, Rho=.95*RhoMax, Range=range) 
gc() 
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L.11 Figure M-1, Fitted Covariogram an Unbiased Estimator 
 
MakeVariogData <- function(nSim=400, nPoints=400, Range=10, Ext=3, CovModel="spherical", Grid=NULL) 
{ 
 # 2008-7-26.1112 
 # Generate a nPoints x nPoints, fit variograms 
  
 require(geoR) 
 require(KernSmooth) 
 VarioG.x <- c() 
 VarioG.y <- c() 
 for (i in 1:nSim) 
 { 
  if(is.null(Grid)) 
  { 
   GRF <- grf(n=nPoints, xlims=c(0, Range*Ext), ylims=c(0, Range*Ext), cov.model=CovModel, 
    nugget=0, cov.pars=c(1, Range), aniso.pars=Anisotropy, RF=TRUE, messages=FALSE) } else { 
   GRF <- grf(grid=Grid, cov.model=CovModel, 
    nugget=0, cov.pars=c(1, Range), aniso.pars=Anisotropy, RF=TRUE, messages=FALSE) 
  } 
  # GRF variogram 
  vario.i <- variog(coords = GRF$coords, data = GRF$data, option = "bin", breaks=seq(0,Range, by=.2)) 
  VarioG.x <- c(VarioG.x, vario.i$u) 
  VarioG.y <- c(VarioG.y, vario.i$v) 
 } 
 return(list(x=VarioG.x,y=VarioG.y)) 
 } 
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PlotFittedVaroG <- function(Data=fittedXY, Degree=1, BandW=.83, Range=10) 
{ 
 # Transform MakeVariogData output to covariance 
 x <- fittedXY$x 
 y <- fittedXY$y 
 fitVarioG <- locpoly(x, y, bandwidth = BandW, range.x=c(0,Range), degree=Degree) 
 par(mfrow=c(2,1)) 
 plot(fitVarioG$x, 1-fitVarioG$y, ty="l", lwd=8, xlab="Distance Between Observations", ylab="Spherical Covariance") 
 u <- fitVarioG$x 
 v <- 1-(1.5*u/Range - 0.5*(u/Range)^3) 
 lines(u,v, col=2) 
 Difference <- (1-fitVarioG$y) - v 
 plot(fitVarioG$x,Difference, ty="l", xlab="Distance Between Observations", ylab="Vertical Distance Between Curves", 
  sub=paste("Average Vertical Distance between Curves", round(mean(abs(Difference)),4))) 
 abline(h=0,col="grey80") 
} 
 
 
L.12  Plot Figures M-2, M-3, and M-4, Families of Curves 
 
Plot1 <- function(x, Main, Pch, off1=0.3, off2=0.0) 
{ 
 plot(x, ty="l", xlim=c(0,10.5), ylim=c(0,1), xlab="X", ylab="Cosine(X)", main=Main, col="tan") 
 points(x$x[401] + off1, x$y[401] + off2, pch=Pch, col=2) 
} 
 
Plot2 <- function(x, Pch, off1=0.3, off2=0.0) 
{ 
 lines(x, ty="l", col="tan") 
 points(x$x[401] + off1, x$y[401] + off2, pch=Pch, col=2) 
} 
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Plot3 <- function(x, Pch, off1=0.3, off2=0.0) 
{ 
 lines(x, ty="l", col=1) 
 points(x$x[401] + off1, x$y[401] + off2, pch=Pch, col=2) 
} 
 
 
# Figure M-2 
 
par(mfrow=c(3,2), bty="n", mgp=c(2,1,0), mar=c(4.0, 3.5, 2.0, 0.0)) 
Plot1(card.e.05.10$fitCosineoG, Main="Cardioid", Pch="1") 
 
Plot2(card.e.25.10$fitCosineoG, Pch="2") 
Plot2(card.e.50.10$fitCosineoG, Pch="3") 
Plot2(card.e.75.10$fitCosineoG, Pch="4") 
Plot2(card.e.95.10$fitCosineoG, Pch="5") 
 
Plot3(card.e.05.5$fitCosineoG,  Pch="1") 
Plot3(card.e.25.5$fitCosineoG,  Pch="2") 
Plot3(card.e.50.5$fitCosineoG,  Pch="3") 
Plot3(card.e.75.5$fitCosineoG,  Pch="4") 
Plot3(card.e.95.5$fitCosineoG,  Pch="5") 
 
Plot1(tri.e.05.10$fitCosineoG, Main="Triangular", Pch="1") 
 
Plot2(tri.e.25.10$fitCosineoG, Pch="2", 0.5, 0.01) 
Plot2(tri.e.50.10$fitCosineoG, Pch="3") 
Plot2(tri.e.75.10$fitCosineoG, Pch="4") 
Plot2(tri.e.95.10$fitCosineoG, Pch="5") 
 
Plot3(tri.e.05.5$fitCosineoG,  Pch="1") 
Plot3(tri.e.25.5$fitCosineoG,  Pch="2", 0.5, 0.01) 
Plot3(tri.e.50.5$fitCosineoG,  Pch="3") 
Plot3(tri.e.75.5$fitCosineoG,  Pch="4") 
Plot3(tri.e.95.5$fitCosineoG,  Pch="5") 
 
Plot1(vM.e.05.10$fitCosineoG, Main="von Mises", Pch="1") 
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Plot2(vM.e.25.10$fitCosineoG, Pch="2") 
Plot2(vM.e.50.10$fitCosineoG, Pch="3") 
Plot2(vM.e.75.10$fitCosineoG, Pch="4") 
Plot2(vM.e.95.10$fitCosineoG, Pch="5") 
 
Plot3(vM.e.05.5$fitCosineoG,  Pch="1") 
Plot3(vM.e.25.5$fitCosineoG,  Pch="2") 
Plot3(vM.e.50.5$fitCosineoG,  Pch="3") 
Plot3(vM.e.75.5$fitCosineoG,  Pch="4") 
Plot3(vM.e.95.5$fitCosineoG,  Pch="5") 
 
Plot1(WrC.e.05.10$fitCosineoG, Main="Wrapped Cauchy", Pch="1") 
 
Plot2(WrC.e.25.10$fitCosineoG, Pch="2") 
Plot2(WrC.e.50.10$fitCosineoG, Pch="3") 
Plot2(WrC.e.75.10$fitCosineoG, Pch="4") 
Plot2(WrC.e.95.10$fitCosineoG, Pch="5") 
 
Plot3(WrC.e.05.5$fitCosineoG,  Pch="1") 
Plot3(WrC.e.25.5$fitCosineoG,  Pch="2") 
Plot3(WrC.e.50.5$fitCosineoG,  Pch="3") 
Plot3(WrC.e.75.5$fitCosineoG,  Pch="4") 
Plot3(WrC.e.95.5$fitCosineoG,  Pch="5") 
 
Plot1(U.e.10$fitCosineoG, Main="Uniform", Pch="1") 
Plot3(U.e.5$fitCosineoG,  Pch="1") 
 
 
# Figure M-3 
 
par(mfrow=c(3,2), bty="n", mgp=c(2,1,0), mar=c(4.0, 3.5, 2.0, 0.0)) 
Plot1(card.g.05.10$fitCosineoG, Main="Cardioid", Pch="1") 
 
Plot2(card.g.25.10$fitCosineoG, Pch="2", 0.5) 
Plot2(card.g.50.10$fitCosineoG, Pch="3") 
Plot2(card.g.75.10$fitCosineoG, Pch="4") 
Plot2(card.g.95.10$fitCosineoG, Pch="5") 
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Plot3(card.g.05.5$fitCosineoG,  Pch="1") 
Plot3(card.g.25.5$fitCosineoG,  Pch="2", 0.5) 
Plot3(card.g.50.5$fitCosineoG,  Pch="3") 
Plot3(card.g.75.5$fitCosineoG,  Pch="4") 
Plot3(card.g.95.5$fitCosineoG,  Pch="5") 
 
Plot1(tri.g.05.10$fitCosineoG, Main="Triangular", Pch="1") 
 
Plot2(tri.g.25.10$fitCosineoG, Pch="2", 0.5, 0.02) 
Plot2(tri.g.50.10$fitCosineoG, Pch="3") 
Plot2(tri.g.75.10$fitCosineoG, Pch="4") 
Plot2(tri.g.95.10$fitCosineoG, Pch="5") 
 
Plot3(tri.g.05.5$fitCosineoG,  Pch="1") 
Plot3(tri.g.25.5$fitCosineoG,  Pch="2", 0.5) 
Plot3(tri.g.50.5$fitCosineoG,  Pch="3") 
Plot3(tri.g.75.5$fitCosineoG,  Pch="4") 
Plot3(tri.g.95.5$fitCosineoG,  Pch="5") 
 
Plot1(vM.g.05.10$fitCosineoG, Main="von Mises", Pch="1") 
 
Plot2(vM.g.25.10$fitCosineoG, Pch="2") 
Plot2(vM.g.50.10$fitCosineoG, Pch="3") 
Plot2(vM.g.75.10$fitCosineoG, Pch="4") 
Plot2(vM.g.95.10$fitCosineoG, Pch="5") 
 
Plot3(vM.g.05.5$fitCosineoG,  Pch="1") 
Plot3(vM.g.25.5$fitCosineoG,  Pch="2") 
Plot3(vM.g.50.5$fitCosineoG,  Pch="3") 
Plot3(vM.g.75.5$fitCosineoG,  Pch="4") 
Plot3(vM.g.95.5$fitCosineoG,  Pch="5") 
 
Plot1(WrC.g.05.10$fitCosineoG, Main="Wrapped Cauchy", Pch="1") 
 
Plot2(WrC.g.25.10$fitCosineoG, Pch="2") 
Plot2(WrC.g.50.10$fitCosineoG, Pch="3") 
Plot2(WrC.g.75.10$fitCosineoG, Pch="4") 
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Plot2(WrC.g.95.10$fitCosineoG, Pch="5") 
 
Plot3(WrC.g.05.5$fitCosineoG,  Pch="1") 
Plot3(WrC.g.25.5$fitCosineoG,  Pch="2") 
Plot3(WrC.g.50.5$fitCosineoG,  Pch="3") 
Plot3(WrC.g.75.5$fitCosineoG,  Pch="4") 
Plot3(WrC.g.95.5$fitCosineoG,  Pch="5") 
 
Plot1(U.g.10$fitCosineoG, Main="Uniform", Pch="1") 
Plot3(U.g.5$fitCosineoG,  Pch="1") 
 
 
# Figure M-4 
 
par(mfrow=c(3,2), bty="n", mgp=c(2,1,0), mar=c(4.0, 3.5, 2.0, 0.0)) 
Plot1(card.s.05.10$fitCosineoG, Main="Cardioid", Pch="1") 
 
Plot2(card.s.25.10$fitCosineoG, Pch="2", 0.5, 0.01) 
Plot2(card.s.50.10$fitCosineoG, Pch="3") 
Plot2(card.s.75.10$fitCosineoG, Pch="4") 
Plot2(card.s.95.10$fitCosineoG, Pch="5") 
 
Plot3(card.s.05.5$fitCosineoG,  Pch="1") 
Plot3(card.s.25.5$fitCosineoG,  Pch="2", 0.5, 0.01) 
Plot3(card.s.50.5$fitCosineoG,  Pch="3") 
Plot3(card.s.75.5$fitCosineoG,  Pch="4") 
Plot3(card.s.95.5$fitCosineoG,  Pch="5") 
 
Plot1(tri.s.05.10$fitCosineoG, Main="Triangular", Pch="1") 
 
Plot2(tri.s.25.10$fitCosineoG, Pch="2", 0.5, 0.01) 
Plot2(tri.s.50.10$fitCosineoG, Pch="3") 
Plot2(tri.s.75.10$fitCosineoG, Pch="4") 
Plot2(tri.s.95.10$fitCosineoG, Pch="5") 
Plot3(tri.s.05.5$fitCosineoG,  Pch="1") 
Plot3(tri.s.25.5$fitCosineoG,  Pch="2", 0.55, 0.01) 
Plot3(tri.s.50.5$fitCosineoG,  Pch="3") 
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Plot3(tri.s.75.5$fitCosineoG,  Pch="4") 
Plot3(tri.s.95.5$fitCosineoG,  Pch="5") 
 
Plot1(vM.s.05.10$fitCosineoG, Main="von Mises", Pch="1") 
 
Plot2(vM.s.25.10$fitCosineoG, Pch="2") 
Plot2(vM.s.50.10$fitCosineoG, Pch="3") 
Plot2(vM.s.75.10$fitCosineoG, Pch="4") 
Plot2(vM.s.95.10$fitCosineoG, Pch="5") 
 
Plot3(vM.s.05.5$fitCosineoG,  Pch="1") 
Plot3(vM.s.25.5$fitCosineoG,  Pch="2") 
Plot3(vM.s.50.5$fitCosineoG,  Pch="3") 
Plot3(vM.s.75.5$fitCosineoG,  Pch="4") 
Plot3(vM.s.95.5$fitCosineoG,  Pch="5") 
 
Plot1(WrC.s.05.10$fitCosineoG, Main="Wrapped Cauchy", Pch="1") 
 
Plot2(WrC.s.25.10$fitCosineoG, Pch="2") 
Plot2(WrC.s.50.10$fitCosineoG, Pch="3") 
Plot2(WrC.s.75.10$fitCosineoG, Pch="4") 
Plot2(WrC.s.95.10$fitCosineoG, Pch="5") 
 
Plot3(WrC.s.05.5$fitCosineoG,  Pch="1") 
Plot3(WrC.s.25.5$fitCosineoG,  Pch="2") 
Plot3(WrC.s.50.5$fitCosineoG,  Pch="3") 
Plot3(WrC.s.75.5$fitCosineoG,  Pch="4") 
Plot3(WrC.s.95.5$fitCosineoG,  Pch="5") 
 
Plot1(U.s.10$fitCosineoG, Main="Uniform", Pch="1") 
Plot3(U.s.5$fitCosineoG,  Pch="1") 
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L.13 Plot Figures M-6 to M-10 
 
 
# Figure M-6 
 
range=5 
x <- seq(0,range,length=101)/range 
a1=0.5; a2=0.8; a3=2 
 
PlotCosModels <- function(a) 
{ 
 y <- 2^(1-a) * (gamma(a))^(-1) * x^a * besselK(x, a) 
 plot(x, y, ty="l" , col=1, xlab=paste("a=",a), ylim=c(0,1)) 
} 
 
par(mfrow=c(3,1), mai=c(0.625, 0.50, 0.15, 0.25)) 
PlotCosModels(a=a1); PlotCosModels(a=a2); PlotCosModels(a=a3) 
 
 
# Figure M-7 
 
range=5 
x <- seq(0,range,length=101)/range 
a1=0.1; a2=1; a3=2 
b1=0.1; b2=1.5; b3=3 
c1=2; c2=4; c3=6 
 
PlotCosModels <- function(a,b) 
{ 
 y <- (1+(1-b/c1)*x^a)*(1+x^a)^(-1-b/a) 
 plot(x, y, ty="l" , col=1, xlab=paste("a=",a), ylab=paste("b=", b)) 
 y <- (1+(1-b/c2)*x^a)*(1+x^a)^(-1-b/a) 
 lines(x,y, col="tan") 
 y <- (1+(1-b/c3)*x^a)*(1+x^a)^(-1-b/a) 
 lines(x,y, col=1, lwd=2, lty=2) 
} 
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par(mfrow=c(3,3)) 
PlotCosModels(a=a1,b=b3); PlotCosModels(a=a2,b=b3); PlotCosModels(a=a3,b=b3) 
PlotCosModels(a=a1,b=b2); PlotCosModels(a=a2,b=b2); PlotCosModels(a=a3,b=b2) 
PlotCosModels(a=a1,b=b1); PlotCosModels(a=a2,b=b1); PlotCosModels(a=a3,b=b1) 
 
 
# Figure M-8 
 
range=5 
x <- seq(0,range,length=101)/range 
a1=0.1; a2=1; a3=2 
b1=0.1; b2=1.5; b3=3 
 
PlotCosModels <- function(a,b) 
{ 
 y <- (1+x^a)^(-b/a) 
 plot(x, y, ty="l" , col=1, xlab=paste("a=",a), ylab=paste("b=", b)) 
} 
 
par(mfrow=c(3,3)) 
PlotCosModels(a=a1,b=b3); PlotCosModels(a=a2,b=b3); PlotCosModels(a=a3,b=b3) 
PlotCosModels(a=a1,b=b2); PlotCosModels(a=a2,b=b2); PlotCosModels(a=a3,b=b2) 
PlotCosModels(a=a1,b=b1); PlotCosModels(a=a2,b=b1); PlotCosModels(a=a3,b=b1) 
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# Figure M-9 
 
range=5; x <- seq(0,range,length=101)/range 
a1=1; a2=5; a3=10 
b1=1; b2=5; b3=10 
c1=1; c2=2; c3=3 
 
PlotCosModels <- function(a,b) 
{ 
 y <- c1^(-b) * (besselK(a*c1, b))^(-1) * (c1^2 + x^2)^(0.5*b) * besselK(a*sqrt(c1^2 + x^2), b) 
 plot(x, y, ty="l" , col=1, xlab=paste("a=",a), ylab=paste("b=", b), ylim=c(0,1)) 
 y <- c2^(-b) * (besselK(a*c2, b))^(-1) * (c2^2 + x^2)^(0.5*b) * besselK(a*sqrt(c2^2 + x^2), b) 
 lines(x,y, col="tan") 
 y <- c3^(-b) * (besselK(a*c3, b))^(-1) * (c3^2 + x^2)^(0.5*b) * besselK(a*sqrt(c3^2 + x^2), b) 
 lines(x,y, col=1, lwd=2, lty=2) 
} 
 
par(mfrow=c(3,3)) 
PlotCosModels(a=a1,b=b3); PlotCosModels(a=a2,b=b3); PlotCosModels(a=a3,b=b3) 
PlotCosModels(a=a1,b=b2); PlotCosModels(a=a2,b=b2); PlotCosModels(a=a3,b=b2) 
PlotCosModels(a=a1,b=b1); PlotCosModels(a=a2,b=b1); PlotCosModels(a=a3,b=b1) 
 
 
# Figure M-10 
 
range=5; x <- seq(0,range,length=101)/range 
a1=0.5; a2=1; a3=2 
 
PlotCosModels <- function(a) 
{ 
 y <- exp(-x^a) 
 plot(x, y, ty="l" , col=1, xlab=paste("a=",a)) 
} 
 
par(mfrow=c(3,1), mai=c(0.625, 0.50, 0.15, 0.25)) 
PlotCosModels(a=a1); PlotCosModels(a=a2); PlotCosModels(a=a3) 
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L.14 Plot Figures 4-3 and 4-4 
 
 
# Figure 4-3, Cosine Model Behavior around the Observation Location 0 
 
sample4.x <- c(-20, -10, 0, 10, 20); sample4.y <- c(0,0,0,0,0); sample4.direction <- c(pi/2, 0, pi/2, 0, pi/2) 
x4 <- seq(-20, 20, length.out=201); y4 <- rep(0, 201) 
 
krig4.e <- KrigCRF(krig.x=x4, krig.y=y4, resid.x=sample4.x, resid.y=sample4.y, resid.direction= sample4.direction, Model="exponential", 
 Nugget=0.0, Range=10.0, sill=0, Plot=FALSE) 
krig4.g <- KrigCRF(krig.x=x4, krig.y=y4, resid.x=sample4.x, resid.y=sample4.y, resid.direction= sample4.direction, Model="gauss", 
 Nugget=0.0, Range=10.0, sill=0, Plot=FALSE) 
krig4.s <- KrigCRF(krig.x=x4, krig.y=y4, resid.x=sample4.x, resid.y=sample4.y, resid.direction= sample4.direction, Model="spherical", 
 Nugget=0.0, Range=10.0, sill=0, Plot=FALSE) 
 
par(mai=c(0.65, 0.6, 0.05, 0.05), lab=c(5,10,7), mgp=c(2,1,0)) 
plot( krig4.g$x, krig4.g$direction*180/pi, ty="l", col="tan", lwd=4, xlim=c(-10,1), ylim=c(0, 100), 
 xlab="Location", ylab="Kriging Estimate in Degrees") 
lines(krig4.s$x, krig4.s$direction*180/pi, col=2, lty=2) 
lines( krig4.e$x, krig4.e$direction*180/pi, col=1) 
 
krig5.e <- KrigCRF(krig.x=x4, krig.y=y4, resid.x=sample4.x, resid.y=sample4.y, resid.direction= sample4.direction, Model="exponential", 
 Nugget=0.1, Range=10.0, sill=0, Plot=FALSE) 
krig5.g <- KrigCRF(krig.x=x4, krig.y=y4, resid.x=sample4.x, resid.y=sample4.y, resid.direction= sample4.direction, Model="gauss", 
 Nugget=0.1, Range=10.0, sill=0, Plot=FALSE) 
krig5.s <- KrigCRF(krig.x=x4, krig.y=y4, resid.x=sample4.x, resid.y=sample4.y, resid.direction= sample4.direction, Model="spherical", 
 Nugget=0.1, Range=10.0, sill=0, Plot=FALSE) 
 
par(mai=c(0.65, 0.05, 0.05, 0.05),yaxt="n") 
plot( krig5.g$x, krig5.g$direction*180/pi, ty="l", col="tan", lwd=4, xlim=c(-10,1), ylim=c(0, 100), xlab="Location", ylab="") 
lines(krig5.s$x, krig5.s$direction*180/pi, col=2, lty=2) 
lines( krig5.e$x, krig5.e$direction*180/pi, col=1) 
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# Figure 4-4 
 
PlotCKVar(rho=0,    ng=0,    range=4, x.legend=4.0, y.legend=1.5) 
PlotCKVar(rho=0.5, ng=0,    range=4, x.legend=3.5, y.legend=1.0) 
PlotCKVar(rho=0,    ng=0.2, range=4, x.legend=3.5, y.legend=1.25) 
PlotCKVar(rho=0,    ng=0,    range=8, x.legend=4.5, y.legend=1.0) 
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Appendix M 

 
Cosine Curves of Simulated Circular Random Fields (CRF) 

 
M.1 Review 

This appendix characterizes the circular-spatial correlation produced by the 

method of simulating CRFs of Chapter 5.  This form of circular-spatial correlation is 

expressed as the mean cosine of the angle between random components of directions 

vs. distance between observation locations, which is required to solve the kriging of 

circular RV of Chapter 4.  Since the method involves transformations of the nonclosed 

form of the normal CDF and a circular inverse CDFs, some of which do not have closed 

form expression, exact expressions for the cosine curves were not derived.  Instead, the 

cosine curves produced by the method were characterized by fitted models adapted 

from the covariance models used for kriging of linear RV.  The covariance models with 

variance 1 were adapted by Equation (5.2) in Chapter 5, Subsection 5.4.2.2 to the 

behavior of the mean cosine of a CRF. 

 
M.2 Generation of Cosine vs. Distance Curves 

For characterization of the mean cosine vs. distance of the simulated CRF, 

cosine vs. distance curves were generated using the R code in Appendices K.14 and 

L.10.  The commands in L.10 specify 126 different sets of simulation inputs based on: 

• The cardioid, triangular, uniform, von Mises, and wrapped Cauchy circular probability 

distributions as described in Table 5-1 in Chapter 5, Section 5.3, 

• 5 values of the parameter ρ  of a circular probability distribution (See Table M-1), 

• Range r, the scale parameter of the covariance model of the Gaussian random field 

(GRF), at 5 and 10, and 
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Table M-1.  Mean Resultant Vector Length ρ of Circular Distributions for Figures    
M-2, M-3, and M-4. 
 

Index % of 
ρ  max 

Cardioid Triangular Uniform von Mises Wrapped 
Cauchy 

1 5% 0.025 0.020 0.000 0.050 0.050 
2 25% 0.125 0.101  0.250 0.250 
3 50% 0.25 0.203  0.500 0.500 
4 75% 0.375 0.304  0.750 0.750 
5 95% 0.475 0.385  0.950 0.950 

 Range 
of ρ 

5.00 ≤< ρ  2/40 πρ ≤<  0=ρ * 10 << ρ  10 << ρ  

 
* All directions of the uniform circular distribution have equal probability density resulting 
in a mean resultant length ρ  of zero. 
 
 
• Exponential, Gaussian, spherical covariance models ( )dc  of the GRF as listed in 

Chapter 5, Subsection 5.2.2, step 4). 

For each of the 126 sets of inputs, 400 simulations of the CRF were computed 

without standardization of the GRF (Chapter 5, Section 5.3, step 1).  For each 

simulation, 400 observations of direction at random sample locations were computed, 

and a cosineogram (Chapter 3) was evaluated. 

For each of the 126 sets of inputs, the cosineograms points were collected into a 

datasets.  Each dataset was reduced to a curve of cosine vs. distance by local 

polynomial regression of degree 1 (Wand and Jones 1995).  These curves will be shown 

in the next section. 

Do these curves represent the underlying spatial dependence produced by the 

method of simulation?  Figure M-1 was constructed using the R code in Appendix L, 

Section L.11.  400 variograms of simulations of a GRF with spherical covariance, 

range=10, and variance=1, were reduced by local polynomial regression of degree 1 to a 

curve of variance vs. distance.  The variance vs. distance curve was transformed to 

covariance vs. distance (Bailey and Gatrell 1995, p. 163). 
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Figure M-1, Fitted Covariogram an Unbiased Estimator of Spherical Covariance 
 
 
 
 
 
 
 
 
In the top plot, the theoretical covariance is over plotted in white on the 

covariance curve from the simulations (black).  Visually, the curves coincide indicating 

that the fitted curve is unbiased.  The bottom plot shows the difference of the covariance 

curve minus the theoretical covariance.  The average vertical distance between curves is 

0.001.  Thus, the proximity of the curves provides verification by simulation that the 

curves in the next section are unbiased estimates of the spatial dependence produced 

by the method of simulation, and justifies the approach of the next section. 
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M.3 Families of Cosine Curves 

Figures M-2 to M-4, which were constructed using the R code in Appendix L, 

Section L.12, show 126 curves of the mean cosine vs. distance derived from the data 

sets.  The combinations of ρ and range provide a full spectrum of cosine curves for each 

input covariance model of the Gaussian random field (GRF).  The black curves have 

range=5 and the tan curves have range=10.  ρ  increases from (1) to (5) as specified by 

the values in Table M-1 because the maximum value of ρ  depends on the circular 

probability distribution.  Examination of these figures indicates that each GRF covariance 

model (exponential, Gaussian, spherical) produces a distinct family of CRF cosine 

curves of similar shape.  The exponential covariance model in Figure M-2 produces a 

cosine curve that approaches a horizontal asymptote as distance increases similar to the 

exponential covariance model.  The Gaussian covariance model in Figure M-3 produces 

a cosine curve that has an “S” shape similar to the Gaussian covariance model.  The 

spherical covariance model in Figure M-4 produces a cosine curve that has a horizontal 

tangent at distance=range similar to the spherical covariance model.
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Figure M-2.  Family of Cosine vs. Distance Curves from the GRF with Exponential 
Covariance.  The black curves have range = 5 and the tan curves have range = 10.  
Within the classes of circular probability distributions and range value, the parameter ρ 
increases from bottom to top (Cross reference red numbers to Index values in Table M-
1).  The exponential covariance produces a curve that approaches a horizontal 
asymptote as distance increases similar to the exponential covariance model. 
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Figure M-3.  Family of Cosine vs. Distance Curves from the GRF with Gaussian 
Covariance.  The black curves have range = 5 and the tan curves have range = 10.  
Within the classes of circular probability distributions and range value, the parameter ρ 
increases from bottom to top (Cross reference red numbers to Index values in Table    
M-1).  The Gaussian covariance produces a curve that has an “S” shape similar to the 
Gaussian covariance model. 
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Figure M-4.  Family of Cosine vs. Distance Curves from the GRF with Spherical 
Covariance.  The black curves have range = 5 and the tan curves have range = 10.  
Within the classes of circular probability distributions and range value, the parameter ρ 
increases from bottom to top (Cross reference red numbers to Index values in Table    
M-1).  The spherical covariance produces a curve that has a horizontal tangent at 
distance = range similar to the spherical covariance model. 
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M.4 Characterization of the Cosine Curves 

To characterize the cosine curves, covariance models for linear kriging were 

shifted and scaled to conform to the spatial correlation properties of the CRF.  With ( )dς  

the mean cosine of the angle between random components of direction as a function of 

distance d, ρ  the mean resultant length of the circular probability distribution, 10 <≤ ρ , 

ng the nugget, 210 ρ−≤≤ gn , and ( )dc  the covariance model with a maximum value of 

one, the cosine model was defined as 

      ( ) ( ) ( )





>−−+

=
=

.0,1

0,1
22 ddcn

d
d

g ρρ
ς          (M.1) 

A cosine model with shape similar to the cosine curve was chosen.  The cosine 

curve was fit using a plot such as Figure M-5, which was produced using the R code in 

Appendix K, Section K.15.  The lower plot shows the mean absolute difference (MAD) 

between the cosine curve and cosine model as computed over distances from 0 to the 

range.  The three parameter cosine model was fit as follows:  The value of a parameter 

was changed to determine how to decrease the MAD.  Adjustment of the parameter 

continued until the MAD began to increase.  Then, the parameter was changed in the 

opposite direction at a finer resolution.  When a local minimum was achieved, another 

parameter was adjusted to a local minimum.  Next, the third parameter was adjusted to a 

local minimum.  The entire process was repeated with the modification that when a 

parameter could not be adjusted, adjustment of the next parameter was attempted.  

When any parameter was adjusted, adjustment of the remaining parameters was 

attempted.  When no further adjustment could be made, the parameters and the MAD 

were recorded. 



 

 

346 

 

0 1 2 3 4 5

0.
86

0.
90

0.
94

0.
98

Distance

C
os

in
es

0 1 2 3 4 5

-5
e-

04
5e

-0
4

Mean Abs Difference=  0.000379

Distance

D
iff

er
en

ce
 o

f C
os

in
es

 

Figure M-5.  Whittlematern Cosine Model (a=.493) Approximates the Cosine Curve of 
the von Mises CRF, 95.0=ρ , Transformed from an Exponential GRF, Range r = 5. 
 
 

The characterizing models of reasonably close fit are tabulated in Table M-2.  

The input GRF covariance models are listed in the top rows of the sub tables.  The 

dataset names in the left margin code the other simulation inputs of the distribution 

{Uniform (U), Cardioid (card), Triangular (tri), von Mises (vM), Wrapped Cauchy (WrC)}, 

the parameter ρ  {.05, .95}, and the range r  {5, 10}.  The second row of the sub tables 

lists the characterizing models, which are expressed in Section M.5.  In the main part of 

the table, the cosine model parameter values are listed in order a, b, c.  Where fit was 

not reasonably close, additional models were evaluated.  Where more than one model 

fits a cosine curve, the model with the minimum MAD may be chosen. 

red and black curves are 
visually indistinguishable 
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Table M-2.  Cosine Models Approximating CRF Cosine Curves. 
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M.5 Expressions for the Cosine Models of Table M-2 
 

The models in Table M-2, which approximate the cosine curves, and hence 

characterize them, were adapted from R package RandomFields (Schlather 2001) 

function CovarianceFct by scaling and shifting (Chapter 5, Subsection 5.4.2.2, (5.2)).  In 

this section, these cosine models ( )xς  will be simplified by assuming the nugget 0=gn , 

and expressed in terms of distance d, range r, rdx = , ρ  the resultant mean length 

parameter of the circular probability distribution, 10 <≤ ρ , and covariance parameters a, 

b, and c.  Figures M-6 to M-10 were computed using the R code in Appendix L, Section 

L.13. 

 
M.5.1 Whittlematern: 
 

           ( )
( )

0a(x),K  x
(a)

2
-1)( a

a
a-1

22 >
Γ

+= ρρς x         (M.2)  

( )xKa  denotes the modified Bessel function of the third kind of order a. 
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Figure M-6.  Whittlematern Cosine Models for 0=ρ . 
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M.5.2 Cauchytbm: 

   ( ) ( ) [ ] ( ] 1,0,0,2a, )(1)c
b-1(1-1

1)-a
b(-aa22 ≥>∈+++= cbxxx ρρς      (M.3) 

Cauchytbm models are illustrated in Figure M-7 for 0=ρ  with parameter c=2 as black 

solid, c=4 as tan, and c=6 as thick dashed black curves.  
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Figure M-7.  Cauchytbm Cosine Models for 0=ρ . 
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M.5.3 Generalized Cauchy: 

                ( ) ( ) ( ] 0,2,0,)x(11 b/a-a22 >∈+−+= bax ρρς           (M.4) 

Generalized Cauchy cosine models are illustrated in Figure M-8. 
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Figure M-8.  Generalized Cauchy Cosine Models for 0=ρ . 
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M.5.4 Hyperbolic: 

       ( ) ( ) )  x c(aK * 
c)*(aK
)x (c

c*-1 22
b

b

b 0.522
b-22 +

+
+= ρρς x       (M.5) 

The parameter constraints are {c>=0, a>0 and b>0}, or {c>0 , a>0 and b=0}, or {c>0 , 

a>=0, and b<0}.  ( )xKb  denotes the modified Bessel function of the third kind of order b. 

Hyperbolic models are illustrated in Figure M-9 for 0=ρ  with parameter c=1 as black 

solid, c=2 as tan, and c=3 as thick dashed black curves. 
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Figure M-9.  Hyperbolic Cosine Models for 0=ρ . 
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M.5.5 Stable: 

       ( ) ( ) ( ]0,2 a ),exp(-x*-1 a22 ∈+= ρρς x         (M.6) 

Stable  models are illustrated in Figure M-10 for 0=ρ  with parameter c=1 as black 

solid, c=2 as tan, and c=3 as thick dashed black curves. 
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Figure M-10.  Stable Cosine Models for 0=ρ . 
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M.6 Generalization of the Generation and Characterization of the Cosine  Curves 
 

The reader may choose from more than 30 GRF covariance models as provided 

by the R package Random Fields (Schlather 2001) function CovarianceFct. This function 

is embedded in the R code in Appendix K, Section K.14, MakeCosineData.  

MakeCosineData provides 5 circular distributions (cardioid, triangular, uniform, von 

Mises, wrapped Cauchy) with any valid value of parameter ρ  or κ , depending on the 

distribution, and any range r.  Additional circular distributions can be implemented either 

as a CDF table as described in Chapter 5, Section 5.3, 3), point 3, a) “Compute a table 

of the desired circular CDF ...”, or as a closed form inverse CDF such as in 3), point 2 

“For the triangular CRV ...“, as appropriate. 

The reader may use the code in Appendix L, Section L.10 as a template for 

generating a large series of cosine datasets.  The dataset name references the circular 

distribution, the GRF covariance model, and the range r.  For a more complicated 

example, U.GenCauchy_a_1.8_b_5.15_r_5 indicates that a uniform CRF was generated 

from a generalized Cauchy distribution with parameters a = 1.8, b = 5.15, and range r = 

5.  Note that these computations may take significant time, depending on the number of 

datasets, simulations, and observations per simulation. 

The reader may use the code in Appendix L, Section L.12 as a template for 

plotting families of cosine curves produced. 

Any of the covariance models of CovarianceFct may be used to fit a cosine curve 

because the code in Appendix K, Section K.15, FitCosineData, also uses the 

CovarianceFct function.  The algorithm for achieving a sequence of decreasing local 

minima, as described in Section M.4, is tedious.  The FitCosineData may be revised to 

implement other methods of fitting.  To facilitate fitting, the inputs to MakeCosineData 

should be saved in the output object to be read by FitCosineData. 
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Appendix N 

 
Additional Graphics for Circular Data 

 
 

N.1 Summary Plots for Circular Data 

Continuing from Chapter 1, Section 1.2, Figure N-1 (a) is a vector plot of the wind 

data.  It shows magnitude (m/s) and direction.  Quartiles of vector magnitude were 

colored, in order, blue, green, red, and violet, and the arrow heads of vectors were 

replaced with dots to eliminate coverage by the arrow heads.  Figure N-1 (b) 

summarizes the circular data of Figure N-1 (a).  The circular data plot is constructed 

similar to a histogram.  The arc bin origin is 0°, bin width is 30°, and number of bins is 

12.  One dot for each observation is stacked on the outside of a circle at the center of its 

arc bin.  The circular plot shows that the modal wind direction (arc bin with greatest 

number of observations) is toward about 105° (bin mid point) counterclockwise (CCW) 

from 0° E, or winds are blowing mostly from south-southeast to north-northwest. 

 
 
 

     

              (a)                  (b) 

Figure N-1.  Summary Plots of the Ocean Wind Data.  (a) Magnitude (length) and 
direction wind blows toward, (b) frequency (length) and direction. 
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N.2 Histograms for Circular Data 

The histogram is a common method of summarizing numerical data.  The data 

are grouped into intervals and the number of observations in each interval is counted.  A 

rectangular bar of area proportional to the count in an interval is centered above the 

midpoint of the interval.  The vertical axis of the histogram provides a scale for bar 

height.  With the histogram, we can see the frequency with which data occur relative to 

the horizontal scale value, whether frequency is uniform over the range, or has some 

structure such as being concentrated at some value on the horizontal scale.  The 

histogram for circular data is constructed similarly.  An arc bin origin (e.g., 0°) and arc 

bin width (e.g., 5°, 10°, 20°, or 30°) are selected, and the data are binned and counted.  

The next step is to wrap the horizontal axis of the histogram around a unit circle.  The 

bars are aligned with the circle center and arc interval midpoint, plotted on the outside of 

the circle, and have length or area proportional to count or relative frequency.  Vector 

magnitude is ignored. 

The circular histograms in Figure N-2 summarize the same data as shown in 

Figure N-1 with the same bin origin of 0° and bin width of 30°.  Figure N-2 (a) shows a 

rose plot (Florence Nightingale) of wind direction.  The angle of the wedge is the bin 

width and the area of a wedge is proportional to the bin count.  Figure N-2 (b) shows a 

circular histogram with a bar area corresponding to bin count.  Figure N-2 (c) unwraps 

the circular histogram of Figure N-2 (b) onto a linear scale and repeats one period.  The 

additional period facilitates visual extraction of period, counting of modes, and prevents 

breakup of features occurring near the cross over point of 360° (0°).  Additionally, 

Figures N-2 (a) to (c) show the estimated mean (vector resultant direction) of 106.3° and 

the 95% confidence interval (104.8°,107.8°) for the mean.  This confidence interval is 

based on the von Mises distribution (Fisher 1993, pp. 88-89).  In Figures N-2 (a) and (b), 
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the mean direction is indicated by a thick black radial line from the circle center with 

the confidence interval indicated by a black arc slightly outside the large circle.  In Figure 

N-2 (c), the mean is indicated by a black solid vertical line enclosed in confidence limits 

displayed as vertical dashed lines. 

 
 
 
 
 

  

               (a)                   (b) 

 
           (c) 

Figure N-2.  Circular Histograms of the Ocean Wind Data.  (a) Rose plot, (b) circular 
histogram, and (c) linearized circular histogram summarize circular data.  (c) repeats the 
histogram to facilitate visual extraction of period, counting of modes, and prevent 
breakup of features occurring near the cross over point of 360°. 
 

90° 

0° 180° 

270° 
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N.3 Nonparametric Density Plots for Circular Data 

The kernel density estimates in Figure N-3 are based on the same data as was 

used in Figures N-1 and N-2.  Circular histograms of Figure N-2, like histograms for 

linear variables, can distort the structural information in the sample about the number, 

locations, and sizes of modes through an arbitrary choice of bin origin and bin width.  

The nonparametric smoothed density estimate replaces the bin edge and origin 

decisions with an easier smoothing band width decision.  In nonparametric smoothing, a 

symmetric unimodal function is centered on each observation.  It effectively spreads out 

the mass of an observation with maximum value at the location of the observation, 

mimicking the stochastic process where the observation is an instance of a random 

direction and could have occurred at other locations in the neighborhood of the observed 

direction.  Increasing the bandwidth increases smoothness and decreases noise.  

Decreasing bandwidth exposes more structural detail and noise.  The smoothed 

histograms of Figure N-3 implement the kernel density method for a CRV given in Fisher 

(1993, pp. 26-27). 

Figure N-3 (a) plots the estimated data density on the outside of a unit circle.  

The density at a given angle (direction) is the radial distance between the red and the 

grey curves at the given angle.  Figure N-3 (b) shows the density of Figure N-3 (a) 

unwrapped onto a linear scale with an extra period.  Like the linearized circular 

histogram in Figure N-2 (c), the extra period eliminates the breakup of features at the 

cross over point of 360° and makes it easier to assess structure.  This density estimation 

method indicates that there is one mode at about 105° CCW from 0° E. 
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             (a)                        (b) 

Figure N-3.  Kernel Density Plots of the Ocean Wind Data.  (a) Circular, (b) linear with 
extra period.  There is one mode at about 105° CCW from 0° E. 
 
 
N.4 New Cylindrical Plot of the Circular Probability Density 

Figure N-3 (a) is an example of the traditional method of plotting the probability 

density function (PDF) of a CRV with radius equal to 1.0 + density with density 

depending on direction.  Figure N-4 shows a new method for displaying the circular PDF.  

The PDF is drawn as a cylinder of unit radius with height of the cylinder at an angle 

equal to the probability density at the angle.  Note that, as stated in Chapter 1, Section 

1.1, the unit of angular measurement is radians because PDFs generally contain 

trigonometric functions that require angles in radian units.  This method maintains the 

requirement that the area between the PDF and circular scale must equal 1.0 over the 

support.  In general, the traditional circular display of the PDF does not integrate to one 

as does the linear display.  For a circular uniform distribution with density ( )π2/1  on      

[ )π2,0  or [ )ππ +− ,  radians, we would draw circles of unit radius and radius ( )π2/11+ .  

The area between the outer circle and the unit circle representing the total probability 
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should equal 1.0, but it is actually ( )π4/11+ .  However, the traditional display is easy 

to draw, intuitive, and is widely used. 

 
 

Figure N-4.  New Cylindrical Plot of PDFs of von Mises Probability Densities.  Direction 
is expressed in radian units.  The distribution with 25=κ  is more concentrated and less 
variable than the distribution with 1=κ . 
 
 
Figure N-4 shows two von Mises probability densities with concentration parameters 

25,1=κ  (see Chapter 3, Table 3-1).  The concentration parameter κ is a measure of 

variability for the von Mises distribution equal to ½ the log of the ratio of maximum 

density to the density at the opposite direction.  Hence, large values correspond to 

distributions of low variability and concentrated about the mean.
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      Appendix O 
 

Permissions 
 
 

 This section contains the documents for Technical Information Clearance (permissions) applicable to Figures 2-17 (b), 

and 2-18 (b) and (c).  The first screenshot captures the request, and internal (ATK) and external (NASA) approvals for Technical 

Information Clearance. 
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This part of Permissions contains the documents pertaining to NASA 

approval of Technical Information Clearance. 
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The following is email confirming approval of Technical Information Clearance. 

 

From: MSFC-STI  
Sent: Friday, August 01, 2008 12:40 PM 
To: 'Bill.Morphet@ATK.com' 
Cc: 'Burnette, Sheila'; Pea, John M. (MSFC-MP02) 
Subject: Approved NF 1676 

Mr. Morphet, 
  

 
 
The dissertation entitled "Simulation, Kriging, and Visualization of Circular-Spatial Data" has been 
approved for release and distribution as indicated  by the attached NF 1676.  The original form 
will be returned to you for record retention. 
  

 
 
As required by NASA policy, your document will be forwarded to the Center for AeroSpace 
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