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ABSTRACT 

 
 

Diet, Density, and Distribution of the Introduced Greenhouse Frog, Eleutherodactylus  
 

planirostris, on the Island of Hawaii 
 
 

by 
 
 

Christina A. Olson, Master of Science 
 

Utah State University, 2011 
 
 

Major Professor: Dr. Karen H. Beard 
Department: Wildland Resouces 
 
 

The greenhouse frog, Eleutherodactylus planirostris, native to Cuba and the 

Bahamas, was recently introduced to Hawaii.  Studies from other invaded habitats 

suggest that it may impact Hawaiian ecosystems by consuming and potentially reducing 

endemic invertebrates.  However, there have been no studies on the greenhouse frog in 

Hawaii.  The first component of this study was to conduct a diet analysis. We conducted 

a stomach content analysis of 427 frogs from 10 study sites on the island of Hawaii.  At 

each site, we also collected invertebrates using two different sampling methods: leaf litter 

collection and sticky traps to characterize available resources.  Greenhouse frogs 

consumed predominantly leaf litter invertebrates.  Dominant prey items consisted of 

Hymenoptera: Formicidae (32.4%), Acari (19.2%), and Collembola (17.4%).  

Greenhouse frogs consumed more Formicidae than was measured in the environment.  At 

one study site, we estimated there were 12,500 frogs ha-1 using mark-recapture methods 

and greenhouse frogs consumed 129,000 invertebrates ha-1 night-1 at this site.  The 
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second component of this study was to determine the distribution of the greenhouse 

frog on the island of Hawaii, with a male breeding call presence/absence survey at 446 

points along the major road network.  The greenhouse frog was detected at 61 sites 

(14%), and found mostly in lowland areas, in habitats of native shrublands and forests, 

nonnative forests, agricultural lands, and pastures on the southwestern and eastern sides 

of the island.  We determined detection probabilities of the greenhouse frog and the 

invasive coqui frog, E. coqui.  Detection probability of the greenhouse frog was low on 

the first two surveys and improved by the third survey.  Detection probability of the coqui 

was higher than the greenhouse frog, but overall site occupancy estimates were similar 

for both species.  Because the greenhouse frog appears to be as widespread as the coqui, 

we recommend that research be conducted to investigate its impacts ecologically to 

determine whether control efforts should also be aimed at this species. 

(129 pages) 
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CHAPTER 1 
 

BIOLOGY AND IMPACTS OF PACIFIC ISLAND INVASIVE SPECIES:   
 

ELEUTHERODACTYLUS PLANIROSTRIS, THE GREENHOUSE FROG  
 

(ANURA: ELEUTHERODACTYLIDAE)1

 
 

 
BACKGROUND AND RESEARCH GOALS 

 
 

The greenhouse frog, Eleutherodactylus planirostris (Cope 1862) is native to 

Cuba and has established on five Hawaiian Islands including Hawaii, Kauai, Lanai, Maui, 

and Oahu (Kraus et al. 1999).  Due to the extreme isolation of the Hawaiian islands and 

lower diversity of native species, common vertebrate fauna, such as amphibians and 

reptiles, that are missing from the native assemblage of species, are successful and rapid 

invaders of Hawaiian habitats (Moulton and Pimm 1986, Kraus 2003).  Native 

invertebrates are vulnerable to nonnative amphibians and reptiles because they have 

evolved without these types of predators (Kraus 2003).  This is a critical concern in 

Hawaii because invertebrates comprise a large majority of the native fauna and are 

already at risk to threats of extinction (Eldredge and Miller 1995, Eldredge and Evenhuis 

2002).  

Despite reports that greenhouse frogs are widespread in Hawaii, there have been 

no studies examining their diet, density, or distribution.  This research is the first 

assessment of the greenhouse frog invasion in Hawaii and will help determine if future 

studies are necessary to investigate its direct and indirect impacts to Hawaiian 

ecosystems. 

                                                 
1 This chapter is co-authored with Karen H. Beard and William C. Pitt.  All sections except the Background 
and Research Goals section were written for an invited manuscript to be submitted to Pacific Science. 
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This study has two components and I conducted both aspects of the research on 

one island, the island of Hawaii:  

1) Diet and density study:  I conducted a diet study at sites across the island to 

determine which invertebrates the greenhouse frog consumes.  I conducted a 

mark-recapture study to estimate greenhouse frog densities at one site to 

estimate the number of invertebrates greenhouse frogs consume per ha in 

Hawaii.  

2) Distribution study:  I conducted a presence/absence study across the island to 

determine greenhouse frog and the invasive coqui frog (E. coqui) 

distributions.  Because of the cryptic nature of the greenhouse frog compared 

to the coqui, I used occupancy modeling to determine detection and 

occupancy probabilities of both species. 

 
LITERATURE REVIEW 

 
 

NAME 

 
Eleutherodactylus planirostris (Cope, 1862)  

Phylum Chordata, class Amphibia, order Anura, family Leptodactylidae  

Synonym: Hylodes planirostris Cope 1862, Lithodytes (= Eleutherodactylus) 

ricordii Cope,1875, Eleutherodactylus ricordii planirostris Shreve, 1945, 

Eleutherodactylus planirostris Schwartz, 1965, Eleutherodactylus planirostris 

planirostris Schwartz, 1965.   
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As the Latin meaning of the genus name implies, Eleutherodactylus (Dumeril & 

Bibron) frogs have individual (non-webbed) fingers and toes.  The name planirostris, 

comes from the Latin “rostrum” (snout) and “planum” (level, flat), in reference to the 

frog’s flattened snout.  There are 185 species in the genus, distributed throughout the 

West Indies, the southern United States, Mexico, Belize, and Guatemala (Hedges et al. 

2008). Recently, it has been suggested that E. planirostris should be classified in the 

subgenus Euhyas (Fitzinger), because of differences in liver shape, no external vocal sac, 

and more terrestrial behavior than the arboreal subgenus Eleutherodactylus (Hedges et al. 

2008).  

It is commonly known as the greenhouse frog because it is often found in plant 

nurseries, gardens, and greenhouses (Schwartz and Henderson 1991).  Previously, the 

greenhouse frog was also commonly known as the Ricord’s frog, cricket toad, Bahaman 

tree frog, and pink-snouted frog (Wright and Wright 1949). 

 
DESCRIPTION AND ACCOUNT OF VARIATION 

 
 
Species Description 

A small species of Eleutherodactylus in its native Cuba, the greenhouse frog is 

sexually dimorphic with gravid females reaching a maximum snout-vent length (SVL) of 

28 mm and reproductive males a maximum of 21 mm (Schwartz 1974).  In Florida, size 

is somewhat smaller, with a maximum female SVL of 26.5 mm and a maximum male 

SVL of 17.5 mm (Meshaka et al. 2004).  In Jamaica, the mean SVL (n = 83) measured 

from two different sites was 18 mm.  Individuals measured from 10 study sites on the 

island of Hawaii (Chapter 2), were similar to Cuba, maximum female SVL was 27 mm 
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(mean = 22, n = 176) and maximum male SVL was 21 mm (mean = 17, n = 100), with 

females 30 to 40 % larger than males across sites. 

The greenhouse frog has a flattened snout, long and slender toes, and truncated 

terminal disks (Conant and Collins 1991).  There are two basic color phases, a mottled 

tan and brown phase, and a mottled tan and brown phase with two yellow dorso-lateral 

stripes extending from the eye along the length of the body (Lynn 1940).  Dorsal coloring 

ranges from a spectrum of light tan to dark reddish brown (Goin 1947, Ashton and 

Ashton 1988) and the venter is an off-white to gray (Bartlett and Bartlett 2006).   

The mottled pattern is recessive to the dominant striped pattern, and in Cuba, 

there is a 3:1 ratio of striped to mottled individuals (Goin 1947).  A population from 

Gainesville, Florida (USA) exhibited a 1:1 ratio (Goin 1947).  Goin (1947) hypothesized 

this could be a bottleneck effect from the initial founding population, but it may also be 

an example of extreme selective pressure depending on habitat type (Woolbright and 

Stewart 2008).   

The dominant pattern observed in specimens collected in Hawaii (Chapter 2, 

Bishop Museum, Honolulu, Hawaii, USA) is mottled.  All 427 individuals collected 

across 10 sites on the island of Hawaii were mottled (Chapter 2).  The only records of 

striped individuals are from Oahu, with 12 (14%) striped individuals out of 85 specimens 

(0.16:1 ratio) from five localities (Fred Kraus, pers. comm.).  

 
Distinguishing Features 

The Eleutherodactylus genus comprises 90% of the native frog species in Cuba, 

with a total of 56 species (AmphibiaWeb 2010).  The greenhouse frog was originally 
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identified as E. ricordii in its native range and was split when the two species were 

found syntopic in eastern Cuba (Schwartz 1974).  Eleutherodactylus ricordii are larger 

than greenhouse frogs, with a maximum female SVL of 40 mm (Schwartz 1965).  Both 

E. goini and E. casparii in the native range were at one time but are no longer considered 

subspecies of E. planirostris (Schwartz 1974). Eleutherodactylus goini is larger than 

greenhouse frogs (Schwartz 1974) and E. casparii is distinguished from greenhouse frogs 

by black bands on the sides of the body behind the front limbs and a greenish tint to the 

dorsal coloring (Díaz and Cádiz 2008).  Other similar species in its native range include 

E. tonyi and E. simulans, which are almost identical to the greenhouse frog, but have very 

different male breeding calls (Díaz and Cádiz 2008).   

Of the frogs that have been introduced to Hawaii, the greenhouse frog most 

resembles E. coqui, the Puerto Rican coqui frog.  The distribution, ecology, and impacts 

of the coqui are better studied than that of the greenhouse frog both in its native range 

and Hawaii.  Features that distinguish this species from the greenhouse frog are its light 

tan color, golden eyes, wider snout, and large toe pads (Beard et al. 2009).  The coqui is 

also larger than the greenhouse frog with a maximum SVL for males of 39 mm and 

females 49 mm in Hawaii (Beard et al. 2009).  Most notably, the male breeding call is 

different.  The greenhouse frog produces short, irregular soft chirps (Schwartz 1974), 

which are often mistaken for a cricket or bird, while the coqui produces a loud, two note 

“ko” and a “kee” call that can reach decibels up to 80–90 dBA at 0.5 m (Beard and Pitt 

2005).   

Combinations of physical traits important for identifying the greenhouse frog 

include: 
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(1) Size in Hawaii: SVL for reproductive males: 14.2 to 21.2 mm; gravid females: 

17.2 to 27.3 mm (Chapter 2). 

(2) Body color: venter is white to light gray and dorsal is tan-pink to dark reddish-

brown (Ashton and Ashton 1988, Bartlett and Bartlett 2006).  There is a dark 

band from top of tympanum to arm insertion (Wright and Wright 1949). 

(3) Body shape: head as broad as body, snout truncated and extending slightly 

beyond the lower jaw (Wright and Wright 1949).   

(4) Eye color: black with a red iris (Wright and Wright 1949). 

(5) Foot features: toes are slender, lack webbing and with small, terminal disks 

(Wright and Wright 1949). 

(6) Tympanum: White or coral red, approximately half the size of the eye (Wright 

and Wright 1949). 

 
ECONOMIC IMPORTANCE AND ENVIRONMENTAL IMPACTS 

 
Detrimental aspects 

Greenhouse frogs and their eggs frequently move unintentionally with plants or 

landscape materials, and therefore may affect industries involved with this movement. 

For example, the floriculture industry in Hawaii has been negatively impacted.  Flowers 

and nursery product sales are the largest single agricultural commodity for the state and 

account for 15% of Hawaii’s $621.6 million agricultural output (HASS 2005).  Inter-

island and international plant shipments are inspected and treated for frogs.  This 

treatment increases shipment costs and may reduce trade.  Plant shipments with infested 

frogs also may be refused port entry and destroyed (Raloff 2003).  There is no 
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information available on the amount nursery owners spend to control greenhouse frogs, 

but the inability to distinguish between the coqui and the greenhouse frog may lead to 

costs to treat greenhouse frog infestations.    

County, state, and federal government have also incurred costs to control coquis. 

Costs for public agencies exceeded $4 million in 2006, but have declined in recent years. 

For example, the State of Hawaii Legislature spent $2 million for frog control in 2006, 

but only $800,000 in 2007, $400,000 in 2008, and $100,000 in 2009 (Anonymous 2010). 

Funds have not specifically been allocated to target greenhouse frogs; however, 

populations are probably controlled at sites that are targeted for coqui eradication and 

control.  

The only negative economic impacts not directly associated with E. coqui are the 

reports that large populations can be a nuisance.  Several resorts in Hawaii attempt to 

manage greenhouse frogs because they are found in swimming pools and irrigation boxes 

(Will Pitt, unpubl. data).  

 
Beneficial aspects 

In general, there is little concern over the spread of greenhouse frogs (Kraus and 

Campbell 2002).  Because of its quiet call, Hawaiian residents often do not consider the 

greenhouse frog a nuisance, and some have expressed preferences for the greenhouse 

frog over the coqui (Christina Olson, pers. comm.).  Some residents find the frogs or their 

calls aesthetically pleasing and frogs have been intentionally moved to gardens or homes, 

although unintentional spread is much more common (Christy et al. 2007b).  This 

ambivalence toward greenhouse frog infestations may lead to their further spread to new 
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areas.  For example, both coqui and the greenhouse frog were introduced to Guam in 

2003 (Christy et al. 2007b).  The coqui was quickly eradicated but greenhouse frog 

populations became established and now have spread throughout the island with little 

alarm (David Vice, pers. comm.). 

In addition, some individuals believe that all frogs are beneficial and can control 

harmful invertebrates, such as mosquitoes and termites (Fullington 2001, Singer 2001).  

However diet studies on both greenhouse frogs and coquis in Hawaii indicate that these 

invertebrates do not comprise a significant portion of their diet (Chapter 2, Beard 2007). 

 
Regulatory Aspects 

Most of the rules and regulations concerning frog movement around the Pacific 

basin stem from concerns over the spread of the coqui.  In Hawaii, all frogs are listed as 

State Injurious Species and it is illegal to transport or release frogs into the wild.  The 

requirements for treating plants prior to shipment are required primarily to combat coqui 

frogs but the presence of any frogs in the shipment would restrict their movement 

(Hawai‘i Department of Agriculture 150A-2, Hawai‘i Revised Statutes).  Plant shipment 

to Guam, the continental United States, and other countries require a phytosanitary 

certificate that certify shipments are pest free but this often does little to prevent 

greenhouse frogs or their eggs because they can easily go undetected in shipments.  The 

lack of restriction and the difficulty in detection may contribute to the continued spread 

of greenhouse frogs throughout the Pacific basin. 
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Environmental Impacts 

Introduced Caribbean Eleutherodactylus species were identified as potential 

threats to Hawaiian ecosystems when their introduction and establishment was first 

recognized (Kraus et al. 1999).  Because Eleutherodactylus are insectivores, it was 

hypothesized that the most likely impacts would be to invertebrate communities (Kraus et 

al. 1999).   

Greenhouse frog diets were determined on the island of Hawaii, and they are 

estimated to be consuming 129,000 invertebrates ha-1 night-1 at some sites (Chapter 2).  

The greenhouse frog was found to predominantly consume leaf litter invertebrates 

(Chapter 2).  Primary prey included ants, mites, and springtails, which comprised 32%, 

19%, and 17% of the total prey consumed, respectively (Chapter 2).  All ants are 

nonnative to Hawaii, but both mite and springtail groups contain endemic species.  

Stomach contents were not identified to species, and therefore it is unknown if 

greenhouse frogs are consuming mites and springtails native to Hawaii.  They consume 

other groups of prey that contain native species in the following proportions: spiders 

(3%), beetles (2%), flies (2%), and booklice (2%) (Chapter 2).   

Overall, 42% of the species identified in the diet were nonnative to Hawaii, 

including ants, isopods (8%) and amphipods (1%) (Chapter 2).  There may be some 

positive environmental impacts as a result of the introduction.  For example, species of 

ants identified in the diet included the big-headed ant (Pheidole megacephala), the 

Argentine ant (Linepithema humile), and the yellow crazy ant (Anoplolepis gracilipes).  

Because research indicates that these species have negative effects on native invertebrates 
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(Krushelnycky et al. 2005), greenhouse frogs may indirectly benefit invertebrates if 

they reduce ant populations. 

It was also hypothesized that the invasive brown treesnake, Boiga irregularis, 

would prey on introduced greenhouse frogs on Guam (Hurley 2003). Since its 

introduction greenhouse frogs have been found in brown treesnake stomach contents 

(Shane Siers, pers. comm.). It is possible that greenhouse frogs bolster populations of the 

brown treesnake by providing an abundant food source.  There is potential for future 

introductions of the brown treesnake to Hawaii (Rodda and Savidge 2007).  If 

established, the brown treesnake may use Eleutherodactylus frogs as a prey source, thus 

bolstering populations of brown treesnake and facilitating its spread throughout the 

Hawaiian islands (Beard and Pitt 2005).  

Other hypotheses regarding potential environmental impacts include 

Eleutherodactylus competing with other insectivores for prey, such as endemic birds or 

the endemic Hawaiian hoary bat (Kraus et al. 1999, Beard and Pitt 2005).  However, no 

data has been collected to support or refute these hypotheses.  In addition, it has been 

proposed that Eleutherodactylus may bolster introduced mammal populations, which are 

known bird predators.  Beard and Pitt (2006) conducted diet analysis on mongoose and 

rat populations on the eastern side of the island of Hawaii, and found that 

Eleutherodactylus made up a small or negligible part of these small mammal diets.   

Additional impacts may result from the indirect effects of predation.  For 

example, many of the invertebrates that the greenhouse frog consumes play an important 

role in ecosystem processes such as herbivory and decomposition of plant material.  In 

Hawaii, Sin et al. (2008) found that herbivory rates were lower and plant growth and leaf 
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litter decomposition rates were higher in sites with the nonnative E. coqui than 

without.  These results also suggested that E. coqui has the potential to increase nutrient 

cycling rates in Hawaii, which may confer a competitive advantage to invasive plants in 

an ecosystem where native species have evolved under nutrient-poor conditions.  Similar 

impacts may be possible at sites invaded by the greenhouse frog. 

 
GEOGRAPHIC DISTRIBUTION 

 
Native to Cuba and the Bahamas, the greenhouse frog  is found island-wide in 

Cuba, except in the highest elevations (Cuba maximum elevation = 1,100 m) with a 

maximum elevation of 720 m (Díaz and Cádiz 2008).  In the Bahamas, it is found on 

Little Bahama Bank, South Bimini, New Providence, and possibly Eleuthera (Schwartz 

and Henderson 1991).   

The first record in Florida was from the Florida Keys and isolated populations 

were later found in Miami (1899), Gainesville (1933), Tampa (1938), and Jacksonville 

(1943).  These populations are thought to be established from other Florida populations, 

not from a Cuban source (Goin 1947).  It was first noted that the greenhouse frog was 

becoming widespread and abundant in Florida by the 1920s (Barbour 1920) and at one 

point it was noted as the most common frog in the Florida Keys (Carr 1940).  The 

founding population may have arrived from the West Indies through natural means on 

driftwood (Meshaka et al. 2004), but probably arrived through the cargo or nursery trade 

(Wilson and Porras 1983).  The peninsular populations were initially first transported 

through the horticultural trade (Goin 1947), but later records indicate that they spread to 
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new areas, including undisturbed natural habitats, through natural spread from existing 

populations (Carr 1940).    

The first record of the greenhouse frog in Louisiana was from a city park in New 

Orleans in 1975 and its range has expanded to 10 parishes (i.e. counties) in the southern 

part of the state (Meshaka et al. 2009).  It was first recorded in Savannah, Georgia in 

1998, and is now found in five southern counties (Jensen et al. 2008).  Greenhouse frogs 

have been in Gulfport, Mississippi since 2003 (Dinsmore 2004) and in Baldwin County, 

Alabama since 1982 (Carey 1982).  There is a report of a large, dense population in a 

tropical building at the Tulsa Zoo in Oklahoma, but it is thought that the species is 

confined indoors given the cold temperatures in winter (Somma 2010). 

Greenhouse frogs were first reported in Jamaica in the 1930s, found around major 

ports of Montego Bay and Kingston (Stewart 1977), indicating a possible spread via the 

cargo industry.  It is now found in all major regions of Jamaica except Hellshire Hills and 

the Portland Ridge Peninsula on the southern side of the island (Hedges 1999).  There are 

also reports of introduced greenhouse frogs on Granada (Kraus et al. 1999), the Caicos 

Islands, and the Cayman Islands (Schwartz and Henderson 1991).  According to Lever 

(2003), it is possible that the greenhouse frog is native to the Cayman Islands, however, it 

is found only on the islands of Grand Cayman and Cayman Brac (Seidel and Franz 1994).  

There is one report of the greenhouse frog from Veracruz, Mexico (Schwartz 1974). 

 The first record of the greenhouse frog to the Pacific basin is from the island of 

Hawaii in 1994.  It is thought that the greenhouse frog arrived to Hawaii via nursery 

plants (Kraus et al. 1999) possibly from Florida.  This is assumed because the greenhouse 

frog first appeared in nurseries in Hawaii, and it had relatively stable populations in 
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nurseries in Florida around the time of introduction.  It was particularly abundant in 

nurseries raising Dracaena species (Kraus et al. 1999).  

 The current distribution of the greenhouse frog is relatively unknown in Hawaii.  It 

is thought to be widespread on the island of Hawaii (Will Pitt, pers. comm.), Maui (Adam 

Radford, pers. comm.), Oahu (Katie Swift, pers. comm.) and Kauai (Keren Gunderson, 

pers. comm.), and there are records from Lanai as well (Figure 1.1).  A systematic 

presence/absence study sampled every 2 km on the major network on the island of 

Hawaii in 2009 (Chapter 3) found males calling at 61 (14%) of the 446 points sampled.  

Occupancy modeling indicated that detection probabilities are low for the greenhouse 

frog, but by repeated visits to points, detection improved.  Results from this survey are 

shown in Chapter 3 (Figure 3.1).     

The greenhouse frog was introduced to Guam from Hawaii via the nursery trade 

in 2003 (Christy et al. 2007b).  Frogs were first found in four localities: Tumon, 

Tamuning, Mangilao, and Manengon (Christy et al. 2007a), and have rapidly spread  to 

the entire island (Elijah Wostl, pers. comm.). 

It may be possible to determine genetically if the Pacific greenhouse frogs came 

from its native range or some area of its introduced range such as Florida, if the founder 

populations still exist.  Color patterns have also been used to investigate the spread of the 

coqui frog species throughout the islands of Hawaii (O'Neill and Beard 2010), which may 

be possible with the greenhouse frog as well.  
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HABITAT  

 
Climatic requirements and limitations 

There have been few studies on the climatic requirements of the greenhouse frog.  

It has mostly invaded habitats that have similar overlap in annual mean temperature and 

maximum temperature in warmest month with its native range (Bomford et al. 2009, 

Rödder and Lötters 2010).  However, it is found in areas with seasonal daily minimum 

temperatures as low as 4-8°C (Wray and Owen 1999, Tuberville et al. 2005) in the 

southeastern United States.  One study suggests that in Hawaii, greenhouse frogs may be 

limited to areas with annual temperatures > 20°C; however, the results of this study may  

reflect its recent introduction, and the species may still be spreading to areas with cooler 

temperatures (Rödder and Lötters 2010). 

The greenhouse frog is not found on the highest peaks in Cuba of 1,100 m (Díaz 

and Cádiz 2008) or in Jamaica (maximum elevation = 2,200 m) where greenhouse frogs 

are found only from sea level to 600 m (Stewart and Martin 1980). The USA continental 

range is limited to the southeastern coastal lowlands with an elevation < 200 m.  In 

Hawaii, greenhouse frogs were detected at an elevation of 1,115 m in 2009 (maximum  

(Chapter 3).  There are habitats in Hawaii above 1,115 m that may be suitable in terms of 

forest cover, although in addition to cooling temperatures, precipitation also starts to 

decline at higher elevations (Price 1983), so these habitats may not be suitable.  

 
Ecosystem and community types invaded 

In its native range, the greenhouse frog is common and well adapted to a wide 

diversity of habitats, including wet and dry forests, coastal and mountainous areas, rivers  
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FIGURE 1.1.  Map of recorded locations of Eleutherodactylus planirostris populations 
on the islands of a) Hawaii, b) Kauai, c) Lanai, d) Maui, and e) Oahu (Bishop Museum 
records, Maui Invasive Species Council, Oahu Invasive Species Council, Emily 
Kalnicky). 

b) 

c) d) 

e) 

a) 
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and stream beds, caves, rocky outcrops, gardens and interior houses (Garrido and 

Schwartz 1968, Díaz and Cádiz 2008).  In Florida, the greenhouse frog is common in wet 

and dry forests, open grasslands, coastal areas, and scrub habitats (Enge 1997, Meshaka 

et al. 2004).  In Jamaica, it is most often found in drier habitats such as open grasslands 

and scrub, as well as lawns, pastures, and roadsides (Stewart and Martin 1980).   

 Most populations in Hawaii are found in lowland (0–500 m) habitats.  Populations 

have become established along roadsides, and in macadamia nut orchards, nurseries, 

pastures, residential gardens, resort areas, state forests, and state parks (Chapter 2, 

Chapter 3).  Most of the invaded habitats, including the lowland state forests and parks, 

are dominated by nonnative plants, however, populations have also been found in native 

shrublands and forests that are dominated by the endemic O'hia tree, Metrosideros 

polymorpha (Chapter 3).  In Guam, the greenhouse frog has invaded both urbanized and 

forested areas, including residential gardens and secondary scrub-forests (Bjorn Lardner, 

pers. comm.).  Most of these habitats are also invaded by nonnative vegetation. 

 
Habitat resource requirements and limitations 

In its native range, the greenhouse frog is often found in the leaf litter, hidden 

under rocks, and in rock crevices at the mouth of caves (Garrido and Schwartz 1968).   It 

is common in open grassy areas and will use coconut husk piles as daytime retreat sites in 

Jamaica (Stewart and Martin 1980).  In Florida, it has been described as semi-fossorial, 

often burrowing into moist soil (Goin 1947, Meshaka et al. 2004) and found under rocks, 

fallen branches, and leaf litter (Goin 1947, Schwartz and Henderson 1991).  It has also 

been found in low growing bromeliads in southern Florida (Neill 1951) and is an 
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inhabitant of gopher tortoise burrows (Lips 1991).  It is predominantly terrestrial and 

fossorial in Hawaii, found in the leaf litter in natural areas and also commonly found 

under man-made objects (i.e. flower pots, water meters, and tarps), rocks, and inside lava 

tubes (Chapter 2). 

Although there are numerous descriptions of its habitat, there have been no 

studies investigating factors that limit the greenhouse frog.  The greenhouse frog is 

typically found on the forest floor (Chapter 2) and up to 2 m off of the ground (Duellman 

and Schwartz 1958, Stewart and Martin 1980).  The use of daytime retreat sites on or 

below the forest floor has been documented in Hawaii, Florida, and Jamaica (Goin 1947, 

Stewart 1977, Chapter 2), which may indicate that similar to E. coqui, the greenhouse 

frog may be limited by the amount of available retreat sites (Stewart and Pough 1983, 

Woolbright 1996).  However, this might not limit either species in Hawaii given its rocky 

terrain, and their use of rock crevices as retreat sites (Stewart and Woolbright 1996, Díaz 

and Cádiz 2008).   

Because it has also mostly invaded areas with similar overlap of mean 

precipitation in the wettest month (Rödder and Lötters 2010), and overcast or rainy sky 

conditions are important factors in breeding call activity (Chapter 3), precipitation may 

be an important factor limiting the greenhouse frog distribution.  Humidity is an 

important variable for egg development and hatching success (Goin 1947), although there 

is some indication that the greenhouse frog has a higher tolerance for drier conditions 

than other Eleutherodactylus species (Pough et al. 1977).  Moisture and rainfall may also 

influence greenhouse frog behavior.  In Cuba and in Florida, where there is a distinct wet 
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and dry season, frogs are much more active in terms of breeding during the wet season 

(Meshaka and Layne 2005, Díaz and Cádiz 2008).   

 
PHYSIOLOGY AND GROWTH 

 
Based on a study of Florida greenhouse frogs, minimum body size for breeding 

males is 15.0 mm SVL and 19.5 mm SVL and reach sexual maturity after one year (Goin 

1947).  Eggs are laid individually in or under moist soil, or under fallen leaves or rocks 

and unlike other members of the Eleutherodactylus genus, there is no guarding of the 

eggs by either sex.  Clutch size ranges from 3-26 eggs (n = 104 clutches), with a mean of 

16 eggs per clutch (Goin 1947). 

Like other Eleutherodactylus, fertilized eggs of the greenhouse frog undergo 

direct development, meaning there is no free-living tadpole phase and complete 

metamorphosis occurs within the egg with young hatching as tiny froglets (Goin 1947).  

Eggs consist of three layers outside the vitelline membrane and are 5-6 mm in diameter at 

the time of hatching (Goin 1947).  Eggs require 100% humidity to hatch and can be 

submerged in water for period of up to 25 days and still remain viable (Goin 1947).  Eggs 

hatch 13-20 days after deposition and newly emerged hatchling SVL are 4.3-5.7 mm 

(Goin 1947, Lazell 1989).  Hatchlings have a small-spined tooth that is used to rupture 

the egg, and a reduced tail, both which detach soon after hatching (Goin 1947).  Newly 

emerged hatchlings have the same color patterning as adults.  There have been no in 

depth studies on growth rates of the greenhouse frog, but one frog in captivity gained four 

times its original body mass and measured 6.9 mm SVL 30 days after hatching (Goin 

1947).   
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 The greenhouse frog has a high tolerance for warm and dry conditions 

compared to other Eleutherodactylus species.  One study from Jamaica conducted on two 

species of native frogs and two species of introduced frogs (including the greenhouse 

frog) indicated that both introduced species acclimated to and survived longer in higher 

temperatures than the native species (Pough et al. 1977).  The preferred temperature of 

the greenhouse frog was 27.3 ± 0.66°C with its critical maximum temperature ranging 

from 36.4 to 41.8°C (acclimated to 20°C: mean = 38.7 ± 0.38°C, range = 36.4–40.0 °C; 

acclimated to 30°C: mean = 40.5 ± 0.35°C, range = 39.0–41.8°C).  Critical water loss 

was at 34.9% ± 0.004 of initial body weight in 40-50% relative humidity, significantly 

higher than the critical water loss of the native species (24-27% of initial body weight).    

 
REPRODUCTION AND POPULATION DYNAMICS 

 
The breeding season in Cuba is April through January (Meshaka and Layne 

2005).  In Florida, breeding season is April to early September, with a peak during the 

mid-summer months (Goin 1947, Meshaka and Layne 2005), but there is some 

fluctuation that coincides with the onset of the rainy season.  It is unclear if the 

greenhouse frog has a distinct breeding season in Hawaii but they call May through July 

on the island of Hawaii.   

Eleutherodactylus species reach a calling peak at night between 1830-0500, but 

call frequency and duration vary by species (Drewry and Rand 1983).  There is no 

specific information available on the calling times for the greenhouse frog in either its 

native or introduced habitats (Goin 1947).  Meshaka and Layne (2005) found that calling 

at one site in central Florida most frequently took place when air temperature was 
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between 23-30°C and relative humidity ranged between 84-100 RH.  Males will call 

from the ground or on vegetation under 1 m in height (Díaz and Cádiz 2008).  In Hawaii, 

males call from under debris and stone fences, as well as from subterranean lava tubes 

(Chapter 2). 

Greenhouse frog density was estimated in a macadamia nut orchard on the eastern 

side of the island of Hawaii in June, 2009 using mark-recapture techniques of adult frogs 

in a 50 x 50 m plot (Chapter 2).  Over seven nights, 651 individuals were captured, with 

an equal initial capture and recapture rate of 0.12 (Chapter 2).  Adult densities at this site 

were estimated at 4,500 frogs ha-1 with a total population density of 12,500 frogs ha-1 

(Chapter 2).   

In a removal study of coconut husk piles from four study sites in northern Jamaica 

of two native species and two introduced species, the highest density site was estimated 

to have 4,635 frogs ha-1 of all four species of frogs (Stewart and Martin 1980).  Overall 

abundance of the husk piles was higher in the dry season than the wet season for all 

species.  Greenhouse frog abundance was lower in husk piles dominated by the native 

frog species, and higher in the coastal sites than the upland sites.        

Meshaka and Layne (2005) conducted a long-term abundance study in two 

Florida fire-adapted, scrub habitats using mark-recapture techniques in 0.16 ha grid with 

pit-fall traps and drift fence arrays from 1984-1988 and 1994-1996.  A total of 211 

individuals were captured over the duration of the study.  They found an increase in 

captures of adults and juveniles from September to December, possibly indicating a 

recruitment of juveniles.  Survivorship of 17 unsexed individuals was mean of 1.9 ± 2.3 

months (range: 0.03-6.6).  



 21 
RESPONSE TO MANAGEMENT 

 
Chemical control 

Chemical control has been used in Hawaii to effectively control 

Eleutherodactylus frog populations over large areas (Tuttle et al. 2008).  Most options 

have been developed to control coqui frog populations, but the chemicals used are 

equally effective against greenhouse frogs.  Currently, only a citric acid solution can be 

used legally to control Eleutherodactylus frogs in Hawaii, although several other 

chemicals have been identified as effective frog toxicants (Campbell 2001, Pitt and Sin 

2004b, Pitt and Doratt 2005).  Hydrated lime was registered as a frog toxicant from 2005-

2008 but the registration is no longer active.  Citric acid is exempt from the requirements 

of FIFRA by regulation (40 CFR Section 152.25) because it is classified as a minimum 

risk pesticide.  A 16% citric acid solution was 100% effective for greenhouse frogs in the 

laboratory, and lower concentrations were also found to be effective (Pitt and Sin 2004a).   

Few control efforts have been directed exclusively at greenhouse frogs so field 

efficacy is uncommon.  In 2003, we evaluated the ability to control greenhouse frogs at 

five Kauai resorts over a 5 month period (Will Pitt, unpubl. data) because resort guests 

were complaining about finding frogs in swimming pools.  Greenhouse frogs are often 

found at resorts with arid landscapes in irrigation boxes used for landscaping watering.  

We evaluated the immediate and the long term effects of control on frog abundance in 

irrigation boxes.  A 16% citric acid solution was applied bimonthly to irrigation boxes 

that were infested with greenhouse frogs.  As expected, frogs reinvaded irrigation boxes 

because the citric acid application does not have long term residual effects on frogs (Pitt 
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and Sin 2004a).  The number of irrigation boxes at each resort varied from 33−411 ( = 

185).  The application removed all frogs from 91% of irrigation boxes within 24 hours. 

After 5 months of treatments, 67% fewer irrigation boxes were infested with frogs. 

 
Mechanical Control 

Mechanical control techniques have been evaluated for coqui frogs.  Most would 

likely have similar effects on greenhouse frogs.  Mechanical control methods including 

hot water treatments, native habitat management, and hand capture are directed toward 

nursery operations, quarantine areas, or residential areas. 

 Hot water spray or vapor treatments are commonly used to treat plant shipments 

for a variety of pests. Hot water sprayed on plants at either 45 ºC for 1 minute or 39 ºC 

for 5 minutes was effective treatment against adult coqui frogs and similar results would 

be expected with greenhouse frogs, considering the two species have similar thermal 

tolerances (Pough et al. 1977, Hara et al. 2010).  Native habitat management may be 

effective in reducing the abundance of frogs and reduce the likelihood that frogs will 

move into an area.  Hand capture is effective when only a few adult frogs are present but 

would be ineffective for large populations (Beard et al. 2008).  Traps and barriers 

developed for coqui frogs have not been tested to determine their effectiveness on 

greenhouse frogs, although barriers may be equally effective against both species.  

 
NATURAL ENEMIES 

 
 In its Caribbean range, three racer snakes (Cubophis canterigerus on Cuba, C. 

caymanus on Grand Cayman, and C. vudii in the Bahamas) and the Cuban treefrog 
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(Osteopilus septentrionalis) are predators of greenhouse frogs (Meshaka 1996, 

Henderson and Powell 2009).  The ringneck snake (Diadophis punctatus), a small (8 – 38 

cm) fossorial species found in humid and moist habitats, is also a predator of greenhouse 

frogs in Florida (Wilson and Porras 1983, Lazell 1989).  In Guam the invasive brown tree 

snake, Boiga irregularis, is known to predate greenhouse frogs (Shane Siers, pers. 

comm.).  Other predators of Eleutherodactylus species in the Caribbean include 

invertebrates, frogs, lizards, snakes, birds, and mammals (Henderson and Powell 1999).  

There are no records of Hawaiian species predating on greenhouse frogs.  

 Documented parasites in its native Cuba include nematodes, Spiruridae and 

Oswaldocruzia lenteixeirai (Henderson and Powell 2009).  Two studies indicate that 

introduced amphibian and reptile species in Hawaii have lower parasite diversities in 

their introduced range versus their native range, the coqui (Marr et al. 2008) and the 

brown anole, Anolis sagrei (Goldberg and Bursey 2000).  One parasite found in the 

Puerto Rican coqui population but not the Hawaiian coqui population, Rhabdias elegans, 

was found to reduce initial locomotory burst performance of the coqui (Marr et al. 2010).    

 
PROGNOSIS 

 
Greenhouse frog populations are widespread in Hawaii and Guam.  Because 

control efforts on Hawaii are targeted toward coqui eradication, and there have been no 

efforts to control the frog on Guam, it is unlikely they will be controlled with current 

methods and available monetary resources.  The best method to control greenhouse frog 

is to reduce the spread of frogs to new areas with good management techniques, such as 
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inspecting and treating cargo and plant materials, using barriers, and not transporting 

material that is known to be infested.  
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CHAPTER 2 

DIET OF THE INTRODUCED GREENHOUSE FROG IN HAWAII2

 

 

ABSTRACT 

 
This research is motivated by the recent introduction of the Cuban terrestrial greenhouse 

frog, Eleutherodactylus planirostris, to Hawaii. Studies from other invaded habitats 

suggest that greenhouse frogs may impact Hawaiian ecosystems by consuming and 

potentially reducing Hawaiian endemic invertebrates. However, until now, there has been 

no research investigating its diet in Hawaii. To determine its potential impacts on native 

invertebrates, we conducted a stomach content analysis of 427 frogs from 10 study sites 

on the island of Hawaii. At each site, we also collected invertebrates with two sampling 

methods, leaf litter collection and sticky traps, to determine if diets were representative of 

the available resources. Dominant prey items consisted of Hymenoptera: Formicidae 

(32.4%), Acari (19.2%), and Collembola (17.4%). Nonnative invertebrate orders 

comprised 43.2% of their diet (Amphipoda, Isopoda, and Hymenoptera: Formicidae). 

Invertebrate orders containing endemic species most threatened by the invasion include 

Acari (mites), Araneae (spiders), Collembola (springtails), and Psocoptera (booklice), 

which each comprised greater than 2% of their diet. Greenhouse frogs consumed 

predominantly leaf litter invertebrates and selected more Formicidae than was available 

in the environment. A total population of 12,500 frogs ha-1 was estimated at a single 

study site. With these high densities and number of prey consumed, the greenhouse frog 

may consume 129,000 invertebrates ha-1 night-1 at some sites. This research highlights the 

                                                 
2 This chapter is co-authored with Karen H. Beard and written for the journal Copeia. 
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need for an understanding of the indirect effects of greenhouse frog predation on 

invertebrates in Hawaii.   

 
INTRODUCTION 

 
The greenhouse frog (Eleutherodactylus planirostris) is a nocturnal, terrestrial 

species native to Cuba and the Bahamas that has invaded areas of the southeastern United 

States, Jamaica, and Guam, and five Hawaiian Islands: Hawaii, Kauai, Lanai. Maui, and 

Oahu  (Kraus et al., 1999; Christy et al., 2007). It was first recorded in Hawaii in 1994, 

arriving through the nursery trade (Kraus et al., 1999), and it is thought to have spread 

rapidly between and across the islands through the sale and movement of infested nursery 

plants, in part because it has direct development (Kraus and Campbell, 2002). In general, 

the invasion is not well studied, possibly because the species is not observed often in 

invaded habitats, due to its small size [maximum snout-vent-length (SVL) in Cuba of 27 

mm (Schwartz, 1974)] and inconspicuous breeding call (Kraus and Campbell, 2002).  

However, the greenhouse frog is thought to be widespread in Hawaii, including in 

natural areas (Campbell and Kraus, 2002), and amassing large undetected populations 

(Raloff, 2003). Because the greenhouse frog is an insectivore (Goin, 1947; Stewart, 

1977), the most obvious potential impact of the invasion on Hawaiian ecosystems is the 

consumption and possible reduction of invertebrates. Because it is a predominantly 

terrestrial and semi-fossorial species (Meshaka et al., 2004), we expect that the 

greenhouse frog primarily forages in the leaf litter. Previous research in other areas where 

it has been introduced suggests it consumes Coleoptera, Hymenoptera (mainly 

Formicidae), Blattodea, and Arachnida (mainly Araneae) (Goin, 1947; Stewart, 1977). 
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However, these findings may reflect prey availability and not preferences. Thus, it is 

difficult to extrapolate these findings to Hawaii, where prey availability, foraging 

location, and microhabitat usage may be different.  

The impact of greenhouse frogs on invertebrates is likely to be greater where they 

attain high densities, and we might expect this to be the case in Hawaii because there are 

few amphibian predators (Woolbright et al., 2006). For example, the nonnative, Puerto 

Rican coqui (E. coqui) can attain densities three times higher in Hawaii than in its native 

range (Woolbright et al., 2006; Beard et al., 2008). It can also consume an estimated 

690,000 invertebrates ha-1 in one night (Beard, 2007; Beard et al., 2008), and has been 

documented to reduce invertebrate abundances (Sin et al., 2008, Choi, unpubl. data). 

Even though both the greenhouse frog and coqui have been documented to have arrived  

around the same time to Hawaii, the coqui has received a disproportionate amount of 

attention in terms of management, control, and research because of its loud mating calls 

(Kraus and Campbell, 2002; Beard and Pitt, 2005).  

The objectives of this study were three-fold: 1) to conduct a stomach content 

analysis to determine dominant prey taxa, 2) to determine primary foraging microhabitat, 

prey preferences, and microhabitat usage, and 3) to develop an estimate of greenhouse 

frog abundance so that consumption rate of invertebrates could be estimated.  

 
MATERIALS AND METHODS 

 
 Study sites.–Study sites were 10, 100 m x 100 m areas on the island of Hawaii, 

USA (Fig. 2.1, Table 2.1) located in an agricultural research station (WR), macadamia 

nut orchards (KM, PP), natural areas (KL, PH, MS, WF), outdoor plant nurseries (KP, 
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PN), and a resort (ML). Sites were selected that had relatively large greenhouse frog 

populations and a sufficiently large area to sample. They were selected also to maximize 

habitat diversity across sites. Dominant overstory across the sites included Casuarina 

equisetifolia (KL and MS), Macadamia integrifolia (KM and PP), Metrosideros 

polymorpha (WF), and Psidium cattleianum (PH). There was little overstory at KP, ML, 

PN, and WR. Dominant understory included Clidemia hirta (WF), Dicranopteris linearis 

(WF), Lapranthus sp. (ML), Nephrolepis sp. (KL, PH, MS), Pennisetum clandestinum 

(KL, PH, MS), Sphagneticola trilobata (PH, WR), and Stenotaphrum secundatum (KP, 

PN, and WR). Percent canopy cover closure (Table 2.1) was measured using a convex 

spherical densiometer (Ben Meadows Company Inc., Janesville, WI, USA) along five 20 

m transects every 20 m, for a total of 20 measurements per site. Percent ground cover 

(Table 2.1, eight categories: concrete, flower pot, grass, herbaceous, leaf litter, other, soil, 

and rock) was measured at each site using 20, 1 m x 1 m quadrats located every 20 m 

along five, 100-m transects, separated by 20 m.  

 Frog sampling.–From 19 May to 19 July 2009, frogs were collected from each site 

between 1900–2330 h over 1-3 days; except at PN, where because access was limited, 

frogs were collected from 1000–1400 h. At each site, two to three researchers walked the 

entire area and hand-captured all frogs encountered. To locate frogs, researchers visually 

scanned the ground and vegetation while turning over dead logs, debris, rocks, and man-

made items. Most often, frogs were first observed jumping away from the researchers. If 

25 frogs were not collected, researchers returned the following day and re-surveyed the 

site until a minimum of 25 frogs was collected. For each frog collected, microhabitat 

structure and height from the forest floor where the frog was first observed were. 
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Fig. 2.1.  Location of the 10 collection sites of Eleutherodactylus planirostris, island of 
Hawaii, USA. (Study site abbreviations: KP = Kalapana, KM = Keaau Macadamia 
Orchard, KP = Kapoho Nursery, ML = Mauna Lani Resort, MS = MacKenzie State Park, 
PH = Pohoiki, PN = Panaewa Nursery, PP = Pahoa Plantation, WF = Waiakea Forest 
Reserve, WR = Waiakea Research Station).  
 
 
 
recorded, and frogs were retained in individual bags until they were euthanized with CO2 

at the end of the night. 

 In the laboratory, snout-vent-length (SVL) of each frog was measured with dial 

calipers to the nearest 0.1 mm. Frogs were dissected and assigned a stage class based on 

examination of gonads (preadult, male, or female). Stomachs were removed, punctured, 

and stored in 70% ethanol until further analysis. Stomach contents were identified to the 

lowest recognizable taxonomic unit (RTU), typically order. Order Hemiptera was 

identified to sub-order, and the family Formicidae was sorted as a separate category from 

order Hymenoptera.  For each item, maximum length and width were measured to 0.01 

mm (Magnusson et al., 2003) using a 10-mm reticle (Thermo Fisher Scientific Inc., 

Waltham, MA, USA). Volume for each prey item was calculated using the formula:  v =  
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Table 2.1.  Site name, elevation, dominant groundcover, percent (%) canopy cover, 
and number of frogs collected of Eleutherodactylus planirostris by site for the island of 
Hawaii, USA. 
 

Site name 
Elevation 

(m) Dominant groundcover 
Canopy cover 

(%) 
Sample 

size 
Kalapana 22 leaf litter, herbaceous 94.28 53 
Keaau Macadamia Orchard 150 leaf litter, rock 88.98 49 

Kapoho Nursery 83 other (tarp), grass 62.46 29 

Mauna Lani Resort 44 herbaceous, grass 47.84 47 
MacKenzie State 
Recreation Area 35 leaf litter, herbaceous 94.96 50 
Pohoiki 20 herbaceous, leaf litter 98.34 49 
Panaewa Nursery 118 rock, concrete, herbaceous 43.11 34 

Pahoa Plantation  223 soil, leaf litter, rock 75.40 35 

Waiakea Forest Reserve 418 grass, soil, herbaceous 83.31 48 

Waiakea Research Station 209 soil, grass, rock 13.47 32 
 

4/3 π x l/2 x (w/2)2, where l = prey length  and w = prey width (Beard, 2007; Vitt et al., 

2008). Prey importance was determined for each prey category using the following 

formula: I = (F% + N% + V %), where F% = occurrence percentage, N% = numeric 

percentage, and V % = volumetric percentage (Beard, 2007; Bonansea and Vaira, 2007). 

Invertebrate sampling.–During frog collections, invertebrates in the environment 

were also collected. For sites requiring one day to collect frogs, invertebrates were 

collected that day. For sites requiring more than one day, invertebrates were collected the 

day that 50% or more of the frogs were collected. To collect leaf litter invertebrates, leaf 

litter was collected at night following frog collection from four 0.25 m x 0.25 m subplots 

(Beard, 2007) located randomly within the 100 m x 100 m area, a minimum of 10 m 

apart. Invertebrates were extracted from the litter using Berlese-Tullgren funnels and 

stored in 70% ethanol until identification. Flying and phytophagous invertebrates were 
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collected by randomly placing eight 10 cm x 18 cm sticky traps (Seabright 

Laboratories, Emeryville, CA, USA) on stakes within the 100 m x 100 m area, a 

minimum of 10 m apart, with the bottom of the sticky trap located 10 cm above the forest 

floor, for 24 h. Sticky trap samples were stored in a freezer until invertebrates were 

identified. All invertebrates were counted and sorted to order and lowest RTU. 

Frog population census.–To obtain a density estimate, mark-recapture methods 

were used over seven nights, 24 June–1 July 2009, in one 50 m x 50 m plot at study site 

KM. Because there have been no previous mark-recapture studies conducted on 

greenhouse frogs , methods used for other Eleutherodactylus species (Funk et al., 2003; 

Woolbright, 2005) were modified and employed. 

 Each night beginning at 1915 h, three researchers walked each of 10 adjoining 5 

m × 50 m subplots for 20 min, for a total search time of 200 min for the plot, not 

including handling time. Surveys began the first night in the first subplots, moving to 

adjoining subplots, and alternated between starting in the first or last subplots each 

subsequent night. Frogs were hand-captured and SVL was measured to the nearest 0.1 

mm using dial calipers. Frogs with ova in any stage of development visible through their 

semi-transparent body wall were recorded as breeding females. To be conservative, sex 

for all other individuals was considered undeterminable. Frogs were marked by clipping a 

total of 1–4 toes (one clip per foot) in unique combinations. The smallest male from the 

diet study population was 14.2 mm; therefore, only frogs >14.0 mm were considered 

adults and marked. Frogs < 14.0 mm, hereafter preadults, were considered too small for 

clipping (as in Woolbright, 2005). The number of preadults observed was counted each 

night and recorded (as in Woolbright, 2005).  
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Statistical analysis.–Four different ANOVAs were used to assess diet 

differences. A one-way factorial ANOVA was used in a completely randomized design to 

examine the effect of site (10 levels) on total prey items and total prey diversity (i.e. 

number of prey categories consumed). As with most count data, the data were not 

normally distributed, and a model with a negative binomial distribution was used. The 

effect of stage class (male, female, preadults) was not included in this statistical model 

because our main interest was in site differences, and there was a strong interaction 

between stage class and site (F16,350 = 3.9, P < 0.0001, F16,350 = 3.7, P < 0.0001). 

However, we were interested in stage class and site differences for the total number of 

main prey categories (comprising >1% of the frog diet).  For this test, a two-way factorial 

ANOVA was used in a completely randomized design to examine the effect of stage class 

(3 levels) and site (10 levels) on total number of items for prey categories that comprised 

> 1% of the greenhouse frog diet.  

For total volume consumed and the volume of individual prey items consumed, a 

two-way factorial ANCOVA was used in a completely randomized design to examine the 

effect of stage class (3 levels) and site (10 levels). The covariate SVL was included in 

these statistical tests because SVL varied by stage class (F2,424 = 621.3, P < 0.0001) and 

SVL was positively related (Fig. A-1) to total prey volume (R2 = 0.20, F1,423 = 103.7, P < 

0.0001). A Spearman’s rank correlation procedure was used to determine if there was a 

correlation between the number of items consumed and volume of each item consumed. 

Finally, a two-way factorial ANOVA was used to examine the effect of stage class (3 

levels) and site (10 levels) on total volume consumed of each prey category that 

comprised > 1% of total diet. To meet assumptions of normality and homogeneity of 
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variance, volume data were log transformed. All means comparison tests were 

conducted using the Tukey-Kramer procedure. Because no preadults were collected at 

WF, this site was excluded from analysis when there was a significant interaction 

between stage class and site.  

 A Bray-Curtis dissimilarity index was used to calculate a dissimilarity matrix of 

invertebrate communities for each site and sample type (stomach samples, leaf litter 

samples, and sticky trap samples). Nonmetric multidimensional scaling (NMDS) of the 

Bray-Curtis index was then used to compare stomach contents to invertebrate 

communities (leaf litter and sticky trap invertebrates) at each site to determine foraging 

location. Weighted average scores (wascores) were determined for dominant invertebrate 

categories for NMDS configuration and categories with mean weight > 0.05 are 

presented. Analysis of Similarity (ANOSIM) was used to calculate Global R, a statistic 

that tests for differences in community composition (Clarke, 1993), to determine if 

stomach samples were more similar across sites, or more similar to the available 

invertebrates in either foraging location (leaf litter or flying/phytophagous communities).   

 Prey selection for each site was determined using the Jacobs’ prey electivity 

formula (Jacobs, 1974): ei = ( pi − pk) / (( pi + pk) − (2 pi pk)), where pi is the proportion of 

each prey taxon in stomachs, and pk is the proportion of each prey category in the 

environment (Toft, 1981; Tuttle et al., 2009). Electivity values range from -1 to +1, 

where negative values indicate avoidance of a prey category, and positive values indicate 

preference. Mean ei values < -0.70 and > 0.70, indicating strong preference for 

invertebrate taxa that represented > 2% of the diet or environmental samples are 
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presented (Tuttle et al., 2009). A Pearson’s chi-square exact test was then used to 

compare greenhouse frog microhabitat use by site of dominant microhabitat categories.  

All statistical analyses, except NMDS and ANOSIM, were conducted using SAS 

v.9.1.3 for Windows (SAS Institute, Cary, North Carolina). The NMDS and ANOSIM 

were conducted using R 2.8.1 (R Development Core Team, 2004). P-values < 0.05 were 

considered significant for all tests. Means ± 1 SE are presented, and were first calculated 

within sites, and then across the 10 study sites. 

Huggins closed capture models in Program MARK were used to estimate 

abundance (White and Burnham, 1999). Individual encounter histories were used to 

estimate initial capture probability (p), probability that a previously-marked frog is 

recaptured (recapture probability, c), and population abundance (

 

ˆ N ). Captured frogs were 

divided into two groups, breeding females and other adults. Models examined allowed 

capture probabilities to vary for time (t) and examine covariates of stage class, SVL, and 

number of toes removed. We used a model selection index, the Bayes Information 

Criterion, which is similar to Akaike Information Criterion but more conservative in 

selecting less complex models (Link and Barker, 2006). For each model, we used the 

95% confidence intervals of the beta estimates (i.e., slope) to measure statistical 

significance for each parameter, and consider differences among parameter estimates 

significant when confidence intervals did not overlap (Beard et al., 2008). 

To obtain an estimate of total abundance and density (individuals / ha ± 1 SE), 

preadult numbers were estimated in the plot as the product of the adult estimate and the 

ratio of maximum preadult to adult counts, assuming that preadult and adult probabilities 

of encounter by observers are similar (as in Woolbright, 2005; Woolbright et al., 2006)  
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RESULTS 

 
Diet descriptions.–A total of 427 E. planirostris were collected from the 10 sites 

(151 preadults, 100 males, and 176 females). Mean SVL across all individuals was 16.7 

mm 

 

± 0.9.  For preadults, mean SVL was 9.9 mm 

 

± 1.3 mm (min: 2.8 mm, max: 19.2 

mm), 16.5 mm 

 

± 0.31 mm (max: 21.2 mm) for adult males, and 21.8 mm 

 

± 0.29 mm 

(max: 26.6 mm) for adult females. Females were between 30% and 40% larger than 

males at all sites.  

In total, 7,442 invertebrates in 32 prey categories were identified from stomach 

contents (Table 2.2). The most important prey items, in descending order of importance, 

were Formicidae, Acari, Collembola, Isopoda, and Araneae. All other prey categories 

were identified in < 50% of stomachs examined. Twelve frogs (3.0%) collected had 

empty stomachs: four preadults (2.6%), five adult males (5.0%), and three adult females 

(1.7%).  

Frogs consumed a mean of 16.9 

 

± 2.9 items. The maximum number of prey items 

consumed by one frog was 134 (121 Acari, four Formicidae, three Pseudoscorpiones, 

three Psocoptera, two Collembola, and one Araneae; adult male at MS). Number of prey 

items consumed varied across sites (F9,415 = 17.1, P < 0.0001) and ranged from 7.3 to 

33.6. Mean prey diversity per stomach was 4.4 

 

± 0.3 prey categories, and maximum prey  

diversity was 12 prey categories. Mean prey diversity varied across sites (F9,415 = 11.9, P 

< 0.0001) and ranged from 2.7  to 6.0.  

Mean prey volume was 31.3 mm3 

 

± 6.8, with a maximum of 402.3 mm3 (15 

Formicidae, three Collembola, three Heteroptera (order Hemiptera), and one Psocoptera,  
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Table 2.2.  Frequency of prey items (%), total number of prey items consumed (%), 
volume of prey items (mm3) (%), and importance (I) of each item in Eleutherodactylus 
planirostris diet of 427 stomachs collected from 10 sites on the island of Hawaii. 
 
Prey category Frequency (%) Number (%) Volume (%) I 
Anura   
 Tissue 3  (0.71) 2  (0.03) 10.66  (0.10) 0.83 
 Eggs 2  (0.47) 2  (0.03) 0.32  (0.00) 0.50 
Arachnida  
 Acari 275  (64.71) 1513  (19.17) 202.09  (1.81) 85.69 
 Araneae 148  (34.82) 245  (3.10) 227.4  (2.04) 39.97 
 Pseudoscopiones 46  (10.82) 75  (0.95) 121.85  (1.09) 12.87 
Chilopoda 65  (15.29) 80  (1.01) 622.37  (5.58) 21.89 
Diplopoda 22  (5.18) 27  (0.34) 116.6  (1.05) 6.56 
Pauropoda 10  (2.35) 17  (0.22) 31.45  (0.28) 2.85 
Gastropoda 4  (0.94) 8  (0.10) 13.18  (0.12) 1.16 
Insecta  
 Coleoptera  
  Adult 72  (16.94) 148  (1.87) 1008.69  (9.05) 27.87 
  Larvae 6  (1.41) 6  (0.08) 33.96  (0.30) 1.79 
 Collembola 270  (63.53) 1375  (17.42) 485  (4.35) 85.30 
 Dermaptera 26  (6.12) 37  (0.47) 662.89  (5.95) 12.53 
 Diptera  
  Adult 84  (19.76) 141  (1.79) 720.24  (6.46) 28.01 
  Larvae 6  (1.41) 8  (0.10) 2.77  (0.02) 1.54 
 Egg mass 21  (4.94) 28  (0.35) 4.97  (0.04) 5.34 
 Hemiptera  
  Auchenorrhyncha 20  (4.71) 23  (0.29) 40.54  (0.36) 5.36 
  Heteroptera 70  (16.47) 112  (1.42) 1074.84  (9.64) 27.53 
  Sternorrhyncha 44  (10.35) 73  (0.92) 20.33  (0.18) 11.46 
 Hymenoptera 24  (5.65) 30  (0.38) 55.55  (0.50) 6.53 
   Formicidae 291  (68.47) 2555  (32.37) 2798.54  (25.11) 125.95 
 Lepidoptera larvae 21  (4.94) 24  (0.30) 345.98  (3.10) 8.35 
 Neuroptera 3  (0.71) 3  (0.04) 0.94  (0.01) 0.75 
 Orthoptera 1  (0.24) 3  (0.04) 116.21  (1.04) 1.32 
 Other larvae 17  (4.00) 24  (0.30) 33.91  (0.30) 4.61 
 Psocoptera 65  (15.29) 178  (2.25) 125.96  (1.13) 18.68 
 Pupa 2  (0.47) 2  (0.03) 0.36  (0.00) 0.50 
 Thysanoptera 15  (3.53) 17  (0.22) 1.41  (0.01) 3.76 
Malacotraca  
 Amphipoda 48  (11.29) 85  (1.08) 727.61  (6.53) 18.90 
 Isopoda 190  (44.71) 600  (7.60) 600.28  (5.39) 57.69 
Oligochaeta 2  (0.47) 1  (0.01) 23.37  (0.21) 0.69 
Unidentified 46  (10.82) 56  (0.71) 77.18  (0.69) 12.23 
Man-made object 9  (2.11) - 4.05  (0.04) 0.04 
Rock 116  (27.20) - 87.38  (0.78) 0.78 
Vegetation 150  (35.10) - 745.88  (6.69) 6.69 
Total - 7498 11144.8 - 
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adult female at MS). After controlling for SVL, volume of prey consumed did not 

differ among the three stage classes, and only for adult females did prey volume differ 

across sites (F2,349 = 2.7, P = 0.0004).  

Volume of each item consumed was 1.4 mm 3

 

± 2.4. After controlling for SVL, 

volume did not vary by stage class (F2,397 = 2.4, P = 0.0903), but did vary by site (F9,397 = 

3.3, P = 0.0006) and ranged from 0.7 to 3.9 mm3. Sites where the most number of items 

were consumed (ML: 33.6 

 

± 2.2, PH: 31.9 

 

± 4.2) were also sites where frogs consumed 

some of the smallest prey items (ML: 0.9 

 

± 0.1, PH: 0.9 

 

± 0.2). Total number of items 

consumed was not correlated with the size of items consumed across all sites (r425 = -

0.03, p = 0.5665) and only at site PH was the total number of items consumed negatively 

related with the size of items consumed (PH: r425 = -0.58, p < 0.0001).    

Of the main prey taxa consumed, preadults consumed more Acari and Collembola 

than adult males and adult females (P < 0.05) and adult males consumed more Acari than 

adult females (P < 0.05). Adult females consumed more Coleoptera and Heteroptera than 

both adult males and preadults (P < 0.05). Variation in stage class consumption of 

Formicidae (F15,350 = 3.2, P < 0.0001) and Isopoda (F15,350 = 1.8, P = 0.0054) was 

influenced by site differences. 

Formicidae was the dominant prey item consumed at six of ten sites, Collembola 

was the dominant prey item at three sites, and Acari was the dominant prey item 

consumed at one site (Fig. 2.2). Amounts of Acari, Collembola, Formicidae, Heteroptera, 

Isopoda, and Psocoptera consumed (Table A-1) all varied by site (P < 0.05). Total 

volume consumed of Amphipoda, Coleoptera, Diptera, Lepidoptera larvae, and 

Pseudoscorpiones (Table A-2) also varied by site (P < 0.05). 
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Foraging location.–A total of 21,758 invertebrates was identified from 

environmental samples (Table 2.3). The NMDS of invertebrate community composition 

by site and sample type (stomach, leaf litter, and sticky traps) yielded a stress coefficient 

of 0.113 for the two dimensions, indicating that the resulting ordination plot may be 

confidently interpreted (Clarke, 1993). The first dimension of the NMDS separated the 

sticky trap samples from the stomach and leaf litter samples (Fig. 2.3). The second 

dimension separated the stomach samples from the leaf litter samples. Wascores indicate 

that the prey categories that contribute to the position of the sticky trap sample points on 

the NMDS plot were Diptera, Thysanoptera, and Hymenoptera; Acari was the prey 

category contributing to the position of the leaf litter sample points; and Formicidae was 

the prey category contributing to the position of the stomach sample points. ANOSIM 

showed that invertebrate composition among sample types was different (global R = 

0.868, P < 0.001) but that sample types did not differ across sites (global R = -0.224, P = 

0.994).  

Prey preferences.–Because the results of the NMDS indicated that 

flying/phytophagous invertebrates were not represented in the stomach samples, prey 

preferences from only the leaf litter samples were analyzed with the Jacobs’ electivity 

formula. Of the leaf litter invertebrate categories only Formicidae (0.7455) was a 

preferred prey item (Table A-3), and no invertebrate categories were specifically avoided.  

Microhabitat use.–All but one frog collected was first observed on the ground (0 

m from the forest floor). Across sites, 14.8% of frogs were collected underneath objects: 

29 preadults, 23 adult males, and 11 adult females. Frogs were mostly (96.8%) collected 

under man-made objects (i.e. flower pots, water meters, and tarps) but one was also  



 47 

 

 

  
Fig. 2.2.  Percent occurrence of the dominant invertebrate categories (> 5% of stomach 
contents) that varied by site (p < 0.05) found in Eleutherodactylus planirostris for a) 
Acari, b) Collembola, c) Formicidae, d) and Isopoda, on the island of Hawaii, USA, 2009 
(KL: n=53, KM: n = 49, KP: n = 29, ML: n = 49, MS: n = 50, PH: n = 49, PN: n = 34, 
PP: n =35, WF: n= 48, WR: n = 35; site abbreviations in Fig. 2.1).  
  

c) 

b) 

d) 

a) 
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Table 2.3.  Mean number of invertebrates collected (± SE) in environmental samples 
from 10 study sites on island of Hawaii (n=10).     
 
Prey Category Leaf Litter Sample Sticky Trap Sample 

Arachnida  
 Acari 233.20 (65.84) 0.78 (0.24) 
 Araneae 2.48 (0.59) 0.21 (0.09) 
 Pseudoscopiones 0.08 (0.05) 0.00 (0.00) 
Chilopoda 0.03 (0.02) 0.00 (0.00) 
Diplopoda 0.18 (0.11) 0.00 (0.00) 
Pauropoda 1.73 (1.13) 0.00 (0.00) 
Gastropoda 0.80 (0.36) 0.00 (0.00) 
Insecta  
 Blattodea 0.10 (0.06) 0.00 (0.00) 
 Coleoptera  
  Adult 2.58 (0.83) 0.39 (0.12) 
  Larvae 0.25 (0.15) 0.00 (0.00) 
 Collembola 63.13 (18.98) 3.80 (0.89) 
 Dermaptera 0.23 (0.14) 0.00 (0.00) 
 Diptera  
  Adult 0.18 (0.08) 13.09 (4.25) 
  Larvae 0.13 (0.10) 0.03 (0.02) 
 Hemiptera  
  Auchenorrhyncha 0.40 (0.19) 1.14 (0.43) 
  Heteroptera 0.90 (0.60) 2.35 (1.07) 
  Sternorrhyncha 61.58 (60.30) 0.05 (0.03) 
 Hymenoptera 0.08 (0.04) 7.03 (2.17) 
   Formicidae 19.65 (15.31) 0.44 (0.22) 
 Lepidoptera   
  Adult 0.00 (0.00) 0.05 (0.03) 
  Larvae 0.25 (0.12) 0.00 (0.00) 
 Neuroptera 0.05 (0.05) 0.05 (0.04) 
 Orthoptera 0.03 (0.02) 0.20 (0.11) 
 Other larvae 3.73 (1.30) 0.00 (0.00) 
 Psocoptera 2.08 (1.00) 0.93 (0.26) 
 Pupa 0.15 (0.11) 0.00 (0.00) 
 Thysanoptera 1.73 (0.48) 17.85 (8.04) 
Malacotraca  
 Amphipoda 3.43 (2.25) 0.00 (0.00) 
 Isopoda 20.95 (4.86) 0.00 (0.00) 
Oligochaeta 0.65 (0.36) 0.00 (0.00) 
Unidentified 0.10 (0.04) 0.80 (0.19) 
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Fig. 2.3.  Nonmetric multidimensional scaling (NMDS) of invertebrate categories found 
in Eleutherodactylus planirostris stomachs, leaf litter samples, and sticky trap samples 
(stress = 0.113) from 10 study sites on the island of Hawaii, USA with a) site names and 
b) wascores of important prey categories (>0.05% of the diet).  

a) 

b) 
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collected under a rock (1.6%) and one under a fallen branch (1.6%). All 32 frogs 

collected at the diurnal capture site, PN, were found underneath objects.  

Microhabitat use by the greenhouse frog varied across sites (

 

χ 2 = 739.66, df = 63, 

P < 0.0001). Leaf litter was the dominant microhabitat (Fig 2.4) used in most natural 

areas and the macadamia orchard sites (KL, KM, MS, PH, and PP). At the high elevation 

natural area (WF) and at the two plant nurseries (KP and PN), frogs were observed most 

often on soil. Herbaceous plant stems and grass were the dominant microhabitat used at 

the resort (ML) and concrete at the agricultural research station (WR).  
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Fig. 2.4.  Use of microhabitat structures (%) by Eleutherodactylus planirostris from 10 
study sites on the island of Hawaii, USA, 2009.  
 
 
 

Population estimates.–A total of 651 adult frogs were marked over seven nights 

at KM; 518 were males/non-breeding females, and 133 were breeding females. Frogs 
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captured on the final night of the survey included 56% recaptures. The top model 

indicated no temporal variation in capture rates, but they did vary with SVL (Table A-4). 

Initial capture (p) rates were equal to recapture (c) rates (0.12

 

± 0.01).  

Adult densities were estimated to be 4,564 frogs ha-1 (Table 2.4). The maximum 

number of preadults observed from one night was 204, with a preadult to adult ratio of 

1.7 (Table A-5). Multiplying this ratio by the adult population estimate (as in Woolbright 

et al., 2006; Beard et al., 2008), we estimated the number of preadults to be 7,958 frogs 

ha-1. Combined with the total adult estimates, the greenhouse frog population estimate at 

site KM was 12,522 frogs ha-1. 

Because number of prey items consumed by stage class did vary at this site (F2,396 

= 11.5, P < 0.0001), the mean number of invertebrates consumed by each subclass 

(preadults < 14.0 mm, adults > 14.0 mm, and breeding adult females) was multiplied by 

their abundance estimates (as in Beard, 2008). Preadults were estimated to consume 

98,039.4 invertebrates ha-1 night-1, and adults were estimated to consume 31,090.2 

invertebrates ha-1 night-1. In total, greenhouse frogs were estimated to consume 129,129.6 

invertebrates ha-1 night-1 at this site. 

 
 
Table 2.4.  Eleutherodactylus planirostris adult male/non-breeding female, adult 
breeding female, and preadult population estimates (± SE) ha-1, the mean number of 
items consumed (± SE), and total invertebrates consumed (± SE) ha-1, from study site 
Keaau Macadamia Orchard (KM).   
 

 Population estimate 
Number of items 

consumed 
Invertebrates 

consumed 
Adult males and non 
breeding females 3,608 (3,433 - 3,783) 7.85 (2.25) 28,309 (396) 
Adult breeding 
females 956 (889 - 1,022) 2.91 (0.55) 2,781 (74) 
Preadults 7,958 12.32 (1.30) 98,039 
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DISCUSSION 

 
Diet.–We found that Acari (19%), Collembola (17%), and Formicidae (32%) 

were the dominant prey categories in greenhouse frog stomachs by number of individuals 

consumed, across the island of Hawaii, comprising 68% of their diet. These groups 

appear the most likely to be impacted by the greenhouse frog introduction. All 

Formicidae in Hawaii are nonnative, but both Acari and Collembola contain native 

species. Although these three groups were the dominant prey, we identified a total of 32 

different prey categories (23 invertebrate orders) in the diet. Thus, the greenhouse frog 

will consume a wide diversity of prey in Hawaii.  

Collembola and Acari may be dominant prey items because they were abundant in 

invaded sites. For example, sites with the highest availability of Collembola were the 

sites where the most Collembola were consumed. This finding was different from studies 

in other parts of their introduced range where these two groups were found to comprise < 

2% of their diet (Goin, 1947; Stewart, 1977). By volume, these prey categories were not 

very important food sources, Collembola (4% of total volume) and Acari (2%), whereas 

Formicidae was the dominant prey item consumed and was also 25% of total volume.  

Other prey categories with native species that were important in the diet included 

Araneae (3%), Coleoptera (2%), Diptera (2%), and Psocoptera (2%). Of particular 

concern are native Araneae, such as species in the Tetragnatha genus, due to their 

endemism in Hawaii and high extinction rates (Gillespie and Reimer, 1993). Araneae was 

identified in the diet at all 10 study sites, ranging from 2 to 6% of the total items 

consumed. However, most native species of Araneae are limited to high elevation 
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habitats (Gillespie et al., 1998) and not likely to be a major component of the 

greenhouse frog diet with their present distribution (Chapter 3).  

Gastropoda, particularly small terrestrial snails, and Orthoptera (Hadfield et al., 

1993; LaPolla et al., 2000) are two more prey categories with similar concerns but were 

negligible in the greenhouse frog diet (< 1%). Gastropoda consumed were mostly small 

snails (< 3 mm in length), but only identified in the stomach contents at four study sites. 

Orthoptera was only identified in the stomach contents of one frog at one site. Both 

Gastropoda and Orthoptera were not common in the environmental samples (< 1%), 

indicating that high abundances of these groups were not at risk of predation by the 

greenhouse frog. 

Formicidae appears to be an important component of the greenhouse frog diet 

across its introduced and native range. It comprised 41% of the prey items in Florida 

(Goin, 1947), 63% in Jamaica (Stewart, 1977) and 100% in Cuba, but only three 

stomachs were evaluated in Cuba (Goin, 1947). Results were similar to studies of other 

nonnative Eleutherodactylus species from the Caribbean islands (Stewart, 1977; Ovaska, 

1991) and to that of the coqui in Hawaii (Beard, 2007). However, the results contrast with 

studies that suggest most Eleutherodactylus species avoid ants (Toft, 1981; Simon and 

Toft, 1991). Ovaska (1991) suggests that Eleutherodactylus may consume more 

Formicidae in some areas because of its availability, however, in this study, Formicidae 

was consumed in greater proportion than its measured availability. Because research 

indicates that Formicidae identified in the stomachs, including the big-headed ant 

(Pheidole megacephala), the Argentine ant (Linepithema humile), and the yellow crazy 
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ant (Anoplolepis gracilipes), have negative effects on native invertebrates 

(Krushelnycky et al., 2005), greenhouse frogs may indirectly benefit these invertebrates. 

In addition to Formicidae, all Isopoda (8% of total number of items consumed) 

and Amphipoda (1% of total items consumed) identified in the stomach contents were 

also nonnative. Therefore, at least 45% of the greenhouse frog diet at these study sites 

consisted of nonnative species. Isopoda were consumed at all sites (1 - 21%), Amphipoda 

was not a dominant prey category, but it was consumed at eight of the 10 sites (1 - 6%). 

While we found that the greenhouse frog had a preference for Formicidae, we did not 

find that the greenhouse frog had a strong preference for these other nonnative groups. 

The number of Amphipoda and Isopoda found in the stomachs is likely influenced by 

availability at the sites. This contrasts with the coqui, where Amphipoda was a higher 

percentage of the diet (21%) and was over-represented in the stomachs compared to what 

was available in the measured environment (Beard, 2007).  However, the percent 

occurrence of total number of Formicidae and Isopoda consumed were similar for both 

the coqui and the greenhouse frog.     

One order commonly found in the greenhouse frog diet (8% of the total) in 

Florida (Goin, 1947), which was not found in stomachs in Hawaii, is Blattodea 

(cockroaches). This may be because Blattodea was not common in the environmental 

samples (< 1%), and only collected at three of the 10 study sites. In addition, only one 

small (maximum: 8 mm) Blattodea species was identified in the Florida diet, which has 

not been documented in Hawaii, where there are no native Blattodea species, and only 

large species (> 25 mm) have been introduced (Nishida, 2002).  
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Although the goal of the study was to select sample sites from a variety of 

habitat types, there were sites of unrepresented habitat types that were not included. In 

particular, sites that had lower densities of frogs and where the minimum number of frogs 

needed for analysis (n=25) could not be collected were deliberately excluded from the 

study. These sites may have different types of prey; therefore our study might not be 

representative of the greenhouse frog diet across all invaded sites on the island of Hawaii. 

 The mean number of items found in stomachs of greenhouse frogs across sites 

ranged from 7 to 34. The mean number of prey items consumed across all sites, 17 items 

per individual frog, was more than the mean number of 8 prey items in Jamaica (Stewart, 

1977) and 6 prey items in Florida (Goin, 1947). Results also suggest that individual 

greenhouse frogs consume more items than individual coquis (mean of 8 prey items) in 

Hawaii (Beard, 2007), and more than native and nonnative Eleutherodactylus (1 to 8) in 

the Caribbean (Toft, 1981; Ovaska, 1991; Stewart and Woolbright, 1996).  

Our results suggest that, similar to coquis, greenhouse frogs may consume more 

prey items in Hawaii than in their Caribbean range (Stewart and Woolbright, 1996; 

Beard, 2007). This may be because available prey is smaller in Hawaii than in the 

Caribbean. Alternatively, because small frogs typically consume more prey than larger 

frogs (Whitfield and Donnelly, 2006), the greenhouse frog may be smaller in Hawaii than 

in its Caribbean range. There is evidence that this is the case for coqui in Hawaii (O’Neill 

and Beard, 2010). Only the Jamaica study included SVL measurements in their diet 

study, and mean SVL was smaller in Hawaii (16.7 mm) than in Jamaica [18.1 mm 

(Stewart, 1977). 
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There was an ontogenetic shift in prey category consumed, similar to studies of 

other terrestrial anurans including Eleutherodactylus (Whitfield and Donnelly, 2006). 

Preadults consumed more small prey categories (i.e. Acari and Collembola) than adult 

males and females. Adult females consumed more of the larger prey categories such as 

Coleoptera and Heteroptera. Several studies suggest that in addition to consuming smaller 

prey items, preadults consume more items than adults (Whitfield and Donnelly, 2006; 

Beard, 2007); however, we did not see differences in the overall total number of prey 

consumed between stage classes across all 10 study sites. If we had equal sample sizes of 

each stage class at each site, perhaps we would have seen a more distinct difference in 

number of items consumed. We did observe this trend at five (50%) of our sites where 

sample size was more evenly distributed among stage classes.  

Foraging location and microhabitat use.–Multivariate analysis suggests that 

stomach contents were more similar to invertebrates collected in leaf litter than 

invertebrates collected on sticky traps, and supports the hypothesis that the greenhouse 

frog primarily forages in leaf litter (Goin, 1947). The most dominant invertebrate 

categories found in the leaf litter, Acari and Collembola, were also dominant items found 

in the stomachs. In contrast, the dominant invertebrates collected on the sticky traps, 

Thysanoptera (36%), Diptera (27%) and Psocoptera (14%) made up a small percentage of 

the diet (> 1%, 2%, 2%, respectively).  

Multivariate analysis also suggests that diets were more similar across sites than 

to the environmental samples at each site. There was also less variability in the stomach 

contents than in the leaf litter samples across sites. This suggests that while greenhouse 

frogs consume many different prey items and proportions of invertebrate orders vary with 
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what is available at each site, their overall diet is generally consistent across sites. 

More specifically, results appear to reflect that Formicidae was the dominant category in 

the stomach contents, while Acari was the dominant category in the leaf litter.  

The greenhouse frog was observed in structures that provide cover, such as leaf 

litter in natural areas and man-made structures in nurseries. This is similar to results of 

other studies in microhabitat use, using especially leaf litter, debris piles, and man-made 

structures (Goin, 1947; Stewart and Martin, 1980). These microhabitat structures may 

provide refuge from desiccation (Goin, 1947) or provide good forage habitat. At all sites, 

almost all frogs were first observed on the ground. In addition, the observed use of 

subterranean lava tubes seem to suggest that they are somewhat fossorial in Hawaii as 

described in the species’ native and introduced ranges (Schwartz and Henderson, 1991; 

Meshaka et al., 2004).  

Population estimates.–Our mark-recapture techniques for this species yielded 

high percentages of recaptured frogs on the seventh night of the survey, but low initial 

capture and recapture probabilities. These numbers were similar to rates obtained for the 

coqui in Hawaii (Woolbright et al., 2006; Beard et al., 2008; Tuttle et al., 2008). The total 

density estimate of 12,521 frogs ha-1 was higher than estimates from Jamaica (4,635 frogs 

ha-1), which combined densities of greenhouse frogs with three other species of 

Eleutherodactylus (Stewart and Martin, 1980). Our results estimate adult greenhouse frog 

densities to be as high as some coqui population estimates in Hawaii (Beard et al., 2008; 

Tuttle et al., 2008), however, because we only conducted the mark-recapture at one site, 

we do not know if this estimate is representative of populations across the island.  
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Based on the consumption rate at this site, we estimate that greenhouse frogs 

can consume up to 129,129 invertebrates ha-1 night-1, particularly Acari, Collembola, and 

Formicidae. We recommend additional studies to investigate if the greenhouse frog, 

given their densities and the number of items consumed, reduce invertebrate populations 

and alter invertebrate community composition across its range of invaded habitats in 

Hawaii.  
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CHAPTER 3 

DETECTION PROBABILITIES OF TWO INTRODUCED FROGS IN HAWAII:  

IMPLICATIONS FOR ASSESSING INVASIVE SPECIES DISTRIBTUIONS3

 

 

Abstract  

 
Two nonnative Caribbean frogs, the Puerto Rican coqui and the Cuban greenhouse frog, 

recently invaded Hawaii. Because the coqui has a louder breeding call, management and 

control efforts have focused on the coqui, while very little has been done to address the 

greenhouse frog. Although the greenhouse frog is more cryptic, it may be just as 

widespread and have similar ecological impacts to the coqui. In addition, the loud call of 

the coqui may block our ability to detect the greenhouse frog. The goal of this research 

was to determine the distribution of both species on the island of Hawaii, use single-

season occupancy models to determine the detection probability of each species, and 

assess whether the presence of one species affected the detection of the other. We 

conducted a presence/absence surveys at 446 sites (25-m radius) every 2 km along major 

road networks using breeding calls. We re-surveyed 135 systematically selected sites 

twice to determine detection and occupancy probabilities. The coqui was detected at 91 

of the 446 sites and mostly found in lowland native and nonnative forests, and 

agricultural lands on the eastern side of the island. The greenhouse frog was detected at 

61 sites, and found mostly in lowland areas, and in native shrublands and forests, 

nonnative forests, agricultural lands, and pastures on the southeastern and western sides 

of the island. Overall site occupancy estimates for the coqui and greenhouse frog were 
                                                 
3 Manuscript co-authored with K. H. Beard and D. M. Koons. It is written for the journal Biological 
Invasions. 
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0.31 

 

± 0.03 and 0.35 

 

± 0.05. Detection probabilities of the greenhouse frog were 

lower than those of the coqui (0.58 

 

± 0.07, 0.73 

 

± 0.08, 0.50 

 

± 0.08) and increased with 

repeated visits (0.24 

 

± 0.05, 0.29 

 

± 0.06, 0.48 

 

± 0.07) while those of the coqui did not 

(0.58 

 

±  0.07, 0.73 

 

±  0.08, 0.50 

 

± 0.08). Detection probabilities of the greenhouse frog 

were lower in the presence of calling coqui for the first two surveys (0.12 

 

± 0.06, 0.14 

 

± 

0.048) than in sites with greenhouse frogs alone (0.41 

 

± 0.06). The presence of calling 

greenhouse frog had no effect on the detection of the coqui. Results suggest multiple 

visits to a site may be required to detect the greenhouse frog audibly. Because the 

greenhouse frog is as widespread as the coqui, we recommend that research be conducted 

to investigate its impacts ecologically to determine whether control efforts should also be 

aimed at this species. 

 
Introduction 

Evaluating the ability to detect species is critical in the assessment of species 

distribution (MacKenzie 2005; Mazerolle et al. 2007). In the case of invasive species, the 

ability to detect species is particularly important because it influences our ability to 

monitor populations, which, as a result, influences our understanding of the degree of 

invasiveness and our ability to manage species (Christy et al. 2010). For example, by 

definition, a cryptic invader is less likely to be noticed than an invader that is obvious to 

observers. This presents several specific problems: (1) cryptic invaders are likely to be 

more widespread than appreciated; (2) because early detection is one of the most 

important components in successfully controlling invasive species, cryptic invaders are 

more likely to become widespread and, therefore, unmanageable; and (3) because they 
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are more difficult to detect, they are more difficult to control, because populations may 

easily be missed (Bomford and Obrien 1995; Pitt and Witmer 2006). Therefore, it is 

critical that we understand the detectability of invasives so that we conduct the 

appropriate level of monitoring for each species. 

The greenhouse frog (Eleutherodactylus planirostris) invasion into Hawaii is an 

example of an invasive species that is likely widespread in the invaded range, but is 

difficult to detect because of its semi-fossorial, nocturnal habits, and relatively quiet 

breeding call (Chapter 1, Kraus and Campbell 2002; Raloff 2003). On the other hand, the 

coqui frog (Eleutherodactylus coqui), which invaded Hawaii around the same time as the 

greenhouse frog (Kraus and Campbell 2002) provides an interesting contrast, because 

while it uses similar habitat, the coqui has a loud breeding call (up to 80-90 db at 0.5 m) 

that has made its invasion history and patterns relatively easy to monitor (Beard and Pitt 

2005). The coqui is widespread on the island of Hawaii, attains extremely high densities 

(up to 90,000 frogs ha-1), and reduces native invertebrates (Beard et al. 2009, R. Choi, 

prelim. data). In addition, the coqui frog has been the target of a massive control effort 

(Hawaii Invasive Species Council 2007). In contrast, the invasion of the greenhouse frog 

has been largely ignored in terms of control and determining its ecological impacts. 

Because the greenhouse frog is a more cryptic invader, there is a need to determine its 

distribution in Hawaii as well as its detectability.  

Because both species have audible breeding calls, it is possible to conduct a 

presence/absence survey to determine their distribution patterns and detection 

probabilities. Because the coqui is considered to be a bigger nuisance than the greenhouse 

frog as a result of its louder call (Raloff 2003), we hypothesized that detection 
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probabilities would be high for the coqui and low for the greenhouse frog, but that 

overall site occupancy would be similar, given their same approximate time of 

introduction and pathway to the island (Kraus and Campbell 2002). Because of the 

loudness of the coqui call, we hypothesized that the ability to detect the greenhouse frog 

would be lower in the presence of calling coqui, and that the ability to detect the coqui 

would not be affected by the presence of calling greenhouse frogs. Although we expected 

that occupancy rates would be similar, we also hypothesized that the species are more 

likely to occur independently than at the same sites, as individuals are randomly 

introduced to new sites by either accidental or intentional means (Kraus and Campbell 

2002; Peacock et al. 2009).   

Because both the coqui and greenhouse frog increase breeding activity in warmer 

and wetter conditions (Goin 1947; Meshaka and Layne 2005; Pough et al. 1983; 

Townsend and Stewart 1994), we expected that higher air temperatures and relative 

humidity, lower wind speeds, and increased sky cover (i.e. from clear skies to rain) would 

increase the likelihood of call activity and detection. Finally, we expected that because 

the introduction and spread of both species is through human-mediated means (Kraus and 

Campbell 2002) and because the coqui continues to spread to new areas (Hawaii Invasive 

Species Council 2007), the likelihood of these species occupying a site would be greater 

in lower elevation sites than higher elevation sites. We included these covariates in our 

detection probability models to account for variability among sites. The objectives of this 

study were three-fold: 1) to conduct an exploratory analysis with single-species 

occupancy models to determine the detection probability and occupancy rate of the 

greenhouse frog and the coqui independently across the island of Hawaii, 2) to determine 
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if the ability to detect either species is influenced by the presence of the other species 

using both a single-species occupancy model and a two-species occupancy model, and 3) 

to determine if the greenhouse and coqui frog co-occur in the same sites more often than 

is expected by random chance alone. 

 
Methods 

 Sampling design 

 The sampling design was created by selecting every other  pixel of a 1 km grid 

overlaid on the island of Hawaii (19° 41’ 1” N, 155° 23’ 35” W at its center location), 

intersecting with the road network (as in Bisrat 2010). The road layer was obtained from 

the Hawaii Data Clearinghouse website (http://hawaii.wr.usgs.gov/hawaii/). This method 

was chosen because the design 1) increased the likelihood of sampling areas that are 

invaded, because frogs in Hawaii are known to spread via vehicular traffic (Peacock et al. 

2009), 2) increased our ability to sample many points over a short period of time, and 

thus increase sample size, and 3) avoided spatial autocorrelation by creating a distance of 

more than 1 km between points. However, because data were collected along the road 

network, evergreen forest and bare land cover types were underrepresented while 

grasslands, scrub/shrub, and cultivated land cover types were well represented (Bisrat 

2010). The design generated 464 points across the island but only 446 points were 

sampled due to limited access at some sites (Fig. 3.1). A Garmin eTrex Legend GPS 

handheld receiver (Garmin International, Inc, Olathe, KS) was used to geolocate sample 

points. 

 Non-detection of a species during a presence/absence survey does not necessarily 

http://hawaii.wr.usgs.gov/hawaii/�
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mean that the species is not there and “false” absences can be minimized with multiple 

visits to a site over a short time (MacKenzie et al. 2002). This is necessary for 

herpetological surveys where extrinsic factors affect the detection of the species, such as 

the probability of a male frog calling, as well as the observer’s ability to detect species 

that are often cryptic or have quieter calls (Mazerolle et al. 2007; Weir et al. 2005). 

Breeding call surveys have been successful in determining amphibian species 

distributions when detection probabilities were high (Brown 2007; Mazerolle et al. 2005; 

Pellet and Schmidt 2005). Therefore, a subset of the original sample points was re-

sampled over two additional survey periods. An ArcGIS extension (Hawth’s Analysis 

Tools for ArcGIS; http://www.spatialecology.com/htools/) was used to draw a random 

selection of 45 points from each of the following three subgroups: 1) greenhouse frog 

presence only, 2) coqui presence only, and 3) neither species present. This generated a 

stratified sample set of 135 points. Repeated surveys were at the same GPS point and 

followed the same protocol as the first survey.    

 Coqui breeding activity increases during the rainy season in its native range 

(Townsend and Stewart 1994) and the greenhouse frog only breeds during the rainy 

season in its native range in Cuba and its introduced range in Florida (Meshaka and 

Layne 2005; Schwartz and Henderson 1991). Rainfall occurs year-round on the eastern 

side of the island (Chu and Chen 2005), but the eastern side of the island experiences its 

maximum rainfall May to October (Kolivras and Comrie 2007). Because we were 

interested in sampling the entire island, surveys took place from May to July. The first 

survey occurred 02 -15 May 2009, the second survey 06 - 10 July 2009, and the third 

survey 13 - 17 July 2009, beginning at 1900 hr and ending at 0200, the peak calling hours  

http://www.spatialecology.com/htools/�
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Fig. 3.1  Sampled Eleutherodactylus coqui and E. planirostris presence/absence points 
from the island of Hawaii, USA, 2009 with major land cover type, over all three 
combined surveys. Blue circles indicate sites where coqui was detected, red circles 
indicate sites where greenhouse frog was detected, yellow circles indicate sites where 
both species were detected, and black circles indicate sites where neither species were 
detected. All detections were within a 50m diameter of sample point. (Source: Land 
Cover Analysis - http://www.csc.noaa.gov/crs/lca/hawaii.html). 

http://www.csc.noaa.gov/crs/lca/hawaii.html�
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 for both species in their native range (Goin 1947; Woolbright 1985).   

 At each point, the observer walked 25 m off of the road, listened for 5 minutes and 

considered a site occupied by the greenhouse frog or the coqui frog by the detection of 

the male breeding call of either species. To avoid observer bias, presence was determined 

by the same researcher for each survey point. Even though coqui calls can be heard over 

100 m, but because the greenhouse frog is only audible from a distance of 25 m (Olson, 

unpublished data), coqui presence was only documented if heard within a radius of 25 m 

from observer point, which was confirmed by walking to the calling frog.  We measured 

air temperature, relative humidity, and wind speed (maximum) using a portable weather 

device ( Kestrel 3000, Kestrel Meters, MI), and estimated sky conditions using a 

continuous classification code (0-clear skies, 1-broken/sky few clouds, 2-partly cloudy, 

3-overcast, 4-drizzle, 5-rain).      

 
Single-season, single species model 

 We used a single-season, single species model to conduct an exploratory analysis 

and estimate occupancy and detection probabilities for each frog species. Analysis was 

conducted in program Presence to estimate ψ, the probability of species occurrence at a 

site and p, the probability of detecting the species at that site, using maximum likelihood 

estimates, where 

 

ψi =
Occnaive

pi

, and Occnaive = proportion of total sites occupied by a 

species, or the naïve occupancy rate. Elevation (ELEV) in Hawaii (Fig. 3.1) was included 

as a site-specific covariate in determiningψ , to account for site variability. 

 We then developed models in a step-wise manner to account for factors that might 

lead to variation in detection probabilities (Tables C-1 and C-2). Model selection was 
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based on the corrected Akaike’s Information Criteria (AICc) and if overdispersion was 

detected in the most parameterized model (ĉ > 1), then the small-sized quasi-AIC 

(QAICc) was used. High estimates of p (> 0.7) were used to substantiate the ability to 

detect a species at that site (Brown 2007).  

 We identified three factors that might lead to these variations including 1) time, 2) 

environmental variables, and 3) detection of co-species.  

1) Time. We considered detection probabilities to be constant (.) or varying between the 

three surveys (t). Due to the duration of the surveys (e.g. two weeks for the first survey), 

we also considered temporal variation in detection probability by including linear (T) and 

quadratic (T2) time trends, coinciding with the first day of the survey, 02 May 2009, 

delineated as Day 1. 

2) Environmental variables. We explored the effect of four environmental covariates, air 

temperature (TEMP), relative humidity (RH), wind gust (WIND), and sky cover (SKY). 

To avoid problems with multicollinearity, we first determined that variables were 

independent and not correlated (rspearman < 0.5) using SAS v.9.1.3 for Windows (SAS 

Institute, Cary, North Carolina). We explored additive models with all possible 

combinations of the four variables for a total of 15 possible models. If eliminating a 

covariate led to a reduction in AICc we discarded the higher order model from our model 

set, until no additional covariates could be eliminated without leading to an increase in 

AICc (as in Pagano and Arnold 2009). Complex models with one additional covariate and 

ΔAICc < 2 were considered to have uninformative parameters and removed from the 

model set. 

3)  Detection of other species. Because we hypothesized that calling coqui frogs may 
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influence our ability to detect greenhouse frogs, but not vice versa, we explored the 

effect of the detection of the co-species on the top model (GHF for coquis, COQUI for 

greenhouse frogs). If the new model had a lower AICc, all models were then evaluated 

with the co-species covariate (an additional 14 models). Models with the co-species 

covariate that did not have a lower ΔAICc > 2 were discarded from the model set.  

 
Two species single-season model 

 We used a single season, two-species model to estimate occupancy and detection 

probabilities for both frog species and to evaluate whether the coqui call influenced the 

detection of the greenhouse frog. Analysis was also conducted in program Presence to 

estimate the following parameters:  ψ m, the probability a site is occupied by species m 

regardless of occupancy status of the other species, m
jρ , the probability of detecting 

species m, on the jth survey, given only species m is present at the site, and m
jr , the 

probability of detecting species m during the jth survey, given both species are present. 

 One of the benefits of using the two species model is the ability to explore species 

interactions using empirical model selection approaches with two additional species 

interaction parameters (or species interaction factors, SIF):ϕ , the ratio of how likely the 

species are to co-occur at a site compared to what would be expected under a hypothesis 

of independence, andδ , an interaction factor for detection probabilities given co-

occurrence. In our study, the occupancy interaction is expressed as CoGr

GrCo

ψψ
ψϕ = , where 

GrCoψ is the probability that the site is occupied by both greenhouse and coqui frogs. If ϕ  

is > 1, then the species tended to co-occur more often then expected than if they were 
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distributed independently. Similarly, CoGr

GrCo

rr
r

=δ , where GrCor  is the probability of 

detecting both species during a survey at a site where both species occur. If δ is < 1, then 

it is likely that observers were less likely to detect one species if the other species was 

heard during the same survey.  

 We first modeled the occupancy parameters as a function of elevation (ELEV), and 

detection parameters as a function of the covariates found in the single species model that 

were most significant (from the top model results) for greenhouse frogs (SKY) and for 

coquis (RH and WIND), removing covariates in a stepwise process as in the single-

species model method. We then examined if detection parameters varied by time with the 

top covariate model.  

 To explore our hypotheses about detection probabilities, the model was evaluated 

for ρ  = r  and ρ ≠ r for both frog species. First, because the coqui has a louder call, we 

expected the coqui to have higher detection probabilities than the greenhouse frog ( Coρ  > 

Grρ ). Second, we expected that given the presence of the coqui, detection probabilities of 

the greenhouse frog would be lower in sites without the coqui ( Grr  < Grρ ). Finally to 

examine species interactions, models with and without ϕ  and δ were evaluated, for a 

total of 28 models included in the analysis. Due to the number of parameters in two-

species modeling, complex models may be over-parameterized, (MacKenzie et al. 2006), 

and were removed from model results. The model with the lowest AICc was considered 

the top or best model of the models examined. 
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Results 

Study sites 

The elevation of study sites ranged from 13 m to 3386 m. Temperatures during 

data collection ranged from 4.9 to 29.5°C, with a mean of 21.8 ±  0.5 across all sites for 

all three surveys. Variation was greater between sites (SD ±  3.0) than between survey 

period at each site (mean SD of 1.4 ±  0.06). Humidity values ranged from 5.7 to 100 

with a mean of 88.2 ±  1.6, and variation was also greater between sites (SD ±  9.5) than 

between survey periods (8.0 ±  0.7). Wind gusts ranged from 0 to 54.9 kph, with a mean 

of 6.4 ±  0.8, and variation was greater between sites (SD ±  3.0) than between survey 

periods (2.0 ±  0.1). Mean sky conditions was 1.9 ±  0.1, and variation was greater 

between surveys at each site (1.3 ±  0.1) than between sites (SD ±  0.9).     

 
Single-season, single species model 

 We detected coqui frogs at 91 of the study sites (0.20), with 22 sites (24%) co-

occupied with the greenhouse frog. Estimated occupancy probability was 0.31 ±  0.04 

(Table 3.1). On the first survey, 83 sites (91.2% of total coqui sites) were positively 

identified with coqui frogs, six new sites (6.6% of total coqui sites) were identified on the 

second survey, and zero new sites were positively identified with coqui frogs on the third 

survey. Sites were mostly in lowland nonnative and native forests and agricultural lands 

on the eastern and southeastern sides of the island of Hawaii (see Fig. 3.1). The highest 

elevation coquis were detected was 737 m.                  

 Model selection results indicate that there is a time (t) effect in detection 

probability of the coqui (Table 3.2). Detection probabilities were highest for the second 
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survey, and lowest for the third survey (Table 3.1), and ranged across all study sites 

from 0.0001 ±  0.0002 to 0.92 ±  0.04 for the first survey, 0.0001 ±  0.0003 to 0.97 ±  

0.02 for the second survey, and 0.0001 ±  0.0001 to 0.87 ±  0.05 for the third survey. 

Detection probabilities > 0.7 were more frequent on the eastern side of the island (see 

Fig. 3.2). 

All of the top models supported the inclusion of WIND as a covariate (Table 3.2). 

The probability of detection of coqui frogs decreased with higher wind speeds, increased 

slightly with higher relative humidity, and decreased with elevation (Table 3.3). 

Variations in temperature, sky cover, and the detection of the greenhouse frog had little 

effect on coqui detection probabilities.  

  We detected the greenhouse frog at 61 of the sites (0.14), with coquis detected at 22  

of the greenhouse frog sites (36%). Estimated occupancy probability was 0.39 ±  0.08 

(Table 3.1). On the first survey, 46 sites (75.4% of total greenhouse frog sites) were 

positively identified with greenhouse frogs, four new sites (6.5% of total greenhouse frog 

sites) were identified on the second survey, and 12 new sites (19.6% of total greenhouse 

frog sites) were identified on the third survey. Sites were mostly in lowland native 

shrublands and forests, nonnative forests, agricultural lands, and pasture lands on the 

southwestern and eastern sides of the island of Hawaii (Fig. 3.1). The highest elevation 

greenhouse frogs were detected was 1115 m.  

 Model selection results indicate that detection probability increased over time 

(Tables 3.1 and 3.2). Detection probabilities across all study sites ranged from 0.15 ±  

0.04 to 0.60 ±  0.12 for the first survey, 0.18 ±  0.05 to 0.66 ±  0.11 for the second 

survey, and 0.34 ±  0.07 to 0.81 ±  0.08 for the third survey. Detection probabilities > 0.7  
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Table 3.1  Mean individual covariate parameter estimates ( ± SE) and 95% confidence 
intervals from the top model for the single-season, single species models for the two 
Eleutherodactylus species, on the island of Hawaii, USA, 2009. 
 
Parameter E. coqui 95% confidence interval E. planirostris 95% confidence interval 

Model Model: Ψ (ELEV),p(t+RH+WIND) Model: Ψ (ELEV),p(t+SKY) 

Survey 1 p 0.58 (0.07) 0.44,0.72 0.24 (0.05) 0.15,0.36 

Survey 2 p 0.73 (0.08) 0.56,0.89 0.29 (0.06) 0.18,0.42 

Survey 3 p 0.50 (0.08) 0.34,0.66 0.48 (0.07) 0.33,0.62 

ψ 0.31 (0.04) 0.23,0.39 0.39 (0.08) 0.24,0.54 

 
 
Table 3.2  Set of top ten competing single-season single species models with selection 
and fit statistics for the two Eleutherodactylus species on the island of Hawaii, USA, 
2009. Model selection was based on AIC for E. coqui and QAICc for E. planirostris (ĉ = 
1.13). Models with lowest ΔAICc are considered the best. (AICc = small-sample size 
Akaike Information Criterion, wi = model weights, K = number of parameters). 
   

Model 
AICc/ 
QAICc ΔAICc wi 

Model 
likelihood K 

-2log 
(likelihood) 

E. coqui  
Ψ (ELEV),p(t+RH+WIND) 464.17 0.00 0.60 1.00 7 449.91 
Ψ (ELEV),p(t+WIND) 466.55 2.38 0.18 0.30 6 454.36 
Ψ (ELEV),p(t+TEMP+WIND+SKY) 467.33 3.16 0.12 0.21 8 451.00 
Ψ (ELEV),p(t+TEMP+WIND) 467.88 3.71 0.09 0.16 7 453.62 
Ψ (ELEV),p(t+TEMP+RH+SKY) 487.10 22.93 0.00 0.00 8 470.77 
Ψ (ELEV),p(t+TEMP+RH) 489.59 25.42 0.00 0.00 7 475.33 
Ψ (ELEV),p(t+RH+SKY) 491.14 26.97 0.00 0.00 7 476.88 
Ψ (ELEV),p(t+SKY) 491.98 27.81 0.00 0.00 6 479.79 
Ψ (ELEV),p(t+TEMP+SKY) 493.25 29.08 0.00 0.00 4 485.16 
Ψ (ELEV),p(t+TEMP) 493.69 29.52 0.00 0.00 6 481.50 
       
E. planirostris  
Ψ (ELEV),p(t+SKY) 452.84 0.00 0.59 1.00 6 497.93 
Ψ (ELEV),p(t+RH+SKY) 454.88 2.04 0.21 0.36 7 497.91 
Ψ (ELEV),p(t+TEMP+WIND+SKY) 456.85 4.01 0.08 0.13 8 497.79 
Ψ (ELEV),p(t+RH+WIND+SKY) 456.95 4.11 0.08 0.13 8 497.90 
Ψ (ELEV),p(t+TEMP+RH+WIND+SKY) 458.93 6.09 0.03 0.05 9 497.79 
Ψ (ELEV),p(t) 462.43 9.59 0.00 0.01 5 511.09 
Ψ (ELEV),p(t+RH) 463.66 10.82 0.00 0.00 6 510.16 
Ψ (ELEV),p(t+ WIND) 464.07 11.23 0.00 0.00 6 510.62 
Ψ (ELEV),p(t+TEMP) 464.42 11.58 0.00 0.00 6 511.02 
Ψ (ELEV),p(t+RH+WIND) 465.41 12.57 0.00 0.00 7 509.81 
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Fig. 3.2  Detection probabilities for each sample point for a) Eleutherodactylus coqui and 
b) E. planirostris for the three surveys on the island of Hawaii, USA, 2009. Small white 
circles indicate a detection probability < 0.7, large white circles indicate a detection 
probability ≥ 0.7. Black circles indicate that the species was detected as present at 
sampled point.   
 

a) b) 
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Table 3.3  Untransformed parameter estimates and 95% confidence intervals for 
explanatory variables from the two highest ranked (lowest ΔAICc/QAICc) single-season, 
single species models for the two Eleutherodactylus species, on the island of Hawaii, 
USA, 2009.   
 

Covariate Estimate 95% confidence interval 
 

Estimate 
 

95% confidence interval 
E. coqui Model: Ψ (ELEV),p(t+RH+WIND) Model: Ψ(ELEV),p(t+WIND) 
 Occupancy probability   
  Intercept (Ψ) 0.73 0.14,1.33 0.59 0.05,1.12 
  ELEV -1.48 -1.96,-1.00 -1.38 -1.83,-0.93 

 
 Detection probability  
  p1 -1.41 -4.84,2.01 1.82 1.03,2.60 
  p2 -0.43 -4.18,3.32 2.92 1.85,3.99 
  p3 -1.89 -5.41,1.64 1.55 0.83,2.27 
  RH 0.04 0.00,0.08 - - 
  WIND -0.33 -0.46,-0.20 -0.34 -0.46,-0.21 

 
E. planirostris Model: Ψ (ELEV),p(t+SKY) Model: Ψ (ELEV),p(t+RH+SKY) 
 Occupancy probability      
  Intercept (Ψ) 0.43 -0.40,1.27 0.43 -0.41,1.27 
  ELEV -0.64 -1.04,-0.23 -0.64 -1.04,-0.24 

 
 Detection probability  
  p1 -1.75 -2.42,-1.08 -1.86 -2.80,-0.93 
  p2 -1.50 -2.17,-0.82 -1.61 -2.61,-0.61 
  p3 -0.68 -1.32,0.04 -0.79 -1.76,0.17 
  RH - - 0.00 -0.01,0.01 
  SKY 0.44 0.19,0.68 0.43 0.18,0.68 
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only occurred at 37 sites for the greenhouse frog (Fig. 3.2). 

The top 15 models all included the SKY covariate (Table 3.2). The probability of 

detection of greenhouse frogs increased with rainy conditions and decreased with 

elevation (Table 3.3). Models with the covariate for coqui detection did not have a ΔAICc 

< 2. Variations in relative humidity, temperature, and wind speeds had little effect on 

detection of the greenhouse frog.  

 
Single-season two species model 

 Models that included a covariate ELEV for ψCo and ψGr and the covariate RH for 

pCo and rCo were overparmeterized and removed from the model set. Models that included 

SKY for pGr and rGr and WIND for pCo and rCo were ranked higher than models without 

weather covariates (Table 3.4). Model selection results indicate that coquis and 

greenhouse frogs do not occur independently (Table 3.4), and indicate that the species are 

more likely to co-occur at a study site than would be expected by random chance (Table 

3.5). In addition, estimated occupancy rates for the greenhouse frog (0.35 ±  0.05) are not 

significantly different than estimated occupancy rates for the coqui (0.31 ±  0.03) (Table 

3.5).  Model results also indicate that the species are more likely to be detected together 

than independently (Table 3.4). 

 There was no time effect on the detection of the coqui in the two species model, 

and the probability of detecting the coqui when only the coqui is calling is equal to the 

probability of detecting the coqui when the greenhouse frog is calling (pCo = rCo, Table 

3.5). For the first two surveys, the probability of detecting the greenhouse frog is higher 

in sites where only the greenhouse frog is present than in sites where the coqui is first  

a) b) 
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Table 3.4  Set of top ten competing single-season two species models with selection 
and fit statistics for the two Eleutherodactylus species on the island of Hawaii, USA, 
2009. The best models are ranked top of the list. Absence of φ and δ implies no 
interaction in occupancy or detection probability (e.g., φ = 1 and/or δ = 1). Model 
selection was based on AIC. Models with lowest ΔAICc are considered the best. (Co = E. 
coqui, Gr = E. planirostris, AICc = small-sample size Akaike Information Criterion, wi = 
model weights, K = number of parameters). 
  

Model AICc ΔAICc wi 
Model 

likelihood K 
-2log 

(likelihood) 
ψGr,ψCo,φ,pGr(SKY), 
pCo(WIND)=rCo(WIND),rGr(t+SKY),δ 1052.29 0.00 0.43 1.00 12 1027.57 
ψGr,ψCo,pGr(t+SKY), 
pCo(WIND)=rCo(WIND),rGr(t+SKY),δ 1052.71 0.42 0.35 0.81 11 1030.10 
ψGr,ψCo,φ,pGr(SKY), 
pCo(WIND)=rCo(WIND),rGr(t+SKY) 1054.17 1.88 0.17 0.39 11 1031.56 
ψGr,ψCo,pGr(t+SKY), 
pCo(WIND)=rCo(WIND),rGr(t+SKY),δ(t) 1056.56 4.27 0.05 0.12 14 1027.59 
ψGr,ψCo,φ,pGr(t+SKY)=rGr(t+SKY), 
pCo(WIND)=rCo(WIND),δ 1065.69 13.40 0.00 0.00 10 1045.18 
ψGr,ψCo,φ,pGr(SKY)=rGr(SKY), 
pCo(WIND)=rCo(WIND),δ 1073.86 21.57 0.00 0.00 8 1057.53 
ψGr,ψCo,φ,pGr(SKY), pCo(WIND), 
rGr(SKY),rCo(WIND),δ 1075.35 23.06 0.00 0.00 12 1050.63 
ψGr,ψCo,φ,pGr(t+SKY), pCo(WIND), 
rGr (SKY),rCo(WIND),δ 1079.31 27.02 0.00 0.00 14 1050.34 
ψGr,ψCo,φ,pGr, pCo(WIND),rGr(SKY), 
rCo(WIND),δ 1084.55 32.26 0.00 0.00 11 1061.94 
ψGr,ψCo,φ,pGr(SKY)=pCo(WIND)= 
rCo(WIND),rGr (t+SKY), δ 1094.55 42.26 0.00 0.00 11 1071.94 
ψGr,ψCo,φ,pGr, pCo,rCo,rGr,δ 1107.14 54.85 0.00 0.00 8 1090.81 
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 Table 3.5  Mean individual covariate parameter estimates ( ± SE) and 95% confidence 
intervals from the top model for the single-season, two species model for the two 
Eleutherodactylus species on the island of Hawaii, USA, 2009. 
  
Model: ψGr,ψCo,φ,pGr(SKY),pCo(WIND)=rCo(WIND),rGr(t+SKY),δ 
Parameter Estimate 95% confidence interval 
ψGr 0.35 (0.05) 0.26,0.46 
ψCo 0.31 (0.03) 0.24,0.38 
φ  1.36 (0.24) 1.28,2.57 
pGr 0.41 (0.06) 0.29,0.53 
pCo 0.69 (0.05) 0.59,0.79 
rGr1 0.12 (0.06) 0.01,0.23 
rGr2 0.14 (0.08) 0.04,0.38 
rGr3 0.67 (0.15) 0.38,0.96 
rCo 0.69 (0.05) 0.59,0.79 
δ 1.12 (0.06) 1.11,1.37 

 

 
Table 3.6  Untransformed parameter estimates and 95% confidence intervals for 
explanatory variables from the two highest ranked (lowest ΔAICc) single-season, two 
species models for the two Eleutherodactylus species, on the island of Hawaii, USA, 
2009.   
 

Model: 
ψGr,ψCo,φ,pGr(SKY), 
pCo(WIND)=rCo(WIND),rGr(t+SKY),δ 

ψGr,ψCo,pGr(SKY),pCo(WIND) 
=rCo(WIND),rGr(t+SKY),δ 

Parameter Estimate 95% confidence interval Estimate 95% confidence interval 
 Occupancy probability   
ψGr -0.62 -1.06,-0.17 -0.60 -1.06,-0.15 
ψCo -0.81 -1.13,-0.49 -0.78 -1.11,-0.46 
φ  0.31 -0.04,0.66 - - 

 
 Detection probability  
pGr -1.15 -1.81,-0.49 -1.30 -1.93,-0.67 
pCo 1.80 1.19,2.42 1.78 1.19,2.38 
rGr1 -2.21 -3.42,-1.01 -1.92 -3.09,-0.74 
rGr2 -1.84 -3.21,-0.47 -1.66 -3.01,-0.32 
rGr3 0.48 -1.08,2.03 0.81 -0.73,2.35 
δ 0.11 0.01,0.22 0.11 0.00,0.22 
pGr CLOUD 0.55 0.21,0.88 0.55 0.23,0.87 
rGr  CLOUD 0.18 -0.26,0.61 0.15 -0.30,0.59 
pCo WIND -0.31 -0.44,-0.19 -0.32 -0.44,-0.20 
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detected (pGr > rGr, Table 3.5). By the third survey, 95% confidence intervals indicate 

that there is an overlap in the detection probability of the greenhouse frog whether or not 

the coqui is detected. Detection probabilities for the two species were considerably 

different, with a high and constant detection probability for the coqui, and a more 

variable, and overall lower detection probability of the greenhouse frog. 

 Overall, both the single-species and two-species models estimated occupancy 

probabilities slightly higher for the greenhouse frog than the coqui, and there is a greater 

discrepancy between naïve occupancy rates and estimated occupancy probabilities for the 

greenhouse frog than for the coqui. Lower detection probabilities of the greenhouse frog 

may contribute to this discrepancy (Bailey et al. 2009). 

 
Discussion 

 We determined that detection probabilities from a breeding call survey differed 

between the two introduced Eleutherodactylus species on the island of Hawaii. As 

expected, detection probabilities for the quieter greenhouse frog were low for the initial 

surveys and improved over time. Although coqui detection probabilities were higher than 

those for the greenhouse frog, probabilities varied amongst the three surveys, and were 

lower than expected on the first and third survey. The ability to detect greenhouse frogs 

was lower in the presence of calling coqui while calling greenhouse frog had no effect on 

the ability to detect the coqui. Contrary to our predictions that the two species 

distributions would be independent, we found that the two species were more likely to 

co-occur at our sampled sites. 

 In the single-species model, detection of the coqui was highest on the second 
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survey (0.73) and lowest on the third survey (0.50) which suggests that the detection 

probability of the coqui did not increase over the three surveys, but was affected by 

individual site covariates during each survey. More specifically, sites with the lowest 

detection probabilities were also sites that had the highest wind speeds and lowest 

relative humidity. Interestingly, sites with low detection probabilities on the second 

survey were in areas with the lowest predicted distribution potential of the coqui (Bisrat 

2010). We suggest we found low detection rates in areas that are less likely to be invaded 

by coqui because these areas have weather conditions that do not encourage coqui 

calling.  

 Other studies support that coquis reduce calling in lower humidity and higher wind 

speeds (Pough et al. 1983), but that calling is not influenced by temperature and cloud 

cover (Townsend and Stewart 1986). Coquis are highly susceptible to water loss and 

decreased cutaneous respiration (Rogowitz et al. 1999) and, because they call from mid-

to-upper level forest canopies, are more exposed to dry conditions from increased wind 

speeds and low humidity than species that call from the forest floor (Pough et al. 1983). It 

should be noted that the two-species model was over-parameterized when we included a 

covariate for relative humidity on the detection of the coqui. It is possible that the 

variation in coqui detection probability due to differences in relative humidity was not 

captured in the two-species model due to the complexity of the two-species model and 

the small effects this parameter had on coqui detection probability (MacKenzie et al. 

2004). 

 Detectability of the greenhouse frog was especially low during the first and second 

surveys and improved significantly by the third survey. Thus, unlike the coqui, detection 
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improved by repeated visits to sites and this suggests multiple visits to sites are needed 

to determine if a site is occupied (MacKenzie et al. 2002). As expected, detection 

probabilities were lower for the greenhouse frog than for the coqui, although not 

significantly by the third survey. This difference for the first two surveys may be due to 

the loud call of the coqui. Alternatively, differences in detection probabilities may result 

if populations of greenhouse frogs are smaller than coqui populations at the sample sites. 

Higher abundances are more likely to result in higher detection probabilities, particularly 

when sampled populations are small (e.g.  < 10) (MacKenzie et al. 2006), and density 

estimates of the coqui range from 2,200 – 91,000 frogs ha-1 (Beard et al. 2008; 

Woolbright et al. 2006), while greenhouse frogs have been estimated at 12,500 frogs ha-1 

at one site (Chapter 2).  

 Increased detection of the greenhouse frog on the third survey may be a result of 

different local weather conditions for each site and survey. For example, higher wind 

speeds and increased cloud cover on the third survey may have increased the number of 

sites where greenhouse frogs were calling and decreased the number of sites where the 

coquis were calling, allowing the observer to better detect greenhouse frogs. Results were 

consistent with other studies suggesting that greenhouse frogs increase calling activity 

during overcast skies and after recent rain (Goin 1947; Meshaka and Layne 2005).  

 The single and two-species models differed in the inclusion of the effect of coqui 

on greenhouse frog detectability. The presence of calling coqui on the detectability of the 

greenhouse frog was only slightly supported in the single-species model. This may be 

because in the single-species model, the covariate for presence of calling coqui does not 

account for false absences. In the two single species models, greenhouse frog detection 
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was lower in the presence of calling coqui. This was not unexpected because the 

coqui’s louder call was thought to potentially mask the greenhouse frog’s call. Results 

support our hypothesis that the presence of the greenhouse frog did not have an effect on 

the detection of the coqui.      

 In our two species model, the interaction factor for detection probabilities suggests 

that we were more likely to detect both species at sites where they both occur than to not 

detect a species if the other was present (MacKenzie et al. 2004). In their native ranges, 

there are often multiple Eleutherodactylus species calling at breeding sites. Frequency 

and temporal partitioning of calls is used to distinguish species in multi-species 

assemblages (Bourne and York 2001; Drewry and Rand 1983). Given the difference in 

call type (the two note call of the coqui versus the trill of the greenhouse frog), the coqui 

and the greenhouse frog may not competing for audio exposure and, their calls may be 

easily distinguished by the females of each species. 

 The estimated occupancy probabilities for both species overlap and, thus, are not 

significantly different between the two species. In other words, the total number of sites 

occupied by the greenhouse frog and by the coqui on the island of Hawaii appears 

similar. Our occupancy probabilities are only based on audio detection, and the survey 

method may be biased towards one species. In addition our data are from only one 

breeding season, and different factors may affect both species in other years. Although 

we attempted to account for possible variables that would influence the ability to detect 

the species, there may be other factors influencing whether frogs were calling at the time 

of our visit to a study site. We cannot account for this, and as a result, these occupancy 

estimates are conservative and may be biased towards one species.  



 87 
 Elevation had a similar effect on the likelihood of sites being occupied by both 

species, which was expected given that both species were introduced to lowland sites and 

are likely to be limited by climatic conditions at high elevations (Kraus and Campbell 

2002). Coquis have been found up to 1,200 m (Hawaii Invasive Species Council 2007), 

higher than our maximum elevation record for this study (740 m), and close to the 

maximum elevation of detected greenhouse frogs in this study (1,100 m). It is unknown if 

the frogs may be limited to areas < 1,200 m or if they have not yet spread to higher 

elevation sites (Bisrat 2010; Rödder and Lötters 2010).  

 The two-species model suggests that the coqui and greenhouse frog were more 

likely to be found at the same sites than different sites (MacKenzie et al. 2004). This 

contradicted our expectation that the distributions of these species would be independent, 

given that individuals of both species are randomly introduced to new sites (Kraus and 

Campbell 2002; Peacock et al. 2009). One possible explanation is their similar mode of 

spread across the island through the sale and transport of nursery plants and via vehicular 

traffic (Kraus and Campbell 2002; Peacock et al. 2009). In addition, initial introductions 

may have been to the same areas: nurseries, plant retailers, and surrounding areas as well 

as roadsides, residential areas, and resorts. Finally, it is possible that both the coqui and 

the greenhouse frog are now spreading to new sites via natural means, and that because 

there is some overlap in their preferred habitat, including human altered areas (Beard et 

al. 2009, Chapter 1), they are more likely to occur in the same locations. 

Our study supports the possibility that the perception of the coqui being more 

widespread than the greenhouse frog may be due to the ease in detecting the coqui. One 

of the most important impacts of the coqui invasion is the noise nuisance (Raloff 2003) 
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and the resulting economic losses to home owners (Kaiser and Burnett 2006). This 

impact is not realized for the quieter greenhouse frog. Other invasive species like the 

greenhouse frog initially may be overlooked until the number of infested habitats and 

population densities are too high to begin feasible population control measures (Bomford 

and Obrien 1995). Our results emphasize the need for early detection methods of invasive 

species using surveys appropriate for detecting that species.  

Because detection of both species was < 1, our study suggests that occupancy 

modeling is necessary to determine the distribution of both the coqui and the greenhouse 

frog, using a form of replicated sampling with population closure (MacKenzie 2005). 

Multiple visits to sites improved the detection probability of the greenhouse frog. Thus, 

either multiple surveys to sites or additional methods of species detection such as visual 

encounter surveys or trapping is necessary to determine if a site is occupied, although 

these methods are more labor-intensive. Because the greenhouse frog appears to be as 

widespread as the coqui, we recommend that research be conducted to investigate its 

impacts ecologically to determine whether control efforts should also be aimed at this 

species. 
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CHAPTER 4 

CONCLUSIONS 

 
Major conclusions 

This study was the first to examine the ecology and distribution of the greenhouse 

frog in Hawaii. We found that its diet predominantly consisted of leaf litter invertebrates 

and that the frog predominantly foraged in the leaf litter. Invertebrate orders with native 

species most at risk of predation include Acari, Araneae, Collembola, Coleoptera, 

Diptera, and Psocoptera. Only Formicidae was found in a greater proportion in the 

stomach contents than what was available in the environment. A total population estimate 

of 12,500 frogs ha-1 was determined at one study site. With these high densities and large 

number of prey consumed, the greenhouse frog may consume up to 129,000 invertebrates 

ha-1 night-1. 

Distribution results suggest that the greenhouse frog is found mostly in lowland 

areas, including native shrublands and forests, nonnative forests, agricultural lands, and 

pasture lands on the southwestern and eastern sides of the island of Hawaii. Detection 

probabilities were low on the first two surveys and improved by the third survey. Our 

study suggests that occupancy modeling is necessary to determine the distribution of the 

greenhouse frog on the island of Hawaii. 

 
Future studies 

A systematic distribution study on the other islands would be important to 

determine the extent of the greenhouse frog invasion in Hawaii. There were more 

recorded locations of the greenhouse frog on Kauai, Maui, and Oahu (Chapter 1) than on 
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Hawaii prior to our distribution study of the greenhouse frog. Because the coqui has 

mostly been eradicated on the other islands (Kraus and Duffy 2010), greenhouse frog 

detection probabilities may be higher on the other islands. The greenhouse frog may also 

have a wider distribution on these islands given the greater extent of low and high 

intensity developed areas (Chapter 1).             

Because our research was focused only on the island of Hawaii, we are unable to 

extrapolate our results to other islands of the Hawaiian archipelago. Diets may be 

different if the greenhouse frog is found in different habitats or if available prey is 

different on other islands. Additional studies on its diets and densities on the islands of 

Kauai, Maui, and Oahu are recommended to fully characterize the ecology of the 

greenhouse frog in Hawaii.  

In addition, this study only included a density estimate from one site on the island 

of Hawaii. As population studies of other Eleutherodactylus in Hawaii have shown, 

densities can vary greatly among sites (Woolbright et al. 2006, Beard et al. 2008). It is 

possible that at higher densities, greenhouse frogs may consume more invertebrates, or 

densities may be limited by available prey. Further studies into the population dynamics 

of greenhouse frogs would provide many insights into the invasion of this species. 

Because there is little information available on the diet and densities from Cuba, 

we are unable to compare our results in Hawaii to their native range. We do know that E. 

coqui, can consume more prey items per ha (Stewart and Woolbright 1996) and can have 

higher densities (Woolbright 2005, Woolbright et al. 2006) in Hawaii than in its native 

Puerto Rico (Woolbright et al. 2006, Beard 2007, Beard et al. 2008), which may also be 

true for the greenhouse frog. Comparative studies with its native range would provide 
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important information on the adaptability of the greenhouse frog and its niche breadth, 

and may provide insight into its ability to successfully establish populations in areas 

outside of its native range. 

One problem with our study is that we do not know our site conditions prior to the 

greenhouse frog invasion. Diets might reflect what they are consuming now, but not what 

they were consuming when they first invaded a site. There already may have been 

reductions in primary prey prior to greenhouse frog introduction. In addition, many of the 

invertebrates found in the diet play an important role in ecosystem processes such as 

herbivory and decomposition of plant material. In Hawaii, Sin et al. (2008) used a small-

scale enclosure experiment to test the effects of nonnative coqui on plant growth and leaf 

litter decomposition rates. They found that plant growth and leaf litter decomposition 

rates were higher in enclosures with the nonnative coqui than without, mostly by 

consuming invertebrates and increasing the amount of available nutrients through 

excrement and not by reducing populations of herbivore and detritivore invertebrates. An 

experiment investigating invertebrates and ecosystem processes on both sides of the 

invasion front could address these questions.    

Finally, our results from the distribution study indicate that there are sites where 

the greenhouse frog and coqui co-occur, and there may be complex species interactions 

between the species. The greenhouse frog is predominantly terrestrial in Hawaii (Chapter 

2), while the coqui is also terrestrial but is much more frequently observed on vegetation 

(Beard 2007). Although both species are in the genus Eleutherodactylus, the greenhouse 

has recently been classified in the subgenus Euhyas while the coqui has been classified in 

the subgenus Eleutherodactylus (Hedges et al. 2008). These classifications are based on 
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geographical divisions, with Euhyas from the Western Caribbean (i.e. Cuba) having 

smaller toe pads and more terrestrial behaviors than Eleutherodactylus from the Eastern 

Caribbean (i.e. Puerto Rico) (Hedges et al. 2008). Future studies should investigate if the 

two species use different niches in their invaded habitats and are not in competition for 

prey, nesting sites, or daytime retreat sites.  It is also possible that the two species 

compete for prey where they co-occur, and that in the presence of greenhouse frogs, the 

coqui is able to exploit more herbaceous and or flying invertebrates like it does in its 

native Puerto Rico (Stewart and Woolbright 1996). Alternatively, densities of either 

species may be lower where they do co-occur because of competition for resources. 

Studies comparing diet and densities in sites where they co-occur with only one invaded 

species would provide insight on how similar species adapt to and impact invaded 

ecosystems.    
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Fig. A-1.  Total prey volume consumed by snout-vent-length (SVL) for a) total 
population (n=427) b) preadults (n=151) c) males (n=100), and d) females (n=176) for 
Eleutherodactylus planirostris collected from 10 study sites on the island of Hawaii, 

USA, 2009 (R2 = 0.20, F1,423 = 103.7, P < 0.0001, iXY )04.1(34.1 +=
∧

).   
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Table A-1.  Percent of items consumed, by site, by Eleutherodactylus planirostris, 
collected from 10 sites on the island of Hawaii. *Mean values with same lower case letter 
are not significantly different when comparing across sites (Tukey-Kramer comparisons 
of means, P < 0.05). 

Prey category 

 
KL 
(n=53)  

 
KM 
(n=49)  

 
KP 
(n=29)  

 
ML 
(n=49)  

 
MS 
(n=50) 

 
PH 
(n=49)  

 
PN 
(n=34)  

 
PP 
(n=34)  

 
WF 
(n=48)  

 
WR 
(n=32)  

Anura  

 Tissue 0.00a 0.00a 0.00a 0.06a 0.00a 0.00a 0.00a 0.00a 0.00a 0.43a 

 Eggs 0.14a 0.00a 0.00a 0.00a 0.00a 0.00a 0.00a 0.18a 0.00a 0.00a 

Arachnida  

 Acari 25.00a 24.21ab 12.81b 6.12ab 28.62ab 33.14a 27.61a 16.52a 8.55a 10.26ab 

 Araneae 6.28ab 5.20ab 5.85a 2.46ab 1.74ab 1.54b 5.72ab 3.91ab 2.80ab 5.13ab 

 Pseudoscopiones 3.69a 1.13a 2.23a 0.00a 1.23a 1.22a 1.00a 0.00a 0.00a 0.00a 

Chilopoda 0.55ab 1.81a 1.11ab 0.13b 1.33ab 1.09ab 2.24ab 1.60ab 1.56ab 1.71ab 

Diplopoda 0.68a 0.90a 0.28a 0.00a 0.51a 0.38a 0.00a 0.53a 0.16a 0.85a 

Pauropoda 0.00a 0.00a 0.56a 0.00a 0.51a 0.00a 0.25a 0.00a 0.00a 0.00a 

Gastropoda 0.00a 0.00a 0.00a 0.38a 0.10a 0.06a 0.25a 1.42a 0.00a 0.00a 

Insecta  

 Coleoptera  

  Adult 2.05ab 3.17a 1.67ab 1.26ab 0.51ab 1.28ab 2.49ab 6.75a 1.40b 1.28ab 

  Larvae 0.00a 0.00a 0.00a 0.06a 0.10a 0.00a 0.00a 0.36a 0.16a 0.43a 

 Collembola 
14.75bc

d 6.79cd 31.20abc 9.09bcd 17.23bc 
12.35bc

d 6.72d 26.47ab 54.43a 40.17ab 

 Dermaptera 0.55a 0.68a 1.11a 0.32a 0.10a 0.26a 0.50a 2.49a 0.00a 0.00a 

 Diptera  

  Adult 1.50a 2.71a 2.23a 1.77a 3.08a 0.58a 1.74a 5.68a 0.93a 2.14a 

  Larvae 0.68a 0.00a 0.00a 0.00a 0.00a 0.06a 0.00a 0.36a 0.00a 0.00a 

 Egg mass 0.41a 0.23a 0.84a 0.13a 0.21a 0.83a 0.00a 0.18a 0.16a 0.85a 

 Hemiptera  

  Auchenorrhyncha 0.82`a 0.23a 0.00a 0.25a 0.10a 0.32a 0.00a 0.53a 0.47a 0.00a 

  Heteroptera 1.91ab 0.23c 0.28bc 1.52abc 3.28ab 0.58abc 1.99ab 1.24abc 0.78c 4.70a 

  Sternorrhyncha 0.27a 0.45a 2.79a 2.15a 0.10a 1.09a 0.25a 0.36a 0.31a 0.85a 

 Hymenoptera 0.55a 1.13a 0.84a 0.32a 0.72a 0.19a 0.50a 0.18a 0.00a 0.00a 

   Formicidae 16.39b 27.60ab 32.03ab 64.84a 29.64ab 39.41a 36.07ab 5.33c 7.62c 17.95bc 

 Lepidoptera larvae 0.27a 0.00a 0.28a 0.00a 0.00a 0.06a 0.00a 1.78a 1.24a 0.85a 

 Neuroptera 0.27a 0.00a 0.00a 0.00a 0.00a 0.06a 0.00a 0.00a 0.00a 0.00a 

 Orthoptera 0.00a 0.45a 0.00a 0.00a 0.00a 0.00a 0.00a 0.18a 0.00a 0.00a 

 Other larvae 0.41a 0.00a 0.28a 0.06a 0.21a 0.45a 1.24a 0.36a 0.31a 0.43a 

 Psocoptera 0.82ab 0.00ab 0.84ab 6.94a 3.90a 0.96ab 0.00ab 0.36b 0.47b 0.43ab 

 Pupa 0.00a 0.00a 0.00a 0.00a 0.00a 0.06a 0.25a 0.00a 0.00a 0.00a 

 Thysanoptera 0.14a 0.23a 0.56a 0.25a 0.10a 0.26a 0.00a 0.53a 0.00a 0.43a 

Malacotraca           

 Amphipoda 0.00b 4.52a 1.11ab 0.63ab 0.31ab 0.19b 0.25ab 0.00b 5.75ab 2.99ab 

 Isopoda 20.63a 16.29a 0.56d 1.07cd 5.74ab 3.07bc 10.95ab 20.07a 12.13a 8.12ab 

Oligochaeta 0.00a 0.00a 0.00a 0.00a 0.00a 0.00a 0.00a 0.18a 0.00a 0.00a 
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Table A-2.  Mean volume consumed, by site, by Eleutherodactylus planirostris, 
collected from 10 study sites on the island of Hawaii. *Mean values with same lower case 
letter are not significantly different when comparing across sites (Tukey-Kramer 
comparisons of means, P<0.05). 

Prey category 

 
KL 
(n=53)  

 
KM 
(n=49)  

 
KP 
(n=29)  

 
ML 
(n=49)  

 
MS 
(n=50) 

 
PH 
(n=49)  

 
PN 
(n=34)  

 
PP 
(n=34)  

 
WF 
(n=48)  

 
WR 
(n=32)  

Anura  

 Tissue 0.00a 0.00a 0.00a 5.87a 0.00a 0.00a 0.00a 0.00a 0.00a 4.79a 

 Eggs 0.07a 0.00a 0.00a 0.00a 0.00a 0.00a 0.00a 0.25a 0.00a 0.00a 

Arachnida  

 Acari 24.0bcd 15.3cde 5.2de 10.6cde 31.0bc 59.9a 11.1cde 28.6ab 13.0bcd 3.4e 

 Araneae 22.4a 16.9a 14.6a 65.4a 9.0a 20.1a 31.8a 14.9a 20.3a 12.0a 

 Pseudoscopiones 32.2ab 15.2bc 7.2abc 0.0c 22.1abc 43.0a 2.2bc 0.0c 0.0c 0.0c 

Chilopoda 61.8ab 16.2ab 8.4ab 3.4b 129.6ab 141.0a 35.4ab 163.4ab 41.4ab 21.9ab 

Diplopoda 79.1a 2.4ab 3.4ab 0.0b 12.0ab 8.6ab 0.0ab 4.5ab 5.2ab 1.6ab 

Pauropoda 0.0a 0.0a 1.1a 0.0a 11.3a 0.0a 0.8a 0.0a 0.0a 0.0a 

Gastropoda 0.0ab 0.0ab 0.0ab 15.6ab 3.8ab 0.2ab 0.6ab 11.3a 0.0b 0.0ab 

Insecta  

 Coleoptera  

  Adult 123.9bc 37.4bc 13.1bc 180.4ab 9.2bc 31.3bc 40.7bc 239.6a 11.3c 33.5bc 

  Larvae 0.0a 0.0a 0.0a 0.7a 1.3a 0.0a 0.0a 23.6a 8.1a 0.3a 

 Collembola 30.5cde 9.4e 28.2bcde 41.1bcd 37.9bc 26.3bcde 6.2de 55.8b 228.5a 21.3bcde 

 Dermaptera 100.7ab 14.7ab 78.6ab 105.6ab 12.4b 4.6b 27.2ab 319.1a 0.0b 0.0b 

 Diptera  

  Adult 275.6b 13.0b 15.9b 26.8b 12.1b 5.0b 17.2b 556.9a 36.8b 49.4b 

  Larvae 2.4a 0.0a 0.0a 0.0a 0.0a 0.2a 0.0a 0.2a 0.0a 0.0a 

 Egg mass 1.0a 0.0a 0.5a 0.1a 0.1a 2.3a 0.0a 0.5a 0.0a 0.6a 

 Hemiptera  

  Auchenorrhyncha 11.8a 2.1a 0.0a 8.4a 1.2a 2.0a 0.0a 8.3a 6.7a 0.0a 

  Heteroptera 159.6ab 19.9bc 1.2bc 78.0bc 342.8a 133.5ab 97.9ab 129.7bc 32.4c 79.9c 

  Sternorrhyncha 0.2b 2.7b 1.1ab 8.6a 0.4b 4.8b 0.5b 0.8b 0.4b 0.9b 

 Hymenoptera 6.5a 2.4a 2.1a 1.6a 6.3a 5.6a 0.4a 30.7a 0.0a 0.0a 

   Formicidae 54.7cde 56.1cde 43.7cde 703.5ab 1401.3a 300.1bc 175.1bcd 14.0de 20.7e 29.3cde 

 Lepidoptera larvae 3.6b 0.0b 0.3b 0.0b 0.0b 0.2b 0.0b 262.2a 69.0b 10.7b 

 Neuroptera 0.9a 0.0a 0.0a 0.0a 0.0a 0.1a 0.0a 0.0a 0.0a 0.0a 

 Orthoptera 0.0a 108.2a 0.0a 0.0a 0.0a 0.0a 0.0a 8.1a 0.0a 0.0a 

 Other larvae 1.9a 0.0a 0.1a 0.7a 2.0a 1.4a 4.2a 22.7a 0.7a 0.1a 

 Psocoptera 28.5bc 0.0c 3.1bc 64.1a 16.5b 6.4bc 0.0bc 0.4c 6.8c 0.1bc 

 Pupa 0.0a 0.0a 0.0a 0.0a 0.0a 0.1a 0.2a 0.0a 0.0a 0.0a 

 Thysanoptera 0.2a 0.1a 0.5a 0.5a 0.0a 0.3a 0.0a 0.2a 0.0a 0.0a 

Malacotraca  

 Amphipoda 0.0c 134.3ab 12.2bc 45.4bc 1.4c 6.1bc 9.2bc 0.0c 409.7a 109.4abc 

 Isopoda 100.7bc 91.7bc 3.7c 35.5c 48.9c 34.1bc 32.1bc 155.2a 76.6b 21.9bc 

Oligochaeta 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 23.4a 0.0a 0.0a 
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Table A-3.  Eleutherodactylus planirostris prey selection of invertebrates by 
collection method, using Jacobs Prey Electivity Formula from ten study sites on the 
island of Hawaii, USA, in 2009.  Prey categories > 2% of the total stomach contents and 
environmental sample are shown.   
 
Prey category Leaf litter 
Acari -0.6800 
Amphipoda 0.3126 
Araneae 0.5898 
Collembola 0.1047 
Diptera - 
Formicidae 0.7455 
Hymenoptera - 
Isopoda 0.1088 
Psocoptera - 
Sternorrhyncha  0.2109 
Thysanoptera  - 

 
 
Table A-4.  Five highest ranked models for Eleutherodactylus planirostris mark-
recapture study at site Keaau Macadamia Orchard (KM), island of Hawaii, USA, in 2009.    
 

Model BIC ΔBIC 
BIC 

weights 
Model 

likelihood 
Number 

parameters Deviance 
p(SVL) = c(SVL) 4188.53 0.00 0.76 1.00 2 4171.67 
p(g+SVL) = c(g+SVL) 4191.47 2.94 0.18 0.23 3 4166.18 
p(SVL) = c(SVL), c(toes) 4194.03 5.50 0.05 0.06 3 4168.74 
p(g+SVL) = c(g+SVL), c(toes) 4197.29 8.77 0.01 0.01 4 4163.58 
p(g) = c(g) 4199.68 11.15 0.00 0.00 2 4182.82 
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Table A-5.  Minimum, maximum and average temperature (Temp) and relative 
humidity (Rh), sky cover, number of preadults, number of adults, and preadult to adult 
ratio for each day of the seven day survey period for the Eleutherodactylus  planirostris 
mark- recapture study at site Keaau Macadamia Orchard (KM), island of Hawaii, USA, 
2009.   
 

Day 

Min 
temp 
(°C)  

Max 
temp 
(°C) 

Ave 
temp  
(°C) 

Min 
Rh 

Max 
Rh 

Ave 
Rh 

Sky 
cover 

Pre-
adults Adults 

Preadult 
to adult 
ratio 

1 20.19 21.33 20.71 101.90 103.70 102.85 drizzle 204 117 1.74 
2 20.19 22.48 20.71 94.50 103.90 101.89 cloudy 145 101 1.44 
3 20.95 22.86 21.78 93.80 101.90 99.49 clear 160 159 1.01 
4 19.42 22.09 20.19 92.20 102.50 99.21 clear 130 117 1.11 
5 19.81 23.24 21.09 87.10 99.60 96.05 clear 138 135 1.02 

6 19.81 22.86 21.16 88.40 99.90 96.25 
partly 
cloudy 155 141 1.10 

7 19.42 23.24 21.30 85.40 98.90 94.51 
partly 
cloudy 145 157 0.92 
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Table B-1.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Acari per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 33.1 <0.0001 
Site 9 413 10.6 <0.0001 

 
 
Table B-2.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Amphipoda per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 0.3 0.7479 
Site 9 413 3.1 0.0015 

 
 
Table B-3.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Araneae per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 2.5 0.0861 
Site 9 413 1.7 0.0946 

 
 
Table B-4.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Chilopoda per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 1.8 0.1745 
Site 9 413 1.8 0.0619 

 
 
 
 
 



 107 
Table B-5.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Coleoptera per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 6.0 0.0026 
Site 9 413 2.8 0.0035 

 
 
Table B-6.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Collembola per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 8.8 0.0002 
Site 9 413 12.4 <0.0001 

 
 
Table B-7.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Diptera per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 3.4 0.0193 
Site 9 413 4.8 0.0639 

 
 
Table B-8.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Hemiptera: Heteroptera per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 11.7 <0.0001 
Site 9 413 3.2 0.001 
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Table B-9.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (9 levels) on total 
number of Hymenoptera: Formicidae per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 350 4.1 0.0180 
Site 8 350 15.7 <0.0001 
Stage class*Site 16 350 3.2 <0.0001 

 
 
Table B-10.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (9 levels) on total 
number of Isopoda per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 350 0.0 1 
Site 8 350 2.6 0.0101 
Stage class*Site 16 350 1.8 0.0255 

 
 
Table B-11.  Model results of two-way factorial ANOVA with negative binomial 
distribution to estimate the effect of stage class (3 levels) and site (10 levels) on total 
number of Psocoptera per stomach. 
  

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 2.6 0.075 
Site 9 413 8.4 <0.0001 

 
 
Table B-12: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Acari volume per stomach.  Volume data were 
log transformed to meet necessary model assumptions of normality and homogeneity of 
variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 18.9 <0.0001 
Site 9 413 9.6 <0.0001 
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Table B-13: Model results of two-way factorial ANOVA to estimate the effect of 
stage class (3 levels) and site (10 levels) on total Amphipoda volume per stomach.  
Volume data were log transformed to meet necessary model assumptions of normality 
and homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 0.7 0.5134 
Site 9 413 5.5 <0.0001 

 
 
Table B-14: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Araneae volume per stomach.  Volume data 
were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 0.7 0.5134 
Site 9 413 5.5 <0.0001 

 
 
Table B-15: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Chilopoda volume per stomach.  Volume data 
were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 2.4 0.937 
Site 9 413 1.6 0.1031 

 
 
Table B-16: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Coleoptera volume per stomach.  Volume data 
were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 11.7 <0.0001 
Site 9 413 4.5 <0.0001 

 
 



 110 
 
Table B-17: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Collembola volume per stomach.  Volume 
data were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 2.0 0.1311 
Site 9 413 19.2 <0.0001 

 
 
Table B-18: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Dermaptera volume per stomach.  Volume 
data were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 5.0 0.0069 
Site 9 413 2.5 0.0077 

 
 
Table B-19: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Diplopoda volume per stomach.  Volume data 
were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 2.4 0.0965 
Site 9 413 1.7 0.0871 

 
 
Table B-20: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Diptera volume per stomach.  Volume data 
were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 3.4 0.362 
Site 9 413 4.8 <0.0001 
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Table B-21: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Hemiptera: Heteroptera volume per stomach.  
Volume data were log transformed to meet necessary model assumptions of normality 
and homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 24.7 <0.0001 
Site 9 413 4.1 <0.0001 

 
 
Table B-22: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Hymenoptea: Formicidae volume per 
stomach.  Volume data were log transformed to meet necessary model assumptions of 
normality and homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 350 4.3 0.0142 
Site 8 350 8.7 <0.0001 
Stage class*Site 16 350 3.6 <0.0001 

 
 
Table B-23: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Isopoda volume per stomach.  Volume data 
were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 350 1.4 0.2616 
Site 8 350 4.4 <0.0001 
Stage class*Site 16 350 3.1 <0.0001 
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Table B-24: Model results of two-way factorial ANOVA to estimate the effect of 
stage class (3 levels) and site (10 levels) on total Lepidoptera larvae volume per stomach.  
Volume data were log transformed to meet necessary model assumptions of normality 
and homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 2.4 0.0945 
Site 9 413 6.0 <0.0001 

 
 
Table B-25: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Orthoptera volume per stomach.  Volume data 
were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 1.8 0.1698 
Site 9 413 1.0 0.4517 

 
 
Table B-26: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Pseudoscorpiones volume per stomach.  
Volume data were log transformed to meet necessary model assumptions of normality 
and homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 1.3 0.2673 
Site 9 413 5.0 <0.0001 

 
 
Table B-27: Model results of two-way factorial ANOVA to estimate the effect of stage 
class (3 levels) and site (10 levels) on total Psocoptera volume per stomach.  Volume data 
were log transformed to meet necessary model assumptions of normality and 
homogeneity of variance. 
 

Effect 
Num  
DF Den DF F Value Pr > F 

Stage class 2 413 4.0 0.02 
Site 9 413 8.6 <0.0001 
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Table C-1.  Set of all competing single-season, single species models for 
Eleutherodactylus coqui from the island of Hawaii, USA, 2009. (AICc = small-sample 
size Akaike Information Criterion, wi = model weights, K = number of parameters).    
  

Model AICc ΔAICc wi 
Model 

likelihood K 
-2log 

(likelihood) 
Ψ(ELEV),p(t+RH+WIND+SKY) 463.80 0.00 0.18 1.00 8 447.47 
Ψ(ELEV),p(t+RH+WIND+SKY+GHF) 463.87 0.07 0.18 0.97 9 445.46 
Ψ(ELEV),p(t+TEMP+RH+WIND) 464.05 0.25 0.16 0.88 8 447.72 
Ψ(ELEV),p(t+RH+WIND) 464.17 0.37 0.15 0.83 7 449.91 
Ψ(ELEV),p(t+TEMP+RH+WIND+SKY) 464.17 0.37 0.15 0.83 9 445.76 
Ψ(ELEV),p(t+WIND+SKY) 465.71 1.91 0.07 0.38 7 451.45 
Ψ(ELEV),p(t+WIND) 466.55 2.75 0.05 0.25 6 454.36 
Ψ(ELEV),p(t+TEMP+WIND+SKY) 467.33 3.53 0.03 0.17 8 451.00 
Ψ(ELEV),p(t+TEMP+WIND) 467.88 4.08 0.02 0.13 7 453.62 
Ψ(ELEV),p(t+TEMP+RH+SKY) 487.10 23.30 0.00 0.00 8 470.77 
Ψ(ELEV),p(t+TEMP+RH) 489.59 25.79 0.00 0.00 7 475.33 
Ψ(ELEV),p(t+RH+SKY) 491.14 27.34 0.00 0.00 7 476.88 
Ψ(ELEV),p(t+ SKY) 491.98 28.18 0.00 0.00 6 479.79 
Ψ(ELEV),p(t+TEMP+SKY) 493.25 29.45 0.00 0.00 4 485.16 
Ψ(ELEV),p(t+TEMP) 493.69 29.89 0.00 0.00 6 481.50 
Ψ(ELEV),p(t+RH) 494.15 30.35 0.00 0.00 6 481.96 
Ψ(ELEV),p(t) 495.27 31.47 0.00 0.00 5 485.13 
Ψ(ELEV),p(.) 495.34 31.54 0.00 0.00 3 489.29 
Ψ(ELEV),p(T) 497.38 33.58 0.00 0.00 4 489.29 
Ψ(ELEV),p(T+T^2) 498.91 35.11 0.00 0.00 5 488.77 
Ψ(ELEV),p(t+WIND+SKY) 526.26 62.46 0.00 0.00 7 512.00 
Ψ(.),p(.) 564.41 100.61 0.00 0.00 2 560.38 
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Table C-2. Set of all competing single-season, single species models for 
Eleutherodactylus planirostris from the island of Hawaii, USA, 2009. (AICc = small-
sample size Akaike Information Criterion, wi = model weights, K = number of 
parameters).    
  

Model QAICc ΔQAICc wi 
Model 

likelihood K 
-2log 

(likelihood) 
Ψ(ELEV),p(t+SKY+COQUI) 452.65 0.00 0.18 1.00 7 495.39 
Ψ(ELEV),p(t+SKY) 452.84 0.19 0.17 0.91 6 497.93 
Ψ(ELEV),p(t+TEMP+SKY+COQUI) 454.11 1.46 0.09 0.48 8 494.69 
Ψ(ELEV),p(t+TEMP+SKY) 454.18 1.53 0.09 0.47 7 497.11 
Ψ(ELEV),p(t+WIND+SKY+COQUI) 454.49 1.84 0.07 0.40 8 495.12 
Ψ(ELEV),p(t+RH+SKY+COQUI) 454.51 1.86 0.07 0.39 8 495.14 
Ψ(ELEV),p(t+RH+SKY) 454.80 2.15 0.06 0.34 7 497.82 
Ψ(ELEV),p(t+WIND+SKY) 454.88 2.23 0.06 0.33 7 497.91 
Ψ(ELEV),p(t+TEMP+WIND+SKY+COQUI) 456.02 3.37 0.03 0.19 9 494.50 
Ψ(ELEV),p(t+TEMP+RH+SKY+COQUI) 456.17 3.52 0.03 0.17 9 494.66 
Ψ(ELEV),p(t+TEMP+WIND+SKY) 456.25 3.60 0.03 0.17 8 497.11 
Ψ(ELEV),p(t+TEMP+RH+SKY) 456.25 3.60 0.03 0.17 8 497.11 
Ψ(ELEV),p(t+RH+WIND+SKY+COQUI) 456.38 3.73 0.03 0.15 9 494.90 
Ψ(ELEV),p(t+RH+WIND+SKY) 456.86 4.21 0.02 0.12 8 497.80 
Ψ(ELEV), 
p(t+TEMP+RH+WIND+SKY+COQUI) 458.09 5.44 0.01 0.07 10 494.47 
Ψ(ELEV),p(t+TEMP+RH+WIND+SKY) 458.33 5.68 0.01 0.06 9 497.11 
Ψ(ELEV),p(t) 462.43 9.78 0.00 0.01 5 511.09 
Ψ(ELEV),p(T+T^2) 462.99 10.34 0.00 0.01 5 511.73 
Ψ(ELEV),p(t+RH) 463.39 10.74 0.00 0.00 6 509.85 
Ψ(ELEV),p(t+COQUI) 463.66 11.01 0.00 0.00 6 510.16 
Ψ(ELEV),p(t+WIND) 464.07 11.42 0.00 0.00 6 510.62 
Ψ(ELEV),p(t+TEMP) 464.27 11.62 0.00 0.00 6 510.85 
Ψ(ELEV),p(t+RH+COQUI) 464.28 11.63 0.00 0.00 7 508.53 
Ψ(ELEV),p(T) 464.63 11.98 0.00 0.00 4 515.89 
Ψ(ELEV),p(t+WIND+COQUI) 464.94 12.29 0.00 0.00 7 509.27 
Ψ(ELEV),p(t+RH+WIND) 465.18 12.53 0.00 0.00 7 509.55 
Ψ(ELEV),p(t+TEMP+RH) 465.43 12.78 0.00 0.00 7 509.83 
Ψ(ELEV),p(t+TEMP+COQUI) 465.55 12.90 0.00 0.00 7 509.96 
Ψ(ELEV),p(t+RH+WIND+COQUI) 465.76 13.11 0.00 0.00 8 507.86 
Ψ(ELEV),p(t+TEMP+WIND) 465.97 13.32 0.00 0.00 7 510.44 
Ψ(ELEV),p(.) 466.05 13.40 0.00 0.00 3 519.80 
Ψ(ELEV),p(t+TEMP+RH+COQUI) 466.36 13.71 0.00 0.00 8 508.53 
Ψ(ELEV),p(t+TEMP+WIND+COQUI) 466.90 14.25 0.00 0.00 8 509.15 
Ψ(ELEV),p(t+TEMP+RH+WIND) 467.25 14.60 0.00 0.00 8 509.54 
Ψ(ELEV),p(t+TEMP+RH+WIND+COQUI) 467.84 15.19 0.00 0.00 9 507.85 
Ψ(.),p(.) 478.60 25.95 0.00 0.00 2 536.27 
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