
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2010

A Finite Domain Constraint Approach for Placement and Routing A Finite Domain Constraint Approach for Placement and Routing

of Coarse-Grained Reconfigurable Architectures of Coarse-Grained Reconfigurable Architectures

Rohit Saraswat
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Engineering Commons, and the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Saraswat, Rohit, "A Finite Domain Constraint Approach for Placement and Routing of Coarse-Grained
Reconfigurable Architectures" (2010). All Graduate Theses and Dissertations. 689.
https://digitalcommons.usu.edu/etd/689

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F689&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usu.edu%2Fetd%2F689&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.usu.edu%2Fetd%2F689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/689?utm_source=digitalcommons.usu.edu%2Fetd%2F689&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

A FINITE DOMAIN CONSTRAINT APPROACH FOR PLACEMENT AND

ROUTING OF COARSE-GRAINED RECONFIGURABLE ARCHITECTURES

by

Rohit Saraswat

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

Approved:

Dr. Brandon Eames Dr. Aravind Dasu
Major Professor Committee Member

Dr. Koushik Chakraborty Dr. Sanghamitra Roy
Committee Member Committee Member

Dr. Scott Budge Dr. Steve Allan
Committee Member Committee Member

Dr. Byron R. Burnham
Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2010

ii

Copyright c© Rohit Saraswat 2010

All Rights Reserved

iii

Abstract

A Finite Domain Constraint Approach for Placement and Routing of Coarse-Grained

Reconfigurable Architectures

by

Rohit Saraswat, Doctor of Philosophy

Utah State University, 2010

Major Professor: Dr. Brandon Eames
Department: Electrical and Computer Engineering

Scheduling, placement, and routing are important steps in Very Large Scale Integration

(VLSI) design. Researchers have developed numerous techniques to solve placement and

routing problems. As the complexity of Application Specific Integrated Circuits (ASICs)

increased over the past decades, so did the demand for improved place and route techniques.

The primary objective of these place and route approaches has typically been wirelength

minimization due to its impact on signal delay and design performance. With the advent

of Field Programmable Gate Arrays (FPGAs), the same place and route techniques were

applied to FPGA-based design. However, traditional place and route techniques may not

work for Coarse-Grained Reconfigurable Architectures (CGRAs), which are reconfigurable

devices offering wider path widths than FPGAs and more flexibility than ASICs, due to

the differences in architecture and routing network. Further, the routing network of several

types of CGRAs, including the Field Programmable Object Array (FPOA), has determin-

istic timing as compared to the routing fabric of most ASICs and FPGAs reported in the

literature. This necessitates a fresh look at alternative approaches to place and route de-

signs. This dissertation presents a finite domain constraint-based, delay-aware placement

iv

and routing methodology targeting an FPOA. The proposed methodology takes advantage

of the deterministic routing network of CGRAs to perform a delay aware placement.

(190 pages)

v

To the two most important ladies in my life,
my mother Sushil and my wife Netra.

vi

Acknowledgments

I will be eternally grateful to several people who directly or indirectly contributed to

the success of this dissertation. First and foremost, I would like to thank my family for their

support and encouragement. I am grateful to my parents who themselves set the standards

so high that not pursuing a Ph.D. was never an option. Special thanks to my mom, who in

spite of being on the other side of the planet, has always been close enough to support me

through my struggles as a graduate student. I thank my wife, Netra, for her unconditional

love, constant support, patience, and enthusiasm which kept my morale high and motivated

me to keep going through to the end, even when I spent more time with my computer than

with her. Honestly, it would take another dissertation to express my appreciation, love, and

devotion to her. I also thank my sister, Jyoti, and my wife’s parents for their support.

I express my gratitute and thanks to my advisor, Dr. Brandon Eames, for his vision,

guidance, and patience through the last four years of graduate school. I thank him for

making me aware of the pitfalls along the research path, but more so for letting me shoot

myself in the foot for a first-hand experience. He is one the best teachers and researchers

that I have come across in my student life. Working with him made me feel more like a

fellow researcher than a student. He is truly a friend, philosopher, and guide (the last two

not because he has a Ph.D. but because he is my advisor), from whom I have learned a lot

in the classroom and beyond.

The other members of my committee have also been instrumental in enriching my

graduate experience. I am grateful to Dr. Aravind Dasu who helped me achieve my goals

through his encouragement and constructive criticisms. I am also thankful to Dr. Koushik

Chakraborty and Dr. Sanghamitra Roy for providing valuable inputs that helped me think

beyond my world of deterministic timing and for being as much friends as committee mem-

bers. I also thank Dr. Steve Allan and Dr. Scott Budge for their influence on my graduate

career.

vii

I am also thankful to my friends and colleagues, especially Arvind, Shantanu, Prasad,

Atul, and Sravanthi, who made my stay in Logan enjoyable. I would also like to acknowledge

Mathstar and the ECE Department, which partially provided financial support for this

research.

Rohit Saraswat

viii

Contents

Page

Abstract . iii

Acknowledgments . vi

List of Tables . xi

List of Figures . xii

List of Algorithms . xvi

Acronyms . xvii

1 Introduction . 1
1.1 Motivation of this Research . 3
1.2 Research Contributions . 6
1.3 Overview of This Document . 7

2 Related Work . 9
2.1 2D Mesh Coarse-Grained Reconfigurable Architectures 9
2.2 Search Techniques . 15
2.3 Placement and Routing Techniques . 18

2.3.1 P&R for ASICs . 19
2.3.2 P&R for FPGAs . 23
2.3.3 P&R for CGRAs . 28

3 Background . 31
3.1 FPOA Architecture . 31

3.1.1 ALU Object . 31
3.1.2 MAC Object . 32
3.1.3 RF Object . 32
3.1.4 Interconnect Framework . 33

3.2 Finite Domain Constraints . 36
3.2.1 Propagation . 37
3.2.2 Distribution . 38
3.2.3 Search . 41

4 Resource Allocation and Scheduling . 42
4.1 Data Flow Graph . 42
4.2 Resources in an FPOA . 43
4.3 Resource Allocation and Scheduling . 44

4.3.1 Resource Allocation . 45

ix

4.3.2 Scheduling . 47
4.4 Resource Allocation and Scheduling Algorithms 50
4.5 Schedule Relaxation . 54
4.6 A Finite Domain Model for Allocation and Scheduling 56

4.6.1 A Finite Domain Model for Allocation 57
4.6.2 A Finite Domain Model for Scheduling 61
4.6.3 Distribution Strategy for Allocation and Scheduling 65

5 Delay Aware Placement . 67
5.1 A Formal Model for Objects in an FPOA 67
5.2 Placement Problem . 71

5.2.1 Nearest Neighbor Communication 73
5.2.2 Party Line Communication . 74

5.3 Placement Algorithm . 75
5.4 Solving Placement Problem Using FD Constraints 79

5.4.1 FD Variables and Constraints . 79
5.4.2 Improving Propagation . 86
5.4.3 Distribution Strategy . 90

5.5 Placement Summary . 92

6 Routing . 93
6.1 Mathematical Model of Routing Resources 93
6.2 Routing Problem . 96

6.2.1 Register and Multiplexer Location 99
6.2.2 Party Line Groups . 101
6.2.3 Register and Multiplexer Orientation 101

6.3 Routing Algorithm . 104
6.4 Solving Routing Problem Using FD Constraints 107

6.4.1 FD Variables and Constraints . 107
6.4.2 Improving Search Convergence . 111
6.4.3 Distribution Strategy . 112

6.5 Summary . 114

7 Results . 116
7.1 Overview of Benchmarks . 116
7.2 Performance Evaluation of Proposed Tools 117

7.2.1 Scheduling . 118
7.2.2 Placement . 123
7.2.3 Routing . 129

7.3 Tool Performance for Varying Problem Size 134
7.4 Tool Performance Beyond Arrix Architecture 137

8 Conclusions and Future Work . 141

References . 146

x

Appendices . 155
Appendix A MaxEightALU Constraint Implementation in C++ 156

A.1 MaxEightALU Header File . 156
A.2 MaxEightALU Source Code . 159

Appendix B NAND Gate Count and Execution Latency of Benchmarks 164
Appendix C Layout of Benchmarks . 165

Vita . 170

xi

List of Tables

Table Page

2.1 Summary of coarse-grained reconfigurable architectures. A * indicates pro-
prietary tools. 16

2.2 Design tools for CGRAs. 17

2.3 Placement and routing methods for ASICs. 24

2.4 Placement and routing methods for FPGAs. 28

2.5 Placement and routing methods for CGRAs. 30

4.1 Latency of FPOA objects. 45

7.1 Benchmarks used for evaluating scheduling, placement, and routing tools. . 117

7.2 Effect of bounding box on placement tool performance. 126

7.3 Effect of divide and conquer on placement tool performance. 127

7.4 Performance of simulated annealing-based placement. 129

7.5 Party line resource utilization for routing non-zero delay edges. 131

B.1 Number of objects, NAND gate count, and execution latency of benchmarks. 164

C.1 Number of different types of operations in a benchmark. 165

xii

List of Figures

Figure Page

1.1 Flexibility vs. performance for different types of architectures. 2

1.2 ASIC/FPGA placement and routing objective. 3

1.3 FPOA placement and routing objective. 4

1.4 Proposed FPOA tool flow. 7

3.1 FPOA arrix architecture. 32

3.2 Communication channels. 33

3.3 Nearest neighbor registers (a) Local NN registers for data output, and (b)
Adjacent NN registers for data input. 34

3.4 Party line launch and land register. 35

3.5 Distribution steps for x + y = z. 39

3.6 Recomputation with step size SRC = 3. 40

4.1 Instruction state machine of an ALU. 44

4.2 Allocating resources to nodes of a DFG. 46

4.3 An allocated DFG. 48

4.4 Two nodes connected by edge ek. Node vs precedes node vd. 48

4.5 ALU merging resulting in an unplaceable schedule. 56

4.6 Oz implementation for initializing allocation problem. 57

4.7 Oz implementation for imposing distinct constraints on MAC and RF. . . . 59

4.8 Oz implementation for imposing distinct constraint on ALU. 60

4.9 Oz implementation for initializing scheduling algorithm. 62

4.10 Oz implementation for imposing precedence constraints on ALU type nodes. 63

xiii

4.11 Oz implementation to prohibit two MACs from being NN. 63

4.12 Oz implementation for limiting two RFs from being NN. 64

4.13 Distribution strategy for scheduling. 66

5.1 Assigning Cartesian coordinates to silicon objects. 68

5.2 Silicon object locations and corresponding SOid. 70

5.3 Nearest neighbor input and output. 73

5.4 Party line communication - four hops in one clock cycle. 74

5.5 Route with n clock cycle delay. 75

5.6 Creating and initializing finite domain variables for placement problem. . . 80

5.7 Narrowing domains by removing invalid unique identifier values. 82

5.8 Imposing distinct constraint on v id FD variables. 82

5.9 Proximity constraints. 84

5.10 Additional proximity constraints. 87

5.11 Oz implementation for introducing additional proximity constraints. 87

5.12 Limiting search area using a bounding box. 88

5.13 Using a bounding box to reduce search space. 89

5.14 Distribution strategy for placement. 91

6.1 Register and multiplexer orientations. 94

6.2 Routing a path with delay n. 97

6.3 Routing paths for (a) four hops, (b) three hops, (c) two hops, and (d) one
hop long path segments. Possible alternative paths are also shown in (c) and
(d). 98

6.4 A launch and land register i along a path with delay n. 99

6.5 Possible locations of adjacent multiplexers in a connected multiplexer pair. 102

6.6 Launch register and Mux0 orientation. 103

xiv

6.7 Initializing finite domain variables for all launch and land registers in a single
path. 108

6.8 Proximity constraints for consecutive launch and land registers in a path. . 109

6.9 Initializing finite domain variables for all multiplexers in a path segment. . 110

6.10 Distribution strategy for routing. 113

7.1 Zero delay edges vs. non-zero delay edges. 118

7.2 Average delay (does not include zero delay edges). 119

7.3 Node reduction due to ALU operation merging. 120

7.4 Edge reduction due to ALU operation merging. 120

7.5 Scheduling tool convergence time. 121

7.6 Scheduling tool memory usage. 121

7.7 Scheduling tool distribution and backtracks. 122

7.8 Placement tool convergence time. 124

7.9 Placement tool memory usage. 124

7.10 Placement tool distribution and backtracks. 125

7.11 Zero delay (NN) and non-zero delay (PL) communication channels. 130

7.12 Routing tool convergence time. 131

7.13 Routing tool memory usage for all eight benchmarks. 132

7.14 A rescaled view of routing memory usage for all eight benchmarks. 132

7.15 Routing tool distribution and backtracks. 133

7.16 Routing resource usage: Launch and land registers and multiplexers. 133

7.17 Search convergence time for FIR configurations. 134

7.18 Memory usage during scheduling, placement, and routing of FIR configurations.135

7.19 Distribution steps and backtracks for FIR configurations during (a) schedul-
ing, (b) placement, and (c) routing. 136

7.20 Zero delay and non-zero delay communication channels for FIR configurations.137

xv

7.21 Registers and multiplexers used for routing FIR configurations. 138

7.22 Scheduling tool search convergence time for FIR configurations on a 40× 40
FPOA. 138

7.23 Scheduling tool memory usage for FIR configurations on a 40× 40 FPOA. . 139

7.24 Placement and Routing tool search convergence time for FIR configurations
on a 40× 40 FPOA. 139

7.25 Placement and Routing tool memory usage for FIR configurations on a 40×40
FPOA. 140

C.1 Legend for benchmark layouts. 165

C.2 Layout of DWT benchmark. 166

C.3 Layout of MDCT benchmark. 166

C.4 Layout of DFT benchmark. 167

C.5 Layout of SATD benchmark. 167

C.6 Layout of MM benchmark. 168

C.7 Layout of MWS benchmark. 168

C.8 Layout of FIR benchmark. 169

C.9 Layout of FSS benchmark. 169

xvi

List of Algorithms

Algorithm Page

4.1 Allocation algorithm . 50

4.2 Scheduling algorithm . 52

4.3 Disallow two MACs as nearest neighbors . 53

5.1 Placement algorithm . 77

6.1 Routing algorithm . 105

xvii

Acronyms

ACM Association for Computing Machinery

ADRES Architecture for Dynamically Reconfigurable Embedded Systems

ALAP As Late As Possible

ALB Arithmetic Logic Block

ALU Arithmetic Logic Unit

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

BLB Basic Logic Blocks

BPU Basic Functional Unit

CFB Configurable Functional Block

CGHRA Coarse Grained and Hybrid Reconfigurable Architecture

CGRA Coarse-Grained Reconfigurable Architectures

CLB Configurable Logic Block

CLP Constraint Logic Programming

CPE Configurable Processing Element

DFG Data Flow Graph

DFT Discrete Fourier Transform

DMA Direct Memory Access

DP Data Ports

DP-FPGA Data Path Field Programmable Gate Array

DPU Data Processing Unit

DSP Digital Signal Processing

DWT Discrete Wavelet Transform

ECA Elemental Computing Array

FB Frame Buffer

xviii

FD Finite Domain

FIFO First In First Out

FIR Finite Impulse Response

FPCA Field Programmable Computing Array

FPGA Field Programmable Gate Array

FPOA Field Programmable Object Array

FPR Field Programmable Gate Array Place and Route

FSS Five Step Search

GA Genetic Algorithm

GNU GNU is Not Unix

GSL GNU Scientific Library

HPWL Half Perimeter Wire Length

IEEE Institute of Electrical and Electronics Engineers

IFU Interconnect Functional Unit

ILP Instruction Level Parallelism

LL Launch/Land

MAC Multiply Accumulate

MB Mega Bytes

MDCT Modified Discrete Cosine Transform

MI Memory Interface

MILP Mixed Integer Linear Programming

MM Matrix Multiplication

MP3 Moving Picture Experts Group Layer-3 Audio

MTAP Multi Threaded Array Processor

MSMSM Multi-Source Multi-Sink Maze

MWS MP3 Window Subband

NN Nearest Neighbor

NoC Network-on-Chip

xix

P&R Place and Route

PE Processing Element

PL Party Line

POWV Possible Optimal Wire length Vector

RAM Random Access Memory

RAP Reconfigurable Arithmetic Processing

RAW Reconfigurable Architecture Workstation

RBI Routing Based Interleaving

RC Reconfigurable Cells

REMARC Reconfigurable Multimedia Array Coprocessor

RF Register File

RPU Reconfigurable Processing Unit

RSA Rectilinear Steiner Arborescence

SA Schedule Analyzer

SAP Simulated Annealing-Based Placement

SATD Sum of Absolute Transformed Difference

SDP Spreading Data Path

SIMD Single Instruction Multiple Data

TDFG Timed Data Flow Graph

TIERS Topology Independent Pipelined Routing and Scheduling

VLIW Very Large Instruction Word

VLSI Very Large Scale Integration

VPR Versatile Place and Route

WDM Wiring Distribution Maps

1

Chapter 1

Introduction

Over the last few decades, computing needs have outgrown what general-purpose mi-

croprocessor devices can offer. Higher transistor density, smaller feature size, and increased

clock frequencies have made microprocessors far more advanced than their predecessors. In

spite of these improvements in computing technology, modern applications are becoming in-

creasingly complex, necessitating the growth of high performance computing architectures.

In order to target specific computing needs, the concept of Application Specific Integrated

Circuits (ASICs) was introduced. ASICs are integrated circuits intended for specialized ap-

plications and they typically consolidate multiple functions into a single, high-speed device.

However, despite their advantages, ASICs are limited to a specific target application and

have limited flexibility and usability in other applications.

Field Programmable Gate Arrays (FPGAs) are at the opposite end of the Very Large

Scale Integration (VLSI) spectrum, offering bit-level configurability. FPGAs are devices

that consist of Configurable Logic Blocks (CLBs) and switch blocks. CLBs can be pro-

grammed to implement logic functions and multiple CLBs can be connected through con-

figurable switch blocks and routing channels. The functionality of a FPGA can be modified

at a later stage by reconfiguring the device. Bit-level granularity and reconfigurability makes

FPGAs flexible for design prototyping and for applications that require in-field functional

modifications. However, the flexibility of FPGAs comes at the price of large routing area

overhead.

Coarse-Grained Reconfigurable Architectures (CGRAs) are reconfigurable devices which

offer wider pathwidths than FPGAs and more flexibility than ASICs. In the VLSI spec-

trum, CGRAs are placed between ASICs and FPGAs due to their wider data paths, efficient

coarse-grained Configurable Functional Blocks (CFBs), and fewer routing resources. Due

2

to these features, CGRAs offer ASIC-like computing power along with FPGA-like config-

urability. Figure 1.1 offers a relative comparison of flexibility and performance of various

computational architectures.

In spite of these differences, a design must be placed and routed on the chip prior to

use. Placement is the process of determining exact locations of circuit elements inside a

chip’s area. Once placement is complete, the circuit components must be connected. The

procedure of establishing interconnections among the placed circuit components is called

routing. Placement and routing are therefore common steps in the design flow of ASICs,

FPGAs, and CGRAs.

The quality of placement and routing has a significant impact on the performance of

a design. A poor placement can render a design unroutable or may lead to violations of

performance requirements during routing. Even with a good placement, inefficient routing

can impair the performance of an implemented design. Place and Route (P&R) techniques

have received much attention in the past few decades and several methods have been pro-

posed, a sampling of which is discussed in Chapter 2. Though some of these techniques can

be applied to CGRAs, the objectives of placement and routing are different for CGRAs as

Fig. 1.1: Flexibility vs. performance for different types of architectures.

3

compared to the other two architectures.

1.1 Motivation of this Research

The performance of a design on an ASIC or FPGA is dependent on the path delay,

which in turn is dependent on the wirelength of the critical path. Placement tools for

ASIC/FPGA try to place the design such that the routing wirelength is minimized. This

phase is important because a bad placement may prohibit the router from finding short

paths, or in the worst case, may yield an unroutable design. Hence, significant emphasis

is given on finding a good placement. However, the placement tool must be able to obtain

some routability estimate to generate a good placement. Wirelength estimation is often

used as the metric for guiding the placement process since it directly impacts the delay

and is used in a variety of tools [1–3]. The same is not the case with CGRAs, such as

the Field Programmable Object Array (FPOA). The interconnect network of an FPOA has

deterministic timing with a predefined relation between wire segments and delay. Unlike

ASICs and FPGAs, in CGRAs such as the FPOA, it is not the wirelength that decides the

delay, but it is the delay that determines the wirelength. Hence, wirelength minimization

is not the correct approach to solve the FPOA P&R problem.

Figures 1.2 and 1.3 illustrate the difference between the routing objectives of ASIC/

FPGA and FPOA. In fig. 1.2, each logic block must be placed such that the length of a route

Fig. 1.2: ASIC/FPGA placement and routing objective.

4

Fig. 1.3: FPOA placement and routing objective.

connecting any two logic blocks can be minimized, and routing complements placement by

favoring the shortest candidate paths. In contrast, delay satisfaction takes precedence over

wirelength minimization in FPOA P&R. Figure 1.3 shows a post P&R design on an FPOA

with possible routes between various objects. Routes between object pairs (G, F), (F, E),

and (H, I) have a unit delay which is satisfied by the shortest connections between the

respective object pairs. However, if the input specification mandates a delay of three units

between object pair (A, G), then the shortest connection offers an incorrect delay of one

unit and results in an invalid route. Instead, a correct solution must use a longer route with

a delay of three units between A and G.

Further, the source in both cases is different. A Steiner tree [4], or a routing graph, is

the starting point for most P&R tools. Steiner trees offer the advantage of minimum total

wirelength, which is a desirable goal in standard P&R. Moreover, in FPOA-based P&R,

the timing of the input graph has already been established and is provided in the form of

a scheduled Data Flow Graphs (DFG). Each node in a scheduled DFG is associated with a

processing element or resource, and every edge is annotated with the required communica-

tion delay along that edge. Unlike ASIC/FPGA, where interconnect wirelength is minimized

and the critical edge decides how fast the design operates, the length of an interconnect

5

in an FPOA is constrained to fall within an interval [min length,max length], determined

by the delay requirement imposed by the schedule. The problem is no longer to find the

shortest path, but to find a path with length `, such that min length ≤ ` ≤ max length.

Any value of wirlength that falls within these bounds is acceptable, since all such paths will

support the required delay.

The P&R problem is further complicated by the heterogeneity of an FPOA. Unlike

FPGAs, where all CLBs are identical, the processing elements in an FPOA perform different

logical functions. The placement must not only conform to the routing delay, but must also

assign the operations to the correct processing element. The placement problem can be

interpreted as a one-on-one assignment of a finite set of operations in a DFG to a finite

set of processing elements, where the assigned processing element is capable of performing

the operation assigned to it. Similarly, the routing problem translates into a search for a

set of n switch blocks, where n is the path delay, such that the n switch blocks establish a

route between source and sink processing elements. The distance between any two switch

blocks is further restricted by the maximum distance necessary for executing the design at

a predetermined clock rate.

Furthermore, the type of decisions required for placing and routing a design on an

FPOA is different than for FPGAs. For example, a Xilinx Virtex II Pro XC2VP100 FPGA

chip has 11280 CLBS (= 44096 slices = 88192 LUTs and 88192 FFs) and approximately

11067 switch boxes [5]. Even if the problem is simplified to a one-on-one assignment of

operations to CLBs, there are 11280! ways in which the design can be placed. Considering

a channel width W = 4 bits, 398412 transistors must be configured during the routing phase.

But, for an FPOA, a placement tool deals with 400 coarse-grained objects, and a total of

4000 multiplexers, 2000 launch/land registers, and 1600 nearest neighbor registers must

be configured to route a design. The FPOA’s heterogeneity further reduces the number

of assignment permutations during place and route phase. However, the place and route

decisions for FPOAs are driven by design-dictated communication delay. Thus, even though

the cardinality of the FPOA resource set is typically lower than an FPGA resource set, the

6

resource allocation in CGRAs must adhere to the design’s timing schedule, requiring a

time-aware approach that is not offered by traditional P&R. The temporal nature of FPOA

P&R warrants a method that explicitly deals with time.

The apparent differences between P&R for FPOA vs. ASIC/FPGA necessitates a fresh

perspective towards FPOA placement and routing. New objective functions are needed to

drive the search for finding appropriate solutions. This research explores and identifies such

search objectives, and proposes a finite domain constraint satisfaction-based placement

and routing approach for FPOAs. While the FPOA placement and routing problems are

conceptually different than operation scheduling, they both can be formulated as problems,

similar to scheduling.

Finite domain constraints have been applied to solve scheduling problems but their

application to solving a P&R problem remains an unexplored area. Following is the theme

of the work presented in this dissertation:

It is possible to develop a finite domain constraint satisfaction methodology

to schedule, place, and route a design on an FPOA that minimizes schedule

length, communication delay, area, and routing resources.

1.2 Research Contributions

The FPOA belongs to the category of 2-dimensional (2D) mesh CGRAs and its intricate

details are described later in Chapters 2 and 3. This dissertation discusses the development

of a P&R tool for the FPOA. The proposed FPOA tool flow is shown in fig. 1.4. During the

initial phase, a design specification in the form of a DFG is translated into a Timed Data

Flow Graph (TDFG) through a resource allocation and operation scheduling procedure. A

high-level architecture specification of an FPOA is used as the target platform for placing

the design represented by this TDFG. Next, the design is placed and routed using finite

domain constraint-based placement and routing algorithms. It is possible that a placed

design is not routable, in which case the placement step is repeated. If new placements are

also not routable, reallocation and rescheduling of the input DFG generates a new RCG for

place and route.

7

Fig. 1.4: Proposed FPOA tool flow.

The contributions of this research include:

• A simultaneous resource allocation and operation scheduling of a DFG using finite

domain constraint satisfaction;

• Development of a constraint satisfaction methodology for placement of design on an

FPOA;

• Development of a routing algorithm for FPOA using finite domain constraints;

• Evaluation of placement and routing methodology using scientific applications, mul-

timedia, and signal processing benchmarks.

1.3 Overview of This Document

This dissertation discusses the development of multiple design tools to facilitate the

implementation of a design on an FPOA. Chapter 2 outlines various coarse-grained recon-

8

figurable mesh architectures reported in surveyed literature along with a brief overview of

search techniques. It also includes a list of various placement and routing techniques de-

veloped for ASICs, FPGAs, and CGRA design flows. Chapter 3 reviews the fundamental

concepts used in this research, such as FPOA architecture, finite domain constraint satis-

faction, and the Oz/Mozart tool. The methodology for allocating resources and scheduling

a DFG to generate an RCG is described in Chapter 4. Chapter 5 delves into the description

of a finite domain constraint solution for FPOA placement, elaborating on a mathematical

model from which the placement solution is derived. The constraint satisfaction-based rout-

ing methodology is discussed in Chapter 6. Chapter 7 presents an overview of the test cases

used for evaluating and demonstrating this research effort. The same chapter also presents

the results for all the test cases after allocation, scheduling, placement, and routing phases.

Chapter 8 concludes the dissertation and discusses future directions of research as related

to this topic.

9

Chapter 2

Related Work

Place and route steps are vital for VLSI design. Existing literature reports a plethora

of placement and routing techniques that have been developed for different architectures.

In the case of ASIC design, the P&R step decides the final architecture, but the scenario is

different for FPGAs and CGRAS where the architecture is fixed. In both of these cases, a

search technique forms the core of the P&R algorithm. This chapter surveys several mesh-

based CGRAs, search techniques, and provides an overview of the various techniques that

have been reported for P&R of applications targeting ASICs, FPGAs, and CGRAs.

2.1 2D Mesh Coarse-Grained Reconfigurable Architectures

2D mesh architectures are characterized by a Manhattan arrangement of Processing

Elements (PEs) that communicate using horizontal and vertical connections. Typically,

two types of interconnect mechanisms are used: nearest-neighbor links and long-distance

links. The nearest-neighbor links allow a PE to communicate with eight adjacent PEs

corresponding to the eight directions. To connect distant PEs, interconnect segments of

various lengths are used with varying interconnect data paths ranging from 1 bit to larger

widths depending on the architecture. Various mesh-style coarse-grained architectures are

discussed below.

Data Path-FPGA

Cherepacha and Lewis introduced an architecture similar to an FPGA but with coarse-

grained features [6]. This new architecture, called Data Path FPGA (DP-FPGA), combines

the flexibility of fine-grained programmability with the advantages of data path regularity,

and is intended for use in data path intensive designs, such as digital signal processing,

10

communications, circuit emulation, and special-purpose processor applications. A design is

implemented on a DP-FPGA using Chortle [7] and Hill’s algorithm [8].

Kress Array

Introduced by Hartenstein and Kress [9], the reconfigurable Data Path Architecture

(rDPA), currently known as the KressArray architecture, is a 2D grid of identical reconfig-

urable Data Path Units (DPUs), that are connected using a mesh of interconnects. Each

DPU is composed of an ALU to perform standard arithmetical and logical operations, and

a microprogrammable control unit for more complex operations such as division.

D-Fabrix

The D-Fabrix architecture is an array of 4-bit ALUs, multiplexers, registers, and mem-

ory, which are connected through a mesh network configurable by using routing switches [10].

The hierarchical architecture consists of tiles that are composed of two demi-tiles, each con-

taining an ALU, three registers, two multiplexers, and one switchbox. One of the salient

features of D-Fabrix is that data is kept local to the processing elements to minimize data

transfers, thus reducing power consumption.

Colt

Unlike FPGAs, Colt architecture [11,12] is designed to operate on 16-bit words. Primar-

ily targeted towards signal processing applications, Colt supports run-time reconfiguration

and uses wormhole routing for communication between functional units. The architecture

consists of 16-bit Interconnect Functional Units (IFUs), Data Ports (DP), crossbars, and a

multiplier.

MATRIX

MATRIX is an 8-bit architecture and is comprised of identical Basic Functional Units

(BFUs) which are connected using a hierarchical interconnect network [13]. MATRIX has a

11

three-level hierarchical interconnect network - the lowest level with zero clock cycle commu-

nication delay, the second level with length of four bypass interconnect, and the top-most

level with global lines for long connections.

Garp

Garp [14] is a hybrid architecture that combines the merits of a conventional micro-

processor with a reconfigurable computation unit. The main processor in Garp is built

around the MIPS-II instruction-set with additional instructions to configure and execute

the reconfigurable array.

FIPSOC

A FIPSOC chip [15,16] consists of an 8051 microcontroller core, an FPGA, configurable

analog circuit block, on-chip memory, configuration memory, and I/O subsystem. User

applications execute on the microcontroller, which interfaces with the FPGA and the analog

circuit block to enhance its computing power.

RAW

Reconfigurable Architecture Workstation (RAW) shifts away from trends commonly

applied in superscalar processor design [17–19]. The RAW architecture simplifies the hard-

ware by moving many of the tasks to development software. The architecture consists of

identical processing elements called tiles, connected as a homogeneous array. Data travels

a short distance, from one tile to another, instead of using long communication network,

resulting in higher clock-speed and increased scalability of the design.

REMARC

Reconfigurable Multimedia Array Coprocessor (REMARC) [20] consists of 64 process-

ing elements called nanoprocessors arranged in an 88 matrix. The nanoprocessors commu-

nicate with their immediate neighbors using dedicated nearest neighbor connectivity and

with those in the same row or column using 32-bit horizontal or vertical buses. REMARC

12

is tightly coupled to a MIPS RISC processor, whose ISA has been extended to configure

and execute instructions on REMARC.

IRAM Architecture

The Intelligent RAM or IRAM architecture takes advantage of the low-latency and high

bandwidth available on the memory chip [21,22]. The architecture consists of memory chips

that act as regular DRAM but includes an array of processors and a floating point unit,

making them different from conventional RAM architectures. By having sufficiently large

memory, enough data can be loaded onto the memory to perform in-situ computation,

decreasing the off-chip data traffic.

CHESS Array

Hewlett Packard laboratories proposed a reconfigurable arithmetic array, called CHESS,

consisting of 4-bit ALUs, switchboxes, interconnection buses, and embedded block RAMs [23].

The routing structure consists of 16 segmented 4-bit buses in each row and column of the

reconfigurable array. The routing occupies 50% of the array area, which is considerably less

than most FPGAs.

MorphoSys

The Morphoing System (MorphoSys) is a reconfigurable processor array which includes

an array of 16-bit reconfigurable cells (RCs) that is controlled by a 32-bit TinyRISC pro-

cessor [24–27]. The RC array consists of 64 identical RCs or processing elements that are

arranged symmetrically in an 8×8 matrix. This matrix is further split into four 4×4 quad-

rants. A hierarchical three-level interconnection network allows the RCs to access data from

other RCs. The architecture also incorporates a context memory to save the configuration

data, a Frame Buffer (FB), and a direct memory access (DMA) controller.

DReAM Array

Dynamically reconfigurable architecture for mobile systems (DReAM) is comprised of a

13

2D mesh of 16-bit processing elements called the reconfigurable processing unit (RPU) [28].

The RPU is responsible for all application specific data-flow and control-flow operations. It

consists of two 8-bit reconfigurable arithmetic processing (RAP) units, one Spreading Data

Path (SDP), one RPU-controller, two dual port RAMs, and a communication protocol

controller. RPUs communicate with adjacent RPUs through a 16-bit fast local interconnect

and use 16-bit global buses for long distance communication.

MONARCH

MOrphable Networked micro-ARChitecture (MONARCH) is a heterogeneous parallel

processor which combines six 32-bit 5-stage pipeline RISC processors with a Field Pro-

grammable Compute Array (FPCA) [29, 30]. A high-bandwidth dynamic switched inter-

connect aids in data transfer among neighboring FPCA elements. The FPCA design is

optimized for streaming data and signal processing application, and can be configured to

implement a 256-bit wide SIMD engine.

ADRES

Mei et al. [31, 32] have proposed an architecture called Architecture for Dynamically

Reconfigurable Embedded System (ADRES). The ADRES architecture has two compo-

nents: a VLIW processor and a coarse-grained reconfigurable matrix, which are coupled

as a processor and a co-processor. The VLIW processor exploits Instruction Level Paral-

lelism (ILP) while the reconfigurable matrix improves the performance by exploiting the

parallelism.

Field Programmable Object Array

Mathstars Field Programmable Object Array (FPOATM) is a coarse-grained heteroge-

neous reconfigurable computing platform consisting of coarse-grained silicon objects which

communicate though a configurable communication network. The Arrix family [33] is the

current generation of FPOA and consists of 400+ silicon objects. Chapter 3 describes FPOA

architecture in detail.

14

ClearSpeed CSX Family

ClearSpeeds CSX family of processors is built on top of a multi-threaded array processor

(MTAP) core to support parallel data processing [34, 35]. The architecture of an MTAP

processor has a highly parallel execution unit instead of single ALU, register file, and I/O

device configuration. The execution unit contains a mono execution unit for processing

scalar data while the poly execution unit contains a large number of poly execution (PE)

cores. Each PE core has an ALU, a floating point unit, a multiple-accumulate unit, a

register file, memory, status and enable registers, I/O channels, and paths for inter-PE

communication.

Coarse-Grained Hybrid Reconfigurable Architecture

Verma and Akoglu have proposed a Coarse-Grained and Hybrid Reconfigurable Archi-

tecture (CGHRA) [36] targeted for applications like variable block size motion estimation

used in H.264 video compression standard [37,38]. The architecture contains 16 configurable

processing elements (CPEs), four processing elements of type-2 (PE2s), two processing el-

ements of type-3 (PE3s), and a memory interface (MI). A network-on-chip (NoC) provides

the communication backbone to these PEs.

Element CXI Elemental Computing Array

Element CXI is an Elemental Computing Array (ECA), consisting of non-homogeneous,

pipelined computational engines called elements [39]. Each element has four 16-bit inputs,

two 16-bit outputs, a controller called Judge, and an associated context. Due to its hierar-

chical interconnect and run-time task binding, Element CXI does not fall under the target

architecture domain of this dissertation.

TILETM Multicore Processor Architecture

Tilera R© Corporation has developed a family of tile-based multicore processor ar-

chitectures which include TILE64, TILEPro36, TILEPro64, and most recently the TI-

LEGx [40–42]. These processors feature a multicore architecture ranging from 36 identical

15

tiles in TILEPro36 to 100 tiles in TILE-Gx. All the tiles communicate through Tileras

iMeshTMon-chip network [43]. A multicore development environment facilitates tile proces-

sor programming using a C/C++ compiler.

SmartCell

SmartCell is a coarse-grained reconfigurable architecture targeting stream-based ap-

plications [44]. The architecture consists of processing elements operating on 16-bit inputs

to generate 36-bit outputs, and includes input registers, an arithmetic and logic unit, in-

struction memories, instruction controllers, and multiplexers. The prototype contains 16

cells which are tiled in a 2D mesh structure and communicate through a three-level layered

interconnect network.

Summary of 2D Mesh CGRAs

Table 2.1 summarizes the architectures described earlier in this section. Architecure

and granularity columns illustrate the name and the granularity of an architecture. Gran-

ularity is defined as the data path width of an architecture and multiple entries under

granularity indicate a multi-granular architecture. The third column displays the nature of

the routing network: static and/or dynamic, channel-width specifies the number of parallel

wires in the interconnect and can differ from an architectures granularity, and processing

element denotes the type of fundamental processing unit(s) used in the architectures. A Y

in column six indicates if any design tools for an architecture have been reported, while an

N denotes its absence. An asterisk (*) indicates that the tool is a proprietary too. Finally,

the last column displays the year in which an architecture was reported, and Table 2.2 lists

any design tools reported for architectures mentioned in Table 2.1.

2.2 Search Techniques

Several search techniques have been reported in the literature which include integer

linear programming, evolutionary algorithms, simulated annealing, and constraint satisfac-

tion.

16

Table 2.1: Summary of coarse-grained reconfigurable architectures. A * indicates propri-
etary tools.
Architecture Granul- Routing Channel Processing Design Year

arity Network Width Element Tools
DP-FPGA 4-bit Static 4-bit LUT Y 1994
Kress Array 32-bit Static 32-bit rDPU/ALU Y 1995

Dynamic
D-Fabrix 4-bit Static 4-bit ALU Y* 1995

Dynamic
Colt 16-bit Dynamic 16-bit IFU/ALU N 1996
MATRIX 8-bit Static 8-bit BFU/ALU N 1996

Dynamic Control Logic
Garp 2-bit Static 2-bit LUT Clusters Y 1997

Dynamic
FIPSOC 4-bit Static 4-bit Microprocessor Y 1997

8-bit Digital Cells
9-bit Analog Cells

RAW 32-bit Static 32-bit RISC processor Y 1997
REMARC 16-bit Static 16-bit Nanoprocessors Y 1998

32-bit
IRAM 8-bit Static N/A ALU N 1998

RISC processor
CHESS 4-bit Static 4-bit ALU N 1999
MorphoSYs 16-bit Static 16-bit Multiplier-ALU Y 1999
DReAM 8-bit Static 16-bit RPU N 2000
MONARCH 32-bit Dynamic 32-bit RISC processor Y* 2002

Multiplier-ALU
ADRES 32-bit Static 32-bit ALU Y 2003
FPOA 16-bit Static 21-bit ALU, MAC Y* 2003

Dynamic
ClearSpeed 64-bit Static 64-bit ALU Y* 2006
CGHRA 8-bit Dynamic 32-bit Subtractors N 2008

Adders
SmartCell 16-bit Static 16-bit ALU Y 2009

Dynamic 36-bit

Dantzig developed a technique called the Simplex method [45, 46] to solve linear pro-

grams. The concept of linear programming has been extended to Mixed Integer Linear

Programming (MILP) [47], which formulates an optimization problem as the minimization

or maximization of a cost function, subject to a set of constraints. MILP suffers from

limited scalability and has limited expressiveness.

17

Table 2.2: Design tools for CGRAs.
Architecture Design Tools Reported in Literature
DP-FPGA Uses Chortle and Hill’s algorithm
Kress Array Data path synthesis system based on Simulated Annealing
D-Fabrix Proprietary tools
Garp Garp Configurator, C compiler-based design flow, Garp simulator
FIPSOC Proprietary tools
RAW RAW compiler
REMARC REMARC configuration Environment
MorphoSYs Morphosim VHDL simulator
MONARCH Proprietary tools
ADRES VHDL synthesis and simulation
FPOA Proprietary tools
ClearSpeed Proprietary tools
SmartCell Smart C prototype compiler

Evolutionary algorithms and simulated annealing are combinatorial search techniques

and have been used in embedded system design, electronic system level design tools, and

ASIC/FPGA placement and routing. Evolutionary algorithms or genetic algorithms model

the search space as a population of potential solutions or chromosomes. New generations

are created by combining parent chromosomes or by randomly changing the genes within

the chromosome. A fitness function evaluates the quality of the population after creating a

new generation and discards inferior offsprings. The population grows and improves with

each iteration of the process and terminates after a pre-defined number of generations have

been created. An evolutionary search problem can be divided into two sub-components:

the problem definition and the search algorithm. PISA [48] is an interface specification

that allows a problem definition and an evolutionary multi-objective search algorithm to

be implemented as separate communicating processes. The PISA framework establishes a

formal model that dictates the control flow and data exchange between these two processes.

All the communication takes place through text-files, which further allows the two processes

to be located on different machines running different operating systems. However, both the

processes are required to be PISA compliant. Even though the goal of PISA is multi-

objective optimization, PISA is not a search tool but instead, it is an interface specification

that enables the user to combine a search problem with an evolutionary search technique

18

to address an optimization problem.

Simulated annealing [49], on the other hand, is a concept that has been borrowed from

metallurgy. The problem is modeled as a random and possibly invalid solution state. Ran-

dom perturbations produce new states, where the frequency and the degree of perturbation

is controlled by a parameter called temperature such that the number of random changes

decrease as the temperature cools. A new state is accepted if it is better than the existing

state, as evaluated using a cost function. The algorithm terminates once the temperature

falls below a threshold. For both the above search techniques, the random changes avoid

being stuck in local minima. However, neither guarantees a good solution nor ensures full

coverage of search space.

Constraint Logic Programming (CLP) is a combination of constraint satisfaction and

logic programming [50]. A CLP problem involves a constraint domain, variables, and set

of constraints defined over the variables. The constraint domain defines the domain of

computation and the set of permissible operations on the values represented by the domain.

A typical program for CLP specifies a domain, a set of constraints, and a goal. The

constraint solver attempts to prove the goal while satisfying the constraints by assigning

values to the variables, where the values lie within the constraint domain. The simplest form

of a constraint consisting of a single operation and corresponding number of arguments is

called a basic constraint. Complex constraints can be expressed as a conjunction of multiple

basic constraints.

Finite Domain (FD) constraints are a field of CLP such that the constraint domain

is restricted to a finite set of values. The constraint domain is restricted to non-negative

integers and permits integral as well as Boolean operations. FD constraints facilitate the

representation of, and solution for, discrete search problems [51]. FD constraint program-

ming has been applied to high-level synthesis [52], static scheduling of real-time systems [53],

and design space exploration [54].

2.3 Placement and Routing Techniques

Several placement and routing techniques have been proposed in the literature. These

19

techniques have been implemented using various search algorithms [55] and target different

architectures. Even for the same architecture, the objectives of two P&R methods can be

different. The following sections provide an overview of the place and route methodologies

used in design flow of ASICs, FPGAs, and CGRAs.

2.3.1 P&R for ASICs

P&R is an essential step in the design of an integrated circuit and consists of two

phases: Placement and Routing. During placement, the VLSI cells are laid out on the chip

layout, such that the cells do not overlap and can be connected through wires as per the

design netlist. Once the design is placed, routing phase establishes the actual interconnects

among cells. Routing is dependent on placement and a bad placement can result in a non-

routable design. The quality of placement is measured in terms of the cost of placement,

which can be the total wirelength, number of cuts, congestion, timing, etc. This cost is

calculated using cost functions. The goal of placement is to place the cells while minimizing

one or more cost functions.

Minimizing wirelength reduces the congestion and signal delay, while also decreasing

the chip area required for routing the wires. Almost all placement tools use some form of

wirelength minimization criterion. For minimizing the wirelength during placement, the tool

must ideally know the exact routing of wires. Since the placement phase precedes routing,

actual routing information is not available. Instead, techniques are used for estimating

wirelength for guiding the placement. Typically, a cost function is defined based on some

design criteria: such as minimal total-wirelength, penalty for wires longer than a given

threshold, etc.

In a 2D mesh network, the shortest interconnect among various nodes is a Steiner

tree [55] connection. Measurement and minimization of the rectilinear Steiner tree wire-

length is a good objective for placement, but unfortunately it is computationally expensive.

During placement, the cost function needs to be evaluated often, because an expensive func-

tion results in a slow and unacceptable placement procedure. Since an exact wirelength is

not required during placement, alternative techniques for estimating the wirelength may be

20

used. Instead of Steiner tree, other wiring schemes such as minimal spanning tree, chain

connections [55], and multi-source multi-sink [56] connections are used. Bounding box or

Half Perimeter Wire Length (HPWL) estimation is a popular method for wirelength ap-

proximation [57]. For lower degree nets, HPWL gives the exact minimal rectilinear Steiner

wirelength.

FLUTE [58] is another approach that uses lookup tables for estimating wirelength

for networks with small number of pins. The lookup table consists of possible optimal

wirelength vectors (POWVs), where a POWV represents a potential optimal route for a

net along Hanan’s grid [4]. Possible routing topologies are generated by removing redundant

or non-optimal routes from the set to obtain a POWV for each net. For larger degree nets, a

divide and conquer approach is used and the nets are subdivided into several nets of smaller

degrees.

Dragon2000 [59] is a 2-phase hierarchical iterative placement tool developed for large

circuits. In the first/global phase, the area is divided into four bins and the cells are dis-

tributed to each bin, followed by subsequent subdivisions. Cell overlap is permitted during

this phase with the goal of minimizing both wirelength and min-cut. A greedy algorithm

is used for legalizing the placement and reducing wirelength during the second/detailed

placement.

Roy and Markov propose that Steiner Tree Wire Length (StWL) correlates better with

the routed wirelength than the commonly used half perimeter wirelength [60]. However,

building Steiner trees and estimating StWL for each net is computationally expensive and

becomes a bottleneck when used in an iterative placement approach. Fast Steiner evaluators

such as FastSteiner [61] and FLUTE exist but may still not have reasonable runtimes for

large problems. The authors have developed a placement algorithm called ROOSTER [60]

based on net weighted StWL estimation. In order to evaluate StWL in a reasonable time,

the authors propose the use of an efficient data structure which reduces the execution time

for Steiner evaluators.

Min-cut is a partitioning-based placement method where a design is subdivided into

21

smaller partitions, with the goal that the number of interconnects between partitions is min-

imized. It is a top-down approach that initially emphasizes global placement. Breuer [62]

proposed the first min-cut placement algorithm for physical implementation of electrical

circuits: Quadrature placement procedure and Slice/bi-section placement procedure. In

the former algorithm, the cut lines alternate between vertical and horizontal. In the latter

case, the area is iteratively divided into horizontal slices and elements are assigned to the

bottom row at each iteration. Finally, the cells are assigned to the columns using vertical bi-

section. Lauther [63] suggested cell rotation, squeezing, and reflection to reduce whitespace

and improve min-cut placement.

NTUplace [64] is a hierarchical, partitioning-based placement algorithm which uses

weighted-nets, ratio partitioning, and look-ahead bi-partitioning to place mixed size cells.

The partitioning problem is formulated as a hypergraph partitioning problem with weights

assigned to the edges in the hypergraph. The chip area is divided into regions, with blocks

assigned to a region, such that the HPWL of the nets is minimized. To determine appro-

priate cut-size for the regions, higher weights are assigned to larger cells and the resulting

weight determines the cut-size.

Capo [65] is an academic min-cut hypergraph partitioning-based placement tool which

performs recursive bi-section placement. Capo generates wirelengths comparable to com-

mercial placers and the placed design is usually routable. Kahng and Reda [66] have pro-

posed an iterative placement feedback technique for improving terminal propagation during

placement. The idea is to perform a placement step, undo it, and feed the results back into

the current step to drive the terminal propagation. The authors have implemented their

technique in Capo and have reported HPWL reductions on standard benchmarks.

Feng Shui [67,68] is another partitioning-based placement tool which aims at optimizing

the placement from a global perspective by minimizing the wirelength. The tool performs

recursive bi-section, but unlike traditional approaches, it performs multi-level partitioning in

which multiple regions are bisected simultaneously. Recent work on dynamic programming

for cut sequences [69] and fractional cuts [70] has been reported for improving Feng Shui’s

22

performance.

TimberWolf [71] is a simulated annealing-based [72] set of placement and routing tools

for VLSI designs. TimberWolf consists of programs that can place standard cells, custom

cells, and gate arrays. It also has a router program for global routing of standard cells. The

simulated annealing-based placement algorithm estimates the total wirelength and also uses

a penalty function to compute overlap penalties. The estimated wirelength calculates the

HPWL for various nets to determine the total wirelength. The penalty function is employed

to minimize overlap that arises from interchange or displacement of cells.

The router program in Timberwolf package operates in two stages. In the first stage,

the program finds the net segments to minimize interconnection distance. In the second

stage, a simulated annealing algorithm determines the routing.

Fast Place [2,73,74] is a placement tool based on the quadratic placement approach [75].

It uses a hybrid net model for capturing the placement problem and to speed-up the

quadratic solver. A 3-stage algorithm first performs a coarse global placement by spread-

ing the cells in the placement region while minimizing the wirelength. After the coarse

placement, a local refinement technique is employed for another global optimization and

cell shifting step. Since the primary objective is wirelength minimization, a higher weight is

attached to the wirelength component than the bin utilization. In the final stage, a detailed

placement step legalizes the placement from the previous stage by removing overlap among

cells.

FastRoute [76] is an attempt towards developing a fast router which can estimate inter-

connect congestion and delay during placement with an acceptable computational burden.

Most traditional routers have runtimes which restrict their usage in iterative placement

algorithms in which the router is executed frequently for estimating the interconnect. Pan

and Chu proposed the FastRoute router which generates a congestion map, constructs a

corresponding Steiner tree, and employs pattern and maze routing. Further improvements

have been made in the recent versions of FastRoute, such as replacement of pattern routing

with a monotonic routing scheme, Multi-Source Multi-Sink Maze (MSMSM) routing [56]

23

and via minimization [77]. In an effort to use the same technique for routing and conges-

tion estimation, the authors propose IPR tool [78, 79] which integrates routing during the

placement process.

Gao et al. borrowed various concepts from FastRoute and PathFinder [80] to develop

an iterative router called NTHU-Route [3,81]. Initially, a Steiner tree topology is generated

using FLUTE and edge shifting. Once the congested areas are identified, the edge cost is

computed by a history-based cost function. A monotonic routing approach with rip-up

and re-route of congested edges approach is employed to allocate routes to less congested

edges. An adaptive multi-source multi-sink maze routing approach is applied to route the

remaining unrouted nets.

Placement and routing methods used in ASIC design are summarized in Table 2.3. The

name of the method or place and route tool is listed under Methods/Tool column. The next

column displays the name of algorithm(s) used for place and/or route. Evaluation metric

column shows the parameter used for measuring and optimizing the quality of place and

route. The year in which the method was first reported is mentioned under the Year column.

Finally, the validation or performance evaluation method is listed in the last column. As

can be observed, most researchers have compared the performance of their tool with other

available tools using benchmark suites such as ISPD [82], MCNC [83], or Digital Signal

Processing (DSP) algorithms.

2.3.2 P&R for FPGAs

Rent’s rule formulates the relationship between the number of external interconnects

of a logic block and the number of logic gates inside the logic block. Donath [84] proposed

that Rent’s rule can be used for estimating wirelength in a logic design prior to placement

and routing. Rent’s rule has been used for estimating the interconnect wirelength [85] and

congestion estimation [86]. MVPR [87] is a simulated annealing-based tool for FPGAs that

uses Rent’s exponent in its cost function to drive the placement in order to minimize the

design area.

Cost effective routing algorithm (CeRA) [88] is a routing approach based on exact

24

Table 2.3: Placement and routing methods for ASICs.
Method/ Algorithm Evaluation Year Validation/Evaluation
Tool Metric method
Breuer’s Quadrature Interconnect- 1977 Results compared with
method placement, minimization manual placement

bisection
TimberWolf Simulated Wirelength 1985 Compared to other tools

annealing using benchmarks
Dragon2000 Min-cut, Wirelength 2000 Compared to other tools

iterative using benchmarks
Capo Recusrsive Wirelength 2000 Evaluated using a

bisection set of benchmarks
FengShui Recusrive Wirelength 2001 Compared to other tools

bisection using benchmarks
FastPlace Quadratic Wirelength 2005 Compared to other tools

placement Bin using benchmarks
utilization

NTUPlace Hypergraph Wirelength 2005 Evaluated using ISPD
partitioning benchmarks

FastRoute Monotonic & Congestion 2006 Compared to other tools
MSMSM routing using benchmarks

IPR FastPlace, Wirelength 2007 Compared to other tools
FastRoute Congestion using benchmarks

ROOSTER Min-cut Wirelength 2007 Compared to other tools
placement using benchmarks

NTHURoute Monotonic & Wirelength, 2008 Compared to other tools
MSMSM routing, Via mini- using benchmarks
rip-up reroute mization

MaizeRouter Edge shifting, Wirelength 2008 Compared to other tools
Maze routing using benchmarks

calculation of routing density in symmetrical FPGAs. CeRA not only considers the routing

density at connection blocks, but also takes into account the track utilization at switch

blocks. The algorithm consists of a global routing phase and a detailed routing phase, both

of which depend on the exact routing density of nets.

The criteria for a good routability estimator are speed and accuracy, FPGA indepen-

dence, and ability to be incorporated in most applications requiring estimation. Typically,

the routing demand for each routing resource is computed and considered by the place-

ment or routing tools to generate solutions that avoid using the resources that are in high

25

demand, yielding routable solutions. Kannan et al. [89] compare the following routability

estimation methods that are used in FPGA placement tools: fGREP [90], RISA [91], Lou’s

method [92]. fGREP takes into account the demand imposed by each terminal of a net on

the routing resources in the net’s bounding box. The runtime of fGREP is proportional to

the set of routing resources in a bounding box and the number of terminals, which can be

large with increases in circuit size. RISA takes an empirical approach and generates wiring

distribution maps (WDMs) for a large set of randomly generated nets to obtain a mean net-

weight for different pin counts. This net weight is used for computing the resource demand

in the net bounding box, where a net bounding box is the smallest rectangular region that

spans all the points in the net. Lou et al. [92] use a probabilistic model for computing the

congestion. In Lou’s method, after placing the net lists, the chip area is divided into a grid

of regions. The demand for a routing resource within each region is calculated as the ratio

of number of routes using the particular resource and the total number of routes possible.

This ratio is the probability of usage of the resource.

Jariwala and Lillis [93] have experimented with the reliability of routing congestion

prediction for driving placement. Their experiments reveal that the estimated congestion

is not accurate, but may be helpful if it reliably identifies the areas of congestion. To

improve routability during detailed placement, the authors propose an exact approach for

estimating congestion called Routing-Based Interleaving (RBI). RBI attempts to reduce

maximum routing density. When applied to island style FPGAs, it takes into account

number of channels at maximum density and the wirelength.

SEGment Allocator (SEGA) [94] is a routing tool for FPGA architectures featuring a

mix of short and long interconnect channels. Initially, all the nets are globally routed to

generate a coarse route, which effectively is a sequence of point-to-point connections joined

together to form a path from the source to the sink. In order to establish a physical path,

the length of a connection is matched to the length of an interconnect channel to generate a

set of possible physical paths for the connection. SEGA completes the detailed routing by

selecting one physical path from each set using a cost function that discourages the use of

26

long channels for short connections, minimizes the number of segments used, and prioritizes

critical routes.

PROXI [95] is a timing-driven placement and routing approach for island style FP-

GAs. It uses a simulated annealing algorithm to simultaneously place and route designs. A

placement perturbation is followed by a rip-up of the affected routes, which are re-routed

incrementally, avoiding an otherwise heavy penalty for a full re-route. The worst case delay

of critical paths is also included in the cost function to bias the selection of shorter paths.

PROXI gives good results in terms of routing density and performance but is computation-

ally intensive, making it infeasible for large designs.

Lee and Wu [96] proposed TRACER-fpga PR router for RAM-based FPGA’s. TRACER-

fpga PR attempts to minimize the routing channel density as well as overall path delay. Nets

are routed depending on their criticality to obtain an initial routing which is then ripped-up

and re-routed to resolve any resource conflicts. To remove timing violations, a simulated

evolutionary algorithm performs further rip-up and re-route iterations to ensure that the

timing constraints are met, otherwise the tool reports failure.

FPGA placement and routing (FPR) [97, 98] tool uses a divide and conquer approach

by subdividing the FPGA into m × n regions. The logic blocks in each net are assigned

to a region while minimizing the wirelength and congestion. Using simulated annealing,

the logic blocks are moved between regions to refine the placement. Global routing for

the design is performed by constructing Rectilinear Steiner Arborescences (RSAs) [99,100]

for each net. A greedy heuristic then reduces the congestion and recursively assigns the

RSA edges to switch blocks until at most one logic block remains in each region. Finally,

a Steiner tree graph is constructed for capturing the routing structure of the FPGA, and

detailed routing is performed using a greedy iterative heuristic.

Pathfinder [80] is an iterative routing algorithm for FPGAs and attempts to balance

the congestion delay trade-off. A timing-critical net must use a minimum delay path even

if it leads to an increase in congestion, whereas non-timing-critical nets can be routed

through alternate uncongested paths. Unlike obstacle avoidance routers which do not allow

27

any resource overuse to avoid congestion, Pathfinder initially routes nets even if it leads

to congested or overused illegal routes. Competing nets negotiate for a shared path which

is assigned to the most timing-critical net. To eliminate non-timing-critical nets, the con-

gestion cost of a path is gradually increased depending on the demand and the congestion

history of the path. As the cost of a path increases, candidate nets are forced to look for less

congested and possibly longer paths. Eventually, the path is assigned to the most critical

net amongst the competing set.

Versatile Place and Route (VPR) [1,101] is the state-of-the-art in placement and routing

tools for FPGA. It can be used for island-style and row-based FPGAs. The primary com-

ponents of VPR include VPACK, placement algorithm, and a routing algorithm. VPACK

is a logic block packing algorithm which assigns LUTs to basic logic blocks (BLEs) and

the resulting BLEs to logic clusters depending on user defined parameters. Once the logic

clusters are determined, the next step is to place them on the FPGA fabric. VPR takes a

simulated annealing approach for placement. The cost function employed penalizes those

placements which place higher demand on lower capacity channel.

The routing algorithm used in VPR is based on Pathfinder [80]. Both Pathfinder and

VPR’s router use maze routing algorithms [102] to find nets. Maze routing performs a

breadth first search to find the sinks. Once a sink is found, the search begins again by

considering the original source and the newly found sink as new sources. Thus, a new

breadth first search is initiated every time a sink has to be found. VPR’s router avoids

performing a search from scratch and resumes from where the last sink was found, thereby

reducing the computation time.

Independence [103] is a routability-driven, architecture independent, FPGA placement

tool. Independence uses simulated annealing to minimize wirelength and routing congestion.

To speedup the placement, only an incremental rip-up and re-route is done after every

simulated annealing move. Independence produces placement solutions for island style

FPGAs which are within 5% of the state-of-the-art VPR tool [101].

FPGA placement and routing methods are summarized in Table 2.4. This table has

28

Table 2.4: Placement and routing methods for FPGAs.
Method/ Algorithm Evaluation Year Validation/Evaluation
Tool Metric method
SEGA Exhaustive search, Channel 1993 Evaluated using

segment length segment MCNC benchmark
matching minimization

PROXI Simulated annealing, Routability, 1995 Compared to other tools
Maze routing delay using benchmarks

FPR Partitioning, Wirelength, 1995 Compared to other tools
Simulated annealing, congestion benchmarks
Greedy heuristic

Pathfinder Iterative congestion Congestion 1995 Evaluated on existing
negotiation FPGA architectures

TRACER- Rip-up reroute Channel 1997 Compared to other tools
fpga PR density, using benchmarks

Wirelength
VPR Simulated annealing, Congestion 1997 Compared to other tools

pathfinder using benchmarks
MVPR Simulated annealing Device area 2001 Compared to other tools

utilization using benchmarks
CeRA Iterative maze Routing 2004 Evaluated using

routing, density MCNC benchmark
net decomposition

Indepen- Simulated annealing Wirelength 2005 Adaptability to
dence congestion different architectures,

Comparison with VPR
KPF Simulated annealing Wirelength 2009 Evaluated using

MCNC benchmark

the same format as Table 2.3. Majority of validation approaches are based on performance

comparison of the reported place and route tool with other existing tools using a benchmark

suite.

2.3.3 P&R for CGRAs

Silva et al. [104] propose a genetic placement algorithm for data-driven coarse grained

reconfigurable array architectures. The algorithm supports a variety of array architecture

topologies. They model the array architecture as a chromosome by representing each array

cell as an element of the chromosome. The placement is denoted by assigning a node of a

DFG to an element. The fitness function favors shorter paths while penalizing longer paths.

29

Ferreira et al. extended the work presented by Silva et al. [104] and use graphs to represent

the architecture topologies [105]. Their placement algorithm performs a simultaneous depth

first traversal of both the DFG and the architecture graphs to find a placement. Using

random depth first searches, a set of placement solutions is obtained. Each of these solutions

is evaluated for its routing cost and the solution with the least routing cost is selected.

Hartenstein and Kress [9] proposed a simulated annealing algorithm for rDPA place-

ment. The cost function considers the chip boundaries, routing resources, and penalizes

routing via the rDPA bus. Lai et al. [106] developed a recursive placement algorithm for

rDPA. The algorithm transforms a DFG into a path-structure graph which captures the

paths in decreasing order of path lengths, starting from the longest path in the DFG. Each

node in the path-structure graph denotes a unique path in the DFG. By placing a child

in vertical (or horizontal) direction and its immediate parent in horizontal (or vertical)

direction, the placement algorithm attempts to place connected operations in the DFG

on adjacent DPUs. If adjacent placements are not possible, additional DPUs acting as

pass-through connections are used to avoid overlap.

RAW processor’s placement algorithm is based on VLSI cell-placement approach [107]

and performs a one-on-one mapping of software threads on to a physical tile, while mini-

mizing latency and bandwidth [17]. Routing is done using a greedy Topology Independent

Pipelined Routing and Scheduling (TIERS) algorithm which determines the paths for inter-

tile communication [108]. The wire delay is measured as number of network hops, where

one network hop corresponds to one cycle wire delay [109]. The programmer and RAW

compiler are exposed to the network delay through RAW ISA and can program the static

router to ensure ordered data flow.

Fung et al. [110] have taken a genetic algorithm (GA)-based approach for placing

designs on heterogeneous coarse grained reconfigurable arrays. A chromosome encodes a

net as an individual and assigns a position value to each logic element in the net. The

position value denotes the relative proximity of logic elements in the net. The fitness

function consists of three parameters: total wirelength, number of routing switches needed,

30

and the criticality of the path. The GA-based placement engine performs tournament

selection to select the best placement from a random pair of placements in the population.

The process is repeated and the fitness is evaluated to find a good placement solution. Even

though the algorithm is targeted towards CGRAs, the authors chose to compare the results

with VPR using benchmarks for FPGAs. VPR outperforms the GA engine in almost all

the test cases.

Methods reported for placing and routing CGRAs are summarized in Table 2.5. This

table has the same format as Table 2.3. Researchers have validated/evaluated their tools by

using DSP algorithms as benchmarks or by comparing the performance with another place

and route tool such as VPR. Once again most of the validation approaches are based on

performance comparison of the reported tool with other existing tools using a benchmark

suite.

Table 2.5: Placement and routing methods for CGRAs.
Method/ Algorithm Evaluation Year Validation/Evaluation
Tool Metric method
rDPA Simulated Routing resources 1995 Not reported
placement annealing
RAW Simulated Latency, 1997 FPGA-based
compiler annealing, TIERS bandwidth logic emulation
Fung’s Genetic Wirelength, 2006 Compared to VPR
method Algorithm routing resources, using MCNC

path criticality benchmarks
Silva’s Genetic Wirelength 2006 Evaluated using
method Algorithm DSP benchmarks
Ferreira’s Depth first Interconnections 2007 Evaluated using
algorithm graph traversal DSP benchmarks

31

Chapter 3

Background

The primary objective of this research is to develop a finite domain constraint satisfaction-

based scheduling, placement, and routing approach for FPOA architectures. Section 3.1

of this chapter discusses silicon objects and the communication framework comprising an

FPOA architecture. An overview of finite domain constraint satisfaction methodology is

presented in sec. 3.2.

3.1 FPOA Architecture

An FPOA is a field-programmable silicon device that offers a higher level of abstraction

than FPGAs. Instead of using fine grained building blocks (gates), the FPOA employs

coarse-grained processing elements called silicon objects. These objects interact with each

other through a configurable communication network and perform high-level functions. The

Arrix family of FPOA offers 400 such objects, arranged in a 20 × 20 grid, which includes

256 Arithmetic Logic Unit (ALU), 64 Multiply Accumulate (MAC), and 80 Register File

(RF) objects as shown in fig. 3.1. ALU, MAC, RF, and the interconnect framework are

described below.

3.1.1 ALU Object

The ALU object is one of the most complex programmable objects in the FPOA. It

consists of a 16-bit Arithmetic Logic Block (ALB), a configurable instruction state machine,

four general-purpose truth functions, and a truth function for the arithmetic logic block.

The ALB supports general purpose arithmetic and logic operations on four inputs which

include two 16-bit operands, a 16-bit mask, and a 1-bit carry input. Selection of actual

inputs consumed by an instruction is decided by the instruction state machine. During

32

Fig. 3.1: FPOA arrix architecture.

initialization, the instruction state machine is always reset to state 0.

3.1.2 MAC Object

The FPOA provides MAC objects to perform multiply and accumulate functions. In-

ternally, a MAC is comprised of a multiplier function and an accumulator function. The

multiplier function operates on two 16-bit operands to generate a 32-bit product. The pri-

mary purpose of the accumulator function is to add a 32-bit input to the existing number

within the accumulator block. The accumulator performs three basic functions: preload a

number into the accumulator block, load the output of the multiplier into the accumulator

block, or add multipliers output to the existing number in the accumulator block. The

accumulator generates a 40-bit output which can be dynamically mapped onto two 16-bit

output registers by selecting any two of [39:24], [33:18], [31:16], or [15:0] bit fields of the

40-bit output.

3.1.3 RF Object

An RF object is a storage element that supports simultaneous read and write on every

clock cycle. Each RF object contains 64 20-bit memory location that can hold 16 bits of

33

data, plus four control bits. The register file can be configured to operate in single width or

double width read write mode to provide 64 × 16-bit or 32 × 32-bit output, respectively.

The RF object operates in either of these three modes: Random Access Memory (RAM),

First In First Out (FIFO), and Read sequence. In RAM mode, the RF object resembles a

dual port random access memory and supports simultaneous read/write to/from the same

address, while the FIFO mode configures a register file into a fixed 64-word circular buffer.

The read sequence mode combines the RAM and the FIFO modes to perform random

address writes but sequential read from a circular buffer.

3.1.4 Interconnect Framework

All the objects on an FPOA communicate using a configurable mesh of interconnects.

The interconnect framework provides two types of connections: Nearest Neighbor (NN)

and Party Line (PL). Nearest Neighbor connection allows adjacent objects to transfer data

without any latency while Party Line connection is used by non-adjacent objects. Figure 3.2

shows an object and its communication channels. A communication channel is comprised

of 16 data bits, four control bits, and one valid bit. An object can have a maximum of eight

NN channels and 10 PL channels.

Fig. 3.2: Communication channels.

34

Nearest Neighbor Communication

Nearest Neighbor communication is required when the data produced must be con-

sumed in the next clock cycle. Each silicon object has four special registers called NN

registers. Figure 3.3(a) shows that each NN register can output data to two adjacent sil-

icon objects. These registers are identified by their output direction: North/Northwest

(NNW), East/Northeast (ENE), South/Southeast (SSE), West/Southwest(WSW). A sili-

con object can also read data from the eight NN registers of its adjacent objects as shown

in fig. 3.3(b). Each input register is denoted by the orientation of its parent object: North-

west(NW), North(N), Northeast(NE), East(E), Southeast(SE), South(S), Southwest (SW),

and West(W).

NN channels provide zero-latency communication but require a producer and a con-

sumer to be physically adjacent. Except for periphery objects, all other objects have eight

adjacent neighbors. It is observed in fig. 3.1 that no two MAC objects can be adjacent to

each other, hence no two MAC objects can communicate using NN channels. Similarly, only

eight RF objects are adjacent to each other. In contrast, a large number of ALU objects

are adjacent to other ALU objects, supporting ALU to ALU zero-latency communication.

(a) (b)

Fig. 3.3: Nearest neighbor registers (a) Local NN registers for data output, and (b) Adjacent
NN registers for data input.

35

Party Line Communication

PL connectivity offers data communication over longer distances but has a non-zero

latency. PL channels are divided into three groups: Group 1, Group 2, and Group 3. Group

1 and 2 have four channels, one each in North, South, East, and West directions. Group 3

contains only two channels, one each in North and South directions.

Special registers called Launch/Land (LL) registers are used for party line communi-

cation. One LL register is shared by two channels moving in opposite directions within

the same group. The directions of the channel pair are used for naming the shared LL

register. For example, in Group 1, a North/South LL register is shared by the North and

South channels. Each silicon object contains a total of five LL registers. LL registers are

used for sending data from a source object, receiving data at the destination object, and

for registering data at the end of each clock cycle during transmission.

When sending data, a silicon object places data in its local NN registers or in a LL

register. Data is launched through a launch Multiplexer (Mux), and travels from one object

to another through party line channels. Figure 3.4 shows how data is launched in the East

direction from an East/West LL register. A change in direction is allowed as long as data

remains within the same PL group. However, a U-turn is not allowed without first landing

Fig. 3.4: Party line launch and land register.

36

on a an LL register. In order to switch groups, a silicon object must be programmed to move

data between LL registers of two different groups. If the data has reached the destination

silicon object, or when the maximum number of hops have been spanned, the data must

land on an LL register. Thereafter the data is either relaunched or is consumed by the

destination object. For example, as shown in fig 3.4, incoming data from East or West

PL channel lands on the East/West LL register, after which either the data is used by the

silicon object or it is relaunched through the East launch multiplexer.

3.2 Finite Domain Constraints

Finite domain (FD) constraints are a field of constraint logic programming, which

facilitate the representation of, and solution for, discrete search problems [51]. A variable

X is constrained to take a value from a set D, where D is referred to as the domain of

X. When all variables in a constraint satisfaction problem are bound to domains of finite

cardinality, the problem is said to be a Finite Domain Constraint problem. The constraint

store CS is a repository of constraints and domains of variables. The finite domain solver

applies these constraints to reduce the cardinality of the domains of variables resident in

the constraint store. Let is consider two variables X and Y , where X ∈ D1, X ∈ D2, and

Y ∈ D3 are constraints posted to the constraint store, restricting the domains of X and Y .

In this case, the constraint store becomes CSXY = (X ∈ D1) ∧ (X ∈ D2) ∧ (Y ∈ D3). The

conjunction of two basic constraints involving X allows the solver to infer that the domain

of X must be equal to D1 ∩D2. A constraint store is said to be consistent when for every

variable M in the store, M /∈ ∅, or in other words, the solver has not determined that no

value can be bound to M which satisfies the set of constraints imposed on M . A finite

domain constraint problem is comprised of a set of FD variables and a set of constraint

defined over those variables. A constraint solver attempts to discover a solution to the

constraint satisfaction problem through the repeated application of basic constraints to the

set of variables captured in the constraint store, with the goal of reducing the cardinality of

the domains associated with each variable. A solution to the problem is found when each

variable has been grounded and the constraint store is consistent.

37

The Mozart programming system and constraint solver is a development platform for

constraint programming in the Oz language [111]. Oz is a concurrent programming language

with features of functional, logic, and constraint programming. Furthermore, Oz supports

constraint-based problem solving using finite domain constraints. The Mozart constraint

satisfaction engine employs three steps in determining a solution to a constraint satisfaction

problem: Propagation, Distribution, and Search.

3.2.1 Propagation

A propagator is a thread of execution which is assigned the responsibility of enforcing

the consistency of a single constraint. A constraint solver imposes these non-basic con-

straints on the variables contained within the constraint store to reduce the cardinality of

their domains. If a reduction in a variable’s domain is detected, the constraint store is

updated to reflect the change. The solver then determines if any other propagators depend

on the variable corresponding to the modified domain and invokes them to further shrink

the domains of all associated variables. Thus, a change in one variable’s domain is propa-

gated to other variables through the constraint store. This process of imposing constraints,

sharing information, and shrinking domains is called propagation.

For example, x, y, z ∈ {1, 2, ..10} are three finite domain variables with a constraint

x+y = z defined over them. The constraint store contains a conjunction of basic constraints

x ∈ {1, 2, ...10}∧y ∈ {1, 2, ...10}∧z ∈ {1, 2, ...10}, but it does not have sufficient information

to narrow down any of these domains. The constraint x+y = z realizes a propagator which

eliminates the value 10 from the domains of x and y, and the value 1 from the domain of z,

since these values cannot satisfy the constraint. Propagator x + y = z is said to constrain

the variables x, y, and z. Introducing another propagator 2x = y strengthens the store to

x ∈ {1, 2, ...4}, y ∈ {2, 3, ..8}, and z ∈ {3, 4, ...10}. A new constraint x = 1 is now sufficient

to ground y to the value 2 through propagator 2x = y. The updated values for x and y

cause propagator x + y = z to bind z to the value 3.

Propagators affect the domain of a variable depending on the propagation scheme

implemented: domain or interval. Domain propagation has the maximum impact on the

38

domain of a variable since it attempts to eliminate all infeasible values to shrink the domain.

On the other hand, interval propagation only narrows down the lower and upper bounds of

a variable’s domain. Interval propagation is computationally less expensive and is usually

preferred over domain propagation. The above example demonstrates interval propagation

since the value 3 is not removed from y’s domain after the introduction of 2x = y constraint.

However, interval propagation does not yield incorrect solutions because y = 3 assignment

causes a constraint violation which eventually removes the value 3 from y’s domain.

While propagation is an important feature for solving constraint satisfaction problem,

typically it is not sufficient to find a solution. If no new information can be discerned from

the current state of the constraint store and the set of constraints, the propagation is sus-

pended. Therefore, the solver must resort to distribution in order to facilitate propagation.

3.2.2 Distribution

Distribution is used to add new information to the constraint store when the solver

reaches a point where it cannot proceed further toward a solution. Distribution creates two

threads of contradictory sub-problems by cloning the search space and by inserting contra-

dictory constraints in each clone, which are independently solved. A distribution point is

introduced whenever propagation stalls. If propagation stalls in any of the newly created

sub-problems, the distributor is invoked again. During this process, if the solver discovers

a constraint violation, the solver backtracks to a previously cloned, but yet unexplored

space in order to continue the search. Backtracking indicates that search proceeded along

incorrect paths until the right path was selected, and is an important aspect of constraint

solvers as it allows performing a quick test to determine if the current sub-problem could

eventually lead to a valid solution or not. Mozart provides built-in distributors but also

allows development of custom distribution strategies, which can benefit from knowledge of

the problem domain.

For the example presented in sec. 3.2.1, propagation stalls in the absence of constraint

x = 1. It is obvious that multiple values of x, y, and z satisfy x + y = z, but not enough

information can be gathered to find a single solution. Distribution can resume propagation

39

by selecting one of the un-grounded variables and setting it equal to one value in one

sub-problem and setting it not equal to that value in the other sub-problem. Typically,

the variable with minimal domain size is selected. In the above example, selection of x is

preferred because it has the smallest domain size and a choice point is created by setting

x = 1, and x 6= 1. Figure 3.5 shows the distribution tree along with the domains of variables

at each distribution step for finding possible solutions to this problem. Three solutions are

found for x = 1, 2, and 3. However, when x is bound to the value 4, no value can be found

for y which satisfies the remaining constraints in the store. Conequently the space with

that assignmnt of x = 4 fails. In case of x = 4, y ∈ ∅ causes violation of 2x = y constraint,

resulting in failure.

For problems representing large design spaces, even a small number of distribution

steps can impose severe memory requirements, which may be impossible to satisfy causing

the search to terminate prematurely. To address this issue, memory requirements for large

search problems must be minimized.

Fig. 3.5: Distribution steps for x + y = z.

40

Mozart allows a trade-off between memory and convergence time through a feature

called re-computation. Typically, after each distribution step, the space state is saved so

that it can be restored in the case of a backtrack. However, instead of saving space state

after each distribution step, if the state is saved only after every SRC steps, the memory

requirement can be reduced by a factor of SRC , where SRC is a user defined value. In the

event of a backtrack, all the intermediate states are re-computed from a previously saved

state, increasing computation burden and search convergence time. Figure 3.6 shows a

distribution tree with step size SRC = 3. The search space is cloned in distribution steps 1,

4, and 7. After step 6, the left search path fails and the previous stable state, which happens

to be the state at step 6, must be restored. However, the space was cloned only at step 4

requiring re-computation of the space state at steps 5 and 6, which increases computation

burden and search time while reducing memory requirements.

The order in which variables are selected for distribution also plays an important role

during distribution. All distributor implementations used in this research use a variable

Fig. 3.6: Recomputation with step size SRC = 3.

41

selection strategy called first fail. In first fail an ungrounded variable with the smallest do-

main is selected for distribution. Even though first fail guarantees that the selected variable

has the smallest domain size, it is possible that a large number of values in its domain do

not yield a valid solution, resulting in extensive backtracking. If multiple variables have the

smallest domain size then any of these variables can be selected and the choice of variables

selected first can make a significant difference in the search convergence time. A direct im-

plication of variable selection is that a small sized problem may not always converge faster

using lesser memory as compared to a large sized problem. However, search performance

can still be improved through efficient backtracking and propagation.

Once a variable is selected, a value from its domain can be selected in various ways.

This selection impacts the size of the search tree. In this research, the following two first

fail strategies are used. The first one is the standard first fail which selects the least possible

value in a variable’s domain. The second one is a first fail split domain strategy which splits

the domain of a variable and uses either the lower or the upper part of the domain. The

effectiveness of these strategies in reducing the size of the search tree depends on the nature

of the problem and neither one of them is necessarily superior to the other.

3.2.3 Search

Any constraint problem can have zero or more solutions. The path to a solution

depends on how the distribution tree is traversed and it impacts the search time as well

as the memory requirement. The search for a solution can explore the tree depth first,

breadth first, or may use a heuristic search technique. Depth first exploration of a tree is

considered to be more efficient in terms of memory requirement and is typically preferred

over breadth-first search.

42

Chapter 4

Resource Allocation and Scheduling

The FPOA has a deterministic timing network and relies upon the input design specifi-

cation to provide communication delays between connected components. Typical Data Flow

Graphs (DFGs) do not capture this information and require additional processing to deter-

mine communication delays. This chapter describes the methodology used in this research

to allocate computational resources and schedule a DFG to generate a delay annotated data

flow graph, henceforth referred to as Timed Data Flow Graph (TDFG).

Section 4.1 describes the need for transforming a DFG into a TDFG and is followed by

sec. 4.2, which explains the concept of FPOA resources. Section 4.3 explains and formalizes

the resource allocation and scehduling problem from an FPOA perspective, and algorithms

to solve these problems are proposed in sec. 4.4. In sec. 4.5, an approach for improving

the placeability of a schedule is discussed. Finally, sec. 4.6 presents the proposed Oz-based

constraint satisfaction approach for resource allocation and scheduling.

4.1 Data Flow Graph

A DFG is a directed graph that captures the data dependency among various opera-

tions. A DFG is represented by

G = (V,E), (4.1)

where V is a set of vertices or nodes representing an operation and E ∈ V × V is a set of

directed edges. Each node, v ∈ V, has zero or more inputs and outputs. An edge connects

the output of one node to the input of another and models a data dependence relationship

between two nodes. The function represented by a node can only be executed when all its

inputs are available. Upon execution, a node consumes input data and produces output

data according to its functional behavior.

43

DFGs are frequently used for modeling system behavior. However, a DFG does not

provide specific information on the type of physical resource, execution latency, communi-

cation delay, or the order of execution of different operations. This information is obtained

by allocating resources in an architecture to nodes of a DFG and analyzing the data depen-

dence relations among various nodes to establish the order of execution of operations. The

output of this process is a TDFG which is depicted as GT in eq. (4.2),

GT = (VT , ET , De), (4.2)

where VT is a set of vertices or nodes representing resources, ET = VT × VT is a set of

directed edges, and De ⊂ N is the set of communication delays along edges ET , where N

is the set of natural numbers. Each edge e = (vsrc, vdst) ∈ ET connects a pair of nodes,

where the communication delay along edge e is given by Delay : ET → De. The term

“resource” refers to one of many physical objects present in an architecture and not to a

specific physical object as described in sec. 4.2.

4.2 Resources in an FPOA

The FPOA Arrix architecture consists of 256 ALU, 64 MAC, and 80 RF objects.

An ALU object can perform arithmetic and logical operations, whereas MAC and RF

objects are used for multiply-accumulate and load/store operations, respectively. All these

objects collectively represent the computational resources available on an FPOA. In order

to separate the placement process from allocation and binding, a set of virtual resources,

<FPOA, is defined in eq. (4.3).

<FPOA = {ALU0..ALU255,MAC0..MAC63, RF0..RF79} (4.3)

The resource set <FPOA contains 256 ALU resources, 64 MAC resources, and 80 RF re-

sources and represents the pool of resources to which operations can be allocated. In the

above discussion, placement refers to the process of associating each virtual resource with a

44

physical object on the chip and is described in Chapter 5. Allocation is the determination

of the number of virtual resources that a particular scheduled DFG requires, while binding

is the process of associating each DFG operation with a specific virtual resource.

In addition to the arithmetic and logic processing elements, each ALU contains an eight

state instruction state machine which can execute one instruction in each state as shown in

fig. 4.1. Set S = {0..7} represents the eight states of an ALU’s state machine. The state

machine is always initialized to state 0 which is executed first by default. After executing

the instruction in state n, control is automatically transferred to state n + 1, unless the

current instruction causes a branch to a different state.

The execution latency of a resource r ∈ <FPOA is defined as Latency : <FPOA → Z+

and is equal to the number of clock cycles required to execute an instruction by a physical

object corresponding to the resource r, where Z is the set of non-negative integers. Table 4.1

shows the latency of ALU, MAC, and RF objects. ALU latency is one clock cycle in each

state in the instruction sequence. MAC has a two clock cycle latency but a single cycle

throughput due to its pipelined implementation. Latency of an RF object can be one or

two clock cycles depending on the mode of operation.

4.3 Resource Allocation and Scheduling

The process of implementing a design on an FPOA begins with an unschduled DFG.

Resources are allocated to nodes of a DFG and each node is assigned a start time to

Fig. 4.1: Instruction state machine of an ALU.

45

Table 4.1: Latency of FPOA objects.
Object Latency

(Clock cycles)
ALU 1
MAC 2
RF 1 or 2

generate a TDFG. The following provides an in-depth description of the resource allocation

and scheduling methods employed in this research.

4.3.1 Resource Allocation

In the context of an FPOA, allocation refers to the process of assigning a compatible

virtual resource to a node in a DFG. Equation (4.4) defines a function Alloc : V → <FPOA

which assigns a virtual resource to a node v.

Alloc(v) = r , only if r ∈ <FPOA ∧ NodeType(v) = ResType(r), (4.4)

where v ∈ V is a node in the DFG and <FPOA is the virtual resource set of an FPOA.

NodeType : V → OprType is a function that indicates the type of operation performed

by v, where OprType = {ALU, MAC,RF} represents the set of all arithmetic, logical,

and load/store type of operations supported by an FPOA. Similarly, function ResType :

<FPOA → OprType gives the type of operation supported by a resource r ∈ <FPOA.

Alloc() assigns a resource to a node only if the resource is capable of executing the operation

represented by that node.

Consider node v3 in fig. 4.2, which represents an addition operation that must be

executed on an ALU because only ALUs support addition operations. Thus, the node

type of v3 is ALU. Resources r1 and r2 are both ALU instances and either of them can be

allocated to v3. In fig. 4.2, r1 is allocated to v3, while r2 remains available for assignment

to another compatible node in the DFG.

The allocation performed by Alloc() assumes unlimited resources which is not a valid

assumption. In a real-world scenario, the number of resources is finite and a good allo-

46

Fig. 4.2: Allocating resources to nodes of a DFG.

cation scheme must take into account the availability of resources as well as the cost of

each assignment. Moreover, the above approach needs to be refined to include instruction

states when allocating ALUs. While it is straightforward to allocate MACs and RFs to

multiplication and load/store operations, respectively, the eight state ALU complicates the

assignment because up to eight DFG nodes can be assigned to the same ALU resource. A

simple solution to this problem is to treat each state in an ALU as a separate ALU resource

and assign a node to an individual state. Thus, instead of 256 ALUs, we now have 256× 8

ALU states for allocating arithmetic and logic operations. Equation (4.4) only maps a node

to a physical resource and is no longer sufficient for capturing allocation involving ALU

resources. The allocation of a node to an ALU must address the internal ALU instruction

state machine as well.

Equation (4.5a) refines eq. (4.4) to capture the particular state s ∈ S within an ALU

and defines a new allocation function.

AllocFPOA(v) = (r, s), only if r ∈ <FPOA ∧ NodeType(v) = ResType(r) ∧ s ∈ {0...7}

(4.5a)

∀(r, s), ResType(r) ∈ {MAC,RF} ⇒ s = 0 (4.5b)

47

AllocFPOA : V → <FPOA × S is a one-to-one map from a node to the resourse set and

instruction state set. However, MAC and RF resources do not have an instruction state

machine. Without loss of generality, it is assumed that MAC and RF resources have a single-

instrution state machine, and always execute instruction in state 0 as shown in eq. (4.5b). It

should be noted that eq. (4.5a) permits up to eight operations to be co-located on the same

ALU, but to different instruction sequencer states. The order in which instruction states

are assigned to co-located ALU operations impacts the start times of these operations, as

described in the next section.

4.3.2 Scheduling

The process of establishing the order of execution and start times of each node is

called Scheduling. A schedule can be obtained by using straightforward scheduling methods

such as As Soon As Possible (ASAP) or As Late As Possible (ALAP); ASAP scheduling

attempts to execute a node at the earliest possible time step while ALAP procrastinates

the execution unless it is absolutely warranted. Both ASAP and ALAP assume unlimited

physical resources; for cases with limited set of resources, methods such as list scheduling are

used. List scheduling attempts to minimize execution time subject to resource constraints.

Figure 4.3 shows a possible allocation for the DFG in fig. 4.2. The execution latency

of each operation is equivalent to the latency of the corresponding physical resource. Given

the execution latency of each node in a DFG, it is sufficient to find the execution start times

St(vi) for each node vi ∈ V to determine a schedule, where St : V → Z represents the time

at which vi commences operation. The start time of a node depends on the start times of its

preceding nodes. Consider edge ek = (vs, vd) ∈ E, shown in fig. 4.4. The data dependence

modeled by ek mandates that the source of the edge must complete its operation prior to

the commencement of the destination operation. Equation (4.6) specifies the relationship

between the start times of vs and vd,

St(vd) > St(vs) + Latency(rs), (4.6)

48

Fig. 4.3: An allocated DFG.

where AllocFPOA(vs) allocates the resource rs to node vs. By iteratively considering the

edges in the input DFG, precedence relations between the start times of all connected nodes

can be established.

ALU instruction state machine and architectural restrictions introduce additional in-

terdependence between resource allocation and start times. Consider the allocation of two

ALU type nodes vi and vj . If these nodes are assigned to the same ALU, they must belong

to different states, say si and sj , respectively. The instruction state machine takes exactly

|si − sj | clock cycles to transition sequentially from the lower state to the higher state.

Thus, the difference between the start times of these nodes, |St(vi)−St(vj)|, must be equal

to |si − sj |. This property of the state machine helps in deriving eq. (4.7), which defines a

relationship between the start times of any two nodes that share an ALU.

St(vi) = St(vj)− (sj − si) (4.7)

Fig. 4.4: Two nodes connected by edge ek. Node vs precedes node vd.

49

The architecture of an FPOA has no two MAC resources that are nearest neighbors.

Similarly, only eight RF objects are positioned on the FPOA to be pairwise nearest neigh-

bors. The first restriction implies that for an edge emm = (vms, vmd) ∈ E, which begins

and ends with two distinct MAC type nodes, Delay(emm) must be greater than 0. Equa-

tion (4.8) gives the relationship between the start times of nodes vms and vmd. The second

restriction permits only eight edges in E, which connect two distinct RF type nodes, to

have a zero delay.

St(vmd) > St(vms) + 1 (4.8)

After resource allocation and scheduling, delay along an edge e = (vsrc, vdst) ∈ E in a

DFG is calculated using start times St(vsrc) and St(vdst), and the execution latency of the

resource rsrc assigned to vsrc. Section 4.1 defines Delay() to be a function which specifies

the time between the production of a value until its consumption. Based on the above

discussion, a formal definition of Delay() is provided in eq. (4.9).

Delay(e) = St(vdst)− St(vsrc)− Latency(rsrc) (4.9)

There are circumstances when Delay(e) = 0, implying that the data produced by a

source operation is consumed in the next clock cycle. A zero delay communication requires

that the source and destination operations must either be located on FPOA objects which

share a nearest neighbor connection, or be co-located on the same object. The latter case

arises often when both source and destination are ALU type operations.

Even though Allocation and Scheduling appear to be mutually exclusive, they are

actually interdependent. Unless we allocate resources, the execution latency of a set of

independent nodes is unknown. However, for resource allocation, we need to know the

number of physical resources available which can be determined only after finding a valid

schedule. The above scenario presents a cyclic dependency between Allocation and Schedul-

ing which must be resolved. Section 4.6 describes a simultaneous Allocation and Scheduling

methodology to address this problem.

50

4.4 Resource Allocation and Scheduling Algorithms

The equations discussed in the previous sections provide the foundation for developing

allocation and scheduling algorithms. These equations can be grouped into three categories:

allocation, scheduling, and architectural constraints. Algorithms for each of these categories

are presented in this section.

Algorithm 4.1 presents a methodology to allocate resources from an FPOA to the

nodes of an input DFG. The algorithm begins with a set of unallocated nodes in line (4),

where each node must be assigned a suitable FPOA resource and an available state in the

instruction state machine of the resource. Initially, all resources in <FPOA are available for

allocation, as shown in line (5). Line (6) initially assumes that all resources in <FPOA have

an instruction state machine, and assigns a set of eight available states to each resource. As

Algorithm 4.1 Allocation algorithm
// Allocation
(1) input : DFG = (V,E)
(2) input : Resource set <FPOA

(3)
(4) unallocated node set = V
(5) available resource set = <FPOA

(6) ∀r ∈ <FPOA, available state setr = S
(7) IsALU : V → {True, False}, where IsALU(v) = True iff NodeType(v) == ALU
(8)
(9) while (unallocated node set 6= ∅) do
(10) select vi ∈ unallocated node set
(11) select r ∈ available resource set, such that NodeType(vi) == ResType(r)
(12) if (IsALU(vi)) then
(13) select s ∈ available state setr
(14) available state setr = available state setr − s
(15) if (available state setr == ∅) then
(16) available resource set = available resource set − r
(17) end
(18) else
(19) s = 0
(20) available resource set = available resource set − r
(21) end
(22) Allocate (r, s) to vi

(23) unallocated node set = unallocated node set − vi

(24) end

51

described earlier, MAC and RF resources are assigned a single-instruction state machine

for the purpose of resource alloction, and are always assigned state s = 0, as described later

in the algorithm. Line (7) defines a function IsALU() which returns True when applied to

an ALU type node. Line (9) marks the beginning of an iteration. In lines (10) and (11),

an unallocated node vi is selected from the unallocated node set and a suitable resource

r ∈ <FPOA is selected from the pool of available resources, such that NodeType(vi) is

equal to ResType(r). The condition in line (11) is necessary to ensure that r is capable

of executing the operation represented by vi. Resource allocation of ALU type nodes is

handled differently than for MAC and RF type nodes. To this effect, line (12) determines

the operation type of vi.

If NodeType(vi) = ALU , an available state s in ALU r is selected and is subse-

quently removed from the available pool of states in lines (13) and (14), respectively.

The availability of r for further allocation depends on the number of available states in

available state setr. However, if s is the last available state in available state setr, then

lines (15) and (16) remove the fully utilized resource r from available resource set. On the

contrary, if NodeType(vi) 6= ALU , state s is set to zero in line (19), satisfying eq. (4.5b).

Since r is of type MAC or RF, it cannot be allocated to any other node, and is removed

from available resource set in line (20).

The pair (r, s) is assigned to vi in line (22), completing vi’s resource allocation. Line (23)

removes vi from the unallocated node set, and the above process is repeated by selecting a

new unallocated node. The algorithm terminates when a resource has been allocated to all

nodes in the DFG, or unallocated node set = ∅. The algorithm requires |V | iterations to

perform allocation and has a time complexity O(|V |), where |V | is the number of nodes in

the input DFG.

As mentioned at the beginning of this chapter, the purpose of resource allocation

and scheduling is to transform a DFG into a TDFG. Allocation helps in determining the

amount of time required to perform a specific operation, but it does not establish the order

of execution of operations in the DFG. Algorithm 4.2 describes the procedure to schedule

52

Algorithm 4.2 Scheduling algorithm
// Scheduling
(1) input : DFG = (V,E)
(2) input : Resource set <FPOA

(3) IsALU : V → {True, False}, where IsALU(v) = True iff NodeType(v) == ALU
(4) VALU ={v ∈ V |IsALU(v) = True}
(5)
(6) forall e = (vsrc, vdst) ∈ E do
(7) let (rsrc, ssrc) = AllocFPOA(vsrc)
(8) if (St(vsrc) ≤ St(vdst)− Latency(rsrc)) then
(9) Delay(e) = St(vdst)− St(vsrc)− Latency(rsrc)
(10) else
(11) goto line (7)
(12) end
(13) end
(14)
(15) forall (vi, vj) ∈ VALU × VALU do
(16) let (ri, si) = AllocFPOA(vi)
(17) let (rj , sj) = AllocFPOA(vj)
(18) if ((ri == rj) && (vi 6= vj)) then
(19) if (St(vi) 6= St(vj)− (si − sj)) then
(20) goto line (16)
(21) end
(22) end
(23) end

operations in a DFG.

The initial step in scheduling is to build a set of precedence constraints to model data

dependence among the nodes in the DFG. For each edge e = (vsrc, vdst) ∈ E, line (7) states

that resource rsrc is allocated to node vsrc and Latency(rsrc) denotes the number of clock

cycles required by vsrc to execute an operation. Line (8) posts a precedence constraint,

shown in eq. (4.6), enforcing the data dependence relationship imposed by the edge. If the

precedence constraint is satisfied, then the delay along the edge is calculated in line (9).

Otherwise, control is transferred to line (7) and a new resource is allocated. Lines (6) to

(13) iteratively establish precedence constraints and calculate communication delay for all

the edges in the DFG.

Precedence constraints are necessary, but not sufficient, to determine start times of

nodes assigned to ALUs. As mentioned in sec. 4.3.2, additional constraints apply to co-

53

located ALU type node pairs. For each node pair (vi, vj) ∈ VALU × VALU , where vi and vj

share the same ALU, lines (15) to (23) post the constraint specified in eq. (4.7).

The loop in lines (6) to (13) executes |E| times, where |E| denotes the number of edges

in the input DFG. However, the condition in line (8) is data dependent and may require

an unknown number of repetitions of line (7) to (11) during each iteration of the loop.

Hence, the algorithm has a non-deterministic polynomial complexity. The similar behavior

is observed in the second loop shown in lines (15) to (23). While the loop will execute

256× 256 in the worst case, the condition in line (19) makes the run-time of the algorithm

non-deterministic.

While the above algorithms can allocate and schedule a DFG, they can yield solutions

that are not placeable due to the restrictions imposed by an FPOA’s architecture on MAC

and RF objects as discussed in sec. 4.3.2. An algorithm is proposed for constraining the

start times of certain nodes in the DFG which correspond to MAC operations, such that

invalid start times are removed from consideration. Algorithm 4.3 prohibits the scheduling

of two adjacent data flow MAC operations such that NN communication is required. Lines

(4) to (7) iterate over all the edges e ∈ E in the DFG. For every edge connecting two

MAC operations, line (6) requires that the start time of the destination operation is at least

two clock cycles later than the source operation. The time complexity of Algorithm 4.3 is

O(|E|).

Unlike MAC operations, up to eight distinct RF node pairs are allowed to be nearest

neighbors. The correct approach for removing invalid start times corresponding to RF op-

Algorithm 4.3 Disallow two MACs as nearest neighbors
// Constraints MAC MAC NN
(1) input : DFG = (V,E)
(2) IsMAC : V → {True, False}, where IsMAC(v) = True iff NodeType(v) == MAC
(3)
(4) forall e = (vsrc, vdst) ∈ E do
(5) if (IsMAC(vsrc) && IsMAC(vdst)) then
(6) St(vdst)− St(vsrc) > 1
(7) end
(8) end

54

erations is to determine the number of RF node pairs that need NN communication and

to ensure that no more than eight such pairs are permitted as NNs. However, the exact

number of RF node pairs requiring NN communication is not known until after the DFG

has been scheduled, necessitating rescheduling if the number of zero delay edges between

RF node pairs exceeds eight. A proactive sequential approach must either favor non-NN

communication between RF node pairs, or it should initially be biased towards NN com-

munication. Both these scenarios are inefficient because they do not consider the need for

having a NN communication between RF node pairs, which may arise as scheduling pro-

ceeds. Section 4.6.2 describes a concurrent approach which determines the RF node pairs

that require NN communication and allows up to eight RF operations to communicate with

zero delay.

It can be argued that ALU objects are also subject to architectural limitations when

considering nearest neighbor communication. However, the number of nearest neighbor

ALU objects is far more than the corresponding numbers for MAC and RF objects, de-

creasing the odds of obtaining unplaceable schedules involving ALU nearest neighbors. Ev-

ery ALU object has at least two nearest neighbor ALU objects, meaning nearest neighbor

connectivity is much more readily available for inter-ALU communication. Even though

algorithms can be developed to remove invalid start times resulting from excessive NN

communication between ALU operations, the benefits may not outweigh the increase in

computation burden. Hence, the current approach does not consider architectural limita-

tions imposed on ALU objects. Instead, if an unplaceable schedule is obtained due to the

unavailability of two nearest neighbor ALU objects, the DFG is rescheduled.

4.5 Schedule Relaxation

The scheduler implemented in this research tries aggressively to schedule adjacent oper-

ations to have zero interceding communication delay, implying the need for nearest neighbor

placement. Maximizing zero delay connections typically results in shorter schedule lengths,

decreases dependence on PL communication, and minimizes routing resource usage. A di-

rect consequence of increasing the NN connections is the additional computational burden

55

on the placement tool, because it handles all the NN connections. A less obvious impact

is on the placeability of the generated schedule. Algorithm 4.3 avoids some of the pitfalls

that arise during placement, due to the attempted placement of an infeasible schedule for

MAC operations. In spite of such algorithms, removing all possible invalid cases within

the scheduler is computationally expensive as not all invalid cases are as straightforward

as the MAC NN connections. For example, the architecture permits up to 16 ALUs to

form a pipeline such that each ALU has a MAC nearest neighbor and every connected ALU

pair is a nearest neighbor. To avoid pipelines longer than 16 ALUs, the scheduler must

constantly monitor the start times of all the objects forming this pipeline, incurring compu-

tational overhead. Considering several invalid cases, not all of which affect a single design,

incorporating unplaceable schedule avoidance in the scheduler can unnecessarily complicate

the implementation and severely affect the performance by increasing the computational

burden. Moreover, as described later in sec. 4.6, the resource allocation and scheduling

algorithms are interdependent problems which benefit from a concurrent implementation.

However, a concurrent implementation does not guarantee a specific order for assigning

start times to objects, resulting in possible late detection of invalid cases and extensive

rescheduling. Thus, early detection and avoidance of invalid cases is not always possible.

An alternative solution to fix the unplaceable schedule is to generate an initial schedule,

analyze it to identify invalid cases, and adjust the schedule to make it placeable. Since

the analysis of the schedule and identification of invalid cases can be performed efficiently

using a sequential procedure, it is implemented in C++ as a separate tool called Schedule

Analyzer (SA), which is used after an initial schedule is obtained.

The purpose of the SA is to search for unsatisfiable architectural requirements imposed

by a schedule. One such example is when two ALUs are connected by zero delay, where each

has three MAC nearest neighbors. While many ALUs on the FPOA are nearest neighbors

of three MACs, no two such ALUs can themselves be nearest neighbors, rendering the

scheduled design unplaceable. The schedule analyzer identifies many of the unsatisfiable

architectural requirements and makes suggestions for relaxing the delay along edges to

56

improve the placability of the schedule. A second round of scheduling takes these suggestions

into account and generates a new schedule. If no suggestions were made, then the original

schedule itself is used for placement. Additionally, operation merging also creates scenarios

with large numbers of nearest neighbors for a particular ALU resource, that are impossible

to place on the FPOA. For example, if two ALU operations, each with two MAC nearest

neighbors are merged, then the result is a single ALU object with four MAC neighbors, as

shown in fig. 4.5. Since no single ALU has four MAC nearest neighbors, such a schedule

cannot be placed. In order to fix these issues, the schedule analyzer prevents merging of

operations that lead to unplaceable schedules.

4.6 A Finite Domain Model for Allocation and Scheduling

The previous sections present the formulation of the fundamental relationships guid-

ing the allocation and scheduling problem. This section discusses the realization of these

relationships as a constraint satisfaction problem using Oz. Both allocation and scheduling

are interdependent problems that can benefit from the concurrency model offered by Oz.

Both problems are translated into a separate finite domain model, which are then jointly

issued to the FD solver. Information is shared between these finite domain models through

common variables. The subsequent sections describe the implementation of allocation and

scheduling as finite domain constraint satisfaction problems.

Fig. 4.5: ALU merging resulting in an unplaceable schedule.

57

4.6.1 A Finite Domain Model for Allocation

Figures 4.6, 4.7, and 4.8 provide the Oz implementation of the finite domain constraint

model of Algorithm 4.1. The finite domain constraint model is functionally equivalent

to the corresponding algorithm, but is formulated to leverage the concurrent constraint-

based structure used by the Oz solver. Figure 4.6 describes the procedure AllocInitialize,

which operates on the nodes in the input DFG. These nodes are supplied in the vari-

able DFGNodeList, which is a list of tuples, one tuple per node, of the form [[Node Id1,

(1) proc {AllocInitialize DFGNodeList N ?TDFGNodeTuple}
(2) ALU = 0
(3) MAC = 1
(4) RF = 2
(5) in
(6) TDFGNodeTuple = {Tuple.make nodeRecTup N}
(7) {List.forAll DFGNodeList
(8) proc {$ NodeElem}
(9) Node Num Node Type %Local variables
(10) in
(11) Node Num|Node Type| = NodeElem
(12) Node Rec = {FD.record nrec [num type state res num start time]
(12a) 0#FD.sup}
(13) Node Rec.num = Node Num
(14) Node Rec.type = Node Type
(15) if (Node Rec.type == ALU) then %ALU
(16) Node Rec.state ::: 0#7
(17) Node Rec.res num ::: 1#256
(18) end
(19) if (Node Rec.type == MAC) then %MAC
(20) Node Rec.state =: 0
(21) Node Rec.res num ::: 1#64
(22) end
(23) if (Node Rec.type == RF) then %RF
(24) Node Rec.state =: 0
(25) Node Rec.res num ::: 1#80
(26) end
(27) TDFGNodeTuple.NodeNum = Node Rec
(28) end
(29) }
(30) end

Fig. 4.6: Oz implementation for initializing allocation problem.

58

Node Type1] [Node Id2, Node Type2] ...], where Node Id and Node Type are the id and

type of a node in the DFG, respectively. AllocInitialize is responsible for creating a set of

data structures, one per node in the DFG, which hold allocation information, such as the

variable representing the to-be-determined resource number, the instruction state assigned

to the node, and the variable holding the to-be-determined start time of the operation.

AllocInitialize accomplishes this by iterating over all elements of the list DFGNodeList, and

performing some context-specific initializations, depending on the element’s operation type.

Lines (2) to (4) declare symbolic constants for ALU, MAC, and RF resources to facil-

itate the implementation of AllocInitialize by employing the following numerical encoding

for resource type in an FPOA: type 0 represents an ALU resource, type 1 represents a MAC

resource, and type 2 represents an RF resource. For a DFG with N nodes, line (6) defines

a tuple TDFGNodeTuple, which is similar to a length-N array, with labels for storing at-

tributes of each node. Line (7) provides the looping construct, which applies the procedure

defined at line (8) in turn to each element, NodeElem, of DFGNodeList. Line (7) separates

the pair NodeElem into two variables: Node Num and Node Type.

Line (12) defines the data structure Node Rec, referred to as a finite domain record, for

NodeElem, which contains several named fields, each of which is bound to a finite domain

variable. These fields include num, type, res num, state, and start time, which represent

a node’s id, type, to-be-determined resource allocation, to-be-determined instruction state,

and the start time of operation represented by the node. For any given node, a combina-

tion of num, type, res num, and state fields is sufficient to specify resource allocation as

described in eq. (4.5). The field, start time, is reserved for later use during scehduling.

Lines (13) to (26) evaluate the type of operation the node represents, and based on that

operation type, restrict the domains of the finite domain variables associated with the state

andres num fields of Node Rec.

For example, the FPOA offers 256 ALU resources, each of which is assigned a unique

integer id from 1 to 256. The finite domain variable res num represents the binding of an

ALU operation to an as-yet unplaced ALU object on the FPOA and is restricted to take

59

(1) proc {MakeRFMACDistinct TDFGNodeTuple Res Type}
(2) ResList %Local variable
(3) in
(4) ResList = {Record.foldL TDFGNodeTuple
(5) proc {$ Accum NodeElem ?Output}
(6) if (NodeElem.type == Res Type) then
(7) Output = {List.append [Node Rec.res num] Accum}
(8) end
(9) end
(10) nil}
(11) {FD.distinct ResList} %Apply Distinct Constraint
(12) end

Fig. 4.7: Oz implementation for imposing distinct constraints on MAC and RF.

on a value from 1 to 256 in line (17). Multiple ALU operations can be bound to the same

ALU resource, since ALUs support state-based sequencing of up to eight operations. Since

each ALU operation must be bound to a unique (resource, state) pair, the state field can

be bound to a value from 0 to 7. Since MAC and RF resources do not support multiple

operations, the state field for MAC or RF type operations is always bound to a value 0, as

shown in lines (20) and (24).

AllocInitialize does not restrict two nodes from being bound to the same resource.

The MakeRFMACDistinct procedure, given in fig. 4.7 addresses this issue for MAC and RF

operations. Lines (4) to (9) of MakeRFMACDistinct create a list containing all the res num

variables. Line (4) initiates a folding operation which applies the procedure defined in line

(5) to each element NodeElem of TDFGNodeTuple, where the input argument Accum is

the accumulator in which the result of the previous invocation or the initial value specified

in line (10) is passed, and the last argument Output is the variable which holds the result

of the current invocation. Depending on the value of Res Type, a list containing all the

res num variables corresponding to MAC or RF operations is created. Line (11) invokes

the FD.distinct constraint, provided as part of the Mozart libraries, which requires all the

variables in ResList to have unique values. MakeRFMACDistinct must be invoked twice,

once for MAC operations and once for RF operations.

Allocating nodes to ALUs is more complicated and requires a different approach than

60

(1) proc {MakeALUDistinct TDFGNodeTuple ?ALUResLISt}
(2) ALU = 0
(3) in
(4) {Record.forAll TDFGNodeTuple
(5) proc {$ NodeElem}
(6) ALUResStateProd %Local variable
(7) in
(8) if (NodeElem.type == ALU) then
(9) ALUResStateProd = {FD.int 0#2047}
(10) ALUResStateProd =: (Node Rec.res num-1) ∗ 8
(10a) + Node Rec.state
(11) ALUResList = {List.append ALUResList [ALUResStateProd]}
(12) end
(13) end
(14) }
(15) {FD.distinct ALUResList} %Apply Distinct Constraint
(16) end

Fig. 4.8: Oz implementation for imposing distinct constraint on ALU.

MakeRFMACDistinct. As described above, two ALU operations can be bound to the same

ALU resource, as long as they are allocated to distinct execution states within that re-

source. In order to simplify the checking of the requirement that no two ALU operations

are allocated to the same (resource, state) pair, the procedure MakeALUDistinct, given

in fig. 4.8, introduces a new parameter in line (8) called ALUResStateProd. This variable

is assigned an encoding of the (resource, state) pair as a single number, the result of the

product of the bound ALU resource number with the state number. Each unique (resource,

state) pair produces a unique integer, allowing the Oz distinct constraint to be imposed to

require unique bindings for each ALU operation.

To facilitate stronger propagation, a redundant constraint called MaxEightALUs, not

shown in the figure, is added to permit a maximum of eight nodes to be assigned to a

single ALU instance. This constraint is redundant because MakeALUDistinct ensures that

no more than eight nodes can share an ALU. However, the MaxEightALUs constraint can

reduce the domains of the res num finite domain variables earlier in the search process.

MaxEightALUs utilizes the Global Cardinality Constraint (GCC) [112], which is similar

61

to FD.distinct but is computationally more expensive and is not included in the Mozart

library. The GCC-based C++ implementation of MaxEightALUs is shown in Appendix A.

The implementations described above facilitate the mapping of operations in a DFG

on to a set of FPOA resources. However, the above discussion does not consider the influece

of operation start times on resource allocation. The next section describes the realization

of Algorithms 4.2 and 4.3 as constraint satisfaction problems and the impact of scheduling

on allocation.

4.6.2 A Finite Domain Model for Scheduling

Algorithm 4.2 consists of two separate loops. The first loop establishes precedence

relationships between any two nodes which share an edge. The second loop targets ALU-

type nodes and establishes additional precedence relationsips to account for the impact

of states on start times of nodes that are assigned to the same ALU instance. The

procedure SchedulingInit, given in fig. 4.9, implements the first loop of Algorithm 4.2.

SchedulingInit makes use of the TDFGNodeTuple data structure that is generated by pro-

cedure AllocInitialize. The procedure iterates over all pairs of nodes in the DFG which

are connected by an edge, and posts a precedence constraint relating the start times of

the nodes. Line (4) provides a loop construct with applies the procedure given in line

(5) to elements of DFGEdgeList, which is a list of tuples, one tuple per edge, of the

form [[Src Node1 Dst Node1] [Src Node1 Dst Node1] ...], where Src Node and Dst Node

represent the node number of the source and destination nodes of an edge in the DFG,

respectively. Line (8) separates the source and destination node numbers into two vari-

ables: SrcNode and DstNode. Depending on the type of source node, the latency Lat,

of the source node is assigned a value of 1 or 2. It is assumed that RF resources op-

erate in RAM mode which has a latency of 1. Line (16) declares Delay as a finite do-

main variable. Line (18) implements the precedence constraint that was described in

eq. (4.6) and line (19) computes the communication delay between two nodes accoding

to eq. (4.9). The output of SchedulingInit is a list of tuples, one tuple per edge, of the

form [[Src Node1 Dst Node1 Delay1] [Src Node2 Dst Node2 Delay2] ...], where Delay

62

(1) proc {SchedulingInit DFGEdgeList TDFGNodeTuple ?TDFGEdgeList}
(2) MAC = 1
(3) in
(4) TDFGEdgeList={List.foldL DFGEdgeList
(5) proc {$ Accum EdgeElem ?Output}
(6) SrcNode DstNode SrcStTime DstStTime Delay Lat %Local variables
(7) in
(8) SrcNode|DstNode| = EdgeElem
(9) SrcStTime = TDFGNodeTuple.SrcNode.start time
(10) DstStTime = TDFGNodeTuple.DstNode.start time
(11) if (TDFGNodeTuple.SrcNode.type == MAC) then
(12) Lat = 2 %Latency of MAC resource
(13) else
(14) Lat = 1 %Latency of ALU or RF resource
(15) end
(16) Delay =: {FD.int 0#FD.sup}
(17)
(18) SrcStTime <: DstStTime - Lat
(19) Delay =: DstStTime - SrcStTime - Lat
(20) {NoTwoMacNN SrcNode DstNode TDFGNodeTuple}
(21) Output = {List.append [[SrcNode DstNode Delay]] Accum}
(22) end
(23) nil}
(24) end

Fig. 4.9: Oz implementation for initializing scheduling algorithm.

represents the communication delay along the edge (Src Node1 Dst Node1). Line (20) in

SchedulingInit invokes procedure NoTwoMACNN, which prohibits two MACs from being

NNs, and is described later in this section.

The procedure ALUPrecedenceConstraint, which is illustrated in fig. 4.10, implements

a single iteration of the second loop in Algorithm 4.2 and must be invoked for every node

pair (vi, vj) ∈ V × V of the DFG. This procedure is applicable only to those edges which

connect two ALU type nodes. Line (13) of the procedure posts a constraint according to

eq. (4.7). This line presents a reified constraint which requires that either nodes V I and

V J be allocated to different resources, or in the case of co-location, that the communication

delay between nodes V I and V J be equal to the diference between their allocated states.

The Oz implementation of Algorithm 4.3 is given in fig. 4.11. The procedure NoTwoM-

63

(1) proc {ALUPrecedenceConstraint V I Node V J Node TDFGNodeTuple}
(2) V I StTime V J StTime V I ResNum V J ResNum V I State V J State
(3) ALU = 0
(4) in
(5) V I StTime = TDFGNodeTuple.V I Node.start time
(6) V J StTime = TDFGNodeTuple.V J Node.start time
(7) V I ResNum = TDFGNodeTuple.V I Node.res num
(8) V J ResNum = TDFGNodeTuple.V J Node.res num
(9) V I State = TDFGNodeTuple.V I Node.state
(10) V J State = TDFGNodeTuple.V J Node.state
(11) if (TDFGNodeTuple.V I Node.type == ALU) then
(12) if (TDFGNodeTuple.V J Node.type == ALU) then
(13) ((V I ResNum \=: V J ResNum) + (V I ResNum =: V J ResNum) ∗
(13a) (V I StTime - V I State =: V J StTime - V J State)) =: 1
(14) end
(15) end
(16) end

Fig. 4.10: Oz implementation for imposing precedence constraints on ALU type nodes.

ACNN applies only to those edges in the DFG, which connect two MAC type operations

and must be invoked once for each such edge. Line (10) in NoTwoMACNN restricts a pair

of adjacent MAC operations from requiring nearest neighbor communication, through the

imposition of a constraint on their start times. Even though Algorithm 4.3 contains a loop,

NoTwoMACNN does not implement a loop because it is repeatedly executed by procedure

(1) proc {NoTwoMACNN SrcNode DstNode TDFGNodeTuple}
(2) SrcStTime DstStTime
(3) MAC = 1
(4) in
(5) SrcStTime = TDFGNodeTuple.SrcNode.start time
(6) DstStTime = TDFGNodeTuple.DstNode.start time
(7)
(8) if (TDFGNodeTuple.SrcNode.type == MAC) then
(9) if (TDFGNodeTuple.DstNode.type == MAC) then
(10) DstStTime - SrcStTime >: 1
(11) end
(12) end
(13) end

Fig. 4.11: Oz implementation to prohibit two MACs from being NN.

64

SchedulingInit, once for each edge in the DFG.

Similarly, fig. 4.12 presents the Oz procedure LimitRFNN, which stipulates that no

more than eight edges connecting RF operations can require NN communication. Line

(6) initiates a folding operation which iteratively applies the procedure in line (7) to each

element EdgeElem of list DFGEdgeList. In line (10), the source and destination node

number pair in EdgeElem is separated and is assigned to variables SrcNode and DstNode,

respectively. Lines (15) to (20) count the number of zero delay edges, NumZeroEdges,

using the reified expression of line (17) by evaluating if the difference between the start

times of the source and destination operations is 1. Line (23) posts a constraint to limit the

value of NumZeroEdges, implying that there can be a maximum of eight pairs of adjacent

RF operations that may require NN communication.

(1) proc {LimitRFNN DFGEdgeList TDFGNodeTuple}
(2) NumZeroEdges
(3) RF = 2
(4) in
(5) NumZeroEdges = {FD.int 0#FD.sup}
(6) NumZeroEdges =: {List.foldL DFGEdgeList
(7) proc {$ Accum EdgeElem ?Output}
(8) SrcNode DstNode SrcStTime DstStTime NZEdge
(9) in
(10) SrcNode|DstNode| = EdgeElem
(11) SrcStTime = TDFGNodeTuple.SrcNode.start time
(12) DstStTime = TDFGNodeTuple.DstNode.start time
(13) NZEdge = {FD.int 0#FD.sup}
(14)
(15) if (TDFGNodeTuple.SrcNode.type == RF) then
(16) if (TDFGNodeTuple.DstNode.type == RF) then
(17) NZEdge =: Accum + (DstStTime - SrcStTime =: 1)
(18) Output = NZEdge
(19) end
(20) end
(21) end
(22) 0}
(23) NumZeroEdges =<: 8
(24) end

Fig. 4.12: Oz implementation for limiting two RFs from being NN.

65

4.6.3 Distribution Strategy for Allocation and Scheduling

Constraint propagation alone may not be sufficient to implement a complete constraint

solver. While propagation helps in shrinking the domains of finite domain variables, it may

stall and require more information to proceed. As noted in Chapter 3, constraint dis-

tribution introduces choice-points in a constraint problem, resulting in two contradictory

sub-problems. The order of selecting variables for distribution significantly impacts the

performance of finite domain solver and often benefits from a domain specific custom dis-

tribution strategy.

Mozart provides built-in distributers that can be used for implementing the scheduler,

but these distributers apply a one-blanket-fits-all approach without taking advantage of

the problem domain. A built-in distributer using first fail strategy will always distribute

on the FD variable with the smallest domain first, implying that distribution begins with

state variables, followed by res num, ALUResStateProd, and start time variables. Exper-

iments with the built-in distributer indicate that initially all state variables are grounded to

the least value in their domain and are identical. Consequently, all res num variables are

distinct because no two ALUResStateProd can be same, implying that no ALU operations

are merged. Instead of state variable, if either res num or ALUResStateProd variable is

selected first, then the scheduler aggressively merges ALU operations, which increases the

likelihood of generating unplaceable schedules and directly affects the schedule length be-

cause collocated ALU operations cannot execute concurrently. Hence, a custom distribution

strategy is required which prioritizes the scheduling of operations, followed by aggressive

merging of operations on ALU.

The distribution strategy employed for solving the allocation and scheduling problem

is derived experimentally and is given in fig. 4.13. The distribution starts with a list of

ungrounded start time variables and uses the first fail heuristic for variable selection. The

list of variables is sorted according to domain size and a variable with minimal domain size

is selected for distribution. Suppose ST is the selected variable. Since ST is not grounded,

it has a domain DST = [Dmin...Dmax] associated with it, which represents the values that

66

Fig. 4.13: Distribution strategy for scheduling.

can be assigned to it. Dmin is the lower bound and Dmax is the upper bound on the

values that ST can take. A choice-point is created for ST by introducing two contradictory

constraints ST =: Dmin and ST\ =: Dmin. If a choice-point causes a propagator to

fail, then the choice-point is discarded and distribution continues by backtracking to the

previous stable state. After all start time variables become singleton, distribution continues

by repeating the above process for lists of ungrounded ALUResStateProd, state, and

res num variables. A solution is reported when a value has been assigned to all the variables

such that all the constraints are satisfied. Occasionally, the Scheduler may not converge

due to excessive memory requirements causing the search to terminate. As described in

Chapter 3, recomputation can trade-off memory requirements with convergence time to

avoid premature termination of the search.

67

Chapter 5

Delay Aware Placement

Placement is defined as an assignment of a set of operations to compatible physical

objects in an FPOA, subject to a set of user-specified design constraints. As explained in

Chapter 4, Allocation and Scheduling transform a DFG into a TDFG, assigning suitable re-

sources to each operation. However, the exact locations of these operations or corresponding

resources on an FPOA must still be determined.

The placement problem can be phrased as an assignment of a set of nodes in a TDFG

to physical objects in an FPOA, subject to a set of user-specified design constraints. Com-

munication delay along the edges in a TDFG impose constraints which must be satisfied in

order to successfully implement the design. Since the methodology presented in this chapter

attempts to place designs by satisfying communication delays, the approach is termed as

“delay aware placement.” The chapter is organized as follows. Section 5.1 builds the math-

ematical foundation for representing the objects on an FPOA. This mathematical model is

used for formulating the placement problem as described in sec. 5.2. An algorithm and a

constraint satisfaction approach for solving the placement problem are discussed in sec. 5.3

and 5.4, respectively. Section 5.5 provides a summary of the chapter.

5.1 A Formal Model for Objects in an FPOA

As stated previously, the FPOA architecture consists of three types of objects: ALU,

MAC, and RF. These objects are arranged in a XMax×Y Max square grid, where XMax =

Y Max = 20. Since these are physical objects on a silicon chip, they are often referred to as

Silicon Objects (SO) to disambiguate them from other terms such as “resources” or “nodes”

in a TDFG.

The 20×20 grid can be represented using Cartesian coordinates (x, y) ∈ X×Y , where

68

X = {1, 2, ...XMax} and Y = {1, 2, ...Y Max}. As shown in fig. 5.1, the silicon object with

coordinates (1,1) is located in the bottom left corner of the array. Objects on the array are

each assigned a unique coordinate pair, where adjacency is marked by unit distance. The

bottom right, top left, and top right corners are located at (XMax, 1), (1, Y Max), and

(XMax, Y Max), respectively.

A total of 400 different objects comprise the FPOA grid and are represented by the

object set OFPOA, which contains 256 ALU, 64 MAC, and 80 RF silicon objects. In order

to refer to a particular object, we can either use its location or else assign it a unique id.

The location is frequently used for calculating Manhattan distances between pair of objects.

Since a location requires a pair of numbers, it can be cumbersome if used as a primary key

for frequently accessing an object. However, since each object has a unique location, it

is possible to define a formula for computing a numerical identifier based on an object’s

coordinates. This technique allows us to obtain the location of an object from its id and

vice versa, without the need for a lookup table, and is explained below.

Fig. 5.1: Assigning Cartesian coordinates to silicon objects.

69

For an object SO ∈ OFPOA, the function Coord : OFPOA → X × Y defines a map-

ping between the object and its coordinates (SOx, SOy) ∈ X × Y . Using the coordinates

(SOx, SOy), it is possible to assign a unique id to the object’s location. The function

LocID : X × Y → N+, defined in eq. (5.1), maps the coordinates of an object to a unique

numerical value in N+, where N+ is the set of natural numbers greater than 0. This unique

value is referred to as the id of SO.

LocID(SOx, SOy) = (SOy − 1)×XMax + SOx (5.1)

Equation (5.1) assigns ids to objects using the row major order, which means that the

difference between the ids of two adjacent objects in the same row is 1. Even though it

is possible to use column major order for assigning the unique ids, using row major order

offers certain advantages, which are discussed in sec.5.4.1.

In order to simplify the mapping between a silicon object and its unique location id,

the function ID : OFPOA → N+ is defined in eq. (5.2).

ID(SO) = LocID(Coord(SO)) (5.2)

Additionally, we define SOid = ID(SO), for all silicon objects SO ∈ OFPOA, as a

shortened notation. Based on the above discussion, the set of ids of all silicon objects in

the FPOA, ALU SOid, can now be defined and is shown in eq. (5.3). Figure 5.2 shows a

portion of the FPOA grid with object locations denoted by their Cartesian coordinates and

the corresponding unique ids.

ALL SOid = {n ∈ N+|∀ SO ∈ OFPOA, n = ID(SO)} (5.3)

Apart from its location, a silicon object is also characterized by the type of operation

it performs. The function ObjType : OFPOA → OprType gives the type of operation

supported by an object SO ∈ OFPOA, where OprType = {ALU, MAC,RF} as defined

previously in sec. 4.3.1.

70

Fig. 5.2: Silicon object locations and corresponding SOid.

Since the number of objects is finite and their locations on the FPOA is fixed, we can

partition the set of all SOid into mutually exclusive subsets, based on object type. This

partitioning generates three subsets, one each for ALU, MAC, and RF objects, such that

ALL SOid = ALU SOid ∪MAC SOid ∪ RF SOid, where ALU SOid, MAC SOid, and

RF SOid are defined in eq. (5.4a-c).

ALU SOid = {n ∈ N+|∀ SO ∈ OFPOA, n = ID(SO) & ObjType(SO) = ALU} (5.4a)

MAC SOid = {n ∈ N+|∀ SO ∈ OFPOA, n = ID(SO) & ObjType(SO) = MAC} (5.4b)

RF SOid = {n ∈ N+|∀ SO ∈ OFPOA, n = ID(SO) & ObjType(SO) = RF} (5.4c)

Communication delay between two silicon objects is a function of their proximity, as

measured by Manhattan distance. A unit Manhattan distance is referred to as a hop.

Manhattan distance between two points is defined as the sum of absolute differences of

their respective x and y coordinates. Applying this concept to the FPOA grid, we obtain

eq. (5.5), which defines the function Dist : OFPOA×OFPOA → N+. This function computes

the Manhattan distance between two silicon objects SO Src, SO Dst ∈ OFPOA, where

(SO Srcx, SO Srcy) = Coord(SO Src), and (SO Dstx, SO Dsty) = Coord(SO Dst).

71

Dist(SO Src, SO Dst) = |SO Srcx − SO Dstx|+ |SO Srcy − SO Dsty| (hops) (5.5)

5.2 Placement Problem

A TDFG is obtained from a DFG using the procedure described in Chapter 4. The

nodes in a TDFG may represent operations that are co-located, which is eventually placed

on the same silicon object. The number of nodes in the TDFG can be reduced by merging

all the co-located nodes that share the same resource into a single node. The edges in the

TDFG are preserved, except for cases where two merged nodes share an edge. In such a

case, no external communication is required because the operations can communicate using

internal registers, and the edge is removed. Placement and routing procedures are defined

over this modified TDFG.

Since each node in a TDFG represents a resource that must be implemented by a

silicon object we must develop a procedure that facilitates the association of a node with

a corresponding silicon object. This procedure must also check whether a node and a

candidate silicon object are compatible, i.e., whether the candidate SO is able to execute

the node’s operation. To define this procedure we introduce four new attributes for each

node v ∈ VT : vres type, vid, vx, and vy. The first attribute denotes the node’s type, or

vres type = NodeType(v).

The second attribute, vid, represents the id of the silicon object where the placement

algorithm assigns v to execute. We define V ID(v) = vid to denote the vid attribute for all

v ∈ VT . If v is placed on silicon object SO, then V ID(v) = ID(SO), where V ID(v) = vid

and V ID(v) ∈ ALL SOid. However, for a valid placement, vres type must be equal to

ObjType(SO). Due to the fact that a node v can only be placed on an object SO if

vres type = ObjType(SO), the initial domain of vid can be restricted to a subset of the

72

originally defined domain ALL SOid, as shown in eq. (5.6).

vid /∈

MAC SOid ∪RF SOid, if vres type = ALU

ALU SOid ∪RF SOid, if vres type = MAC

ALU SOid ∪MAC SOid, if vres type = RF

(5.6)

Furthermore, two nodes cannot be placed on the same silicon object and a silicon

object cannot be assigned to two different nodes in a TDFG. For example, if two nodes

vm, vn ∈ VT are assigned to two silicon objects, SOm and SOn, respectively, then ∀vm 6= vn,

V ID(vm) = ID(SOm), V ID(vn) = ID(SOn), and V ID(vm) 6= V ID(vn).

The last two attributes vx and vy are the coordinates of the silicon object on which

node v is placed. Suppose that the placement algorithm determined that v is to be placed

on silicon object SO, then vid = ID(SO), vx = SOx, and vy = SOy. Equation (5.7) uses

eq. (5.1) to relate attributes vid, vx, and vy.

vid = LocID(vx, vy) (5.7)

The goal of placement is to bind each node in a TDFG to exactly one silicon object. The

placement problem can be initially defined as the determination of a one-to-one mapping

of VT to OFPOA, such that operation type constraints are not violated. While the initial

description of placement may appear straight forwad, placement is also subject to timing

constraints, which impact object proximity. The FPOA requires delay aware placement,

which means that the placement is restricted by the required communication delay between

two connected objects. Objects in a FPOA communicate in two ways: NN connection or PL

connection. Nearest neighbor connectivity uses special NN registers and supports zero clock

cycle communication delay. In contrast, party lines are used for sending data to objects

located farther away from the source. Irrespective of the type of network used, placement

is subject to certain architectural restrictions which are discussed in the following sections.

73

5.2.1 Nearest Neighbor Communication

Any object can have a maximum of eight nearest neighbors as shown in fig. 5.3. Each

local NN register of an object can output data to two of its adjacent neighbors. Similarly,

each object can read data from NN registers of its nearest neighbors. NN connectivity

is used when data produced from one object must be consumed by another object in the

next clock cycle. While NN connections reduce communication delay, they introduce tight

constraints which decrease placement flexibility.

Two silicon objects SO NN Src and SO NN Dst are NNs only if the proximity con-

straint specified in eq. (5.8) is satisfied.

|SO NN Srcx − SO NN Dstx| ≤ 1 ∧ |SO NN Srcy − SO NN Dsty| ≤ 1, (5.8)

where (SO NN Srcx, SO NN Srcy) and (SO NN Dstx, SO NN Dsty) are the Carte-

sian coordinates of silicon objects SO NN Src and SO NN Dst, respectively. Further, we

define DistNN (SO NN Src, SO NN Dst) as a shortened notation to denote the proxim-

Fig. 5.3: Nearest neighbor input and output.

74

ity constraint presented in eq. (5.8). Since no two MAC objects can satisfy this criterion,

Algorithm 4.3 forbids TDFGs from having any edge e ∈ ET connecting two MAC resources

with Delay(e) = 0 . The condition specified in eq. (5.8) is necessary, but not sufficient for

NN communication, because two adjacent objects can communicate using Party lines.

5.2.2 Party Line Communication

Party lines are used for sending data over long distances when handling non-zero delay

communication. Output data from a source object is routed through a party line and

travels from one object to another till it reaches the destination. Figure 5.4 shows the

variable number of hops that can be traversed in a single clock cycle. When operating

at a clock frequency of 1GHz, data can travel up to four hops in a single clock cycle. A

communication delay of n clock cycles between two silicon objects is implemented on an

FPOA by routing the data through (n-1) LL registers on a PL network as shown in fig. 5.5.

Equation (5.9) gives the maximum physical distance that can be traveled between a source

and a destination object within n clock cycles when using PL connections.

Fig. 5.4: Party line communication - four hops in one clock cycle.

75

Fig. 5.5: Route with n clock cycle delay.

MaxDistPL(n) = n× 4 (hops) (5.9)

When two nodes v pl src and v pl dst, connected by an edge e with Delay(e) > 0 in

a TDFG are placed on an FPOA, they must use Party line network for communication. If

nodes v pl src and v pl dst are placed on objects SO PL Src and SO PL Dst, respectively,

then proximity constraint specified in eq. (5.10) must be satisfied.

Dist(SO PL Src, SO PL Dst) ≤MaxDistPL(Delay(e)) (5.10)

Equation (5.10) is a necessary and sufficient condition for placement involving objects

that require PL communication. It eliminates all possible object locations that yield un-

routable placement due to violation of delay requirements. In the absence of any other

routes, it also guarantees the existence of at least one route between two connected objects.

However, in a typical design, multiple routes exist which occupy routing resources and may

result in a valid but unroutable placement.

The placement problem can now be refined as: ∀v ∈ VT , find unique assignments

vid = SOid, where SO ∈ OFPOA, such that vres type = ObjType(SO) and all proximity

constraints are satisfied.

5.3 Placement Algorithm

Algorithm 5.1 describes the methodology for placing a TDFG on an FPOA. This al-

gorithm is divided into two parts: assign silicon objects to nodes that share an edge such

that the proximity constraints are satisfied, and assign a silicon object to any unconnected

nodes. The first part iterates over all the edges in the TDFG and places the connected node

pairs first because they have less placement flexibility due to proximity constraints. The

76

second part places all the remaining unplaced nodes in the TDFG.

The inputs to the algorithm are a TDFG and the set of silicon objects in the FPOA,

OFPOA. Initially, none of the nodes in the TDFG are placed and all objects in OFPOA are

available for placement, as indicated in lines (3) and (4), respectively. Lines (6) to (35)

form the first part of the algorithm. Line (6) initites a loop which iterates over all the edges

in the TDFG. An edge e = (vsrc, vdst) ∈ edge set is selected in line (7), such that e has

the least communication delay among all edges in edge set. This is to ensure that the node

pair with most stringent constraint is selected first. Subsequently, the edge is removed from

edge set. Lines (9) and (10) determine if either the source node or the destination node

has been placed previously. Depending on the case, one of the following three scenarios is

applicable.

1. In the first case, neither the source node nor the destination node have been placed.

Two silicon objects, SOsrc, SOdst, are selected from the available pool in line (11),

such that vsrc, Sosrc, and vdst, Sodst are respectively compatible. In addition to the

compatibility, SOsrc, SOdst must also satisfy the proximity constraints. Line (13) uses

a shorthand notation of if-then-else and states that if Delay(e) is 0 then SOsrc, SOdst

are subject to NN proximity constraint, otherwise they must satisfy the PL proximity

constraint. The id of SOdst is assigned to vid of vdst to indicate that vdst is placed

on SOdst. Lines (15) and (16) remove vdst, and SOdst from unplaced node set and

available silicon object set, respectively. Similarly, line (22) indicates that vsrc is

placed on SOsrc and lines (23), (34) remove vsrc, and SOsrc from unplaced node set

and available silicon object set, respectively.

2. If a silicon object has been assigned to the destination node, then only the source

node needs to be placed. Lines (18) to (19) select an available node SOsrc from

available silicon object set, such that vsrc and SOsrc are compatible. Moreover, they

also identify the silicon object SOdst on which vdst was placed by comparing V ID(vdst

with ID(SOdst). Selection of SOsrc is further subject to the proximity constraints

77

Algorithm 5.1 Placement algorithm
// Placement
(1) input : TDFG = (VT , ET , De)
(2) input : Silicon Object set OFPOA

(3) unplaced node set = VT

(4) available silicon object set = OFPOA

(5) edge set = ET

(6) while edge set 6= ∅ do
(7) select edge e = (vsrc, vdst) ∈ edge set with the least value of Delay(e)
(8) edge set = edge set− e
(9) if (vsrc ∈ unplaced node set) then
(10) if (vdst ∈ unplaced node set) then
(11) select SOsrc, SOdst ∈ available silicon object set such that
(12) NodeType(vsrc) == ObjType(SOsrc) and NodeType(vdst) == ObjType(SOdst)
(13) (Delay(e) == 0) ? DistNN (SOsrc, SOdst) : Dist(SOsrc, SOdst) ≤ Delay(e)× 4
(14) V ID(vdst) = ID(SOdst)
(15) unplaced node set = unplaced node set − vdst

(16) available silicon object set = available silicon object set− SOdst

(17) else
(18) select SOsrc ∈ available silicon object set, SOdst ∈ OFPOA such that
(19) NodeType(vsrc) == ObjType(SOsrc) and V ID(vdst) == ID(SOdst)
(20) (Delay(e) == 0) ? DistNN (SOsrc, SOdst) : Dist(SOsrc, SOdst) ≤ Delay(e)× 4
(21) end
(22) V ID(vsrc) = ID(SOsrc)
(23) unplaced node set = unplaced node set − vsrc

(24) available silicon object set = available silicon object set− SOsrc

(25) else
(26) if (vdst ∈ unplaced node set) then
(27) select SOsrc ∈ OFPOA, SOdst ∈ available silicon object set such that
(28) NodeType(vdst) == ObjType(SOdst) and V ID(vsrc) == ID(SOsrc)
(29) (Delay(e) == 0) ? DistNN (SOsrc, SOdst) : Dist(SOsrc, SOdst) ≤ Delay(e)× 4
(30) V ID(vdst) = ID(SOdst)
(31) unplaced node set = unplaced node set − vdst

(32) available silicon object set = available silicon object set− SOdst

(33) end
(34) end
(35) end
(36) forall vrem ∈ unplaced node set do
(37) select SOavbl ∈ available silicon object set such that
(38) NodeType(vrem) == ObjType(SOavbl)
(39) V ID(vrem) = ID(SOavbl)
(40) unplaced node set = unplaced node set − vrem

(41) available silicon object set = available silicon object set− SOavbl

(42) end

78

specified in line (20). Lines (22) to (24) map vsrc to SOsrc and subsequently re-

move vsrc, and SOsrc from the unplaced node set and available silicon object set,

respectively.

3. If only the source node has been placed, then an available silicon object SOdst is

selected in line (27), subject to the conditions of lines (28) and (29). Line (28) requires

SOdst to be compatible with vdst, while line (29) applies to proximity constraint to

SOsrc and SOdst, where SOsrc is the silicon object assigned to the already placed node

vsrc. In line (30), the selected silicon object is assigned to vdst, after which vdst, and

SOdst are removed from unplaced node set and available silicon object set in lines

(31) and (32), respectively.

Apart from connected nodes, a TDFG may contain unconnected nodes, which are not

considered in the procedure described above. In order to place these nodes, an iterative

procedure is employed in lines (36) to (42). An unplaced node vrem is selected in line

(36) and is placed on a compatible silicon object, which is identified in lines (37) and (38).

Since the node is not connected, no proximity constraints apply and the compatibility

of the node and the silicon object alone is sufficient for placement of vrem on SOavbl in

line (39). Line (40) removes vrem from unplaced node set, and line (41) removes SOavbl

from available silicon object set to avoid placing multiple nodes on the same object. This

process is repeated until all remaining nodes have been placed.

To analyze the time complexity of Algorithm 5.1, we consider the while loop starting in

line (6). This loop iterates |E| times, where |E| is the number of edges in the input TDFG.

However, line (11) to (13) are dependent on the successful selection of SOsrc and SOdst such

that conditions in lines (12) and (13) are satisfied. If no two slicon objects are available,

such that these conditions are satisfied, then an alternative placement for the previously

placed node pair is performed. In the worst case, each iteration of the while loop must be

performed |OFPOA| × |OFPOA|, where |OFPOA| denotes the number of silicon objects in an

FPOA. Hence, the time compexity of the algorithm is O((|OFPOA| × |OFPOA|)|E|) and is

exponential in the worst case.

79

5.4 Solving Placement Problem Using FD Constraints

Algorithm 5.1 outlines the steps involved in a delay aware placement of a TDFG on

an FPOA. The placement process must not only ensure compatibility between a node and

silicon object, but must also be cognizant of the permitted distance between locations of two

connected nodes. As placement proceeds, the number of available silicon objects reduce,

decreasing the choices for placing a node. Even more significant is the impact of proximity

constraints on pairs of connected nodes. Suppose that a node v0 connects directly to a set

of distinct nodes {v1, v2, ...vn}. After v0 is placed, proximity constraints limit the number of

potential placement choices for each node in the set. While Algorithm 5.1 enforces proximity

constraints to ensure correct selection of a placement location, it does not benefit from the

reduction in potential choices.

A more efficient approach is to formulate the algorithm as a set of two concurrent

processes, where the first process assigns nodes to a silicon object based on compatibility,

and the second process proactively applies proximity constraints, reducing the number of

choices for placing nodes. The use of constraint solver facilitates an elegant encoding of

the concurrent processes, and offers an efficient solution. In order to solve the problem

using finite domain constraint satisfaction, we must translate the algorithm into a set of

finite domain variables and constraints. In this research, Oz is employed to formulate the

placement problem and an Oz implementation is described in the following sections.

5.4.1 FD Variables and Constraints

A TDFG, as obtained from a DFG, is initially represented as the data structure TD-

FGNodeTuple. However, as mentioned in sec. 5.2, the nodes in a TDFG may represent

operations that are co-located, which are eventually placed on the same silicon object.

Hence, all the nodes in TDFGNodeTuple, which share the same resource are collapsed

into a single node to generate a new data structure called TDFGNodeList. The list of

nodes, TDFGNodeList, is a list of tuple, one tuple per node, of the form [[Node Num1,

Node Type1] [Node Num2, Node Type2] ...], where Node Num is a unique number be-

tween 1 and N and is used for identifying a node. Node Type indicates whether the node

80

is of type ALU, MAC, or RF.

Figure 5.6 gives an implementation of a procedure PlacInitialize. The inputs to PlacIni-

tialize are the list of nodes, and the number of nodes, N , in TDFGNodeList. In line (2) a

data structure called NodeInitRecTuple is created for storing placement information of all

the nodes. NodeInitRecTuple consists of N fields, where each field holds a data structure

containing placement information of a single node. Procedure PlacInitialize iterates over

all the nodes in the input TDFG, operating on one element of TDFGNodeList during each

iteration. Line (3) defines a loop construct which applies the procedure in line (4) to an

element, NodeElement, of TDFGNodeList. Local variables NodeNum, NodeType, and V Rec

are declared in line (5) for use later in the procedure. In line (7), an FD data structure

called V Rec is created. This data structure, called a record, has four fields v id, v res type,

v x, and v y. Each field is a finite domain variable with domains indicated in lines (8) -

(1) proc {PlacInitialize TDFGNodeList N ?NodeInitRecTuple}
(2) NodeInitRecTuple = {Tuple.make nodeintrectup N}
(3) {List.forAll TDFGNodeList
(4) proc {$ NodeElement}
(5) NodeNum NodeType V Rec %Local variables
(6) in
(7) V Rec = {FD.record [v id v res type v x v y] FD.sup}
(8) V Rec.v id ::: 1#400
(9) V Rec.v res type ::: 0#2
(10) V Rec.v x ::: 1#20
(11) V Rec.v y ::: 1#20
(12)
(13) V Rec.v id =: (V Rec.v y - 1) ∗ 20 + V Rec.v x
(14)
(15) NodeNum|NodeType| = NodeElement
(16) V Rec.v res type =: NodeType
(17)
(18) {RemoveInvalidIdValuesFromDomain V Rec.v res type V Rec.v id}
(19)
(20) NodeInitRecTuple.NodeNum = V Rec
(21) end
(22) } %End of List.forAll
(23) end

Fig. 5.6: Creating and initializing finite domain variables for placement problem.

81

(11) and represent attributes vid, vres type, vx, and vy of a node, respectively. Initially, the

domain of v id is the unique ids of all the silicon objects in an FPOA and ranges from 1 to

400. The domain of v res type is based on the following numerical encoding: 0 represents

an ALU node, 1 represents a MAC node, and 2 represents an RF node.

Line (13) binds the coordinates (v x, v y) of a node v to its id attribute as defined in

eq. (5.7). In Oz syntax, line (13) does not imply assignment, instead it should be interpreted

as a relation among finite domain variables v id, v x, and v y. If the domain of variables on

either side of “=:” changes, so does the domain of variables on the opposite side. Statements

like line (13) in particular make Oz very elegant for modeling search problems like placement,

since the user specifies the relationship, and the solver figures out the binding of values to the

constraint variables. Line (15) assigns the first field of NodeElement to variable NodeNum,

and the second field to variable NodeType. Since the node type in a TDFG is fixed and

known prior to placement, v res type is grounded by assigning the value of NodeType in

line (16). Equations (5.4a-b) and eq. (5.6) suggest that as soon as v res type for a node v is

known, the domain of vid can be narrowed. Since the value of v res type is already known

in line (16), line (18) invokes the procedure RemoveInvalidIdValuesFromDomain in order

to shrink the domain of v id. After processing all nodes, procedure PlacInitialize returns

NodeInitRecTuple which contains records of all N nodes in the input TDFG.

Figure 5.7 shows the Oz implementation of procedure RemoveInvalidIdValuesFromDo-

main, which can be divided into three parts, one for each type of resource in an FPOA.

Irrespective of the type of node, the v id variables have a domain of 1#400, which suggests

that a node can be placed on any object in the FPOA. However, a node cannot be placed

on an incompatible object. This requires us to remove any invalid values in the domain of

v id which correspond to incompatible objects. Lines (2) to (4) declare symbolic constants

for each type of node. Line (6) checks if the node type is ALU followed by line (7) which

removes any unique id values corresponding to non-ALU objects from the domain of the

node’s v id variable, where ALU SOID is a list of elements in the set ALU SOid of eq. (5.4a).

Similarly, lines (9)-(11) and (12)-(14) use the same analogy to prune the domains of v id

82

(1) proc {RemoveInvalidIdValuesFromDomain v res type v id}
(2) ALU = 0
(3) MAC = 1
(4) RF = 2
(5) in
(6) if (v res type == ALU) then
(7) v id ::: ALU SOID %SOid of ALU objects
(8) end
(9) if (v res type == MAC) then
(10) v id ::: MAC SOID %SOid of MAC objects
(11) end
(12) if (v res type == RF) then
(13) v id ::: RF SOID %SOid of RF objects
(14) end
(15) end

Fig. 5.7: Narrowing domains by removing invalid unique identifier values.

variables for MAC and RF type nodes, respectively, where MAC SOID and RF SOID are

lists of elements in their respective sets, MAC SOid and RF SOid, defined in eq. (5.4a-b).

No two nodes in a TDFG can occupy the same silicon object. This restriction is

implemented in the Oz procedure MakeVidDistinct, shown in fig. 5.8. Procedure MakeVid-

Distinct builds a list of v id variables for all the nodes in a TDFG and imposes a constraint

on all the members of this list, requiring them to have distinct values. The output of proce-

dure PlacInitialize, NodeInitRecTuple, is passed as the input to procedure MakeVidDistinct.

Variable AllVidList is declared in line (2) and represents an Oz data structure called List.

(1) proc {MakeVidDistinct NodeInitRecTuple}
(2) AllVidList %Local variable
(3) in
(4) AllVidList = {Record.foldL NodeInitRecTuple
(5) proc {$ Accum NodeRecElem ?Output}
(6) Output = {List.append Accum NodeRecElem.v id}
(7) end
(8) nil} %End of Record.foldL
(9) {FD.distinct AllVidList}
(10) end

Fig. 5.8: Imposing distinct constraint on v id FD variables.

83

A folding operation is applied to NodeInitRecTuple in lines (4) to (8), which populates list

AllVidList with v id variables. A built-in constraint, FD.distinct, is applied to AllVidList in

line (9). FD.distinct constraint creates a propagator which does not allow any two variables

in AllVidList to have identical values, ensuring that no two nodes are placed on the same

silicon object.

A valid placement must conform to proximity constraints that originate from commu-

nication delays between nodes in a TDFG. Figure 5.9 illustrates a procedure ApplyProx-

imityConstraints that operates upon NodeInitRecTuple and a list of all the edges, TD-

FGEdgeList, in the input TDFG. Members of TDFGEdgeList have the following format: [<

Src Nodenumber, Dst Nodenumber, Delay >], where Src Nodenumber and Dst Nodenumber

are the unique numbers assigned to source and destination nodes of an edge in the TDFG,

and Delay is the communication delay along this edge. ApplyProximityConstraints itera-

tively applies proximity constraints to source-destination node pairs. At the beginning of

each iteration, a new member of TDFGEdgeList is passed to the procedure as parameter

EgdeElem in line (3). Local variables used by the anonymous procedure of line (3) are de-

clared in line (4). Variables X dist and Y dist are defined as FD variables and are later used

for holding absolute values of horizontal and vertical distance between two nodes, respec-

tively. Line (8) dissects EdgeElem to extract the three fields of EdgeElem, and respectively

assigns them to V src, V dst, and Delay. Values of V src and V dst are used to access the

records of their respective nodes in NodeInitRecTuple data structure. Variables represent-

ing the coordinates of these two nodes are obtained from NodeInitRecTuple in lines (9) to

(12). These coordinates facilitate Manhattan distance calculation between the source and

destination node. Line (14) determines the horizontal distance between the pair of nodes

and assigns it to X dist. Similarly, vertical distance between the pair of nodes is computed

in line (15) and is assigned to Y dist. It should be noted that the exact locations of these

nodes may not be known when calculating distances in lines (14) and (15), which poses

a challenge when finding the absolute difference between two ungrounded FD variables

because conditional statements such as if-then-else is not permitted.

84

(1) proc {ApplyProximityConstraints NodeInitRecTuple TDFGEdgeList}
(2) {List.forAll TDFGEdgeList
(3) proc {$ EdgeElem}
(4) X dist Y dist Delay V src V dst V src x V src y V dst x V dst y
(5) in
(6) X dist = {FD.int 0#20}
(7) Y dist = {FD.int 0#20}
(8) V src|V dst|Delay| = EdgeElem
(9) V src x = NodeInitRecTuple.V src.v x
(10) V src y = NodeInitRecTuple.V src.v y
(11) V dst x = NodeInitRecTuple.V dst.v x
(12) V dst y = NodeInitRecTuple.V dst.v y
(13)
(14) X dist =: (V src x >=: V dst x) ∗ (V src x - V dst x)
(14a) + (V src x <: V dst x) ∗ (V dst x - V src x)
(15) Y dist =: (V src y >=: V dst y) ∗ (V src y - V dst y)
(15a) + (V src y <: V dst y) ∗ (V dst y - V src y)
(16)
(17) if (Delay == 0) then
(18) X dist =<: 1
(19) Y dist =<: 1
(20) else
(21) X dist + Y dist =<: Delay ∗ 4
(22) end
(23) end
(24) }
(25) end

Fig. 5.9: Proximity constraints.

Specifying distance relations using reified constraints allows us to restrict the truth

value of a constraint to 0 or 1, and offers an elegant method to calculate absolute difference.

For example, in line (14), X dist is composed of two parts: (V src x >=: V dst x) ×

(V src x − V dst x) and (V src x <: V dst x) × (V dst x − V src x). For any integer

assignment, either (V src x >=: V dst x) = 1 or (V src x <: V dst x) = 1, making only

one part of the expression contribute to X dist, and thereby allowing us to compute absolute

difference. If upon evaluation (V src x >=: V dst x) = 0, then (V src x − V dst x) is

ignored.

Lines (18) and (19) apply to the case with zero-delay communication between a node

85

pair and requires that the nodes be placed as nearest neighbors. The statements in lines (18)

and(19) restrict the maximum horizontal and vertical distance between the node pair to one

hop, imposing nearest neighbor proximity. It should be noted that X dist = Y dist = 0

is not possible because procedure MakeVidDistinct does not allow two different nodes to

be co-located. On the other hand, if two nodes must use PL communication, then line

(21) transforms eq. (5.10) into a suitable distance constraint. Lines (18), (19), and (21)

restrict the domains of X dist and Y dist, which in turn shrinks the domain of each node’s

coordinates, pruning the domain of a node’s v id variable. Thus, procedure ApplyProximi-

tyConstraints makes the placement process cognizant of the communication delay between

two nodes by permitting placement on only those locations which can satisfy the delay

requirement.

As mentioned earlier, eq. (5.1) uses row major order as against column major order for

assigning unique ids to objects. The advantages of using row major order are observed in

procedure ApplyProximityConstraints for ALU type operations. Lines (14) to (22) of this

procedure define a region which contains both V src and V dst. However, the proposed

placement methodology employs interval propagation (see Chapter 3), which defines the

domains of v id variables of these nodes as a range of numbers. This range is specified as

a lower bound and an upper bound of silicon object ids that can be assigned to the v id

variable. The lower bound is the smallest silicon object id in the region and the upper bound

is the largest silicon object id in the region. If column major order is used, all the objects in

the columns between these bounds are included in v id variable’s domain. Similarly, if row

major order is used, all objects in the rows between these bounds become part of the range.

The number of ALU objects in most rows is 12, but varies between 2 and 20 for columns.

Experiments indicate that using row major order typically results in smaller v id variable

domains as compared to column major order. Moreover, unlike column major order, row

major order avoids placing two ALUs in adjacent locations unless they are NN. This is

because the least value in the domain is assigned to v id variable first. If the assignment

does not yield a valid solution, the lower bound is increased to the next higher value. Since

86

the next higher silicon object id value in row major order is usually of a non-djacent ALU,

adjacent ALUs are typically not assigned to nodes connected by non-NN connection.

5.4.2 Improving Propagation

Propagation attempts to narrow down domains of variables occurring in a constraint.

This narrowing down is referred to as constraint propagation. Effective propagation requires

stronger propagators, that are able to identify and remove invalid values from a variables

domain, as soon as possible. Stronger propagation reduces the search space, decreases the

search time, and improves search convergence. The following methods are used in this

research for improving propagation.

Additional Proximity Constraints

Proximity constraints discussed so far operate on only those nodes that share an edge.

When two nodes are connected via a chain of nodes in between, the effect of grounding

a node at one end of this chain may take some time to propagate to the node at the

opposite end. Through experiments it was found that by introducing virtual connections

between two such nodes, a stronger propagation can be obtained at the cost of increased

computation burden. However, an improvement in search convergence is noticeable only

when a connection chain consists of only zero delay edges. It should be noted that these

virtual connections do not represent a communication route between two nodes.

In fig. 5.10, nodes v2 and v5 are connected via nodes v1, v4 and edges e0, e1, and e3, each

with zero communication delay. Since there are ne = 3 edges, the maximum post-placement

horizontal or vertical distance between v2 and v5 can be three hops. Equations (5.11a-

b) gives the maximum horizontal and vertical distances between two nodes, vi and vj ,

connected via ne number of edges, each having zero delay.

|vix − vjx | ≤ ne (5.11a)

|viy − vjy | ≤ ne (5.11b)

87

Fig. 5.10: Additional proximity constraints.

Figure 5.11 presents the Oz implementation for imposing these additional proximity

constraints. Procedure AdditionalProximityConstraints borrows the Manhattan distance

calculation concept from procedure ApplyProximityConstraints and translates eq. (5.11a-b)

into a set of FD constrants given in lines (11) and (12).

(1) proc {AdditionalProximityConstraints V src V dst N e}
(2) X dist Y dist V src x V src y V dst x V dst y
(3) in
(4) X dist = {FD.int 0#20}
(5) Y dist = {FD.int 0#20}
(6) V src x = NodeInitRecTuple.V src.v x
(7) V src y = NodeInitRecTuple.V src.v y
(8) V dst x = NodeInitRecTuple.V dst.v x
(9) V dst y = NodeInitRecTuple.V dst.v y
(10)
(11) X dist =: (V src x >=: V dst x) ∗ (V src x - V dst x)
(11a) + (V src x <: V dst x) ∗ (V dst x - V src x)
(12) Y dist =: (V src y >=: V dst y) ∗ (V src y - V dst y)
(12a) + (V src y <: V dst y) ∗ (V dst y - V src y)
(13) X dist =<: N e
(14) Y dist =<: N e
(15) end

Fig. 5.11: Oz implementation for introducing additional proximity constraints.

88

Reducing Search Space using Bounding Box

The FPOA grid consists of four identical 5 × 20 sized blocks. Each of these blocks

can be subdivided into two identical 5 × 10 blocks. A 5 × 10 block consists of two non-

identical 5×5 blocks having 17 ALU, 5 RF, 3 MAC units and 15 ALU, 5 RF, 5 MAC units,

respectively. We exploit the symmetry of the FPOA grid and define a bounding box with

one corner at location (1,1) and opposite corner at (Bx, By), as shown in fig. 5.12. The size

of this bounding box can be changed by modifying (Bx, By) and is incremented in multiples

of 5 × 5, implying that Bx, By ∈ {5, 10, 15, 20}. Equation (5.12) gives the number of

silicon objects of each type contained in the region, which is defined by diagonally opposite

coordinates (1,1) and (Bx, By).

Number of ALUs =

 (Bx × (By × 3 + 2))/5 ,if (By ≤ 15)

(Bx/5× 64) ,otherwise
(5.12a)

Number of MACs =

 (Bx × (By − 2))/5 ,if (By ≤ 15)

(Bx/5× 16) ,otherwise
(5.12b)

Number of RFs = (Bx ×By)/5 (5.12c)

An Oz implementation for specifying a bounding box is given in fig. 5.13. Bx and By

are denoted by FD variables X limit and Y limit, respectively, and are declared in lines (4)

Fig. 5.12: Limiting search area using a bounding box.

89

(1) proc {BoundingBox NodeInitRecTuple TDFG ALU Count TDFG MAC Count
(1a) TDFG RF Count}
(2) X limit Y limit %Local variables
(3) in
(4) X limit = {FD.int 1#20}
(5) Y limit = {FD.int 1#20}
(6) X limit ::: [5 10 15 20]
(7) Y limit ::: [5 10 15 20]
(8)
(9) (X limit >=: Y limit) ∗ (X limit - Y limit)
(9a) + (X limit <: Y limit) ∗ (Y limit - X limit)=<: 5
(10) TDFG ALU Count =: (Y limit =<: 15) ∗ (X limit ∗ (Y limit ∗ 3 + 2))/5
(10a) + (Y limit =: 20) ∗ (X limit/5 ∗ 64)
(11) TDFG MAC Count =: (Y limit =<: 15) ∗ (X limit ∗ (Y limit - 2))/5
(11a) + (Y limit =: 20) ∗ (X limit/5 ∗ 16)
(12) TDFG RF Count =: (X limit ∗ Y limit) / 5
(13)
(14) {Record.forAll NodeInitRecTuple
(15) proc {$ NodeRecElem}
(16) NodeRecElem.v x =<: X limit %Upper bound on X co-ordinate
(17) NodeRecElem.v y =<: Y limit %Upper bound on Y co-ordinate
(18) end
(19) } %End of Record.forAll
(20) end

Fig. 5.13: Using a bounding box to reduce search space.

and (5). Lines (6) and (7) narrow the domains of these variables, which are now permitted

to only take the following values: 5, 10, 15, and 20. It was empirically determined that

|Bx −By| ≤ 5 improves search convergence, and is implemented as a constraint in line (9).

Finally, lines (14) and (19) impose these bounds iteratively on the coordinates of all nodes

in the TDFG .

The initial size of the bounding box must be large enough to accommodate all the nodes

that are present in the input TDFG. If variables TDFG ALU Count, TDFG MAC Count,

and TDFG RF Count denote the number of ALU, MAC, and RF resources in a input

TDFG, then lines (10), (11), and (12) guarantee that the bounding box specifies an area

large enough to have sufficient resource for placing the input TDFG design. Thus, a lower

bound for X limit and Y limit is established as per eq. (5.12) before the search begins.

90

During the search, if no solution is found, then the bound is increased in increments of

5 × 5 until a solution is found or it is determined that no solution exists. Any increment

is first made in horizontal direction because it leads to an increased number of ALUs and

experiments have shown that it improves convergence.

Divide and Conquer

In order to improve performance for placement for large designs, a divide and conquer

approach is also supported by the placement tool. A design can be subdivided into two or

more modules, and each of them can be placed one at a time. This feature significantly

improves placement performance since it makes better use of a bounding box than a single

large design. If a design uses the entire chip area, the bounding box is set equal to the chip

area, which negates the purpose of a bounding box. Instead, initially, if only half of the

design is placed, then the bounding box restricts the search to half of the chip, improving

search time and reducing memory requirements. The partial placement further reduces the

number of available objects on the FPOA, thereby shrinking the domains of all unplaced

variables. This approach provides benefits similar to the application of a bounding box,

and helps in faster convergence of a placement problem.

Additionally, if a portion of the design has already been placed, the user can incremen-

tally place the remaining part rather than repeating the entire placement process. However,

the addition of new modules and rescheduling can make a previous placement invalid. In

such a case, the placement tool backtracks to undo any invalid placement and subsequently

resumes search for a valid placement.

5.4.3 Distribution Strategy

A key to efficient constraint solving is the customization of variable selection strategy,

based on the knowledge of the problem domain. While many selection strategies are possible,

some provide better convergence than others by dramatically reducing the size of the search

tree. To solve the placement problem, we employ the empirically derived variable selection

strategy depicted in fig. 5.14.

91

Since bounding box defines a region of interest which is typically smaller than the

entire FPOA, it has the most direct impact on shrinking the design space. Hence, distri-

bution begins by first selecting values for Bx and By. A standard first fail strategy is used

which always selects the least values in the domains of Bx and By, which implies that the

distributor always selects the smallest possible bounding box.

Once a bounding box has been established, distribution continues with ungrounded

variables belonging to nodes of resource type MAC or RF. This is because MACs and RFs

are fewer in number than ALUs and a smaller number of distribution steps are required

to ground these variables. A split domain distribution strategy, described in Chapter 3, is

used for these variables because it leads to smaller search trees. This strategy splits the

domain of a variable and tries the lower part of the domain first. Finally, any variables

associated with nodes belonging to resource type ALU are selected for distribution. Once

again, a split domain distribution strategy is used. If a speculated value results in a con-

straint violation, then the search backtracks to the immediately preceding stable state and

distribution continues by making a different guess.

The separation of ALU type nodes from MAC and RF type nodes may seem unnec-

essary because nodes corresponding to MACs and RFs have smaller domains, and first fail

strategy always selects the variable with the smallest domain size. In practice, propagation

Fig. 5.14: Distribution strategy for placement.

92

shrinks the domains of variables associated with ALU type nodes as distribution proceeds

with MAC and RF type nodes. This results in a scenario where the domains of variables

corresponding to ALU type nodes have smaller domains than MAC and RF type nodes

causing the first fail strategy to distribute on variables associated with ALUs. Typically,

this results in the placement of ALU nodes at locations which do not lead to a solution and

requires extensive backtracking. Hence, ALU nodes are handled only after all MAC and

RF nodes have been placed.

5.5 Placement Summary

As explained in this chapter, a formal model for depicting the computational elements

of an FPOA is successfully developed. An interconnect framework supports two different

types of networks to enable communication between them, namely NN and PL. The com-

munication delay between two connected objects depends on the type of network used, and

is a function of the distance between the objects when communication happens over PL net-

work. The placement problem is formulated by specifying a set of mapping rules, defined

over the node attributes and properties, such as the location and type, of silicon objects.

The delay between two nodes is translated into a distance requirement between the silicon

objects executing these nodes. A successful placement not only ensures node and silicon

object compatibility, but also satisfies the distance requirements imposed by the design

specification. An algorithm is proposed as a solution to the placement problem, and is rep-

resented as two concurrent processes, where one process assigns a compatible silicon object

to a node, while the other process ensures that no distance requirement is violated. These

processes are translated into a finite domain constraint representation, which is issued to

the Mozart constraint solver. Additional strategies for improving propagation, distribution,

and search convergence have also been proposed and implemented.

93

Chapter 6

Routing

Chapter 3 described two types of communication mechanisms available in an FPOA:

NN and PL communication. Delay aware placement discussed in the previous chapter en-

sures that objects using zero-delay paths are placed as nearest neighbors, allowing them

to use NN communication. However, non-zero delay paths must be implemented using PL

interconnects. This chapter describes a finite domain constraint satisfaction-based routing

methodology that has been developed to route non-zero delay paths using PL communica-

tion.

Section 6.1 discusses a mathematical model of FPOA routing resources proposed in

this research. Using this model, the FPOA routing problem is described in sec. 6.2. A

routing algorithm is presented in sec. 6.3, followed by a discussion in sec. 6.4 on translating

and solving this problem using FD constraint satisfaction.

6.1 Mathematical Model of Routing Resources

Chapter 5 presents a mathematical model which provides the foundation for uniquely

representing silicon objects on an FPOA as a function of their Cartesian coordinates. Simi-

larly, it is possible to specify a formal mapping between routing resources and their location

on an FPOA. This extended model is necessary to facilitate the development of a routing

algorithm for the FPOA architecture.

As mentioned in Chapter 3, Party Lines are used by objects for communicating over

long distances. There are three party line groups with channels traveling in all four directions

where direction of travel is denoted by PL Channeldirection ∈ {N,S,E,W}. An instance

of a party line group is denoted by PL group, where PL group ∈ {1, 2, 3}. Each silicon

object has five LL registers that are used for PL communication: two in PL groups 1, 2,

94

and one in PL group 3.

A register is characterized by three attributes: the location of a register Regloc, PL

group RegPL group, and orientation Regorientation. The location of a register on the chip is

the same as the location of its parent silicon object. As mentioned in sec. 5.1, the unique id

of a silicon object is sufficient to locate an object on the chip. Consequently, location of a

register is denoted by the unique id of its parent silicon object SO, or Regloc = ID(SO). We

define RegLoc : LLFPOA → N+ to map the set of registers on an FPOA, LLFPOA, to their

unique id, where RegLoc(`) = ID(SO), if SO is the parent silicon object of ` ∈ LLFPOA.

RegPL group ∈ {1, 2, 3} represents the PL group of a particular register. The function

RegPLG : LLFPOA → {1, 2, 3} maps a register to its PL group. Each register within a

PL group is shared by PL channels traveling in opposite directions. The orientation of an

LL register depends on the direction of the pair of channels it serves. Figure 6.1 illustrates

the organization of LL registers and associated multiplexers inside a silicon object for PL

group 1. The North-South LL register serves the North and South PL channels, whereas

the East-West LL register serves the East and West PL channels. Equation (6.1) provides

a numerical encoding for Regorientation based on the PL channels sharing the LL register

Fig. 6.1: Register and multiplexer orientations.

95

and the function RegOrient : LLFPOA → {1, 2} represents the orientation of a register

` ∈ LLFPOA.

Regorientation =

 1, if PL Channeldirection ∈ {N,S}

2, if PL Channeldirection ∈ {E,W}
(6.1)

In order to identify individual registers, a unique id is assigned to each LL register.

Since there are 2000 LL registers in an FPOA, the value of this unique id lies in the interval

(1, 2000). The function RegID : LLFPOA → N+ maps a register to its unique id. Given

the orientation, PL group, and parent silicon object, SO, of an LL register ` ∈ LLFPOA is

calculated as shown in eq. (6.2).

RegID(`) = (RegLoc(`)− 1)× 5 + (RegPLG(`)− 1)× 2 + RegOrient(`) (6.2)

In addition to LL registers, every silicon object also contains 10 multiplexers: four

each in PL groups 1 and 2, and two in PL group 3. Unlike LL registers, multiplexers are

not shared by pair of PL channels traveling in opposite directions. Instead, each channel

has a dedicated multiplexer in its direction of travel. Multiplexers, like registers, are also

categorized by three attributes: location Muxloc, PL group MuxPL group, and orientation

Muxorientation. The location of a multiplexer is the same as the location of its parent silicon

object SO, or Muxloc = ID(SO). MuxPL group ∈ {1, 2, 3} represents the PL group of a

particular multiplexer. Equation (6.3) gives the numerical encoding for the orientation of

a multiplexer, which is decided by the direction of travel of its PL channel, as shown in

fig. 6.1.

To simplify the notation, we define the following functions to represent the location,

Pl group, and orientation of a multiplexer mx ∈MFPOA, where MFPOA denotes the set of

all 4000 multiplexers in an FPOA. The first function is MuxLoc : MFPOA → N+ which

maps a multiplexer to its location. If the parent silicon object of mx ∈MFPOA is SO, then

MuxLoc(mx) = ID(SO). The second function, MuxOrient : MFPOA → {1..4}, gives the

orientation of a multiplexer, while MuxPLG : MFPOA → {1, 2, 3} maps a multiplexer to

96

its PL group. If the location, PL group, and orientation of a multiplexer, mx ∈MFPOA, are

known, it can be assigned a unique id given by eq. (6.4), where MuxID : MFPOA → N+

denotes the unique id of mx.

Muxorientation =

1, if PL Channeldirection = N

2, if PL Channeldirection = S

3, if PL Channeldirection = E

4, if PL Channeldirection = W

(6.3)

MuxID(mx) = (MuxLoc(mx)× 10 + (MuxPLG(mx)− 1)× 4 + MuxOrient(mx) (6.4)

Equations 6.2 and 6.4 provide a mechanism to reference a specific register or a mul-

tiplexer using a unique id or a combination of their location, PL group, and orientation.

While it is possible to formulate the routing problem solely using a unique identifier for the

routing resources, this approach is inefficient since it requires iteratively considering each

routing resources. Instead, the knowledge of location, PL group, and orientation helps in

narrowing down the potential candidates to route a path, offering an efficient and elegant

method to approach the FPOA routing problem.

6.2 Routing Problem

Placement assigns a silicon object to each node in the input TDFG. Since placement

is delay aware, it guarantees that no two nodes are placed farther away than permitted by

communication delay between them. To enable communication between a pair of nodes, the

edge between these nodes must be realized as a physical path connecting the corresponding

silicon objects. A valid connection is established by allocating sufficient routing resources,

such that the delay requirements along the edge is satisfied by the path. Routing refers to

the process of allocating routing resources to each edge in the TDFG to implement physical

paths connecting two objects, such that no two paths share resources and all connections

97

are valid, i.e., all delay requirements are met.

Figure 6.2 shows two silicon objects SOsrc and SOdst that must be connected by a

path p = (SOsrc, SOdst) having delay n. Signals originating from the source silicon object,

SOSrc, must arrive at destination object SODst exactly n cycles later. When using PL

communication, a signal can travel up to a distance of four hops in one clock cycle, after

which it must land on a LL register. Thus, if a signal must be delayed by n clock cycles, it

must land on n LL registers along the path from source to destination. Since a signal always

lands on an LL register at the destination silicon object, a path requires n− 1 intermediate

registers as shown in the figure. Any two consecutive LL registers represent a path segment

whose length is at least one hop and at most four hops. Up to four multiplexers comprise a

path segment with the first multiplexer always residing on the silicon object as the segment’s

starting LL register. For example, fig. 6.2 shows a segment between registers Reg1 and Reg2

consisting of multiplexers Mux0 to Mux3. The first multiplexer, Mux0, is co-located with

Reg1 and connects Reg1 to Mux1. Depending on the distance between the silicon objects

of these registers, Mux1 to Mux3 may not be required. Furthermore, the first segment of

a path originates from SOSrc and hence Mux0 for the first segment of any path is always

located on its source silicon object.

Figure 6.3 presents all four possible scenarios based on length of a path segment. In

fig. 6.3(a) and 6.3(b), four and three multiplexers are needed, respectively. For shorter

Fig. 6.2: Routing a path with delay n.

98

(a) (b)

(c) (d)

Fig. 6.3: Routing paths for (a) four hops, (b) three hops, (c) two hops, and (d) one hop
long path segments. Possible alternative paths are also shown in (c) and (d).

segments, more than the minimum required number of multiplexers may occasionally be

used to implement the segment. Though using more multiplexers than required may seem

inefficient, this feature is helpful when a shorter route is not possible due to unavailability

of resources. Figures 6.3(c) and 6.3(d) show only two of the many possible alternatives for

two hops and one hop long path segments.

Routing can be viewed as a two step process for finding a path with delay n between

two silicon objects:

1. Find n − 1 unique intermediate LL registers such that no two successive registers

are more than four hops apart. According to eq. (6.2), a unique LL register is char-

acterized by three attributes: location or parent silicon object id, PL group, and

register orientation. Determining these attributes for each of the register is sufficient

to establish a coarse route.

2. For each path segment, allocate unique multiplexers to establish a connection between

two consecutive registers. The function MuxID(), defined in eq. (6.4), is sufficient to

99

uniquely identify a multiplexer but requires knowledge of three attributes: location

or parent silicon object id, PL group, and multiplexer orientation.

Since the number of registers is far less than the number of multiplexers, a coarse route

consisting only of LL registers can be quickly established. This further narrows down the

potential multiplexer candidates required to complete the n path segments. Moreover, the

number of multiplexers required in each path segment is dependent on the locations of LL

registers. Hence, multiplexers are allocated only after the LL registers have been identified.

6.2.1 Register and Multiplexer Location

The location of an LL register or a multiplexer is the same as the location of their parent

silicon object. Location is represented using Cartesian coordinates and can be obtained from

an object’s unique id. Hence, instead of finding the exact coordinates of a parent silicon

object, determining the unique id of an object is sufficient to locate it.

Figure 6.4 shows an intermediate register, Regi, along a path with delay n. Signals

from SOsrc arrive at Regi after p clock cycles, after which they take q clock cycles to reach

SOdst, where p + q = n. All possible locations for the parent silicon object of Regi must be

located at most 4p and 4q hops away from SOsrc and SOdst, respectively. If SO Regi is the

parent silicon object of Regi, then RegLoc(Regi) = ID(SO Regi) the potential locations

of Regi must satisfy eq. (6.5), where Dist() is defined in eq. (5.5).

Fig. 6.4: A launch and land register i along a path with delay n.

100

Dist(SOsrc, SO Regi) ≤ 4p (hops) (6.5a)

Dist(SO Regi, SOdst) ≤ 4q (hops) (6.5b)

There are up to four multiplexers in any path segment. As mentioned earlier, the first

multiplexer is always located on the source silicon object of the path segment, and hence its

location is known as soon as all LL register locations are determined. However, multiplexers

are handled differently than registers because the number of multiplexers in a path segment

is not fixed. Each path segment has at least one and at most four multiplexers. To simplify

the problem definition, the following is assumed without loss of generality.

1. A multiplexer in a path segment is denoted by Muxi, where 0 ≤ i ≤ 3.

2. Mux0 is the first multiplexer and resides on the source silicon object of a path segment.

3. A path segment is implemented by connecting every multiplexer pair, Muxi and

Muxi+1, as shown in fig. 6.2, where 0 ≤ i < 3.

4. If k multiplexers implement a path segment, then Muxk−1 is the last multiplexer in

the segment as shown in fig. 6.3, where 1 ≤ k ≤ 4.

5. SO Muxi is the parent silicon object of Muxi.

Equation (6.6) imposes a distance restriction on multiplexers in a path segment. A

connected multiplexer pair must occupy adjacent locations on an FPOA. Potential locations

for all multiplexers in a path are determined by applying eq. (6.6) to all segments of that

path.

∀i ≥ 0 Dist(MuxLoc(Muxi),MuxLoc(Mux(i+1)) = 1 (6.6)

101

6.2.2 Party Line Groups

The FPOA architecture contains 2000 LL registers from which n − 1 unique regis-

ters can be selected to route a path. The same path can be routed in multiple ways by

choosing different permutations of registers. However, all the registers in a path must be-

long to the same PL group. Similarly, all multiplexers allocated to a path must also have

the same PL group. Based on the previous discussion, a path can be represented as se-

quence of registers and multiplexers, or path p = [< mux0,mux1,mux2,mux3, reg1 >,<

mux4,mux5,mux6,mux7, reg2 >, ...regn]. Therefore, all registers Regi and Regj in a delay

n path must have the same PL group as shown in eq. (6.7).

∀i, j ∈ {1..n}, RegPLG(Regi) = RegPLG(Regj) (6.7)

Similarly, all multiplexers allocated to a delay n path have the same PL group as

specified by eq. (6.8), where Muxl and Muxm belong to the same path. Furthermore, if

Regi and Muxl belong to the same path, then RegPLG(Regi) = MuxPLG(Muxl).

∀l,m ∈ {0..(4n− 1)}, MuxPLG(Muxl) = MuxPLG(Muxm) (6.8)

All PL groups except PL group 3 have channels traveling in N, S, E, and W directions.

PL group 3 contains channels traveling in N and S directions only. A necessary condition

for a path using PL group 3 is that the entire path must be contained within the same

vertical column on an FPOA. Thus, the source and destination objects, any intermediate

registers, and all multiplexers in the path must be in the same column and no change in

direction of travel is permitted.

6.2.3 Register and Multiplexer Orientation

Orientations of LL registers and multiplexers are decided by their PL group and relative

locations in a path. The impact of a PL group is limited to restricting the orientation of a

register and a multiplexer to North and South directions only, when PL group 3 is selected.

102

Relative locations of adjacent multiplexer-multiplexer or multiplexer-register pairs play a

significant role in finalizing orientations and give rise to the following three scenarios.

1. Multiplexer-Multiplexer connection: For a valid path, a connected multiplexer pair,

Muxj and Muxj+1, must reside at adjacent locations. The direction of Muxj ’s PL

channel is a function of MuxLoc(Muxj) and MuxLoc(Mux(j+1)) and is equal to the

relative position of Muxj+1, with respect to Muxj . Based on fig. 6.5 and eq. (5.1),

eq. (6.9) defines a relation between multiplexer locations and PL channel direction.

PL Channeldirection obtained from eq. (6.9) is used in eq. (6.3) to determine the

orientation of Muxj . Due to the encoding used for denoting location ids, the id of

Mux(j+1) is offset by +XMax, if it is to the North of Muxj or by −XMax, if it is

to the South of Muxj . Similarly, Mux(j+1)’s id is obtained by adding 1 to Muxj ’s

id, if it is to the East of Muxj , or by subtracting 1 if it is to the West.

PL Channeldirection =

N, if MuxLoc(Mux(j+1)) = MuxLoc(Muxj) + XMax

S, if MuxLoc(Mux(j+1)) = MuxLoc(Muxj)−XMax

E, if MuxLoc(Mux(j+1)) = MuxLoc(Muxj) + 1

W, if MuxLoc(Mux(j+1)) = MuxLoc(Muxj)− 1
(6.9)

Fig. 6.5: Possible locations of adjacent multiplexers in a connected multiplexer pair.

103

2. LL Register-Multiplexer connection: A signal launched from an LL register is sent

through multiplexer Mux0 in a direction that depends on the orientation of the

launching register, as shown in fig. 6.6. Equation (6.1) defines a relation between

register orientation and PL channel direction. While the knowledge of the launching

register’s orientation is not sufficient in itself to calculate Mux0’s orientation, in con-

junction with eq. (6.3), it does reduce the range of possible orientations as presented in

eq. (6.10). It should be noted that orientation of Mux0 alone is sufficient to ascertain

the orientation of the associated launching register.

MuxOrient(Mux0) ∈

 {1, 2}, Launch Regorientation = 1

{3, 4}, Launch Regorientation = 2
(6.10)

3. Multiplexer-LL Register connection: This scenario is similar to the one discussed

above. If Muxk is the last multiplexer in a path segment, the orientation of the landing

register can only suggest that MuxOrient(Muxk) ∈ {N,S}, or MuxOrient(Muxk) ∈

{E,W}. On the contrary, eq. (6.11) shows that a known value of MuxOrient(Muxk)

Fig. 6.6: Launch register and Mux0 orientation.

104

is sufficient to determine the orientation of the landing register.

RegOrient(Regdst) =

 1, MuxOrient(Muxk) ∈ {1, 2}

2, MuxOrient(Muxk) ∈ {3, 4}
(6.11)

The routing problem can now be defined as: Given a set of paths P , ∀p ∈ P , where

path p has delay pn, find locations, PL groups, and orientations of pn − 1 intermediate

LL registers and all necessary multiplexers, such that a continuous physical connection

is established between source and destination silicon objects of the path, subject to the

constraint that no LL register or multiplexer is reused.

6.3 Routing Algorithm

The placement tool generates a placed TDFG, denoted by TDFGplaced. Each edge

e = (vs, vd) in TDFGplaced corresponds to a physical path p = (Os, Od), where Os and

Od are the objects on which nodes vs and vd have been placed, respectively. The delay

along path p is equal to the delay along edge e. Algorithm 6.1 describes a methodology for

routing each path p by assigning a party line, and allocating LL registers and multiplexers

to establish a physical connection between the placed nodes.

The inputs to the algorithm are TDFGplaced, <FPOA, and all the available routing

resources on the FPOA. The algorithm iterates over all unrouted paths and routes them

one by one. In line (7) a path p ∈ unrouted path set is selected, where unrouted path set

represents the set of all unrouted paths in the TDFGplaced. A PL group is assigned to p in

line (8). The following three attributes are associated with each path: delay Delayp, source

silicon object SrcObj, and a destination silicon object DstObj. SrcObj and DstObj are the

silicon objects on which source and destination nodes of edge e are placed, respectively. As

mentioned in the previous section, Delayp determines the number of LL registers required

for routing a path. A path is comprised of Delayp segments, where the first segment begins

with SrcObj, last segment ends at DstObj, and all intermediate segments end at an LL

register.

105

Algorithm 6.1 Routing algorithm
// Routing
(1) input : Resource set <FPOA

(2) input : All routing resources in the FPOA
(3) input : Placed TDFG = (VR, ER, De, P lacement : VR → <FPOA)
(4) available reg set = all LL registers in the FPOA
(5) available mux set = all multiplexers in the FPOA
(6) unrouted path set = all unrouted paths corresponding to edges e ∈ ER

(7) forall p = (SrcObj,DstObj) ∈ unrouted path set do
(8) select a PL group for path p
(9) n = Delayp;
(10) forall i from 1 to n do
(11) select Regi from available reg set such that
(12) Dist(ID(SrcObj), RegLoc(Regi)) ≤ 4i
(13) Dist(RegLoc(Regi), ID(DstObj)) ≤ 4(n− i)
(14) available reg set← available reg set− {Regi}
(15) select Muxi0 from available mux set such that
(16) if (i == 1) then
(17) MuxLoc(Muxi0) = ID(SrcObj)
(18) else
(19) MuxLoc(Muxi0) = RegLoc(Reg(i−1))
(20) switch (RegOrient(Reg(i−1)))
(21) case North-South: Determine MuxOrient(Muxi0) = North or South
(22) case East-West: Determine MuxOrient(Muxi0) = East or West
(23) end
(24) end
(25) available mux set← available mux set− {Muxi0}
(26) last mux = 0
(27) forall j from 1 to 3 do
(28) if (path segment i is incomplete) then
(29) select Muxij from available mux set such that
(30) Dist(MuxLoc(Muxij−1), MuxLoc(Muxij)) = 1
(31) Dist(RegLoc(Regi), MuxLoc(Muxij)) ≤ 4− j
(32) MuxOrient(Muxi(j−1)

) = Position of Muxij in reference to Muxi(j−1)

(33) last mux = j
(34) available mux set← available mux set− {Muxij}
(35) end
(36) end
(37) switch (RegOrient(Regi)))
(38) case North-South: Determine MuxOrient(Muxilast mux

) = North or South
(39) case East-West: Determine MuxOrient(Muxilast mux

) = East or West
(40) end
(41) end
(42) end

106

Line (9) declares a variable n which denotes the delay along the path. The next task

is to iteratively assign n LL registers to the path. Routing proceeds by selecting a physical

LL register Regi in line (11). Lines (12) and (13) require that this register selection satisfies

eq. (6.5a-b). The selected register is removed from the set of available registers in line (14).

If the selected register is the first LL register in the path, then this is the first path segment

in p and the first multiplexer in the first path segment always resides on the source object

SrcObj. A multiplexer Muxi0 for the current path segment is selected in line (15) subject

to location and orientation restrictions imposed in lines (16) to (24). Line (16) evaluates the

condition to test if this is the first path segment in the path, and if the condition evaluates

to true, then the location of Muxi0 is set equal to the location of SrcObj in line (17).

Otherwise, Muxi0 does not belong to the first path segment in p and line (19) co-locates

Muxi0 with the previous LL register Regi−1. The orientation of Muxi0 is determined in

lines (20) to (24), depending on the orientation of Regi−1. Muxi0 is now removed from the

available multiplexer set.

After selecting the first multiplexer, the algorithm continues multiplexer allocation

based on routing requirement. If more multiplexers are needed to route a path segment,

another multiplexer Muxij is selected in line (29) and is subject to the adjacency criteria

imposed by eq. (6.6), in lines (30) and (31). Line (32) indicates that the relative location

of Muxij and its predecessor Mux(i−1)j
must be in the same direction as indicated by the

orientation of Mux(i−1)j
. Muxij is removed from the available multiplexer set in line (34).

The orientation of the last multiplexer in the current path segment is determined using

the orientation of the destination LL register in lines (37) to (40). Routing of the current

path segment is complete when all four multiplexers have been allocated, or if no more

multiplexers are needed.

After allocating multiplexers to the current path segment, the routing process continues

by selecting the next LL register. If all n registers in the current path have been allocated,

the routing for this path is complete. Routing continues by selecting another unrouted path

and the above procedure is repeated until no more unrouted paths remain.

107

Similar to the placement algorithm, the time complexity of Algorithm 6.1 is exponential

in worst case. Consider the loop starting in line (7). In the worst case, the number of

iterations of this loop is equal |E|, where |E| is the number of paths, corresponding to

the edges in the input TDFG. For a path i with delay = ni, lines (11) to (13) select

ni registers by considering (NReg)!/(NReg − ni)! permutations in the worst case, where

NReg is the number of registers in available reg set. However, if suitable registers are

unavailable to implement a path, a previously routed path must be re-routed. Hence, for

i = 1..|E| paths, register selection for all the paths must consider a worst case permutation

of (NReg)!/(NReg −
∑|E|

i=1 ni)!. Hence, the algorithm has complexity O((NReg)|E|), and is

exponential in the worst case.

6.4 Solving Routing Problem Using FD Constraints

Algorithm 6.1 enumerates the steps involved in routing paths on an FPOA. The next

challenge is to translate the routing algorithm into a constraint satisfaction problem. This

is done by representing all unknowns in the algorithm using FD variables and defining

constraints over these variables, as described in the following section. For simplicity, trans-

lation of a problem involving a single path is discussed, but the approach can be extended

to problems with more than one path.

6.4.1 FD Variables and Constraints

Routing a path with delay n, requires n registers, a maximum of 4n multiplexers, and

one party line group. Oz procedure InitializeLLRegisters creates and initializes FD variables

for all LL registers in a path, as shown in fig. 6.7. Line (7) creates a data structure with

six FD variables denoting a register’s unique id, location, x and y coordinates, orientation,

and PL group, respectively. Lines (8) - (13) specify the domain of these variables. Line

(15) implements eq. (6.2) by defining a relationship among the following variables: id, loc,

orient, and plgroup. Location of a register is bound to its coordinates in line (17). Lines

(19) uses reified variables to constrain the orientation of the register based on its party line

group. Specifically, if a register belongs to PL group 3, then it is only allowed to have an NS

108

(1) proc {InitializeLLRegisters SrcObj DstObj NumOfReg ?RegTup}
(2) XMax CurrReg
(3) in
(4) RegTup = {Tuple.make pathreg NumOfReg}
(5) XMax = 20
(6) {For CurrReg in 1 to NumOfReg
(7) RegTup.CurrReg = {FD.record llreg [id loc x y orient plgroup] FD.sup}
(8) RegTup.CurrReg.id ::: 1#2000
(9) RegTup.CurrReg.loc ::: 1#400
(10) RegTup.CurrReg.x ::: 1#20
(11) RegTup.CurrReg.y ::: 1#20
(12) RegTup.CurrReg.orient ::: 1#2
(13) RegTup.CurrReg.plgroup ::: 1#3
(14)
(15) RegTup.CurrReg.id =: (RegTup.CurrReg.loc-1) ∗ 5
(15a) +(RegTup.CurrReg.plgroup-1) ∗ 3+RegTup.CurrReg.orient
(16)
(17) RegTup.CurrReg.loc =: (RegTup.CurrReg.y-1) ∗ XMax + RegTup.CurrReg.x
(18)
(19) (RegTup.CurrReg.plgroup =: 3) ∗ (RegTup.CurrReg.orient =:1)
(19a) + (RegTup.CurrReg.plgroup \=: 3) =: 1
(20)
(21) if (CurrReg \= 1) then
(22) {ApplyRoutingProximityConstraint CurrReg RegTup 4}
(23) end
(24) }
(25)
(26) PathRegTuple.NumOfReg.loc =: DstObj
(27) end

Fig. 6.7: Initializing finite domain variables for all launch and land registers in a single path.

orientation as mentioned in eq. (6.1). Lines (21) - (23) invoke procedure ApplyRoutingProx-

imityConstraint, shown in fig. 6.8, to enforce the distance restriction specified in eq. (6.5).

Lines (6)-(24) execute NumOfReg times, where NumOfReg is equal to delay n, creating

records for all n registers. The case of the nth register is special because it always resides

on the destination silicon object of a path. Since its location is known apriori, line (26)

binds the location of this last register to the destination silicon object. After completing

execution, procedure InitializeLLRegisters returns a data structure, RegTuple, containing

individual records of all registers.

109

(1) proc {ApplyRoutingProximityConstraint Index InputTup MaxDist}
(2) X dist Y dist SrcX SrcY DstX DstY
(3) in
(4) X dist = {FD.int 0#20}
(5) Y dist = {FD.int 0#20}
(6) SrcX = InputTup.(Index-1).x
(7) SrcY = InputTup.(Index-1).y
(8) DstX = InputTup.Index.x
(9) DstY = InputTup.Index.y
(10)
(11) X dist =: (SrcX >=: DstX) ∗ (SrcX - DstX)
(11a) + (SrcX <: DstX) ∗ (DstX - SrcX)
(12) Y dist =: (SrcY >=: DstY) ∗ (SrcY - DstY)
(12a) + (SrcY <: DstY) ∗ (DstY - SrcY)
(13)
(14) X dist + Y dist =<: MaxDist
(15) end

Fig. 6.8: Proximity constraints for consecutive launch and land registers in a path.

Procedure ApplyRoutingProximityConstraint operates on data structure RegTup to

specify an upper bound on the distance between two connected registers in a path. In-

dex denotes a successor register in a pair of connected registers. X dist and Y dist are

declared as FD variables with domains 0#20 in lines (4) and (5). Lines (6) to (9) retrieve

the coordinates of both registers. Horizontal and vertical distances between these registers

are calculated in lines (11) to (12) and the total distance is constrained by upper bound

MaxDist in line (14).

Figure 6.9 presents an Oz implementation for allocating multiplexers to a path segment.

Unlike register allocation, where the number of registers is fixed by the delay along the

path, the number of multiplexers vary between 1 and 4. Procedure InitializePathSegMuxes

is similar to procedure InitializeLLRegisters. Line (7) creates a data structure to store FD

variables that represent unique id, location, x and y coordinates, orientation, and PL group

of a multiplexer. Lines (8) - (13) assign appropriate domains to these FD variables. In spite

of having 4000 multiplexers, the domain of id ranges from 0 to 4000. Value 0 is reserved for

indicating that a multiplexer allocation is not required, and is used for handling cases when

110

(1) proc {InitializePathSegMuxes StartObj EndObj ?MuxTup}
(2) XMax CurrMux
(3) in
(4) PathMuxTuple = {Tuple.make pathmux 4}
(5) XMax = 20
(6) {For CurrMux in 1 to 4
(7) MuxTup.CurrMux = {FD.record muxes [id loc x y orient plgroup] FD.sup}
(8) MuxTup.CurrMux.id ::: 0#4000
(9) MuxTup.CurrMux.loc ::: 1#400
(10) MuxTup.CurrMux.x ::: 1#20
(11) MuxTup.CurrMux.y ::: 1#20
(12) MuxTup.CurrMux.orient ::: 1#4
(13) MuxTup.CurrMux.plgroup ::: 1#3
(14)
(15) (MuxTup.CurrMux.id =: (MuxTup.CurrMux.loc-1) ∗ 10
(15a) +(MuxTup.CurrMux.plgroup-1) ∗ 3+MuxTup.CurrMux.orient)
(15b) +(MuxTup.CurrMux.id =: 0) =: 1
(16)
(17) MuxTup.CurrMux.loc =: (MuxTup.CurrMux.y-1) ∗ XMax
(17a) + MuxTup.CurrMux.x
(18)
(19) (MuxTup.CurrMux.plgroup =: 3) ∗ (MuxTup.CurrMux.orient =: 1)
(19a) +(MuxTup.CurrMux.plgroup =: 3) ∗ (MuxTup.CurrMux.orient =: 2)
(19b) + (MuxTup.CurrMux.plgroup \=: 3) =: 1
(20)
(21) if (CurrMux \= 1) then
(22) {ApplyRoutingProximityConstraint CurrMux MuxTup 1}
(23) end
(24) }
(25)
(26) PathMuxTuple.0.id \=: 0
(27) PathMuxTuple.0.loc =: SrcObj
(28) end

Fig. 6.9: Initializing finite domain variables for all multiplexers in a path segment.

a path segment needs less than four multiplexers. The reified constraint in lines (15) binds

the unique id of a multiplexer to its location, PL group and orientation, or assigns a value 0

to the id. Line (17) defines a relation between a multiplexer’s location and its coordinates.

If PL group 3 is used, then a multiplexer must be oriented in North or South direction

only. This restriction is imposed by the constraint in line (19). Line (21) applies procedure

ApplyRoutingProximityConstraint to all multiplexers in the path segment and constrains

111

any two connected multiplexers to be located a unit distance apart. Lines (26) and (27)

pertain to the first multiplexer in a path segment. In a path segment, the first multiplexer

is always used, even if no other multiplexers are needed. Additionally, the first multiplexer

is co-located with the starting element of the path segment. Both these requirements are

imposed by lines (16) and (27), respectively.

6.4.2 Improving Search Convergence

Two strategies have been found to be effective in improving search convergence, both

in terms of convergence time and memory usage. The first one is a divide and conquer

approach and the second is to route shorter paths first.

In the divide and conquer approach, instead of routing all paths at once, only one path

is routed at a time because it offers the following advantages.

1. Since only one path is routed at a time, any resource from the pool of available

resources can be selected. Thus, either the path gets routed or it is quickly ascertained

that no valid route exists due to unavailability of routing resources and the search

backtracks. Instead, if all routes are handled concurrently, resource conflicts may not

surface until later causing severe backtracking.

2. Propagators associated with a particular path get entailed when the path gets routed.

This reduces memory consumption and improves performance as search proceeds be-

cause the amount of propagation required after each distribution step steadily de-

creases.

3. If routing cannot proceed beyond a certain path, then the unroutable path is immedi-

ately identified. This information is useful for determining the causes of unroutability

and helps in making decisions regarding delay relaxation along a path or need for a

new placement of the TDFG.

The second strategy is to route shorter paths first. Shorter paths typically have the

least amount of flexibility and are prone to resource conflicts. This approach helps in early

112

detection of cases where multiple short routes cause resource conflicts and the design is not

routable.

6.4.3 Distribution Strategy

The routing algorithm involves several FD variables representing locations, unique

ids, orientations, and party line groups of registers as well as multiplexers. As mentioned

earlier, propagation attempts to narrow down the domains of these variables but is typically

insufficient for converging to a solution and that is when distribution plays an important

role in resuming propagation. Theoretically, it is possible to find a solution by distributing

on any variable; but in practice, variable selection influences search convergence in terms

of both time and memory. A preferred selection strategy is the one that causes the search

to converge faster while keeping memory usage within allowed limits.

Figure 6.10 illustrates the distribution strategy used in the routing tool. This strategy

specifies the variable selection policy. A first-fail heuristic is used within each variable

group. For example, when distributing on register locations, all register location variables

are subject to a first-fail heuristic, implying that a register location variable with minimal

domain size is distributed on first.

After selecting the shortest path, all its ungrounded register location variables are

identified and one of these variables is chosen according to the first-fail heuristic. The

domain of this variable is split and the upper part is tried first. Experiments indicate that

trying the lower part first results in longer path segments and increases congestion in the

bottom left region of the FPOA. On the other hand, selecting the upper part of the domain

typically results in shorter and direct routes, and favors North-South channels, increasing

the use of PL group 3 whenever possible.

The above process is repeated until no more ungrounded register variables remain.

Next, all ungrounded multiplexer locations belonging to the current path are selected and

once again the first fail heuristic is applied to select a multiplexer location. Distribution

continues until all multiplexer location variables have been grounded. Once again a domain

splitting strategy is used, however, the lower part of the domain is tried first. This approach

113

Fig. 6.10: Distribution strategy for routing.

compliments the register location distribution strategy by favoring North-South channels.

The distribution is performed on the register and multiplexer location variables first

because of the following reasons. First of all, if the variables representing the orientations

of these routing resources are distributed on first, most of the resources are assigned ori-

entations which do not generate valid routes, requiring extensive backtracking. On the

other hand, once the location of registers and multiplexers is known, propagation alone is

sufficient to ground the orientation variables, offering a more efficient and elegant approach.

The next step assigns a party line group to the current path. A first fail heuristic

assigns the largest possible value in the domain to the PL group. Since PL group 3 only

contains North-South channels, it is preferred whenever the route travels strictly in the

North-South direction. However, if any segment of a route does not travel North-South,

propagation removes the value 3 from the domain of PL group variables, and assigns PL

114

group 2 instead. This biased approach decreases the demand for PL groups 1 and 2 whenever

possible, and makes more resources available to paths that must use a mix of channels

traveling in North-South and East-West directions.

If the path is unroutable due to resource conflict, distribution backtracks and assigns a

different PL group. If changing PL group does not lead to a valid route, multiplexer and/or

register locations are reassigned, followed by PL group allocation. If all these steps fail,

then a previously routed path is re-routed followed by a new attempt to route the current

path.

It may be argued that since there are only three party lines, grounding PL group

variables first would be more appropriate. But in practice, selecting a PL group early on

in the search negatively affects search convergence because of three main reasons. First,

a single PL group gets selected for a majority of the paths, limiting the availability of

registers and multiplexers. Only after excessive backtracking is it determined that the PL

group needs to be changed. Second, even though PL group 3 is an ideal choice for paths

traveling in the North or South directions, PL groups 1 or 2 may be assigned to such paths,

committing resources that are required by paths traveling in the East or West directions.

The problem arises from the fact that enough information about a path’s direction is not

available when the search commences. Finally, if FD variables are grounded at the beginning

of search, they cannot be changed at a later stage without backtracking. Thus, in the case

of a resource conflict, moving an entire route to a different party line becomes a non-trivial

process because it requires backtracking and redoing most of the search. Hence, PL groups

are distributed upon last. If one assignment to a PL group causes a resource conflict,

then a different group is assigned which effectively moves all registers and multiplexers to

a different PL channel, resolving resource conflicts. This approach does not guarantee a

resolution in all cases, but is experimentally found to be effective in improving convergence.

6.5 Summary

A formal model for representing the routing resources of an FPOA is proposed in this

chapter. A routing methodology using the PL communication network of an FPOA is

115

developed. The proposed approach focuses on the assignment of routing resources to all

non-zero delay edges in a placed TDFG such that a physical path is established between

the silicon objects on which the nodes, connected by an edge, are placed. The PL commu-

nication consists of two types of routing resources: the LL registers and the multiplexers,

which are configured to form physical interconnects. Each resource is identified using its

three properties: location, orientation, and PL group. The routing problem is phrased as

a search problem where the solution lies in finding resources at suitable locations, with the

desired orientations, in the correct PL group to form a contiguous path between a source

and destination object. An algorithm is proposed as a solution to the routing problem and

routes a single path at a time. This algorithm is translated into a finite domain constraint

representation that includes finite domain variables and a set of constraints defined over

these variables. These variables represent the various properties of resources as defined

above. The constraint solver assigns values to these variables, such that no constraints are

violated.

116

Chapter 7

Results

The scheduling, placement and routing approaches, described in the previous chapters,

are implemented in Oz and C++. All these tools are interfaced to form a design tool

chain targeting the FPOA architecture. This end-to-end tool chain is applied to a set of

benchmarks in order to demonstrate and evaluate the constraint satisfaction-based tools.

This chapter showcases the results obtained during each of these three phases. Section 7.1

introduces the benchmarks that are used to evaluate the approach proposed in this research.

The performance of each individual tool is evaluated in sec. 7.2, and sec. 7.3 presents the

performance results obtained by varying problem size for one of the benchmarks. All the

results are obtained using an Intel R© Q6600 quad core processor running at 2448 MHz, with

4GB RAM.

7.1 Overview of Benchmarks

Eight benchmarks were used for evaluating the scheduling, placement, and routing

tools developed in this research. Table 7.1 lists these benchmarks. These test cases belong

to various types of application domains such as scientific computing, signal processing, and

multimedia applications. Benchmark 1 corresponds to a one-level 1-Dimensional (1D) Dis-

crete Wavelet Transform (DWT) [113] for a signal with length = 18. Benchmark 2 represents

a single iteration in the mdct short() function used in LAME [114] encoder for computing

the Modified Discrete Cosine Transform (MDCT). An 8-point Discrete Fourier Transform

(DFT) comprises benchmark 3. Benchmark 4 represents the Sum of Absolute Transformed

Differences (SATD) function in the H.264 encoder [115] and computes the SATD of a 4× 4

block using Hadamard transform. A 2 × 8 × 2 integer matrix multiplication is considered

in benchmark 5 while benchmark 6 is obtained from the window subband() function in the

117

Table 7.1: Benchmarks used for evaluating scheduling, placement, and routing tools.
Id Benchmark Source/ Nodes Edges

Application
1 Discrete Wavelet Transform (DWT) GSL 120 118
2 Modified Discrete Cosine LAME MP3 58 68

Transform (MDCT) encoder
3 Discrete Fourier Transform (DFT) Signal Processing 48 60
4 Sum of Absolute Transformed H.264 encoder 144 160

Difference (SATD)
5 Matrix Multiplication (MM) Scientific Applications 192 160
6 MP3 Window Subband (MWS) LAME MP3 188 184

encoder
7 Finite Impulse Response filter (FIR) Signal Processing 321 320
8 Five Step Search (FSS) H.264 encoder 290 289

LAME encoder [114]. Benchmark 7 represents a 64-tap FIR filter. Benchmark 8 is com-

prised of nine 16×16 Sum of Absolute Difference (SAD) computation engines and a 9-input

comparator. The Five Step Search (FSS) algorithm [116] employs benchmark 8 for block

motion estimation during each of the five steps. It should be noted that benchmarks 1, 2,

4, and 6 are generated from their respective C implementations.

Out of the eight cases, benchmarks 5, 7, and 8 either use an FPOA to 100% capacity,

or almost fill the entire chip. Each benchmark is assigned a unique id for easy reference in

subsequent sections. The second column in the table gives the name of each benchmark,

followed by its source or application domain, and nodes and edges provide the size of DFG

representing a particular problem instance. An estimate of the gate count for a functionally

equivalent ASIC implementation and the execution latency of the benchmarks is presented

in Appendix B.

7.2 Performance Evaluation of Proposed Tools

The goal of the proposed Scheduling, Placement, and Routing tools is to find a valid

solution while minimizing communication delay, area, and routing resource utilization. All

three tools must work in tandem to achieve this goal. At the same time, the convergence

time and the memory usage of these tools should be reasonable so that these tools are

118

practical and usable. The following sections present the performance data for each tool

using the set of benchmarks provided in sec. 7.1.

7.2.1 Scheduling

The Scheduling tool is the first tool in the toolchain and is responsible for generating

the schedule while minimizing communication delays, and for merging ALU operations.

Figure 7.1 indicates that the Scheduling tool attempts to maximize zero delay edges in the

generated TDFG in order to minimize the schedule length. An increased number of zero

delay edges further improves search convergence during placement and routing phases as

described later in sec. 7.2.2 and 7.2.3. For edges with non-zero delays, fig. 7.2 shows the

average delay for each benchmark. This average is a weighted mean, and is calculated using

the relation given in eq. (7.1), where K is the maximum delay assigned to an edge in the

TDFG and NumEdgen is the number of edges with delay equal to n.

Average delay =
K∑

n=1

n ∗ (NumEdgen) (7.1)

For all the benchmarks, the average delay is found to be between 1 and 2.2, suggesting

that the Scheduling tool is biased towards smaller communication delays, which is desirable

because it decreases the computation burden and amount of resources required during

routing. The largest value of K is found to be four for benchmarks 2 and 8 and is found to

be smaller for all other benchmarks.

Fig. 7.1: Zero delay edges vs. non-zero delay edges.

119

Fig. 7.2: Average delay (does not include zero delay edges).

As described in sec. 4.3, the Scheduling tool supports merging of ALU operations onto

the same ALU by assigning each operation to a different ALU instruction state. Figures 7.3

and 7.4 show the number of nodes and edges in the DFG before and after scheduling. Due

to merging, the total number of nodes and edges in a TDFG tend to be lower than the

original DFG, which decreases the footprint by occupying fewer ALU objects, allows more

than 256 ALU operations to be placed on an FPOA, and reduces both the placement and

the routing problem size. An interesting case is Benchmark 8 which is comprised of 290

ALUs. Since there are only 256 ALU objects on an FPOA, it is impossible to fit the design

in the absence of ALU operation merging. However, the Scheduling tool is able to allocate

all these operations onto less than 256 ALUs. By reducing nodes in the resulting TDFG, a

number of edges are eliminated which directly translates into reduced computational burden

during routing.

As can be observed in fig 7.3, not every DFG sees a reduction in the number of nodes.

Even if the Scheduling tool proposes node merging, the Schedule Analyzer may discard

any suggestions that can lead to an unplaceable design arising from violation of topological

constraints of an FPOA. For example, two MACs can never be nearest neighbors, and hence

the Scheduling tool will not generate any schedule that may require two MACs to be NN.

However, during ALU operation merging, the Scheduling tool may generate schedules that

require two ALUs to be NN, where each is NN with three MACs. The Schedule Analyzer

examines and avoids such outcomes. Thus, if no reduction in the number of nodes and

edges is observed, it is either because no merging is possible, or because the merging is

120

Fig. 7.3: Node reduction due to ALU operation merging.

not placeable and was rejected during the schedule analysis. The former case applies to

benchmark 4 where no ALU merging is observed despite the fact that it is comprised of

only ALUs.

Figure 7.5 shows the convergence time for scheduling DFGs for all eight benchmarks

including the execution time of the Schedule Analyzer. Convergence time of a tool includes

problem initiation, propagation, and distribution times, along with any output generation

Fig. 7.4: Edge reduction due to ALU operation merging.

121

Fig. 7.5: Scheduling tool convergence time.

overhead. The Scheduling tool’s memory usage is shown in fig. 7.6, which correlates with the

convergence time, where memory usage refers to the peak memory used during a particular

execution of a tool. Typically, more distribution steps imply higher convergence time and

increased memory usage, with the exception that re-computation can trade-off the amount

of memory needed for search with the execution time.

For all the test cases except 7 and 8, the Scheduling tool converged quickly using less

than 1 GB memory. Benchmarks 7 and 8 have a large number of nodes as well as edges,

Fig. 7.6: Scheduling tool memory usage.

122

which translates into a large number of propagators. Since the scheduler involves variables

representing time, and the domains of times variables tend to be large, the search is prone to

huge memory usage, which may result in premature termination of the search. As described

in Chapter 3, it is possible to use re-computation to reduce the amount of memory required

for a search at the cost of increased computation burden. The proposed implementation

of the Scheduling tool allows a user to configure the tool by specifying recomputation step

size SRC , where SRC = 1 implies a standard search that saves state after each distribution

step. After using re-computation with SRC = 20, both benchmarks 7 and 8 were scheduled

in 15.35 and 33.45 seconds, respectively, with memory usage shown in fig.7.6. Thus, the

scheduler is found to converge in each case, in less than 16 seconds for seven out of the eight

test cases, and supports re-computation for cases requiring a large amount of memory.

Figure 7.7 shows the total number of distribution steps along with backtracks performed

in order to arrive at a solution. For all the benchmarks except 7 and 8, the Scheduling tool

performs minimal backtracking, indicating that a correct path was quickly identified. The

case of benchmarks 7 and 8 is different since they use re-computation and even though

the number of distribution and backtracks are considerably less than benchmark 5 and 6,

re-computation increases the computation time spent per distribution step, resulting in a

longer convergence time.

In fig. 7.7, it appears that the Scheduling tool distributes significantly for Benchmarks

Fig. 7.7: Scheduling tool distribution and backtracks.

123

5 and 6, than for benchmarks 1-4, but converges faster for these cases than benchmark 4.

Similarly, in spite of more distribution and backtracking in the case of benchmark 7 vs.

benchmark 8, the Scheduling tool performs better for benchmark 8 than for benchmark 7.

The reason for this anomaly lies in the fact that benchmarks 5, 6, and 7 use the divide and

conquer approach, described in sec. 5.4.2.

While the real benefits of divide and conquer approach are noticeable during placement,

it requires the Scheduling tool to be invoked once for each new module added to the design.

Initially, the DFG is small, resulting in fewer variables, propagators, and lower distribu-

tion overhead. However, the distribution overhead increases with the size of the DFG. In

other words, an increase in size of a DFG may not only increase the number of distribution

steps, but it also increases the computation time per distribution step. Since distribution

overhead grows with problem size, the rate of growth of cumulative distribution and back-

tracking steps may not correlate with a slower increase in cumulative convergence time and

memory usage. Due to this reason, the cumulative distribution and backtracking steps for

benchmarks 5 and 6 are more than the single execution distribution and backtracking steps

for benchmark 4, but the convergence time and memory usage of the Scheduling tool for

benchmarks 5 and 6 are smaller than that for benchmark 4. A similar effect is observed be-

tween the Scheduling tool’s performance for benchmarks 7 and 8 which additionally require

re-computation.

7.2.2 Placement

In this research, the TDFGs for all the benchmarks given in Table 7.1 are successfully

placed on an FPOA. The primary goal of placement is to assign compatible silicon objects to

all the nodes such that all proximity constraints are satisfied. For each of the benchmarks,

the tool successfully performs a delay aware placement.

Figures 7.8 and 7.9 show placement convergence time and memory usage, respectively.

These graphs establish a strong correlation between memory demand and convergence time.

Though it may seem obvious that the Placement tool takes a longer time to place a TDFG

with more nodes, benchmarks 1 and 4 indicate otherwise. Both the number of nodes as well

124

Fig. 7.8: Placement tool convergence time.

as edges in benchmark 1 are lower than for benchmark 4, but the Placement tool converges

faster in the latter case. This can be explained based on the distribution, as shown in

fig. 7.10. In particular, the tool backtracks significantly more when applied to benchmarks

1 and 3, as compared to benchmarks 2 and 4, which results in a longer convergence time

for the smaller problem.

As mentioned in Chapter 3, backtracking indicates that search proceeded along incor-

rect paths until the right path was selected. A good solver attempts to improve backtracking

Fig. 7.9: Placement tool memory usage.

125

Fig. 7.10: Placement tool distribution and backtracks.

by using heuristics to establish early enough that the search is on a deadend path. The Place-

ment tool uses redundant constraints called additional proximity constraints (see sec. 5.4.2)

for improving propagation to quickly establish if the current path does not yield a valid

solution. While these improvements are apparent in fig. 7.10 for benchmarks 2, 4, 7, and

8, the distribution and backtracking steps for the remaining benchmarks are significantly

larger in the absence of redundant constraints.

The placement tool takes longer to converge for benchmarks 5, 6, and 7 with higher

memory requirements, but is kept in check by applying a divide and conquer approach as

shown in fig. 7.8. The benefits of the divide and conquer approach are particularly noticable

in the case of benchmark 7. For bencmark 7, the convergence time of the placement tool

would be significantly higher in the absence of the divide and conquer approach. It should

be noted that cumulative results have been reported for these three cases. As mentioned

earlier, more distribution steps typically mean longer search convergence time and memory

requirements. However, the amount of propagation and overhead during each distribution

step significantly impacts the actual execution time and memory usage. The divide and

conquer approach reduces the amount of propagation per step, as well as the distribution

overhead, thereby improving convergence time while utilizing less memory.

Another interesting comparison is between benchmarks 5 and 6. The number of dis-

tribution and backtracking steps reported by the tool are approximately three times more

126

for the latter case than in the former, but convergence time of the tool is only 33% more

for benchmark 6 than for benchmark 5. Once again distribution overhead and propagation

are responsible for only a marginal increase in convergence time. Though these benchmarks

benefit from divide and conquer, maximal backtracking happens during initial placement

of benchmark 6, due to variable selection. During the initial placement, lower distribution

overhead compensates for a large number of distribution steps, bringing down the overall

convergence time for benchmark 6.

The performance of placement tool is further improved by applying the bounding box,

and divide and conquer approaches as discussed in sec. 5.4.2. Table 7.2 compares the

performance of the placement tool, with and without the application of the bounding box.

In all the cases, bounding box improves the convergence times and reduces the memory

usage. Diminishing gains are observed for large problems because the initial size of the

bounding box increases with the probem size. The effect of divide and conquer approach on

placement tool performance is presented in Table 7.3. Performance gains are observed for

benchmarks 2 and 4 while a performance deterioration is noticed in the case of benchmakrs

3 and 8. It should be noted that cumulative execution time and memory usage of each

execution are reported when divide and conquer approach is used. A higher convergence

time is observed in the case of benchmark 3 because the initial placement is modified during

incremental placement steps, which increases the convergence time and the memory usage.

For benchmark 8, the convergence time during each placement tool execution is found to be

Table 7.2: Effect of bounding box on placement tool performance.
Id Benchmark With Without

bounding box bounding box
Time Memory Time Memory
(sec) (MB) (sec) (MB)

2 Modified Discrete Cosine 0.52 19.27 3509.99 512578.16
Transform

3 Discrete Fourier Transform 7.20 843.15 36.95 4336.20
4 Sum of Absolute Transformed 4.14 399.52 8.14 849.60

Difference
8 Five Step Search 1.61 66.70 1.64 72.40

127

Table 7.3: Effect of divide and conquer on placement tool performance.
Id Benchmark Without With

divide and conquer divide and conquer
Time Memory Time Memory
(sec) (MB) (sec) (MB)

2 Modified Discrete Cosine 0.52 19.27 0.36 18.49
Transform

3 Discrete Fourier Transform 7.20 843.15 11.19 1073.80
4 Sum of Absolute Transformed 4.14 399.52 2.69 186.11

Difference
8 Five Step Search 1.61 66.70 1.66 69.15

less than 1 second. However, the cumulative overhead overshadows the benefits of applying

the divide and conquer approach.

In addition to improving search convergence time, the Placement tool uses the bounding

box approach to avoid scattering the nodes throughout the FPOA, in order to minimize the

chip area occupied by the design. However, the post-placement design footprint depends

on the topology of the TDFG and is strongly linked to the number of MAC and RF nodes

in the TDFG because the MAC and RF objects are spread throughout the FPOA chip.

For example, after scheduling the DFGs of benchmarks 6 and 8, their respective TDFGs

are composed of comparable number of nodes. However, the placement solution reported

for benchmark 6 is spread throughout the FPOA chip since it contains 64 MAC operations

which must be placed on MAC objects that are sparsely located over the entire chip. On the

other hand, benchmark 8 is placed using only 75% of the chip area because it is comprised

of ALU operations, which are placed on ALU objects that are more readily available than

MACs. The post-placement layouts of all the benchmarks are shown in Appendix C.

In order to compare the performance of the FD constraint-based placement tool, an-

other placement tool is required. However, no other tools exist for placing a design on

an FPOA. Hence, a placement tool is developed using the traditional simulated annealing

approach, independent of the proposed FD constraint-based placement methodology, and

serves as a reference for performance comparison. The Simulated Annealing-based Place-

ment (SAP) tool borrows some of the concepts that are discussed in Chapter 5. Each node

128

in the input TDFG is characterized by four attributes: a unique id, pair of coordinates, and

the operation type as described in sec. 5.2. Placement of a node on an object is indicated

by assigning the unique id of the object to the unique id attribute of the node.

The SAP tool uses a random number generator which uses the current system time

as the seed value. Initially, a placement solution is obtained by randomly assigning a

compatible object to each node in the TDFG. However, this placement may be invalid and

may not satisfy the communication delay requirements imposed by the design specification.

The cost function used in the SAP tool determines the number of unsatisfied communication

delays in the design. The placement objective is to minimize this cost to zero, implying that

the solution satisfies all delay requirements. The invalid placement is modified by randomly

selecting a node and placing it on a randomly selected but compatible object. This re-

placement or move is considered valid if it does not increase the value of the cost function.

Valid moves are always allowed, however, invalid moves may be permitted depending on the

annealing temperature to avoid getting stuck in a local minima. Initially the temperature is

high and a large number of invalid moves are allowed even if they increase the cost function.

As the temperature reduces, so does the number of invalid moves. After each move, the

placement tool checks if a solution satisfying all delay requirements has been found. If a

valid solution is found, it is reported and the SAP tool terminates; otherwise, another move

is performed. If a solution is not found and successive moves do not improve the placement

cost, the temperature is increased in an attempt to avoid local minima and the placement

process continues.

Table 7.4 shows the convergence time and memory usage of the SAP tool and compares

it with the performance of the FD constraint-based placement tool. Except for benchmark

1, the FD constraint approach converges faster than the simulated annealing-based method,

but the former uses more memory in all test cases. However, for benchmarks 3, 5, and 6,

the SAP tool did not report a solution. For these three cases, the final placement cost

varied between 1 and 6, indicating that while the tool was able to satisfy most of the delay

requirements, all the communication delay requirements imposed by the design specification

129

Table 7.4: Performance of simulated annealing-based placement.
Id Benchmark Simulated FD

Annealing Constraints
Time Memory Time Memory
(sec) (MB) (sec) (MB)

1 Discrete Wavelet Transform 1.31 2.50 20.39 2284.98
2 Modified Discrete Cosine 41.05 2.42 0.52 19.28

Transform
3 Discrete Fourier Transform -.-- -.-- 7.20 843.15
4 Sum of Absolute Transformed 37.40 2.52 4.14 399.53

Difference
5 Matrix Multiplication -.-- -.-- 29.53 3245.82
6 MP3 Window Subband -.-- -.-- 42.61 4901.17
7 Finite Impulse Response filter 1589.12 2.91 5.53 521.22
8 Five Step Search 427.50 2.91 1.61 66.70

could not be satisfied.

In summary, the Placement tool successfully finds placement solutions for all the eight

benchmarks considered in this research. These solutions satisfy all the proximity constraints

imposed by the design specification. The results indicate that the search convergence time

and memory usage are not only related to the problem size, but are also dependent on

the amount of backtracking, which in turn depends on the variable selection strategy. The

performance of the Placement tool is improved by employing strategies such as divide and

conquer, and redundant constraints, which decrease distribution overhead and improve

backtracking.

7.2.3 Routing

After scheduling and placing a DFG, the final step in the tool flow is routing. In a

TDFG, an NN communication channel corresponds to a zero delay edge, and PL communi-

cation channels are required for routing non-zero delay edges. Figure 7.11 shows the number

of NN and PL communication channels required for routing each benchmark. All zero de-

lay edges are handled during delay aware placement by ensuring that any pair of objects

sharing a zero delay edge are nearest neighbors. The proposed Routing tool is concerned

only with the non-zero delay edges which translate into a non-zero delay communication

130

Fig. 7.11: Zero delay (NN) and non-zero delay (PL) communication channels.

path between two objects that must be routed by assigning routing resources such as LL

registers and multiplexers.

All non-zero delay edges of TDFGs for each benchmark are successfully routed using

the constraint satisfaction-based routing tool. As shown in fig. 7.12, the convergence time

in most cases is found to be less than eight seconds with the exception of benchmark 7, the

reasons for which are explained later in this discussion. Figure 7.13 shows the amount of

memory required by the routing tool in each case and indicates a higher memory usage for

longer search convergence time. Since the convergence times of benchmark 7 dominates in

fig. 7.13, a rescaled view of the histogram is presented in fig. 7.14.

Figure 7.15 presents the distribution and backtracking steps associated with the routing

of these benchmarks. In Chapter 6, it is mentioned that shorter routes are typically more

resource constrained and hence are routed before longer routes. However, this approach

results in the scenario where a shorter route has more flexibility than a longer route, but

because the shorter route is handled first, it blocks resources critical for routing a longer

path. In such a scenario, the Routing tool will eventually backtrack to rip-up and re-

route the shorter route in order to make resources available for longer routes. In the worst

case, if two routes depend on the same set of resources, a solution is not feasible and an

alternate placement is sought by executing the Placement tool again. The increase in search

131

convergence time due to resource conflict is observed in the case of benchmark 7 which has

the largest number of non-zero delay paths, as shown in fig. 7.11. Most of these paths

are short paths with delay equal to one. The Routing tool takes the maximum amount of

time and uses a large amount of memory in this case, as indicated in figs. 7.12 and 7.13,

respectively. As shown in fig. 7.15, the Routing tool encounters maximum backtracking for

benchmark 7 among all the test cases, which is the result of resource conflicts among short

paths as explained above.

The task of the Routing tool is to assign LL registers and multiplexers to route each

edge in a TDFG. Figure 7.16 provides the number of LL registers and multiplexers used

for routing non-zero delay edges. Table 7.5 shows the percentage utilization of Party Line

Fig. 7.12: Routing tool convergence time.

Table 7.5: Party line resource utilization for routing non-zero delay edges.
Id Benchmark Launch/Land Multiplexers Party Line

Registers Groups
(%) (%) (Max 3)

1 DWT 0.60 1.05 2
2 MDCT 2.65 4.95 3
3 DFT 1.60 2.85 3
4 SATD 4.80 7.85 3
5 MM 0.40 0.60 1
6 MWS 1.25 2.23 2
7 FIR 9.45 17.13 3
8 FSS 1.65 2.88 2

132

Fig. 7.13: Routing tool memory usage for all eight benchmarks.

routing resources available on an FPOA for each of these benchmarks. These numbers

indicate a low utilization for PL communication, which is expected since the tool flow is

biased towards NN communication in an attempt to minimize overall communication delay

in the placed and routed design.

Benchmarks 2 and 3 present an interesting scenario because in spite of having compa-

rable non-zero delay edges, results show that benchmark 3 is routed faster. This is because

routing complexity not only depends on the number of non-zero delay edges, but also on the

delay along each edge. Figure 7.2 shows that benchmark 2 has a higher average delay than

benchmark 3, indicating that it is comprised of longer paths as compared to benchmark

Fig. 7.14: A rescaled view of routing memory usage for all eight benchmarks.

133

Fig. 7.15: Routing tool distribution and backtracks.

3. An edge with larger delay requires more routing resources than an edge with shorter

delay, increasing the routing problem size. This characteristic is highlighted in fig. 7.16,

which indicates that the number of routing resources needed by benchmark 3 is less than

for benchmark 2.

The results obtained after routing each benchmark indicate that the Routing tool

successfully routes all the paths. The convergence time and memory usage of the tool for

routing these benchmarks is reported and depends on the number of non-zero delay paths,

length of individual paths, and resource conflicts which require backtracking and re-routing.

In particular, the Routing tool benefits from the minimization of communication delay which

Fig. 7.16: Routing resource usage: Launch and land registers and multiplexers.

134

reduces the routing problem size by increasing zero-delay paths that are handled during the

placement phase.

7.3 Tool Performance for Varying Problem Size

The FIR filter benchmark is chosen to study and analyze the effect of increasing problem

size on tool performance. It is a scalable application and is the largest problem that is

considered for evaluating the tool flow developed in this research. Moreover, this benchmark

benefits from re-computation as well as the divide and conquer approach during scheduling

and placement. For these reasons, it is an ideal candidate for evaluating tool behavior when

problem size increases. Eight configurations, starting with an 8-tap FIR filter, are used.

For placing larger than 32-tap FIR configurations, the divide and conquer approach is used,

where the first 32-taps in the FIR configuration are placed first, followed by the remaining

components. The performance of scheduling, placement, and routing tools is analyzed for

each FIR configuration.

Figure 7.17 shows convergence time of all three tools for all eight FIR configurations,

while the corresponding memory usage is presented in fig. 7.18. A monotonic increase in

convergence time and memory usage is observed for each tool and for all configurations

except for placement of the 8-tap FIR. The time and memory requirements for placing the

Fig. 7.17: Search convergence time for FIR configurations.

135

Fig. 7.18: Memory usage during scheduling, placement, and routing of FIR configurations.

8-tap FIR configuration exceed the time and memory requirements for placing the 64-tap

configuration.

Even though the 8-tap FIR filter is small in size, it has maximum placement flexibility,

implying that most variables have large domain sizes. As mentioned earlier, variable selec-

tion affects search convergence and is worsened if much flexibility is offered to the variables.

Consider the following scenario for a variable v with a small domain. Variable v is selected

early in the search and is assigned a value which would eventually yield an invalid solu-

tion. However, not enough information is available at this point to backtrack until several

remaining variables are grounded. Only after evaluating a large combination of variable

assignments does the search backtracks and assigns a different value to v.

For both the 8-tap and the 16-tap FIR configurations, the size of bounding box is iden-

tical, but a smaller size offers more placement flexibility to the former case. Figure 7.19(b)

shows extensive backtracking for the 8-tap FIR configuration which results in longer conver-

gence time and higher memory requirement during placement. For the 16-tap to the 64-tap

configurations, distribution steps increase monotonically during placement. Figures 7.19(a)

and 7.19(c) illustrate a monotonic increase in distribution steps for all configurations. How-

ever, increased backtracking is observed during scheduling and routing with increments in

problem size, which is expected because the bounding box grows in size as well. A steep

136

(a) Scheduling tool distribution steps and backtracks.

(b) Placement tool distribution steps and backtracks.

(c) Routing tool distribution steps and backtracks.

Fig. 7.19: Distribution steps and backtracks for FIR configurations during (a) scheduling,
(b) placement, and (c) routing.

137

increase in backtracking is noticed during routing when moving from 56-tap to a 64-tap

configuration. During routing, one of the newly added routes was ripped-up and re-routed

several times before a valid route was obtained. As previously mentioned, such a scenario

arises when a shorter route shares the set of routing resources with a longer route and the

former blocks critical resources needed by the latter.

The number of nearest neighbor and party line communication channels for each con-

figuration are given in fig. 7.20. In most cases, 35% less party line communication channels

are used than nearest neighbor connections, which is inteneded by the aggressive scheduling

tool. Finally, fig. 7.21 compares the number of routing resources used for routing non-zero

delay routes using party lines for all eight configurations.

7.4 Tool Performance Beyond Arrix Architecture

In the previous sections, the performance of the scheduling, placement, and routing

tools is evaluated using the FPOA Arrix architecture which contains 400 objects arranged

in a 20×20 grid. In order to study and evaluate the performance of these tools as the size of

the design and the underlying architecture is increased, the existing FPOA architecture is

scaled up by a factor of 4. This new architecture contains 1600 objects which are arranged

in a 40× 40 grid. Due to the properties of the FIR benchmark, mentioned in the previous

Fig. 7.20: Zero delay and non-zero delay communication channels for FIR configurations.

138

Fig. 7.21: Registers and multiplexers used for routing FIR configurations.

section, it is again considered for evaluating the scalability of the proposed approach. FIR

configurations starting from a 32-tap filter are considered, and are increased in steps of

16-taps. Divide and conquer approach, as well as the bounding box approach are used for

each configuration. The tools converge for up to 128-tap FIR filter configurations, after

which all of them report failure due to memory limitations.

Figures 7.22 and 7.23 show the search convergence time and memory usage for the

scheduling tool. An increase in convergence time is observed as problem size increases,

Fig. 7.22: Scheduling tool search convergence time for FIR configurations on a 40 × 40
FPOA.

139

Fig. 7.23: Scheduling tool memory usage for FIR configurations on a 40× 40 FPOA.

with a sharp increase observed after 80-tap FIR configuration. For the first three cases,

a recomputation step of SRC = 20 is used, but is increased to SRC = 25, SRC = 50,

SRC = 80, and SRC = 120 steps for 80-tap, 96-tap, 112-tap, and 128-tap FIR configurations,

respetively. The need for larger recomputation steps is indicative of the high demand for

memory, as shown in fig. 7.23. At the same time, the effect of recomputation in reducing

memory requirement is evident from fig. 7.23, making recomputation a promising candidate

to improve the scalability of the scheduling tool.

Fig. 7.24: Placement and Routing tool search convergence time for FIR configurations on
a 40× 40 FPOA.

140

Figure 7.24 shows the search convergence time for the placement and routing tools.

A steep curve indicates a sharp rise in convergence time of the routing tool for FIR filter

configurations larger than 80-taps. On the other hand, the placement tool scales better

than the Routing and Scheduling tools, though a nonlinear increase in search convergence

time indicates diminishing returns with increase in design size. The memory usage for the

placement and routing tools is shown in fig. 7.25. The memory usage increases with problem

size and a recomputation step of size SRC = 3 is required for routing the 128-tap FIR filter

configuration. In addition to the recomputation, a bounding box approach, similar to the

placement tool, is also applied to the routing tool to improve convergence.

The results presented above illustrate the fact that the proposed tools are not limited

to a specific 20 × 20 FPOA Arrix architecture or for small designs. Instead, the proposed

methodology can be applied to larger architectures and designs. Additionally, recomputa-

tion, bounding box, and divide and conquer approaches are potential candidates that can

be explored further to improve scalability of the proposed tools.

Fig. 7.25: Placement and Routing tool memory usage for FIR configurations on a 40 × 40
FPOA.

141

Chapter 8

Conclusions and Future Work

Scheduling, placement, and routing are important steps in VLSI design, whether a

design is implemented as an ASIC, on an FPGA, or a CGRA. Literature indicates that a

variety of techniques have been developed for ASIC and FPGA-based design. Most of these

techniques attempt to minimize wirelength in order to optimize design performance.

The proposed research targets an FPOA, which is a coarse-grained reconfigurable com-

puting device consisting of multiple processing elements. These elements communicate using

a configurable communication network that takes a deterministic amount of time to send

a signal over a fixed distance. A direct implication of this characteristic is that wirelength

minimization is no longer the desired optimization objective. Instead, a scheduling tool de-

termines the communication delay along the edges of an application’s DFG. Resources are

allocated to operations in the DFG and a placement tool must guarantee that two commu-

nicating resources must be placed such that the distance between them allows implementing

a path with the desired delay. Similarly, the routing tool must route a path such that the

physical connection supports the specified delay. In this research scheduling, placement,

and routing tools have been developed to meet the above mentioned requirements.

This research explores the application of finite domain constraint satisfaction for devel-

oping scheduling, placement, and routing methodologies for an FPOA. An end-to-end tool

chain has been implemented in the Mozart programming environment using the Oz and

C++ programming languages. During each step in the tool flow, the problem is formulated

using FD variables, and constraints are defined over these variables. FD variables denote

attributes such as delay, time, location, etc. Relationships between these attributes, or re-

strictions on the values that these attributes can assume, are captured using FD constraints.

Once the problem specification is complete, it is solved by an FD constraint solver through

142

propagation, distribution, and search.

The proposed tools have been evaluated using a set of eight benchmarks that are derived

from multimedia, signal processing, and scientific applications. Analysis of data flow graphs

for each of these benchmarks reveals that they represent scenarios with different problem

sizes and inter-object communication. Each of the three tools converged in all eight test

cases yielding a placeable schedule, a routable placement, and a routed design. Search

convergence time and memory usage have been reported and analyzed for each benchmark

at each step in the tool flow.

During the course of this research, the following observations were made.

1. Search convergence is dependent on variable selection strategy during distribution.

However, efficient propagation and application of redundant constraints attempt to

mitigate the effects of not selecting the most appropriate variable.

2. Aggressive minimization of delay during scheduling does not always generate placeable

schedules. Typically, failure to place a design arises from geometrical limitations

imposed by the FPOA architecture. Some of these restrictions are easily identified

and can be handled in the scheduling phase, while other cases require detailed analysis

because they arise from design requirements. A scheduler relaxation technique is

implemented to identify and relax potential paths to improve placeability of a schedule.

3. Since ALU objects can support more than one operation, it is wise to merge opera-

tions on an ALU to increase resource utilization. Results indicate the advantages of

this approach, such as accommodating designs with more than 256 ALU operations

and reduction in inter-object connections. Experiments also revealed that aggressive

merging of operations can lead to unplaceable schedules, primarily due to geometrical

restrictions.

4. The divide and conquer approach enables the placement tool to handle large designs

and drastically improves convergence time for large cases. A partial design is placed

143

first, and the remaining design is added later without repeating the entire placement

process.

5. The scheduler attempts to minimize communication delay between two operations,

generating schedules which use more NN connectivity. Results also show that most

designs contain a higher number of NN connections than PL communication. More

NN connections are usually indicative of a shorter schedule length. Furthermore,

since NN connections are handled during placement, a larger ratio of NN vs. PL

communication implies reduced computation burden during routing.

6. Routing can be performed in two ways: route all paths at once or route one path

at a time. While the former approach is unbiased towards any path and exposes all

available routing resources to all the paths in a design, it imposes severe memory

requirements causing the search to terminate prematurely. The latter approach is

a divide and conquer approach which selects the shortest path first and is found to

converge in all test cases.

Evaluation of scheduling, placement, and routing tools indicates that these tools at-

tempt to minimize schedule length, communication delay, utilize less chip area when possi-

ble, and route paths using minimal routing resources.

The primary contribution of this research is an end-to-end tool chain for scheduling,

placing, and routing designs on an FPOA. Some of the possible directions that this research

can investigate in future are specified below.

1. In its present form, the placement and routing methodology is applicable only to

FPOAs. Even the resource allocation and scheduling algorithm is architecture de-

pendent. Instead of focusing on a particular architecture, a broad category of ar-

chitectures can be supported by developing a high-level abstract model for 2D mesh

CGRAs. These design methodologies can be extended to target the abstract CGRA

model. The tools can be configured for a particular architecture by supplying an

architectural template.

144

2. The primary goal in the this research is to find a valid solution during each phase

of the tool flow, along with minimization of delay, area, and routing resources. Ad-

ditional objectives such as power and I/O data rate can be added to improve design

performance. This approach necessitates a sound understanding of factors influencing

power consumption on an FPOA, the relationship and interdependence among delay,

area, routing resources, power, and I/O rate, and development of a formal model to

capture these relationships.

3. An FPOA offers limited number of computational resources which do not permit a

large design to be placed if the demand for resources exceeds the available capacity

on the chip. One such scenario is the demand for more than 64 multipliers. To

address this problem, a tool can be developed to perform a demand analysis prior to

scheduling, and available ALUs can be used for implementing multiplication through

repeated addition. A second scenario arises due to large designs which cannot be

accomodated on the FPOA because the demand for one or more types of resources

exceeds the FPOA’s capacity. This issue can be solved in two ways: resource reuse and

reconfiguration. If the design contains identical modules, then a module can be reused

for different data sets by implementing necessary control logic. Alternatively, the

design can be partitioned into smaller components and the FPOA can be repeatedly

reconfigured with these components. In either of these cases, the scheduler needs to

be modified to support resource reuse and to account for reconfiguration time.

4. Scheduling, placement, and routing are currently implemented as separate tools be-

cause combining them increases problem complexity manifold, hampering search con-

vergence and imposing unsatisfiable memory demands. With further improvement in

computing technology, by employing aggressive divide and conquer, or implementing

multi-threaded constraint solvers capable of execution on multiple cores, the feasibility

of a simultaneous scheduling, placement, and routing methodology can be explored.

5. Search convergence depends on many factors such as nature of DFGs and variable

145

selection. A search strategy may cause one search to converge quickly for one appli-

cation, but may not show similar improvements in another case. Applying different

strategies to a large set of applications followed by an analysis of search convergence

times and memory usage can help categorize applications on the basis of search strat-

egy giving maximum improvement in search performance. This information can later

be used for profiling the input and automatically selecting the best search strategy.

A similar profiling technique can also be implemented in schedule relaxer to perform

minimal relaxation yet improve placeability.

6. In the last couple of decades, the research community has shown a growing interest in

generating hardware from a high-level software description in programming language

such as C. A C language to FPOA tool flow can be implemented based on the work

presented in this dissertation by developing and integrating a C to DFG translator in

the existing tool chain.

146

References

[1] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for Deep-Submicron
FPGAs. Norwell, MA: Kluwer Academic Publishers, 1999.

[2] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 2.0: An efficient analytical placer
for mixed-mode designs,” in ASP-DAC ’06: Proceedings of the 2006 Conference on
Asia South Pacific Design Automation, pp. 195–200, 2006.

[3] J. R. Gao, P. C. Wu, and T. C. Wang, “A new global router for modern designs,” in
ASP-DAC ’08: Proceedings of the 2008 Conference on Asia and South Pacific Design
Automation, pp. 232–237, 2008.

[4] M. Hanan, “On steiner’s problem with rectilinear distance,” SIAM Journal on Applied
Mathematics, vol. 14, no. 2, pp. 255–265, Mar. 1966.

[5] “Xilinx XC2VP100 datasheet,” http://www.xilinx.com/support/documentation/
data sheets/ds083.pdf.

[6] D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA architecture optimized for data
paths,” VLSI Design, vol. 4, no. 4, pp. 329–343, 1996.

[7] R. Francis, J. Rose, and Z. Vranesic, “Chortle-CRF: Fast technology mapping for
lookup table-based FPGAs,” in DAC ’91: Proceedings of the 28th ACM/IEEE Design
Automation Conference, pp. 227–233, 1991.

[8] D. D. Hill and N. S. Woo, “The benefits of flexibility in lookup table-based FPGAs,”
IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 12, no. 2, pp.
349–353, 1993.

[9] R. W. Hartenstein and R. Kress, “A data path synthesis system for the reconfigurable
data path architecture,” in ASP-DAC ’95: Proceedings of the 1995 conference on Asia
Pacific Design Automation, p. 77, 1995.

[10] “D-Fabrix,” http://www.panasonic.co.uk/b2b/get/params W0 MThtml/1715552/
D-Fabrix.pdf, July 2008.

[11] R. A. Bittner, P. M. Athanas, and M. D. Musgrove, “Colt: An experiment in wormhole
run-time reconfiguration,” in High-Speed Computing, Digital Signal Processing, and
Filtering Using Reconfigurable Logic. SPIE, pp. 187–194, 1996.

[12] R. Bittner and P. Athanas, “Wormhole run-time reconfiguration,” in FPGA ’97: Pro-
ceedings of the 1997 Association for Computing Machinery Fifth International Sym-
posium on Field-Programmable Gate Arrays, pp. 79–85, 1997.

[13] E. Mirsky and A. DeHon, “MATRIX: A reconfigurable computing architecture with
configurable instruction distribution and deployable resources,” in IEEE Symposium
on FPGAs for Custom Computing Machines, pp. 157–166, 1996.

147

[14] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a reconfigurable
coprocessor,” in FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-Based
Custom Computing Machines, p. 12, 1997.

[15] J. Faura, M. A. Aguirre, J. M. Moreno, P. V. Duong, and J. M. Insenser, “FIPSOC:
A field programmable system on a chip,” in DCIS’97 XII Design of Circuits and
Integrated Systems Conference, pp. 597–602, Nov. 1997.

[16] J. Faura, C. Horton, P. van Duong, J. Madrenas, M. Aguirre, and J. Inserser, “A novel
mixed signal programmable device with on-chip microprocessor,” in Proceedings of the
IEEE 1997 Custom Integrated Circuits Conference, pp. 103–106, May 1997.

[17] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring it all to
software: Raw machines,” IEEE Computer, vol. 30, no. 9, pp. 86–93, Sept. 1997.

[18] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
man, P. Johnson, J. W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The Raw microprocessor:
A computational fabric for software circuits and general-purpose programs,” IEEE
Micro, vol. 22, no. 2, pp. 25–35, 2002.

[19] M. B. Taylor, “Design decisions in the implementation of a raw architecture work-
station,” Master’s thesis, Massachusetts Institute of Technology, Boston, MA, Sept.
1999.

[20] T. Miyamori and K. Olukotun, “REMARC: Reconfigurable multimedia array copro-
cessor,” in IEICE Transactions on Information and Systems E82-D, pp. 389–397,
1998.

[21] Y. Kang, J. Torrellas, and T. Huang, “An IRAM architecture for image analysis and
pattern recognition,” in Fourteenth International Conference on Pattern Recognition,
vol. 2, pp. 1561–1564, Aug. 1998.

[22] Y. Kang, W. Huang, S. M. Yoo, D. Keen, Z. Ce, V. Lain, P. Pattnaik, and J. Tor-
rellas, “FlexRAM: Toward an advanced intelligent memory system,” in ICCD ’99:
Proceedings of the 1999 IEEE International Conference on Computer Design, p. 192,
1999.

[23] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings, “A recon-
figurable arithmetic array for multimedia applications,” in FPGA ’99: Proceedings
of the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable
Gate Arrays, pp. 135–143, 1999.

[24] H. Singh, M. Lee, G. Lu, F. Kurdahi, and N. Bagherzadeh, “MorphoSys: A re-
configurable architecture for multimedia applications,” in Brazilian Symposium on
Integrated Circuit Design and System Design, p. 134, 1998.

[25] G. Lu, H. Singh, M. H. Lee, N. Bagherzadeh, F. J. Kurdahi, E. M. C. Filho, and
V. C. Alves, “The MorphoSys dynamically reconfigurable system-on-chip,” in EH

148

’99: Proceedings of the 1st NASA/DOD Workshop on Evolvable Hardware, p. 152,
1999.

[26] H. Singh, G. Lu, E. Filho, R. Maestre, M. H. Lee, F. Kurdahi, and N. Bagherzadeh,
“MorphoSys: case study of a reconfigurable computing system targeting multimedia
applications,” in DAC ’00: Proceedings of the 37th Conference on Design Automation,
pp. 573–578, 2000.

[27] M. H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi, E. M. C. Filho, and V. C.
Alves, “Design and implementation of the MorphoSys reconfigurable computingpro-
cessor,” Journal of VLSI Signal Processing Systems, vol. 24, no. 2-3, pp. 147–164,
2000.

[28] A. Alsolaim, J. Starzyk, J. Becker, and M. Glesner, “Architecture and application of a
dynamically reconfigurable hardware array for future mobile communication systems,”
in FCCM ’00: Proceedings of the 2000 IEEE Symposium on Field-Programmable
Custom Computing Machines, p. 205, 2000.

[29] J. Granacki and M. Vahey, “MONARCH: A morphable networked micro-
architecture,” in High Performance Embedded Computing Workshop, Oct. 2002.

[30] R. Z. Bhatti, J. Draper, and C. Steele, “PBuf: An on-chip packet transfer engine
for MONARCH,” in 49th IEEE International Midwest Symposium on Circuits and
Systems, vol. 2, pp. 531–535, Aug. 2006.

[31] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “ADRES: An archi-
tecture with tightly coupled VLIW processor and coarse-grained reconfigurable ma-
trix,” in Field-Programmable Logic and Applications, ser. Lecture Notes in Computer
Science, vol. 2778, pp. 61–70, Sept. 2003.

[32] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins, “Design methodology for a
tightly coupled VLIW/reconfigurable matrix architecture: A case study,” in DATE
’04: Proceedings of the Conference on Design, Automation and Test in Europe, p.
21224, 2004.

[33] “Mathstar TM Arrix TM Family FPOA TM Architecture Guide,”
http://www.mathstar.com/Architecture.php, May 2007.

[34] “Clearspeed whitepaper: CSX processor architecture,” http://www.clearspeed.
com/docs/resources/ClearSpeed Architecture Whitepaper Feb07v2.pdf.

[35] Y. Nishikawa, M. Koibuchi, M. Yoshimi, K. Miura, and H. Amano, “Performance
improvement methodology for clearspeed’s CSX600,” in ICPP ’07: Proceedings of the
2007 International Conference on Parallel Processing, p. 77, 2007.

[36] R. Verma and A. Akoglu, “A coarse-grained and hybrid reconfigurable architecture
with flexible noc router for variable block size motion estimation,” in IEEE Interna-
tional Symposium on Parallel and Distributed Processing, pp. 1–8, Apr. 2008.

149

[37] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Transactions Circuits Systems Video Tech-
nology, vol. 13, pp. 560–574, July 2003.

[38] T. Wiegand and G. J. Sullivan, “The H.264/AVC video coding standard,” IEEE
Signal Processing Magazine, vol. 24, no. 2, Mar. 2007.

[39] S. Kelem, B. Box, S. Wasson, R. Plunkett, J. Hassoun, and C. Phillips, “An elemental
computing architecture for SD radio,” in SDR Forum Technical Conference, Denver,
CO, Nov. 2007.

[40] “Tilera TILEPro36 Product Brief,” http://www.tilera.com/pdf/ProductBrief TILE
Pro36 Web v1.pdf.

[41] “Tilera TILEPro64 Product Brief,” http://www.tilera.com/pdf/ProductBrief TILE
Pro64 Web v2.pdf.

[42] “Tilera TILE-Gx Product Brief,” http://www.tilera.com/pdf/ProductBrief TILE-
Gx v2.pdf.

[43] “Tilera Tile Processor Architecture Product Brief,”
http://www.tilera.com/pdf/ProductBrief TileArchitecture Web v4.pdf.

[44] C. Liang and X. Huang, “Smartcell: An energy efficient coarse-grained reconfigurable
architecture for stream-based applications,” EURASIP Journal on Embedded Systems,
p. 15, 2009.

[45] G. B. Dantzig, Programming in a Linear Structure. Washington, DC: Wiley-
Blackwell, 1949.

[46] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ: Princeton Uni-
versity Press, 1963.

[47] A. Schrijver, Theory of Linear and Integer Programming. New York: John Wiley &
Sons Ltd, 1986.

[48] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA: A platform and program-
ming language independent interface for search algorithms,” in Evolutionary Multi-
Criterion Optimization, pp. 494–508, 2003.

[49] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[50] J. Jaffar and M. J. Maher, “Constraint logic programming: A survey,” Journal of
Logic Programming, vol. 20, pp. 503–581, 1994.

[51] K. Marriott and P. Stuckey, Programming with Constraints: An Introduction. Cam-
bridge, MA: MIT Press, 1998.

[52] K. Kuchcinski, “Constraints-driven scheduling and resource assignment,” ACM
Transactions on Design Automation of Electronic Systems, vol. 8, no. 3, pp. 355–
383, 2003.

150

[53] K. Schild and J. Wurtz, “Off-line scheduling of a real-time system,” in ACM Sympo-
sium on Applied Computing, pp. 29–38. Atlanta, GA: ACM Press, 1998.

[54] K. Kuchcinski, “Constraints-driven design space exploration for distributed embedded
systems,” Journal of Systems Architecture, vol. 47, no. 3-4, pp. 241–261, 2001.

[55] K. Shahookar and P. Mazumder, “VLSI cell placement techniques,” ACM Computer
Survey, vol. 23, no. 2, pp. 143–220, 1991.

[56] M. Pan and C. Chu, “FastRoute 2.0: A high-quality and efficient global router,” in
ASP-DAC ’07: Proceedings of the 2007 Conference on Asia and South Pacific Design
Automation, pp. 250–255, Jan. 2007.

[57] M. Sarrafzadeh, M. Wang, and X. Yang, Modern Placement Techniques. Norwell,
MA: Kluwer Academic Publishers, 2003.

[58] C. Chu, “FLUTE: Fast lookup table based wirelength estimation technique,” in
ICCAD ’04: Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design, pp. 696–701, 2004.

[59] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: standard-cell placement tool
for large industry circuits,” in ICCAD ’00: Proceedings of the 2000 IEEE/ACM In-
ternational Conference on Computer-aided design, pp. 260–263, 2000.

[60] J. A. Roy, J. F. Lu, and I. L. Markov, “Seeing the forest and the trees: Steiner wire-
length optimization in placemen,” in ISPD ’06: Proceedings of the 2006 International
Symposium on Physical Design, pp. 78–85, 2006.

[61] B. Krishna, C. R. Chen, and N. K. Sehgal, “A novel ultra-fast heuristic for VLSI CAD
steiner trees,” in GLSVLSI ’03: Proceedings of the 13th ACM Great Lakes symposium
on VLSI, pp. 192–197, 2003.

[62] M. A. Breuer, “A class of min-cut placement algorithms,” in DAC ’77: Proceedings
of the 14th conference on Design Automation, pp. 284–290, 1977.

[63] U. Lauther, “A min-cut placement algorithm for general cell assemblies based on a
graph representation,” in DAC ’79: Proceedings of the 16th Conference on Design
Automation, pp. 1–10, 1979.

[64] T. C. Chen, T. C. Hsu, Z. W. Jiang, and Y. W. Chang, “NTUplace: A ratio parti-
tioning based placement algorithm for large-scale mixed-size designs,” in ISPD ’05:
Proceedings of the 2005 International Symposium on Physical Design, pp. 236–238,
2005.

[65] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive bisection alone produce
routable placements,” in Proceedings of Design Automation Conference, pp. 477–482,
2000.

[66] A. Kahng and S. Reda, “Wirelength minimization for min-cut placements via place-
ment feedback,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 7, pp. 1301–1312, July 2006.

151

[67] M. C. Yildiz and P. H. Madden, “Global objectives for standard cell placement,” in
GLSVLSI ’01: Proceedings of the 11th Great Lakes Symposium on VLSI, pp. 68–72,
2001.

[68] A. R. Agnihotri, S. Ono, and P. H. Madden, “Recursive bisection placement: Feng
shui 5.0 implementation details,” in ISPD ’05: Proceedings of the 2005 International
Symposium on Physical Design, pp. 230–232, 2005.

[69] M. Can Yildiz and P. H. Madden, “Improved cut sequences for partitioning based
placement,” in DAC ’01: Proceedings of the 38th Conference on Design Automation,
pp. 776–779, 2001.

[70] A. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur, S. Ono, and P. H. Madden,
“Fractional cut: Improved recursive bisection placement,” in ICCAD ’03: Proceedings
of the 2003 IEEE/ACM International Conference on Computer Aided Design, p. 307,
2003.

[71] C. Sechen and A. Sangiovanni Vincentelli, “The timberwolf placement and routing
package,” IEEE Journal of Solid-State Circuits, vol. 20, no. 2, pp. 510–522, Apr 1985.

[72] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, pp. 671–680, 1983.

[73] N. Viswanathan and C.-N. Chu, “FastPlace: Efficient analytical placement using cell
shifting, iterative local refinement,and a hybrid net model,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 5, pp. 722–
733, May 2005.

[74] N. Viswanathan, M. Pan, and C. Chu, “Fastplace 3.0: A fast multilevel quadratic
placement algorithm with placement congestion control,” in ASP-DAC ’07: Proceed-
ings of the 2007 conference on Asia South Pacific Design Automation, pp. 135–140,
2007.

[75] C. J. Alpert, T. Chan, D. J. H. Huang, I. Markov, and K. Yan, “Quadratic place-
ment revisited,” in DAC ’97: Proceedings of the 34th Annual Conference on Design
Automation, pp. 752–757, 1997.

[76] M. Pan and C. Chu, “FastRoute: A step to integrate global routing into placement,”
in ICCAD ’06: Proceedings of the 2006 IEEE/ACM International Conference on
Computer-Aided Design, pp. 464–471, 2006.

[77] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: global router with efficient via mini-
mization,” in ASP-DAC ’09: Proceedings of the 2009 Conference on Asia and South
Pacific Design Automation, pp. 576–581, 2009.

[78] M. Pan and C. Chu, “IPR: an integrated placement and routing algorithm,” in DAC
’07: Proceedings of the 44th Annual Conference on Design Automation, pp. 59–62,
2007.

152

[79] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed placement
algorithm,” in ICCAD ’05: Proceedings of the 2005 IEEE/ACM International Con-
ference on Computer-Aided Design, pp. 48–55, 2005.

[80] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based performance-driven
router for FPGAs,” in FPGA ’95: Proceedings of the 1995 ACM Third International
Symposium on Field-programmable Gate Arrays, pp. 111–117, 1995.

[81] Y. J. Chang, Y. T. Lee, and T. C. Wang, “NTHU-Route 2.0: A fast and stable
global router,” in IEEE/ACM International Conference on Computer Aided Design,
pp. 338–343, Nov. 2008.

[82] “The ISPD98 circuit benchmark suite,” http://vlsicad.ucsd.edu/UCLAWeb/cheese/
ispd98.html.

[83] “Standard cell benchmark circuits from the Microelectronics Center of North Carolina
(MCNC),” http://vlsicad.cs.binghamton.edu/gz/PDWorkshop91.tgz.

[84] W. Donath, “Placement and average interconnection lengths of computer logic,” IEEE
Transactions on Circuits and Systems, vol. 26, no. 4, pp. 272–277, Apr 1979.

[85] G. Parthasarathy, M. Marek-Sadowska, A. Mukherjee, and A. Singh, “Interconnect
complexity-aware FPGA placement using rent’s rule,” in SLIP ’01: Proceedings of the
2001 International Workshop on System-level Interconnect Prediction, pp. 115–121,
2001.

[86] X. Yang, R. Kastner, and M. Sarrafzadeh, “Congestion estimation during top-down
placement,” in ISPD ’01: Proceedings of the 2001 International Symposium on Phys-
ical Design, pp. 164–169, 2001.

[87] A. Singh, G. Parthasarathy, and M. Marek-Sadowska, “Interconnect resource-
aware placement for hierarchical FPGAs,” in ICCAD ’01: Proceedings of the 2001
IEEE/ACM International Conference on Computer Aided Design, pp. 132–136, 2001.

[88] N. W. Eum, T. Kim, and C. M. Kyung, “A router for symmetrical FPGAs based on
exact routing density evaluation,” in ICCAD ’01: Proceedings of the 2001 IEEE/ACM
International Conference on Computer Aided Design, pp. 137–143, 2001.

[89] P. Kannan, S. Balachandran, and D. Bhatia, “On metrics for comparing routability
estimation methods for FPGAs,” in DAC ’02: Proceedings of the 39th Conference on
Design Automation, pp. 70–75, 2002.

[90] P. Kannan, S. Balachandran, and D. Bhatia, “fGREP - fast generic routing demand
estimation for placed FPGA circuits,” in FPL ’01: Proceedings of the 11th Interna-
tional Conference on Field-Programmable Logic and Applications, pp. 37–47, 2001.

[91] C. L. E. Cheng, “RISA: Accurate and efficient placement routability modeling,” in
ICCAD ’94: Proceedings of the 1994 IEEE/ACM International Conference on Com-
puter Aided Design, pp. 690–695, 1994.

153

[92] J. Lou, S. Krishnamoorthy, and H. S. Sheng, “Estimating routing congestion using
probabilistic analysis,” in ISPD ’01: Proceedings of the 2001 International Symposium
on Physical Design, pp. 112–117, 2001.

[93] D. Jariwala and J. Lillis, “On interactions between routing and detailed placement,”
in ICCAD ’04: Proceedings of the 2004 IEEE/ACM International Conference on
Computer Aided Design, pp. 387–393, 2004.

[94] G. G. Lemieux and S. D. Brown, “A detailed routing algorithm for allocating wire
segments in field-programmable gate arrays,” in Proceedings of ACM/SIGDA Physical
Design Workshop, Lake Arrowhead, CA, pp. 215–226, 1993.

[95] S. K. Nag and R. A. Rutenbar, “Performance-driven simultaneous place and route
for island-style FPGAs,” in ICCAD ’95: Proceedings of the 1995 IEEE/ACM Inter-
national Conference on Computer Aided Design, pp. 332–338, 1995.

[96] Y. S. Lee and A. H. Wu, “A performance and routability-driven router for FPGAs
considering path delays,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 16, no. 2, pp. 179–185, Feb. 1997.

[97] M. J. Alexander, J. P. Cohoon, J. L. Ganley, and G. Robins, “Performance-
oriented placement and routing for field-programmable gate arrays,” in EURO-DAC
’95/EURO-VHDL ’95: Proceedings of the Conference on European Design Automa-
tion, pp. 80–85, 1995.

[98] M. J. Alexander and G. Robins, “New performance-driven fpga routing algorithms,”
in DAC ’95: Proceedings of the 32nd ACM/IEEE Conference on Design Automation,
pp. 562–567, 1995.

[99] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The rectilinear steiner
arborescence problem,” Algorithmica, vol. 7, no. 1-6, pp. 277–288, June 1992.

[100] W. Shi and C. Su, “The rectilinear steiner arborescence problem is NP-complete,” in
SODA ’00: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 780–787, 2000.

[101] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA
research,” in Field-Programmable Logic and Applications, pp. 213–222, 1997.

[102] C. Y. Lee, “An algorithm for path connections and its applications,” IRE Transactions
on Electronic Computers, vol. EC-10, no. 2, pp. 364–365, 1961.

[103] A. Sharma, C. Ebeling, and S. Hauck, “Architecture-adaptive routability-driven place-
ment for FPGAs,” in Proceedings of the 2005 International Conference on Field Pro-
grammable Logic and Applications, pp. 427–432, Aug. 2005.

[104] M. V. da Silva, R. Ferreira, A. Garcia, and J. M. P. Cardoso, “Mesh mapping ex-
ploration for coarse-grained reconfigurable array architectures,” IEEE International
Conference on Reconfigurable Computing and FPGA’s, pp. 1–10, Sept. 2006.

154

[105] R. Ferreira, A. Garcia, T. Teixeira, and J. Cardoso, “A polynomial placement algo-
rithm for data driven coarse-grained reconfigurable architectures,” IEEE Computer
Society Annual Symposium on VLSI, pp. 61–66, Mar. 2007.

[106] Y. T. Lai, H. Y. Lai, and C. N. Yeh, “Placement for the reconfigurable data path
architecture,” IEEE International Symposium on Circuits and Systems, vol. 2, pp.
1875–1878, May 2005.

[107] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal, “Logic emulation
with virtual wires,” IEEE Transactions on Computer Aided Design, vol. 16, pp. 609–
626, 1997.

[108] C. Selvidge, A. Agarwal, M. Dahl, and J. Babb, “TIERS: Topology independent
pipelined routing and scheduling for virtualwire compilation,” in FPGA ’95: Proceed-
ings of the 1995 ACM Third International Symposium on Field-programmable Gate
Arrays, pp. 25–31, 1995.

[109] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann,
P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Ama-
rasinghe, and A. Agarwal, “Evaluation of the Raw microprocessor: An exposed-wire-
delay architecture for ILP and streams,” in ISCA’04: Proceedings of the 2004 Inter-
national Symposium on Computer Architecture, pp. 2–13, 2004.

[110] W. O. Fung, T. Arslan, and S. Khawam, “Genetic algorithm based engine for domain-
specific reconfigurable arrays,” in AHS ’06: Proceedings of the first NASA/ESA Con-
ference on Adaptive Hardware and Systems, pp. 200–206, 2006.

[111] http://www.mozart-oz.org/, May 2003.

[112] J.-C. Régin, “Generalized arc consistency for global cardinality constraint,” in As-
sociation for the Advancement of Artificial Intelligence/Innovative Applications of
Artificial Intelligence Conference, vol. 1, pp. 209–215, 1996.

[113] “GNU scientific library,” http://www.gnu.org/software/gsl/.

[114] “LAME MP3 Encoder,” http://lame.sourceforge.net/.

[115] “Mediabench II,” http://euler.slu.edu/ fritts/mediabench/.

[116] R. Saraswat and B. Eames, “On the use of DesertFD to generate custom architectures
for H.264 motion estimation,” in 15th IEEE International Conference on Engineering
of Computer Based Systems, pp. 359–368, 2008.

[117] V. K. Kodavalla, “IP gate count estimation methodology during micro-architecture
phase,” in IP based Electronic System Conference and Exhibition, pp. 55–60, 2007.

155

Appendices

156

Appendix A

MaxEightALU Constraint Implementation in C++

A.1 MaxEightALU Header File

//MaxEightALU FD.h - Header File for MaxEightALU constraint

#include “mozart cpi.hh”

#include <stdio.h>

#include <map>

#include <set>

#include <iostream>

using namespace std;

class MaxEightALU : public OZ Propagator

{

friend OZ C proc interface *oz init module(void);

private:

int tup size;

static OZ PropagatorProfile profile;

OZ Term * tup, max;

public:

MaxEightALU(OZ Term a, OZ Term b) :

tup size (OZ vectorSize(a)), max(b)

{

tup = OZ hallocOzTerms(tup size);

157

OZ getOzTermVector(a, tup);

}

virtual OZ Return propagate(void);

virtual size t sizeOf(void)

{

return sizeof(MaxEightALU);

}

virtual void gCollect(void)

{

tup = OZ gCollectAllocBlock(tup size, tup);

OZ gCollectTerm(max);

}

virtual void sClone(void)

{

tup = OZ sCloneAllocBlock(tup size, tup);

OZ sCloneTerm(max);

}

virtual OZ Term getParameters(void) const;

virtual OZ PropagatorProfile *getProfile(void) const

{

return &profile;

}

}; //class MaxEightALU

class Iterator OZ FDIntVar

{

private:

int l size;

158

OZ FDIntVar * l;

public:

Iterator OZ FDIntVar(int s, OZ FDIntVar * l) : l size(s), l(l) {}

OZ Boolean leave(void)

{

OZ Boolean vars left = OZ FALSE;

for (int i = l size; i–;)

vars left |= l[i].leave();

return vars left;

}

void fail(void)

{

for (int i = l size; i–; l[i].fail());

}

}; //class Iterator OZ FDIntVar

class ExtendedExpect : public OZ Expect

{

private:

OZ expect t expectIntVarAny(OZ Term t)

{

return expectIntVar(t, fd prop any);

}

public:

OZ expect t expectIntVarSingl(OZ Term t)

{

return expectIntVar(t, fd prop singl);

}

159

OZ expect t expectVectorIntVarAny(OZ Term t)

{

return expectVector(t,(OZ ExpectMeth) &ExtendedExpect:: expectIntVarAny);

}

OZ expect t expectVectorIntVarSingl(OZ Term t)

{

return expectVector(t, (OZ ExpectMeth) &ExtendedExpect::expectIntVarSingl);

}

}; //class ExtendedExpect

A.2 MaxEightALU Source Code

//MaxEightALU.CPP - Source Code File for MaxEightALU constraint

#include “MaxEightALU FD.h”

#define FailOnEmpty(X) if((X) == 0) goto failure;

OZ PropagatorProfile MaxEightALU::profile;

OZ BI proto(fd MaxEightALU);

OZ C proc interface *oz init module(void)

{

static OZ C proc interface i table[] = {

{“MaxEightALU”, 2, 0, fd MaxEightALU}, {0,0,0,0}

};

MaxEightALU::profile = “MaxEightALU prop”;

return i table;

}

OZ Term MaxEightALU::getParameters(void) const

{

OZ Term list = OZ nil();

160

for (int i = tup size; i–;)

list = OZ cons(tup[i], list);

return OZ cons(max, OZ cons(list, OZ nil()));

}

OZ Return MaxEightALU::propagate(void)

{

if (tup size == 0)

return OZ ENTAILED;

Declare variables corresponding to OZ Variables

OZ FDIntVar oz tup[tup size];

OZ FDIntVar maxallowedin(max);

Iterator OZ FDIntVar tupItr(tup size, oz tup);

OZ FiniteDomain oz tup aux[tup size], oz grounded aux(fd empty),

oz ungrounded aux(fd empty);

bool NotFailed = true; //true means not failed

int *grounded var table = new int[tup size];

map<int, int> RepeatedElemMap;

set<int> ReachedMaxAllowed;

map<int, int>::iterator RepeatedElemMap itr;

int maxallowed = maxallowedin->getSingleElem();

for (int n=0; n < tup size ; n++)

{

oz tup[n].read(tup[n]);

oz tup aux[n].initEmpty();

if (NotFailed)

{

int elem = oz tup[n]->getMinElem();

161

if (oz tup[n]->getSize() == 1)

{

grounded var table[n] =1;

RepeatedElemMap itr = RepeatedElemMap.find(elem);

if (RepeatedElemMap itr == RepeatedElemMap.end())

{

RepeatedElemMap.insert(pair<int,int>(elem, 1));

}

else if (RepeatedElemMap itr->second < maxallowed)

{

int numrep = RepeatedElemMap itr->second + 1;

RepeatedElemMap.erase(RepeatedElemMap itr);

RepeatedElemMap.insert(pair<int, int>(elem, numrep));

if (numrep ==maxallowed)

{

oz grounded aux += elem;

ReachedMaxAllowed.insert(elem);

}

}

else //Propagator failed

{

RepeatedElemMap.clear();

ReachedMaxAllowed.clear();

NotFailed = false;

}

}

}

}

162

FailOnEmpty(NotFailed); //If Propagator Fails, report failure

for (int i=0; i < tup size; i++)

{

if (grounded var table[i] != 1)

{

FailOnEmpty(*oz tup[i] -= oz grounded aux);

if (oz tup[i]->getSize() == 0)

NotFailed = false;

else

if (oz tup[i]->getSize() == 1)

{

int elem = oz tup[i]->getSingleElem();

RepeatedElemMap itr = RepeatedElemMap.find(elem);

int numrep = RepeatedElemMap itr->second + 1;

if (numrep <= maxallowed)

{

RepeatedElemMap.erase(RepeatedElemMap itr);

RepeatedElemMap.insert(pair<int,int>(elem, numrep));

if (numrep == maxallowed)

{

oz grounded aux += elem;

ReachedMaxAllowed.insert(elem);

}

}

else

NotFailed = false;

}

}

163

}

FailOnEmpty(NotFailed);

return (tupItr.leave() | maxallowedin.leave())

? OZ SLEEP : OZ ENTAILED;

failure:

delete [] grounded var table;

RepeatedElemMap.clear();

ReachedMaxAllowed.clear();

tupItr.fail();

maxallowedin.fail();

return OZ FAILED;

}

OZ BI define(fd MaxEightALU, 2, 0)

{

OZ EXPECTED TYPE(OZ EM VECT”,”OZ EM FD);

ExtendedExpect pe;

OZ EXPECT(pe, 0, expectVectorIntVarAny);

OZ EXPECT(pe, 1, expectIntVar);

return pe.impose(new MaxEightALU(OZ in(0), OZ in(1)));

}

OZ BI end

164

Appendix B

NAND Gate Count and Execution Latency of Benchmarks

The benchmarks used for evaluating the proposed methodology can also be imple-

mented as ASICs. This section provides a comparison between the sizes of these benchmarks

when implemented on an FPOA vs. an ASIC implementation. The model presented by

Kodavalla [117] is used for estimating the gate count for each of the benchmarks. Table B.1

presents the number of FPOA objects, the estimated NAND gate count for a functionally

equivalent implementation, and the execution latency of the benchmarks.

Table B.1: Number of objects, NAND gate count, and execution latency of benchmarks.
Id Benchmark Number of NAND gate Latency

objects count (clock cycles)
1 Discrete Wavelet Transform 105 104782 22
2 Modified Discrete Cosine 53 47562 11

Transform
3 Discrete Fourier Transform 48 32952 9
4 Sum of Absolute Transformed 144 18000 18

Difference
5 Matrix Multiplication 168 167512 10
6 MP3 Window Subband 163 167244 67
7 Finite Impulse Response filter 321 183840 64
8 Five Step Search 153 36250 41

165

Appendix C

Layout of Benchmarks

The layouts of all eight benchmarks are presented in this section. The number of

different types of operations in each benchmark are given in Table C.1. Figure C.1 shows

the legend used for representing the layouts. Figure C.2 illustrates the layout of the DWT

benchmark. The layouts of the MDCT benchmark and the DFT benchmark are shown

in figs. C.3 and C.4, respectively. Both these benchmarks show the effect of applying a

bounding box, which limits the placement to a small region. Figure C.5 presents the layout

of the SATD benchmark. The MM, MWS, and FIR benchmarks utilize all the 64 MACs

which is evident in their layouts shown in figs. C.6, C.7, and C.8, respectively. Figure C.9

presents the layout of the FSS benchmark.

Table C.1: Number of different types of operations in a benchmark.
Id Benchmark Number of Number of Number of

ALUs MACs RFs
1 Discrete Wavelet Transform 23 40 42
2 Modified Discrete Cosine 13 18 22

Transform
3 Discrete Fourier Transform 24 12 12
4 Sum of Absolute Transformed 144 0 0

Difference
5 Matrix Multiplication 32 64 72
6 MP3 Window Subband 35 64 64
7 Finite Impulse Response filter 192 64 65
8 Five Step Search 153 0 0

Fig. C.1: Legend for benchmark layouts.

166

Fig. C.2: Layout of DWT benchmark.

Fig. C.3: Layout of MDCT benchmark.

167

Fig. C.4: Layout of DFT benchmark.

Fig. C.5: Layout of SATD benchmark.

168

Fig. C.6: Layout of MM benchmark.

Fig. C.7: Layout of MWS benchmark.

169

Fig. C.8: Layout of FIR benchmark.

Fig. C.9: Layout of FSS benchmark.

170

Vita

Rohit Saraswat

Education

• Doctor of Philosophy in Electrical and Computer Engineering, Utah State Univer-

sity, Logan, Utah, 2010.

• Master of Science in Electrical and Computer Engineering, Utah State University,

Logan, Utah, 2006.

• Bachelor of Technology in Electronics and Communication Engineering, National

Institute of Technology, Calicut, India, 2002.

Published Journal Articles

• B. Eames, S.K. Neema, and R. Saraswat, “DesertFD: A Finite-Domain Constraint

Based Tool for Design Space Exploration”, Design Automation for Embedded

Systems, pp. 43-74, 2009.

Published Conference Papers

• R. Saraswat and B. Eames, “Finite Domain Constraints based Delay Aware Place-

ment Tool for FPOA”, in Proceedings of 4th International Conference on ReCon-

Figurable Computing and FPGAs, Cancun, pp. 145-150, Dec. 3-5, 2008.

• R. Saraswat and B. Eames, “On the Use of DesertFD to Generate Custom Archi-

tectures for H.264 Motion Estimation”, in Proceedings of 15th IEEE International

Conference on Engineering of Computer-Based Systems, Belfast, pp. 359-368, Mar

31- Apr. 4, 2008.

171

Awards and Achievements

• International Student Council service scholarship award, 2008, Utah State Univer-

sity.

• School of graduate studies honor roll, Fall 2005, Utah State University.

• Best poster award, Computer and Information Sciences session, at 85th annual

meeting of the AAASPD, 2004.

	A Finite Domain Constraint Approach for Placement and Routing of Coarse-Grained Reconfigurable Architectures
	Recommended Citation

	tmp.1312231684.pdf.QxsEv

