
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2009

Memory Architecture Template for Fast Block Matching Memory Architecture Template for Fast Block Matching

Algorithms on Field Programmable Gate Arrays Algorithms on Field Programmable Gate Arrays

Shant Chandrakar
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Data Storage Systems Commons

Recommended Citation Recommended Citation
Chandrakar, Shant, "Memory Architecture Template for Fast Block Matching Algorithms on Field
Programmable Gate Arrays" (2009). All Graduate Theses and Dissertations. 495.
https://digitalcommons.usu.edu/etd/495

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.usu.edu%2Fetd%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/495?utm_source=digitalcommons.usu.edu%2Fetd%2F495&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

MEMORY ARCHITECTURE TEMPLATE FOR FAST BLOCK MATCHING

ALGORITHMS ON FIELD PROGRAMMABLE GATE ARRAYS

by

Shant Chandrakar

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Dr. Aravind Dasu Dr. Brandon Eames
Major Professor Committee Member

Dr. Jacob Gunther Dr. Byron R. Burnham
Committee Member Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2009

ii

Copyright c� Shant Chandrakar 2009

All Rights Reserved

iii

Abstract

Memory Architecture Template for Fast Block Matching Algorithms on Field

Programmable Gate Arrays

by

Shant Chandrakar, Master of Science

Utah State University, 2009

Major Professor: Dr. Aravind Dasu
Department: Electrical and Computer Engineering

Fast Block Matching (FBM) algorithms for video compression are well suited for ac-

celeration using parallel data-path architectures on Field Programmable Gate Arrays (FP-

GAs). However, designing an efficient on-chip memory subsystem to provide the required

throughput to this parallel data-path architecture is a complex problem. This thesis presents

a memory architecture template that can be parameterized for a given FBM algorithm,

number of parallel Processing Elements (PEs), and block size. The template can be pa-

rameterized with well known exploration techniques to design efficient on-chip memory

subsystems. The memory subsystems are derived for two existing FBM algorithms and are

implemented on a Xilinx Virtex 4 family of FPGAs. Results show that the derived memory

subsystem in the best case supports up to 27 more parallel PEs than the three existing

subsystems and processes integer pixels in a 1080p video sequence up to a rate of 73 frames

per second. The speculative execution of an FBM algorithm for the same number of PEs

increases the number of frames processed per second by 49%.

(57 pages)

iv

To my family, especially to my late grandmother.

v

Acknowledgments

I would like to thank Dr. Aravind Dasu for giving me an opportunity to work as a

research assistant under his guidance. This task would have never been possible without his

encouragement, patience, and expertise in the field of video compression. I would also like to

thank my committee members, Dr. Brandon Eames and Dr. Jacob Gunther, for extending

their support. I thank Abraham A. Clements for his astonishing ideas and the algorithm for

proving the authenticity of this project, Arvind Sudarsanam for providing technical inputs

and reviewing my work, Harikrishna Samala for helping me with the documentation, and

Jonathan Phillips for mentoring me during the initial days of my research. Last, but not

least, I thank my friends Ram, Varun, Jimmy, Manas, Ankur, and my other roommates for

always being with me during the toughest times of my graduate studies. I also thank David

Sant for providing a wonderful research facility in form of the Sant Innovation building. I

thank my parents and my sister for their sacrifices, support, and patience during the entire

course of my study.

Shant Chandrakar

vi

Contents

Page

Abstract . iii

Acknowledgments . v

List of Tables . vii

List of Figures . viii

Acronyms . ix

1 Introduction . 1

2 Background and Related Works . 3

2.1 Field Programmable Gate Array . 3
2.2 Motion Estimation . 6
2.3 Existing Memory Subsystems . 8

3 Architecture Template . 11

3.1 Frame Buffer . 13
3.1.1 Load Scheme . 17
3.1.2 Fetch Scheme . 17

3.2 Pixel Load Unit . 18
3.3 Pixel Fetch Unit . 21
3.4 Pixel Select and Rearrangement Module . 22

3.4.1 Reference Frame Selector . 23
3.4.2 Current Frame Rearranger . 24
3.4.3 PSRM Controller . 24

4 Proof of Conflict Free Parallel Access . 26

5 Performance Estimation Model . 29

6 Bounded Set Algorithm . 31

7 Results . 36

8 Conclusion and Future Works . 43

8.1 Conclusion . 43
8.2 Future Works . 44

References . 46

vii

List of Tables

Table Page

2.1 Summary of existing memory subsystems. 10

7.1 Comparison of proposed memory subsystem with other memory subsystems
for a single PE. 37

7.2 Maximum number of PEs supported by the proposed and existing memory
subsystems on a Virtex-4 LX160 FPGA. 40

7.3 Operating frequency of PLU and memory subsystem for different block sizes
and FBM algorithms. 41

7.4 Number of frames processed per second (fps) by the proposed memory sub-
system through normal and speculative execution of FBM algorithms. . . . 41

viii

List of Figures

Figure Page

2.1 FPGA architecture. 4

2.2 Implementation of a Boolean function using four-input look-up table. 4

2.3 Xilinx FPGA design flow. 6

2.4 Motion estimation. 8

3.1 Overview of the FPGA system featuring the proposed memory architecture
template. 13

3.2 Example illustrating the fundamental terms. 14

3.3 Frame buffer. 16

3.4 Addressing scheme for (a) load operation, (b) fetch operation on a RFB, and
(c) shows SB[1] being enclosed by the USB of fig. 3.2. 19

3.5 Rearrangement of external pixels and generation of Col LS signal by pixel
load unit for a frame buffer with Bw ×Aw ≥ 8. 20

3.6 Buffering of external pixels and their shifting by a pixel load unit for loading
pixels into the frame with Bw ×Aw < 8. 22

3.7 The assignment of column of pixels in DR as input to the multiplexers of the
column selector. 24

3.8 Assignment of columns of DR to the multiplexers of column selector for BR
w

= 6, AR
w = 1, and p = 2. 25

7.1 Illustration of speculative execution in UMHexagonS. 39

ix

Acronyms

2DAM 2-dimensional addressable memory

ASIC application specific integrated circuit

BRAM block random access memory

BS bounded set

CFB current frame buffer

CFR current frame rearranger

CLB configurable logic block

CODEC enCOder/DECoder

DDR2 double data rate

FBM fast block matching

FPGA field programmable gate arrays

fps frames per second

I/O input/output

IP Intellectual Property

ISE integrated software environment

K kilo

LUT four-input look-up table

MDHC mixed diamond hexagon and cross

ME motion estimation

MPEG moving picture experts group

NGD native generic data

PE processing element

PFU pixel fetch unit

PLU pixel load unit

PSRM pixel select and rearrangement module

x

RAM random access memory

RFB reference frame buffer

RFS reference frame selector

ROM read only memory

SAD sum of absolute differences

SB super block

SDRAM synchronous dynamic random access memory

SM switch matrix

TBR tightest bounding rectangle

USB union of super blocks

UMHexagonS umsymmetrical-cross multi-hexagon-grid search

VHDL very high speed integrated circuits hardware descriptive language

1

Chapter 1

Introduction

Motion Estimation (ME) is one of the most compute intensive tasks in digital video

CODECs such as MPEG-2, MPEG-4, H.264, etc. [1–5], because it operates on a block

of pixels and requires significant data throughput. In the past decade, various Fast Block

Matching (FBM) algorithms [1,2] have been proposed to reduce the computational demands

of ME at the cost of an acceptable degradation in image quality. An FBM algorithm

essentially uses a sequence of search steps/patterns to fetch small blocks of pixels from two

or more video frames and calculate an error metric/distortion. Distortion computations such

as Sum of Absolute Differences (SAD) in a search pattern are independent of each other.

Hence, an FBM algorithm can be accelerated by computing multiple SADs in parallel.

The configurable and parallel nature of FPGAs makes them an attractive choice for

accelerating various multimedia tasks such as ME [3, 6]. In order to implement an FBM

algorithm on an FPGA, two types of modules are required: (i) Processing Element (PE) to

compute SAD, and (ii) Memory subsystem to store and supply the pixel data of the video

frames. In order to accelerate an FBM algorithm on an FPGA, multiple parallel PEs are

needed. Supplying parallel PEs with pixel data to execute an FBM algorithm, requires an

efficient way to store pixels on Block RAMs (BRAMs) and an efficient data routing network

built using four-input Look-Up Tables (LUTs). The simple approach of replicating data is

not efficient because BRAMs are a scare resource on FPGAs.

This thesis presents a memory architecture template that can be used to derive efficient

memory subsystems for supporting FBM algorithm acceleration through parallel PEs. Each

PE concurrently processes a block of pixels. The objective of the thesis is to derive a memory

subsystem from a template with minimal resource requirement. This memory subsystem

must support parallel access to multiple blocks of pixels and provide them to their respective

2

PEs. The blocks of pixels may or may not be contiguous depending on the search pattern

of an FBM algorithm. Since there is a limited number of BRAMs present on an FPGA,

the memory subsystem should not replicate pixels. This thesis states that for a given

search pattern and number of parallel PEs, the memory architecture template can derive a

memory subsystem to concurrently access blocks of pixels processed by all the PEs without

data replication, provided there are enough available FPGA resources.

The rest of the thesis is organized as follows: Chapter 2 discusses a background about

an FPGA device and FBM algorithm. This chapter also reviews the existing memory

subsystems to accelerate FBM algorithms. Chapter 3 discusses the proposed memory ar-

chitecture template followed by a mathematical proof of the architecture’s claim in Chapter

4. Chapter 5 presents a performance prediction model for estimating the performance of the

derived memory subsystems in terms of frame per second (fps). Chapter 6 discusses the

Bounded Set (BS) algorithm used to derive memory subsystems from the proposed memory

architecture template. In Chapter 7 the derived memory subsystems are compared with

published works and evaluated based on their overall performance in terms of fps. Chapter

8 provide conclusion and discuss about the future works.

3

Chapter 2

Background and Related Works

2.1 Field Programmable Gate Array

An FPGA is a reconfigurable and user-programmable gate-array device. It consists

of various configurable elements and embedded cores optimized for designing high density

and high performance systems. As of today, Xilinx and Altera are the two major vendors

of FPGAs. Although their FPGAs have similar functionalities, their inherent architectures

are different [7, 8]. This chapter only discusses Xilinx FPGA because it is used for imple-

menting the present work. Figure 2.1 shows the internal architecture of a Xilinx FPGA.

The Input Output (I/O) blocks provide an efficient interface between the package pins and

Configurable Logic Blocks (CLBs) in an FPGA. The global routing matrix provides a con-

figurable interconnection between the CLBs and BRAMs using Switch Matrices (SMs). The

configuration of CLBs and SMs is stored in their respective SRAM cells.

The CLBs are the major component of an FPGA and are used for implementing com-

binational as well as sequential logic. A CLB consists of four slices, each consisting of two

LUTs and two storage elements. Each LUT is a function generator, which is capable of

implementing any random logic involving four-input Boolean function. The Boolean func-

tion is implemented by storing the output column of its truth table as the configuration of

the LUT and by selecting the output based on the logical values of the input (as shown in

fig. 2.2). Such implementation makes the propagation delay of the LUT independent of

the four-input Boolean function. Each storage element in a slice can be configured as an

edge-triggered delay flip-flop or level-sensitive latch.

BRAM in an FPGA is a dual-port memory which can store 18Kbits of data [9]. How-

ever, it can be configured as single port RAM, simple dual port RAM, true dual port RAM,

4

Fig. 2.1: FPGA architecture.

Fig. 2.2: Implementation of a Boolean function using four-input look-up table.

5

single port ROM, or dual port ROM using Block Memory Generator V2.8 in Xilinx ISE

10.1. It has two independent, symmetrical, and interchangeable access ports, A and B. The

two ports perform synchronous read and write operation on a shared stored data. Both read

and write operations require one clock edge. Each byte in the stored data has one extra

parity bit. Each port has its own clock, write address, data in, data out, clock enable, and

write enable signals. Each port of the BRAM can be configured at different aspect ratios

varying from 16K×1, 8K×2, to 512×36, where the first and second terms are the number

of data words and the number of bits per data word, respectively. Since the two ports are

independent, they can have different aspect ratios. The addressing in the BRAM ensures

that correct data is accessed from the two ports if their aspect ratios are different. If the

parity bits are ignored, the aspect ratios of both ports (A and B) are 512×32 and 2K×8

respectively, and port A accesses the content of address 0, then in order to access similar

content through port B, address locations 0, 1, 2, and 3 must be accessed. When parity

bits are ignored and the ports configured as 16 and 32 bits wide, a byte can be written to a

specific byte position of the data word by asserting individual bits of the write enable signal.

Xilinx FPGA Design Flow

The standard flow suggested by Design Flow Overview [10] for implementing designs on

a Xilinx FPGA is shown in fig. 2.3. The logic of the design is entered in design entry stage,

through the Xilinx supported schematic editor, or through hardware description languages

such as Verilog or VHDL. Design hierarchy has an important role to play in this stage, since

it partitions the design into hierarchical components allowing easier implementation and

debugging. The design synthesis translates the logical information into a Native Generic

Data (NGD) file. The NGD file contains the logical description of the design in terms

of the hierarchical components, Xilinx primitives, and hard place and route macros. A

functional simulation of the synthesized design verifies the logic of the design before it can

be implemented on a device. Since the timing information is not available at this stage, the

logic is verified using a unit delay. It is recommended to perform functional simulation at

6

Fig. 2.3: Xilinx FPGA design flow.

an early stage of the design flow because it is faster and easier to correct design errors. In

the design implementation stage, the logic defined in the NGD file is mapped into CLBs,

BRAMs, and other components of the target Xilinx FPGA. The timing information of the

design is obtained by placing and routing these components on the FPGA. Once timing

information is available, a timing simulation of the design is performed to verify that the

implemented design can run at the desired speed. After a timing verification of the design,

a bitstream containing the configuration information is created and downloaded into the

FPGA.

2.2 Motion Estimation

The temporal redundancies as stated by Richardson [11], is due to object motion and

movement of camera in a video sequence, and can be attributed to the movement of pixels

between the frames. If trajectories of every pixel between the frames can be estimated

using an optic flow, the flow vector of these pixels can be used to encode a particular frame.

7

However, calculating the flow vector of every pixel is a compute intensive process and the

resulting vectors must be sent to the decoder for reconstructing the source frame. This

results in a transfer of more data negating the advantage of finding the trajectories. A less

compute intensive approach for encoding a frame is to estimate the movement of blocks of

pixels instead of individual pixels. The frame to be encoded (current frame) is divided into

blocks of p× q pixels also known as current frame blocks. For each current frame block, an

area in the reference frame (which could be a previous or future frame) is searched to find

the best matching block. This area is known as the search area. Block matching can be

performed by considering all or selected blocks in the search area (also known as candidate

blocks). One of the matching criteria is the SAD of pixel intensities from the current frame

block and candidate block. The candidate block with the least sum is considered as the

best match for the current frame block. If the top left pixel (anchor pixel) of current frame

and candidate block are located at coordinates (i, j) and (i�, j�) respectively, then the SAD

is computed using (2.1), where SAD(i�, j�) is the SAD value of a current frame block with

respect to a candidate block located at (i�, j�) and (X, Y) represent pixel intensity of current

and reference frame, respectively. This process of finding the best matching block is known

as ME.

SAD(i�, j�) =
p−1�

m=0

q−1�

n=0

��X(i + m, j + n)− Y (i� + m, j
� + n)

�� (2.1)

Figure 2.4(a) shows a current frame partitioned into p × q blocks of pixels. A search

range to find the best match for a current frame block anchored at (i, j) is shown in fig.

2.4(b). The search range is d pixels in both the horizontal and vertical directions. In fig.

2.4(b) the candidate block anchored at (i�, j�) is found to have the least SAD value and

therefore regarded as the best match for the current frame block located at (i, j) position.

The motion vector of the current frame block (mv(i, j)) in this case is computed using eq.

(2.2).

mv(i, j) = (i� − i, j
� − j) (2.2)

8

Fig. 2.4: Motion estimation.

One of the simplest approaches to find the best match is to compare every candidate

block present in the search area. This approach is known as full search, and it has very high

computational demands [2]. Therefore, FBM algorithms such as Mixed Diamond Hexagon

and Cross (MDHC) search proposed by Duanmu et al. [2] and UMHexagonS proposed by

Chen et al. [1] have been proposed to reduce the computational demands of ME. An FBM

algorithm consists of a series of search steps (search patterns) to select specific candidate

blocks in the search area for SAD calculations. Each search pattern has a set of anchor

points in the search area, where the top-left pixel of the candidate blocks are placed during

the block matching process.

2.3 Existing Memory Subsystems

Memory subsystems which can accelerate execution of an FBM algorithm by concur-

rently providing access to distinct locations of a frame have been the subject of active

research. This concurrency is achieved by either (i) storing multiple copies of frame data,

or (ii) distributing the frame data in distinct memory modules. In this chapter, we restrict

the review to published approaches falling in the second category.

Dutta et al. [12, 13] have designed a systolic array based memory subsystem for full

search, three-step search, and conjugate-direction search using scheduling, memory parti-

tioning, and area delay tradeoff of memory and its interconnect network. The memory

subsystem consists of multi-bank frame buffer, a pipelined interconnect network, and mul-

tiple PEs. Their methodology develops an efficient design for the full search ME algorithm.

9

However, for other FBMAs, their data flow schedule requires extra number of clock cycles

to execute the algorithm because of the memory-access conflicts leading to delayed start of

the computation in some PEs.

Vleeschouwer et al. [4] have proposed a directional squared-search algorithm accelerated

by a ME kernel with three PEs. The kernel reduces the average memory bandwidth and

power consumption through data reuse resulting from the overlapping of adjacent candidate

blocks and search areas. The data reuse increases with the proximity of the anchor points

in the search pattern, making it dependent on the FBM algorithm. Therefore, their ME

kernel is restricted only to the directional squared-search algorithm.

Peng et al. [5] have proposed a parallel memory subsystem with the number of memory

modules restricted to powers of two. It is observed that for ME, this memory subsystem

can provide a conflict free parallel access to either a column or a row of one candidate block

but not both. However, a greater speed up in the execution of an FBM algorithm can be

achieved through parallel access of rows and columns of multiple candidate blocks.

In order to access an entire candidate block, Vanne et al. [6] and Kuzmanov et al. [3]

have proposed a similar memory subsystem for multimedia applications. The memory

subsystems are designed to access an unaligned rectangular block of pixels. The proposed

memory subsystem is referred to as MR by Vanne et al. [6] and 2-D Addressable Memory

(2DAM) by Kuzmanov et al. [3]. Each memory module in these memory subsystems stores

one pixel per address location. The number of memory modules in these memory subsystems

is equal to the number of pixels in the required block. Thus, these memory subsystems only

fetch the required block of pixels. The fetched block of pixels is then aligned using a shuffle

network. These two memory subsystems have separate row and column addressing for a

pixel and require only small amount of FPGA resources to realize their addressing scheme

due to the dimensions of the required block (which are in the powers of two). Restricting

the number of pixels stored per address location to one, often results in a requirement for

large numbers of memory modules.

Beric et al. [14, 15] have proposed a two-level (L1, L0) cache structure for block-based

10

video algorithms. The L0 cache, stores multiple pixels per address location. This cache

also uses folding and data reorganization which reduces clock cycles required to access an

arbitrary aligned rectangular block of data. A data reordering unit and shuffler are used as

an interface between L0 cache and the PE. The L1 cache reduces the off-chip bandwidth

requirements of the L0 cache. Since, this design is targeted towards an Application Specific

Integrated Circuit (ASIC), it focuses on minimizing the gate count and the off-chip band-

width. Their memory subsystem requires duplication of the L0 cache for each PE. Table

2.1 summarizes and compares the existing memory subsystems.

Table 2.1: Summary of existing memory subsystems.
Memory Device Restriction to FBMA Number of Support to maximum number

subsytems Utilization of PEs (%) Memory Modules of PEs without data replication

Dutta et al. [12, 13] < 100 Diamond search, 16 Varies from 1 to total number of

Conjugate-Direction search anchor points in the search pattern

Vleeschouwer et al. [4] 100 Directional squared-search 4 3

Peng et al. [5] 100 independent maximum of (p, q) 1

Kuzmanov et al. [3] and 100 independent p× q 1

Vanne et al. [6]

Beric et al. [14, 15] 100 independent < p× q 1

11

Chapter 3

Architecture Template

The components of an FPGA-based memory architecture template is presented in fig.

3.1. It broadly consists of two parts: (i) a set of parallel PEs to evaluate block matching

criterion such as SAD, and (ii) an on-chip memory subsystem that fetches required sub-sets

of current and reference frame pixels from an external memory (DDR2 SDRAM storing

frame pixels in raster scan order). The on-chip memory subsystem has two variants of

Frame Buffer, Current Frame Buffer (CFB), and Reference Frame Buffer (RFB). The CFB

and RFB store pixels of current and reference frames, respectively. The Pixel Load Unit

(PLU) receives pixels from external memory and rearranges them according to the address-

ing scheme for loading pixels. The Pixel Fetch Unit (PFU) generates addresses to facilitate

transfer of a sub-set of pixels in RFB/CFB to the Pixel Select and Rearrangement Mod-

ules (PSRM). The PSRMs (one per PE) select reference frame pixels and rearrange current

frame pixels. It is necessary to define the following fundamental terms before explaining

the components of the memory subsystem in later sections.

Super Block : A Super Block (SB) is a block of pixels which contains all the candidate

blocks that are required for computing block matching criterion such as SAD at a given

step of a search pattern. For a search pattern with n anchor points (where the candidate

blocks are placed) executed by NPE parallel PEs, the number of candidate blocks in each

SB is restricted to NPE and the number of SBs (NSB) is computed using (3.1). Each SB is

characterized by its width (SBw) and height (SBh), respectively.

NSB =
�

n

NPE

�
(3.1)

Super Block Offset : A Super Block Offset is the offset of the top-left pixel of an SB from the

12

center of the search pattern. It assists in accessing the SB which contains the required can-

didate blocks for a given step of an FBM algorithm. The SB offset (SBi, SBj) is computed

using (3.2), where (ik, jk) is the coordinate of the kth anchor point in a group.

SBi = min {ik} ∀ 0 ≤ k < NPE SBj = min {jk} ∀ 0 ≤ k < NPE (3.2)

Anchor Point Offset : An Anchor Point Offset is the offset of an anchor point with respect

to the top-left pixel of the SB. It assists in selecting out a candidate block from the SB. The

anchor point offset (∆ik,∆jk) of the kth anchor point in the SB is computed using (3.3).

∆ik = ik − SBi ∆jk = jk − SBj (3.3)

Union of Super Blocks: A Union of Super Blocks (USB) is a rectangular grid of pixels

which can provide access to all the SBs. It is the largest Tightest Bounding Rectangle

(TBR) which can enclose all SBs and its width (Gridw) and height (Gridh) are equal to

the width and height of the widest and the tallest SB(s) respectively, computed using (3.4,

3.5), where SB[k]w and SB[k]h are width and height of the kth SB. In order to access the

candidate blocks contained inside a SB, the top left pixel of the USB is placed at the offset

of that SB.

Gridw = max{SB[k]w} ∀ 0 ≤ k < NSB (3.4)

Gridh = max{SB[k]h} ∀ 0 ≤ k < NSB (3.5)

Figure 3.2(a) shows a search pattern with seven anchor points, being executed by three

parallel PEs. The execution requires three SBs (computed using (3.1)), and each SB is

assigned maximum three anchor points. Figures 3.2(b-d) show three SBs (SB[0], SB[1], and

SB[2]) enclosing the required candidate blocks through a TBR. It can be inferred from fig.

3.2, that SBw and SBh of each SB is determined by the number of parallel PEs, relative

13

Fig. 3.1: Overview of the FPGA system featuring the proposed memory architecture tem-
plate.

position of the anchor points in a search pattern, and the size of the candidate block. The

SB offsets of SB[0], SB[1], and SB[2] in figs. 3.2(b-d) are (-1, -2), (1, -2), and (-2, 0),

respectively. The anchor point offsets of three anchor points in SB[0] (fig. 3.2(b)) are (0, 0),

(-1, 2), and (1, 2), respectively. The Gridw and Gridh for the SBs shown in figs. 3.2(b-d)

are found to be 6 and 6, respectively. It can be observed from (3.4, 3.5) and fig. 3.2 that

Gridw and Gridh are determined by the allocation of the anchor points of a search pattern

to each SB. A large relative distance between the anchor points of each SB will result in

larger values of Gridw and Gridh.

3.1 Frame Buffer

The design of a parameterized frame buffer is shown in fig. 3.3, where the width of the

signals (if not specified) is in bits. A frame buffer consists of a 2-dimensional grid of BRAMs

configured as dual port RAM. It has Bw columns and Bh rows of BRAMs, respectively. The

values of Bw and Bh are calculated separately for RFB and CFB, based on the USB and the

block size, respectively. When pixels need to be loaded in to a frame buffer, the BRAMs

are identified by the signals PL Row S and PL Col S, which are computed by the PLU

14

Fig. 3.2: Example illustrating the fundamental terms.

based on the coordinates of pixels to be loaded. When pixels need to be fetched from the

frame buffer, the BRAMs are addressed by the PF Ki, PF Kj , PF Ai, and PF Aj signals,

which are computed by the PFU based on the SB offset or the offset of the anchor pixel

of the current frame block. The computations performed by PLU and PFU are explained

in sections 3.2 and 3.3, respectively. The PLU receives a limited number of pixels from the

external memory and loads them into specific BRAMs. But once these pixels are stored in

a frame buffer, pixels can be fetched from all the BRAMs. Therefore, the load operation

is performed on selected BRAMs, but the fetch operation is performed on all BRAMs.

The FBM algorithm processes blocks of adjacent pixels. In order to fetch these blocks

from a frame buffer, it is desirable to fetch a block of Aw × Ah adjacent pixels from each

BRAM, where, Aw and Ah are the number of horizontally and vertically adjacent pixels,

respectively, that are stored in one address location of a BRAM. The write and read ports

of each BRAM are configured as Aw and Aw × Ah pixels wide. Since the load and fetch

operations on a BRAM need to be independent processes, the write and read ports are

driven by Clk L and Clk F clock signals, respectively. A frame buffer supplies a block

15

of (Bw × Aw) × (Bh × Ah) pixels (Data out) to the PSRM because there are Bw × Bh

BRAMs and each fetches Aw × Ah pixels. The external memory supplies a row of pixel to

the PLU, and these pixels are loaded to a row of BRAMs in a frame buffer. Therefore, the

maximum number of pixels that can be supplied by the PLU to a frame buffer is Bw ×Aw

(Data in) pixels. Signals Load Addr and PL Cin are used to compute values supplied to

the address ports of all the BRAMs during the load operation. Although address is supplied

to all BRAMs, the PL Row S and PL Col S enable a subset of BRAMs to which pixels

are loaded. The signals PF Ki, PF Kj , PF Ai, and PF Aj are used to compute values

supplied to the address ports of all BRAMs during the fetch operation.

The RFB and CFB can be designed by customizing the frame buffer template with a

unique variant of these four parameters: Bw, Bh, Aw, and Ah. In the Xilinx Virtex 4 family

of FPGAs, the port width of BRAMs can be configured to a maximum of 32 bits (ignoring

the parity bits). Therefore, the maximum value of Aw×Ah can be 4, where Aw and Ah can

each be 1, 2, or 4. The variant of these parameters to design a RFB and CFB are (BR
w , BR

h ,

AR
w, AR

h) and (BC
w , BC

h , AC
w , AC

h), respectively. The ME process involves aligned access of a

single current frame block and misaligned access of multiple candidate blocks of a reference

frame. Therefore, the parameters for the CFB are derived from the dimensions of the block

using (3.6-3.8), where p and q are, respectively, the width and height of the current frame

block.

B
C
w =

p

AC
w

B
C
h =

q

AC
h

(3.6)

A
C
w =

4 ; 4 ≤ p

2 ; 2 ≤ p < 4

1 ; otherwise

(3.7)

A
C
h =

4 ; AC
w = 1 and 4 ≤ q

2 ; AC
w = 1 and 2 ≤ q < 4

1 ; otherwise

(3.8)

16

Fig. 3.3: Frame buffer.

As discussed in section 3.1, the candidate blocks can be accessed by accessing the USB.

Therefore, the RFB is derived from the USB using (3.9, 3.10).

B
R
w ≥

Gridw + AR
w − 1

AR
w

(3.9)

B
R
h ≥

Gridh + AR
h − 1

AR
h

(3.10)

Due to aligned access, the current frame block is always present in a single address

location and the BRAMs have identical address values (Fetch Addr) at their read ports.

Therefore, the signals PF Ki and PF Kj from PFUCur and their respective adders are not

required in the CFB.

The on-chip BRAM of a Virtex 4 FPGA can store up to 2048 pixels, assuming eight

bits per pixel with parity bits ignored [9]. It is assumed that every BRAM stores 32 rows

of 64 pixels. However, these numbers can be modified as required by the application. Since

the width of the write and read ports of a BRAM in the frame buffer are different, two

different addressing schemes are required to perform load and fetch operations.

17

3.1.1 Load Scheme

The load scheme identifies a pixel located at (i, j) coordinates of a frame by (mp, mq),

Load Addr, and Load offset. The values (mp, mq) computed using (3.11) correspond to the

coordinate of the BRAM in the frame buffer, where the pixel will be loaded to. The address

(Load Addr) of that pixel in (mp, mq) BRAM is calculated using (3.12-3.14). The offset

(Load offset) of the pixel within Load Addr is calculated using (3.15).

mp =
�

i

Aw

�
mod Bw mq =

�
j

Ah

�
mod Bh (3.11)

PL Ai =
��

i
Bw×Aw

�
×Ah

�
mod

�
64
Aw
×Ah

�
+ j mod Ah (3.12)

PL Aj =
��

j

Bh ×Ah

�
×

�
64
Aw

×Ah

��
mod

2048
Aw

(3.13)

Load Addr = PL Ai + PL Aj (3.14)

Load offset = i mod Aw (3.15)

A RFB is derived for a USB, which encloses the SBs of figs. 3.2(b-d). The parameter of

the RFB which results in least number of BRAMs (i.e., BR
w ×BR

h) are BR
w = 6, BR

h = 3, AR
w

= 1, and AR
h = 4. Figure 3.4(a) shows the value of (mp, mq), Load Addr, and Load offset

for pixels to be loaded in that RFB.

3.1.2 Fetch Scheme

The fetch scheme assigns (mp, mq) using (3.11) but, address (Fetch Addr) and offset

(Fetch offset) are different from Load Addr and Load offset, respectively. This is due to the

difference in the width of write and read ports of a BRAM. The Fetch Addr is computed

using (3.16-3.18), where PF Ai is a log2(64/Aw) bit value and PF Aj has a log2(2048/Aw×

18

Ah) bit value with the lower log2(64/Aw) bits as zeroes. Therefore, the addition operation

in (3.18) is performed through concatenation. The Fetch offset is computed using (3.19),

where (op, oq) represents the coordinate in the Aw × Ah block of adjacent pixels stored in

an address location of a BRAM.

PF Ai =
�

i

Bw ×Aw

�
mod

64
Aw

(3.16)

PF Aj =
��

j

Bh ×Ah

�
mod

32
Ah

�
× 64

Aw
(3.17)

Fetch Addr = PF Ai + PF Aj (3.18)

op = i mod Aw oq = j mod Ah Fetch offset = op + Aw × oq (3.19)

Figure 3.4(b) shows (mp, mq), Fetch Addr, and Fetch offset of the pixels fetched from

the RFB. Fig. 3.4(c) shows a USB enclosing SB[0] whose offset in fig. 3.4(b) is (0,3).

3.2 Pixel Load Unit

The PLU recieves pixels from an external memory and loads them into the BRAMs

of the frame buffer using load scheme. It is assumed that the PLU receives eight adjacent

pixels of a frame (PLData) from an external memory, but it can also be tailored to receive

a different number of pixels. The input to the PLU is a coordinate of the left most pixel

(iload, jload) of the PLData. There are two distinct designs of PLU, based on the product

of frame buffer’s Bw and Aw.

When a PLU is designed to load pixel into the frame buffer with Bw × Aw ≥ 8, all

eights pixels in the PLData are loaded in to the frame buffer at every clock cycle. The eight

pixels are concatenated with dummy pixels, such that total number of pixels is Bw × Aw

(as shown in fig. 3.5). The concatenation is done so that the barrel shifter can reorder

and align pixels in PLData with appropriate BRAM columns of the frame buffer. The

19

Fig. 3.4: Addressing scheme for (a) load operation, (b) fetch operation on a RFB, and (c)
shows SB[1] being enclosed by the USB of fig. 3.2.

20

Fig. 3.5: Rearrangement of external pixels and generation of Col LS signal by pixel load
unit for a frame buffer with Bw ×Aw ≥ 8.

barrel shifter shifts the concatenated pixels by mp×Aw pixels in the right direction, where

mp is computed by substituting iload for i in (3.11). The row and column select signals

(PL Row S and PL Col S) are Bw and Bh bits wide, respectively (with the 0th bit as the

most significant bit). Since, the PLData has horizontally adjacent pixels, the mq values for

the BRAMs where these pixels be loaded are same. Therefore, mq value for all BRAMs

can be calculated by substituting jload to j in (3.11) and the PL Row S signal is generated

by setting its mth
q bit to one. The PL Col S signal is computed through a shift operation

with wrap around based on the value of mp (also shown in fig. 3.5).

For a load operation, Load Addr of the left most pixel is computed by substituting

(iload, jload) for (i, j) in (3.12-3.14). A PL Cin signal of Bw bits is also computed based

on mp. Each bit of this signal is added to Load Addr to compute the Load Addr for the

remaining pixels. If the value of mp is not zero, then 0 to mp - 1 bits in PL Cin are set to

one, or else all bits in the signal are set to zero.

In the second design of the PLU for loading pixels into the frame buffer with Bw×Aw <

8, only Bw × Aw pixels are loaded into the frame buffer each clock cycle. The remaining

pixels are buffered in a 64-bit register and are referred as residual (as shown in fig. 3.6).

The residual at clock cycle t is computed using (3.20), where r(0) = iload mod (Bw ×Aw).

r(t + 1) =

8 + r(t)−Bw ×Aw; r(t) < Bw ×Aw

r(t)−Bw ×Aw; otherwise

(3.20)

21

If the residual at any clock cycle is greater than Bw×Aw, no new pixels are fetched from

the external memory and Bw × Aw pixels of the residual are loaded into the frame buffer

the following clock cycle. This is repeated until the residual drops below Bw × Aw pixels.

Once this happens, new pixels are received from the external memory and concatenated to

the residual (if any), then Bw × Aw pixels are loaded into the frame buffer. The left shift

operation l(t), for aligning the concatenated pixels to their respective BRAM columns of

the frame buffer at clock cycle t is computed using (3.21).

l(t) = 8− r(t) (3.21)

Since, Bw×Aw pixels are loaded into the frame buffer, the load Addr for every pixel is

identical. The load Addr is computed by substituting (i�load, jload) for (i, j) in (3.12-3.14)

and i�load at clock cycle t is computed using (3.22).

i
�
load =

iload + l(t); r(t) ≥ Bw ×Aw

iload − r(t); otherwise

(3.22)

The PL Row S signal to select the row of BRAMs where the pixels are to be loaded is

computed using the same way as mentioned in the previous design of the PLU. Since every

BRAM in the selected row encounters a load operation, all the bits in the PL Col S signal

are set to high. It is assumed that the inputs to the PLUCur and PLURef are supplied by

the external controller, which also controls the flow of the FBM algorithm.

3.3 Pixel Fetch Unit

The PFU facilitates in fetching pixels from the BRAMs of the frame buffer using fetch

scheme. The PFU has distinct designs for the CFB and RFB. As discussed in section 3.1, the

Fetch Addr for accessing a current frame block from the CFB is the same for all BRAMs.

Therefore, the PFUCur computes this value based on the coordinate of the top left (or any)

pixel in the current frame block, using (3.16-3.18). The parameters for designing the RFB

are computed based on the size of USB. Due to the misaligned access of the reference frame,

22

Fig. 3.6: Buffering of external pixels and their shifting by a pixel load unit for loading pixels
into the frame with Bw ×Aw < 8.

the pixel enclosed by the USB may straddle in more than one address location. Therefore,

the PFURef only computes (mp, mq) and Fetch Addr for the top left pixel in the USB

which also happens to be the offset of SB containing the required candidate blocks. It also

computes PF Ki and PF Kj , which are later added to PF Ai and PF Aj , respectively,

(as shown in fig. 3.3) to compute Fetch Addr for accessing the remaining pixels. PF Ai

and PF Aj are Bw and Bh bit signals with the 0th bit as the most significant bit. The

values of PF Ki and PF Kj are calculated based on the values of (mp, mq). The columns

of BRAMs to the left of mp have PF Ki equal to one; and the rows of BRAMs above

mq have PF Kj equal to one. These computations are performed using a look-up-table,

whose inputs and outputs are (mp, mq) and (PF Ki, PF Kj), respectively. The inputs to

PFUCur and PFURef are also assumed to be provided by the controller.

3.4 Pixel Select and Rearrangement Module

The PSRM selects a p× q candidate block from the fetched contents of the RFB, and

rearranges a current frame block fetched from the CFB. It consists of a Reference Frame

Selector (RFS), Current Frame Rearranger (CFR), and a PSRM controller.

23

3.4.1 Reference Frame Selector

The RFS is designed to select any arbitrarily aligned p × q candidate block from the

RFB’s output (DR). The DR fetched from the RFB is a block of pixels with BR
w × AR

w

columns and BR
h × AR

h rows. The selection is done using two selectors: a column selector

and a row selector. While the order of selection does not affect the functionality, it can

impact the resource utilization. When the RFS is designed with a column selector followed

by a row selector, the input to the column selector is BR
w ×AR

w columns of BR
h ×AR

h pixels

and the output is p columns of BR
h × AR

h pixels. This output is later routed to the row

selector, which selects q rows from BR
h ×AR

h rows resulting in a p× q block of pixels. When

the RFS is designed with a row selector followed by a column selector, the input to the row

selector is BR
h × AR

h rows of BR
w × AR

w pixels and the output is q rows of BR
w × AR

w pixels.

This output is routed to the column selector, which selects p columns and outputs a p× q

block of pixels.

Figure 3.7 shows columns of pixels in DR as input to the column selector, when column

selection is done first. There are p multiplexers (CM0 to CMp−1) and the number of

columns (N) is equal to BR
w ×AR

w. Each column of pixels in the DR can be an input to one

or more multiplexers. This assignment of pixel columns to the multiplexer’s input enables

the column selector to select any adjacent p columns. The adjacent columns can wrap

around so that column CN−1 and C0 are adjacent. In fig. 3.7, the CMα corresponds to

the multiplexer where CN−1 (last column) of DR is connected. The value of α is computed

using (3.23).

α = ((BR
w ×A

R
w)− 1) mod p (3.23)

In the previously discussed RFB, where (BR
w , AR

w) is equal to (6, 1), to select any

arbitrary 2 × 2 candidate block, the columns of pixels should be assigned to the multiplexers

according to the fig. 3.8, when column selection is done first. The value of α for the RFB

and candidate block is found to be 1 using (3.23).

The row selector is the row equivalent of the column selector and selects q adjacent

24

Fig. 3.7: The assignment of column of pixels in DR as input to the multiplexers of the
column selector.

rows of pixels from DR or the output of the column selector. The row selector consists of

q multiplexers and has a similar assignment of rows to multiplexers as described for the

column selector.

3.4.2 Current Frame Rearranger

The RFS may select a p×q candidate block (RFSO) with an anchor pixel not positioned

at the top left corner of the block. Therefore, the CFR is used to rearrange pixels fetched

from the CFB to match the alignment of the pixels in RFSO. The rearrangement is

performed using two wrap around rotators: a column rotator and a row rotator. The input

to the column rotator is in column major order and its output, arranged in row major

order is the input to the row rotator. Each rotator is implemented as a barrel shifter with

wrap around in right direction. The CFR is similar to the routing network described by

Kuzmanov et al. [3].

3.4.3 PSRM Controller

The PSRM controller generates the select line signals for RFS using a look up table.

The inputs to the look up table are (mp, mq) and (op, oq) computed for each anchor point

in the SB. The (mk
p, m

k
q) and (ok

p, o
k
q) for the kth anchor point in the SB is computed using

25

Fig. 3.8: Assignment of columns of DR to the multiplexers of column selector for BR
w = 6,

AR
w = 1, and p = 2.

(3.24, 3.25), where (∆ik,∆jk) is the anchor point offset of the kth anchor point in the SB.

The shift signals (Shiftcol, Shiftrow) for the CFR are generated by a look-up table using

(3.26).

m
k
p = mp +

�
op + ∆ik

Aw

�
m

k
q = mq +

�
oq + ∆jk

Ah

�
(3.24)

o
k
p = (op + ∆ik) mod Ah o

k
q = (oq + ∆jk) mod Aw (3.25)

Shiftcol =
�
m

k
p + m

k
p ×Aw

�
mod p Shiftrow =

�
m

k
q + m

k
q ×Ah

�
mod q (3.26)

26

Chapter 4

Proof of Conflict Free Parallel Access

The BRAMs in the RFB have only one read port and so only one value of Fetch Addr

can be accessed at any given time. Therefore, for fetching multiple candidate blocks in a

single access (conflict free parallel access), if two pixels in the USB have identical values of

(mp, mq) and Fetch Addr, then they should have distinct values of Fetch offset. We prove

this claim by the following lemma and theorems.

lemma : If x1 mod y = x2 mod y, such that x1 ≤ x2 then x2 − x1 = z × y and z is

positive integer (z ≥ 0).

Proof : When x1 mod y = x2 mod y, it implies that the remainder of (x1/y) and (x2/y)

are equal and (4.1) holds true, where a2 = x2/y and a1 = x1/y, respectively. Assuming a2

- a1 = z, in (4.2), if x2 = x1 then z = 0, and if x2 > x1 then z ≥ 0.

x2 − a2 × y = x1 − a1 × y (4.1)

⇒ x2 − x1 = (a2 − a1)× y (4.2)

Theorem 1 : If only USB were to be loaded into the FB, then value of Fetch Addr to

access every pixels of the USB is identical and is equal to zero.

Proof : If a pixel is located at coordinate (i, j) in the USB, then 0 ≤ i ≤ Gridw - 1 and

0 ≤ j ≤ Gridh - 1. Rearranging and substituting values of i and j in (3.9, 3.10), we have,

i ≤ BR
w × AR

w − AR
w and j ≤ BR

h × AR
h − AR

h . This implies that 0 ≤ i < BR
w × AR

w and

27

0 ≤ j < BR
h × AR

h . Even if the maximum possible values of i and j are considered and

substituted in (3.16-3.18), we have PF Ai = 0, PF Aj = 0, and Fetch Addr = 0. Since,

the Fetch Addr for a pixel with maximum coordinate is zero, the Fetch Addr for all other

pixels in the USB will also be zero.

Theorem 3 : Given that all pixels in the USB have identical (zero) Fetch Addr (from

Theorem 1), for conflict free parallel access, no two distinct pixels in the USB have identi-

cal values of (mp, mq) and (op, oq).

Proof : Let us assume two pixels located at (i1, j1) and (i2, j2) of the USB, such that

i1 < i2, j1 < j2, where, 0 ≤ {i1, i2} ≤ Gridw - 1, and 0 ≤ {j1, j2} ≤ Gridh - 1. Let (mp,1,

mq,1) and (op,1, oq,1) correspond to BRAM and offset of a pixel at (i1, j1), respectively.

Similarly, (mp,2, mq,2) and (op,2, oq,2) correspond to that of (i2, j2).

To prove this theorem by contradiction, let us assume that the two pixels have identical

values of (mp, mq) and (op, oq). If the two pixels have identical values of mp (i.e., mp,1 =

mp,2), then from (3.11) and Theorem 1 we get (4.3), where k is a positive integer (k ≥ 0).

Since 0 ≤ {i1, i2} ≤ Gridw - 1, we get (4.4). Substituting value of Gridw - 1 from (4.4) in

(3.9), we get (4.5-4.6).

�
i2

AR
w

�
−

�
i1

AR
w

�
= k ×B

R
w (4.3)

i2 − i1 ≤ Gridw − 1 (4.4)

i2 − i1 ≤ B
R
w ×A

R
w −A

R
w (4.5)

⇒ i2

AR
w
− i1

AR
w
≤ B

R
w − 1 (4.6)

Since the address generation involves integer divisions, the floor operation in eq. (4.3)

is similar to the division operation in (4.6), and substituting the right-hand side of (4.3) in

28

(4.6) we get (4.7).

k ×B
R
w ≤ B

R
w − 1 (4.7)

Equation (4.7) holds true only for k = 0. If the two pixels have identical values of

op (i.e. op,1= op,2), then from (3.19) we get (4.8). Where, k� is a positive integer (k� ≥

0). Substituting the value of i2 computed from (4.8) in (4.3) where k = 0, we get (4.9).

Equation (4.9) holds true only when k� = 0 and substituting this value of k� back in (4.8)

we get i1 = i2. Similarly we can prove that j1 = j2.

i2 − i1 = k
� ×A

R
w (4.8)

�
k
� +

i1

AR
w

�
=

�
i1

AR
w

�
(4.9)

The above mathematical identities prove that two pixels at (i1, j1) and (i2, j2) inside

a USB cannot be distinct if they have identical values of (mp, mq) and (op, oq). The above

theorems prove that when two pixels have identical values of (mp, mq) and Fetch Addr

during fetch operation, they never have identical values of Fetch offset.

29

Chapter 5

Performance Estimation Model

This chapter presents an analytical model to estimate the performance of the memory

subsystem derived from the proposed memory architecture template for given NPE parallel

PEs, FBM algorithm, frame size, and block size. The performance is measured in terms of

fps. Test FBM algorithms are MDHC [2] search and UMHexagonS [1]. The video sequence

under test consists of integer pixel and has a resolution of 1920 × 1080 pixels (1080p).

The fps is calculated from the operating frequencies of the memory subsystem. The

memory subsystem operates at two different clock frequencies, fload and ffetch. The fload

and ffetch correspond to the frequencies at which pixels are loaded to and fetched from

the FBs, respectively. In order to keep the operating frequencies high, the load and fetch

operations are performed in a pipelined order. The load operation has PLU and frame

buffer as pipeline stages, whereas the fetch operation has PFU, frame buffer, and PSRM.

It is observed that ffetch will always be less than fload because of the multiplexers and

rotators in the PSRM. In order to compute SAD values, PEs are also included in pipeline

stages of the fetch operation. This requires partitioning the PE into pipeline stages to avoid

slowing down the ffetch. The number of pipeline stages in the PE (PEstages) is computed

using (5.1), where PEdelay is the critical path delay of the PE and Clk Fdelay is the delay

of Clk F signal. The PEstages adds to the total latency of the fetch operation (Flatency).

PEstages =
�

PEdelay

Clk Fdelay

�
(5.1)

The memory subsystem along with the PEs, can concurrently fetch, rearrange, and

compute SAD values in different pipeline stages after incurring the initial latency (Flatency).

The number of clock cycles (searchcycles) required by the memory subsystem to execute a

search pattern is computed using (5.2), where n is the number of anchor point in the search

30

pattern being accelerated by NPE parallel PEs. The inverse of the first term without a floor

function in the right-hand side of (5.2) indicates the reduction achieved in the number of

clock cycles required to execute a search pattern through parallel PEs.

searchcycles =
�

n

NPE

�
+ Flatency − 1 (5.2)

For an FBM algorithm with Ns number of search patterns, the time required to compute

SAD for all the current frame blocks in a frame (Frameduration) is computed using (5.3),

where loopk is iteration count of the kth search pattern and searchcycle,k is the number of

clock cycles required for executing the kth search pattern.

Frameduration =
Ns−1�

k=0

(searchcycles,k × loopk)×
framesize

blocksize
× ffetch (5.3)

It should be noted that prior to the initiation of SAD computations, the search area

which holds the required candidate blocks must be loaded in the RFB. While these candidate

blocks are being fetched and processed at ffetch frequency, due to higher fload frequency the

overlapping search area of the adjacent current frame block can be concurrently loaded in

the RFB. This process can be continued for the entire duration of the frame processing. If

the width and height of the search range is sw and sh, respectively, the initial time required

to load the search range into RFB (Loadduration) is computed using (5.4). Equations (5.3)

and (5.4) suggests that Loadduration << Frameduration and can be ignored while computing

fps in (5.5).

Loadduration =
�

sw × sh

8

�
× fload (5.4)

fps =
1

frameduration
(5.5)

31

Chapter 6

Bounded Set Algorithm

As discussed in Chapter 3, the CFB is derived from the size of the current frame block.

The CFB is optimized to this block size because its location is known at the design time.

However, the RFB derived from the size of the USB using (3.9, 3.10) can be subjected to

optimization through SBs. A SB which provides candidate blocks to NPE PEs is created

by forming a group of at most NPE anchor points. If the anchor points in a group are

relatively far from each other in the search pattern, the size of the SB will be large. This

will result in a larger Gridw and Gridh (from (3.4, 3.5)) and ultimately larger number

of BRAMs (BR
w × BR

h) to realize the RFB. As BR
w × BR

h increases, the size of the pixel

block ((BR
w × AR

w) × (BR
h × AR

h)) received from the RFB also increases and so does the

LUTs required by the multiplexers of the PSRM to select a (p × q) candidate block. The

replication of the PSRM for every PE causes the footprint of the memory subsystem derived

for these parameters to increase significantly. Although the number of LUTs utilized by the

PFUs and PLUs is also affected by the number of BRAMs in the frame buffers, they have a

negligible impact on the overall footprint when compared to the PSRMs. In order to keep

the footprint of the derived memory subsystem as small as possible, an efficient grouping

of anchor points to create smaller SBs is required. The number of possible groupings of

anchor point for a search pattern with n anchor points executed by NPE PEs is computed

using (6.1).

number of possible groupings =
�NSB−1

k=0
n−k×NPECNPE

NSB!
(6.1)

There are 8.811 ×1081 groupings of anchor points possible, when an uneven multi-

hexagon-grid search with 88 anchor points of UMHexagons [1] is executed by three parallel

PEs. Due to the vast number of possible solutions, an algorithm capable of finding the best

32

grouping of anchor points resulting in a smaller RFB is very crucial. The BS algorithm

(algorithm 6.1) invented by Clements et al. [16] finds a grouping of anchor points from

which parameters (BR
w , BR

h , AR
w, and AR

h) of the RFB resulting in a smaller footprint can

be derived. The resulting RFB assists in reducing the footprint of the memory subsystem

derived from the memory architecture template. For the readability of the thesis, the BS

algorithm proposed by Clements et al. [16] (under review) is discussed in this chapter.

Bounded Set Algorithm

For a given NPE , set of n anchor points of a search pattern, and USB dimensions (Gridw, Gridh),

the BS algorithm generates a list of group of anchor points (AP Groups) such that: (i) Each

group has nearly NPE anchor points,1 and (ii) Every anchor point of the search pattern is

present in at least one group. The BS algorithm may or may not generate a valid grouping

of anchor points for a given (Gridw, Gridh), therefore a flag (GroupSuccess) is set to indi-

cate the success of the algorithm. The BS algorithm is executed for each combination of

(Gridw, Gridh) varying from (p, q) to (sw, sh). The BS algorithm is executed for every search

pattern of the FBM algorithm and the common solution (in terms of BR
w , BR

h , AR
w, and AR

h)

which results in the smallest value of BR
w × BR

h are considered as the final parameters of

the of RFB. The following definitions are required for the understanding of the BS algorithm:

Bounded Set : The bounded set is defined as the set of anchor points found within a rect-

angular grid of (Grid�w × Grid�h) pixels anchored at the coordinate (x, y) of the reference

frame, where Grid�w and Grid�h are computed using (6.2). The two properties associated to

a BS are Uniquness and Eligiblity.

Grid
�
w = Gridw − p + 1 Grid

�
h = Gridh − q + 1 (6.2)

1
The goal of the algorithm is to create groups with NPE anchor points. However, if n is not an integral

multiple of NPE , at least one group will have fewer than NPE anchor points.

33

Uniqueness: For a given list of BSs, a unique BS is not a subset of any other BS in the list.

Eligibility : An eligible BS has at least NPE number of anchor points.

The number of unique and eligible BSs that an anchor point is contained in is an

indicator of how many possible ways in which that anchor point can be grouped.

Algorithm 6.1 BS
Input: Set (S) of anchor points of a search pattern, NPE number of parallel PEs,

size of the rectangular grid (Grid�w, Grid�h).
Output: List of group of anchor points (AP Groups) and algorithm success flag

(GroupSuccess)
1. GroupSuccess ← 1.
2. while (GroupSuccess and S is not empty) do

a. Generate an intial list of BSs from S.
b. Remove the non unique BSs.
c. if a valid group of anchor points can be created from the list of unique BSs then

i. Add this group to AP Groups.
ii. Remove the grouped anchor points from S.

else

i. GroupSuccess← 0.
end if

end while

3. return AP Groups and GroupSuccess.

In algorithm 6.1, an initial list of BS is generated by placing the top left corner (origin)

of Grid�w×Grid�h grid at every coordinate contained inside the search area. The non-unique

BSs are removed from the initial list. A group of anchor points is created by selecting its

first anchor point (APseed). The selection of APseed is a vital step as it affects the selection

of other (NPE - 1) anchor points in the same group. The selection process is guided by the

following rules in decreasing order of importance:

1. For an anchor point to be a part of the group, it must be contained in at least one BS

that also contains all the anchor points in the group.

2. An anchor point must be contained in the fewest number of BSs.

3. An anchor point contained in the BS must have the fewest number of anchor points.

4. Once APseed is selected for a group, any anchor point with the shortest Euclidean

distance from it can be the part of the group.

34

Rule 1 ensures that the anchor point added to the group fits within the input grid.

Rules 2 and 3 ensures that the anchor points which have the least possibilities to be a part

of a different group are selected first. Rule 4 ensures the possibility of creating subsequent

group of anchor points that fit inside the input grid. The APseed is selected based on the

second rule and may have three possibilities in the following order of priorities:

A. The fewest number of BSs is equal to zero: This possibility arises when some anchor

points belong to unique, but not eligible BSs. In this situation, no solution can be found

for a given NPE and grid dimension, and the GroupSuccess flag is set to zero. However, if

n is not an integral multiple of NPE , then there will be one (or more) control steps in the

execution of a search pattern, where certain PEs will remain idle. The total number of idle

steps (idlePEs) allowed to the PEs during an execution of a search pattern is computed

using (6.3). If idlePEs is four, then two PEs can be idle during control step 1, and two

more PEs can be idle during control step 2. When idlePEs is more than zero, a successively

smaller group of anchor points is attempted to be created by selecting APseed from unique,

but not eligible BSs. When a group of NPE − k anchor points is created, the idlePEs is

reduced by k. If idlePEs reduces to zero, before all anchor points are grouped, a valid

group cannot be formed and the GroupSuccess flag is set to zero. If more than one anchor

point is contained in unique, but not eligible BSs, then one such point is selected randomly

to be APseed.

idlePEs =
�

n

NPE

�
×NPE − n (6.3)

B. The fewest number of BSs is equal to one: Rule 3 is applied to select APseed.

C. The fewest number BSs is greater than one: Any random anchor point present in the

fewest number of BSs can be selected as APseed.

Once, APseed is selected, Rules 1-4 are used to select the remaining NPE−1(or less) anchor

points in the group. The BS algorithm continues creating group of anchor points until

all anchor points have been grouped or a zero on the GroupSuccess flag is encountered.

The BS algorithm is attempted for various dimensions of Grid�w ×Grid�h and the smallest

35

dimension which results in the valid group of anchor points is considered the best solution.

The Number of BRAMs (BR
w and BR

h) in the RFB is computed using (3.9, 3.10, 6.2) for

the following combinations of (AR
w, AR

h) : (1, 1), (1, 2), (1, 4), (2, 1), (2, 2), and (4, 1).

The combination of (AR
w, AR

h) that results in the least value of BR
w ×BR

h is selected as the

parameters of the RFB. The BS algorithm is executed for each search pattern of an FBM

algorithm. The least common (Grid�w, Grid�h) which result in a successful group of anchor

points for all search patterns is considered for deriving the RFB.

36

Chapter 7

Results

This chapter compares the memory subsystem (hereafter referred to as the proposed

memory subsystem) derived from the proposed memory architecture template with that of

Vanne et al. [6], Kuzmanov et al. [3], and Beric et al. [14,15] for accelerating the test FBM

algorithms. The memory subsystems are compared based on the maximum number of PEs

supported by each memory subsystem for a given set of FPGA resources. The memory

subsystems proposed by Vanne et al., Kuzmanov et al., and Beric et al. are first derived to

support one PE, and then replicated to support multiple PEs for parallel execution. The

replication makes these memory subsystems independent of search pattern, and therefore

FBM algorithms. The performance of the proposed memory subsystem is estimated in

terms of fps. The BS algorithm explores the proposed architecture template for a given

FBM algorithm, NPE PEs, and size of current frame block (p× q). The resulting memory

subsystem is implemented in Verilog and synthesized using Xilinx ISE 10.1. The Virtex 4

LX160 FPGA is used as the target architecture. The available resources in this FPGA are,

Ravailable = 135168 LUTs and 288 BRAMs.

In the event of accelerating a search pattern using one PE, all the SBs have only one

candidate block and so their sizes are identical and equivalent to the size of the candidate

block. Since, there is only one candidate block in each SB, their sizes are also not affected

by the relative position of the anchor points of a search pattern, making the derived RFB

independent of the search pattern and the FBM algorithm. Therefore, a memory subsystem

derived for accelerating one FBM algorithm using a single PE can also accelerate another

FBM algorithm. Table 7.1 shows BRAMs and LUTs required by the memory subsystems

to accelerate test FBM algorithms using one PE. The FBM algorithms are executed for

five different block sizes. Only the BRAMs in the RFB and LUTs in the PSRM (without

37

Table 7.1: Comparison of proposed memory subsystem with other memory subsystems for
a single PE.

Memory subystem component Block size (p× q)

4 × 4 8 × 4 8 × 8 16 × 8 16 × 16

Vanne et al. [6], Kuzmanov et al. [3] RFB BRAMs = p× q 16 32 64 128 256

PSRM (LUTs) 512 1280 3072 7168 16384

Beric et al. [14, 15] RFB (BRAMs) < p× q 8 12 24 40 80

PSRM (LUTs) 640 1792 4096 9592 21232

RFB (BRAMs) < p× q 8 12 24 40 80

PSRM controller (LUTs) 3 10 10 21 21

Proposed PSRM without controller (LUTs) 640 1632 3782 8398 18848

BRAMs for PFU and PLU 4 4 4 4 4

Others (LUTs) 140 158 256 339 567

Total BRAMs 12 16 28 44 84

Total LUTs 783 1800 4048 8758 19436

Vanne et al. [6], Kuzmanov et al. [3],

Beric et al. [14, 15], CFB (BRAMs) 4 8 16 32 64

and proposed memory subsytem

controller) of other memory subsytems are estimated because (i) due to powers of two values

of p and q in the memory subsystems proposed by Vanne et al. and Kuzmanov et al., the

address generation unit for accessing the RFB and controller for the PSRM require negligible

LUTs; and (ii) due to lack of implementation details on AGU and PSRM proposed by Beric

et al. The CFB proposed by Vanne et al. is similar to the CFB of the proposed memory

subsystems and requires few LUTs for addressing. The memory subsystems proposed by

Kuzmanov et al. and Beric et al. do not discuss about the CFB and its addressing; therefore

the CFB in those cases has been assumed to be derived using (3.6-3.8).

The memory subsystem proposed by Vanne et al. and Kuzmanov et al. consists of

p × q BRAMs, which are configured to store one pixel per address location. This config-

uration allows the BRAMs to only fetch the required pixels. However, the fetched pixels

require shuffling to compute correct SAD values. The rotators to shuffle the fetched pixels

require fewer LUTs than the PSRM of other memory subsystems. Therefore, this memory

subsystem requires fewer LUTs than other memory subsystems but due to p × q BRAMs,

it requires the largest number of BRAMs. In comparison to the memory subsystem pro-

posed by Beric et al., the RFB in the proposed memory subsystem requires similar number

of BRAMs, but rearranges the required p × q blocks of pixels using fewer LUTs through

38

the novel PSRM. However, in case of 4 × 4 blocks the LUT requirements are the same,

because the rotator in the reordering logic proposed by Beric et al. and the multiplexers

in the proposed PSRM require similar amount of LUTs. The proposed memory subsystem

features unrestricted values of Bw and Bh, therefore the modulo and division operations

for non-powers of two value of Bw and Bh in eqs. (3.11, 3.12, 3.13, 3.16, and 3.17) are

performed using four additional dual port BRAMs. In spite of considering the additional

BRAMs, the BRAM requirement of the proposed memory subsystem is always less than

proposed by Vanne et al. and Kuzmanov et al. It is also observed that the total LUT

requirement of the proposed memory subsystem is always less than the memory subsystem

proposed by Beric et al., except for 4 × 4 and 8 × 4 blocks (due to the other components

of the proposed memory subsystem).

The maximum number of required NPE to accelerate a normal execution of FBM

algorithm is equal to the number of anchor points in the largest search pattern. This value

is found to be equal to 13 and 88 for MDHC [2] and UMHexagonS [1], respectively. Thus,

there is a limitation to the number of parallel PEs, which can accelerate the normal execution

of an FBM algorithm. However, with the memory subsystem supporting sufficient number

of PEs, the multiple small cross searches in MDHC [2], and extended hexagon searches

in UMHexagonS [1] can be executed speculatively. Speculative execution refers to the

execution of the candidate blocks of future iterations of a search pattern along with that

of the current iteration. Figure 7.1 shows the speculative execution of two iterations of

hexagon search (fig. 7.1(a)) and diamond search (fig. 7.1(b)) belonging to the extended

hexagon search of UMHexagonS [1]. It is found that 20 PEs are required for speculative

execution of two consecutive small cross searches in MDHC [2], and 18 and 12 for two steps

of consecutive extended hexagon searches in UMHexagonS [1].

A comparison of maximum NPE supported by the proposed and other memory subsys-

tems to accelerate test FBM algorithms for different sizes of current frame block is shown

in Table 7.2. The resources of all the PEs are combined with the resources for the mem-

ory subsystem to compute the total resource utilization (LMEM , BMEM) using (7.1, 7.2),

39

Fig. 7.1: Illustration of speculative execution in UMHexagonS.

where Lz and Bz represent the number of LUTs and BRAMs utilized by component z of the

memory subsystem, respectively. A PE computes the SAD using an adder tree proposed by

Jehng et al. [17]. In case of the memory subsystems proposed by Vanne et al., Kuzmanov

et al., and Beric et al., the maximum NPE is estimated by replicating RFB, PSRM, and

PE multiple times until all the resources on the FPGA are exhausted.

LMEM = LPLU + LPFU + LRFB + LCFB + NPE × (LPSRM + LPE) (7.1)

BMEM = BRFB + BCFB + 4 (7.2)

It is observed in Table 7.2 that the memory subsystem proposed by Vanne et al. and

Kuzmanov et al. for a given set of FPGA resources supports the least number of PEs for

both FBM algorithms, because it requires the largest number of BRAMs to realize its RFB.

Lesser the number of PEs, lesser the amount of parallelism, and hence slower will be the

execution of an FBM algorithm resulting in lower fps for a given video sequence. In case

of UMHexagonS [1], the proposed memory system supports fewer PEs than the memory

subsystem proposed by Beric et al. for 4 × 4 and 8 × 4 blocks. Since the proposed memory

40

Table 7.2: Maximum number of PEs supported by the proposed and existing memory
subsystems on a Virtex-4 LX160 FPGA.

Proposed Memory subsystem Vanne et al. [6],

Block size MDHC [2] UMHexagonS [1] Kuzmanov et al. [3] Beric et al. [14, 15]

(NPE) (NPE) (NPE) (NPE)

4× 4 44 23 17 35

8× 4 27 21 8 23

8× 8 16 12 4 11

16× 8 8 7 2 6

16× 16 4 3 0 2

subsystem features a single RFB and multiple copies of PSRM, in case of 4 × 4 block the

replication of PSRM for more than 23 PEs causes the number of required LUTs to exceed

LMEM . The same is the case for 8 × 4 block.

Table 7.3 shows fload and ffetch of the proposed memory subsystem implemented to

support maximum NPE for different block sizes and test FBMAs. The operating frequencies

are obtained from the post place and route reports generated using Xilinx ISE 10.1. The

performance of the proposed memory subsystem in terms of fps for integer pixels of a 1080p

(1920 × 1080) video sequence is estimated as shown in Table 7.4. The performance of the

proposed memory subsystem is estimated using the performance model discussed in the

previous chapter. The performance of other memory subsystems is not estimated because

(i) the memory subsystems proposed by Vanne et al. and Kuzmanov et al. are targeted

towards Altera Stratix and Virtex II FPGA devices, respectively, and the delay of linear

access memory proposed by Kuzmanov et al. cannot be estimated for Virtex 4 FPGAs; and

(ii) the memory subsystem proposed by Beric et al. is targeted towards ASIC and it is not

possible to obtain frequency related information for its FPGA-based implementation. Some

assumptions were made to reduce the complexity of the estimations, which are discussed

below.

In case of MDHC [2], it is assumed that the search pattern, if iterated, is executed

10 times before satisfying the exit condition. MDHC [2] executes different sequence of

search patterns based on the type of motion. In order to estimate performance for the

worst case, it is assumed that the motion of each current frame block is fast block motion,

41

Table 7.3: Operating frequency of PLU and memory subsystem for different block sizes and
FBM algorithms.

Operating Frequenciens (MHz) Block size

4× 4 8× 4 8× 8 16× 8 16× 16

PLUfrequency 277.23 231.16 173.13 141.64 185.08

116.33 141.72 99.33 90.08 52.22

MEMfrequency 161.66 174 174 147.30 163.4

122.04 101.66 130.04 100.85 100.02

Table 7.4: Number of frames processed per second (fps) by the proposed memory subsystem
through normal and speculative execution of FBM algorithms.

FBM algorithms Block size

4× 4 8× 4 8× 8 16× 8 16× 16

MDHC Normal Execution (fps) 8 20 29 52 55

MDHC Speculative Execution (fps) 11 27 NA NA NA

UMHexagonS Normal Execution (fps) 8 13 33 49 73

UMHexagonS Speculative Execution (fps) 14 24 38 NA NA

which requires execution of the largest number of search patterns. In UMHexagonS [1]

the extended hexagon search is also assumed to execute for 10 iterations. UMHexagonS

[1] executes a different sequence of search patterns for different block sizes. However, to

estimate performance for the worst case, a similar sequence of search patterns for different

block sizes is assumed. It is also assumed that all the anchor points of the search patterns

lie within the search area. The speculative execution is performed when sufficient PEs can

be supported by the memory subsystem. The NPE required for speculative execution of

two consecutive iteration of small cross search pattern in MDHC [2] is 20, and two steps of

extended hexagon search in UMHexagonS [1] is 18 and 12, respectively.

The presence of multiple PEs accelerates the execution of a search pattern by decreas-

ing the number of required clock cycles (searchcycles). However, the memory subsystem

incurs a latency (Flatency) whenever a new or next iteration of a search pattern is exe-

cuted, increasing the time to process a frame (Frameduration). Since the search patterns

in MDHC [2] and UMHexagonS [1] are executed for 21 and 22 times, respectively, the

42

speculative execution of these FBM algorithms decreases the time to process each frame

by overlapping the initial latency incurred for consecutive iterations. The performance in

terms of fps was observed to increase by 49% (on an average) through speculative execu-

tion of two consecutive iterations of a search pattern. The number of current frame blocks

in a frame also affects the performance of the memory subsystem. For a given frame, the

memory subsystem must process fewer number of 16 × 16 current frame blocks than 4 ×

4, and therefore the average performance of the memory subsystem for a 16 × 16 current

block is 8 times better than that for 4 × 4.

The memory subsystems derived from the proposed architecture template features

100% device utilization unlike Dutta et al. Unlike Dutta et al. and Vleeschouwer et al.,

the proposed architecture template is applicable to any FBM algorithm for a range of PEs,

provided there are sufficient FPGA resources. The template can provide conflict free parallel

access to multiple candidate blocks unlike Peng et al. [5]. Unlike Kuzmanov et al., Vanne

et al., and Beric et al., the proposed memory subsystem template does not require data

replication to support multiple PEs. Like Dutta et al. [12,13] the maximum number of PEs

supported by the proposed template depends on the search pattern. The number of PEs

can vary from one to the number of anchor points in the largest search pattern of an FBM

algorithm.

43

Chapter 8

Conclusion and Future Works

8.1 Conclusion

A novel memory architecture template to accelerate a given FBM algorithm through

multiple parallel PEs is presented in this thesis. Since the proposed memory architecture

template is independent of the search pattern, number of processing elements, and block

size, it can be used to accelerate various fast block matching algorithms. The memory

architecture template can be parameterized for a given FBM algorithm, number of parallel

processing elements, and block size to obtain a memory subsystem. The salient feature of

the memory architecture template is its capability to provide conflict free parallel accesses

to multiple candidate blocks without any need of data replication. The memory subsystem

derived from the proposed memory architecture template is unique in its efficient PSRM

which accounts for its smaller resource requirements (LUTs and BRAMs) when compared

to other memory subsystems. These features make the proposed memory architecture

template a suitable choice over the existing memory subsystems and for accelerating FBM

algorithms. Due to FPGA-based implementation, the derived memory subsystems also

provide higher operations per watt than state-of-the-art PCs. The memory architecture

template is explored through a bounded set algorithm. However, it can also be explored

by any other exploration algorithm. The performance of the derived memory subsystems

is estimated in terms of number of frames processed per second.

Results are provided for two FBM algorithms (Mixed Diamond Hexagon and Cross

search (MDHC) and UMHexagonS) in terms of support for maximum number of processing

element and performance (fps). It is observed that the proposed memory subsystem can

support 1 ∼ 27 more PEs than other published memory subsystems for given FPGA re-

44

sources. It is also observed that the proposed memory subsystem can process integer pixels

of a 1080p video sequence at a varying rate of 8 ∼ 73 fps through normal execution of fast

block matching algorithms on Virtex 4 LX160 FPGA device. The performance in terms of

fps was observed to increase by 49% (on an average) through speculative execution of two

consecutive iterations of a search pattern.

8.2 Future Works

A controller is required to control the memory subsystem. The controller must generate

addresses to fetch pixels from an external memory. It must also provide the coordinates

of the pixels (fetched from the external memory and loaded into the RFB and CFB) to

the PLUREF and PLUCUR, respectively. The sub-module of the controller for generating

control signals for PFUREF and PSRMs can be implemented using a finite state machine,

where every state is dedicated to one group of anchor points. The BS algorithm derives

multiple groups of anchor points for all search patterns of an FBM algorithm. One of

the outputs for each state must be the SB offset for the group of anchor points and must

be provided to the PFUREF . The other outputs must be anchor point offsets for each

anchor points in the group and must be sent to the PSRMs. The controller must also

provide coordinate of the top-left pixel of the current frame block to the PFUCUR for

fetching a current frame block from the CFB. The controller must disable some PEs in

case the number of anchor points in a search pattern is not an integral multiple of NPE .

The controller must also disable the PEs in case few anchor points of a search pattern fall

outside the search range. The number of BRAMs in the RFB and CFB are not sufficient

to store an entire frame; therefore these frame buffers store a portion of frame at any given

time. The contents of these BRAMs are therefore constantly overwritten. This requires

the controlling of the pixels to be loaded from an external memory to the on-chip frame

buffers to avoid overwriting the address location which have candidate blocks required for

SAD computations.

Footprint of the PE is also considered while determining the number of PEs supported

by the proposed architecture template. Presently a tree-based PE architecture has been

45

assumed for this experiment, in future different PE architectures can also be assumed. The

FBM algorithms are executed for different size of current frame blocks (varying from 4× 4

to 16× 16), but the derived memory subsystem is limited to one block size. Therefore, the

exploration technique must be modified to derive memory subsystems to support variable

sizes of current frame blocks. For a given FBM algorithm, support to maximum number of

PEs decreases with the increase in the size of the current frame block. Therefore, in order

to support variable block sizes and variable number of PEs, a configurable PE architecture

is required. If the above concerns are addressed then an Intellectual Property (IP) core for

creating FPGA based memory subsystem for accelerating FBM algorithm can be created.

The inputs to the IP core generator will be the search patterns of an FBM algorithm,

number of parallel PEs, and available FPGA resources.

46

References

[1] Z. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional pel motion estimation for
jvt,” in 6th Meeting on Joint Video Team (JVT) of ISO/IEC MPEG & ITU-TVCEG,
vol. JVT-F017, Dec. 5-13, 2002.

[2] C. Duanmu, X. Chen, Y. Zhang, and S. Zhou, “Mixed diamond, hexagon, and cross
search fast motion estimation algorithm for h.264,” in IEEE International Conference
on Multimedia and Expo, pp. 761–764, Apr. 2008.

[3] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “Multimedia rectangularly address-
able memory,” IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 315–322, Apr.
2006.

[4] C. De Vleeschouwer, T. Nilsson, K. Denolf, and J. Bormans, “Algorithmic and archi-
tectural co-design of a motion-estimation engine for low-power video devices,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 12, no. 12, pp. 1093–
1105, Dec. 2002.

[5] J. Peng, X. Yan, D. Li, and L. Chen, “A parallel memory architecture for video coding,”
Journal of Zhejiang University - Science A, vol. 9, pp. 1644–1655, Dec. 2008.

[6] J. Vanne, E. Aho, T. Hamalainen, and K. Kuusilinna, “A parallel memory system for
variable block-size motion estimation algorithms,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 18, no. 4, pp. 538–543, Apr. 2008.

[7] Xilinx, “Virtex-4 family overview,” [http://www.xilinx.com/support/
documentation/data_sheets/ds112.pdf], Dec. 28, 2007.

[8] Altera, “Stratix iv device family overview,” [http://www.altera.com/literature/
hb/stratix-iv/stx4_siv51001.pdf], June, 2009.

[9] Xilinx, “Virtex-4 fpga user guide,” [http://www.xilinx.com/support/
documentation/data_sheets/ds112.pdf], Dec. 1, 2008.

[10] Xilinx, “Design flow overview,” [http://www.xilinx.com/itp/xilinx7/books/
data/docs/dev/dev0013_5.html].

[11] I. E. Richardson, H.264 and MPEG-4 Video Compression - Video Coding for Next-
generation Multimedia. West Sussex, England: John Wiley & Sons, 2003.

[12] S. Dutta, W. Wolf, and A. Wolfe, “A methodology to evaluate memory architecture de-
sign tradeoffs for video signal processors,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 8, no. 1, pp. 36–53, Feb. 1998.

[13] S. Dutta and W. Wolf, “A flexible parallel architecture adapted to block-matching
motion-estimation algorithms,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 6, no. 1, pp. 74–86, Feb. 1996.

47

[14] A. Beric, J. van Meerbergen, G. de Haan, and R. Sethuraman, “Memory-centric video
processing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18,
no. 4, pp. 439–452, Apr. 2008.

[15] A. Beric, R. Sethuraman, H. Peters, G. Veldman, J. van Meerbergen, and G. de Haan,
“Streaming scratchpad memory organization for video applications,” International
Conference on Circuits, Signals and Systems, pp. 427–433, 2004.

[16] A. A. Clements, S. Chandrakar, A. Sudarsanam, and A. Dasu, “Methodology to design
on-chip video buffers for fpga based fast block matching algorithms,” Electronic Letters,
IET, 2009, under review.

[17] Y.-S. Jehng, L.-G. Chen, and T.-D. Chiueh, “An efficient and simple vlsi tree archi-
tecture for motion estimation algorithms,” IEEE Transactions on Signal Processing,
vol. 41, no. 2, pp. 889–900, Feb. 1993.

	Memory Architecture Template for Fast Block Matching Algorithms on Field Programmable Gate Arrays
	Recommended Citation

	tmp.1263249575.pdf.dYHRb

