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ABSTRACT 

Ligand and Metal Effects on the CO-Release Reactivity of Metal Acireductone and 

Flavonolate Complexes 

by 

Katarzyna Grubel, Doctor of Philosophy 

Utah State University, 2011 

Major Professor: Dr. Lisa M. Berreau 
Department: Chemistry and Biochemistry 
 

The research reported herein involves synthetic metal complexes of relevance to 

dioxygenase enzymes (Ni(II)-containing acireductone dioxygenase (Ni(II)-ARD) and 

quercentinase (2,4-flavonol dioxygenase) that promote oxidative carbon-carbon bond 

cleavage and CO release. The experiments focus on the elucidation of structure-reactivity 

relationships and evaluation of the conditions under which CO is generated.  

It had been proposed that hydrogen bond donors in the secondary environment of 

the active site metal center in Ni(II)-ARD influence the coordination of the acireductone 

substrate on the nickel center. To evaluate this proposal, we investigated the Ni(II) 

coordination chemistry of an acireductone-type enolate anion using a supporting chelate 

ligand having two internal hydrogen bond-donors. The resulting complex exhibited 

differences in terms of the organic product distribution in a CO release reaction resulting 

from oxidative C-C bond cleavage of the enolate ligand relative to this reported for the 
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hydrophobic, 6-Ph2TPA-supported (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-

N-((2-pyridyl)methyl)amine) analogue.  

In another study, we found that changes in the supporting chelate ligand or metal 

center influenced the coordination chemistry of the acireductone-type enolate anion. This 

chemistry highlighted the propensity of the enolate to undergo isomerization without CO 

release in the presence of water. Rigorously excluding water enabled the isolation of a 

Ni(II) enolate complex of the 6-PhTPA ligand and examination of its oxidative CO 

release chemistry, as well as the spectroscopic characterization of the first Co(II) 

complex of an acireductone-type enolate.  

To elucidate factors influencing the CO-release reactivity of metal-flavonoid 

complexes, some of which have relevance to quercentinase enzymes, we synthesized and 

characterized the first series of structurally-related metal-flavonolate complexes [(6-

Ph2TPA)M(3-Hfl)]X (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II); X = OTf- 

or ClO4
-). Exposure of these complexes to UV light initiated photooxidative carbon-

carbon bond cleavage and CO release in a metal-dependent manner, with closed-shell d10 

metals giving rise to the highest rate of CO release. These studies suggest that metal 

flavonolate species may be useful as a new type of photo-induced CO release molecules 

(CORMs). Such species are of current interest for possible therapeutic applications.  

 

(217 pages) 
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CHAPTER 1 

CO RELEASE IN BIOLOGICAL AND SYNTHETIC SYSTEMS 

Physicochemical Properties of Carbon Monoxide 

Carbon monoxide (CO) is an air-stable, diatomic molecule with molar mass 28.01 

g/mol and density 1.145 g/cm3 at 298 K and 1 atm.1 The molecule has ten valence 

electrons and, since all of them are paired-up, a singlet ground state. It contains a triple 

bond with length of 1.128 Å and dissociation energy 1077 kJ/mol at 298 K1,2, which 

makes it one of the strongest bonds known. The bond is slightly polarized (0.122 D),3 

allowing carbon monoxide to be used as a ligand toward metal centers where it acts as 

both σ-donor and π-acceptor. Selected properties of CO are presented in Table 1-1. 

Table 1-1. Selected Physicochemical Properties of 
Carbon Monoxide.1 

Property Value 

Molecular Weight 28.01 g/mol 

Boiling Point -191.6 °C 

Melting Point -205.0 °C 

Autoignition Point 606.0 °C 

Density 1.250 g/L at 0 °C, 1 atm  
1.145 g/L at 25 °C, 1 atm 

Density (Vapor) 0.968 (air = 1) 

Solubility in H2O 3.54 ml/100 ml at 0 °C, 1 atm 
2.14 ml/100 ml at 25 °C, 1 atm  
1.83 ml/100 ml 37 °C, 1 atm  

Flammable Limits in Air  12-75 vol. % 
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A Brief History of Carbon Monoxide 

Carbon monoxide (CO) is proposed to be one of the most important components 

of the primordial soup and therefore contributed to the evolution of life4 and the Universe 

in general.4e However, due to its colorless and odorless nature, as well as a strong 

association with blood components, for millennia carbon monoxide was regarded as a 

poison and a silent killer.5-10 The oldest reference to its lethal nature can be found in the 

works of Aristotle (384-322 B. C.), where he described how the inhalation of coal fumes, 

in which carbon monoxide is the main component, led to poisoning and death.5 Also, a 

case study by Lascaratos and Marcetos showed that in 363 and 364 A.D. two Byzantine 

emperors, Julian the Apostate and his successor Jovian, were poisoned by inhalation of 

coal fumes.6 Throughout the ages, carbon monoxide, even though its mode of action was 

not known, was recognized as a harmful and deadly agent. However, it was not until 1794 

in the General Prussian State Laws that the first rules for proper protection against the 

coal fumes were passed.5 

The first preparation of pure CO gas is attributed to de Lassone, who 

accomplished it in 1776.5,7 Over the next few years, the properties and structure of CO 

were established and described. In the mid 19th century, some aspects of the action of 

carbon monoxide on the human body were elucidated first by Bernard, and then by 

Hoppe-Seyler.5 The 20th century brought about the introduction of illuminating gas (a 

mixture of combustible gases, mainly methane and hydrogen with smaller amounts of 

carbon monoxide, propane, butane, acetylene, ethylene, or natural gas) for industrial and 

domestic purposes, and led to an increased risk of CO poisoning, but also to a better 
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understanding of carbon monoxide toxicity.5 In 1895, Haldane described how the binding 

of carbon monoxide to hemoglobin8a decreased its capacity for transporting oxygen.8b,c 

Additionally, it had been known since 1868 that CO poisoning could be alleviated by 

inhalation of oxygen under atmospheric pressure.5 Therefore, in 1960 a Hyperbaric 

Oxygenation (HBO) therapy for CO-poisoned patients was introduced.9 Even though 

more recently there have been questions raised about this treatment,10 to date, the HBO 

procedure remains the most effective treatment for the carbon monoxide poisoning.11 

Considering the acute toxicity of carbon monoxide, it may come as a surprise that 

this molecule is produced endogenously in humans. The first mention of the presence of 

CO in human blood dates back to Nicloux’s report from 1898.5 Nearly a century later, in 

1991, Marks postulated that carbon monoxide is not only a poison and a waste product of 

heme degradation, but may actually possess a physiological role.12 Almost a decade later, 

it was shown that CO exhibits powerful cytoprotective,13a anti-inflammatory,13b and 

antiapoptotic13c properties. However, even before those beneficial effects of CO were 

experimentally demonstrated, in the early 1990’s it was proposed that CO could be a 

neural transmitter and regulate cyclic guanylyl monophosphate (cGMP) in a way similar 

to that of nitric oxide (NO).14 Another significant discovery was made in 2001 when it 

was shown that the administration of exogenous carbon monoxide (1% vol. in air) 

repressed heart graft rejection in a mouse-to-rat transplant.15 These interesting findings 

opened up a completely new field and prompted scientists to investigate both natural and 

synthetic systems as possible therapeutic agents for CO release. Specific approaches 

currently under investigation toward delivering CO include: (i) inhalation of CO gas, (ii) 
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up- or down-regulation of the CO-producing enzymes responsible for heme catabolism, 

and (iii) application of synthetic CO-releasing molecules.16  

Enzymatic Carbon Monoxide Release 

In nature, carbon monoxide release from an organic molecule is catalyzed by three 

types of enzymes: heme oxygenases (HOs) in humans, and acireductone dioxygenase 

(ARD) and 2,4-quercetin dioxygenase (quercetinase) in bacteria and fungi.   

Endogenous CO Production by Heme Oxygenase 

Although in the human body small amounts of CO may be produced as a by-

product of the cytochrome P-450 cycle and lipid peroxidation, the main source of 

endogenous CO production comes from heme degradation catalyzed by heme oxygenase 

enzymes (Scheme 1-1).5,7,12-25 Heme oxygenases (HOs) are found in three isoforms: (i) 

inducible HO-1 expressed in response to cellular stress, (ii) HO-2, which is controlled by 

post-translational modifications, and (iii) a recently discovered HO-3 of yet unknown 

purpose.17 The mechanism of the degradation of heme involves three consecutive steps 

(Scheme 1-1): (i) hydroxylation of an α-carbon of the porphyrin, (ii) conversion of the 

Fe(III)-α-meso-heme produced in the first step into Fe(II)-verdoheme and CO, and (iii) 

cleavage of the Fe(II)-verdoheme ring and formation of biliverdin and free Fe(II) 

ion.16b,c,18 Heme degradation catalyzed by HOs was discovered in 1968 by Tenhunen and 

Schmidt.19 Since then, it has been shown that the production of carbon monoxide from 

heme degradation might be influenced by many factors, including multiple hematological 

diseases such as, but not restricted to, anemia, sickle cell disease, and cystic fibrosis. In a 
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healthy individual, the rate of CO production oscillates around 18.8 µmol/h and its 

average concentration in tissues is in the nanomolar range.20 During heme degradation, 

HOs produce one equivalent of carbon monoxide per each heme molecule. The main site 

of CO production is the liver, where the majority of heme catabolism takes place.20,21  

CO Release Catalyzed by Acireductone Dioxygenase 

Acireductone dioxygenase (ARD) is a member of the cupin superfamily of 

proteins and is found at the only branch point in the methionine salvage pathway in 

bacteria (Scheme 1-2). To our knowledge, it is the only enzyme known wherein the nature 

of the products formed depends exclusively on the identity of the metal ion present in the 

active site.22-25 The Fe(II)-containing form catalyzes the on-pathway reaction converting 

the 1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene (acireductone) to 4-methylthio-2-

Scheme 1-1. 
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ketobutyrate and formic acid (Scheme 1-2). It should be noted that this is the same 

reaction that occurs in the absence of the ARD enzyme.26 The Ni(II)-containing ARD 

enzyme catalyzes an off-pathway reaction, yielding CO, formic acid, and 3-

(methylthio)propionic acid (Scheme 1-2).22-26 Thus, the nature of the metal center is 

important to inducing carbon monoxide release in this system. The difference in the 

reactivity of the enzymes is proposed to stem from different coordination modes of the 

substrate to the metal center (Figure 1-1), resulting in the activation of different C-C 

bonds for oxidative cleavage reactions.22,24 Interestingly, in 1999 Dai et al. demonstrated 

that the substitution of a Ni(II) by Co(II) in the active site of the ARD also results in an 

enzyme that catalyzes the CO-producing reaction.25 In terms of the influence of active site 

residues, it has been proposed that the presence of a hydrogen-bonding arginine residue(s) 

in the secondary environment helps to position and stabilize the metal-bound enediolate 

in the active site of Ni(II)-ARD.24  

Scheme 1-2. 
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CO Release Catalyzed by 2,4-Quercetin Dioxygenase 

Quercetin is a flavonol which is widely distributed in plants. Because it exhibits 

antibacterial27 and antifungal28 properties, both bacteria and fungi have developed a 

defense mechanism in the form of an enzyme, quercetin dioxygenase, which breaks down 

this molecule. Degradation of quercetin to a 2-protocatechuoylphloroglucinol carboxylic 

acid molecule (O-benzoylsalicylic acid, depside) was described as early as in 1958.29 Two 

years later, CO release during the same reaction was reported.30  

Quercetin dioxygenase catalyzes the oxidative cleavage of a C=C bond (Scheme 

1-3).31 Like the ARD enzyme, 2,4-quercetin dioxygenase belongs to the cupin 

superfamily of proteins.32 In 1971, it was shown that the fungal quercetinase contains a 

mononuclear Cu(II) in its active site.33 The enzyme produced by bacteria, e.g. Bacillus 

subtilis and Streptomyces sp. FLA, is instead able to incorporate several different divalent 

metals while retaining at least partial activity.34,35 The most active forms of the 

quercetinase enzyme were obtained during the reconstitution of the apo form of the 

enzyme from the Streptomyces sp. FLA with Ni(II) or Co(II).35 However, it is not known 

Figure 1-1. Proposed ES adducts in the reactions catalyzed by acireductone dioxygenase. 
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how the different metal ions influence the enzymatic CO production in this system and/or 

whether changes in the metal center influence the chemistry other than fine tuning of the 

redox potential of the enzymatic active site. 

Carbon Monoxide Release in Synthetic Systems 

Carbon Monoxide-Releasing Molecules (CORMs) 

In his initial paper from 2002, Motterlini laid the groundwork for the development 

of a new class of pharmaceuticals: carbon monoxide-releasing molecules (CORMs).36 

Since this report, the field has been developing rapidly and in as little as nine years many 

patents involving CORMs have been filed.16a So far, they mainly involve metal-carbonyl 

species (Figure 1-2),37 although some organic CORMs such as borates,37c aldehydes, 

esters, imines, etc.16a have also been proposed. Interestingly, in 2002, a patent describing 

CO release from methylene chloride was filed.16a Nonetheless, none of those molecules 

offers the much-needed control over the CO dosage supplied to a desired target, as 

majority of CORMs release CO immediately upon dissolution.37j Additionally, the metal- 

containing CORMs reported to date contain heavy metals. Moreover, the definite amount 

Scheme 1-3. 
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of CO gas released from those systems cannot be accurately controlled. For example, 

even though the most widely used CORM-3 ([RuCl(gly)(CO)3]) releases precisely one 

CO molecule in 37 °C in water, its half life in human plasma is only 3.6 minutes, making 

CO delivery very unspecific.37b The majority of currently known CORMs suffer from 

similar setbacks.37j  

Figure 1-2. Examples of known CO-releasing molecules. 
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A promising way to control carbon monoxide release is sensitization of CORMs 

toward light. It is known that photodynamic therapy allows for precise control over 

location, dosage, and timing of the therapeutical agent.38 In this regard, several photo-

activated CORMs have been reported.37f,g,i,38 Such compounds are stable in the dark and 

release CO upon irradiation with light. A challenge in the development of new 

photoswitchable CORMs is the adjustment of the irradiation wavelength toward longer 

values (far visible and near IR wavelengths; > 600 nm).39 

Most recently, new ways of controlled CO release and delivery from CORMs, 

such as CO-releasing micelles40 and enzyme-triggered CORMs (ET-CORM), have been 

proposed.41 These new systems are designed to avoid the inherent toxicity of heavy metals 

as well as the use of high frequency irradiation. 

CO Release in Model Systems of Ni(II)-Containing  
Acireductone Dioxygenase 

The first synthetic model of the active site of Ni(II)-containing ARD was reported 

in 2005 by the Berreau group.42a A mononuclear Ni(II)-enolate complex supported by a 

hydrophobic 6-Ph2TPA ligand was synthesized and isolated (1, Scheme 1-4). Because no 

procedure for synthesis of the natural substrate was known, a model (Figure 1-3) of the 

native substrate was used. This compound is not a substrate for the acireductone 

dioxygenase enzyme due to the presence of a phenyl substituent on the C(1) carbon. 

Complex 1 was shown to undergo an O2-dependent aliphatic C-C bond cleavage of the 

enolate to yield either a monobenzoate complex (2, Scheme 1-4), or a dibenzoate complex 

(3, Scheme 1-4), depending on the protonation level of the metal-bound acireductone.42,43  
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In both cases it was noted that during the reaction the organic by-product benzil was being 

formed along with CO. To elucidate the possible pathways leading to formation of 

observed products, mechanistic studies were undertaken. As a result of these 

investigations, it was concluded that the oxidative C-C bond cleavage using the phenyl-

containing model acireductone proceeds through diphenyl triketone and hydroperoxide as 

intermediates. Additionally, DFT calculations showed that the monoanionic form of 

acireductone analogue is predisposed to extrude CO during the oxidative C-C bond 

Scheme 1-4. 

Figure 1-3. Relevant acireductones. 
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cleavage (Scheme 1-5). This predisposition is a direct result of a presence of the phenyl 

substituent on carbon C(1) of the acireductone.42b  

As mentioned in the description of the enzymatic CO release in the Ni(II)-ARD 

system, the secondary environment of the active site in the ARD enzyme contains at least 

one arginine residue.24 It was proposed that this amino acid may play a crucial role in 

stabilizing the doubly deprotonated substrate on the metal center through the formation of 

hydrogen bonds.22,24  To evaluate this possibility, a new ligand, 6-NA-6-Ph2TPA, 

containing one hydrogen bond donor arm was synthesized and used to investigate how 

Scheme 1-5. Proposed oxidation of model acireductone starting from 1. For clarity, the 
supporting 6-Ph2TPA ligand has been truncated. 
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secondary hydrogen bonds influence the coordination of an acireductone-type ligand. 

Using the 6-NA-6-Ph2TPA ligand, a trinuclear Ni(II) enediolate complex was isolated and 

characterized (4, Figure 1-4).44 Notably, the acireductone analog exhibits a different 

coordination mode in this complex, forming two five-membered rings that bridge two 

Ni(II) centers. Complex 4 undergoes reaction with O2 to generate two equivalents of a 

Ni(II) benzoate complex, CO, benzyl, and a Ni benzoate salt (Scheme 1-6). It is 

noteworthy that 18O labeling experiments involving either 1 in the presence of one 

equivalent of base (Scheme 1-4 (top)) or 4 (Scheme 1-6) resulted in identical 

incorporation of labeled oxygen into the benzoate complexes (86% via inspection by mass 

spectrometry).44 This result is not surprising since it was implied that a putative, dianionic 

species was formed in the pathway shown across the top of Scheme 1-4.43 In 2010 the 

isolation, characterization, and reactivity of this proposed intermediate was further 

investigated.45 It was shown that the treatment of 1 with one equivalent of base results in 

displacement of the supporting ligand 6-Ph2TPA and formation of the hexanickel cluster 

(5, Figure 1-5) with λmax = ~420 nm (Scheme 1-4). Because isolation of the bulk material 

from the reaction mixture proved impossible, an alternative synthetic route for obtaining 

the cluster was employed. This independently synthesized species was then exposed to O2 

in the presence of 1/6 equivalent of 6-Ph2TPA, yielding a product distribution identical 

with the oxidation reaction starting from 1 and one equivalent of base (Scheme 1-4 (top)). 

Additionally, 18O labeling studies of the oxidation reaction starting from 5 resulted in the 

level of isotope incorporation (83%-86%), which matched well with the reaction starting 

from 1 in presence of one equivalent of base (86%). 
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Scheme 1-6. 

Figure 1-4. 6-NA-6-Ph2TPA ligand (left) and core of 4 in which the supporting ligand 

has been truncated (right). 

Figure 1-5. ORTEP representations of 5. View from the top (left), one layer of the cluster 

(center), and side view with truncated acireductone ligand (right). 
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As outlined above, introduction of one hydrogen bond donating arm to the 

supporting ligand enabled stabilization of an enediolate species in a multinuclear 

structure.43 Hypothesizing that the introduction of multiple hydrogen-bonding appendages 

to the chelate ligand might enable stabilization of a mononuclear species with doubly 

deprotonated model acireductone, such studies were initiated and their results are offered 

in Chapter 2.  

To further elucidate factors influencing the formation of the acireductone-type 

enolate complexes, additional studies involving changes in the metal center, Ni(II) to 

Co(II), and supporting chelate ligand, 6-Ph2TPA to 6-PhTPA, were performed. The 

outcome of these investigations provided better insight into the challenges encountered in 

acireductone coordination chemistry. This issue is further discussed in Chapter 3. 

CO Release in Model Systems of 2,4-Quercetin Dioxygenase 

Initial models of the quercetinase enzymes were reported in 1979 and involved 

simple, base catalyzed oxygenation of quercetin or other flavonols.46 However, the first 

structure of a metal-containing complex to mimic the enzyme active site was reported 

more than a decade later in 1990.47 Since at that time only the copper-containing fungal 

quercetinase was known, the complexes contained exclusively Cu(I) or Cu(II) as the 

metal ion. These complexes involved homoleptic flavonolate coordination,48 or copper 

centers supported by a monodentate phosphine ligand.47 However, there have now been at 

least 11 different ligands (see examples in Figure 1-6) and over eight quercetin analogues 

used for this purpose.49b Multiple Cu-flavonolate species have been prepared and shown 

to release CO in DMF when heated.49  
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Although a cobalt complex-promoted oxidation of quercetin was reported as early 

as 1974,50 the first cobalt(III)-coordinated flavonolate structure was solved in 1992.51 

Further studies of metal-flavonolate complexes provided structures of Fe(III)-,51        

Mn(II)-,52b Ni(II)-,53 and Zn(II)-containing54 compounds. Nonetheless, despite a growing 

structural database for metal flavonolate complexes, each complex contained a different 

Figure 1-6. Examples of supporting ligands used in model studies of 2,4-quercetin 
dioxygenase. 
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supporting ligand and/or a different oxidation state of the metal ion. As a result, it was 

impossible to assess the influence of the metal ion on the oxidative C-C bond cleavage of 

the metal-bound flavonolate moiety. To address this deficiency, the Berreau group has 

developed the very first series of a model 3-hydroxyflavonolate anion coordinated on 

divalent metal centers supported by the same, hydrophobic 6-Ph2TPA ligand. This 

allowed for direct comparison of the influence of the metal ion on both the coordination 

mode and spectroscopic features of the metal-bound flavonolate. This comparison is 

further discussed in Chapter 4. Having synthesized and characterized the aforementioned 

family of flavonolate complexes, we were positioned to investigate the O2-dependent 

reactivity and CO release reactivity of these complexes under various conditions. Results 

of these investigations are further explored in Chapters 5 and 6. 

Conclusions 

Carbon monoxide is a small molecule with increasing significance to human health. 

Because of its growing importance, it is imperative to understand the factors controlling 

its release in enzymatic systems, as well as its release from synthetic complexes. In the 

Berreau group, we are interested in elucidating factors influencing CO release in synthetic 

systems of relevance to CO producing enzymes. In the subsequent chapters of this 

dissertation the influence of both chelate ligand and metal ion on CO production in 

synthetic systems of relevance to acireductone dioxygenase and 2,4-flavonol dioxygenase 

is presented.  
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CHAPTER 2 

O2-DEPENDENT ALIPHATIC CARBON-CARBON BOND CLEAVAGE 

REACTIVITY IN A Ni(II) ENOLATE COMPLEX HAVING A HYDROGEN BOND 

DONOR MICROENVIRONMENT; COMPARISON WITH A HYDROPHOBIC 

ANALOG1 

Abstract  

A mononuclear Ni(II) complex having an acireductone type ligand, and supported by the 

bnpapa (N,N-bis((6-neopentylamino-2-pyridyl)methyl-N-((2-pyridyl)methyl)amine 

ligand, [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14), has been prepared and 

characterized by elemental analysis, 1H NMR, FTIR, and UV-vis. To gain insight into the 

1H NMR features of 14, the air stable analog complexes 

[(bnpapa)Ni(CH3C(O)CHC(O)CH3)]ClO4 (16) and [(bnpapa)Ni(ONHC(O)CH3)]ClO4 

(17) were prepared and characterized by X-ray crystallography, 1H NMR, FTIR, UV-vis, 

mass spectrometry, and solution conductivity measurements. Compounds 16 and 17 are 

1:1 electrolyte species in CH3CN. 1H and 2H NMR studies of 14, 16, and 17 and 

deuterated analogs revealed that the complexes having six-membered chelate rings for the 

exogenous ligand (14 and 16) do not have a plane of symmetry within the solvated cation  

 

1Coauthored by Katarzyna Grubel, Amy L. Fuller, Bonnie M. Chambers, Atta M. Arif, 
and Lisa M. Berreau. Reproduced with permission from Inorganic Chemistry 2010, 49, 
1071-1081. Copyright 2010 American Chemical Society. 
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and thus exhibit more complicated 1H NMR spectra. Compound 17, as well as other 

simple Ni(II) complexes of the bnpapa ligand (e.g. [(bnpapa)Ni(ClO4)(CH3CN)]ClO4 (18) 

and [(bnpapaNi)2(µ-Cl)2](ClO4)2 (19)), exhibit 1H NMR spectra consistent with the 

presence of a plane of symmetry within the cation. Treatment of 

[(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14) with O2 results in aliphatic carbon-carbon 

bond cleavage within the acireductone-type ligand and the formation of 

[(bnpapa)Ni(O2CPh)]ClO4 (9), benzoic acid, benzil, and CO. Use of 18O2 in the reaction 

gives high levels of incorporation (>80%) of one labeled oxygen atom into 9 and benzoic 

acid. The product mixture and level of 18O incorporation in this reaction is different than 

that exhibited by the analog supported the hydrophobic 6-Ph2TPA ligand, [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2). We propose that this difference is due to 

variations in the reactivity of bnpapa- and 6-Ph2TPA-ligated Ni(II) complexes with 

triketone and/or peroxide species produced in the reaction pathway.  

Introduction 

Interest in how the secondary environment of a metal center influences the reactivity of 

metal-bound ligands stems from the possible roles of secondary interactions in metal-

catalyzed reactions in biological systems.1 In the acireductone dioxygenases Ni(II)-ARD 

and Fe(II)-ARD, which contain the same protein component, it is proposed that 

differences in the secondary environment surrounding the divalent metal center influence 

the coordination mode of the acireductone substrate and the regioselectivity of the 

oxidative carbon-carbon bond cleavage reaction.1 Specifically, in Ni(II)-ARD the 
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positioning of a tryptophan side chain (W162) is suggested to promote the formation of a 

six-membered chelate ring in the enzyme substrate adduct (Scheme 2-1(top)).2 Reaction 

of this adduct with O2 results in oxidative cleavage of the C(1)-C(2) and C(2)-C(3) bonds 

and the formation of CO and carboxylate products. For Fe(II)-ARD, a more open active 

site is suggested to enable the formation of a five-membered chelate enediolate structure, 

within which only C(1)-C(2) bond cleavage  occurs upon reaction with O2 (Scheme 2-

1(bottom)). For both Ni(II)-ARD and Fe(II)-ARD secondary hydrogen bonding 

interactions involving an arginine residue are suggested to stabilize enolate/enediolate 

coordination.  

Interest in reactions of relevance to Ni(II)-ARD also stems from the fact that 

carbon monoxide is a molecule of current interest in biological systems. In humans, CO is 

Scheme 2-1. 
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primarily produced via the oxidative breakdown of heme catalyzed by heme oxygenases.3 

While carbon monoxide is typically viewed as a toxic gas, recent studies have shown that 

this small molecule can have beneficial health effects. The signaling mechanism of CO is 

similar to that of NO in that it activates soluble guanylyl cyclase to produce cyclic 

guanylyl monophosphate (cGMP).3 This compound is involved in pathways pertinent to 

smooth muscle relaxation, platelet inhibition, and cell growth and differentiation. As 

these factors are related to several diseases, recent studies have focused on efforts toward 

the development of CO-releasing compounds for use as therapeutic agents.4 The majority 

of the chemical compounds tested so far have been transition metal carbonyl species,5 

although a main group CO-releasing compound (Na2[H3BCO2]) has been recently 

reported.4 We are interested in the CO release properties of acireductones and 

flavonolates, both of which possess three consecutive carbon centers having an oxygen 

substituent. In fungal and bacterial systems, quercetin dioxygenases catalyze CO release 

from a metal-coordinated flavonolate in a 2,4-dioxygenolytic ring cleavage reaction.6-14 In 

a broad sense, we are interested in understanding in detail the chemical factors that 

modulate the CO-release reactivity of metal-coordinated acireductone and flavonolate 

species, with a long-term goal of producing new types of CO-releasing compounds 

containing these novel structural motifs.  

 Our laboratory has reported the only examples to date of synthetic complexes of 

relevance to substrate- and product carboxylate-bound forms of Ni(II)-ARD.15-18 We 

recently reported that use of a  chelate ligand having a mixed hydrophobic/hydrogen bond 

donor secondary environment produced the first example of a Ni(II) enediolate complex 
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of an acireductone-type ligand (1, Figure 2-1(top)).18 Somewhat surprisingly, this 

complex was originally generated under similar conditions to those used to produce the 

mononuclear Ni(II) enolate complex [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2, 

Figure 2-1(bottom)). These combined results indicate that the presence of a hydrogen 

bond donor in the secondary environment influences the coordination chemistry of an 

acireductone-type ligand.  

In terms of carboxylate chemistry, we discovered that the secondary environment 

of the chelate ligand affects the coordination chemistry of Ni(II)-carboxylate species that 

are generated in O2-dependent ARD-type reactions. As shown in Scheme 2-2 (top), a 

Ni(II)-carboxylate ligand in a hydrophobic microenvironment undergoes a shift from 

bidentate to monodentate in the presence of water (conversion of compounds 3-5 to 6-

8).17 No evidence was found for this type of carboxylate shift chemistry in bnpapa-ligated 

Ni(II) carboxylate complexes (9-11, Scheme 2-2 (bottom)). In these analogs, the 

Figure 2-1. Supporting chelate ligands used to isolate Ni(II) enediolate (top) and enolate 
(bottom) complexes of relevance to Ni(II)-ARD. 
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hydrogen bond donor appendages interact with one oxygen atom of the bidentate 

carboxylate. In a Ni(II) benzoate complex supported by a chelate ligand containing both 

hydrophobic phenyl appendages and a hydrogen bond donor, [(6-NA-6-

Ph2TPA)Ni(O2CPh)(H2O)]ClO4 (12), a bidentate coordinated carboxylate ligand was also 

identified.18 

From our initial studies, it is clear that the ligand environment of a Ni(II) center 

influences the chemistry of an acireductone-type ligand. In the studies outlined herein, we 

have further evaluated the influence of the chelate ligand environment by preparing and 

characterizing the enolate complex [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14) as an 

analog to the 6-Ph2TPA-supported 2 (Figure 2-1). Complex 14 has been characterized by 

elemental analysis, 1H NMR, FTIR, and UV-vis. Comparative O2 reactivity studies for 2 

Scheme 2-2. 
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and 14 have been performed under conditions wherein the inorganic and organic 

byproducts were identified. Interestingly, these reactions differ in the specific mixture of 

products that is generated and in the level of 18O incorporation in the benzoate/benzoic 

acid products. We propose that these differences are due to variations in the reactivity of 

bnpapa- and 6-Ph2TPA ligated Ni(II) complexes with triketone and 

peroxide/hydroperoxide species produced in the reaction pathway. 

In the course of this research, as a means of gaining additional insight in the 

spectroscopic and solution properties of [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14), 

we have also prepared and characterized mononuclear bnpapa-supported Ni(II) 

acetoacetonato and hydroxamato complexes, as well as perchlorate and chloro 

derivatives. Preparation of this family of complexes has enabled a structural comparison 

with a similar family of 6-Ph2TPA-supported mononuclear Ni(II) complexes. This 

comparison has provided insight into the structural factors that may be responsible for the 

differences in O2 reactivity between [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14) and 

[(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2) as noted above.  

Experimental 

General Methods. All reagents and solvents were obtained from commercial 

sources and were used as received unless otherwise noted. Solvents were dried according 

to published procedures and were distilled under N2 prior to use.19 Air sensitive reactions 

were performed in the MBraun Unilab glovebox or a Vacuum Atmospheres MO-20 

glovebox under a N2 atmosphere. The ligand bnpapa and the Ni(II) complex [(6-
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Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2) were prepared according to literature 

procedures.15,17  

Physical Methods. 1H NMR spectra of Ni(II) complexes were obtained using a 

Bruker ARX-400 spectrometer as previously described.20 Chemical shifts (in ppm) are 

referenced to the residual solvent peak(s) in CHD2CN (1H, 1.94 (quintet) ppm). UV-vis 

spectra were collected on a HP8453A spectrometer at ambient temperature. FTIR spectra 

were recorded on a Shimadzu FTIR-8400 spectrometer as KBr pellets. Conductance 

measurements were made at 22(1) °C using an YSI model 31A conductivity bridge with a 

cell having a cell constant of 1.0 cm-1 and using Me4NClO4 as a 1:1 electrolyte standard. 

Preparation of the acetonitrile and standard solutions for conductance measurements and 

subsequent data analysis were performed as previously described.21 Mass spectrometry 

data was obtained at the Mass Spectrometry Facility, Department of Chemistry, 

University of California, Riverside. Elemental analyses were performed by Atlantic 

Microlabs, Inc., Norcross, Georgia, or Canadian Microanalytical Service, Inc., British 

Columbia.  

 

Caution! Perchlorate salts of metal complexes with organic ligands are 

potentially explosive. Only small amounts of material should be prepared, and these 

should be handled with great care.22 

 

[(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14). Under a N2 atmosphere, 

equimolar amounts of bnpapa (0.273 mmol) and Ni(ClO4)2·6H2O (0.273 mmol) were 
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mixed in acetonitrile and stirred until the ligand had fully dissolved. Me4NOH⋅5H2O 

(0.301 mmol) was then added to the mixture, which was stirred for additional 15 minutes, 

resulting in a dark green solution. The solution was added to solid 2-hydroxy-1,3-

diphenylpropan-1,3-dione23 (0.301 mmol) and the mixture was stirred for 4 h, yielding a 

very dark orange/red solution. The solvent was then removed under reduced pressure. The 

solid was dissolved in CH2Cl2 and the solution was filtered through a celite plug. The 

filtrate was concentrated and brought to dryness under vacuum, leaving a dark orange/red 

solid, which was washed with Et2O and dried under vacuum. Yield: 83%. Anal. Calcd for 

C43H51N6O7ClNi: C, 60.19; H, 5.99; N, 9.79. Found: C, 60.52; H, 5.88; N, 9.57. UV-vis 

[CH3CN, nm (ε, M-1cm-1)] 393(10,000); FTIR: (KBr, cm-1) 3420 (br s, νNH), 1094 (νClO4), 

621 (νClO4).  

[(bnpapa)Ni(CH3C(O)CHC(O)CH3)]ClO4 (16). A solution of Ni(ClO4)2·6H2O 

(0.15 mmol) in CH3CN (~1 mL) was added to solid bnpapa (0.15 mmol). The resulting 

mixture was stirred for 20 min at room temperature. The solution was then transferred to 

a vial containing Me4NOH⋅5H2O (0.15 mmol). To this mixture 2,4-pentanedione (0.15 

mmol) was added and the resulting solution was stirred overnight. The solvent was then 

removed under reduced pressure. The remaining solid was dissolved in CH2Cl2 (~5 mL) 

and the solution was filtered through a celite/glass wool plug. Pentane diffusion into 

CH2Cl2 yielded purple crystals suitable for X-ray crystallography. The crystals were 

crushed and dried under vacuum prior to elemental analysis. Yield: 46%. Anal. Calcd for 

C33H47ClN6NiO6: C, 55.21; H, 6.60; N, 11.71. Found: C, 55.28; H, 6.55; N, 11.70. FTIR 

(KBr, cm-1) ~3300 (s, νNH), 1089 (νClO4), 622 (νClO4). UV-vis [CH3CN, nm (ε, M-1cm-1)] 
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244(31600), 305(17800), 543(sh), 966(19); FAB-MS [m/z (relative intensity)]: 617 ([M – 

ClO4]+, 100%).  

[(bnpapa)Ni(ONHC(O)CH3)]ClO4 (17). A solution of Ni(ClO4)2·6H2O (0.11 

mmol) in CH3CN (~1 mL) was added to solid bnpapa (0.11 mmol). The resulting mixture 

was stirred for 5 min at the room temperature. The solution was then transferred to a vial 

containing Me4NOH⋅5H2O (0.12 mmol) and acetohydroxamic acid (0.12 mmol), and the 

resulting solution was stirred for 1 h. The solvent was then removed under reduced 

pressure. The remaining solid was dissolved in CH2Cl2 (~5 mL) and the solution was 

filtered through a celite/glass wool plug. Diffusion of diethyl ether into a 

CH2Cl2/MeOH/iPrOH (1:0.5:1) solution of the compound yielded purple crystals suitable 

for single crystal X-ray crystallography. These crystals were crushed and dried under 

vacuum prior to elemental analysis. Yield: 60%. Anal. Calcd for 

C30H44N7NiO6Cl⋅0.25AHA⋅0.35CH2Cl2: C, 51.93; H, 6.34; N, 13.12. Found: C, 51.55; H, 

6.41; N, 13.63. The presence of acetohydroxamic acid (AHA) in the crystalline sample 

was confirmed by X-ray crystallography. The presence of CH2Cl2 in the elemental 

analysis sample was confirmed by 1H NMR. FTIR (KBr, cm-1) ~3288 (s, νNH), 1103 

(νClO4), 621 (νClO4); UV-vis [CH3CN, nm (ε, M-1cm-1)] 247(25800), 325(10400), 548(sh), 

977(32); ESI/APCI-MS [m/z (relative intensity)]: 592.2914 ([M – ClO4]
+, 100%). 

[(bnpapa)Ni(ClO4)(CH3CN)]ClO4 (18). A solution of Ni(ClO4)2·6H2O (0.07 

mmol) in CH3CN (~1 mL) was added to solid bnpapa (0.07 mmol). The resulting mixture 

was stirred for 20 min at room temperature. The solvent was then removed under reduced 

pressure and the residue was dissolved in CH2Cl2. Pentane diffusion yielded purple 
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crystals suitable for X-ray crystallography. The crystals were crushed and dried under 

vacuum prior to elemental analysis. Yield: 54%. Anal. Calcd for 

C30H43Cl2N7NiO8·1/2CH2Cl2: C, 45.69; H, 5.53; N, 12.23. Found: C, 45.32; H, 5.60; N, 

12.09. UV-vis [CH3CN, nm (ε, M-1cm-1)] 318(10300), 553(15), 931(17); FTIR (KBr, cm-

1) ~3400 (s, νNH), 1103 (νClO4), 624 (νClO4); FAB-MS [m/z (relative intensity)]: 617 ([M – 

ClO4 – CH3CN]+, 100%).  

[(bnpapaNi)2(µ-Cl)2](ClO4)2 (19). A solution of Ni(ClO4)2·6H2O (0.14 mmol) in 

MeOH (~1 mL) was added to a solution of bnpapa (0.14 mmol) in MeOH (~1 mL). The 

resulting mixture was stirred for 20 min at room temperature. The solution was then 

transferred to a vial containing Me4NCl⋅5H2O (0.14 mmol) and the resulting mixture was 

stirred for 1 h. The solvent was then removed under reduced pressure. The remaining 

solid was dissolved in CH2Cl2 (~5 mL), and the solution was filtered through a 

celite/glass wool plug. Diffusion of diethyl ether into a CH2Cl2 solution of the compound 

yielded green crystals suitable for X-ray crystallography. The crystals were crushed and 

dried under vacuum prior to elemental analysis. Yield: 33%. Anal. Calcd for 

C28H40Cl2N6NiO4: C, 51.40; H, 6.16; N, 12.84. Found: C, 51.15; H, 6.29; N, 12.88. FTIR 

(KBr, cm-1) ~3340 (s, νNH), 1095 (νClO4), 621 (νClO4); UV-vis [CH3CN, nm (ε, M-1cm-1)] 

325(15900), 600(31), 1032(33); ESI/APCI-MS [m/z (relative intensity)]: 553.2348 ([M – 

2ClO4]
2+, 100%).  

O2 Reactivity of 14: Product Isolation and 18O Labeling Studies. Complex 14 

(0.101 mmol) was dissolved in 10 mL of acetonitrile and O2 was bubbled through the 

solution for ~1 min. The reaction was then left stirring overnight at ambient temperature. 
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Over the course of this time, the color changed from deep orange/red to pale yellow. CO 

production was verified by the PdCl2 method.24 The solvent was removed under reduced 

pressure and the resulting solid was dissolved in hexanes:ethyl acetate (4:1) and the 

solution was passed through a silica plug. This produced a yellow filtrate containing the 

organic products from the reaction. Ni(II) complexes that adhered to the silica gel were 

then eluted using acetonitrile, followed by methanol. As determined by TLC, 1H NMR, 

and GC-MS, the organic fraction contained primarily benzoic acid (11 mg overall yield – 

91% based on production of one equivalent of free benzoic acid per enolate ligand; 

sample is 88-90% benzoic acid based on 1H NMR), with a small amount of benzil 

(PhC(O)C(O)Ph; 10-12%) and a trace amount of the ester PhC(O)OCH2C(O)Ph present. 

The ester was identified via independent synthesis.25 This compound is an isomer of 2-

hydroxy-1,3-diphenylpropan-1,3-dione,23 and the reaction leading to ester formation will 

be discussed in detail elsewhere. In each reaction, two Ni(II) complexes were eluted from 

the column, [(bnpapa)Ni(O2CPh)]ClO4 (9) and 

[(bnpapa)Ni(PhC(O)C(O)CHC(O)Ph)]ClO4 (15), the latter of which was present in a very 

low amount (<5%) and was identified via mass spectrometry (ESI-MS [m/z (relative 

intensity)]: 769.3376 (M – ClO4)
+, 100%)). The formation of 15 is related to the trace 

ester formation in the reaction and will be discussed in detail elsewhere. The yield of the 

metal complexes was ~88% by mass following the column (based on stoichiometric 

formation of [(bnpapa)Ni(O2CPh)]ClO4 (9)). Thus, from this data, the formation of 

[(bnpapa)Ni(O2CPh)]ClO4 (9)  was judged as quantitative. Use of 18O2 in the reaction of 

14 with O2 produces benzoic acid with 81% incorporation of one labeled oxygen atom. 
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No 18O incorporation was found in benzil or the ester PhC(O)OCH2C(O)Ph, as 

determined by GC-MS. Mass spectral analysis of the metal complexes indicated 87% 18O 

incorporation into one oxygen atom of the benzoate ligand of 9. No 18O incorporation 

was found in 15.  

Reanalysis of O2 reactivity of [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 

(2). Compound 2 was treated with an excess of O2 in a reaction very similar to that 

outlined above using 14. An identical work-up procedure was also performed. The 

organic products generated were benzoic acid and benzil in a reproducible ~75:25 ratio. A 

trace amount of the ester PhC(O)OCH2C(O)Ph is also generated, as determined by GC-

MS and 1H NMR. The total yield of organic products was ~96% based on the proposed 

formation of one equivalent of free benzoic acid per enolate ligand of 2. As previously 

reported, the Ni(II) complex, [(6-Ph2TPA)Ni(O2Ph)]ClO4 (3) is produced in this 

reaction.16 A trace amount of the enolate complex [(6-

Ph2TPA)Ni(PhC(O)C(O)CHC(O)Ph)]ClO4
16 is also generated. The reaction leading to 

the formation this complex will be discussed in detail elsewhere. The total mass of 

complexes isolated suggests a ~70% yield based on the stoichiometric formation of 3. 

However, a control experiment using [(6-Ph2TPA)Ni(O2Ph)]ClO4 (3) indicated that 

~30% of the material is lost in the column purification process used to isolate the metal 

complexes from the reaction mixture. Thus, the formation of 3 is nearly quantitative in 

the O2 reaction of 2. Use of 18O2 in the reaction produced free benzoic acid with 59% 18O 

incorporation in one oxygen atom position, and the benzoate complex 3 having 64% 
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incorporation in one oxygen atom. The level of isotope incorporation into 3 is slightly 

higher than that previously reported (~50%) based on multiple 18O reactions.16  

18O2 reactivity of [Me4N][PhC(O)C(OH)C(O)Ph]. We have previously reported 

that treatment of the salt [Me4N][PhC(O)C(OH)C(O)Ph] with O2 results in the formation 

of tetramethylammonium benzoate, benzoic acid, and CO.16 We have repeated this 

reaction using 18O2 and have found by mass spectrometry that the benzoate/benzoic acid 

contains ~65% 18O incorporation when generated from Me4NOH·5H2O and 

PhC(O)C(OH)C(O)Ph in dry CH3CN. Pre-drying of the Me4NOH·5H2O under vacuum 

for 24 h prior to use in the reaction produced a slightly higher level of 18O incorporation 

(72%) in the benzoate/benzoic acid product.  

X-ray Crystallography. A single crystal of each compound 16, 17⋅⋅⋅⋅1/4AHA 

(AHA =  acetohydroxamic acid), 18⋅⋅⋅⋅CH2Cl2, and 19⋅⋅⋅⋅2CH2Cl2 was mounted on a glass 

fiber with traces of viscous oil and then transferred to a Nonius KappaCCD 

diffractometer equipped with Mo Kα radiation (λ = 0.71073 Å) for data collection. For 

unit cell determination, ten frames of data were collected at 103(1) K or 150(1) K with an 

oscillation range of 1 deg/frame and an exposure time of 20 sec/frame. Final cell 

constants were determined from a set of strong reflections from the actual data collection. 

All reflections were indexed, integrated, and corrected for Lorentz polarization and 

absorption effects using DENZO-SMN and SCALEPAC.26 The structures were solved by 

a combination of direct and heavy-atom methods using SIR 97. All of the non-hydrogen 

atoms were refined with anisotropic displacement coefficients. Unless otherwise stated, 

all hydrogen atoms were assigned isotropic displacement coefficients U(H) = 1.2U(C) or 
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1.5U(Cmethyl), and their coordinates were allowed to ride on their respective carbons using 

SHELXL97.27 Complex 16 crystallizes in the space group P-1, with two carbon atoms of 

one neopentyl group exhibiting disorder over two positions. Complex 17⋅⋅⋅⋅1/4AHA 

crystallizes in the space group C2/c with three oxygen atoms of the perchlorate anion and 

the carbon atoms of one neopentyl group exhibiting disorder. Complex 18⋅⋅⋅⋅CH2Cl2 

crystallizes in the space group P21/c. The CH2Cl2 solvate molecule exhibits disorder. 

Complex 19⋅⋅⋅⋅2CH2Cl2 crystallizes in the space group P21/n, with one CH2Cl2 exhibiting 

disorder in the position of one chlorine atom.  

Results 

 Preparation and Characterization of 

[(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14). Treatment of the bnpapa chelate ligand 

with equimolar amounts of Ni(ClO4)2⋅6H2O, Me4NOH⋅5H2O, and 2-hydroxy-1,3-

diphenylpropan-1,3-dione in CH3CN, followed by work up using CH2Cl2, yielded a deep 

orange/red solid. Unfortunately, repeated attempts to produce crystals of this complex 

suitable for single crystal X-ray crystallography were unsuccessful. Instead, the 

orange/red solid was characterized by elemental analysis, UV-vis, FTIR, and 1H NMR. 

The elemental analysis data is consistent with the proposed formulation. The  π→π* 

transition of the coordinated enolate ligand of 14 is found at 393 nm (ε ~ 10,000 M-1cm-

1). The wavelength and intensity of this absorption feature is generally similar to that 

reported for [(6-Ph2TPA)Ni((PhC(O)C(OH)C(O)Ph)]ClO4 (2; λmax = 399 nm (ε ~  6,800 

M-1cm-1)).16 A broad absorption feature at ~3420 cm-1 in the infrared spectrum of 14 is 
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consistent with hydrogen bonding interactions involving the neopentylamine groups of 

the bnpapa chelate ligand. Based on structural studies of air stable analogs (vide infra), 

we propose that this hydrogen bonding involves an oxygen atom of the chelating enolate 

ligand that is positioned trans to the tertiary amine nitrogen donor of the chelate ligand.  

Air Stable Analogs. To aid in the interpretation of the 1H NMR spectroscopic 

features of 14, air stable analog complexes containing a bidentate acetoacetonato 

([(bnpapa)Ni(CH3C(O)CHC(O)CH3)]ClO4 (16)) or hydroxamato 

([(bnpapa)Ni(CH3C(O)NHO)]ClO4 (17)) ligand were prepared and comprehensively 

characterized. For solution conductivity and spectroscopic studies, the perchlorate 

complex [(bnpapa)Ni(ClO4)(CH3CN)]ClO4 (18) and chloride complex [(bnpapaNi)2(µ-

Cl)2](ClO4)2 (19) were also prepared and characterized.  

X-ray Crystallography. The cationic portions of 16 and 17 are shown in Figure 

2-2, and those of 18 and 19 are shown in Figure 2-3. Details of the data collection and 

refinement are given in Table 2-1. Selected bond distances and angles are given in Table 

2-2. The mononuclear 16 and 17 each contain a pseudo-octahedral Ni(II) center with the 

oxygen donor atoms of the chelate ligand positioned trans to N(3) and N(6). The 

respective Ni-O/N bonds of the primary coordination sphere are similar in these 

complexes, with the most noticeable difference in bond lengths being that the Ni-N 

interactions involving the neopentylamine-appended pyridyl donors are ~0.02 Å longer in 

16 than those found in the hydroxamato complex (17). In terms of bond angles, a more 

acute O(1)-Ni(1)-O(2) angle in 17 (81.86(10)°) than that found in 16 (94.98(3)°) is due to 

the difference in chelate ring size of the bidentate O,O-donor ligands. In both complexes, 
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an oxygen atom of the bidentate chelate ligand accepts two hydrogen bonds from the 

neopentyl amine groups of the supporting chelate ligand. These interactions are 

characterized by N(H)….O distances of 2.8-2.9 Å.  

 

Figure 2-2. Thermal ellipsoid drawings of the cationic portions of 16 and 17. All 

ellipsoids are drawn at the 50% probability level. Hydrogen atoms, other thanthe neopentyl 

amine N-H hydrogen atoms, and the hydroxyamate N-H hydrogen in 17, have been 

omitted for clarity. 
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Figure 2-3. Thermal ellipsoid drawings of the cationic portions of 18 and 19. All 

ellipsoids are drawn at the 50% probability level. Hydrogen atoms other than the 

neopentyl amine N-H hydrogen atoms have been omitted for clarity. 
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Table 2-1. Summary of X-ray Data Collection and Refinement.a 
 16 17⋅⋅⋅⋅1/4AHA 18⋅⋅⋅⋅CH2Cl2 19⋅⋅⋅⋅2CH2Cl2 

Empirical formula C33H47ClN6NiO6 C30.50H45.25ClN7.25NiO6.5 C31H45Cl4N7NiO8 C58H84Cl8N12Ni2O8 

Mr 717.93 711.25 844.25 1478.39 

Crystal system triclinic monoclinic monoclinic monoclinic 

Space group P-1  C2/c P21/c P21/n 

a/ Å 8.9810(2) 32.3396(8) 8.8221(2) 10.9123(2) 

b/ Å 10.9647(2) 11.4649(3) 20.0037(4) 18.9857(3) 

c/ Å 18.2657(4) 19.4692(3) 21.7170(4) 16.9677(3) 

α /° 102.6548(12) 90 90 90 

β /° 96.3498(11) 93.1236(14) 91.7754(11) 96.6495(10) 

γ /° 93.1764(13) 90 90 90 

V / Å3 1738.34(6) 7207.9(3) 3830.66(14) 3491.68(10) 

Z 2 8 4 2 

Dc / Mg m-3 1.372 1.312 1.464 1.406 

T / K 150(1) 103(1) 150(1) 150(1) 

Crystal size/ mm 0.38 × 0.30 × 0.28 0.20 x 0.20 x 0.15 0.38 × 0.38 × 0.33 0.38 × 0.30 × 0.25 

µ/ (mm-1) 0.687 0.644 0.842 0.904 

2θ max (°) 55.00 55.04 54.96 54.96 

Completeness to θ  
(%) 

97.9 99.5 99.2 99.8 

Reflections collected 12170 15128 14723 15105 

Independent reflections 7825 8259 8717 7984 

Rint 0.0219 0.0401 0.0255 0.0200 

Variable parameters 577 486 469 422 

R1 / wR2b 0.0491/0.1289 0.0620/0.1452 0.0636/0.1571 0.0432/0.1038 

Goodness-of-fit (F2) 1.043 1.040 1.042 1.081 

∆ρ max/min / e Å-3 0.758/-0.778 0.790/-0.626 0.783/-1.250 0.499/-0.530 

aDiffractometer: Nonius KappaCCD; Radiation used: Mo Kα (λ = 0.71073 Å). bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|; wR2 = [∑[w(Fo2-
Fc2)2]/[∑(Fo2)2]] 1/2, where w = 1/[σ2(Fo2) + (aP)2 + bP]. 
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Table 2-2. Selected Bond Distances (Å) and Angles (°).  
 16 17⋅⋅⋅⋅1/4AHA 18⋅⋅⋅⋅CH2Cl2 19⋅⋅⋅⋅2CH2Cl2 

Ni(1)-O(1) 2.0162(18) 2.018(2) 2.177(2)  

Ni(1)-O(2) 2.0183(17) 2.058(2)   

Ni(1)-N(2) 2.1509(19) 2.137(3) 2.151(3) 2.1998(19) 

Ni(1)-N(3) 2.0762(19) 2.076(3) 2.055(3) 2.0648(19) 

Ni(1)-N(4) 2.154(2) 2.134(3) 2.164(3) 2.2267(19) 

Ni(1)-N(6)  2.061(2) 2.048(3) 2.042(3) 2.038(2) 

Ni(1)-N(7)   2.049(3)  

Ni(1)-Cl(1)    2.4284(6) 

Ni(1)-Cl(1)#1    2.4485(6) 

O(1)-Ni(1)-O(2) 90.94(8) 81.86(10)   

O(1)-Ni(1)-N(6) 172.86(8) 94.53(10) 90.23(12)  

O(2)-Ni(1)-N(6) 95.76(8) 174.68(10)   

O(1)-Ni(1)-N(3) 89.89(8) 178.78(10) 176.14(10)  

O(2)-Ni(1)-N(3) 178.63(7) 99.35(11)   

N(6)-Ni(1)-N(3) 83.46(8) 84.26(11) 85.97(13) 85.13(8) 

O(1)-Ni(1)-N(2) 91.27(7) 99.44(11) 99.80(10)  

O(2)-Ni(1)-N(2) 99.02(7) 89.69(10)   

N(6)-Ni(1)-N(2) 90.13(7) 87.04(11) 88.72(11) 88.00(7) 

N(3)-Ni(1)-N(2) 79.86(7) 80.67(11) 80.84(11) 79.27(7) 

O(1)-Ni(1)-N(4) 88.86(8) 100.25(12) 98.42(10)  

O(2)-Ni(1)-N(4) 99.99(8) 91.27(10)   

N(6)-Ni(1)-N(4) 87.55(8) 93.24(11) 89.12(11) 90.16(7) 

N(3)-Ni(1)-N(4) 81.12(8) 79.68(11) 80.84(11) 79.58(7) 

N(2)-Ni(1)-N(4) 160.98(8) 160.22(11) 161.66(11)  

N(6)-Ni(1)-N(7)   179.59(13)  

N(7)-Ni(1)-N(3)   94.09(12)  

N(7)-Ni(1)-N(2)   90.89(11)  

N(7)-Ni(1)-N(4)   91.29(11)  

N(7)-Ni(1)-O(1)   89.71(11)  

N(6)-Ni(1)-Cl(1)    97.34(6) 

N(3)-Ni(1)-Cl(1)    177.53(6) 

N(2)-Ni(1)-Cl(1)    100.65(5) 

N(4)-Ni(1)-Cl(1)    100.48(5) 
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Table 2-2. continued 

N(6)-Ni(1)-Cl(1)#1    177.63(6) 

N(3)-Ni(1)-Cl(1)#1    93.76(6) 

N(2)-Ni(1)-Cl(1)#1    89.74(5) 

N(4)-Ni(1)-Cl(1)#1    91.70(5) 

Cl(1)-Ni(1)-Cl(1)#1    83.77(2) 

Ni(1)-Cl(1)-Ni(1)#1    96.23(2) 

Solution Conductivity Properties. The acetoacetonato complex 16 and the 

hydroxamato complex 17 both are 1:1 electrolytes in CH3CN, as determined by variable 

concentration conductance measurements.21 Onsager plots for these complexes (Figure 2-

4) exhibit slopes similar to the 1:1 standard Me4NClO4, and a notably different slope than 

that exhibited by [(bnpapa)Ni(ClO4)(CH3CN)](ClO4)2 (18 (Figure 2-3(top)) or 

[(bnpapaNi)2(µ-Cl)2](ClO4)2 (19, Figure 2-3(bottom)), both of which are 1:2 electrolyte 

species in CH3CN. 

Figure 2-4. Onsager plots of the solution conductivity properties of 9, 16-19, and the 1:1 

standard Me4NClO4 in CH3CN at 22(1) °C. 
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1H NMR Spectra. The 1H NMR features of analytically pure 

[(bnpapa)Ni(CH3C(O)CHC(O)CH3)]ClO4 (16) and [(bnpapa)Ni(ONHC(O)CH3)]ClO4 

(17) in CD3CN at 22(1) °C in the region of 20-80 ppm are shown in Figure 2-5(b) and (c). 

These are compared to the 1H NMR spectral features of the O2-sensitive enolate complex 

[(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14, Figure 2-5(a)). The resonances in the 20-

80 ppm region include those of pyridyl β-H ring protons and a portion of the benzylic 

proton resonances.20 The 1H NMR spectra of 14 and 16 (Figure 2-5(a) and (b)) are 

similar, both having a more complicated appearance than that of the hydroxamato 

compound 17. Based on the conductivity data presented above for the air stable 16 and 

17, which are both 1:1 electrolyte species in acetonitrile, the greater complexity of the 1H 

NMR spectrum of 16, relative to the spectral features of 17, is not due to the formation of 

multinuclear species in solution. 2H NMR studies of analogs of 14, 16, and 17 supported 

by a version of the bnpapa chelate ligand (Figure 2-6) having deuterium atoms at the 

Figure 2-5. 1H NMR spectral features of (a) 14, (b) 16, and (c) 17 in the region of 20-80 

ppm. Spectra obtained in CD3CN at 22(1) °C. 
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benzylic positions, as well as partial deuteration of the β-H positions of the 

neopentylamine-appended pyridyl rings, indicated the presence of three unique benzylic 

proton resonances for 14 and 16 in the region of 165-175 ppm. This is consistent with no 

plane of symmetry within the cation.20 However, 17 exhibits only one benzylic proton 

resonance in the same region, which is consistent with the presence of a plane of 

symmetry containing the unsubstituted pyridyl donor and the hydroxamato ligand. The 

factors that govern the subtle differences in solution structure of the cationic portions of 

14, 16, and 17 are not entirely clear, but appear to relate to the chelate ring size of the 

O,O-donor ligand coordinated to the Ni(II) center. Specifically, the compounds having a 

six-membered chelate O,O-donor lack a plane of symmetry in the solution form of the 

cation. We note that the 1:2 electrolyte compounds [(bnpapa)Ni(ClO4)(CH3CN)](ClO4)2 

(18) or [(bnpapaNi)2(µ-Cl)2](ClO4)2 (19) both exhibit 1H NMR spectra similar to 17 

wherein an effective plane of symmetry renders the two neopentylamine-appended 

Figure 2-6. Positions of deuteration in bnpapa ligand used for 2H NMR investigations. 

The 2H substitution is present in both neopentyl-appended pyridyl donors. 



 

 

48

pyridyl donors equivalent in solution (Figure 2-7). Ni(II) carboxylate complexes of the 

general formula [(bnpapa)Ni(O2CR)]ClO4 (R = Ph, (CH2)2SCH3, and H) also exhibit 1H 

NMR spectra that are generally similar to the spectrum found for the hydroxamato 

complex 17.17 In terms of comparing chelate ligand environments, the mononuclear Ni(II) 

complexes [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2) and [(6-

Ph2TPA)Ni(RC(O)CHC(O)R)]ClO4 (R = Ph, CH3) exhibit spectra which indicate the 

presence of a plane of symmetry within the cation.15,16 Thus, the bnpapa-ligated Ni(II) 

six-membered ring enolate complexes 14 and 16 exhibit unique solution 1H NMR 

properties relative to their hydrophobic analogs. Based on the structural and solution 

features of the air stable acetoacetonato complex 16, and the similarity of the 1H NMR 

spectrum of this complex to the spectrum of [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 

(14), we propose that the O2-reactive enolate complex 14 has a structure that is similar to 

the analog supported by 6-Ph2TPA (Figure 2-8), but is distorted such that no plane of 

symmetry relates the neopentylamine pyridyl donors in the solution form of the cation.   

Figure 2-7. 1H NMR spectral features of (a) 18 and (b) 19, in the region of 20-80 ppm. 
Spectra obtained in CD3CN at 22(1) °C. 
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Reaction of 14 with O2. Exposure of a CH3CN solution of 14 to O2 results in an 

immediate color change from deep orange/red to yellow. CO production in this reaction 

was identified qualitatively using the PdCl2 method.24 The inorganic and organic products 

of the reaction were separated by column chromatography and identified (Scheme 2-3). 

One equivalent of benzoic acid is generated along with a small amount of benzil 

(PhC(O)C(O)Ph; ratio of benzoic acid to benzil is ~90:10) and a trace amount of the ester 

PhC(O)OCH2C(O)Ph, the latter of which was identified via independent synthesis.25 The 

reaction leading to ester formation will be described elsewhere. The monobenzoate 

complex [(bnpapa)Ni(O2CPh)]ClO4 (9) is produced in nearly quantitative yield in the 

Figure 2-8. (a) Proposed structure of [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14). (b) 

Structure of [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2) as determined by X-ray 

crystallography.3 
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reaction leading to ester formation will be described elsewhere. The monobenzoate 

complex [(bnpapa)Ni(O2CPh)]ClO4 (9) is produced in nearly quantitative yield in the 

reaction, with a trace amount of a second Ni(II) complex, 

[(bnpapa)Ni(PhC(O)C(O)CHC(O)Ph]ClO4 (15), being identified by mass spectrometry. 

The production of 15 is related to the presence of the ester PhC(O)OCH2C(O)Ph in the 

reaction and will be discussed elsewhere. Use of 18O2 in the reaction with 14 produces 

benzoic acid with 81% 18O incorporation in one oxygen atom position. No 18O 

incorporation was found in benzil or the ester PhC(O)OCH2C(O)Ph, as determined by 

GC-MS. Mass spectral analysis of the Ni(II) products indicated that the benzoate complex 

9 had 87% 18O incorporation in one oxygen atom of the benzoate ligand. No 18O 

incorporation was found in 15. We note that the level of 18O incorporation for the 

reaction involving 14 is slightly higher than that reported for the Ni(II)-ARD enzymatic 

reaction (77.5%).28 

Scheme 2-3. Major products identified in reaction of 14 and 2 with O2; results of 

reactions performed using 18O2. 
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 The work-up procedure used to isolate the organic and inorganic products of the 

reaction of 14 with O2 is slightly different in terms of solvents used from the procedure 

that we previously reported for identification of the products of the reaction of [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2) with O2. 16 The new conditions are more 

amenable to the isolation of free benzoic acid in the reaction mixture. Therefore, the 

reaction involving 2 was repeated under conditions identical with those employed for 

[(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14), with the results shown in Scheme 2-3. 

CO production was again identified qualitatively using the PdCl2 method.24 In this 

reaction a ~75:25 mixture of benzoic acid and benzil is produced, along with a trace 

amount of the ester PhC(O)OCH2C(O)Ph. The Ni(II)-containing products are [(6-

Ph2TPA)Ni(O2CPh)]ClO4 (3) and a trace amount of [(6-

Ph2TPA)Ni(PhC(O)C(O)CHC(O)Ph)]ClO4 (20).16,17 Use of 18O2 in the reaction with 2 

yielded benzoic acid with 59% 18O incorporation in one oxygen atom position, and the 

benzoate complex 3 having 64% incorporation in one oxygen atom. We note that the 

level of isotope incorporation in 3 is slightly higher that than previously reported (~50%), 

but is similar to that found for the O2 reaction of the salt [Me4N][PhC(O)C(OH)C(O)Ph], 

which decomposes upon reaction with 18O2 to give [Me4N][O2CPh] and benzoic acid 

(~65% incorporation of one 18O into carboxylate group) and CO. Thus, the reaction 

involving 2 gives a mixture of organic products (benzoic acid and benzil), but with a 

similar level of 18O incorporation to that found for the O2 reaction of 

[Me4N][PhC(O)C(OH)C(O)Ph]. 
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Overall, the studies outlined above revealed two interesting differences in the O2 

reactivity of [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14) and [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2). First, the O2 reaction involving the bnpapa-

ligated complex 14 produces less of the side product benzil. Second, the reaction 

involving 14 has a higher level of 18O incorporation in the benzoic acid/benzoate 

products. These combined results provide evidence that the chelate ligand environment is 

influencing the aliphatic carbon-carbon bond cleavage reaction pathway.  

Comparison of the Secondary Environments of bnpapa- and 6-Ph2TPA-

ligated Ni(II) Complexes. To date, we have structurally characterized four bnpapa- and 

thirteen 6-Ph2TPA-ligated mononuclear Ni(II) complexes. Shown in Tables 2-3 and 2-4 

are bond distances and angles involving the neopentyl-appended pyridyl donors in the 

bnpapa complexes and the phenyl-appended pyridyl donors in the 6-Ph2TPA derivatives. 

Several conclusions can be drawn from comparison of the microenvironments in these 

two families of complexes. First, the neopentylamine amine-appended pyridyl donors in 

the bnpapa ligand, which have a substituent that is more electron donating and less 

sterically demanding relative to the phenyl substituents of the 6-Ph2TPA ligand, have 

slightly shorter Ni-N distances (overall average of bnpapa complexes 2.14 Å; 6-Ph2TPA 

complexes 2.22 Å). There is also a more linear N-Ni-N bond angle (overall average of 

bnpapa complexes 161°; 6-Ph2TPA complexes 154°) between the substituted pyridyl 

groups. Second, the phenyl-appended pyridyl donors of 6-Ph2TPA exhibit more variation 

in terms of Ni-N distances (~0.12 Å) in response to the presence of different exogenous 

ligands. This is not surprising in that aryl-appended pyridyl donors of chelate ligands 
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have been shown to fully dissociate from a metal center in response to exogenous ligand 

coordination.29 Third, the microenvironment of bnpapa-ligated complexes is more 

compact, as determined by comparison of the distance between the two neopentylamine 

nitrogen atoms (~5.6 Å) versus that of the ipso carbons of the phenyl appendages of 6-

Ph2TPA (~6.4 Å).  

Table 2-3. Structural Properties of bnpapa-ligated Mononuclear Ni(II) Complexes. 
Complex N(2)-Ni-N(4) 

(º)a 
Ni-N(2), Ni-N(4) 
(Å) a 

N(H)…N(H)  
(Å) 

Ref. 

[(bnpapa)Ni(ClO4)(CH3CN)]ClO4 161.66(11) 2.151(3), 2.164(3) 5.7 this work 

[(bnpapa)Ni(ONHC(O)CH3)]ClO4 160.22(11) 2.137(3), 2.134(3) 5.5 this work 

[(bnpapa)Ni(CH3C(O)CHC(O)CH3)]ClO4 160.98(8) 2.1509(19), 2.154(2) 5.6 this work 

[(bnpapa)Ni(O2Ph)]ClO4
b 161.78(12) 2.125(3), 2.136(3) 5.6 17 

aN(2) and N(4) are the neopentylamine-appended pyridyl donors of the bnpapa ligand. bData reported for one of two crystalline forms 
of the complex that were previously reported. 

Table 2-4. Structural Properties of 6-Ph2TPA-ligated Mononuclear Ni(II) Complexes. 
Complex N(3)-Ni-N(4) 

(º)a 
Ni-N(3), Ni-N(4)  
(Å)a 

C(Ph)…C(Ph)  
(Å) b 

Ref. 

[(6-Ph2TPA)Ni(CH3CN)(CH3OH)](ClO4)2  158.59(16) 2.218(5), 2.200(5) 6.3 20 

[(6-Ph2TPA)Ni(ONHC(O)CH3)]ClO4 147.19(7) 2.229(2), 2.263(2) 6.4 20 

[(6-Ph2TPA)Ni(CH3C(O)CHC(O)CH3)]ClO4 150.41(8) 2.217(2), 2.221(2) 6.4 16 

[(6-Ph2TPA)Ni(PhC(O)C(O)CHC(O)Ph)]ClO4 158.40(11) 2.209(3), 2.333(3) 6.5 16 

[(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 157.04(8) 2.271(2), 2.323(2) 6.6 15 

[(6-Ph2TPA)NiCl(CH3CN)]ClO4 157.67(10) 2.081(3), 2.213(2) 6.4 20 

[(6-Ph2TPA)Ni(O2CPh)]ClO4 149.83(6) 2.1458(16), 2.234(16) 6.2 16 

[(6-Ph2TPA)Ni(O2CPh)(H2O)]ClO4 158.28(10) 2.216(2), 2.241(2) 6.4 17 

[(6-Ph2TPA)Ni(O2C(CH2)2SCH3)]ClO4 141.57(10) 2.233(3), 2.193(3) 6.3 17 

[6-Ph2TPA)Ni(O2(CH2)2SCH3)(H2O)]ClO4 159.33(12) 2.240(3), 2.186(3) 6.3 17 

[(6-Ph2TPA)Ni(O2CCH2SCH3)]ClO4 148.73(8) 2.198(2), 2.165(2) 6.3 17 

[(6-Ph2TPA)Ni(O2CCH2SCH3)(H2O)]ClO4 150.97(7) 2.1884(17), 
2.2050(17) 

6.4 17 

[(6-Ph2TPA)Ni(O2CH)(H2O)]ClO4 158.42(11) 2.194(3), 2.218(3) 6.3 17 

aN(3) and N(4) are the phenyl-appended pyridyl donors of the 6-Ph2TPA ligand. bIpso carbon atoms of phenyl appendages. 
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Discussion 

 As shown in Scheme 2-1, a key issue in the chemistry of acireductone 

dioxygenases is how the coordination mode of the acireductone substrate may influence 

the reaction with O2. Pochapsky and coworkers have suggested, on the basis of NMR 

experiments, that differences in the secondary environment in Ni(II)- versus Fe(II)-

containing ARD enzyme may be responsible for inducing different coordination modes of 

the acireductone substrate.1 Specifically, in Ni(II)-ARD the side chain of the tryptophan 

residue is positioned such that the binding pocket for the acireductone is smaller than that 

found in Fe(II)-ARD. This is proposed to induce the formation of a six-membered chelate 

ring structure, which leads to 1,3-dioxygenolytic bond cleavage and CO production. We 

note that in both Ni(II)- and Fe(II)-containing acireductone dioxygenases an arginine 

residue is positioned within the active site, likely within hydrogen-bonding distance of the 

coordinated acireductone.1  

As an approach toward evaluating the influence of the secondary environment on 

the chemistry of Ni(II) complexes having an acireductone-type ligand, we have prepared 

and characterized [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2), which has a 

hydrophobic microenvironment, and [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14), 

which contains a hydrogen-bond donor secondary environment. Based on the results of 

analytical and spectroscopic studies, we propose that the coordination mode of the 

acireductone-type ligand in these complexes is similar, with each having a six-membered 

chelate ring. However, the solutions structures of 2 and 14 differ in terms of the presence 

of a plane of symmetry that relates the modified pyridyl donors, with the hydrogen bond 
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donor pocket lacking such symmetry. Treatment of each complex with O2 results in CO 

production and aliphatic carbon-carbon bond cleavage, with the major products in each 

reaction being a mononuclear Ni(II) benzoate complex, benzoic acid, and CO. In both 

reactions, the formation of the side product benzil was also identified. The yield of this 

byproduct is higher in the reaction involving [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2). Notably, this reaction exhibits a level of 

18O incorporation in the benzoate/benzoic acid products that is ~20% lower than the 

reaction involving 14. A possible rationale for the differences in product distribution and 

18O incorporation between the reactions involving 2 and 14 could be that differing 

pathways for carbon-carbon bond cleavage may be operative as outlined in Scheme 2-4.  

Pathway A involves a cyclic peroxide resulting from two-electron oxidation of the 

coordinated acireductone analog. Carbon-carbon bond cleavage in this type of structure 

would produce two equivalents of benzoate/benzoic acid, with each product having one 

labeled oxygen atom if the reaction were performed using 18O2. The production of 

benzoic acid in high yield in the reaction involving 

[(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14), and the observed high level of 18O 

incorporation, suggests that this pathway could possibly be operative for this reaction. 

However, the production of a small amount of benzil in the reaction involving 14 

suggests that another type of reactivity is also occurring. For both complexes, we propose 

that benzil is generated via a pathway B type reaction sequence (Scheme 2-4). 

Specifically, two electron oxidation of the coordinated acireductone type ligand could 

produce 1,3-diphenyltriketone and a solvated Ni(II) complex of the chelate ligand. It has 
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been previously shown that 1,3-diphenyltriketone will undergo phenyl or benzyl 

migration in the presence of a Lewis acids such as AlCl3 to give benzil and carbon 

monoxide.30 If this type of reaction pathway is occurring with the complexes described 

herein, the secondary environment of the [(bnpapa)Ni(sol)2]
2+ and [(6-Ph2TPA)Ni(sol)2]

2+ 

cations (sol = solvent; e.g. CH3CN) could influence interactions between the Ni(II) center 

and the 1,3-diphenyltriketone. For example, the larger pocket for the 6-Ph2TPA-ligated 

Ni(II) center could be a key factor in promoting Lewis acid activation of a carbonyl 

moiety of the triketone, which is necessary for the migration reaction leading to benzil 

production.30 This is a possible rationale for the higher amount of benzil produced in the 

reaction involving 2. In terms of the lower level of 18O incorporation found this reaction, 

Scheme 2-4. Possible reaction pathways for oxidative carbon-carbon bond cleavage in 

the Ni(II) enolate complexes 2 and 14. The supporting chelate ligands have been 

omitted for clarity.  



 

 

57

triketones are known to hydrate easily at the central carbonyl, and this may be a pathway 

for the introduction of unlabeled oxygen atoms into the benzoate/benzoic acid products.31 

The observation that the salt [Me4N][PhC(O)CH(OH)C(O)Ph] undergoes reaction with 

18O2 to produce a similar level of 18O incorporation (~65%) in the benzoic acid product as 

is found for the reaction involving 2 suggests that both may proceed via a similar reaction 

pathway. 18O incorporation into the carbon-carbon bond cleavage products could occur 

via reaction of the free triketone with hydroperoxide to form a five-membered cyclic 

peroxide species from which carbon-carbon bond cleavage could occur. Pochapsky has 

previously shown that treatment of 2,3,4-pentanetrione with H2O2 results in the formation 

of CO and two equivalents acetic acid.32 No isotope labeling studies were reported for 

this reaction.  

The higher level of 18O incorporation in the benzoate/benzoic acid products of the 

reaction involving 14 is interesting. Based on the results of our current experiments, it is 

unclear whether exclusively pathway B chemistry is occurring in the O2 reactions of 14 

and 2, or whether a portion of the labeled product is generated via pathway A type 

reactivity. If exclusively pathway B chemistry is operative, an important distinction 

between the two supporting chelate ligand systems is that the bnpapa-ligated Ni(II) center 

may coordinate the hydroperoxide anion within the hydrogen bond donor pocket. The 

bnpapa chelate ligand has been previously used to stabilize mononuclear Zn(II) and 

Cu(II) hydroperoxide complexes.33,34 To date, similar complexes have not been reported 

using the 6-Ph2TPA ligand. Thus, differences in the anion coordination properties 
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between the bnpapa and 6-Ph2TPA-supported complexes could contribute to the observed 

differences in reactivity between 2 and 14.  

The results of this investigation have enabled the formulation of hypotheses 

regarding the reaction pathways of 2 and 14 with O2 (Scheme 2-4) that can now be tested 

in individual control reactions. For example, we are now performing experiments to 

examine the reactivity of [(6-Ph2TPA)Ni(CH3CN)(CH3OH)](ClO4)2
35 and 

[(bnpapa)Ni(ClO4)(CH3CN)]ClO4 (18) with 1,3-diphenyltriketone and H2O2 to evaluate 

the efficacy of pathway B chemistry leading to the observed products. Additionally, we 

are pursuing kinetic studies of the reactions of complexes 2 and 14 with O2, as well as 

examining the reactivity of [Me4N][PhC(O)C(OH)C(O)Ph] with O2 via computational 

methods to assess its reactivity relative to that found in the native C(1)-H acireductone 

substrate processed by the acireductone dioxygenases.36 

Conclusions 

 Using the hydrogen-bond donor ligand bnpapa, a mononuclear Ni(II) complex of 

the formula [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14) has been isolated and 

characterized. Based on comparison of the spectroscopic features of this complex to those 

of air stable analogs, the structure of 14 is proposed to be generally similar to that 

previously reported for [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2). Notably, 

complexes 2 and 14 exhibit differences in their O2-dependent aliphatic carbon-carbon 

bond cleavage reactivity in terms of the product mixture generated and the level of 18O 

incorporation in the benzoate/benzoic acid products. Two possible reaction pathways 

leading to 18O incorporation into the benzoate/benzoic acid products are proposed, with 
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one pathway involving the formation of a triketone and hydroperoxide anion. Comparison 

of the chemical features of several bnpapa- and 6-Ph2TPA-ligated complexes suggests 

that differences in the pocket size and anion binding properties for these two ligand types 

may be key factors in producing the observed differences in reaction products.  
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CHAPTER 3 

INFLUENCE OF WATER ON THE FORMATION OF O2-REACTIVE DIVALENT 

METAL ENOLATE COMPLEXES OF RELEVANCE TO ACIREDUCTONE 

DIOXYGENASES1 

Abstract 

Reaction conditions were evaluated for the preparation of [(6-

PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3) and [(6-

Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO4 (7), two complexes of structural relevance to 

the enzyme/substrate (ES) adduct in Ni(II)- and Co(II)-containing forms of acireductone 

dioxygenase. The presence of water in reactions directed at the preparation of 3 and 7 was 

found to result in isomerization of the enolate precursor 2-hydroxy-1,3-diphenylpropane-

1,3-dione to give the ester 2-oxo-2-phenylethylbenzoate. Performing synthetic procedures 

under dryer conditions reduced the amount of ester production and enabled the isolation 

of 3 in high yield. This complex was comprehensively characterized, including by X-ray 

crystallography. Using similar conditions for the 6-Ph2TPACo-containing system, the 

amount of ester generated was only modestly affected, but the formation of a benzoate 

complex ([(6-Ph2TPA)Co(O2CPh)]ClO4, 10) resulting from ester hydrolysis was  

 

1Coauthored by Katarzyna Grubel, Gajendrasingh K. Ingle, Amy L. Fuller, Atta M. Arif, 
and Lisa M. Berreau. Reproduced with permission from Dalton Transactions 2011, 49, 
1071-1081. Copyright 2011 The Royal Society of Chemistry. 
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prevented. The best preparation of 7 was found to involve dry conditions and short 

reaction times. The difference in water-dependent chemistry encountered in the (6-

PhTPA)Ni- and (6-Ph2TPA)Co-containing systems appears to relate to differences in the 

M-OH/H2O chemistry of the metal/ligand combinations. The approach outlined herein 

toward determining appropriate reaction conditions for the preparation of 3 and 7 

involved the preparation and characterization of several air-stable (6-PhTPA)Ni- and (6-

Ph2TPA)Co-containing analogue complexes having enolate, solvent, and benzoate 

ligands. These complexes were used as paramagnetic 1H NMR standards for evaluation of 

reaction mixtures containing 3 and 7.  

Introduction 

Acireductone dioxygenases (ARDs) catalyze dioxygenase-type oxidative reactions 

involving the cleavage of one or more aliphatic carbon-carbon bonds in an intermediate 

generated in the methionine salvage pathway.1 With Ni(II) or Co(II) as the active site 

metal ion (Ni(II)-ARD or Co(II)-ARD),  the cleavage reaction results in the formation of 

carboxylic acid products and CO (Scheme 3-1, top).1 This reaction is proposed to proceed 

from an enzyme/substrate (ES) adduct having a coordinated enediolate moiety. To date, 

our laboratory has produced the only synthetic complexes of structural relevance to the 

ES adduct in Ni(II)-ARD using a C(1)-Ph containing analog of the native acireductone 

substrate (Scheme 3-1, middle).2 These complexes, [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1) and 

[(bnpapa)Ni(PhC(O)C(OH)C(O)Ph]ClO4 (2) (Scheme 3-1, bottom), undergo reaction 

with O2 to produce CO and carboxylate/carboxylic acid products in a reaction similar to 
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the Ni(II)-ARD enzymatic reaction.2 However, the formation of a small amount of 

another organic product, benzil (PhC(O)C(O)Ph), in the reactions involving 1 and 2, 

suggested the possibility of a “hydroperoxide” pathway for oxidative carbon-carbon bond 

cleavage reactivity involving triketone and OOH- intermediates. This proposed pathway is 

supported by recent computational and mechanistic studies for the oxidative carbon-

carbon bond cleavage reaction involving 1.3 This mechanism differs from a radical 

pathway4 available for carbon-carbon bond cleavage in the native substrate for the 

enzyme and is consequence of the phenyl substituent at the C(1)-carbon. Thus, while our 

previous studies show that the C(1)-phenyl-containing acireductone analog introduces 

mechanistic differences in terms of its oxidative cleavage reactivity, it is a convenient 

Scheme 3-1. Top: Reaction catalyzed by Ni(II)-ARD. Middle: Native and alternative 

substrates for Ni(II)-ARD; C(1)-phenyl-containing model substrate. Bottom: Structural 

drawings of 1 and 2.  
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species for exploring bioinspired coordination chemistry of an acireductone-type 

molecule. We note that prior to our preparation and characterization of 1, only a single 

complex having an acireductone type ligand had been previously characterized by X-ray 

crystallography.5 This complex, [Ru(bipy)2(µ-C4H4O3)Ru(bipy)2](PF6)2, was generated as 

a byproduct in an ethylene glycol-containing reaction mixture and no further chemistry of 

the complex was reported. The [C4H4O3]
2- acireductone-type ligand bridges the two 

ruthenium centers via two five-membered chelate rings. We have a reported a similar 

coordination motif for the dianionic form of the C(1)-phenyl-containing acireductone 

analog in Ni(II) trinuclear and cluster  complexes.6,7 

In further exploration of the coordination chemistry of the 

[PhC(O)C(OH)C(O)Ph]- anion, we describe herein our efforts to prepare analogs of 1 

containing a sterically less-demanding supporting chelating ligand, 6-PhTPA,8 or a 

different metal ion, Co(II). Notably, we have found that the preparation of [(6-

PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3) and [(6-

Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO4 (7) is complicated by water-dependent 

isomerization chemistry involving the C(1)-phenyl-containing acireductone analog which 

results in the formation of an ester. While we were able to modify the reaction conditions 

to successfully isolate and characterize 3, the Co(II) chemistry is more complicated and 

includes ester hydrolysis reactivity. Our approach toward identifying the best conditions 

under which to generate 7 involved the preparation and characterization of three new 6-

Ph2TPA-supported Co(II) complexes that were used as paramagnetic 1H NMR standards. 

Overall, these studies demonstrate that the conditions required for the preparation of 
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metal enolate complexes of relevance to the ES adduct in acireductone dioxygenases 

depend on several factors, including the presence of water in the reaction mixture.  

Results and Discussion 

Isomerization reactivity of a C(1)-phenyl containing acireductone analog and the 

preparation of [(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3). In our initial attempts 

to prepare the 6-PhTPA-supported Ni(II) complex 3, we used reaction conditions 

identical to those which had enabled us to isolate the O2-reactive [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph]ClO4 (1) in high yield (>90%).2a These conditions are 

referred to herein as the “wet” conditions. Karl-Fischer titration of the CaH2-dried 

acetonitrile typically used in this type of reaction indicated a concentration of [H2O] 

~3000 ppm. For the preparation of 3, these conditions proved problematic, as a mixture 

of Ni(II) complexes was generated, as determined by 1H NMR (Figure 3-1(a)), along with 

a significant amount of an isomerization product, 2-oxo-2-pheylethyl benzoate9 (~46% 

isolated yield based on dione; Scheme 3-2(b)). This ester, 2-oxo-2-pheylethyl benzoate, 

has been previously reported to form upon treatment of 2-hydroxy-1,3-diphenylpropane-

1,3-dione with sodium bicarbonate in H2O/methanol.10 In this prior report, a reaction 

pathway was proposed wherein the deprotonated keto form undergoes intramolecular 

attack of the C(2)-O- moiety on an adjacent carbonyl (Scheme 3-3). This results in the 

formation of a new C-O bond and the cleavage of a C-C bond involving the C(2) center. 

We had not previously identified this rearrangement chemistry in preparing 1. However, 

we have now reexamined the organic products remaining following the isolation of 1 and 

have found that some ester is generated in this reaction, but it is only approximately half 
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of what is found in the 6-PhTPA system. We propose that this difference in ester 

formation for the 6-Ph2TPA and 6-PhTPA systems might involve differences in 

interactions of the Ni(II) center in each complex with the reactants due to the modulation 

of the hydrophobic microenvironment by the differing chelate ligands. Specifically, 

factors such as the greater possible propensity of the 6-PhTPA complex to form dimeric 

structures, as well as electronic effects at the metal, and differing anion association 

constants, may be responsible for the observed differences in reactivity. Notably, we 

discovered that reducing the amount of water in the reaction mixture involving the 6-

Figure 3-1. A region of the 1H NMR spectra for (a) the reaction mixture produced upon 

treatment of 6-PhTPA with an equimolar amount of Ni(II)(ClO4)2⋅6H2O and slight 

stoichiometric excesses of Me4NOH·5H2O and 2-hydroxy-1,3-diphenylpropan-1,3-dione 

in CH3CN (~3000 ppm H2O); (b) [(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3); (c) 

[(6-PhTPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4); (d) [(6-

PhTPA)Ni(CH3CN)(CH3OH)](ClO4)2 (5); (e) [(6-PhTPA)Ni(O2CPh)]ClO4 (6). Spectra b-

e are for analytically pure compounds. The 1H NMR spectra were collected in CD3CN at 

ambient temperature and were referenced to the 1H NMR signal of CD2HCN (1.94 ppm). 
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PhTPA-supported Ni(II) complex via predrying of the base and use of extra dry CH3CN 

(<10 ppm H2O) enables the isolation of 2 in high yield (94%, Scheme 3-2(b)). 

Additionally, only a trace amount of ester was detected in this reaction mixture. These 

combined results indicate that water plays a key role in this system in promoting the 

isomerization reactivity that results in ester formation, and that a lower amount of ester 

formation correlates with a higher yield of the desired enolate complex 3. Complex 3 

Scheme 3-2. (a) Previously reported synthetic route for the preparation of 1. (b) Synthetic 

routes for the preparation of 3. 

Scheme 3-3. Proposed pathway of isomerization of 1,3-diphenylpropane-1,3-dione to 

generate 2-oxo-2-pheylethylbenzoate.10 
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(Figure 3-2) has a six-coordinate Ni(II) center with the longest Ni-N interaction being for 

the phenyl-substituted pyridyl donor (Ni(1)-N(4), 2.202(4) Å). This distance is slightly 

shorter than that found for the Ni-NPhPy bonds in 1 (Ni(1)-N(3) 2.271(2) Å, Ni(1)-N(4) 

2.323(2) Å),2a presumably due to reduced steric hindrance as a second phenyl-appended 

pyridyl donor is not present in 3. The remaining bond distances/angles in this complex are 

similar to those found in 1. The spectroscopic properties of 3 are also generally similar to 

those found for 1. For example, both complexes form orange-brown solutions with λmax 

at 393 (6800 M-1cm-1) and 399 (10300 M-1cm-1) nm, respectively.2b The 1H NMR features 

of 3 in the region of 70-10 ppm are shown in Figure 3-1(b) and collected in Table 3-1.  

Prior 1H NMR studies of 6-Ph2TPA-ligated Ni(II) complexes have identified this 

region as containing pyridyl ring proton resonances that are sensitive to changes in 

ligation at the Ni(II) center.11,12 In order to perform spectral comparisons for 6-PhTPA-

supported Ni(II) complexes, the air stable dibenzoylmethane-derived enolate complex 

Figure 3-2. Thermal ellipsoid drawing of the cationic portion of 3. Ellipsoids are drawn at 

the 50% probability level. Hydrogen atoms except the hydroxyl proton of the enolate 

ligand are not shown for clarity.  
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[(6-PhTPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4, Figure 3-3(top), the solvent-bound complex  

(6-PhTPA)Ni(CH3CN)(CH3OH)](ClO4)2 (5, Figure 3-3(bottom)), and the benzoate 

complex [(6-PhTPA)Ni(O2CPh)]ClO4 (6) were prepared and characterized.  

 

 

 

Figure 3-3. Thermal ellipsoid drawings of the cationic portions of 4 (top) and 5 (bottom). 
Ellipsoids are plotted at the 50% probability level. Hydrogen atoms, except the methanol 
proton of the coordinated methanol ligand in 5, are not shown for clarity. 
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Table 3-1. 1H NMR chemical shifts for 3-6 in CD3CN at 298 K. 
assignment shift (ppm)a ∆ν1/2(Hz)b rel area 

[(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3) 

α 150.0 c c 

β 41.6, 34.8 183, 172 1, 1 

β’ 44.5, 13.3 450, 179 2, 2 

γ c c c 

γ’ 10.6 91.6 c 

CH2 57.7, 23.3, c c, c, c c, c, c 

[(6-PhTPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4) 

α 148.6 c c 

β 43.8, c 355 c, c 

β’ 41.1, 34.8 183, 214 1, 1 

γ 13.2 175 2 

γ’ c c c 

CH2 138.2, 51.0, 50.5 c, c, c c, c, c 

CH (dbm) -13.1 256 1 

[(6-PhTPA)Ni(CH3CN)(CH3OH)](ClO4)2 (5) 

α 150.0 c c 

β 52.8, c 543, c c, c 

β’ 49.2, 40.8 484, 324 c, 1 

γ 14.6 126 c 

γ’ 10.1 107 c 

[(6-PhTPA)Ni(O2CPh)]ClO4 (6) 

α 150.9 2922 1 

β 46.3, 36.2 c, 328 c, 1 

β’ 49.3, 45.1 362, 244 2, c 

γ 13.5 72 2 

γ’ 10.0 84 1 

CH2 77.5, c, c c, c, c c, c, c 

aChemical shifts in ppm relative to the residual solvent peak of CHD2CN (1H, 1.94 (quintet) ppm). bLine widths 
are full width at a half-maximum. cCould not be determined. 

 

 



 

 

72

Complexes 4 and 5 were investigated using single crystal X-ray crystallography. Details 

of the X-ray data collection are given in Table 3-2. Selected bond distances and angles for 

the complexes are shown in Table 3-3. Both 4 and 5 exhibit a pseudo-octahedral 

geometry with the longest Ni-N bond distance being for the phenyl-appended pyridyl 

donor. As is evident by comparison of the 1H NMR spectra shown in Figure 3-1(b)-(e), 

complexes having a six-membered ring enolate ligand (Figure 3-1(b) and (c); 3 and 4) 

exhibit generally similar 1H NMR features that are clearly distinct from those exhibited 

by solvent (Figure 3-1(d), 5) or benzoate-coordinated (Figure 3-1(e), 6) compounds 

(Table 3-1). That being said, we note  that all of the complexes exhibit a pattern of 

isotropically shifted resonances for the pyridyl ring protons with chemical shifts in the 

order α-H > β-H > γ-H.11 
 

Having the family of complexes 3-6 fully characterized has enabled us to use 1H 

NMR to examine the mixture of Ni(II) complexes in the “wet” reaction conditions, 

wherein a significant amount of ester is generated. As shown in Figure 3-1(a) it is evident 

that the desired Ni(II) enolate complex 2 is present, as resonances at 44.5, 41.6, 34.8, and 

13.3 ppm are present. It is also clear that a Ni(II) solvent-coordinated complex, such as 

[(6-PhTPA)Ni(CH3CN)(CH3OH)](ClO4)2 (5), if present, is a very minor species. This 

suggests that all of the 6-PhTPA-ligated Ni(II) species in solution have one or more 

coordinated non-solvent ligands. A small amount of the Ni(II)-benzoate complex 6 may 

be present in the reaction mixture, as evidenced by signals at the 49.3 and 36.2 ppm. We 

note that preliminary O2 reactivity studies indicate that complex 3 undergoes oxidative 

carbon-carbon bond cleavage upon exposure to oxygen to give products similar to those 
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Table 3-2. Summary of X-ray Data Collection and Refinement. 
 3⋅⋅⋅⋅CH2Cl2 4⋅⋅⋅⋅Et2O 5 8⋅⋅⋅⋅0.5CH3CN 10 

Empirical formula C40H35Cl3N4NiO7 C43H43ClN4NiO7 C27H29Cl2N5NiO9 C46H38.5ClCoN4.5O4 C37H31ClCoN4O6 

Formula weight 848.78 821.97 697.16 844.69 722.04 

Crystal system Monoclinic Orthorhombic Orthorhombic Tetragonal Monoclinic 

Space group Cc Pcab P212121 I-4 P21/c 

a/ Å 23.2096(5) 16.0204(3) 9.8884(2) 34.4730(5) 11.0736(2) 

b/ Å 15.9822(4) 19.2924(6) 10.8891(2) 34.4730(5) 24.5657(5) 

c/ Å 11.9687(2) 25.0918(7) 28.1201(4) 13.5221(3) 12.18640(10) 

α /° 90 90 90 90 90 

β /° 117.2760(12) 90 90 90 100.8097(10) 

γ /° 90 90 90 90 90 

V /Å3 3946.02(15) 7755.2(4) 3027.85(9) 16069.5(5) 3256.25(9) 

Z 4 8 4 16 4 

Dc / Mg m-3 1.429 1.408 1.529 1.397 1.473 

T / K 150(1) 150(1) 150(1) 150(1) 150(1) 

Color Orange Orange Purple Red-Brown Green 

Crystal habit Prism Plate Prism Plate Plate 

Crystal size/ mm 0.25 x 0.23 x 0.20 0.38 x 0.38 x 0.10 0.33 x 0.25 x 0.20 0.35 x 0.35 x 0.13 0.35 x 0.23 x 0.10 

Diffractometer Nonius KappaCCD Nonius KappaCCD Nonius KappaCCD Nonius KappaCCD Nonius KappaCCD 

µ/ (mm-1) 0.749 0.627 0.878 0.550 0.664 

2θ max /° 54.94 54.98 54.96 54.96 54.96 

Reflections collected 8111 16226 6591 15365 14646 

Independent 
reflections 

8104 8868 6591 15360 7451 

Rint 0.0445 0.0767 0.0000 0.0395 0.0374 

Variable parameters 498 677 400 1060 566 

R1 / wR2 (I > 
2sigma(I))b  

0.0539 / 0.1320 0.0552 / 0.1015 0.0654 / 0.1377 0.0638 / 0.1236 0.0385 / 0.0811 

Goodness-of-fit (F2) 1.066 1.015 1.040 1.072 1.023 

∆ρ max/min / e Å-3 0.972 / -0.684 0.452 / -0.465 0.699 / -0.976 0.475 / -0.586 0.337 / -0.512 

Flack parameter 0.510(5)  -0.01(3) 0.371(16)  

aRadiation used: Mo Kα (λ = 0.71073 Å). bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|; wR2 = [∑[w(Fo2-Fc2)2]/[∑(Fo2)2]] 1/2 where w = 1/[σ2(Fo2) + 
(aP)2 + bP]. 
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Table 3-3. Selected bond lengths (Å) and angles (°).a 
 3⋅⋅⋅⋅CH2Cl2 4⋅⋅⋅⋅Et2O 5 8⋅⋅⋅⋅0.5CH3CN 10 

M-N(1) 2.048(4) 2.077(3) 2.089(5) 2.134(5) 2.1117(17) 

M-N(2) 2.084(3) 2.101(3) 2.097(5) 2.135(5) 2.1773(17) 

M-N(3) 2.122(4) 2.110(3) 2.090(5) 2.291(5) 2.1192(18) 

M-N(4) 2.202(4) 2.149(2) 2.170(5) 2.285(5) 2.1437(17) 

M-N(5)   2.055(5)   

M-O(1) 1.986(3) 1.997(2) 2.077(5) 2.029(4) 1.9695(14) 

M-O(2) 1.998(3) 1.995(2)  1.989(4)  

O(1)-M-N(1) 92.31(13) 172.53(10) 171.61(18) 175.44(15) 100.38(6) 

O(1)-M-N(2) 169.33(14) 90.38(9) 91.86(18) 95.84(16) 173.83(7) 

O(1)-M-N(3) 92.78(13) 91.33(9) 88.37(19) 82.06(16) 108.72(6) 

O(1)-M-N(4) 108.01(13) 85.18(9) 83.81(18) 96.88(16) 102.48(6) 

O(1)-M-N(5)   90.4(2)   

O(1)-M-O(2) 90.84(12) 91.77(9)  90.30(15)  

O(2)-M-N(1) 173.30(14) 94.96(9)  93.99(17)  

O(2)-M-N(2) 94.72(14) 172.17(9)  171.34(17)  

O(2)-M-N(3) 89.15(13) 91.69(9)  99.88(17)  

O(2)-M-N(4) 89.34(14) 106.72(9)  105.54(16)  

N(1)-M-N(2) 83.13(15) 82.53(10) 82.77(18) 80.06(18) 77.04(7) 

N(1)-M-N(3) 96.59(15) 85.24(10) 84.5(2) 98.68(18) 108.75(6) 

N(1)-M-N(4) 84.06(15) 95.97(10) 101.40(18) 80.50(17) 127.56(7) 

N(1)-M-N(5)   94.8(2)   

N(2)-M-N(3) 78.23(14) 80.73(10) 81.92(19) 75.03(18) 77.45(7) 

N(2)-M-N(4) 81.20(15) 80.97(10) 79.13(19)  75.25(6) 

N(2)-M-N(5)   177.2(2)   

N(3)-M-N(4) 159.18(14) 161.33(10) 159.22(19)  107.42(6) 

N(3)-M-N(5)   96.43(19)   

N(4)-M-N(5)   102.82(19)   

aEstimated standard deviations in the last significant figure are given in parentheses. 

of [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1),2b specifically the Ni(II) 

monobenzoate complex 6, along with benzoic acid and benzil. Thus, the Ni(II)-benzoate 
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complex in the reaction mixture for the preparation of 3 could be due to oxidative 

decomposition of the sample. Alternatively, the 6-PhTPA-supported Ni(II) benzoate 

complex 6 might be formed via hydrolysis of the 2-oxo-2-phenylethylbenzoate ester 

generated in the reaction mixture. This hypothesis was evaluated via treatment of the 

solvent complex 5 with 2-oxo-2-phenylethylbenzoate in the presence of one equivalent of 

Me4NOH⋅5H2O in CH3CN. The outcome of this reaction indicated the formation of new 

Ni(II) species (as determined by 1H NMR), but no ester hydrolysis (95% recovery of 

unaltered ester). Interestingly, performing the same reaction in the absence of the Ni(II) 

complex results in ester hydrolysis to give Me4NO2CPh and PhC(O)CH2OH. Thus, in the 

Ni(II)-containing reaction, hydroxide anion is unavailable for ester hydrolysis, 

presumably due to the formation of Ni-OH species, which apparently does not promote 

ester hydrolysis. Overall, this means that any Ni(II) benzoate complex 6 present in the 

reaction mixture shown in Figure 3-1(a) would be due to oxidative decomposition. 

Finally, we note that at this point we cannot identify species associated with resonances at 

32.4 and 33.7 ppm in the “wet” reaction mixture (Figure 3-1(a)). 

Co(II) Chemistry: The challenges in preparing [(6-

Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO4 (7). We were interested in preparing the 

Co(II) analog of 1 as it has been reported that reconstitution of apo-ARD with Co(II) 

produces an enzyme having >90% Ni(II)-ARD-type reactivity (cleavage to give CO and 

carboxylate products, Scheme 3-1(top)).13 Additionally, the ARD enzyme isolated from 

K. pneumoniae contains ~20% Co(II) (with Ni(II) being present in ~70% and Fe(II) 

~10%).14 Our initial attempt to prepare [(6-Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)] ClO4 (7) 
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involved following a procedure identical to that employed for the preparation of [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1) using the “wet” conditions. Specifically, 

equimolar amounts of 6-Ph2TPA and Co(ClO4)2⋅6H2O were combined with a slight 

stoichiometric excess of Me4NOH⋅5H2O and 2-hydroxy-1,3-diphenylpropane-1,3-dione 

in CH3CN (~3000 ppm H2O; Karl-Fischer titration) and the reaction mixture was stirred 

under N2 for 16.5 h. We noted the rapid formation of a green color in this reaction 

mixture, which is significantly different from the orange-brown color that is found for 

[(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1) and  [(6-

PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3). The 1H NMR spectral features of the green 

mixture are shown in Figure 3-4(a). To interpret this 1H NMR data, we prepared and fully 

characterized (including assignment of 1H NMR resonances) two new Co(II) complexes, 

the dibenzoylmethane derivative [(6-Ph2TPA)Co(PhC(O)CHC(O)Ph)]ClO4 (8) and the 

benzoate complex [(6-Ph2TPA)Co(O2CPh)]ClO4 (10). Additionally, we investigated the 

1H NMR features of the previously reported [(6-Ph2TPA)Co(CH3CN)](ClO4)2⋅CH3CN 

(9).  

The cationic portions of 8 and 10 are shown in Figure 3-5. Details of the X-ray  

data collection are given in Table 3-2. Selected bond distances and angles for the 

complexes are shown in Table 3-3. The Co(II) center in 8 exhibits a distorted octahedral 

geometry. The bond distances involving the phenyl-appended pyridyl donors (N(3) and 

N(4)) are ~0.16 Å longer than the other Co-N distances. The Co(II)-O distances involving 

the enolate ligand differ by about ~0.03 Å, with the Co-O bond trans to the unsubstituted 

pyridyl donor being slightly longer. Similar to [(6- Ph2TPA)Co(ONHC(O)CH3)]ClO4,
15 
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the bidentate anion is positioned in a hydrophobic sandwich between the phenyl 

appendages of the 6-Ph2TPA ligand. The benzoate complex 10 exhibits monodentate 

coordination of the carboxylate (∆d = 0.8 Å; ∆θ = 36.6°).16 The overall geometry of the 

Co(II) center is distorted trigonal bipyramial (τ = 0.77; for a perfect trigonal bipyramid τ  

Figure 3-4. Regions of the 1H NMR spectra of (a) the reaction mixture produced upon 

treatment of 6-Ph2TPA with an equimolar amount of Co(II)(ClO4)2⋅6H2O and slight 

stoichiometric excesses of Me4NOH·5H2O and 2-hydroxy-1,3-diphenylpropan-1,3-dione 

in CH3CN (~3000 ppm H2O); (b) the reaction mixture generated using conditions 

identical to those employed for the preparation of 3 (predrying of base and solvent); (c) 

the reaction mixture produced upon predrying of base and solvent and shorter reaction 

time; (d) [(6-Ph2TPA)Co(PhC(O)CHC(O)Ph)]ClO4 (8); (e) [(6-

Ph2TPA)Co(CH3CN)](ClO4)2⋅ClO4⋅CH3CN (9); (f) [(6-Ph2TPA)Co(O2CPh)]ClO4 (10). 

Spectra d-f are for analytically pure compounds. The 1H NMR spectra were collected in 

CD3CN at ambient temperature and were referenced to the 1H NMR signal of CD2HCN 

(1.94 ppm). The diamagnetic region of each spectrum is omitted to improve the clarity of 

the spectral comparison. 
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= 1),17 with the carboxylate ligand in an axial position. A similar geometry was found for 

[(6-Ph2TPA)Co(CH3CN)](ClO4)2⋅CH3CN (9) (τ = 0.89). The solution magnetic moments 

for 8 and 10 were measured in CH3CN at 298 K using the Evans method.18 The µeff 

values obtained for these complexes, 4.72 and 4.32 µB, respectively, are within the 

expected experimental range for high-spin Co(II)  complexes.19 High-spin Co(II) 

complexes generally exhibit  a ligand field transition in the range of 500-600 ppm. The 

intensity of this transition varies with the coordination number of the Co(II) center, with 

six-coordinate Co(II) complexes generally having ε < 50 M-1cm-1.20  

Figure 3-5. Thermal ellipsoid drawings of the cationic portions of 8 and 10. Ellipsoids are 

drawn at the 50% probability level. Hydrogen atoms are not shown for clarity. Only one 

of two cations present in the asymmetric unit of 8 is shown.  
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The absorption spectrum of the red-orange dibenzoylmethane complex 8 contains a band 

at 564 nm (ε = 77 M-1cm-1). Though the molar absorptivity value for the 564 nm band 

exceeds the threshold of ε < 50 M-1cm-1, 1H NMR data for the complex (vide infra) 

suggest that the solution form of the complex has a six-coordinate Co(II) center. For the 

green benzoate complex 10 a ligand field transition is present at 590 nm (49 M-1cm-1). 

This suggests an overall coordination number of six for the benzoate complex in CH3CN. 

Assignments for the 1H NMR resonances of 8-10 are given in Table 3-4. 

  Initial assignments were made on the basis of integrated intensity and T1 values. 

Signals associated with the aryl and methylene hydrogens of the 6-Ph2TPA ligand were 

confirmed using analog complexes prepared with the deuterated ligand analogs 6-(d5-

Ph)2TPA and (6-Ph)2-d6-TPA and complementary 2H NMR spectroscopy.11 For each 

complex the overall number of signals is consistent with an effective plane of symmetry 

in the cation to give equivalent phenyl-appended pyridyl donors. This is also consistent 

with the identification of three methylene proton resonances. Selected regions of the 

spectra of 8-10 are shown in Figure 3-4(d-f).  

Similar to the 1H NMR features of 6- Ph2TPA-supported Ni(II) complexes,11 each 

Co(II) complex exhibits a pattern of isotropically shifted resonances for the pyridyl ring 

protons with chemical shifts in the order α-H > β-H > γ-H. Resonances in the region of 

~80-20 ppm clearly distinguish the complexes. Within this region are signals associated 

with the β and β’ hydrogens of the pyridyl rings (Figure 3-6). A characteristic feature of 

the 1H NMR spectrum of [(6-Ph2TPA)Co(PhC(O)CHC(O)Ph)]ClO4 (8) is a signal at -49 

ppm, which has been assigned as a phenyl ring proton resonance of the 6-Ph2TPA ligand. 
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Table 3-4. 1H NMR chemical shifts for 8-10 in CD3CN at 298 K.  
assignment chem. shift (ppm)a ∆ν1/2(Hz)b T1exp(ms)c rel. area 

[(6-Ph2TPA)Co(PhC(O)CHC(O)Ph)]ClO4 (8) 

α 151.21 247 2 1 

β 77.42, 52.47 104, 49 10, 33 d, d 

β’ 27.12, 22.59 71, 62 20, 52 2, 2 

γ 18.42 d d d 

γ’ -10.06 69 74 2 

CH2 193.14, 125.99, 75.82 632, 242, 104 2, 2, 10 2, 2, d 

Ph 8.04, 3.87, -48.69 38, 42, 184 85, 41, 5 d, d, 4 

[(6-Ph2TPA)Co(CH3CN)](ClO4)2 (9) 

α 153.68 963 d 1 

β 69.32, 48.34 141, 141 d, 35 1, 1 

β’ 73.05, 40.07 141, 141 48, 180 2, 2 

γ -4.28 65 150 2 

γ’ -0.91 72 480 1 

CH2 119.1, 87.60, 53.1 d, 2190, d d 2, 2, d 

Ph 25.68, 5.46, 2.96 751, 69, d d, 160, 230 4, 2, d 

[(6-Ph2TPA)Co(O2CPh)]ClO4 (10) 

α 142.22 867 < 1 1 

β 52.99, 50.61 103, 153 11, 5 1, 1 

β’ 55.62, 35.43 153, 217 8, 4 2, 2 

γ 0.64 72 9 1 

γ’ -0.36 72 11 2 

CH2 117.2, 76.35, d d, 2190, d < 1 d, d, d 

Ph 8.59, 4.19, d 65, 88, d 14, 7, d 2, 4, d 

Benzoate 27.45, 15.73, 12.92 286, 103, 84 2, 23, 47 2, 2, 1 

aChemical shifts in ppm relative to the residual solvent peak of CHD2CN (1H, 1.94 (quintet) ppm). bLine widths are full width at a 
half-maximum. cT1 values were obtained on 300 MHz. dCould not be determined. 

An additional distinct resonance for this compound is found at -10 ppm and is for the γ’ 

hydrogen. The spectrum of the benzoate complex is unique in a clustering of three of the 

four β/β’ resonances in chemical shift range of 50-56 ppm. 
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Having fully characterized 8-10 and assigned the 1H NMR signals of these 

complexes, we were positioned to evaluate the “wet” reaction mixture (Figure 3-4(a)) 

generated upon treatment of 6-Ph2TPA and Co(ClO4)2⋅6H2O with a slight stoichiometric 

excess of Me4NOH⋅5H2O and 2-hydroxy-1,3-diphenylpropane-1,3-dione in “wet” 

acetonitrile under the conditions used to isolate [(6-

Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1).2a It is clearly evident by the 1H NMR 

features shown in Figure 3-4(a) that the Co(II) benzoate complex 10 is present with β/β’-

H signals at ~55.6, 53.0, 50.6, and 35.5 ppm. Additionally, it is noteworthy that several 

signals are present upfield of 0 ppm. This suggests that multiple enolate-type complexes 

are also present (via comparison to the spectral features with those of the 

dibenzoylmethane complex 8 (Figure 3-4(d)). Work-up of the “wet” reaction mixture 

resulted in the isolation of the ester 2-oxo-2-phenylethylbenzoate in ~50% yield based on 

the initial amount of 2-hydroxy-1,3-diphenylpropane-1,3-dione employed. Thus, similar 

to the chemistry of 6-PhTPA-supported Ni(II), ester formation occurs in the Co(II) system 

under the “wet” reaction conditions. Additionally, we isolated ~21 mg (58% recovery) of 

unaltered 6-Ph2TPA from the reaction mixture.  

Figure 3-6. Labeling scheme for the 6-Ph2TPA ligand. 
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Rationalizing that removal of water might enable the preparation of the desired 

enolate complex [(6-Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO4 (7), we next attempted a 

synthesis using the dry conditions involving predried Me4NOH and CH3CN that enabled 

the isolation of [(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3). Admixture of the 

reagents followed by stirring for 3 h under N2 and workup resulted in the isolation of an 

orange solid with features in the 1H NMR spectrum as shown in Figure 3-4(b). Notably, 

this spectrum does not indicate the presence of Co(II) benzoate complex (8), and suggests 

the formation of a single Co(II) enolate complex as evidenced by signals at ~-10 and -49 

ppm. Based on the 1H NMR features of 8, these could be signals for the γ’ and phenyl 

ring protons of the desired complex 7. Unfortunately, other signals are present indicating 

that the isolated product is not pure. Evaluation of the organic products from the reaction 

once again revealed the presence of a mixture of the ester 2-oxo-2-phenylethylbenzoate 

and 6-Ph2TPA in a ~1:1 ratio. Thus, unlike the (6-PhTPA)Ni(II) system, reducing the 

amount of water in the reaction mixture did not significantly reduce the amount of ester 

generated. However, removal of water does prevent formation of the benzoate complex 

10.  

We next explored a variety of reaction conditions in attempts to prepare pure [(6-

Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO4 (7) and have found that the best results are 

obtained using dry conditions akin to those described herein for the prepartion of [(6-

PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3) but with a shorter reaction time. Specifically, 

admixture of equimolar amounts of [(6-Ph2TPA)Co(CH3CN)](ClO4)2⋅CH3CN (9), 2-

hydroxy-1,3-diphenylpropane-1,3-dione, and predried Me4NOH in CH3CN (<10 ppm 
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H2O) and stirring for 15 min results in the formation of a deep orange solution with λmax 

= 397 nm. We note that this is the same wavelength that was identified for the π→π* 

transition of the enolate ligand in [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1)2b and  

[(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3). Immediate removal of the solvent under 

vacuum, followed by workup, yielded a dark orange solid with the 1H NMR properties as 

shown in Figure 3-4(c). The complex generated has many similar features to the 

dibenzoylmethane complex 8, suggesting that both likely contain a six-membered ring 

enolate ligand. These 1H NMR similarities, combined with the absorption maximum at  

397 nm, suggest that  [(6-Ph2TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO4 (7), has been formed. 

However, like all of the reaction mixtures targeting this complex, the ester 2-oxo-2-

phenylethylbenzoate and free 6-Ph2TPA are also generated. The presence of these 

byproducts has prevented our obtaining elemental analysis data for 7. That being said, 

evaluation of the O2 reactivity properties of this complex are underway. Preliminary 

studies indicate that exposure of a CH3CN solution of 7 to air results in a rapid color 

change from orange brown to green. The 1H NMR features of the reaction mixture are  

consistent with formation of the benzoate complex [(6-Ph2TPA)Co(O2CPh)]ClO4 (10). 

This reaction is akin to that previously reported for [(6-

Ph2TPA)Ni(PhC(O)CH(OH)CPh)]ClO4 (1).2b The generation of 2-oxo-2-

phenylethylbenzoate in the initial “wet” reaction mixture directed at the preparation of the 

Co(II) enolate complex 7 (Figure 3-4(a)) , and the disappearance of the benzoate complex 

[(6-Ph2TPA)Co(O2CPh)]ClO4 (10) once the reagents (base and solvent) were predried, 

led us to hypothesize that the presence of water promotes ester hydrolysis to provide the 
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benzoate ligand in 10. In an independent experiment admixture of the ester with [(6-

Ph2TPA)Co(CH3CN)](ClO4)2⋅CH3CN (9) and Me4NOH⋅5H2O resulted in the formation 

of the Co(II) benzoate complex [(6-Ph2TPA)Co(O2CPh)]ClO4 (10) thus confirming our 

notion. As noted above, an independent experiment involving [(6-

PhTPA)Ni(CH3CN)(CH3OH)](ClO4)2 (5), 2-oxo-2-phenylethyl benzoate, and 

Me4NOH⋅5H2O showed no ester hydrolysis reactivity. Thus the two different 

metal/ligand combinations (6-PhTPANi and 6-Ph2TPACo) exhibit different ester 

hydrolysis reactivity. 

Conclusions 

The coordination chemistry of acireductone-type ligands reported to date is quite 

limited.2,3,5,6 In our laboratory we have pursued synthetic studies directed at the 

preparation of metal complexes of relevance to the ES adduct in Ni(II)-ARD, which 

catalyzes a CO-producing reaction. As the Ni(II) center in this enzyme can be replaced 

with Co(II) with almost full retention of enzyme activity,14 we are also interested in 

examining the chemistry of Co(II) complexes of acireductone-type ligands.  

The research described herein outlines our discovery that the presence of water 

influences the preparation of a Ni(II) enolate complex of an acireductone-type ligand. 

Reducing the amount of water present in the reaction mixture via predrying of the base 

and solvent significantly reduced the amount of isomerization of 2-hydroxy-1,3-

diphenylpropane-1,3-dione to the ester 2-oxo-2-phenylethylbenzoate and increases the 

yield of the desired Ni(II) enolate complex, [(6-PhTPA)Ni(PhC(O)CH(OH)CPh)]ClO4 
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(3). We propose that water is involved in the acid/base chemistry necessary to promote 

isomerization the reaction (Scheme 3-3). It is known that isomerization of 2-hydroxy-1,3-

diphenylpropane-1,3-dione to ester will occur in aqueous NaHCO3/methanol solution.10 

In our system, a combination of a Ni(II)-OH moiety and H2O may be necessary to 

promote isomerization reactivity in a general base/general acid type reaction sequence.  

The 6-Ph2TPA-supported Co(II) system exhibits a more multifaceted water-

dependent chemistry. Like the (6-PhTPA)Ni-containing system, isomerization of 2-

hydroxy-1,3-diphenylpropane-1,3-dione to 2-oxo-2-phenylethylbenzoate occurs in 

reaction mixtures containing water. However, predrying of the base and solvent in this 

system does not significantly reduce the amount of ester generated. Instead, a dryer 

reaction environment reduces the amount of a 6-Ph2TPA-supported Co(II) benzoate 

complex generated relative to the “wet” reaction mixture. Independent studies of ester 

hydrolysis reactivity showed that the combination of [(6-

Ph2TPA)Co(CH3CN)](ClO4)2⋅CH3CN (9), Me4NOH⋅5H2O and 2-oxo-2-

phenylethylbenzoate in CH3CN results in ester hydrolysis and the liberation of benzoate 

anion. Notably, a similar type of ester hydrolysis reactivity does not occur for a reaction 

mixture containing [(6-PhTPA)Ni(CH3CN)(CH3OH)](ClO4)2 (5), Me4NOH⋅5H2O, and 2-

oxo-2-phenylethylbenzoate in CH3CN. This provides a rationale for why little, if any, 

Ni(II) benzoate complex is generated in the “wet” reaction mixture. 

Overall, our results have provided insight into the conditions required to prepare 

two new complexes of relevance to the ES adduct in acireductone dioxygenases. The 

differing effects of water on the reactions involving (6-PhTPA)Ni- and (6-Ph2TPA)Co-
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supported complexes (isomerization and/or ester hydrolysis) cannot be fully explained at 

this point, but may relate to differences in M-OH/H2O chemistry for the two metal/ligand 

combinations. As our group also has a strong interest in metal-promoted hydrolysis 

reactions21, this area is under further investigation.  

Experiments 

General comments 

All reagents and solvents were obtained from commercial sources and were used 

as received unless otherwise noted. Solvents were dried according to published 

procedures22 and were distilled under N2 prior to use. Air-sensitive reactions were 

performed in a MBraun Unilab or Vacuum Atmospheres glovebox under an N2 

atmosphere. The acireductone analog 2-hydroxy-1,3-diphenylpropan-1,3-dione,2a the 

Ni(II) enolate complex [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1),2a and the Co(II) 

complex [(6-Ph2TPA)Co(CH3CN)]ClO4 (9)15 were prepared as previously described.  

Physical methods 

UV-vis spectra were recorded on a Hewlett-Packard 8453 diode array 

spectrophotometer. IR spectra were recorded on a Shimadzu FTIR-8400 spectrometer as 

KBr pellets. 1H NMR spectra of diamagnetic species were recorded on a Bruker ARX-

400 spectrometer and the chemical shifts (in ppm) are referenced to the residual solvent 

peak(s) in CHD2CN (1H, 1.94 (quintet) ppm). GC-MS data was obtained using a 

Shimadzu QP5000 with an Alltech EC-5 column and ultra high purity helium as the 

carrier gas. FAB-MS data was obtained at the Mass Spectrometry Facility, Department of 
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Chemistry, University of California, Riverside. Elemental analyses were performed by 

Atlantic Microlabs Inc., Norcross, GA or Canadian Microanalytical, Service, Inc., British 

Columbia, Canada.  

NMR methods for paramagnetic Ni(II) and Co(II) complexes 

A typical one-dimensional 1H NMR spectrum consisted of 16 K data points, 300 

scans, and a 250 ms relaxation delay. An exponential weighting function (lb = 30 Hz) 

was used during processing. The 90°  pulse (14.1 µs) was calibrated at 298 K. 

Longitudinal relaxation times (T1) were measured using the inversion-recovery pulse 

sequence (180°-τ-90°) method on a JEOL ECX-300. 2H NMR spectra were obtained at 

298 K on a Bruker ARX-400 operating at 61.43 MHz using an unlocked system. Overall, 

methods of data collection and processing for paramagnetic complexes followed closely 

from those previously described.11 

6-N-(6-phenyl-2-pyridyl)methyl)-N,N-((2-pyridyl)methyl)-amine (6-PhTPA). 

This ligand has been previously reported8, however, the preparative method employed 

herein is an alternative route. A round bottomed flask was charged with an acetonitrile 

slurry of 2-(chloromethyl)-6-phenylpyridine hydrochloride (6.0 g, 0.025 mol), di-(2-

picolyl)-amine (5.0 g, 0.025 mol), sodium bicarbonate (13.3 g, 0.125 mol), and a catalytic 

amount of tetrabutylammonium bromide. The reaction was then purged with N2 and 

refluxed for 24 h. After this time, the mixture was cooled to room temperature and 0.1 M 

NaOH was added until the pH > 11. The resulting mixture was extracted with methylene 

chloride (3 x 200 mL). The organic fractions were combined, dried over anhydrous 
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Na2SO4, and the solvent was removed under reduced pressure. The resulting brown oil 

was purified using column chromatography using ethyl acetate:methanol (1:1) as the 

eluent. Yield: 8.56 g (93%). 1H NMR (CDCl3, 400 MHz): δ 8.54 (d, J = 4.8 Hz, 2 H), 

8.00 (d, J = 7.4 Hz, 2 H), 7.72 (t, J = 7. 8 Hz, 1 H), 7.68-7.65 (m, 3 H), 7.58 (d, J = 7. 8 

Hz, 2H), 7.50 (d, J = 7. 8 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2 H), 7.39 (dt, J = 7.3 Hz, J = 2.3 

Hz, 1 H), 7.14 (dd, J = 7.8 Hz, J = 4.7 Hz, 2 H), 3.97 (s, 2 H), 3.95 (s, 4 H). These 1H 

NMR features match those previously reported.8  

 

Caution! Perchlorate salts of metal complexes with organic ligands are 

potentially explosive. Only small amounts of material should be prepared, and these 

should be handled with great care.23 

 

Attempted preparation of [(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph]ClO 4 (3) 

under the conditions used to prepare 1. Isolation of isomerization product. In a 

glovebox, equimolar amounts of 6-PhTPA (30 mg, 8.2 x 10-5 mol) and Ni(ClO4)2·6H2O 

(30 mg, 8.2 x 10-5 mol) were combined in ~3 mL of acetonitrile (dried from CaH2; ~3000 

ppm water determined via Karl-Fischer titration) and stirred until everything had 

dissolved. This resulted in the formation of a purple-brown solution. This solution was 

then added to solid Me4NOH·5H2O (16 mg, 9.0 x 10-5 mol) and the mixture was stirred 

for an additional ~1 min. At this time, 2-hydroxy-1,3-diphenylpropane-1,3-dione (22 mg, 

9.0 x 10-5 mol), dissolved in ~1 mL of acetonitrile, was added and the deep orange 

solution was stirred overnight at ambient temperature. The solvent was then removed 
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under vacuum and the remaining solid was dissolved in ~5 mL of dichloromethane. This 

solution was passed through a celite/glass wool plug and the filtrate was then reduced in 

volume to ~1 mL. Addition of excess hexanes (~20 mL) resulted in the deposition of an 

orange powder, which was dried under vacuum. 1H NMR analysis indicated the presence 

of the desired enolate complex ([(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (3) and 

other (6-PhTPA)Ni(II) containing products. To identify the organic products in the 

reaction mixture, the CH2Cl2/hexanes solution from which the metal complexes were 

precipitated was filtered through a celite/glass wool plug. The filtrate was then dried 

under vacuum leaving a white solid (10 mg). 1H NMR and GC-MS analysis of the white 

solid confirmed its identity as a 2-oxo-2-phenylethylbenzoate via comparison with 

independently synthesized sample. The amount of solid recovered is consistent with a 

46% yield starting from 2-hydroxy-1,3-diphenylpropane-1,3-dione. 

Evaluation of ester formation in the reaction leading to the formation of [(6-

Ph2TPA)]Ni(PhC(O)C(OH)C(O)Ph]ClO 4 (1). In the glovebox, equimolar amounts of 

6-Ph2TPA (34 mg, 7.6 x 10-5 mol) and Ni(ClO4)2·6H2O (28 mg, 7.6 x 10-5 mol) were 

mixed in ~3 mL of acetonitrile and stirred until everything had dissolved, which gave a 

purple solution. This solution was then combined with solid Me4NOH·5H2O (15 mg, 8.3 

x 10-5 mol) and the mixture was stirred for ~1 min. At this time, a CH3CN solution (~1 

mL) of 2-hydroxy-1,3-diphenylpropane-1,3-dione (20 mg, 8.3 x 10-5 mol) was added and 

the mixture was stirred overnight at ambient temperature to give a deep orange solution. 

After removal of the solvent under vacuum, the residue was dissolved dichloromethane 

(~5 mL) and the solution was filtered through a celite/glass wool plug. The filtrate was 
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collected and the solvent volume was reduced to ~1 mL under vacuum. Addition of 

excess hexanes (~20 mL) resulted in the deposition of 1 as an orange-brown solid which 

was dried under vacuum. (48.2 mg, 76% yield). The formulation of the complex was 

confirmed by 1H NMR. The solution from which the precipitate was obtained was then 

filtered through a celite/glass wool plug to remove any residual metal complex and the 

filtrate was brought to dryness under vacuum yielding a white solid (11 mg). 1H NMR 

analysis of this solid indicated the presence of 2-oxo-2-phenylethylbenzoate and 6-

Ph2TPA in a 2:1 ratio.  

Isolation of analytically pure [(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph]ClO 4 (3) 

using predried base and solvent. In this entire procedure extra dry CH3CN purchased 

from ACROS Organics (<10 ppm H2O) was used. Under a N2 atmosphere, 

Me4NOH⋅5H2O (16 mg, 9.0 x x 10-5 mol) was dissolved in methanol in a Schlenk flask 

and the mixture was dried under vacuum for >24 h. To the remaining solid was added an 

acetonitrile solution (~2 mL) containing 6-PhTPA (30 mg, 8.2 x 10-5 mol) and 

Ni(ClO4)2·6H2O (30 mg, 8.2 x 10-5 mol). The resulting mixture was stirred for ~1 min. At 

this time, a CH3CN solution (~1 mL) of 2-hydroxy-1,3-diphenylpropane-1,3-dione (22 

mg, 9.0 x 10-5 mol) was added and the reaction mixture was immediately put under 

vacuum. Upon stirring for ~3 h at ambient temperature, the solution became deep 

orange/brown. After removal of the solvent under reduced pressure, the remaining 

orange/brown solid was dissolved in CH2Cl2 (~5 mL) and the solution was filtered 

through a celite/glass wool plug. The filtrate was concentrated under reduced pressure to 

a volume of ~1 mL, which was then added to excess hexanes (~20 mL). This resulted in 
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the deposition of an orange/brown solid which was dried for ~ 2 h under vacuum. Yield: 

59 mg (94%). X-ray quality crystals were obtained from CH2Cl2/n-pentane. Anal. Calcd 

for: C39H33ClN4NiO7·1/6CH2Cl2: C, 60.56; H, 4.33; N, 7.22. Found: C, 60.48; H, 4.02; 

N, 7.29. The presence of trace CH2Cl2 in the elemental analysis sample was confirmed by 

1H NMR. FTIR: 3439 (νO-H), 1095 (νClO4), 621 (νClO4); UV-vis (CH3CN) nm (ε, M-1cm-1) 

393 (10600). 

[(6-PhTPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4). A solution of Ni(ClO4)2·6H2O (35 

mg, 1.0 x 10-4 mol) in acetonitrile (~3 mL) was added to solid 6-PhTPA (37 mg, 1.0 x  

10-4 mol) and the resulting mixture was stirred until all of the solids had dissolved. An 

acetonitrile solution (~2 mL) containing dibenzoylmethane (21 mg, 1.0 x 10-4 mol) and 

Me4NOH·5H2O (17 mg, 1.0 x 10-4 mol) was then added and the mixture was stirred 

overnight at ambient temperature. The solvent was removed under reduced pressure and 

the remaining solid was dissolved in CH2Cl2. The solution was filtered through a 

celite/glass wool plug and the solvent was subsequently removed from the filtrate under 

vacuum. The remaining solid was dissolved in a small amount of acetonitrile and excess 

diethyl ether (~20 mL) was added to precipitate the desired product. Yield: 40 mg (54%). 

X-ray quality crystals were obtained by diethyl ether diffusion into an acetonitrile solution 

of the complex. Anal. Calcd for: C39H33ClN4NiO6·0.95C4H10O: C, 62.82; H, 5.23; N, 

6.85. Found: C, 62.98; H, 5.27; N, 7.00. FTIR (KBr, cm-1) 1092 (νClO4), 621 (νClO4). UV-

vis (CH3CN) nm (ε, M-1cm-1) 543 (26), 793 (22), 907 (30); FAB-MS m/z (relative 

intensity) 647 ([M-ClO4]
+, 100%). 
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[(6-PhTPA)Ni(CH3CN)(CH3OH)](ClO 4)2 (5). A solution of 6-Ph2TPA (48 mg, 

1.3 x 10-4 mol) and Ni(ClO4)2·6H2O (45 mg, 1.3 x 10-4 mol) in acetonitrile (~3 mL) was 

prepared and stirred until all solids had dissolved. The solution was then brought to 

dryness under vacuum and the residue was dissolved in MeOH. Crystals were grown by 

Et2O diffusion into the methanol solution. Yield: 72 mg (84%). Anal. Calcd for: 

C27H29Cl2N5NiO9: C, 46.52; H, 4.19; N, 10.05. Found: C, 46.17; H, 4.30; N, 10.00. FTIR 

(KBr, cm-1) 1092 (νClO4), 623 (νClO4). UV-vis (CH3CN) nm (ε, M-1cm-1) 541 (20), 793 

(17), 913 (23); FAB-MS m/z (relative intensity) 424 ([M-2(ClO4)-CH3CN-CH3OH-H+]+, 

9%). 

[(6-PhTPA)Ni(O2CPh)]ClO4 (6). An acetonitrile solution (~3 mL) containing 6-

PhTPA (33 mg, 8.9 x 10-5 mol) and Ni(ClO4)2·6H2O (32 mg, 8.9 x 10-5 mol) was 

prepared and stirred until all solids had dissolved. This solution was then combined with 

solid sodium benzoate (13 mg, 8.9 x 10-5 mol) and ~1 mL of MeOH was added. This 

mixture was stirred for ~1 h at ambient temperature and the solvent was then removed 

under reduced pressure. The remaining solid was dissolved in CH2Cl2 and the solution 

was passed through a celite/glass wool plug. The solvent was removed from the filtrate 

under reduced pressure. The desired complex was obtained by dissolving the solid in 

minimal CH2Cl2 followed by addition of excess n-pentane. The process was repeated 

three times to obtain analytically pure complex Yield: 30 mg (53% yield). X-ray quality 

crystals were obtained by diffusion of a CH2Cl2/i-PrOH/AcOEt solution of the complex 

into n-pentane. Anal. Calcd for: C31H27ClN4NiO6·1/3CH2Cl2: C, 55.85; H, 4.14; N, 8.32. 

Found: C, 55.59; H, 4.31; N, 8.31. The presence of CH2Cl2 in the elemental analysis 
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sample was confirmed by 1H NMR. FTIR (KBr, cm-1) 1092 (νClO4), 623 (νClO4); UV-vis 

(CH3CN) nm (ε, M-1cm-1) 543 (14), 802 (7), 953 (15); FAB-MS m/z (relative intensity) 

545 ([M-ClO4]
+, 75%). 

Evaluation of 2-oxo-2-phenylethylbenzoate hydrolysis in the presence of [(6-

PhTPA)Ni(CH 3CN)(CH3OH)](ClO 4)2 (9) and Me4NOH ⋅⋅⋅⋅5H2O. In a glovebox, [(6-

PhTPA)Ni(CH3CN)(MeOH)](ClO4)2 (5) (23 mg, 3.3 x 10-5 mol), was dissolved in 

acetonitrile and combined with equimolar amounts Me4NOH·6H2O (6.0 mg, 3.29 x 10-5 

mol) and PhC(O)OCH2C(O)Ph (7.9 mg, 3.29 x 10-5 mol) and the mixture was stirred for 

16.5 h. The solvent was then removed under reduced pressure and the remaining solid 

was dissolved in CH2Cl2, and the solution was filtered through a celite/glass wool plug. 

The filtrate was concentrated under vacuum and precipitation of the metal complex(es) 

was induced by the addition of excess hexane. The 1H NMR of this solid indicated the 

presence of multiple Ni(II) complexes, as evidenced by several overlapping signals in the 

region of 80-20 pm. These complexes are likely one or more Ni-OH species. The solution 

from the precipitate was isolated was filtered through a celite/glass wool plug and the 

filtrate was brought to dryness leaving a white solid (7.5 mg). 1H NMR of this solid 

indicated the presence of unaltered ester PhC(O)OCH2C(O)Ph in 95% yield. No other 

organic products were detected.  

Attempted preparation of [(6-Ph2TPA)Co(PhC(O)C(OH)C(O)Ph]ClO4 (7) 

under the conditions used to prepare 1. In a N2-filled glovebox, 6-Ph2TPA (36 mg, 8.2 

x 10-5 mol) and Co(ClO4)2·6H2O (30 mg, 8.2 x 10-5 mol) were mixed in ~3 mL of 

acetonitrile (~3000 ppm H2O via Karl-Fischer titration) and the solution was stirred until 
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everything had dissolved. This purple solution was then combined with solid 

Me4NOH·5H2O (16 mg, 9.0 x 10-5 mol) and the mixture was stirred for ~1 min. To this 

solution was added a CH3CN solution (1 mL) of 2-hydroxy-1,3-diphenylpropane-1,3-

dione (22 mg, 9.0 x 10-5 mol). The deep orange solution was then stirred overnight at 

ambient temperature during which time the color changed to green. The solvent was 

removed under vacuum and the remaining solid was dissolved in CH2Cl2 (~5 mL). This 

solution was passed through a celite/glass wool plug and the filtrate was reduced to ~1 

mL under vacuum. Addition of excess hexanes (~20 mL) resulted in the deposition of a 

brown solid (40 mg). 1H NMR analysis indicates the presence of [(6-

Ph2TPA)Co(O2CPh)]ClO4 (10) and other Co(II) compounds (Figure 4-3(a)). The solution 

remaining after the isolation of the metal complexes was filtered through a celite/glass 

wool plug and the filtrate was brought to dryness under vacuum leaving a white solid (32 

mg). 1H NMR (in CD3CN) and GC-MS analysis of this solid confirmed the presence of 

the ester 2-oxo-2-phenylethylbenzoate (~11 mg, 50% based on 2-hydroxy-1,3-

diphenylpropane-1,3-dione) and the 6-Ph2TPA (~21 mg, ~58% recovery).  

Attempted preparation of [(6-Ph2TPA)Co(PhC(O)C(OH)C(O)Ph]ClO4 (7) 

under conditions  used to isolate 3. In this entire procedure extra dry CH3CN purchased 

from ACROS Organics (<10 ppm H2O) was used. Prior to the synthesis, Me4NOH·5H2O 

was dissolved in ~2 mL methanol, transferred to a Schlenk flask, and dried under vacuum 

for >24 h. In the glovebox, [(6-Ph2TPA)Co(CH3CN)](ClO4)2 (9) (64 mg, 8.2 x 10-5 mol) 

was dissolved in acetonitrile and stirred until everything had dissolved, yielding a purple 

solution. Next, 2-hydroxy-1,3-diphenylpropane-1,3-dione (22 mg, 9.0 x 10-5 mol) 
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dissolved in ~1 mL of acetonitrile was added to the solid, pre-dried Me4NOH·5H2O (16 

mg; 9.0 x 10-5 mol). This mixture was immediately combined with the solution of [(6-

Ph2TPA)Co(CH3CN)](ClO4)2 and the mixture was stirred for 3 h, under vacuum, yielding 

a deep orange/red solution. The solvent was then removed under reduced pressure. The 

remaining orange solid was dissolved in ~5 mL of dichloromethane, and the solution was 

filtered through a celite/glass wool plug. The filtrate was concentrated to ~1 mL under 

vacuum and the Co(II)-containing products were precipitated by the addition of excess 

hexanes (~20 mL). This resulted in the isolation of 54 mg of an orange solid. The 1H 

NMR features of this solid are shown in Figure 4-3(b). The hexane layer was filtered 

through a celite/glass wool plug and the filtrate was brought to dryness under vacuum. A 

white solid was obtained (22 mg). 1H NMR analysis of this solid showed the presence of 

2-oxo-2-phenylethylbenzoate and 6-Ph2TPA in ~1:1 ratio. 

Attempted preparation of [(6-Ph2TPA)Co(PhC(O)C(OH)C(O)Ph]ClO4 (7) 

under dry conditions and using a short reaction time. In this entire procedure extra 

dry CH3CN purchased from ACROS Organics (<10 ppm H2O) was used. Me4NOH·5H2O 

(5.9 mg, 3.3 x 10-5 mol) was dissolved in ~3 mL acetonitrile. This solution was brought 

to dryness and the remaining solid was dried under vacuum for 2 h. This step was 

repeated twice. Next, [(6-Ph2TPA)Co(CH3CN)](ClO4)2 (9) (26 mg, 3.3 x 10-5 mol) and 2-

hydroxy-1,3-diphenylpropane-1,3-dione (7.8 mg, 3.3 x 10-5 mol) were independently 

dissolved in CH3CN (2 mL). The solution of 2-hydroxy-1,3-diphenylpropane-1,3-dione 

was added to the solid Me4NOH and the CH3CN solution of [(6-

Ph2TPA)Co(CH3CN)](ClO4)2 (9) was subsequently added. The reaction immediately 
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turned dark orange (λmax 397 nm). It was stirred for 15 min and then the solvent was 

removed under reduced pressure. The remaining dark orange solid was dissolved in 

dichloromethane (~3 mL) and the solution was filtered through a celite/glass wool plug. 

The filtrate was reduced in volume to ~1 mL and the Co(II) product was precipitated via 

the addition of excess of hexanes (~20 mL). The 1H NMR features of this solid are shown 

in Figure 4-3(c). UV-vis (CH3CN) λmax = 397 nm. The hexane layer was filtered through 

a celite/glass wool plug and the filtrate was brought to dryness under vacuum. A white 

solid was obtained (12 mg). 1H NMR analysis of this solid indicated the presence of the 

ester 2-oxo-2-phenylethylbenzoate and 6-Ph2TPA in a ratio of 3:1.  

[(6-Ph2TPA)Co(PhC(O)CHC(O)Ph)]ClO4 (8). A mixture of 6-Ph2TPA (18 mg, 

4.1 x 10-5 mol) and Co(ClO4)2·6H2O (14 mg, 3.7 x 10-5 mol) in acetonitrile (~3 mL) was 

prepared and stirred until everything had dissolved. To this solution was added 

dibenzoylmethane (10 mg, 4.6 x 10-5 mol) as a solution in acetonitrile (~1 mL). The 

resulting mixture was stirred for 10 min at which point it was transferred to a glass vial 

containing solid Me4NOH·5H2O (7.5 mg, 4.1 x 10-5 mol). This mixture was then stirred 

overnight at ambient temperature. After removal of the solvent under reduced pressure, 

the remaining dark orange-red solid was dissolved in CH2Cl2 and filtered through a 

celite/glass wool plug. The solvent was removed from the filtrate under vacuum and the 

remaining solid was recrystallized by Et2O diffusion into the acetonitrile solution. Yield: 

24 mg (79%). Anal. Calcd for: C45H37ClCoN4O6: C, 65.60; H, 4.52; N, 6.80. Found: C, 

65.46; H, 4.39; N, 7.15. FTIR (KBr, cm-1) 1094 (νClO4), 623 (νClO4). UV-vis (CH3CN) nm 
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(ε, M-1cm-1) 350 (7500), 564 (77); FAB-MS m/z (relative intensity) 724 ([M-ClO4]
+, 

45%). 

[(6-Ph2TPA)Co(O2CPh)]ClO4 (10). A mixture of 6-Ph2TPA (36 mg, 8.1 x 10-5 

mol) and Co(ClO4)2·6H2O (27 mg, 7.3 x 10-5 mol) in acetonitrile (~3 mL) was prepared 

and stirred until everything had dissolved. This solution was then added to solid sodium 

benzoate (13 mg, 8.9 x 10-5 mol) and the resulting mixture was stirred overnight at room 

temperature. The solvent was then removed under reduced pressure. The remaining green 

solid was dissolved in CH2Cl2 and filtered through a celite/glass wool plug. The filtrate 

was brought to dryness under reduced pressure and the remaining solid was recrystallized 

by Et2O diffusion into an acetonitrile solution. Yield: 51 mg (98%). Anal. Calcd for: 

C37H31ClCoN4O6: C, 61.55; H, 4.33; N, 7.76. Found: C, 61.39; H, 4.34; N, 7.86. FTIR 

(KBr, cm-1) 1097 (νClO4), 621 (νClO4); UV-vis (CH3CN) nm (ε, M-1cm-1) 462 (103), 619 

(66); FAB-MS m/z (relative intensity) 622 ([M-ClO4]
+, 14 %).  

Preparation of deuterated analogs of 8-10 of either the 6-(d5-Ph)2TPA or (6-

Ph)2-d6-TPA ligand. These analogs were prepared using 6-(d5-Ph)2TPA and (6-Ph)2-d6-

TPA11 and following the procedures for their protio analogs. 2H NMR spectra of these 

complexes were obtained as previously described. We note that a d5-analog of 10, [(6-

Ph2TPA)Co(O2C-d5-Ph)]ClO4, was also prepared to enable the identification of the 

benzoate phenyl resonances.  

Evaluation of 2-oxo-2-phenylethylbenzoate hydrolysis in the presence of [(6-

Ph2TPA)Co(CH3CN)](ClO 4)2·CH3CN (9) and Me4NOH ⋅⋅⋅⋅5H2O. Under a nitrogen 

atmosphere, a solution of [(Ph2TPA)Co(CH3CN)](ClO4)2·CH3CN (9) (26 mg, 3.3 x 10-5 
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mol) in acetonitrile (~3 mL) was added to solid Me4NOH·5H2O (6.0 mg, 3.3 x 10-5 mol) 

and 2-oxo-2-phenylethylbenzoate (7.9 mg, 3.3 x 10-5 mol) and the mixture was stirred for 

16.5 h at ambient temperature. The color of the solution changed from purple to green. 

The solvent was removed under reduced pressure and the remaining solid was dissolved 

in CH2Cl2. The solution was filtered through a glass wool/celite plug. The filtrate was 

then concentrated to ~1 mL under reduced pressure and excess hexanes (~20 mL) was 

added to induce precipitation of a green solid. Yield: 22 mg. 1H NMR analysis confirmed 

the presence of [(Ph2TPA)Co(O2CPh)]ClO4 (10, major species) and 

[(Ph2TPA)Co(CH3CN)](ClO4)2·CH3CN (9, minor species). The solution remaining 

following the isolation of the solid was passed through a celite/glass wool plug and the 

filtrate was brought to dryness under reduced pressure. A white solid was isolated (5.7 

mg). By 1H NMR this solid is a mixture of unaltered ester (minor) and 6-Ph2TPA (major).  

X-ray crystallography. A single crystal of each complex was mounted on a glass 

fiber with viscous oil and then transferred to a Nonius Kappa CCD diffractometer (Mo 

Kα, λ = 0.71073 Å) for data collection at 150(1) K. For each compound an initial set of 

cell constants was obtained from 10 frames of data that were collected with an oscillation 

range of 1°/frame and an exposure time of 20s/frame. Indexing and unit cell refinement 

based on all observed reflections from those ten frames indicated monoclinic lattices for 

3⋅⋅⋅⋅CH2Cl2 and 10, orthorhombic lattices for 4⋅⋅⋅⋅Et2O and 5, and a tetragonal lattice for 

8⋅⋅⋅⋅0.5CH3CN. Final cell constants for each complex were determined from a set of strong 

reflections from the actual data collection. For each data set, these reflections were 

indexed, integrated, and corrected for Lorentz, polarization, and absorption effects using 
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DENZO-SMN and SCALEPAC.24 The structures were solved by a combination of direct 

methods and heavy atom using SIR97. All non-hydrogen atoms were refined with 

anisotropic displacement coefficients. Unless otherwise noted, hydrogen atoms were 

assigned isotropic displacement coefficients (U(H) = 1.2 U(C) or 1.5U(Cmethyl) and their 

coordinates were allowed to ride on their respective carbons using SHELXL97.25  

The Ni(II) enolate complex 3·CH2Cl2 crystallizes in the monoclinic crystal system 

in the space group Cc with one molecule of methylene chloride per formula unit. The 

Ni(II) dibenzoylmethane complex 4·Et2O crystallizes in the space group Pcab with one 

molecule of diethyl ether per formula unit. All hydrogen atoms in this structure were 

located and refined independently. The Ni(II) solvent-coordinated complex 5 crystallizes 

in the space group P212121. The Co(II) dibenzoylmethane complex 8·0.5CH3CN 

crystallizes in the space group I-4. There are two independent formula units per 

asymmetric unit, with the second being denoted by “A”. One molecule of acetonitrile is 

present per asymmetric unit. The perchlorate anion exhibits disorder. The Co(II) benzoate 

complex 10 crystallizes in the space group P21/c. All hydrogen atoms in this structure 

were located and refined independently. 

References 

1. Pochapsky, T. C.; Ju, T.; Dang, R.; Beaulieu, R.; Pagani, G. M.; OuYang, B. In 

Metal Ions in Life Sciences; Sigel, A.; Sigel, H.; Sigel, R. K. O. Eds.; Wiley-

VCH: Weinheim, Germany, 2007; pp 473-498.  

2. Szajna, E.; Arif, A. M.; Berreau, L. M. J. Am. Chem. Soc. 2005, 127, 17186-

17187. (b) Szajna-Fuller, E.; Rudzka, K.; Arif, A. M.; Berreau, L. M. Inorg. 



 

 

100

Chem. 2007, 46, 5499-5507. (c) Grubel, K.; Fuller, A. L.; Chambers, B. M.; Arif, 

A. M.; Berreau, L. M. Inorg. Chem. 2010, 49, 1071-1081.  

3. Berreau, L. M.; Borowski, T.; Grubel, K.; Allpress, C. J.; Wikstrom, J. P.; 

Germain, M. E.; Rybak-Akimova, E. V.; Tierney,  D. L. Inorg. Chem. 2011, 50, 

1047-1057.  

4. Borowski, T.; Bassan, A.; Siegbahn, P. E. M. THEOCHEM 2006, 772, 89-92. 

5. Jeffrey, J. C.; Liard, D. J.; Ward, M. D. Inorg. Chim. Acta 1996, 251, 9-12.  

6. Rudzka, K.; Arif, A. M.; Berreau, L. M. Inorg. Chem. 2008, 47, 10832-10840. (b) 

Rudzka, K.; Grubel, K.; Arif, A. M.; Berreau, L. M. Inorg. Chem. 2010, 49, 7623-

7625.  

7. The neutral form of acireductone-type compounds are known to form both five- 

and six-membered rings involving hydrogen-bonding between adjacent C-O(H) 

units. Schank, K. Synthesis 1972, 176-190.  

8. Chuang, C. L.; Lim, K.; Canary, J. W. Supramolecular Chemistry 1995, 5, 39-43.  

9. Keto-form of the C(1)-phenyl acireductone analog shown in Scheme 1-3 (middle).  

10. Karrer, P.; Kebrle, J.; Thakkar R. M. Helv. Chim. Acta 1950, 33, 1711-1724.  

11. Szajna, E.; Dobrowolski, P.; Fuller, A. L.; Arif, A. M.; Berreau, L. M. Inorg. 

Chem. 2004, 43, 3988-3997.  

12. Methylene proton resonances of the chelate ligand can also appear in this region.11 

13. Dai, Y.; Wensink, P. C.; Abeles, R. H. J. Biol. Chem. 1999, 274, 1193-1195. (b) 

Ju, T.; Goldsmith, R. B.; Chai, S. C.; Maroney, M. J.; Pochapsky, S. S.; 

Pochapsky, T. C. J. Mol. Biol. 2006, 363, 823-824.  



 

 

101

14. Dai, Y.; Pochapsky, T. C.; Abeles, R. H. Biochemistry 2001, 40, 6379-6387.  

15. Makowska-Grzyska, M. M.; Szajna, E.; Shipley, C.; Arif, A. M.; Mitchell, M. H.; 

Halfen, J. A.; Berreau, L. M. Inorg. Chem. 2003, 42, 7472-7478.  

16. Monodentate: ∆d > 0.6 Å, ∆θ > 28°. Kleywegt, G. J.; Wiesmeijer, W. G. R.; van 

Driel, G. J.; Driessen, W. L.; Reedijk, J.; Noordik, J. H. J. Chem. Soc., Dalton 

Trans. 1985, 2177-2184. 

17. Addison, W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Vershcoor, G. C. J. Chem. Soc., 

Dalton Trans. 1984, 1349-1356.  

18. Evans, D. F. J. Chem. Soc. 1959, 2003-2005. 

19. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of 

Structure and Reactivity; Harper Collins: New York, NY, 1993.  

20. McMillin, D. R. Electronic Absorption Spectroscopy. In Physical Methods in 

Bioinorganic Chemistry: Spectroscopy and Magnetism; L. Que, Jr.; University 

Science Books: Sausalito, CA, 2000; pp 1-58. 

21. Berreau, L. M. Adv. Phys. Org. Chem. 2006, 41, 79-181.  

22. Armarego W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, 4th ed.; 

Butterworth-Heinemann: Boston, MA, 1996. 

23. Wolsey, W. C. J. Chem. Educ. 1973, 50, A335-A337.  

24. Otwinowski, Z.; Minor W. Methods Enzymol. 1997, 276, 307-326.  

25. Sheldrick, G. M. SHELXL-97 Program for the Refinement of Crystal Structures; 

University of Göttingen, Germany, 1997.  



 

 

102

CHAPTER 4 

SYNTHESIS, CHARACTERIZATION, AND LIGAND EXCHANGE REACTIVITY OF 

A SERIES OF FIRST ROW DIVALENT METAL 3-HYDROXYFLAVONOLATE 

COMPLEXES1 

Abstract 

 A series of divalent metal flavonolate complexes of the general formula [(6-

Ph2TPA)M(3-Hfl)]X ( 1-5-X; X = OTf− or ClO4
−; 6-Ph2TPA = N,N-bis((6-phenyl-2-

pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-

Hfl = 3-hydroxyflavonolate) was prepared and characterized by X-ray crystallography, 

elemental analysis, FTIR, UV-vis, 1H NMR or EPR, and cyclic voltammetry. All of the 

complexes have a bidentate coordinated flavonolate ligand. The difference in M-O 

distances (∆M-O) involving this ligand varies through the series, with the asymmetry of 

flavonolate coordination increasing in the order Mn(II) ~ Ni(II) < Cu(II) < Zn(II) < Co(II). 

The hypsochromic shift of the absorption band I (π→π*) of the coordinated flavonolate 

ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < 

Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well 

with this ordering. 1H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II),  

 

1Coauthored by Katarzyna Grubel, Katarzyna Rudzka, Atta M. Arif, Katie L. Klotz, Jason 
A. Halfen, and Lisa M. Berreau. Reproduced with permission from Inorganic Chemistry 
2010, 49, 82-96. Copyright 2010 American Chemical Society. 
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and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the 

Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear 

Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential 

of the flavonolate ligand depends on the metal ion present and/or the solution structure of 

the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by 

the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square 

pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph2TPA)Mn(3-Hfl)]OTf (1-

OTf) is unique in the series in undergoing ligand exchange reactions in the presence of 

M(ClO4)2⋅6H2O (M = Co, Ni, Zn) in CD3CN to produce [(6-Ph2TPA)M(CD3CN)n](X)2, 

[Mn(3-Hfl)2⋅0.5H2O], and MnX2 (X = OTf- or ClO4
-). Under similar conditions, the 3-Hfl 

complexes of Co(II), Ni(II), and Cu(II) undergo flavonolate ligand exchange to produce 

[(6-Ph2TPA)M(CD3CN)n](X)2 (M = Co, Ni, Cu; n = 1 or 2) and [Zn(3-Hfl)2⋅2H2O]. An 

Fe(II) complex of 3-Hfl, [(6-Ph2TPA)Fe(3-Hfl)]ClO4 (8), was isolated and characterized 

by elemental analysis, FTIR, UV-vis, 1H NMR, cyclic voltammetry, and a magnetic 

moment measurement. This complex reacts with O2 to produce the diiron(III) µ-oxo 

compound [(6-Ph2TPAFe(3-Hfl))2(µ-O)](ClO4)2 (6).  

Introduction 

Flavonoids are polyphenolic compounds that are produced in plants.1 One of these 

compounds, quercetin (Scheme 4-1), is found in many fruits and vegetables, and is of 

considerable current interest for its antioxidant and antimicrobial properties.2,3 In the soil 
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environment, fungal and bacterial quercetin dioxygenases catalyze oxidative carbon-

carbon bond cleavage and CO release from a metal-coordinated quercetin in a 2,4-

dioxygenolytic ring cleavage reaction. Fungal quercetinases are known to contain a 

mononuclear Cu(II) center and have been extensively investigated.4-9 Studies of a 

bacterial quercetinase from Bacillus subtilis (YxaG) showed that when this enzyme is 

produced in E. coli it will bind a variety of divalent metals, with the highest level of 

reactivity being found for Mn(II).10,11 Recent investigations of a quercetinase from 

Streptomyces sp. FLA expressed in E. coli revealed that this enzyme is most active in the 

presence of Ni(II), with the next highest level of activity being found with Co(II).12 

The quercetinase enzymes from Aspergillus japonicus and B. subtilis have been 

characterized by X-ray crystallography.9,10 Both are members of the cupin superfamily of 

proteins (bicupins), with two well-separated active site metal centers, each having a 

ligand donor set comprised of three histidine donors and a glutamate ligand. In the 

structure of the copper-containing enzyme from Aspergillus japonicus, the copper centers 

exhibit two different geometries. One is a distorted tetrahedron comprised of three 

histidine donors and a water molecule, and in the other, a glutamate ligand (Glu73) is also 

coordinated in an axial position to give an overall distorted trigonal bipyramidal copper 

Scheme 4-1. 
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center. These geometries are present in a ~70:30 ratio. EPR studies of the protein are 

consistent with this mixture of geometries also being present in solution. In the tetrahedral 

geometry, Glu73 acts as a hydrogen bond acceptor for the metal-bound water molecule. 

Coordination of quercetin to the copper center occurs in a monodentate fashion via the 

deprotonated C(3)-OH moiety, with Glu73 possibly acting as the active site base for 

substrate deprotonation.13 The overall geometry of the copper center in the 

enzyme/substrate adduct is distorted trigonal bipyramidal. A key feature of the 

coordinated quercetin is pyramidalization of the C(2) atom indicating increased sp3 

character that may stabilize radical formation in a reaction involving O2. 

The B. subtilis enzyme was initially reported to be an Fe(II)-containing quercetin 

2,3-dioxygenase,14,15 and was crystallized with Fe(II) present in both active sites of this 

bicupin enzyme.10 Both metal centers exhibit a coordination number of five, with three 

histidine donors, a glutamate, and a water molecule. The overall geometry of the Fe(II) 

center is distorted trigonal bipyramidal in the N-terminal active site and distorted square 

pyramidal in the C-terminal domain of the protein. Metal ion replacement studies of the 

B. subtilis enzyme (via reconstitution of the apo enzyme) indicated increased levels of 

activity for Mn(II)- and Co(II)-containing enzyme (35- and 24-fold, respectively) relative 

to that found for Fe(II). Based on this data, it has been suggested that Mn(II) may be the 

preferred metal cofactor for the B. subtilis enzyme. EPR studies of the Mn(II)-containing 

enzyme from B. subtilis suggest octahedral coordination of the metal center.11  

The quercetinase QueD from Streptomyces sp. FLA is a monocupin 

dioxygenase.16 When overexpressed in E. coli, this enzyme exhibited the highest level of 
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activity when Ni(II) and Co(II) salts were added to the LB medium.12,17 An increase in 

activity was not observed when Mn(II), Fe(II), Cu(II) or Zn(II) was added. EPR studies of 

the cobalt-containing enzyme indicate a high-spin (S = 3/2) Co(II) center in a trigonal 

bipyramidal or tetrahedral geometry in the resting state. EPR experiments performed in 

the presence of quercetin and O2 revealed no evidence of a change in valency of the cobalt 

ion during substrate turnover.12  

Different mechanistic pathways have been proposed for the spin-forbidden, O2-

dependent quercetin oxidation reaction depending on whether a redox active metal center 

is present in the active site of the enzyme. For Cu(II)-containing quercentinase enzymes, it 

is unlikely that O2 will coordinate to the type II oxidized metal center, and the reaction is 

suggested to involve valence tautomerism between the Cu(II)-quercetin adduct and a 

Cu(I)-flavonoxy radical species, the latter of which can act as a one-electron reductant 

toward O2. The pyramidalization of the C(2) center identified in the X-ray structure of the 

ES adduct of the A. japonicus enzyme suggests possible stabilization of the radical at this 

atom.13 For redox-active metal ions such as Mn(II), the metal center may serve as an 

electron conduit in an adduct wherein both the flavonolate and O2 coordinate to the metal 

center prior to oxygen activation. Specifically, electron transfer from the metal center to 

coordinated O2, with subsequent electron transfer from the coordinated quercetin 

monoanion to the oxidized metal center, would generate a quercetin radical-M(II)-O2- 

species, from which C-C bond cleavage and CO release could proceed. This proposed 

mechanism is similar to the reaction pathway suggested for Fe(II)- and Mn(II)-containing 

extradiol catechol dioxygenases.18  
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Overall, from studies of the A. japonicus, B. subtilis, and Streptomyces sp. FLA 

quercetinases, possible roles for the divalent metal center in substrate oxidation have been 

suggested to include: (1) reduction of the pKa of quercetin to enable substrate 

deprotonation, (2) stabilization of the flavonolate intermediate, (3) influence on the 

coordination mode (mono- versus bidentate) and redox potential of the bound flavonolate, 

(4) facilitation of the formation of radical character on the coordinated flavonolate via 

valence tautomerism, and (5) acting as a redox conduit for structures wherein both 

flavonolate and O2 are coordinated to the metal center.  

Model studies of copper-containing forms of quercetinases have demonstrated that 

both Cu(I) and Cu(II) flavonolate complexes undergo reaction with O2 to produce CO and 

the depside.19 Kinetic studies of the reaction involving the Cu(II) complex [Cu(3-Hfl)2] 

(3-Hfl = 3-hydroxyflavonolate) with O2 in DMF indicate a rate law that is second-order 

overall (-d[Cu(3-Hfl)2]/dt = kobs[Cu(3-Hfl)2][O2]). In the presence of pyridine, the 

observed rate increases by ~2.5-fold, which has been attributed to a change in the 

coordination mode of the flavonolate ligand from bidentate to monodentate. Model 

studies involving other divalent metal ions are considerably fewer in number. Catalytic 

oxygenation of 3-hydroxyflavone derivatives by 

bis(salicylidene)ethylenediaminatocobalt(II) ([Co(salen]) at room temperature has been 

reported.20 This catalysis occurs in the presence of DMSO and DMF, but not in methanol, 

THF, or CH2Cl2. The involvement of a Co-O2 complex in the reaction has been proposed. 

A Co(III) complex, [Co(III)(salen)(4’MeOflaH)], was found to be susceptible to 

oxygenation in pyridine and DMF, but was found to be stable to oxygen in non-
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coordinating solvents. This O2 reactivity correlates with dissociation of the flavonolate 

ligand from the Co(III) center.21,22 Two recent studies outlined the structural and O2 

reactivity properties of Fe(III) and Mn(II) flavonolate complexes.23,24 Fe(III)(4’MeOflaH)3 

and Mn(II)(3-Hfl)2(py)2 were found to undergo reaction with O2 at 100 °C in DMF with 

second-order rate constants of 0.50 M-1s-1 and 0.08 M-1s-1, respectively. On the basis of 

comparison of rate constants at 100 ºC, these complexes are more reactive than the copper 

analogs Cu(3-Hfl)2 (k = 0.0087 M-1s-1) and Cu(3-Hfl)2(py)2 (0.04 M-1s-1), suggesting a 

metal dependent reactivity order of Fe(III) > Mn(II) > Cu(II).23 The Fe(III) complex 

Fe(III)(salen)(3-Hfl) contains a bidentate flavonolate ligand and undergoes reaction with 

O2 at elevated temperatures (100-120 ºC).24 In the presence of excess carboxylate anion, 

the rate of reaction with O2 increases, with bulky carboxylates (e.g. triphenyl acetate) 

producing the greatest rate enhancement (~two orders of magnitude at 100 ºC). This is 

attributed to the formation of a more reactive monondentate flavonolatoiron(III) complex. 

Evidence for direct electron transfer from the flavonolate ligand to O2 to form O2
- was 

found in the reaction via the use of the superoxide scavenger nitroblue tetrazolium (NBT). 

From the studies described above and investigations of the O2 reactivity of non-

coordinated flavonolate anions, it is clear that enhancing the electron density within the 

flavonolate anion through deprotonation and limiting its coordination mode to 

monodentate, are key factors in enhancing the rate of oxygenation. What it is currently 

unclear is how differences in the divalent metal ion present in quercetinase enzymes 

produce differing rates of oxygenation, as has been found for the B. subtilis and 

Streptomyces sp. FLA enzymes. Such differences may result from modulation of the 
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coordination mode and/or the redox potential of the flavonolate, or may relate to the 

ability of the metal center to serve as a redox conduit. As an approach toward 

systematically examining the influence of the divalent metal ion, we report the 

preparation and characterization of the first extensive series of structurally-related 

divalent metal flavonolate complexes. Our initial goal in this research was to examine 

how differences in the divalent metal center (Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and 

Zn(II)) influence flavonolate coordination, and spectroscopic and redox properties. The 

choice of the tetradentate 6-Ph2TPA ligand as the supporting scaffold was based on its 

relevance to the coordination environment in enzymes of the cupin superfamily.25 We 

have previously used this ligand to study chemistry of relevance to Ni(II)-acireductone 

dioxygenase,26-29 another dioxygenase of the cupin superfamily that produces CO upon 

substrate oxygenation. The results presented herein indicate that the nature of the divalent 

metal ion influences the coordination mode and redox potential of a 3-hydroxyflavonolate 

ligand in complexes of the general formula [(6-Ph2TPA)M(3-Hfl)]X (M = Mn(II), Co(II), 

Ni(II), Cu(II), Zn(II); X = OTf- or ClO4
-). In the course of characterizing the Mn(II) 

complex, we found evidence for ligand exchange reactions, which were subsequently 

further explored. The Fe(II) flavonolate complex [(6-Ph2TPA)Fe(3-Hfl)]ClO4 was 

prepared and characterized, albeit an X-ray structure was not obtained. This is due to the 

fact that the complex is very O2 sensitive and quickly undergoes reaction to produce a 

diiron(III) µ-oxo compound, wherein each iron center has a coordinated flavonolate 

ligand. The structure of this diiron(III) complex was determined by X-ray crystallography.  
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Experimental  

General and Physical Methods. All chemicals were purchased from commercial 

sources and used as received unless otherwise noted. Synthetic reactions were performed 

in a MBraun Unilab glovebox under a N2 atmosphere. Solvents for glovebox use were 

dried according to published methods and distilled under N2 prior to use.30 The 6-Ph2TPA 

ligand was prepared as previously described.25 

1H NMR spectra of 2-5 were obtained in CD3CN solution on a Bruker ARX-400 

spectrometer. Data was collected for paramagnetic complexes as previously described.26 

Chemical shifts (in ppm) are referenced to the residual solvent peak(s) in CHD2CN (1H, 

1.94 (quintet) ppm). FTIR spectra were collected using KBr pellets on a Shimadzu FTIR-

8400 spectrometer. UV-vis spectra were recorded at ambient temperature using a 

Hewlett-Packard 8453 diode array spectrophotometer. Cyclic voltammetry data was 

collected using a BAS-Epsilon system.25 Conditions for the CV experiments are listed in 

a footnote of Table 4-5 and in the text. EPR spectra were collected on a Bruker EMX-Plus 

spectrometer fitted with a liquid helium cooled probe. ESI/APCI and MALDI mass 

spectral data for complexes was collected at the Mass Spectrometry Facility, University of 

California, Riverside. Room temperature magnetic susceptibilities were determined by the 

Evans method.31 Elemental analyses were performed by Atlantic Microlab, Inc., Norcross, 

GA.  
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Caution! Perchlorate salts of metal complexes with organic ligands are 

potentially explosive. Only small amounts of material should be prepared, and these 

should be handled with great care.32 

 

General Procedure for the Synthesis of [(6-Ph2TPA)M(3-Hfl)]OTf 

Complexes: (a) M = Mn (1-OTf), Cu (4-OTf), or Zn (5-OTf). In a N2-filled glovebox, a 

methanol solution (2 mL) of M(OTf)2 (1.37 x 10-4 mol) was added to solid 6-Ph2TPA 

(1.37 x 10-4 mol) and the mixture was stirred until all of the chelate ligand had dissolved. 

The resulting solution was added to a methanol solution (2 mL) containing 3-Hfl (1.37 x 

10-4 mol) and Me4NOH·5H2O (1.37 x 10-4 mol). The mixture was then allowed to stir 

overnight at ambient temperature. The reaction mixture was taken out of the glovebox 

and the solvent was removed under reduced pressure. The residual solid was suspended 

on the top of a celite plug and washed several times with distilled water. The wet solid 

was then dissolved in CH2Cl2 and the filtrate was collected and brought to dryness under 

reduced pressure. The residue was dissolved in CH2Cl2 and the analytically pure 

microcrystalline flavonolate complex was precipitated via the addition of excess Et2O and 

cooling of the mixture at -30 °C for 12 h.  

Note regarding experimental data: Extensive characterization data (FTIR, UV-

vis, mass spectrometry, magnetic moment, cyclic voltammetry) for the triflate compounds 

1-5-OTf is provided in Table 4-5. Selected data for the perchlorate analogs 1-5-ClO4, 

which were primarily prepared for X-ray crystallographic studies, is given below. 

[(6-Ph2TPA)Mn(3-Hfl)]OTf (1-OTf). Yield: 73% (green crystals).  
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[(6-Ph2TPA)Cu(3-Hfl)]OTf (4-OTf). Yield: 74% (dark green crystals). 

[(6-Ph2TPA)Zn(3-Hfl)]OTf (5-OTf). Yield: 98% (yellow crystals). 1H NMR 

(CD3CN, 400 MHz): δ 8.53 (d, J = 5.2 Hz, 1 H), 8.18 (dt, J = 7.3 Hz, J = 1.5 Hz, 2 H), 

7.92 (td, J = 7.8 Hz, J = 7.7 Hz, J = 1.7 Hz, 1 H), 7.78 (t, J = 7.7 Hz, 2 H), 7.65 (m, 5 H), 

7.39 (m, 11 H), 7.13 (dt, J = 6.8 Hz, J = 1.5 Hz, 4 H), 7.03 (tt, J = 7.4 Hz, J = 1.2 Hz, 2 

H), 6.94 (tt, J = 8.0 Hz, J = 1.5 Hz, 4 H), 4.85 (d, J = 14.7 Hz, 2 H), 4.51 (d, J = 14.8 Hz, 

2 H), 4.39 (s, 2 H); 13C{1H} NMR (CD3CN, 400 MHz): δ187.7, 168.1, 164.0, 163.8, 

162.9, 156.5, 154.6, 148.8, 147.6, 146.3, 141.1, 140.5, 137.4, 136.8, 136.1, 135.7, 135.6, 

135.1, 134.8, 132.2, 131.9, 131.3, 130.9, 130.2, 130.1, 125.8, 125.2, 64.6, 61.5 (29 

signals expected for equivalent phenyl-appended pyridyl donors; 29 observed).  

(b) M = Co (2-OTf) or Ni (3-OTf). Under a nitrogen atmosphere, a methanol (~2 

mL) solution of MCl2·5H2O (1.37 x 10-4 mol) was added to solid 6-Ph2TPA (1.37 x 10-4 

mol) and the mixture was stirred until all of the chelate ligand had dissolved. Two 

equivalents of silver triflate (AgOTf; 2.74 x 10-4 mol) was then added to the mixture. 

After stirring for 30 min, the solution was filtered through a celite/glass wool plug. The 

filtrate was added to a methanol solution (~2 mL) containing 3-Hfl (1.37 x 10-4 mol) and 

Me4NOH·5H2O (1.37 x 10-4 mol). The resulting solution was stirred overnight at ambient 

temperature. At this time, the reaction was taken out of the glovebox and the solvent was 

removed under reduced pressure. Using a work-up procedure identical to that described 

above for 1-OTf, analytically pure microcrystalline products were obtained. 

[(6-Ph2TPA)Co(3-Hfl)]OTf (2-OTf). Yield: 54% (dark red crystals).  
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[(6-Ph2TPA)Ni(3-Hfl)]OTf·0.25CH2Cl2 (3-OTf). Yield: 82% (green crystals). 

The presence of dichloromethane in the elemental analysis sample was confirmed using 

1H NMR spectroscopy.  

General Procedure for the Synthesis of [(6-Ph2TPA)M(3-Hfl)]ClO4 

Complexes (1-5-ClO4). In a glovebox, a acetontrile solution (~2 mL) of M(ClO4)2·6H2O 

(M = Mn, Co, Ni, Cu, Zn; 1.37 x 10-4 mol) was added to solid 6-Ph2TPA (1.37 x 10-4 

mol) and the resulting mixture was stirred until all of the chelate ligand had dissolved. An 

acetonitrile slurry (~2 mL) of tetramethylammonium hydroxide pentahydrate 

(Me4NOH·5H2O; 1.37 x 10-4 mol) and 3-hydroxyflavone (3-Hfl; 1.37 x 10-4 mol) was 

then added and the resulting mixture was stirred overnight at ambient temperature. After 

removal of the solvent under reduced pressure, the remaining solid was dissolved in 

CH2Cl2 and the solution was filtered through a glass wool/celite plug. The filtrate was 

then brought to dryness under reduced pressure. Crystals suitable for single crystal X-ray 

crystallography were obtained using the following approaches at ambient temperature: 1-

ClO4 (green crystals), diethyl ether diffusion into a dichloromethane solution; 2-ClO4 

(dark red crystals) and 3-ClO4 (green crystals), diethyl ether diffusion into a acetonitrile 

solution; and 4-ClO4 (green crystals), diethyl ether diffusion into 

dichloromethane:isopropanol:methanol (1:0.1:1) solution. For 5-ClO4, yellow crystals 

were obtained from dichloromethane/diethyl ether solution at 4 °C.  

The 1H NMR features of 2-ClO4, 3-ClO4, and 5-ClO4 match those found for the 

triflate analogs. 1-ClO4: Anal. Calcd for C45H35ClMnN4O7·1/4CH2Cl2: C, 63.54; H, 4.18; 

N, 6.55. Found: C, 63.47; H, 4.11; N, 6.45. 2-ClO4: Anal. Calcd for C45H35ClCoN4O7 
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·1/4CH2Cl2: C, 63.77; H, 4.18; N, 6.59. Found: C, 4.03; H, 4.19; N, 6.54. 3-ClO4 : Anal. 

Calcd for C45H35ClN4NiO7: C, 64.50; H, 4.21; N, 6.69. Found: C, 64.18; H, 3.92; N, 6.55. 

4-ClO4: Anal. Calcd for C45H35ClCuN4O7·1/5CH2Cl2: C, 63.14; H, 4.30; N, 6.52. Found: 

C, 63.45; H, 4.15; N, 6.31. 5-ClO4: Anal. Calcd for C45H35ClN4O7Zn·1/5CH2Cl2: C, 

63.01; H, 4.14; N, 6.50. Found: C, 63.15; H, 4.31; N, 6.33.  

[(6-Ph2TPA)Fe(NCCH3)](ClO4)2 (7). A CH3CN solution (~ 2mL) of 

Fe(ClO4)2·6H2O (0.030 g, 0.083 mmol) was added to solid 6-Ph2TPA. The resulting 

solution was stirred for 1 h at room temperature under a N2 atmosphere. The solvent was 

then removed under reduced pressure and the remaining solid product was recrystallized 

via Et2O diffusion into a CH3CN solution. Yellow crystals suitable for single crystal X-

ray analysis and yellow powder were isolated from a blue solution. Yield: 73%. Anal 

Calcd. for C32H29N5FeCl2O8·H2O: C, 50.81; H, 4.13; N, 9.26. Found: C, 51.03; H, 3.99; 

N, 9.35. FTIR (KBr, cm-1) 1092 (νClO4), 623 (νClO4); UV-vis (CH3CN, nm) 509, 892. 

LRFAB-MS (CH2Cl2/NBA), m/z (relative intensity), 597 ([(6-Ph2TPA)Fe(ClO4)]
+ 15%). 

Table 4-1. Summary of 1H NMR of 7 in CD3CN: 
α, CH2 β β’ Ph γ γ’ 

112 
99.4 
82.4 
60 

61.1 
60.2 

59.8 
44.1 

10.2 
4.7 
2.5 

-8.5 -11.8 

Ligand Exchange Reactions. (a) To a solution of [(6-Ph2TPA)Mn(3-Hfl)]OTf 

(9.0 x 10-6 mol) in CD3CN (0.8 mL) solid M(ClO4)2⋅6H2O (M = Co, Ni, or Zn; 9.0 x 10-6 

mol) was added. Each reaction mixture was then capped, shaken vigorously, and a 1H 
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NMR spectrum was recorded within 15 min. For each metal perchlorate salt, the NMR 

spectrum is consistent with the formation of [(6-Ph2TPA)M(CD3CN)n](ClO4)2 (M = Co 

(n = 1), Ni (n = 2), or Zn (n = 1)). The product [Mn(3-Hfl)2⋅0.5H2O] is formed in each 

reaction, and was isolated from the Ni(II)-containing reaction mixture and characterized 

by elemental analysis, FTIR, and UV-vis.  

(b) In a NMR tube, a CD3CN solution (0.8 mL) of [(6-Ph2TPA)M(3-Hfl)]OTf  (M 

= Co, Ni, and Cu; 2-4-OTf; 7.7 x 10-6 mol) was treated with solid 0.5 eq Zn(ClO4)2⋅6H2O 

(3.9 x 10-6 mol). Each reaction mixture was then capped, shaken vigorously, and a 1H 

NMR spectrum was recorded within 15 min. For the reactions involving the Co(II) and 

Ni(II) derivatives, the 1H NMR spectroscopic features are consistent with the formation of 

[(6-Ph2TPA)M(CD3CN)n](X)2 (M = Ni, n = 2; M = Co, n = 1; X = OTf- or ClO4
-). A 

poorly soluble, yellow precipitate is also formed in each reaction mixture. Spectroscopic 

analysis (1H NMR (CD3OD) and FTIR (KBr)) of this solid suggested the formation of 

[Zn(3-Hfl)2]. This compound was independently synthesized via treatment of 

Zn(ClO4)2⋅6H2O with two equivalents each of 3-Hfl and Me4NOH⋅5H2O in methanol, 

which yielded a yellow precipitate. Analysis of this material by 1H NMR (CD3OD), UV-

vis, and elemental analysis indicated the formulation [Zn(3-Hfl)2⋅2H2O]. The UV-vis and 

1H NMR spectroscopic features of this material match that of the yellow precipitate 

generated in the ligand exchange reaction. 

Synthesis of [(6-Ph2TPA)Fe(3-Hfl)]ClO4 (8). Under a nitrogen atmosphere, a 

methanol solution (~2 mL) of Fe(ClO4)2·6H2O (1.37 x 10-4 mol) was added to solid 6-

Ph2TPA (1.37 x 10-4 mol) and the resulting mixture was stirred for 2 h at ambient 
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temperature. The solvent was then removed under reduced pressure, and the solid was 

dissolved in a small amount of methanol (~1 mL). Addition of Et2O produced a yellow-

orange precipitate, which was dried under vacuum. A 1H NMR spectrum of the complex 

in CD3CN was obtained. This spectrum matched that of [(6-Ph2TPA)Fe(CH3CN)](ClO4)2, 

which has been independently generated and characterized. A methanol solution (~2 mL) 

of [(6-Ph2TPA)Fe(CH3CN)](ClO4)2 (1.37 x 10-4 mol) was treated with 3-Hfl (1.37 x 10-4 

mol) and Me4NOH⋅5H2O (1.37 x 10-4 mol) dissolved in methanol (~2 mL). The resulting 

mixture was stirred for 15 minutes and the solvent was then removed under vacuum. The 

remaining green-yellow solid was dissolved CH2Cl2 (~2 mL) and passed through a 

celite/glass wool plug. The filtrate was brought to dryness under reduced pressure, and the 

resulting solid (yield: 96%) was analyzed by 1H NMR, FTIR, UV-vis, a magnetic moment 

measurement, and elemental analysis. FTIR (KBr, cm-1) 1558 (νC=O); UV-vis (CH3CN) 

nm (ε, M-1cm-1) 415 (14700); µeff = 4.7 µB. Anal. Calcd for C45H35ClFeN4O7: C, 64.72; 

H, 4.22; N, 6.71. Found: C, 65.23; H, 4.22; N, 6.71.  

Reactivity of [(6-Ph2TPA)Fe(3-Hfl)]ClO4 in Air; Isolation of [(6-Ph2TPAFe(3-

Hfl))2(µµµµ-O)](ClO4)2 (6). A methanol solution (~2 mL) of [(6-Ph2TPA)Fe(3-Hfl)]ClO4  

was prepared by mixing equimolar amounts (1.37 x 10-4 mol) of 6-Ph2TPA, 

Fe(ClO4)2⋅6H2O, Me4NOH⋅5H2O and 3-Hfl and stirring under a nitrogen atmosphere for 

2 h. The solvent was then removed under reduced pressure and the remaining solid was 

dissolved in CH2Cl2 (~2 mL) and filtered through a celite/glass wool plug. The filtrate 

was then brought to dryness. A portion of the solid (8.45 x 10-5 mol) was dissolved in 

CH3CN  (~ 5 mL) and this solution was exposed to air for 24 h. Diethyl ether was then 
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diffused into the CH3CN solution, resulting in the deposition of dark-brown crystals 

suitable for single crystal X-ray crystallography. Yield: 58%. UV-vis (MeOH), nm (ε, M-

1cm-1) 388 (24400), 490 (7300); ESI/APCI-MS, m/z (relative intensity) 743.2 ([M-

2ClO4]
2+, 30%). Anal. Calcd for: C90H70Cl2Fe2N8O15·2H2O: C, 62.77; H, 4.33; N, 6.51. 

Found: C, 62.96; H, 4.19; N, 6.70.  

X-ray Crystallography. For each compound, 1-5-ClO4 and 6, a single crystal 

was mounted on a glass fiber with traces of viscous oil and then transferred to a Nonius 

KappaCCD diffractometer equipped with Mo Kα radiation (λ = 0.71073 Å) for data 

collection. For unit cell determination, ten frames of data were collected at 150(1) K with 

an oscillation range of 1 deg/frame and an exposure time of 20 sec/frame. Final cell 

constants were determined from a set of strong reflections from the actual data collection. 

Reflections were indexed, integrated, and corrected for Lorentz, polarization, and 

absorption effects using DENZO-SMN and SCALEPAC.33 The structures were solved by 

a combination of direct and heavy-atom methods using SIR 97.34 All of the non-hydrogen 

atoms were refined with anisotropic displacement coefficients. Unless otherwise stated, 

all hydrogen atoms were assigned isotropic displacement coefficients U(H) = 1.2U(C) or 

1.5U(Cmethyl), and their coordinates were allowed to ride on their respective carbons using 

SHELXL97.35 

Structure Solution and Refinement. Complex 1-ClO4 crystallizes in the space 

group P21/n, with a disordered ClO4
- molecule in the asymmetric unit. Complex 2-ClO4 

crystallizes in the space group C2/c with two cation/anion pairs per asymmetric unit along 

with two molecules of CH3CN. The differences in the cations (with the second being 
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labeled with (A)) are subtle, with the most noticeable differences being in one Co-NPhPy 

bond distance and in O-Co-N bond angles involving the O(1) atom of the flavonolate and 

nitrogen atoms of the chelate ligand. One of the two CH3CN solvate molecules is 

comprised of two 50% occupied positions for all heavy atoms. Complex 3-ClO4 

crystallizes in the space group P21/a. Two oxygen atoms of the perchlorate anion exhibit 

disorder (80:20) over two positions. Complex 4-ClO4 crystallizes in the space group 

P21/c. One molecule of diethyl ether is also present in the asymmetric unit. Complex 5-

ClO4 crystallizes in the space group P-1. Two independent cation/anion pairs and two 

CH2Cl2 solvent molecules are found in the asymmetric unit. The two cations (with the 

second being labeled with (A)) have very minor differences in bond lengths/angles 

involving the Zn(II) center and both exhibit a distorted square pyramidal geometry (τ = 

0.35).36 One CH2Cl2 solvate exhibits disorder over two positions (50:50) for each heavy 

atom. Complex 6 crystallizes in the space group P-1 with 2.5 CH3CN solvate molecules 

per asymmetric unit. Two oxygen atoms and the chlorine atom of a perchlorate anion are 

disordered over two positions (90:10).  

Results 

The goal of this investigation was to prepare and comprehensively characterize a 

structurally similar set of divalent metal flavonolate complexes as a prelude to O2 

reactivity studies of these complexes. The metal ions employed are those of relevance to 

bacterial and fungal quercetin dioxygenases (Mn(II), Fe(II), Co(II), Ni(II), Cu(II)). For 
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spectroscopic and redox behavior comparisons, the d10 Zn(II) flavonolate analog complex 

was also prepared.    

Synthesis. Divalent metal flavonolate complexes of the general formula [(6-

Ph2TPA)M(3-Hfl)]X were prepared by the synthetic routes outlined in Scheme 4-2. 

Triflate derivatives were isolated as analytically pure polycrystalline materials. 

Perchlorate analogs were found to be highly crystalline materials suitable for single 

crystal X-ray crystallography. All syntheses were performed under a N2 atmosphere. 

X-ray Crystallography. The perchlorate analogs 1-5-ClO4 were characterized by 

single crystal X-ray crystallography. A summary of the data acquisition and refinement 

parameters are given in Table 4-2. Selected bond distances and angles are given in Tables 

4-3 and 4-4, respectively. 

Thermal ellipsoid drawings of the Mn(II) (1-ClO4) and Ni(II) (3-ClO4) complexes 

are shown in Figure 4-1. Each metal center exhibits a pseudo-octahedral geometry with 

the ketone oxygen (O(2)) of the flavonolate positioned trans to the tertiary amine nitrogen 

of the chelate ligand. In both complexes, the flavonolate ligand is located between the two 

hydrophobic phenyl appendages of the chelate ligand.  

To our knowledge, complex 1-ClO4 is the first Mn(II) complex of the 6-Ph2TPA 

ligand to exhibit coordination of both phenyl-appended pyridyl donors. Complexes having 

an additional bidentate ligand, such as the hydroxamate complex [(κ
3-6-Ph2TPAMn)2(µ-

ONHC(O)CH3)2](ClO4)2
25 and the oxalate derivative [(κ

3-6-Ph2TPAMn)2(µ-

C2O4)](ClO4)2,
37 have previously been found to exhibit κ

3-coordination (facial and 

meridional, respectively) of the chelate ligand, with one non-coordinated phenylpyridyl 
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appendage. In 1-ClO4, the Mn(1)-O(1) and Mn(1)-O(2) distances (2.121(3) Å  and 

2.143(3) Å, respectively) are similar. 

Scheme 4-2. 
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In the only other Mn(II) complex of 3-hydroxyflavonolate reported to date, 

[(Mn(3-Hfl)2(py)2],
23 the Mn-O distances differ by ~0.06 Å, with the bond involving the 

ketone oxygen being longer. The average Mn-O distance in 1-ClO4 (2.13 Å) is shorter 

than that found in [(Mn(3-Hfl)2(py)2] (2.16  Å).23 The average Mn-N distance in 1-ClO4 

is ~2.33 Å, which is similar to that found in [(κ
3-6-Ph2TPAMn)2(µ-

ONHC(O)CH3)2](ClO4)2
25 and [(κ3-6-Ph2TPAMn)2(µ-C2O4)](ClO4)2.

37 

The mononuclear 3-ClO4 is structurally similar to Ni(II) acetohydroxamate and 

enolate complexes of the 6-Ph2TPA ligand.25,28  For example, the average Ni-O and Ni-

NPhPy, as well as the NPy and NAmine distances (Table 4-3) are similar in these complexes. 

Figure 4-1. Thermal ellipsoid drawings (50% probability) of the cationic portions of 1-

ClO4 (top) and 3-ClO4 (bottom). Hydrogen atoms have been omitted for clarity.  
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The Ni(1)-O(1) distance (1.996(2) Å) is slightly shorter than the distance involving the 

ketone oxygen atom (Ni(1)-O(2), 2.010(3) Å). In the only other Ni complex of 3-

hydroxyflavonolate reported to date, [(Ni(3-Hfl)2(py)2]
38, the Ni-O distances are slightly 

longer (2.023(2) and 2.067(2) Å). The structure of the Co(II) complex [(6-Ph2TPA)Co(3-

Hfl)]ClO4 (2-ClO4⋅⋅⋅⋅2CH3CN) contains two independent cation/anion pairs per 

asymmetric unit (the second labeled with an “A” designation). The two cations are 

structurally similar, each having a pseudo-octahedral geometry (Figure 4-2). Unlike the 

Mn(II) and Ni(II) analogs (1-ClO4 and 3-ClO4), this complex has the deprotonated 

oxygen atom of the 3-Hfl ligand positioned trans to the tertiary amine nitrogen atom of 

the chelate ligand and exhibits notably different Co-O distances (Co(1)-O(1) 1.956(2) Å; 

Co(1)-O(2), 2.172(2) Å). This is similar to the bidentate ligand coordination present in the 

Co(II) acetohydroxamate complex [(6-Ph2TPA)Co(ONHC(O)CH3)]ClO4, which exhibits 

Co-O bond lengths of 1.935(2) and 2.142(2) Å.25  

Figure 4-2. Thermal ellipsoid drawing (50% probability) of the cationic portion of one 

of the two cations present in the asymmetric unit of 2-ClO4⋅⋅⋅⋅2CH3CN. Hydrogen atoms 

have been omitted for clarity. 
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Table 4-2. Summary of X-ray Data Collection and Refinement. 
 1-ClO4 2-ClO4⋅⋅⋅⋅2CH3CN 3-ClO4 4-ClO4⋅⋅⋅⋅Et2O 5-ClO4⋅⋅⋅⋅2CH2Cl2 

Empirical formula C45H35ClMnN4O7 C94H76Cl2Co2N10O14 C45H35ClN4NiO7 C49H45ClCuN4O8 C94H74Cl6N8O14Zn2 

Mr 834.16 1758.41 837.93 916.88 1859.04 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Triclinic 

Space group P21/n C2/c P21/a P21/c P-1 

a/ Å 11.6175(8) 43.8551(6) 18.5881(4) 17.7565(6) 11.6633(2) 

b/ Å 16.3708(14) 18.27219(2) 19.6427(4) 12.6011(2) 18.3461(3) 

c/ Å 20.6689 21.2336(3) 10.4897 19.0305(6) 20.3958(3) 

α /° 90 90 90 90 103.0861(8) 

β /° 94.219(5) 101.7509(8) 90.4537(11) 90.0709(12) 90.5675(9) 

γ /° 90 90 90 90 98.3257(9) 

V / Å3 3920.3(5) 16658.4(4) 3829.88(13) 4258.1(2) 4201.95(12) 

Z 4 8 4 4 2 

Dc / Mg m-3 1.413 1.402 1.453 1.430 1.469 

T / K 150(1) 150(1) 150(1) 150(1) 150(1) 

Color Yellow Brown Yellow/Green Green Yellow 

Crystal habit Prism Plate Dichroic Prism Prism Prism 

Crystal size/ mm 0.38 × 0.13 × 0.13 0.38 × 0.38 × 0.20 0.35 × 0.18 × 0.10 0.25 x 0.23 x 0.05 0.28 x 0.28 x 0.15 

Diffractometer Nonius KappaCCD Nonius KappaCCD Nonius KappaCCD Nonius KappaCCD Nonius KappaCCD 

µ/ (mm-1) 0.464 0.536 0.636 0.638 0.833 

2θ max /° 50.02 54.96 54.98 50.74 52  

Completeness to θ  (%) 97.8 99.9 99.2 98.8 99.2 

Reflections collected 10543 36402 15907 14181 30941 

Independent reflections 6770 19074 8729 7731 16397 

Rint 0.0623 0.0519 0.0410 0.0377 0.0519 

Variable parameters 552 1084 532 568 1127 

R1 / wR2b 0.0640/0.1367 0.0562/0.1411 0.0576/0.1087 0.0646/0.1564 0.0458/0.1011 

Goodness-of-fit (F2) 1.043 1.027 1.036 1.029 1.027 

∆ρmax/min / e Å-3 0.415/-0.304 1.181/-0.760 0.744/-0.672 1.093/-0.772 0.709/-0.726 

aRadiation used: Mo Kα (λ = 0.71073 Å) bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|; wR2 = [∑[w(Fo2-Fc2)2]/[∑(Fo2)2]] 1/2, where w = 1/[σ2(Fo2) + 
(aP)2 + bP]. 
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Table 4-3. Selected Bond Distances (Å) for Complexes 1-5-ClO4.  
 1-ClO4 2-ClO4 

⋅⋅⋅⋅2CH3CNa 
3-ClO4 4-ClO4⋅⋅⋅⋅Et2O 5-ClO4 

⋅⋅⋅⋅2CH2Cl2
a 

M–N(1) 2.284(4) 2.111(3) 2.061(2) 1.993(3) 2.085(2) 

M–N(2) 2.340(3) 2.175(2) 2.067(3) 2.029(3) 2.144(2) 

M–N(3) 2.390(3) 2.244(2) 2.278(2) 2.340(3) 2.107(2) 

M–N(4) 2.338(3) 2.331(3) 2.231(2)   

M–O(1) 2.121(3) 1.956(2) 1.996(2) 1.921(3) 1.951(2) 

M–O(2) 2.143(3) 2.172(2) 2.031(2) 2.010(3) 2.1175(19) 

∆M-O 0.022 0.22 0.035 0.089 0.17 

C(31)-O(1) 1.313(4) 1.317(4) 1.315(3) 1.349(5) 1.315(3) 

C(32)-O(2)  1.262(5) 1.260(4) 1.267(3) 1.252(5) 1.255(3) 

aData for one of two cations present in the asymmetric unit.  

Table 4-4. Selected Bond Angles (deg) for Complexes 1-5-ClO4. 
 1-ClO4 2-ClO4⋅⋅⋅⋅2CH3CN a 3-ClO4 4-ClO4⋅⋅⋅⋅Et2O 5-ClO4⋅⋅⋅⋅2CH2Cl2

 a 

O(1)–M–O(2) 75.15(10) 79.81(8) 82.95(8) 84.27(13) 81.73(8) 

N(1)–M–O(1) 159.22(12) 91.14(9) 172.29(9) 98.47(14) 102.36(9) 

N(1)–M–O(2) 82.14(12) 169.84(9) 99.77(9) 166.64(13) 147.28(8) 

N(1)–M–N(2) 72.07(13) 76.66(10) 83.05(10) 84.17(14) 81.18(9) 

N(1)–M–N(3) 103.35(12) 105.45(10) 98.73(9) 102.15(13) 108.81(9) 

N(1)–M–N(4) 99.40(13) 101.11(9) 81.10(9)   

N(2)–M–N(3) 74.56(13) 77.37(9) 77.36(9) 77.24(12) 79.91(9) 

N(2)–M–N(4) 69.16(12) 71.48(9) 80.88(10)   

N(2)–M–O(1) 128.54(11) 161.56(9) 95.33(9) 172.93(14) 164.64(9) 

N(2)–M–O(2) 154.14(12) 110.92(9) 171.21(9) 91.68(13) 87.35(8) 

N(3)–M–N(4) 128.10(12) 132.59(9) 158.08(9)   

N(3)–M–O(1) 86.95(11) 119.73(9) 88.22(8) 108.43(12) 112.38(8) 

N(3)–M(1)–O(2) 114.42(12) 83.24(8) 93.95(8) 89.24(12) 99.07(8) 

N(4)–M(1)–O(1) 87.74(11) 97.96(9) 91.21(9)   

N(4)–M(1)–O(2) 114.48(11) 75.85(8) 107.73(9)   

aData for one of two cations present in the asymmetric unit.  
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The average Co-NPhPy distance is notably longer in 2-ClO4⋅⋅⋅⋅2CH3CN (av 2.39 Å) versus 

the hydroxamate complex (av 2.27 Å), while the Co-NAmine and Co-NPy distances are 

similar. A search of the Cambridge Crystallographic Database (version 5.30 (November)) 

revealed that 2-ClO4 is the first structurally characterized Co(II) flavonolate complex. 

One Co(III) flavonolate complex has been previously characterized by X-ray 

crystallography.39 

 The cationic portions of the Cu(II) and Zn(II) analogs 4-ClO4⋅⋅⋅⋅Et2O and 5-

ClO4⋅⋅⋅⋅2CH2Cl2 are shown in Figure 4-3. The Cu(II) center in 4-ClO4⋅⋅⋅⋅Et2O is distorted 

Figure 4-3. Thermal ellipsoid drawings (50% probability) of the cationic portions of 4-

ClO4⋅⋅⋅⋅Et2O (top) and 5-ClO4⋅⋅⋅⋅2CH2Cl2 (bottom). Hydrogen atoms have been omitted for 

clarity. 
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square pyramidal (τ = 0.11).36 For the Zn(II) complex, there are two cation/anion pairs per 

asymmetric unit. The cations have only minor differences in bond lengths/angles 

involving the Zn(II) center and both exhibit a distorted square pyramidal geometry (τ = 

0.35).36 The overall features of 6-Ph2TPA chelate ligand coordination in the cationic 

portions of 4-ClO4⋅⋅⋅⋅Et2O and 5-ClO4⋅⋅⋅⋅2CH2Cl2 differ in terms of the M-NPhPy distance, 

which is ~0.24 Å longer in the Cu(II) complex, and the M-NPy and M-NAmine distances 

which are > 0.05 Å longer in the Zn(II) complex. In both 4-ClO4⋅⋅⋅⋅Et2O and 5-

ClO4⋅⋅⋅⋅2CH2Cl2 the coordination of the flavonolate ligand involves a shorter bonding 

interaction between the metal and the deprotonated hydroxyl donor (1.921(3) and 

1.951(2) Å, respectively) and a longer bond with the ketone oxygen (2.010(3) and 

2.1175(19) Å, respectively). Several Cu(II) complexes having a 3-hydroxyflavonolate 

ligand have been previously characterized by X-ray crystallography.40-46 A portion of 

these compounds have a bidentate or tridentate supporting chelate ligand,40-43 whereas 

others are species such as [Cu(3-Hfl)2(py)2] and [Cu(3-Hfl)2]. In these two types of 

complexes, the Cu-O bond distances are generally in the range of 1.90-2.21 Å, and the 

∆M-O varies from 0.04 to 0.29 Å.47 For Zn(II), three 3-Hfl complexes, having either a 

bidentate or tridentate supporting chelate ligand, have been previously reported.48-50 These 

complexes exhibit a range of Zn-O distances of 1.98-2.24 Å and ∆M-O values of 0.16-0.26 

Å. The bond lengths and ∆M-O values for 4-ClO4⋅⋅⋅⋅Et2O and 5-ClO4⋅⋅⋅⋅2CH2Cl2 fall within 

the noted ranges.  
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Considering the entire series of 6-Ph2TPA-supported complexes, the asymmetry in 

terms of the M-O interactions in 5-ClO4⋅⋅⋅⋅2CH2Cl2 (∆M-O ~ 0.17 Å) is slightly less than 

that found in the Co(II) derivative 2-ClO4 (∆M-O ~ 0.21 Å), considerably greater than that 

found in the Mn(II) and Ni(II) analogs (∆M-O < 0.04 Å), and approximately double that 

found in the Cu(II) complex (∆M-O ~ 0.09 Å). Hence, in the series of 6-Ph2TPA supported 

complexes, the asymmetry of flavonolate coordination increases in the order Mn (II) ~ 

Ni(II) < Cu(II) < Zn(II) < Co(II). Examination of the bond lengths within the coordinated 

flavonolate ligands of 1-5-ClO4 revealed that the Mn(II), Co(II), Ni(II), and Zn(II) 

complexes exhibit only a slight elongation (0.02-0.03 Å) of the C(32)-O(2) bond 

involving the ketone moiety, and a slight contraction (~0.04 Å) of the C(31)-O(1) bond of 

the hydroxyl donor, relative to the distances found in uncoordinated flavonol (1.232(3) 

and 1.357(3) Å, respectively).51 The Cu(II) analog 4-ClO4⋅⋅⋅⋅Et2O exhibits C-O distances 

(C(32)-O(2) 1.252(5) Å; C(31)-O(1), 1.349(5) Å) that are quite close to those of the free 

flavonol.51 Notably, the Cu(II) complex exhibits a short C(31)-C(32) bond (1.399(6) Å) 

relative to that found in the other 6-Ph2TPA-supported complexes (av 1.45 Å). A similar 

short C-C bond length was found in [Cu(II)(bpy)(3-Hfl)(2-HOC6H4COCO2)] (1.369(14) 

Å),41 but other known Cu(II) flavonolate derivatives exhibit a distance of ~1.44 Å.42-46 

Overall, the bond lengths within the flavonolate ligands of 1-5-ClO4 are minimally 

affected by the identity of the metal ion present.  

Spectroscopic, Magnetic, and Redox Properties of 1-5-OTf. Presented in Table 

4-5 are selected spectroscopic features of 1-5-OTf. Also given are magnetic moments, 

which indicate that each complex has a high-spin divalent metal center, and redox 
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features identified in the range of +1.4 V to -1.0 V. 1H NMR spectra were also collected 

for the Co(II), Ni(II), and Zn(II) complexes.  

Infrared Spectroscopy. In the solid state, each complex exhibits a νC=O vibration 

for the coordinated flavonolate ketone moiety. The highest energy νC=O is found for the 

cobalt complex 2-OTf, which is consistent with the fact that the perchlorate analog has 

the longest M(1)-O(2) distance of the series of complexes and therefore should polarize 

the carbonyl to the weakest extent. That being said, we note that the C(32)-O(2) bond 

lengths throughout the series 1-5-ClO4 are the same within experimental error. The Cu(II) 

complex 4-OTf exhibits the lowest energy νC=O vibration, which is consistent with the 

structural data for 4-ClO4, which has the shortest M(1)-O(2) distance of the series of 

complexes.  

Table 4-5. Analytical, Spectroscopic, Magnetic, and Cyclic Voltammetry Data for 1-5-
OTf.  
Complex 1-OTf 2-OTf 3-OTf 

⋅⋅⋅⋅0.25CH2Cl2 
4-OTf 5-OTf 

Anal. Calcd. 
(found): 
C: 
H: 
N: 

 
62.51 (62.05) 
3.99 (4.06) 
6.34 (6.16) 

 
62.23 (61.94) 
3.97 (3.89) 
6.31 (6.11) 

 
61.11 (61.06) 
3.97 (4.04) 
6.31 (5.86) 

 
61.91 (62.02) 
3.95 (3.98) 
6.28 (6.21) 

 
61.78 (61.74) 
3.94 (4.01) 
6.28 (6.30) 

UV-vis, nm  
(ε, M-1 cm-1)a 

431 (17600) 422 (17100) 443 (20000) 428 (22200) 420 (20100) 

ESI-MS m/z (rel 
intensity) 
[M-OTf] +  

734.2059 (100)b 738.2037 (16)  737.2064 (15) 742.2002 (16) 743.1984 (2) 

FTIRc, cm-1 νC=O 1550 1557 1548 1542 1552 

µeff, µBd 5.90 4.38 3.34 1.93 e 

Epa
f versus  Fc/Fc+ +365  g +506 +660h +534 

aSpectra collected in dry CH3CN. bObtaind by MALDI. cSpectra collected as dilute KBr pellets. dDetermined by Evans method (Evans 
D. F. J. Chem. Soc. 1959, 115, 2003). eDiamagnetic. fAll cyclic voltammetry data was obtained under argon in CH2Cl2 with a 
complex concentration of 1 mM and Bu4NClO4 (0.1 M) as the supporting electrolyte. The scan rate was 50-100 mV/s. The 
experimental set-up consisted of a platinum button working electrode, a silver wire reference electrode, and a platinum wire auxiliary 
electrode. All potentials are reported relative to an internal Fc/Fc+ standard. Under these conditions, the Fc/Fc+ couple is at +460 mV 
versus silver wire. gNo electrochemical behavior between +1.4 V and -1.0 V. hA quasi-reversible reduction peak at -1088 mV vs. 
Fc/Fc+ has been tentatively assigned to the Cu(II)/Cu(I) couple as no other compound of the group has waves at potentials lower than 
Fc/Fc+.  
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UV-vis Spectroscopy. Neutral flavonol compounds exhibit an absorption feature 

in the range of 350-380 nm, which is termed band I and is assigned to the π→π* 

transition.52 When dissolved in CH3CN under anaerobic conditions, each complex 1-5-

OTf exhibits an intense absorption feature in the range of 420–443 nm. For comparison, 

we have measured the absorption features of a flavonolate salt ([Me4N
+][3Hfl -]) in 

CH3CN (band I, λmax = 458 nm).53 For each metal complex, a hypsochromic shift of the 

absorption band is found relative to the 3-Hfl salt, with the exact shift being influenced by 

the nature  of the metal ion. For example, the Mn(II) complex 1-OTf exhibits band I at 

431 nm. This matches well with the band I reported for Mn(3-Hfl)2(py)2 (432 nm).23 To 

our knowledge, absorption spectra of an enzyme/substrate complex a Mn(II)-containing 

quercetinase enzyme have not been reported.11 Notably, the Ni(II) complex 3-OTf 

exhibits the smallest shift with band I at 443 nm, and the zinc and cobalt complexes 5-

OTf and 2-OTf exhibit the largest shifts, with band I at 420 and 422 nm, respectively. For 

the Ni(II)-containing form of QueD from Streptomyces sp. FLA, under anaerobic 

conditions, addition of quercetin at pH = 8 produces an absorption feature at 385 nm, 

which represents a hypsochromic shift relative to the absorption feature of free quercetin 

at pH = 8 (λmax = 391 nm). Similarly, addition of quercetin to anaerobic cobalt-containing 

QueD produces a band I absorption at 378 nm.12 Thus, in both the synthetic and enzyme 

systems, the presence of Co(II) produces a more significant hypsochromic shift in band I. 

The absorption maximum found for the Cu(II) complex 4-OTf (428 nm) is within the 

reported range for Cu(II) flavonolate complexes (416-434 nm).19 The band I absorption of 

[Zn(3-Hfl)(idpa)]ClO4 (idpa = 3,3’-iminobis(N,N-dimethylpropylamine) has been 
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reported as 419 nm, which matches well with that found for 5-ClO4.54 Overall, from the 

limited set of well-characterized divalent metal 3-hydroxyflavonolate complexes reported 

in the literature to date (including those reported herein), the hypsochromic shift of the 

band I π→π* transition (relative to the free 3-Hfl anion) generally increases in the order 

Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II).  

EPR Spectroscopy. EPR spectra were obtained for the Mn(II) and Cu(II) 

complexes of the series (1-OTf and 4-OTf) and are shown in Figure 4-4. The spectrum 

collected for 1-OTf is similar to the spectrum collected for the hydroxamate-bridged 

dimanganese complex [(6-Ph2TPAMn)(µ-ONHC(O)CH3)2](ClO4)2.
25 No hyperfine 

coupling is discernable in the spectrum of either 1-OTf or the Mn(II) hydroxamate 

complex. The similarity of these spectra suggested to us the possible formation of a 

flavonolate-bridged dimanganese complex in solution. Reactivity studies outlined below 

provide additional evidence for the chemical similarities of 1-OTf and the hydroxamate 

complex in CH3CN. We note that the Mn(II)-containing form of the B. subtilis quercetin 

dioxygenase in the presence of quercetin under anaerobic conditions exhibits a six-line 

EPR signal at g = 2, with a hyperfine coupling constant of approximately 93 G.11 A 

second, less intense six-line signal is also present at g = 9 and exhibits a similar hypefine 

coupling constant. This data is consistent with the enzyme containing a mononuclear 

psuedooctahedral Mn(II) center having oxygen/nitrogen ligands.55 The axial EPR 

spectrum of 4-OTf is consistent with the distorted square pyramidal geometry of the 

Cu(II) center and a dx2-y2 ground state (g// ~ 2.24; g⊥ ~ 2.06; A// ~ 180 G). The 
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anaerobic enzyme/substrate complex of the quercetinase enzyme from Aspergillus 

japonius exhibits an EPR signal with g// = 2.366 and A// ~ 110 G.56  

1H NMR Spectroscopy. The 1H NMR spectra of analytically pure 2-OTf, 3-OTf, 

and 5-OTf were measured in CD3CN at ambient temperature. The spectra for the 

paramagnetic Co(II) and Ni(II) complexes are shown in Figure 4-5. While full assignment 

of the resonances of 2-OTf and 3-OTf have not been made, the spectra are clearly distinct 

from those of other complexes of bidentate ligands (e.g. hydroxamate derivatives) and can 

be used to evaluate complex purity and reactivity.25 There are no concentration dependent 

changes in these NMR spectra. Attempts were made to collect two-dimensional COSY  

Figure 4-4. EPR spectra of 1-OTf and 4-OTf. Spectra were recorded at 4.7 K, 1.002 mW 

microwave power, and 9.39 GHz. The samples were ≤ 1 mM in CH3CN. 
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spectra to assign the pyridyl ring proton resonances of the 6-Ph2TPA ligands in 2-OTf 

and 3-OTf.26 Unfortunately, these experiments did not reveal any crosspeaks. It is 

important to note that the total number of paramagnetically shifted resonances in the 

spectra of 2-OTf and 3-OTf is consistent with the presence of an effective plane of 

symmetry containing the pyridyl donor, which gives equivalent phenyl-appended pyridyl 

donors. This indicates that the solution structure of these compounds is generally similar 

to that found in the solid state. The features of the 1H and 13C NMR spectra of 5-OTf (see 

experimental section) are consistent the formation of a six-coordinate Zn(II) center in 

Figure 4-5. 1H NMR spectra of 2-OTf (top) and 3-OTf (bottom) in CD3CN at ambient 

temperature.  
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solution via coordination of all donors of the supporting 6-Ph2TPA ligand. Most notably, 

the total number of carbon signals is consistent with the presence of an effective plane of 

symmetry that makes the phenyl-appended pyridyl donors equivalent.  

Cyclic Voltammetry. The redox properties of 1-5-OTf were examined by cyclic 

voltammetry. An irreversible oxidation wave was identified for 1-OTf and 3-5-OTf and 

the Epa values are given in Table 4-3. The Co(II) complex 2-OTf did not show any 

electrochemical behavior in the range examined. A quasi-reversible reduction peak at       

-1088 mV vs. Fc/Fc+ (Figure 4-6) for 4-OTf has been tentatively assigned to the 

Cu(II)/Cu(I) couple, as no other compound of the group has waves at potentials lower 

than Fc/Fc+. These data for 1-5-OTf indicate that the nature of the divalent metal 

influences the redox potential of the coordinated flavonolate over a range of ~300 mV. 

The differences in oxidation potential found for this series of complexes depends on the 

metal and/or the solution structure of the metal complex. The Mn(II) derivative 1-OTf, 

Figure 4-6. Cyclic voltammogram for the Cu(II) complex 4-OTf. 
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which based on EPR, may form binuclear species in solution, has the lowest potential, 

indicating that the flavonolate is a better reductant toward O2 than the same ligand in the 

Ni(II), Cu(II), and Zn(II) analog complexes. For the Ni(II) and Zn(II) complexes 3-ClO4 

and 5-ClO4, irreversible oxidation of the flavonolate ligand occurs at +0.506 and +0.536 

V vs. Fc/Fc+, respectively. For the Cu(II) complex, which is distorted square pyramidal in 

acetonitrile, the potential is more positive (+0.660 V). Potentials previously reported for 

3-hydroxyflavonolate complexes of the general formula [M(3-Hfl)(H2O)n]Cl (M = Cu, n 

= 2; M = Fe, n = 4) are in the same range as those reported herein.57 

Ligand Exchange Reactivity. The results of initial electrospray ionization mass 

spectrometry experiments suggested that the Mn(II) flavonolate complex 1-OTf would 

undergo reaction with available Zn(II) ion to produce a ligand exchange product, [(6-

Ph2TPA)Zn(OTf)]+. To examine this reactivity, in independent NMR tube experiments, 

[(6-Ph2TPA)Mn(3-Hfl)]OTf was treated with an equimolar amount of M(ClO4)2⋅6H2O (M 

= Co(II), Ni(II), and Zn(II)) in CD3CN. For each reaction, well resolved 1H NMR spectra 

consistent with the quantitative formation of a divalent metal solvate complex of the 

added metal, [(6-Ph2TPA)M(CD3CN)n](X)2 (n = 1 or 2; X = OTf- or ClO4
-) were 

obtained.25,26 A yellow-green precipitate formed in each reaction mixture and was 

identified as [Mn(3-Hfl)2⋅0.5H2O] by elemental analysis. This compound was isolated 

from the reaction mixture involving Ni(II) by selective crystallization in 39% yield (for 

0.5 equivalent). In addition to the stoichiometric formation of [(6-

Ph2TPA)M(CD3CN)n](X)2 and 0.5 eq. of [Mn(3-Hfl)2⋅0.5H2O], mass balance requires the 

formation of 0.5 eq. of MnX2 salt (equation 4-1), which could not be isolated from the 
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reaction mixture. Notably, we found that the Mn(II) hydroxamate complex [(6-

Ph2TPAMn)(µ-ONHC(O)CH3)2](ClO4)2
25 also reacts with M(ClO4)2⋅6H2O to produce 

[(6-Ph2TPA)M(CD3CN)](X)2 (M = Co, Ni, Zn; X = OTf- or ClO4
-; equation 4-2), as 

determined by 1H NMR. The similarity in EPR spectral features (vida supra) and 

reactivity of [(6-Ph2TPA)Mn(3-Hfl)]OTf and [(6-Ph2TPAMn)(µ-ONHC(O)CH3)2](ClO4)2 

suggest that the compounds may have similar solution structures. We propose that these 

structures include µ-η1:η2-coordination of the chelate anion (3-Hfl or acetohydroxamate) 

as is found in the X-ray structure of [(6-Ph2TPAMn)(µ-ONHC(O)CH3)2](ClO4)2.
25 

 

M = Co, Ni, Zn; X = OTf- or ClO4
-: 

[(6-Ph2TPA)Mn(3-Hfl)]OTf  + M(ClO4)2⋅6H2O  + nCD3CN → [(6-

Ph2TPA)M(CD3CN)n](X)2  +  0.5 MnX2 + 0.5 [Mn(3-Hfl)2⋅0.5H2O] + 5.75 H2O       (4-1) 

 

[(6-Ph2TPA)Mn(ONHC(O)CH3)]ClO4 + M(ClO4)2⋅6H2O  + nCD3CN → [(6-

Ph2TPA)M(CD3CN)n](X)2  + 0.5MnX2 +  0.5 [Mn(ONHC(O)CH3)2] + 6H2O            (4-2) 

 

In this coordination motif, each Mn(II) center coordinates the anionic oxygen of each 

bridging ligand. We propose that from this structure an equilibrium mixture is formed, 

and is comprised of 0.5 eq. [Mn(3-Hfl)2⋅0.5H2O], 0.5 eq. free chelate ligand, and 0.5 eq. 

of [(6-Ph2TPA)Mn(CD3CN)2](X)2 (Scheme 4-3). Formation of the final product mixture, 

including one equivalent of [(6-Ph2TPA)M(CD3CN)n](X)2  (M = Co, Ni, Zn), could result 
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from coordination of the free divalent metal ion to the free chelate ligand, and 

displacement of Mn(II) (as MnX2) from [(6-Ph2TPA)Mn(CD3CN)2](X)2. The latter 

reaction has been independently investigated by 1H NMR and found to occur rapidly in 

CD3CN for M = Co(II), Ni(II), and Zn(II). 

In another type of ligand exchange reaction, we found that treatment of the non-

manganese flavonolate complexes [(6-Ph2TPA)M(3-Hfl)]OTf (M = Co (2-OTf), Ni (3-

OTf), and Cu (4-OTf)) with 0.5 eq Zn(ClO4)2⋅6H2O in CD3CN results in the formation of 

Scheme 4-3. Proposed reaction pathway for ligand exchange in the reaction of 1-OTf 

with divalent metal perchlorate salts. 
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[(6-Ph2TPA)M(CD3CN)n](X)2 (n = 1 or 2; X = OTf- or ClO4
-) species as indicated by 1H 

NMR. Hence, in these reactions flavonolate ligand exchange occurs, but no change in the 

metal bound by the 6-Ph2TPA ligand takes place. The other product in the reaction is 

[Zn(3-Hfl)2⋅2H2O] (equation 4-3),  which is a poorly soluble yellow precipitate. This 

material was identified by independent synthesis and characterization, followed by 

comparison of UV-vis and 1H NMR properties between the reaction product and the 

independently generated material.  

 

M = Co, Ni, Cu; X = OTf- or ClO4
- 

[(6-Ph2TPA)M(3-Hfl)]OTf  + 0.5 Zn(ClO4)2⋅6H2O  + n CD3CN  →  [(6-

Ph2TPA)M(CD3CN)n](X)2  +  0.5 [Zn(3-Hfl)2⋅2H2O] + 2 H2O                               (4-3) 

 

What about Fe(II)? The quercetinase enzyme from B. subtilis was originally 

described as a non-heme iron enzyme.10 However, the turnover number for this enzyme 

was reported to be two orders of magnitude lower than for the Cu(II)-containing A. flavus, 

which led researchers to suggest that Fe(II) might not be the correct cofactor for the 

enzyme. Follow-up studies suggested that Mn(II) was probably the correct cofactor for the 

B. subtilis enzyme.11 To date, only two iron flavonolate complexes, both Fe(III) 

derivatives, have been crystallographically characterized.23,24  

To gauge the chemistry of Fe(II) relative to the other 3d metal ions investigated 

herein, we initiated attempts to prepare a Fe(II) flavonolate complex supported by the 6-

Ph2TPA ligand. In our first approach, treatment of 6-Ph2TPA with equimolar amounts of 
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Fe(ClO4)2⋅6H2O, 3-hydroxyflavonol, and Me4NOH⋅5H2O under a N2 atmosphere, 

followed by stirring overnight, work-up, and crystallization from CH3CN/Et2O resulted in 

the deposition of dark brown single crystals. X-ray crystallographic analysis of these 

crystals revealed the formation of the diiron(III) µ-oxo compound [(6-Ph2TPAFe(3-

Hfl))2(µ-O)](ClO4)2 (6⋅⋅⋅⋅2.5CH3CN, Figure 4-7). The structural and spectroscopic 

properties of this complex are discussed in detail below. However, as an approach toward 

understanding the reaction pathway leading to the formation of 6, we further explored the 

synthetic conditions.  

Treatment of 6-Ph2TPA with Fe(ClO4)2⋅6H2O in CH3CN, followed by recrystallization 

from CH3CN/Et2O, yielded [(6-Ph2TPA)Fe(CH3CN)](ClO4)2 (7) as pale yellow crystals. 

Characterization details for this Fe(II) complex are given in the supporting information. 

Figure 4-7. Thermal ellipsoid drawings (50% probability) of the cationic portions of 

6⋅⋅⋅⋅2.5CH3CN. Hydrogen atoms have been omitted for clarity. 
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Treatment of 7 with equimolar amounts of 3-hydroxyflavonol and Me4NOH⋅5H2O in 

methanol, and stirring for 15 minutes under a freshly purged N2 atmosphere, gave a green-

yellow solution from which, after work-up, a green-yellow precipitate was isolated. The 

analytical and spectroscopic properties of this complex are consistent with the 

formulation [(6-Ph2TPA)Fe(3-Hfl)]ClO4 (8). For this complex, the flavonolate νC=O 

vibration is at 1558 cm-1, and the band I π →π* transition is at 415 nm (ε ~ 14700 M-1cm-

1). These features are similar to those found for the Co(II) derivative 2-OTf, suggesting 

that the flavonolate ligand may be coordinated with a ∆M-O similar to that found in the 

cobalt complex. The magnetic moment for 8 (µeff = 4.7 µB) is consistent with the 

presence of a high-spin Fe(II) center.58 The 1H NMR spectrum of 8 contains several 

paramagnetically shifted resonances over a range of ~110 ppm (Figure 4-8). Investigation 

of the redox properties of 8 by cyclic voltammetry (CH2Cl2, [8] = 1 mM, Bu4NClO4 (0.1 

M) supporting electrolyte, scan rate 50-100 mV/s) revealed a quasi-reversible couple at ~-

0.05 V versus ferrocene/ferrocenium, which is assigned as the Fe(II)/Fe(III) couple. No 

redox activity was found at more positive potentials, indicating that upon oxidation of the 

iron center, the redox potential for the coordinated flavonolate is shifted from that 

observed for the other divalent metal 3-Hfl complexes. This redox behavior is consistent 

with the observed metal-centered O2 reactivity described below.  

Complex 8 is very air sensitive, which complicated our efforts to characterize it, 

especially in solution. Exposure of a CH3CN solution of 8 to air results in a rapid 

darkening of the color, which corresponds to the formation of the µ-oxo compound 6 
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This complex was characterized by X-ray crystallography, elemental analysis, UV-vis, 

FTIR, and mass spectrometry. A summary of the iron coordination chemistry is shown in 

Scheme 4-4.  

The cationic portion of 6⋅⋅⋅⋅2.5CH3CN is shown in Figure 4-7. Details of the X-ray 

data collection of this complex are given in Table 4-6. Selected bond distances and angles 

are given in Tables 4-7 and 4-8, respectively. Each Fe(III) center has a κ3-6-Ph2TPA 

ligand, a bidentate flavonolate ligand, and the µ-oxo bridge. The flavonolate ligands are 

coordinated to Fe(1) and Fe(2) with ∆M-O = 0.17 and 0.14 Å, respectively. This is similar 

to the coordination found in the Co(II) and Zn(II) flavonolate complexes 2-ClO4 and 5-

ClO4⋅⋅⋅⋅CH2Cl2. Similarly, the Fe(III) complexes [(salen)Fe(III)(3-Hfl)] and [Fe(4’-

MeOflaH)3] have ∆M-O = 0.18 and 0.15 Å, respectively.23,24 Thus, all of the Fe(III) 

Figure 4-8. 1H NMR spectrum of [(6-Ph2TPA)Fe(3-Hfl)]ClO4 (8) in CD3CN at ambient 

temperature. In addition to the resonances shown, broad peaks are also present at 112 and 

92 ppm.  
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flavonolate complexes that have been structurally characterized to date exhibit very 

similar levels of asymmetry with respect to flavonolate coordination.  

The Fe-O(flavonolate) bond distances are also very similar in all three 

compounds. We note that the flavonolate ketone oxygen donor is positioned trans to the 

µ-oxo bridge in 6⋅⋅⋅⋅2.5CH3CN, whereas the deprotonated oxygen donor is trans to the 

tertiary amine nitrogen. This results in a meridional donor array from the κ
3-bound chelate 

ligand. The Fe-O bond distances involving the oxo bridge in 6⋅⋅⋅⋅2.5CH3CN are within 

experimental error identical to those found in [(6-C6H4O-TPAFe)2(µ-O)](BPh4)2.
59 The 

average Fe-N distance in 6⋅⋅⋅⋅2.5CH3CN (~2.20 Å) is slightly longer than what is found in 

[(6-C6H4-TPAFe)2(µ-O)](BPh4)2 (~2.18 Å). However, both distances are consistent with a 

high-spin (S = 5/2) state for each iron center.60 

A vibration at 1549 cm-1 in the solid state infrared spectrum of 6 is assigned as the 

νC=O vibration of the flavonolate, based on comparison to the spectral features of 

[(salen)Fe(III)(3-Hfl)] (1549 cm-1).24 Compound 6 is slightly soluble in methanol and 

exhibits absorption bands at 388 and 490 nm (Figure 4-9). Unlike its Fe(II) flavonolate 

precursor 8, an absorption feature for the flavonolate ligand in the region of 400-450 nm 

could not be readily identified. The absorption features of 6 and 8 are compared in Figure 

4-9. For [(salen)Fe(III)(3-Hfl)], an absorption maximum at 407 nm was reported.24 The 

1H NMR spectrum of 6 in d4-methanol consists of broad resonances in the range of 0 to 

~40 ppm (Figure 4-10). 
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Table 4-6. Summary of X-ray Data Collection and 
Refinement for 6⋅⋅⋅⋅2.5CH3CN. 
  

Empirical formula C97H77.5Cl2Fe2N10.5O15 

Mr 1788.78 

Crystal system Triclinic 

Space group P-1 

a/ Å 14.02370(10) 

b/ Å 15.2054(2) 

c/ Å 21.6638(3) 

α /° 70.1168(7) 

β /° 74.8473(7) 

γ /° 81.5826(8) 

V / Å3 4184.67(9) 

Z 2 

Dc / Mg m-3 1.420 

T / K 150(1) 

Color Red 

Crystal habit Prism 

Crystal size/ mm 0.28 x 0.18 x 0.15 

Diffractometer Nonius KappaCCD 

µ/ (mm-1) 0.486 

2θ max /° 54.92 

Completeness to θ  (%) 99.0 

Reflections collected 35639 

Independent reflections 18968 

Rint 0.0393 

Variable parameters 1151 

R1 / wR2b 0.0460/0.1010 

Goodness-of-fit (F2) 1.019 

∆ρmax/min / e Å-3 0.397/-0.487 

aRadiation used: Mo Kα (λ = 0.71073 Å) bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|; wR2 = 
[∑[w(Fo2-Fc2)2]/[∑(Fo2)2]] 1/2, where w = 1/[σ2(Fo2) + (aP)2 + bP]. 
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Table 4-7. Selected Bond Distances (Å) for 6⋅⋅⋅⋅2.5CH3CN. 
    

Fe(1)-O(1) 1.9712(14) Fe(2)-O(1A) 1.9655(14) 

Fe(1)-O(2) 2.1460(15) Fe(2)-O(2A) 2.1054(15) 

Fe(1)-O(4) 1.7890(14) Fe(2)-O(4) 1.7992(14) 

Fe(1)-N(1) 2.1679(17) Fe(2)-N(1A) 2.1822(18) 

Fe(1)-N(2) 2.2489(17) Fe(2)-N(2A) 2.2180(18) 

Fe(1)-N(3) 2.2241(17) Fe(2)-N(3A) 2.2109(18) 

O(1)-C(31) 1.330(3) O(1A)-C(31A) 1.326(3) 

O(2)-C(32) 1.271(3) O(2A)-C(32A)  1.274(2) 

Table 4-8. Selected Bond Angles (deg) for 6⋅⋅⋅⋅2.5CH3CN. 
    

O(4)-Fe(1)-O(1) 96.02(6) O(4)-Fe(2)-O(1A) 95.13(6) 

O(4)-Fe(1)-O(2) 170.00(6) O(4)-Fe(2)-O(2A) 169.80(6) 

O(1)-Fe(1)-O(2) 
 

78.51(6) O(1A)-Fe(2)-O(2A) 79.72(6) 

O(4)-Fe(1)-N(1) 97.29(7) O(4)-Fe(2)-N(1A) 96.62(7) 

O(1)-Fe(1)-N(1) 90.11(6) O(1A)-Fe(2)-N(1A) 88.98(6) 

O(2)-Fe(1)-N(1) 91.13(6) O(2A)-Fe(2)-N(1A) 92.12(6) 

O(4)-Fe(1)-N(3) 93.65(6) O(4)-Fe(2)-N(3A) 93.35(6) 

O(1)-Fe(1)-N(3) 117.63(6) O(1A)-Fe(2)-N(3A) 118.27(6) 

O(2)-Fe(1)-N(3) 81.72(6) O(2A)-Fe(2)-N(3A) 81.55(6) 

N(1)-Fe(1)-N(3) 148.90(7) N(1A)-Fe(2)-N(3A) 149.99(7) 

O(4)-Fe(1)-N(2) 93.62(6) O(4)-Fe(2)-N(2A) 93.42(6) 

O(1)-Fe(1)-N(2) 162.47(6) O(1A)-Fe(2)-N(2A) 161.88(6) 

O(2)-Fe(1)-N(2) 93.87(6) O(2A)-Fe(2)-N(2A) 94.03(6) 

N(1)-Fe(1)-N(2) 74.13(6) N(1A)-Fe(2)-N(2A) 74.17(7) 

N(3)-Fe(1)-N(2) 76.19(6) N(3A)-Fe(2)-N(2A) 77.04(7) 
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Scheme 4-4. 

Figure 4-9. UV-vis absorption features of [(6-Ph2TPAFe(3-Hfl))2(µ-O)](ClO4)2 (6)  and 

[(6-Ph2TPA)Fe(3-Hfl)]ClO4 (8).  
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Several features of this spectrum are significantly overlapped in the aromatic range (-10 to 

40 ppm), consistent with the presence of several types of aryl protons. The dramatically 

different features of this spectrum versus that found for [(6-Ph2TPA)Fe(3-Hfl)]ClO4 (8, 

Figure 4-8) is likely due to antiferromagnetic coupling of the S = 5/2 metal centers via the 

oxo bridge.59,61,62 

Final Comments 

The chemistry of metal complexes of flavonolate ligands is of significant current 

interest. Metal flavonolate complexes have been prepared and investigated for their 

antioxidant and DNA cleavage reactivity.63-74 Because of their biological relevance, metal 

flavonolate complexes have also been the subject of several recent computational 

investigations.75-78 As noted in the introduction, fungal and bacterial quercetinase 

enzymes have been shown to exhibit varying levels of activity as a function of the 

divalent metal ion present. While a few initial investigations directed at evaluating the 

effect of the metal ion on flavonolate/O2 chemistry of relevance to quercetin dioxygenase 

Figure 4-10. 1H NMR spectrum of 6 in CD3CN.  
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enzymes have been reported,23,24 these studies lack a systematic approach. Specifically, 

the studies reported to date have included comparisons between complexes having 

different supporting chelate ligands and/or metal oxidation states. The research described 

herein is the first detailed systematic mapping of how metal ion content influences the 

structural, spectroscopic, redox properties, and ligand exchange reactivity of structurally-

related flavonolate complexes. These complexes are relevant to the metal/flavonolate 

adducts proposed to form in quercetinase enzymes of varying metal ion content. The 

results presented herein lay the groundwork for detailed O2 reactivity studies as a function 

of the divalent metal ion present. These investigations are currently in progress.  
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CHAPTER 5 

PHOTOCHEMICALLY-INDUCED DIOXYGENASE-TYPE CO-RELEASE OF 

GROUP 12 FLAVONOLATE COMPLEXES1 

Abstract 

Exposure of 3-hydroxyflavonolate complexes of the group 12 metals to UV light 

under aerobic conditions results in oxidative carbon-carbon bond cleavage and CO 

release. This reactivity is novel in that it occurs under mild reaction conditions and 

suggests that light-induced CO-release reactivity involving metal flavonolate species may 

be possible in biological systems.  

Introduction 

Flavonoids are a class of a naturally occurring, polyphenolic substances produced 

in plants. They are of current interest as potential therapeutic agents due to their anti-

microbial, anti-oxidative, and UV-protective activity.1 A prominent member of this 

family of compounds is quercetin (Figure 5-1), a natural compound that is being 

investigated to prevent or treat a variety of diseases.1a,2 Quercetin is found in an 

assortment of foods including black and green tea, red onions, and many other fruits and 

vegetables that are widely touted for their beneficial health effects.  

 

1 Coauthored by Katarzyna Grubel, Brynna Laughlin, Thora R. Maltais, Rhett C. Smith, 
Atta M. Arif, and Lisa M. Berreau. Reproduced with permission from Chemical 
Communications 2011. Copyright 2011 The Royal Society of Chemistry.  



 

 

154

Studies of the interactions of flavonoids with metal ions are essential toward 

understanding how complexation modulates the reactivity properties of the flavonoid.3 

Investigations of metal-flavonoid species are relevant toward understanding the active site 

chemistry of quercetinases from fungi and bacteria that catalyze oxidative cleavage of the 

C(2)-C(3) bond (a dioxygenase-type reaction; Figure 5-1) and CO release.4,5 In another 

area of research, metal complexes of 3-hydroxyflavonol (3-Hfl, Figure 5-1 (bottom)) are 

being used as model systems to evaluate intereactions between components of soil 

organic matter and bioavailable or contaminating heavy metal ions.6 To adequately 

address these areas, systematic studies of structure/reactivity relationships of metal 

flavonolate complexes are needed, including studies involving environmentally toxic 

metals ions such as Cd(II) and Hg(II). However, to date such systematic studies are 

lacking, and while the chemistry of copper flavonolate species has been significantly 

advanced in recent years,7 far fewer X-ray crystallographically characterized flavonolate 

Figure 5-1. Top: Structure of quercetin (including numbering of C-C bond that 

undergoes oxidative cleavage) and the reaction catalyzed by quercetinase enzymes. 

Bottom: Structure of 3-hydroxyflavonol (3-Hfl) and labeling of rings.  
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complexes of other metal ions have been reported.8 To address this deficiency, we 

recently prepared and characterized the first series of 3-Hfl complexes of the 3d metals, 

including a Zn(II) derivative, [(6-Ph2TPA)Zn(3-Hfl)]ClO4 (1; 6-Ph2TPA, N,N-bis((6-

phenyl-2-pyridil)methyl)-N-((2-pyridil)methyl)amine).9  

Discussion 

Outlined herein is the first systematic study of the structural, spectroscopic, and 

aerobic photochemical reactivity properties of Group 12 metal 3-Hfl complexes. Our 

results demonstrate that all three group 12 metal ions form isolable flavonolate 

complexes that can be characterized by X-ray crystallography, and that each complex 

undergoes an aerobic photochemically-induced dioxygenase-type reaction to release CO 

and form a metal-depside complex. These results are novel for a number of reasons. First, 

aerobic photoinduced flavonoid ring-opening and CO release has not been previously 

reported for any metal flavonolate complex and is relevant to plant and soil chemistry 

involving metal-flavonoid interactions. Second, the observed dioxygenase reactivity for 

the complexes contrasts with prior reports of Zn(II)-flavonolate species that exhibit 

photoisomerization reactivity akin to that found for free 3-hydroxyflavonol.10  

 The Cd(II) and Hg(II) flavonolate complexes [(6-Ph2TPA)M(3-Hfl)]ClO4 (M = 

Cd(II), 2; M = Hg(II), 3) were prepared in a similar manner to the Zn(II) analog.9 Each 

complex was characterized by X-ray crystallography, elemental analysis, IR, multinuclear 

NMR, UV-vis, and fluorescence. While the Zn(II) center of 1 has a coordination number 

of five in the solid state, the Cd(II) and Hg(II) analogs 2 and 3 exhibit a distorted 

octahedral geometry (Figure 5-2).11 In both complexes the ketone oxygen of the C ring is 
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coordinated trans to the tertiary amine nitrogen of the chelate ligand. The average M-O 

distance involving the flavonolate oxygen atoms increases down the group (1: 2.03 Å; 2: 

2.25 Å; 3: 2.30 Å),12 and the asymmetry of the flavonolate coordination (∆M-O) is largest 

for the Zn(II) and Hg(II) derivatives (0.17 and 0.21 Å, respectively). The flavonolate 

moiety in 2 and 3 is positioned between the phenyl appendages of the 6-Ph2TPA ligand 

(Figure 5-2). The average distance between the centroid of ring C of the flavonolate and 

the centroids of the aryl rings of the chelate ligand is ~4.0 Å. 

Comparison of the 1H NMR spectra of 1-3 (Figure 5-3) shows that each complex 

has effective Cs symmetry in solution with equivalent phenyl-appended pyridyl 

appendages. There are interesting differences in the 1H NMR spectra of this series of 

complexes in terms of the chemical shifts of proton resonances associated with the phenyl 

appendages of the 6-Ph2TPA ligand. Namely, in 2 and 3 the resonances of the meta and 

Figure 5-2. Thermal ellipsoid drawings of the cationic portions of 2 and 3. Ellipsoids 

are plotted at the 50% probability level. Hydrogen atoms are omitted for clarity. 
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para protons of the phenyl appendages are shifted upfield, which is consistent with π-

stacking involving the C ring of the flavonolate. Additionally, the signal for the C(1)-H of 

the unsubstituted pyridyl ring in 2 and 3 is shifted downfield by ~0.9 ppm relative to the 

same signal in 1. We attribute this deshielding to the presence of close contact between 

C(1) of the unsubstituted pyridyl ring and the carbonyl O(2) atom of the coordinated 

flavonolate (for both complexes 2 and 3 C(1)…O(2) distance is ~3.0 Å). 

The π→π* transition of the flavonolate moiety of 2 is found at 430 nm and is red-

shifted relative to that of 1 (420 nm) and 3 (415 nm). Fluorescence emission spectra of 

the complexes show a Stokes shift of 60 nm for 1 and 3, and 46 nm for 2 (Figures 5-4, 5-

5, and 5-6). The excited states associated with these emissions have lifetimes of ~2.0 ns 

(1: 2.0(1); 2: 1.7(1) ns; 3: 2.0(1) ns)). The fluorescence quantum yields are 1-3 0.18, 0.06, 

and 0.02, respectively. We note that the complexes presented herein have lower 

Figure 5-3. 1HNMR spectra of [(6-Ph2TPA)Zn(3-Hfl)]ClO4 (1, top), [(6-

Ph2TPA)Cd(3-Hfl)] ClO4 (2, middle), and [(6-Ph2TPA)Hg(3-Hfl)] ClO4 (3, bottom). 
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fluorescence quantum yields than that previously reported for [Zn(3-Hfl)]+  (0.38), albeit 

the structure of this species has not been determined.10 The divalent metal flavonolate 

complexes 1-3 are stable with respect to exposure to oxygen in the solid state under room 

light for >90 days. However, exposure of aerobic CH3CN solutions of 1-3 to UV light 

(Rayonet, 300 nm irradiation) results in clean, high-yield dioxygenase-type reactivity to 

give the depside complexes [(6-Ph2TPA)M(O-bs)]ClO4 (M = Zn (4), Cd (5), Hg (6); O-bs 

= O-benzoylsalicylate; Scheme 5-1) and CO.13 Each reaction proceeds with a high 

quantum yield at 300 nm:  1 (ϕ = 0.9), 2 (ϕ = 1.0), and 3 (ϕ = 0.8). 

The shorter excited state lifetime and lower reaction quantum yield of the Hg(II) 

complex is due to enhanced spin-orbit coupling.14 Use of 18O2 in the reactions of 1 and 2 

resulted in quantitative incorporation (>98% as determined by mass spectrometry and 

FTIR) of two labeled oxygen atoms into the depside ligand. Comparison of the fully 

Figure 5-4. Absorption and emission spectra of 1.  
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assigned 13C NMR spectra of 2, 5, and [(6-Ph2TPA)Cd(CH3CN)](ClO4)2 (7, Figures 7-9) 

clearly show that the carbon lost as CO is derived from the C(31)-O(1) unit (Figure 5-7). 

 

Figure 5-5. Absorption and emission spectra of 2.  

Figure 5-6. Absorption and emission spectra of 3.  
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Complexes 4 and 5 were characterized by X-ray crystallography, elemental 

analysis, NMR spectroscopy, IR spectroscopy, and mass spectrometry. Complex 6 was 

characterized by NMR spectroscopy, IR spectroscopy, and mass spectrometry. The 

cationic portions of 4 and 5 are shown in Figure 3. In 415 the zinc center has a nearly 

trigonal bipyramidal geometry,16 with the O-bs ligand coordinated in a monodentate 

fashion in an axial position.17 In 5, the depside is coordinated as a bidentate ligand.17,18 

The spectroscopic properties of the depside complexes 4 and 5 are as expected (Figure 5-

10). We note that 1H NMR spectra of 6 give evidence for a small amount of loss of the 6-

Ph2TPA ligand in CD3CN solutions of this complex.19 

The results presented herein are novel when considered in the context of the 

previously reported photochemistry of 3-Hfl. Irradiation of a pyridine solution of 3-Hfl 

using a 300 W tungsten lamp, in the presence of a photosensitizer (Bengal rose), has been 

reported to result in the formation of the photooxygenation products depside (O-bs) and 

CO.20 This reaction involves the generation of 1O2 which reacts with ground state 3-Hfl. 

Struder et al. reported that photooxygenation of 3-Hfl occurs in O2-saturated nonpolar 

solvents in the absence of a photosensitizer.21 
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Figure 5-7. 13C{1H} NMR chemical shift assignments (in ppm) for 2. The resonances 

were assigned on the basis of HMQC and COSY data.  
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Figure 5-8. 13C{1H} NMR chemical shift assignments (in ppm) for 5. The resonances 

were assigned on the basis of HMQC and COSY data. aThirteen signals could not be 

definitively assigned. These are found at: 134.0, 133.8, 132.7, 130.7, 130.4, 130.0, 

129.4, 128.6, 127.1 125.9, 126.7, 124.3, 123.0. 
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Figure 5-9. 13C{1H} NMR chemical shift assignments (in ppm) for [(6-
Ph2TPA)Cd(CH3CN)](ClO4)2 (7). The resonances were assigned on the basis of 
HMQC and COSY data. 

Figure 5-10. 1HNMR spectra of [(6-Ph2TPA)Zn(O-bs)]ClO4 (4, top), [(6-

Ph2TPA)Cd(O-bs)]ClO4 (5, middle), and [(6-Ph2TPA)Hg(O-bs)]ClO4 (6, bottom). 
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In this case, photooxygenation was suggested to result from reaction between a triplet 

tautomer state, wherein the C(3) hydroxyl proton has been transferred to the C(4)-

carbonyl moiety in a zwitterionic structure, and ground state 3O2. We note that this 

chemistry is solvent dependent, as un CH3OH, CH3CN, or CH2Cl2 photooxygenation 

does not happen and instead photorearrangement to give 3-penyl-3-hydroxy-1,2-

inandione occurs. 

Previously, the presence of metal ions was reported to prevent the photoinduced 

rearrangement of neutral 3-Hfl, or have no effect on the photochemical reaction.10,22a 

However, the results presented herein show that metal 3-hydroxyflavonolate complexes 

can undergo photoinduced dioxygenase type CO-release reactivity when irradiated with 

UV light. In these complexes the coordinated flavonolate anion is akin to the triplet 

tautomeric structure of 3-Hf23, thereby enabling photoinduced photooxygenation and CO-

release reactivity, Notably, this reactivity occurs under conditions that are considerably 

milder than those reported for thermal dioxygenase-type reactions of Cu(3-Hfl) 

complexes.7 Overall, the results presented herein suggest that the formation of metal-

flavonolate species in nature may enable light-induced dioxygenase-type CO-release 

reactivity under mild conditions.  

Experimental 

General Methods. All reagents and solvents were obtained from commercial 

sources and were used as received unless otherwise noted. Anaerobic procedures were 

performed in a VAC atmospheres glovebox. Solvents for glovebox use were dried 

according to published methods and distilled under N2.
24 The zinc complexes [(6-
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Ph2TPA)Zn(3-Hfl)]X (1-X, X = OTf- or ClO4
-)  were prepared as previously described.9 

Physical Methods. UV-vis spectra were collected using a HP8453A 

spectrometer. FTIR spectra were recorded on a Shimadzu FTIR-8400 spectrometer as 

KBr pellets. 1H, 13C, and 113Cd NMR spectra were obtained using a Bruker ARX-400. 

Chemical shifts are referenced to the residual solvent peak(s) in d3-acetonitrile (1H: 1.94 

(quintet) ppm; 13C{1H} 1.39 (heptet)). 113Cd NMR spectra were recorded at 88.9 MHz 

using CD3CN as the solvent and were referenced to an external standard of 0.5 M 

Cd(ClO4)2·5H2O in D2O (0.00 ppm). Additional details regarding the acquisition of 113Cd 

NMR spectra have been previously reported.25 CO formation was determined 

qualitatively via the PdCl2 method14 or using an Agilent 3000A Micro GC. Mass spectral 

data was collected at the Mass Spectrometry Facility, University of California, Riverside. 

Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, GA. 

Acetonitrile solutions of 1–3 (6.70 x 10-5 M) for fluorescence measurements were 

prepared under anaerobic conditions. Each solution was transferred to a quartz cell sealed 

with a septum-containing screw cap (VWR Spectrosil). Anaerobic emission spectra were 

obtained using Shimadzu RF-530XPC in the range of 250-900 nm with excitation 

wavelength corresponding to the absorption maximum of the complex above 400 nm. 

The excitation slit width was set at 5 nm and the emission slit width was set at 5 nm for 

all fluorescence experiments.  

Quantum Yield Measurements. In a 100 mL volumetric flask complex 1, 2, or 3 

(7.1 x 10-6 mol; 6.0 mg, 6.3 mg, and 7.0 mg, respectively) was dissolved in acetonitrile 

and filled to the mark. Three samples (3 mL each) were prepared for each complex and 
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put into an air-free quartz cuvettes. Each cuvette was then inserted into an UV reactor and 

exposed to 300 nm radiation for 60 s. After this time, reaction progress was evaluated 

using UV-vis spectroscopy, by measuring the intensity of the band I absorption of the 

metal-bound flavonolate.9 The lamp output was measured using standard actinometry.26 

 

Caution! Perchlorate salts of metal complexes with organic ligands are 

potentially explosive. Only small amounts of material should be prepared, and these 

should be handled with great care.27 

 

Synthesis of [(6-Ph2TPA)Cd(3-Hfl)]ClO4 (2). In a glovebox, a methanol solution 

(~2 mL) of Cd(ClO4)2·6H2O (50.0 mg, 1.19 x 10-4 mol) was added to solid 6-Ph2TPA 

(52.8 mg, 1.19 x 10-4 mol) and the mixture was stirred until all of the ligand had 

dissolved. The colorless solution was added to a methanol solution (~2 mL) of 3-Hfl 

(28.4 mg, 1.19 x 10-4 mol) and Me4NOH·5H2O (21.6 mg, 1.19 x 10-4 mol). The mixture 

was then allowed to stir for 3 h at ambient temperature. After this time, the solvent was 

removed under reduced pressure. The residual bright yellow solid dissolved in CH2Cl2 

and filtered through a glass wool/celite plug. Precipitation of the product was induced by 

the addition of excess hexanes. The solid that deposited was then brought to dryness 

under reduced pressure. Yield: 91 mg, 94%. X-ray quality crystals were obtained by 

diethyl ether diffusion into an acetonitrile solution. Elemental analysis: found: C, 59.42; 

H, 3.97; N, 6.06. Calcd for C45H35CdN4O7·0.25CH2Cl2: C, 59.54; H, 3.92; N, 6.14 (the 

presence of CH2Cl2 was confirmed by a 1H NMR measurement); UV-vis 



 

 

167

λmax(CH3CN)/nm (ε/M-1cm-1) 430 (13500); FTIR (KBr, cm-1) 1549 (νC=O); 1H NMR  

(CD3CN, 400 MHz): δ 9.47 (s, 1H), 8.32 (d, J = 7.6 Hz, 2H), 8.14 (t, J = 8.4 Hz, 1H), 

7.93 (t, J = 7.7 Hz, 2H), 7.80 (t, 1H), 7.66-7.30 (m, 10H),  7.24 (dt, J1 = 7.9 Hz, J2 = 1.1 

Hz, 1H), 7.11 (d, J = 7.1 Hz, 3H), 6.66 (t, J = 7.4 Hz, 3H), 6.58 (t, J = 6.9 Hz, 1H), 4.38-

4.22 (m, 6H); 13C{1H} NMR (CD3CN, 100 MHz): δ 177.7, 160.8, 156.2, 155.6, 154.3, 

150.9, 148.5, 146.3, 141.0, 140.7, 139.5, 135.2, 132.4, 129.3, 129.2, 128.8, 128.6, 128.3, 

127.8, 126.2, 125.8, 125.6, 124.6, 124.3, 123.8, 121.0, 118.5, 58.4, 58.3 (29 signals 

expected for equivalent phenyl-appended pyridyl donors; 29 observed).; 113Cd{1H} NMR 

(CD3CN, 88.9 MHz): δ 186.8; ESI-APCI, m/z (relative intensity) 793.1732 ([M-ClO4]
+

, 

3%).  

The 13C NMR spectral features of 2 are given in Figure 5-7. In order to make 

signal assignments for this complex a related compound lacking the 3-Hfl ligand [(6-

Ph2TPA)Cd(CH3CN)](ClO4)2 
 (7) was prepared and characterized (see below).  

Synthesis of [(6-Ph2TPA)Hg(3-Hfl)]ClO4 (3). A methanol solution (~2 mL) of 

Hg(ClO4)2·6H2O (50.0 mg, 9.85 x 10-5 mol) was added to solid 6-Ph2TPA (43.6 mg, 9.85 

x 10-5 mol) and the mixture was stirred until all of the ligand had dissolved. The colorless 

solution was added to a methanol solution (~2 mL) of 3-Hfl (23.5 mg; 9.85 x 10-5 mol) 

and Me4NOH·5H2O (17.9 mg; 9.85 x 10-5 mol). The mixture was then allowed to stir for 

3 h at ambient temperature. After this time, the solvent was removed under reduced 

pressure. The residual bright-yellow solid dissolved in CH2Cl2 and filtered through a 

glass wool/celite plug. Precipitation of the product was induced by the addition of excess 

hexanes. The solid that deposited was then brought to dryness under reduced pressure. 
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Yield: 94 mg, 97%. X-ray quality crystals were obtained by ether diffusion into a 

dichloromethane solution. Elemental analysis: found: C, 54.80; H, 3.63; N, 5.56. Calcd 

for C45H35HgN4O7: C, 55.16; H, 3.60; N, 5.72; UV-vis λmax (CH3CN)/nm (ε/M-1cm-1) 415 

(14000); FTIR (KBr, cm-1) 1566 (νC=O); 1H NMR  (CD3CN, 400 MHz): δ 9.34 (d, J = 4.7 

Hz, 1H), 8.15-8.05 (m, 3 H), 7.91 (t, J = 7.8 Hz, 2H), 7.80-7.60 (m, 4 H), 7.58-7.20 (m, 

13 H), 6.74 (t, J = 7.5 Hz, 4H), 6.61 (t, J = 7.4 Hz, 2H), 4.50-4.20 (m, 6H); 13C{1H} 

NMR (CD3CN, 100 MHz): δ 175.2, 160.1, 155.0, 154.3, 154.1, 151.1, 146.5, 145.8, 

141.2, 140.4, 139.4, 134.7, 132.7, 129.3, 129.1, 129.1, 128.8, 128.3, 128.0, 127.1, 126.3, 

125.9, 124.5, 124.3, 124.1, 121.3, 118.7, 58.9, 58.2 (29 signals expected for equivalent 

phenyl-appended pyridyl donors; 29 observed); ESI-APCI, m/z (relative intensity) 

881.2434 ([M-ClO4]
+, 1.8%). 

Photoinduced dioxygenase-type reactivity of 1-3: Isolation of [(6-

Ph2TPA)Zn(O-bs)]OTf (4), [(6-Ph2TPA)Cd(O-bs)]ClO4 (5),  and [(6-Ph2TPA)Hg(O-

bs)]ClO4 (6) (bs = O-benzoylsalicylate). Aerobic CH3CN solutions of 1-3 were 

irradiated using a Rayonet Photoreactor equipped with 300 nm Hg lamps. The progress of 

each reaction was monitored by UV-vis. After each reaction reached completion, the 

solvent was removed under reduced pressure. Complexes 3-6 were precipitated from 

acetonitrile via the addition of excess diethyl ether. Each isolated solid was dried under 

vacuum. X-ray quality crystals for 4 and 5 were obtained by diethyl ether diffusion into 

an acetonitrile solution. 

[(6-Ph2TPA)Zn(O-bs)]ClO4 (4). Yield: 88%. Elemental analysis: found: C, 

59.13; H, 3.81; N, 6.29. Calcd for C45H35F3N4O7SZn·0.75H2O: C, 59.28; H, 4.04; N, 6.14 
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(the presence of H2O was also confirmed by a 1H NMR measurement); FTIR (KBr, cm-1): 

1736 (νC=O); 1H NMR  (CD3CN, 400 MHz): δ 8.0 (d, J = 4.3 Hz, 1H), 8.02 (dt, J = 7.7 

Hz, 3H), 7.80 (dd, J1 = 8.3 Hz, J2 = 1.2 Hz, 2H), 7.28-7.65 (m, 12H), 6.96-7.20 (m, 10H), 

6.65 (m, 1H),  4.20-4.50 (m, 6H); 13C{1H} NMR (CD3CN, 100 MHz): δ 169.6, 166.0, 

160.6, 156.4, 155.2, 151.2, 149.1, 141.8, 141.6, 139.4, 134.1, 133.9, 132.4, 131.2, 130.6, 

130.2, 129.4, 129.3, 129.0, 126.0, 125.7, 125.5, 125.1, 123.6, 123.3, 57.7, 57.5 (26 

signals observed); MALDI-MS, m/z (relative intensity) 747.1933 ([M-OTf]+, 100%). 

 [(6-Ph2TPA)Cd(O-bs)]ClO4 (5). Yield: 96%. Elemental analysis: found: C, 

58.74; H, 3.98; N, 6.75. Calcd for C45H35CdN4O7·0.4CH3CN: C, 59.00; H, 4.00; N, 6.76 

(the presence of CH3CN was also confirmed by a 1H NMR measurement); FTIR (KBr, 

cm-1): 1736 (νC=O). 1H NMR  (CD3CN, 400 MHz): δ 8.3 (s, 1H), 8.00-7.85 (m, 4H), 7.65-

7.00 (m, 21H), 4.26-4.00 (m, 6H); 13C{1H} NMR (CD3CN, 100 MHz): δ 171.9, 165.1, 

160.6, 156.2, 155.3, 151.6, 149.7, 141.1, 140.0, 134.0, 133.8, 132.7, 131.4, 130.7, 130.4, 

130.0, 129.4, 128.6, 125.9, 125.9, 125.7, 124.8, 124.3, 124.0, 58.5, 58.2 (26 signals 

observed). 113Cd{1H} NMR (CD3CN, 88.9 MHz): δ 134.3; ESI-APCI, m/z (relative 

intensity) 797.1700 ([M-ClO4]
+, 9%). 

[(6-Ph2TPA)Hg(O-bs)]ClO4 (6). FTIR (KBr, cm-1): 1734 (νC=O); ESI-APCI, m/z 

(relative intensity) 885.2381 ([M-ClO4]
+, 10%). 

18O2 Labeling of Photooxygenation Reactions 1 and 2. In the glovebox 1-ClO4 

(2.24 x 10-5 mol) or 2 (1.12 x 10-5 mol) was dissolved in ~10 mL of acetonitrile and the 

solution was then transferred to a solvent transfer flask from which was promptly 

degassed by three freeze-pump-thaw cycles. After the third thawing, ~25 cm3 of 18O2 
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(99%; ICON Isotopes) was introduced and the reaction was put into a Rayonet 

Photoreactor equipped with 300 nm Hg lamps until the color of the reaction bleached 

from bright yellow to colorless. Upon completion of each reaction, the solvent was 

removed under reduced pressure. Mass spectral analysis of the products (4 and 5) 

indicated quantitative (>98%) 18O incorporation into two oxygen atoms of the O-

benzoylsalicylato (O-bs) ligand. 

Synthesis of [(6-Ph2TPA)Cd(CH3CN)](ClO4)2 (7). An acetonitrile solution (~2 

mL) of Cd(ClO4)2·6H2O (50.0 mg, 1.19 x 10-4 mol) was added to solid 6-Ph2TPA (52.8 

mg, 1.19 x 10-4 mol) and stirred until all of the ligand had dissolved. Crystals were 

obtained by diethyl ether diffusion into an acetonitrile solution. Yield: 95 mg, 92%; 

Elemental analysis: found: C, 48.08; H, 3.66; N, 8.80. Calcd for C32H29CdCl2N5O8: C, 

48.35; H, 3.68; N, 8.81; FTIR (KBr, cm-1) 1092 (νClO4), 621 (νClO4). 
1H NMR  (CD3CN, 

400 MHz): δ 8.41 (d, J = 4.8 Hz, 1H), 8.09-8.02 (m, 3H), 7.65-7.37 (m, 16H), 4.45-4.23 

(m, 6H); δ 160.5, 156.3 (J (13C113Cd) = 67.2 Hz), 155.1 (J (13C113Cd) = 93.2 Hz), 149.3, 

141.9, 141.7, 140.3, 131.0, 130.6, 129.1, 126.5 (J (13C113Cd) = 42.4 Hz), 126.3 (J 

(13C113Cd) = 33.6 Hz), 125.4, 124.8, 58.7, 58.2 (16 signals expected for equivalent 

phenyl-appended pyridyl donors; 16 observed). 113Cd{1H} NMR (CD3CN, 88.9 MHz): δ 

187.02. 

X-ray Crystallography. A single crystal of 2-5 was mounted on a glass fiber 

with traces of viscous oil and then transferred to a Nonius KappaCCD diffractometer 

equipped with Mo Kα radiation (λ = 0.71073 Å). For unit cell determination, ten frames 

of data were collected at 150(1) K with an oscillation range of 1 deg/frame and an 
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exposure time of 20 sec/frame. Final cell constants were determined from a set of strong 

reflections from the actual data collection. All reflections were indexed, integrated, and 

corrected for Lorentz polarization and absorption effects using DENZO-SMN and 

SCALEPAC.28 Structures were solved by a combination of direct and heavy-atom 

methods using SIR 97.29 All of the non-hydrogen atoms were refined with anisotropic 

displacement coefficients. For complexes 2, 3, and 4 the hydrogen atoms were assigned 

isotropic displacement coefficients (U)H = 1.2U(C) or 1.5U(Cmethyl), and their coordinates 

were allowed to ride on their respective carbons using SHELXL97.30 Hydrogen atoms in 

4 were located and refined independently using SHELXL97.30 

Structure Solution and Refinement. Complex 2 crystallizes in the space group 

P21/n. Three out of four oxygen atoms in the perchlorate anion are disordered. Complex 3 

crystallizes in the space group P21/n. Complex 4 crystallizes in the space group P21/c. 

Complex 5 crystallizes in P-1 space group with one molecule of acetonitrile in the crystal 

lattice. Two out of four oxygen atoms in the perchlorate anion of 5 are disordered.  

Details of the X-ray data collection and refinement are given in Table 5-1. 

Selected bond distances and angles are given in Tables 5-2 and 5-3.  
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Table 5-1. Summary of X-ray Data Collection and Refinement for 2-5. 

 2 3 4 5 

Empirical formula C45H35CdClN4O7 C45H35ClHgN4O7 C45H35F3N4O7SZn C46H38CdClN5O8 

Mr 891.62 979.81 898.20 936.66 

Crystal system Monoclinic Monoclinic Monoclinic Triclinic 

Space group P21/n P21/n P21/c P-1 

a/ Å 11.4616(2) 11.4117(2) 10.1785(2) 14.2066(2) 

b/ Å 16.3861(3) 16.3761(2) 16.3337(5) 13.24300(10) 

c/ Å 20.8770(4) 20.9794(3) 24.1620(5) 14.3060(2) 

α /° 90 90 90 102.5400(9) 

β /° 95.0205(11) 95.0070(9) 91.0370(14) 116.8087(6) 

γ /° 90 90 90 99.7178(9) 

V / Å3 3905.89(12) 3905.65(10) 4016.34(17) 2075.18(5) 

Z 4 4 4 2 

Dc / Mg m-3 1.516 1.666 1.485 1.499 

T / K 150(1) 150(1) 150(1) 150(1) 

Color Yellow Yellow Colorless Colorless 

Crystal habit Prism Prism Prism Prism 

Crystal size/ mm 0.28 x 0.23 x 0.13 0.20 x 0.15 x 0.10 0.25 x 0.20 x 0.13 0.23 x 0.20 x 0.13 

Diffractometer Nonius Kappa CCD Nonius Kappa CCD Nonius KappaCCD Nonius Kappa CCD 

µ/ (mm-1) 0.686 4.068 0.736 0.652 

2θ max /° 54.96 54.98 54.92 54.94 

Completeness to θ  (%) 99.9 99.8 99.5 99.7 

Reflections collected 15965 16904 15119 17877 

Independent reflections 8943 8946 9139 9483 

Rint 0.0303 0.0366 0.0342 0.0202 

Variable parameters 552 552 690 571 

R1 / wR2b 0.0631/0.0859 0.0565/0.0674 0.0829/0.1034 0.0469/0.0803 

Goodness-of-fit (F2) 1.019 1.039 1.016 1.037 

∆ρmax/min / e Å-3 0.840/-0.573 1.486/-0.784 0.332/-0.482 0.907/-1.184 

aRadiation used: Mo Kα (λ = 0.71073 Å) bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|; wR2 = [∑[w(Fo
2-Fc

2)2]/[∑(Fo
2)2]] 1/2, where w = 1/[σ2(Fo

2) + 
(aP)2 + bP]. 
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Table 5-2. Selected Bond Distances (Å) for Complexes 2-5. 
 2 3 4 5 

M–N(1) 2.337(2) 2.324(3) 2.115(2) 2.3328(19) 

M–N(2) 2.430(2) 2.470(3) 2.1913(18) 2.3762(18) 

M–N(3) 2.4636(19) 2.563(3) 2.155(2) 2.4592(18) 

M–N(4) 2.420(2) 2.494(3) 2.132(2) 2.4172(17) 

M–O(1) 2.2134(17) 2.194(2) 1.9387(15) 2.4062(16) 

M–O(2) 2.2792(16) 2.408(2)  2.2439(16) 

∆M-O 0.07 0.21  0.16 

C(31)-O(1) 1.316(3) 1.317(4)   

C(32)-O(2)  1.256(3) 1.248(4)   

Table 5-3. Selected Bond Angles (deg) for Complexes 2-5.  
 2 3 4 5 

O(1) – M – O(2) 74.74(6) 73.37(8)  56.42(6) 

N(1) – M – O(1) 156.95(7) 155.23(10) 99.53(7) 84.18(6) 

N(1) – M – O(2) 82.45(7) 82.05(10)  140.59(6) 

N(1) – M – N(2) 71.13(7) 71.10(11) 77.34(7) 72.65(7) 

N(1) – M – N(3) 103.81(7) 103.23(10) 121.81(8) 99.30(7) 

N(1) – M – N(4) 98.09(7) 97.57(10) 117.93(8) 105.14(6) 

N(2) – M – N(3) 72.82(7) 71.72(10) 75.42(7) 73.96(6) 

N(2) – M – N(4) 67.65(7) 66.12(9) 78.53(7) 70.54(6) 

N(2) – M – O(1) 131.54(7) 133.43(9) 176.79(8) 156.65(6) 

N(2) – M – O(2) 153.56(7) 153.15(9)  146.73(6) 

N(3) – M – N(4) 124.990(7) 123.03(10) 105.51(8) 127.72(6) 

N(3) – M – O(1) 89.41(6) 90.47(9) 105.88(7) 107.88(6) 

N(3) – M – O(2) 116.00(7) 115.92(9)  94.16(6) 

N(4) – M – O(1) 89.28(7) 91.84(9) 103.78(7) 119.88(6) 

N(4) – M – O(2) 116.60(6) 119.16(9)  95.08(6) 
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CHAPTER 6 

PHOTOCHEMICAL CO RELEASE REACTIVITY OF OPEN-SHELL 3d 

DIVALENT FLAVONOLATE COMPLEXES 

Abstract 

Irradiation of 3-hydroxyflavonolate complexes of Mn(II), Co(II), Ni(II), and 

Cu(II) supported by the 6-Ph2TPA ligand (1-4) at 300 nm results in CO release and 

the formation of the corresponding depside complexes (8-11) which were isolated and 

characterized. These reactions proceed considerably slower than those involving 

closed-shell metal ions due to quenching of the excited state by the open-shell metal 

ion. Each depside complex reacts with 3-Hfl, with the Ni(II) and Cu(II) depside 

complexes undergoing reaction to regenerate the flavonolate complex to the greatest 

extent. This suggests that all of the flavonolate complexes should exhibit catalytic 

CO-release reactivity under photochemical conditions. Higher conversion is 

anticipated for the systems containing Ni(II) and Cu(II).  

Introduction 

Flavonoids are naturally occurring compounds found in plants. Due to their 

anti-microbial, anti-oxidative, and UV-protective properties the chemistry of this class 

of molecules is of considerable current interest.1 3-hydroxyflavonol (3-Hfl, Figure 6-

1(top)) is a flavonoid, albeit it is not found naturally in plants. This molecule has been 

used as an analog for the flavonoid quercetin (Figure 6-1(bottom)) in model studies of 

relevance to quercetin dioxygenases.2,3 These enzymes, which are found in bacteria 
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and fungi, catalyze the oxidative ring-opening of the C ring of quercetin, a reaction 

which results in the release of one equivalent of CO (Figure 6-1(bottom)).4,5 Notably, 

quercetinase has been found to utilize different 3d metal ions depending on the 

source.4,5 Specifically, quercetinases found in fungi are Cu(II) enzymes, while the 

bacterial enzyme from Streptomyces sp. FLA was shown to exhibit the highest 

activity with Ni(II) or Co(II) as the active site metal, with other metal ions, such as 

Mn(II), yielding lower activity.   

 Several investigations of the thermally-induced oxidative cleavage reactivity 

of copper-flavonolate complexes have been reported.2,3 Recently, similar studies have 

been described for mononuclear Mn(II) and Fe(III) flavonolate species.3 However, it 

should be noted that to date, no series of structurally-similar 3-Hfl complexes has 

been examined in terms of oxidative carbon-carbon bond cleavage reactivity. Thus, 

Figure 6-1. Top: Structure of 3-hydroxyflavonol. Bottom: Structure of quercetin and 

reaction catalyzed by quercetinase enzymes. 
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the influence of the metal ion cannot be clearly evaluated. To begin to address this 

issue, we recently reported the first series of structurally-related flavonolate 

complexes of 3d metals (1-5, Figure 6-2).6 We have also prepared a structurally 

similar series for the Group 12 metal ions (5-7, Figure 6-2).7  

We discovered that the latter series of complexes undergo clean photoinduced 

dioxygenase-type reactivity with release of CO when irradiated at 300 nm. These 

complexes exhibit high reaction quantum yields (ϕ>0.8) resulting in short reaction 

times. This chemistry is novel in that photoinduced CO-release had not been 

previously reported for divalent metal-flavonolate complexes. We are interested in 

examining such chemistry as it may be used toward the development of new CO-

Figure 6-2. Structural features of 1-7. X = ClO4
- or OTf-. 



  182

releasing molecules (CORMs).8 Such molecules are of current interest for potential 

therapeutic applications, as the administration of small quantities of CO has been 

shown to enhance blood vessel dilation and exhibits antimicrobial and anti-

inflammatory activity.9 

Herein we report studies of the photoinduced CO-release reactivity of the 3-

Hfl complexes 1-4 (Figure 6-2). While undergoing reactions similar to those found for 

5-7, low quantum yields from quenching of the flavonolate excited state result in 

slower CO-release for these compounds relative to that exhibited by 5-7. The divalent 

depside complexes generated upon irradiation of 1-4 (labeled as 8-11) react with 3-

Hfl to differing extents, suggesting that under photochemical conditions catalytic 

flavonolate conversion and CO release should be possible. However, we anticipate 

that such reactions will exhibit variable turnovers depending on the divalent metal ion 

present.  

Results and Discussion 

Spectroscopic properties and UV reactivity of 1-4. Complexes 1-4 were 

investigated in terms of their fluorescent emission properties. Irradiation of each 

complex at 285-300 nm produces an emission at ~475 nm. The intensity of the 

emission band increases when the irradiation is performed at 420 nm into the  π→π* 

band I of the flavonolate. Representative absorption and emission (λex = 420 nm) 

spectra of 1 collected under anaerobic conditions are shown in Figure 6-3. Similar 

spectra were found for 2-4. Notably, the emission intensity of these complexes is 
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similar and significantly lower than that exhibited by 5-7. This is a result of 

quenching of the excited state by the open shell 3d metal center in 1-4.10 

        Irradiation of O2-purged solutions of 1-4 at 300 nm using a Rayonet photoreactor 

resulted in the gradual loss of the π→π* absorption bandof the flavonolate. The total 

reaction time needed for reaction completion ranged from hours for the Ni(II) 

complex 3 to more than 8 days of continuous irradiation for the Cu(II) analog 4. The 

quantum yield for each reaction was determined by actinometry using ferrioxalate as a 

standard to measure photon flux. The values obtained (1, 2, and 4: ϕ = 0.05; 3: ϕ = 

0.08) are much lower than that found for 5-7 and are consistent with the significantly 

longer reaction times required completion of the reactions involving the open-shell 

complexes. Sampling of the headspace gas of each reaction by GC and via the PdCl2 

Figure 6-3. Absorption and emission spectra of 1. 
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method11 indicated the formation of CO. Following work-up, the depside complexes 

8-11 (Scheme 6-1) were characterized by elemental analysis, 1H NMR (only 9 and 

10), FTIR, mass spectrometry, and in one case (9⋅⋅⋅⋅0.5CH3CN) by X-ray 

crystallography.    

The cationic portion of 9⋅⋅⋅⋅0.5CH3CN is shown in Figure 6-4. A summary of 

the X-ray data collection is given in Table 6-1, selected bond distances and angles are 

given in Table 6-2. The geometry surrounding the Co(II) center is a distorted trigonal 

bipyramid (τ = 0.80)12 with the depside coordinated monodentate in an axial position. 

The Co(II)-NPhPy and Co-NPy bonds are similar to those found in the Co(II) 

flavonolate complex 2.  

  

Figure 6-4. Thermal ellipsoid drawing of the cationic portion of 9⋅⋅⋅⋅0.5CH3CN. 

Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for 

clarity. 
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Table 6-1. Summary of X-ray data collection and parameters for 9. 
 9⋅⋅⋅⋅0.5CH3CN 

Empirical formula C45H36.50ClCoN4.50O8 

Mr 862.67 

Crystal system Monoclinic 

Space group C2/c 

a/ Å 31.0219(6) 

b/ Å 11.0735(2) 

c/ Å 23.9944(5) 

α /° 90 

β /° 106.9654(10) 

γ /° 90 

V / Å3 7883.9(3) 

Z 8 

Dc / Mg m-3 1.454 

T / K 150(1) 

Color Green 

Crystal habit Prism 

Crystal size/ mm 0.30 x 0.28 x 0.15 

Diffractometer Nonius KappaCCD 

µ/ (mm-1) 0.566 

2θ max /° 55.00 

Completeness to θ  (%) 99.5 

Reflections collected 16568 

Independent reflections 9028 

Rint 0.0417 

Variable parameters 544 

R1 / wR2b 0.0894/0.1330 

Goodness-of-fit (F2) 1.036 

∆ρmax/min / e Å-3 0.675/-0.624 

aRadiation used: Mo Kα (λ = 0.71073 Å) bR1 = ∑ | |Fo| - |Fc| | / ∑ |Fo|; wR2 = [∑[w(Fo2-
Fc2)2]/[∑(Fo2)2]] 1/2, where w = 1/[σ2(Fo2) + (aP)2 + bP]. 
 
 
 
 
 5 
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Table 6-2. Selected Bond Distances (Å) and Angles (°) for 9.    
  

Co – N(1) 2.105(2) 

Co – N(2) 2.177(2) 

Co – N(3) 2.120(2) 

Co – N(4) 2.110(2) 

Co – O(1) 1.9460(17) 

N(1) – Co – O(1) 100.35(8) 

N(1) – Co – N(2) 76.53(9) 

N(1) – Co – N(3) 110.42(9) 

N(1) – Co – N(4) 123.49(9) 

N(2) – Co – N(3) 76.91(9) 

N(2) – Co – N(4) 74.92(9) 

N(2) – Co – O(1) 176.42(8) 

N(3) – Co – N(4) 109.07(9) 

N(3) – Co – O(1) 106.01(8) 

(4) – Co – O(1) 105.73(8) 

Complexes 9 and 10 are amenable to investigation by 1H NMR using 

paramagnetic parameters. The spectral features of analytically pure 9 are shown in 

Figure 6-5 (middle), along with the spectral features of [(6-Ph2TPA)Co(3-Hfl)]ClO4 

(2, Figure 6-5 (top)). Assignment of ligand-based resonances in the spectra of 2 and 

9 will require additional studies using deuterated versions of the 6-Ph2TPA ligand. 

However, the pattern of resonances exhibited by the compounds is sufficiently 

different to indicate that 1H NMR will be useful in examining interconversions of 

these compounds (vide infra). The 1H NMR spectrum of the Ni(II) flavonolate and 

depside complexes (3 and 10) are shown in the top and middle portions of Figure 6-

6, respectively. Based on prior 1H NMR studies of Ni(II) complexes supported by the 

6-Ph2TPA ligand, assignment of the β, β’, and γ protons of the pyridyl rings can be 
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made on the basis of chemical shift and integrated intensity.13 The features of the 

depside complex 10 in the region of 30-55 ppm are generally similar to those 

Figure 6-5. Features of the 1H NMR spectra of [(6-Ph2TPA)Co(3-Hfl)]ClO4 (2, top), 

[(6-Ph2TPA)Co(O-bs)]ClO4 (9, middle), and 9 upon treatment with one equivalent of 

3-Hfl in CD3CN (bottom). 

Figure 6-6. Features of the 1H NMR spectra of [(6-Ph2TPA)Ni(3-Hfl)]ClO4 (3, top), 

[(6-Ph2TPA)Ni(O-bs)]ClO4 (10, middle), and 10 upon treatment with one equivalent 

of 3-Hfl in CD3CN (bottom). 
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exhibited by the benzoate complex [(6-Ph2TPA)Ni(O2CPh)]ClO4, the structure of 

which contains a bidentate benzoate ligand in the absence of water.14  

Evaluation of reactivity of depside complexes with 3-Hfl. Speier et al. have 

previously reported that various Cu(II) 3-Hfl complexes can serve as catalysts for the 

oxidative degradation of the flavonol under thermal conditions.15 We are interested in 

determining whether catalytic activity is possible under photochemical conditions 

with various metal 3-Hfl complexes. As a prelude to catalytic studies, we have 

examined the reactivity of the depside complexes 8-11 with 3-Hfl using UV-vis, and 

in two cases ([(6-Ph2TPA)Co(O-bs)]ClO4 (9) and [(6-Ph2TPA)Ni(O-bs)]ClO4 (10), 

using 1H NMR. The UV-vis spectra of the reactions of 8-11 with one equivalent of 3-

Hfl are shown in Figures 6-7 thru 6-10.  

Figure 6-7. Features of the UV-vis spectra of 1, 8, and the reaction of 8 with one 

equivalent of 3-Hfl in CH3CN. 
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Figure 6-8. Features of the UV-vis spectra of 2, 9, and the reaction of 9 with one 

equivalent of 3-Hfl in CH3CN. 

Figure 6-9. Features of the UV-vis spectra of 3, 10, and the reaction of 10 with one 

equivalent of 3-Hfl in CH3CN. 
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Comparison of the spectra reveals that all of the complexes show some regeneration 

of the flavonolate complex, as determined by comparison of the absorption bands at 

~420-440 nm. The Ni(II) and Cu(II) systems regenerate the flavonolate complexes to 

the greatest extent, whereas the Mn(II) and Co(II) systems exhibit spectra suggesting 

the presence of a significant amount of free 3-Hfl (λmax ~340 nm). The substantial 

regeneration of the Ni(II) flavonolate complex 3 is also supported by 1H NMR data 

(Figure 6-6(bottom)) wherein the spectral features generated match those exhibited by 

analytically pure 3. In contrast, the 1H NMR data for the reaction involving the Co(II) 

depside complex and 3-Hfl shows multiple species, which  suggests that only partial 

regeneration of 2 has been accomplished (Figure 6-5 (bottom). 

 

Figure 6-10. Features of the UV-vis spectra of 4, 11, and the reaction of 11 with one 

equivalent of 3-Hfl in CH3CN. 
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Conclusions 

Irradiation of 3-hydroxyflavonolate complexes of Mn(II), Co(II), Ni(II), and 

Cu(II) supported by the 6-Ph2TPA ligand (1-4) at 300 nm results in CO release and 

the formation of the corresponding depside complexes (8-11). Complexes 8-11 were 

isolated and characterized by multiple methods, including X-ray crystallography in 

case of complex 9. Due to quenching of the excited state by the open-shell metal ion, 

the photooxidation reactions of complexes 1-4 proceed considerably slower than those 

involving closed-shell metal ions. The depside complexes 8-11 were shown to react 

with neutral 3-Hfl to regenerate 1-4, with complexes 3 and 4 undergoing this 

regeneration to the greatest extent. This suggests that these flavonolate complexes 

should exhibit catalytic CO-release reactivity under photochemical conditions, with 

the highest conversion anticipated for the Ni(II)- and Cu(II)-containing systems. 

Experiments 

General comments. All reagents and solvents were obtained from 

commercial sources and were used as received unless otherwise noted. Solvents were 

dried according to published procedures and were distilled under N2 prior to use.16 

Air-sensitive reactions were performed in a MBraun Unilab or Vacuum Atmospheres 

glovebox under an N2 atmosphere. The flavonolate complexes 1-4 were prepared as 

previously described.6   

Physical methods. UV-vis spectra were recorded on a Hewlett-Packard 8453 

diode array spectrophotometer. Fluorescence emission spectra were obtained using a 

Shimadzu RF-530XPC spectrometer in the range of 250-900 nm with excitation 
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wavelength corresponding to the absorption maximum of the complex above 400 nm. 

The excitation and emission slit widths were set at 5 nm for all experiments. Reaction 

quantum yield measurements were determined using actinometry with ferrioxalate as 

a standard to measure photon flux.17 IR spectra were recorded on a Shimadzu FTIR-

8400 spectrometer as KBr pellets. 1H NMR spectra of paramagnetic species were 

recorded on a Bruker ARX-400 spectrometer as previously described and the 

chemical shifts (in ppm) are referenced to the residual solvent peak(s) in CHD2CN 

(1H, 1.94 (quintet) ppm).12 Elemental analyses were performed by Atlantic Microlabs 

Inc., Norcross, GA.  

 

Caution! Perchlorate salts of metal complexes with organic ligands are 

potentially explosive. Only small amounts of material should be prepared, and these 

should be handled with great care.18 

 

Irradiation of 1-4 with UV light. Isolation and characterization of 8-11. A 

solution of each complex (1-4, ~5 x 10-3 M) was dissolved in 10 mL of acetonitrile 

and transferred to a round-bottomed flask. The flask was purged with O2 for 40 s and 

then inserted into a UV reactor. The reaction progress was periodically evaluated 

using UV-vis spectroscopy by measuring the intensity of the absorption of the metal-

bound flavonolate at λmax ~420-440 nm. After each reaction reached completion, the 

solvent was evaporated under reduced pressure. The remaining residue was then 

dissolved in a minimal amount of acetonitrile. Addition of excess diethyl ether 
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resulted in the deposition of powders of 8-11. Each powdered sample was 

subsequently dried under vacuum. Crystals of 9 suitable for a single crystal X-ray 

diffraction study were obtained via diffusion of diethyl ether into a dilute solution of 

the complex at room temperature.  

[(6-Ph2TPA)Mn(O-bs)]OTf·0.25CH2Cl2 (8). Green/beige powder. Yield: 

74% Anal. Calcd for C45H35F3MnN4O7S·0.25CH2Cl2: C, 55.36; H, 3.78; N, 5.57. 

Found: C, 55.48; H, 4.00; N, 5.76. FTIR (KBr, cm-1): 1736 (νC=O). ESI/APCI-MS, m/z 

(relative intensity) 738.2049 ([M-OTf]+, 1.8%). 

[(6-Ph2TPA)Co(O-bs)]ClO4·0.2H2O (9). Green crystals. Yield: 88%. Anal. 

Calcd for C44H35ClCoN4O8·0.2H2O: C, 60.18; H, 4.48; N, 6.38. Found: C, 60.45; H, 

4.22; N, 6.26. FTIR (KBr, cm-1): 1736 (νC=O). ESI/APCI-MS, m/z (relative intensity) 

742.1982 ([M-ClO4]
+, 100%). 

[(6-Ph2TPA)Ni(O-bs)]ClO4·2H2O·0.6ACN (10). Beige/pink powder. Yield: 

78%. Anal. Calcd for C44H35ClN4NiO8·2H2O·0.6ACN: C, 60.15; H, 4.56; N, 7.14. 

Found: C, 60.57; H, 4.34; N, 7.46. FTIR (KBr, cm-1): 1736 (νC=O). ESI/APCI-MS, m/z 

(relative intensity) 741.1995 ([M-ClO4]
+, 100%).  

[(6-Ph2TPA)Cu(O-bs)]ClO4·3H2O·0.9ACN (11). Blue crystals. Yield: 85%. 

Anal. Calcd for C44H35ClCuN4O8·3H2O·0.9ACN: C, 58.66; H, 4.70; N, 7.32. Found: 

C, 58.71; H, 4.07; N, 7.32. FTIR (KBr, cm-1): 1736 (νC=O). ESI/APCI-MS, m/z 

(relative intensity) 746.1952 ([M-ClO4]
+, 48%). 

X-ray Crystallography. A single crystal of 9⋅⋅⋅⋅0.5CH3CN was mounted on a 

glass fiber using a viscous oil and then was transferred to a Nonius Kappa CCD for 



194

data collection at 150(1) K. Methods for determination  of cell constants and unit cell 

refinement have been previously reported.19 The structure was solved using a 

combination of direct methods and heavy atom using SIR 97. All non-hydrogen atoms 

were refined with anisotropic displacement coefficients. 

Structure Solution and Refinement. Complex 9⋅⋅⋅⋅0.5CH3CN crystallizes in 

the space group C2/c with three oxygen atoms of the perchlorate anion exhibiting 

disorder.  
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CHAPTER 7 

SUMMARY 

Since their first introduction in 2002, CO-releasing molecules (CORMs) have 

attracted a significant amount of attention as potential therapeutic agents. However, 

the vast majority of known CORMs involve carbonyl groups coordinated on toxic 

metal centers. Moreover, currently, there is little or no control over the time and 

dosage of carbon monoxide released from existing CORMs. In the Berreau group, we 

are interested in elucidating factors influencing CO release from bioinspired and 

biofriendly molecules. The work described in this dissertation presented our 

contribution to understanding multiple aspects affecting the coordination and 

stabilization of acireductone and flavonolate anions on metal centers, as well as 

subsequent CO release from these moieties. 

 We have shown that both secondary coordination sphere alterations and the 

identity of the metal ion influence the coordination of the enolate acireductone-type 

moiety to a metal center. Even though the influence of the secondary environment on 

the coordination and reactivity of exogenous ligands is widely recognized, our 

laboratory is the first to determine how alterations in the supporting ligand affect the 

formation of Ni(II)-enolate species of relevance to acireductone dioxygenases. 

Notably, the identity of the metal center plays a crucial role in the chemistry of the 

ARD enzyme. Although apo-ARD can be reconstituted with either Ni(II) or Co(II) to 

yield the same type of reactivity, we have shown that synthetic model complexes of 

these forms of the enzyme show considerable metal-dependence in their ability to 
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stabilize the enolate anion. Our research has also highlighted the influence of water on 

the aforementioned process. These results will benefit the design of new structural 

and functional models of the acireductone dioxygenase enzyme, which is one of only 

a few enzymes known to release CO. 

 In another study we have synthesized the first series of divalent metal-

flavonolate complexes supported by the same chelate ligand 6-Ph2TPA. This has 

allowed us to evaluate the influence of the metal center on the coordination properties 

and spectroscopic features of a metal-coordinated flavonolate moiety. We have shown 

that these complexes exhibit photo-induced CO-release reactivity that is highly 

dependent on the metal electron configuration, with d10 metals such as the Zn(II)-

containing complex exhibiting in the most rapid CO release. This result is interesting 

for several reasons. First, we have shown that the photo-induced CO release can be 

accomplished from metal-bound flavonolate anion. Second, use of a bio-relevant CO-

release molecule (flavonol) and a bio-friendly metal such as Zn(II), is a significant 

step toward developing a new class of biofriendly CO-releasing molecules.  

The next stage of the research will need to involve the generation of analogs of 

[(6-Ph2TPA)Zn(3-Hfl)]X wherein modulation in the supporting chelate ligand and 

flavonolate improve the biological-relevant features (e.g. solubility, absorption 

properties) of the complex. CO generated from each of these new complexes will 

need to be quantified, and the half-life of each CO-release reaction determined. This 

will enable comparison of CO-release reactivity with previously reported CORMs. 

Additionally, collaborations with other laboratories should be established to perform 
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tests with the synthetic zinc flavonolate complexes that are pertinent to living 

subjects. Such tests include examining the effect of irradiation of the complex (to 

induce CO release) on the: 1) modification of K+-channels, 2) vasodilation of mouse 

aorta, and 3) photoinduced cytotoxicity against cancer cells, to name a few. The 

results of these tests will provide insight into the feasibility of the use of zinc 

flavonolate complexes as CORMs.   

 







RSC I Advancing the
. Chemical Sciences 

Permission Request Form for RSC Material 

To reqL1esl permission to use material from a publloation published by The Royal !3oclety of Chemistry 
(RSC), please complete and return this form, 

To: Contracts & Copyright Department 
The Royal Society of Chemistry 
Thomas Graham House 
Solenoe Park 
MIiton Road 
Cambridge CB4 OWF 
UK 

Tel +44 (0)1223 432134 
Fax +44 (0)1223 423623 
Emal! contiacts-copyrlght@rsc.org 

From: Name 

Address 

Tel 
Fax 
Email 

I am preparing the following work for publication: 

Article/Chapter TIiie 
Journal/Book Title 
Edltor/Author(s) 
Publisher 

Journal/Book Title 
Edltor/Author(s) 
Volume Number 
Year of Publication 
Desc�lption of Material 
Page(s) 

I will acknowledge the original source as follows (to be 
supplied by the RSC on signature) and in each electronic 
version of my publication I will Include a hyper!lnk to the 
article on the Royal Society of Chemistry website: 

Signed: 

HAfL<�t/ II/ A C1ou1sr; l 

•te:o If . 900 Al. :11 ,Q,/ 
( t 

).,O&AN, ur (& ?i!JJ 

0/duBEL H@GMAIL. C0/1 

Date: 

The Royal Society of Chemlstiy hereby grants permission for the use of the material speoltled above In 
the work described and In all subsequent editions of the work for distributlon throughout the world, in all 
media inoluc\lng electronic and microfilm. You may use the material In conjunction with computer-based 
electronlo and lnformatlon retrieval systems, grant permissions for photocopying, reproductions and 
reprints, translate the material and to publish the translation, and authorise doClUll1ent delivery and 
abstracting and indexing services, Please note that If the material specified above or any part of it 
appears with credit or acknowledgement to a lhlrd party then you must also secure permission from that 
third party before reproducing that material. The Royal Soolety of Chemislty Is a signatory to the STM 
Guidelines Oil Permissions (available oil rnquest), · 

Signed: Date: 

Registered Charity Number 207890 



RSC I 
Advancing the
Chemical Sciences 

Permission Request Form for RSC Material 

To request pennlsslon to use material from a publloatlon published by Tf,e Royal Society of Chemistry 
(RSC), please oomplete and return this form, 

To: Contracts & Copyright Department From: Name 
The Royal Society of Chemistry 
Thomas Graham House Address 
Solence Park 
MIiton Road 
Cambrldge.OB4 OWF 
UK 

Tel. +44 (0)1223 432134 Tel 
Fax +44 (0)1223 42.3623 Fax 
Email oontracts-copyrlght@rsc,org Email 

I am preparing the following work for publication: 

Article/Chapter Title 

Journal/Book Title 

Edltor/Author(s) 

Publisher 

S))' s,s. !:it '2:d TL o A I

(l[MR_Z (U�A- �12,B.&L 

'};;Q/1, §:IOON 
I 

:rr ,el 
I 

J;OCr AN,, ()f �V).I 

U5& 

(/J.ss),s12� g3�

�Elk; @.GHl/· 1 L, C,Of1 

I would very much appreciate your permission to use the following material: 

Journal/Book Title 

Edltor/Author(s) 

Volume Number 

Year of Publication 

Description of Material 

Page(s) 

I will acknowledge the original source as follows (to be
supplied by the RSC 011 signature) and In eaoh electronic 
version of my publication I will include a hyperlink to the 
artlcle on the Royal Society of Chemistry website: 

Signed: 

The Royal Society of Chemistry hereby grants permission for the use of the material specified above In 
the work descrlbed and In all subsequent editions of the work for distribution throughout th!l world, In all 
media Including electronic and microfilm, You may use the material In conjunc\l011 with computer-based 
electronic and information retrieval systems, grant permissions for photocopying, reproductions and 
reprints, translate the material and to publish the translation, and authorise document delivery and 
abstracting and Indexing services, Please note that if the material specified ?bove or any part of it 
appears with credit or acknowledgement to a third party then you must also secure permission from that 
third party before reproducing that material. The Royal Soole\y of Chemistry Is a slgnato1y lo the STM 
Guidelines on Permissions (available on request), 

Signed: Date: 

PRF-8 Registered Charity Number 207890 



25 April 2011 

Dr. Amy L. Fuller 
George L. Clark X-Ray Facility 
& 3M Materials Laboratory 
67 Noyes Lab 
505 South Mathews Ave. 
Urbana, IL 61801 

Dear Dr. Fuller, 

K.atarzyna Grubel 
Dept. of Chemistry and Biochemistry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone (435) 797-0365 
Fax (435) 797-3390 

I am in the process of preparing my dissertation in Chemistry and Biochemistry Department at Utah 
State University. 

1 am requesting your permission to include the following manuscripts in their entirety as a chapter 
in my dissertation: 

1. Grubel K�; Ingle, G. K.; Fuller, A. L.; Arif, A. M.; Berreau, L. M.* "Influence of Water on the
Formation of OrReactive Divalent Metal Enolate Complexes of Relevance to Acireductne
Dioxygenases" Manuscript accepted to 40th birthday edition of Dalton Transactions.

2. Grubel, K.; Fuller, A. L.; Chambers; B. M., Arif, A. M; Berreau, L. M. "Ordependent
Aliphatic Carbon-Carbon Bond Cleavage Reactivity in a Ni(II) Enolate Complex Having a
Hydrogen Bond Donor Microenvironment; Comparison with a Hydrophobic Analog"
Inorganic Chemistry 2010, 49, l 071-1081.

I will acknowledge your contribution to this part of my dissertation by the inclusion of a footnote on 
the title page for that chapter. Additionally, a copy of this letter will become an Appendix to the 
dissertation. Please, advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any 
questions, please call me at the number above. 

If possible, please provide your reply immediately. Thank you very much for your consideration, 
Katarzyna Grubel 

I hereby give permission to Katarzyna Grubel to reprint the manuscripts listed above in her 
dissertation. 

Date July 21, 2011 Signed __ 



'22 July 2011 

Bonnie Chambers 
Logan, UT 84322 

Dear Bonnie Chambers., 

Katarzyna Grubel 
Dept. of Chemistry and Biochemistry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone (435) 797-0365 
Fax (435) 797-3390 

I am in the process of preparing my dissertation in Chemistry and Biochemistry Department at Utah 
State University. 

I am requesting your permission to include the following manuscripts in their entirety as a chapter 
in my dissertation: 

1. Grubel, K.; Fuller, A. L.; Chambers; B. M., Arif, A. M; Berreau, L. M. "Oi-dependent
Aliphatic Carbon-Carbon Bond Cleavage Reactivity in a Ni(Il) Enolate Complex Having a
Hydrogen Bond Donor Microenvironment; Comparison with a Hydrophobic Analog"
Inorganic Chemistry 2010, 49, 1071-1081.

I will acknowledge your contribution to this part of my dissertation by the inclusion of a footnote on 
the title page for that chapter. Additionally, a copy of this letter will become an Appendix to the 
dissertation. Please, advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any 
questions, please call me at the number above. 

If possible, please provide your reply immediately. Thank you very much for your consideration, 
Katarzyna Grubel 

I hereby give permission to Katarzyna Grubel to reprint the manuscripts listed above in her 
dissertation. 



21 July 2011 

Gajendrasingh K. Ingle 
University of South Florida
4202 E. Fowler Avenue 
Tampa, FL 33620 

Dear Gajendrasingh Ingle, 

Katarzyna Grubel 
Dept. of Chemistry and Biochemistry
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300
Phone (435) 797-0365 
Fax (435) 797-3390 

I am in the process of preparing my dissertation in Chemistry and Biochemistry Department at Utah
State University. 

I am requesting your permission to include the following manuscripts in their entirety as a chapter
in my dissertation: 

1. Grubel K�; ll1gle, G. K.; Fuller, A. L.; Arif, A. M.; Berreau, L. M.* "Influence of Water on the
Fonnation of OrReactive Divalent Metal Enolate Complexes of Relevance to Acireductne
Dioxygenases" Manuscript accepted to 40th birthday edition of Dalton Transactions.

I will acknowledge your contribution to this part of my dissertation by the inclusion of a footnote on
the title page for that chapter. Additionally, a copy of this letter will become an Appendix to the 
dissertation. Please, advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any
questions, please call me at the number above. 

If possible, please provide your reply immediately. Thank you very much for your consideration,
Katarzyna Grubel 

I 



2·5 April 2011 

Dr. Katarzyna Rudzka 
Dept. of Biophysics and Biophysical Chemistry 
Johns Hopkins University, School of Medicine 
Baltimore, Maryland 21205 USA 

Dear Dr. Rudzka, 

·•

,. 

Katarzyna Grubel 
Dept. of Chemistry and Biochemistry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone (435) 797-0365 
Fax (435) 797-3390 

I am in the process of preparing my dissertation in Chemistry and Biochemistry Department at Utah 
State University. 

I am requesting your permission to include the following manuscripts in their entirety as a chapter 
in my dissertation: 

1. Grubel K.; Rudzka, K.; Arif, A. M.; Klotz, K. L.; Halfen, J. A.; Berreau, L. M. "Synthesis,
Characterization, and Ligand Exchange Reactivity of a Series of First Row Divalent Metal 3-
Hydroxyflavonolate Complexes" Inorganic Chemistry 2010, 49, 82-96.

I will acknowledge your contribution to this part of my disse1tation by the inclusion of a footnote on 
•-� the title page for that chapter. Additionally, a copy of this letter will become an Appendix to the 

dissertation. Please, advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any 
questions, please call me at the number above. 

If possible, please provide your reply immediately, Thank you very much for your consideration. 

Katarzyna Grubel 

o!' I hereby give permission to Katarzyna Grubel to reprint the manuscripts listed above in her 
disst:irtation, 

1 

• 
• .. 

Signed Date __ 1_(_,_'2.._l.-i[_.2._o0_U __ 



1 August 2011 

Katie Klotz 
Department of Chemistry, 
University of Wisconsin-Eau Claire, 
Eau Claire, Wisconsin 54702 

Dear Katie Klotz, 

.Katarzyna Grubel 
Dept. of Chemistry and Biochemistry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone (435) 797-0365 
Fax (435) 797-3.390 

l am in the prncess of preparing my dlssertation in Chemlstry and Biochemistry Department at Utah
State University. · 

I am requesting your permission to includ�tb� foJlowlng manuscript in its entiNty as a chapter in
my disseitation: 

· · · · · · · 

1. Grubel K.; Rudzka,K.; Arif, A. M,;Kiotz,. K.L.; Halfen, J. A.; Berreau, L M, "Synthesis,
Characterization, and Ligand .Exchange Reactivity of a Series of First Row Divalent Metal 3�
Hydroxyflavonolate Complexes'' L ·stry 2010, 49, 82�9(i.

• . 
• :_·.::•.·." •• 

•_./::·•_'· :: ·:·C·······._.:• •;·•;,Ci: 
• 

I will acknowledge your contribution to·this p�rfo:f.i-nydissertation by the .inclusion ofa footnote 
on the title page for that chapter. Additionally; a 9ppyofthis letter ;,vi!l become an Appendix to the 
dissertation, Please, advise me ofany chariges:yourequi.r.e. 

Please, indicate your approval of this reqnestby Signing the endorsen1ent below. If you have any 
questions, please cal! me at the number above. 

If possible, please provide your reply immediately. Thank you very much for your consi.deration. 

Katarzyna Grubel 

l hereby give permissionto K<1-tarzyna Grubel to reprint the manuscripts listed above in her
dissertation. · · · 



25 April 201 l 

Dr. Jason A. Halfen
University of Wisconsin-Eau Claire 
l 05 Garfield A venue
443 Phillips Hall 
Eau Claire, WI 54702-4004

Dear Dr. IIalfen, 

Katarzyna Grubel 
Dept. of Chemistry and Bi.ochen1istry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone (435) 797-0365 
Fax (435) 797-3390 

I am in the process of preparing my dissertation in Chemistry and Biochemistry Department at Utah
State University. 

I am requesting your permission to include the following manuscript in its entirety as a chapter in 
my dissertation: 

1. Grubel K
!
; Rudzka, K.; Arif, A. M.; Klotz, K. L.; Halfen, J. A.; Berreau, L. M.* "Synthesis,

Characterization, ai1d Ligand Exchange Reactivity of a Series of First Row Divalent Metal 3-
Hydroxyflavonolate Complexes" Inorganic Chemistry 2010, 49, 82-96.

I will acknowledge your contribution to this part of my dissertation by the inclusion of a footnote on 
the title page for that chapter. Additionally, a copy of this letter will become an Appendix to the 
dissertation. Please, advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any 
questions, please call me at the number above. 

If possible, please provide your :reply immediately. Thank you very much for Y<?Ur consideration. 

Katarzyna Grubel 

T hereby give permission to Katarzyna Grubel to reprint the manuscripts listed above in her 
dissertation. 

Date __ -�_._-s_/_•_l _( __ 



Signed  D,re  

21 July 2011 

Brynna Laughlin 
Clemson University 
Department of Chemistry 
Center for Optical Materials Science and Engineering Technologies 
479 Hunter Laboratories 
Clemson, SC 29634 

Prof. Smith, 

Katarzyna Grubel 
Dept. of Chemistry and Biochemistry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone(435)797-0365 
Fax (435) 797-3390 

I am in the process of preparing my disse1tation in Chemistry and Biochemistry Department at Utah State 
University. 

I am requesting your permission to include the following manuscripts in their entirety as a chapter in my 
dissertation: 

1. Grubel, K.; Laughlin, B.; Maltais, T. R.; Smith, R. C.; Arif, A. M.; Berreau, L. M. "Photochemically
induced Dioxygenase-type CO-release of Group 12 Flavonolate Complexes" Manuscript submitted to 
Chemical Communications 2011, pending revisions.

I will acknowledge your contribution to this part ofmy dissertation by the inclusion of a footnote on the title 
page for that chapter. Additionally, a copy of this letter will become an Appendix to the disse1tation. Please, 
advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any questions, 
please call me at the number above. 

If possible, please provide your reply immediately. Thank you very much for your consideration, 
Katarzyna Grubel 

I hereby give permission to Katarzyna Grubel to reprint the manuscripts listed above in her 
dissertation. 



21 July 2011 

Thora R. Maltais 
Purdue University, 
West Lafayette, IN 47907 

Dear Thora Maltais, 

Katarzyna Grubel 
Dept. of Chemistry and Biochemistry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone (435) 797-0365 
Fax (435) 797-3390 

I am in the process of preparing my dissertation in Chemistry and Biochemistry Department at Utah 
State University. 

I am requesting your permission to include the following manuscripts in their entirety as a chapter 
in my dissertation: 

1. Grubel, K.; Maltais, T. R.; Smith, R. C.; Arif, A. M.; Berreau, L. M. "Photochemically-induced
Dioxygenase-type CO-release of Group 12 Flavonolate Complexes" Manuscript submitted to
Chemical Communications 2011, pending revisions.

I will acknowledge your contribution to this part of my dissertation by the inclusion of a footnote on 
the title page for that chapter. Additionally, a copy of this letter will become an Appendix to the 
dissertation. Please, advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any
questions, please call me at the number above. 

· · 

If possible, please provide your reply immediately. Thank you very much for your consideration, 
Katarzyna Grubel 

I hereby give permission to Katarzyna Grubel to reprint the manuscripts listed above in her 
dissertation. 

Signed Date 7 /ll f I/ 
I I 



Date 

21 July2011 

Prof. Rhett C. Smith 
Clemson University 
Department of Chemistry 
Center for Optical Materials Science and Engineering Technologies 
479 Hunter Laboratories 
Clemson, SC 29634 

Prof. Smith, 

Katarzyna Grubel 
Dept. of Chemistry and Biochemistry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone (435) 797-0365 
Fax (435) 797-3390 

I am in the process of preparing my dissertation in Chemistry and Biochemistry Department at Utah State 
University. 

I am requesting your permission to include the following manuscripts in their entirety as a chapter in my 
dissertation: 

1. Grubel, K.; Laughlin, B.; Maltais, T. R.; Smith, R. C.; Arif, A. M.; Berreau, L. M. "Photochemically
induced Dioxygenase-type CO-release of Group 12 Flavonolate Complexes" Manuscript submitted to
Chemical Communications 2011, pending revisions.

I will acknowledge your contribution to this part of my dissertation by the inclusion of a footnote on the title 
page for that chapter. Additionally, a copy of this letter will become an Appendix to the dissertation. Please, 
advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any questions, 
please call me at the number above. 

If possible, please provide your reply immediately. Thank you very much for your consideration, 
Katarzyna Grubel 

I hereby give permission to Katarzyna Grubel to reprint the manuscripts listed above in her 
dissertation. 

?--Z?-rl 



25 April 2011 

Dr. AttaM .. Arif. 
Department of Chemistry, 
University of Utah, 
Salt Lake City, Utah 84112-0850 

Dear Dr. Arif, 

Katarzyna Grubel 
Dept. of C_hemistry and Biochemistry 
Utah State University 
0300 Old Main Hill 
Logan, UT 84322-0300 
Phone (435) 797-0365 
Fax (435) 797-3390 

I am in the process of preparing my dissertation in Chemistry and Biochemistry Department at Utah State 
University. 

I am requesting your permission to include the following manuscripts in their entirety as a chapter in my 
dissertation: 

1. Grubel, K.; Maltais, T. R.; Smith, R. C.; Arif, A. M.; Berreau, L. M. "Photochemically-induced
Dioxygenase-type CO�release of Group 12 Flavonolate Complexes" Manuscript submitted to Chemical

, Communications 2011, pending revisions.

2. <;irubel K.; Ingle, G. K.; Fuller, A. L.; Arif, A. M.; Berreau, L. M. "Influence of Water on the Formation
· of Or Reactive Divalent Metal Eno late Complexes of Relevance to Acireductne Dioxygenases"

_. Manuscript submitted to 40th birthday edition of Dalton Transactions.

3. Grubel, K.; Fuller, A. L.; Chambers; B. M., Arif, A. M; Berreau, L. M. "02-dependent Aliphatic
Carbon-Carbon Bond Cleavage Reactivity in a Ni(Il) Enolate Complex Having a Hydrogen Bond Donor
Microenvironment; Comparison with a Hydrophobic Analog" Inorganic Chemistry 2010, 49, 1071-
1081.

4. Grubel K.; Rudzka, K.; Arif, A. M.; Klotz, K. L.; Halfen, J. A.; Berreau, L. M. "Synthesis,
Characterization, and Ligand Exchange Reactivity of a Series of First Row Divalent Metal 3-
Hydroxyflavonolate Complexes" Inorganic Chemistry 2010, 49, 82-96.

I will acknowledge your contribution to this part ofmy dissertation by the inclusion ofa footnote on the title 
page for that chapter. Additionally, a copy of this letter will become an Appendix to the dissertation. Please, 
advise me of any changes you require. 

Please, indicate your approval of this request by signing the endorsement below. If you have any questions, 
please call me at the number above. 

If possible, please provide your reply immediately. Thank you very much for your consideration, 
Katarzyna Grubel 

I hereby give permission to Katarzyna Grubel to reprint the manuscripts listed above in her 
dissertation. 



214

    CURRICULUM VITAE 

Katarzyna Grubel 
grubelk@gmail.com 

Current Address Permanent Address 
760E, 900N #21 ul. Warszawska 33B/2 
Logan, UT 84321 44-100 Gliwice, Poland
(435) 512-9309

EDUCATION 

September 2006 – Utah State University  
August 2011  Department of Chemistry and Biochemistry; Logan, UT 

PhD program in Inorganic Chemistry 
Advisor: Prof. Lisa M. Berreau 
Dissertation Title: “Ligand and Metal Effects on the CO-release 
Reactivity of Metal Acireductone and Flavonolate Complexes” 

October 2005 – Silesian University of Technology 
July 2006 Faculty of Chemistry, Department of Inorganic Chemistry and 

Technology; Gliwice, Poland 
Entered PhD program in Inorganic Chemistry 
Advisor: Dr. Marek Smolik 

October 2000 – Silesian University of Technology  
September 2005 Faculty of Chemistry, Department of Organic Chemistry, 

Biochemistry, and Biotechnology; Gliwice, Poland 
MS. in Organic Chemistry 
Advisor: Dr. Gabriela Pastuch-Gawołek 
Thesis Title: “Synthesis of Potential Glycotransferase Inhibitors” 

ADDITIONAL COURSES 

January 2011 Physical Science Responsible Conduct of Research Course 
A course by Collaborative Institutional Training Initiative (CITI) 



 

 

215
PUBLICATIONS 
 
1. Grubel, K.; Maltais, T. R.; Smith, R. C.; Arif, A. M.; Berreau, L. M.* 

“Photochemical CO release Reactivity of Open-Shell 3d Divalent Flavonolate” 
Manuscript in preparation. 

 
2. Grubel, K.; Laughlin, B.; Maltais, T. R.; Smith, R. C.; Arif, A. M.; Berreau, L. M. 

“Photochemically-induced Dioxygenase-type CO-release of Group 12 Flavonolate 
Complexes” Manuscript accepted to Chemical Communications 2011.  

 
3. Grubel K.; Ingle, G. K.; Fuller, A. L.; Arif, A. M.; Berreau, L. M.* “Influence of 

Water on the Formation of O2-Reactive Divalent Metal Enolate Complexes of 
Relevance to Acireductne Dioxygenases” Manuscript accepted to 40th birthday 
edition of Dalton Transactions. 

 
4. Berreau, L. M.*; Borowski, T.; Grubel, K.; Allpress, C. J.; Wikstrom, J. P.; Germain, 

M. E.; Rybak-Akimova, E. V.; Tierney, D. L. “Mechanistic Studies of the O2-
dependent Aliphatic Carbon-Carbon Bond Cleavage Reaction of a Nickel Enolate 
Complex” Inorganic Chemistry 2011, 50, 1047-1057. 

 
5. Rudzka, K.; Grubel, K.; Arif, A. M.; Berreau, L. M.* “Hexanickel Enediolate Cluster 

Generated in a Acireductone Dioxygenase Model Reaction” Inorganic Chemistry 
2010, 49, 7623–7625. 

 
6. Grubel, K.; Fuller, A. L.; Chambers; B. M., Arif, A. M; Berreau, L. M.* “O2-

dependent Aliphatic Carbon-Carbon Bond Cleavage Reactivity in a Ni(II) Enolate 
Complex Having a Hydrogen Bond Donor Microenvironment; Comparison with a 
Hydrophobic Analog” Inorganic Chemistry 2010, 49, 1071-1081. 

 
7. Grubel K.; Rudzka, K.; Arif, A. M.; Klotz, K. L.; Halfen, J. A.; Berreau, L. M.* 

“Synthesis, Characterization, and Ligand Exchange Reactivity of a Series of First 
Row Divalent Metal 3-Hydroxyflavonolate Complexes” Inorganic Chemistry 2010, 
49, 82-96. 

 
ORAL PRESENTATONS 
 
1. Grubel, K.; Maltais, T. R.; Smith, R. C.; Arif, A. M.; Berreau, L. M.* “CO-release 

Chemistry of Zinc-Containing Complexes” Invited Oral Presentation at the 
DataBlitz, Bioinorganic Chemistry Gordon Research Seminar, Ventura, CA, 
February 2011. 
 

2. Grubel K.; Rudzka, K.; Ingle, G.; Read, C.; Fuller, A. L.; Arif, A. M.; Berreau, L. 
M.* “Ligand and Metal Effects on the Formation of O2-Reactive Divalent Metal 
Enolate Complexes: Evaluation of the Influence of Water ” Oral Presentation at the 
240th National American Chemical Society Meeting, Boston, MA, August 2010. 



 

 

216
 
POSTER PRESENTATONS 
 
1. Grubel, K.; Maltais, T. R.; Smith, R. C.; Arif, A. M.; Berreau, L. M.* “CO-Release 

Chemistry of Metal-Flavonolate Complexes” Poster Presentation at the Gordon 
Research Seminar, Ventura, CA, February 2011. 
 

2. Grubel K.; Arif, A. M.; Berreau, L. M.* “UV- and Heat-Induced O2 Reactivity of 
Divalent Metal Flavonolate Complexes” Poster Presentation at the Intermountain 
Graduate Research Symposium, Logan, UT, March 2010. 
 

3. Grubel K.; Arif, A. M.; Berreau, L. M.* “UV- and Heat-Induced O2 Reactivity of 
Divalent Metal Flavonolate Complexes” Poster Presentation at the 239th National 
American Chemical Society Meeting, San Francisco, CA, March 2010. 
 

4. Grubel K.; Rudzka, K.; Arif, A. M.; Berreau, L. M.* “Synthesis and Characterization 
of Divalent Metal Flavonolate Complexes” Poster Presentation at the 237th National 
American Chemical Society Meeting, Salt Lake City, UT, March 2009. 
 

5. Grubel, K.; Fuller, A. L.; Arif, A. M; Berreau, L. M.* “Effect of the Secondary 
Environment on the Chemistry of Ni(II) Complexes: Relevance to Acireductone 
Dioxygenases” Poster Presentation at the 63rd Northwest/21st Rocky Mountain 
Regional American Chemical Society Meeting, Park City, UT, June 2008. 
 

6. Grubel, K.; Fuller, A. L.; Arif, A. M; Berreau, L. M.* “Effect of the Secondary 
Environment on the Chemistry of Ni(II) Complexes: Relevance to Acireductone 
Dioxygenases” Poster Presentation at the 235th National American Chemical Society 
Meeting, New Orleans, LA, April 2008. 

    
PATENTS  
 
U.S. patent application 61454902: CO-Releasing Zinc Flavonolate Complexes 
 
AWARDS 
 
2011 College of Science Graduate Researcher of the Year – Utah State 

University 
2010 Claude E. ZoBell Scholarship – Utah State University, College of Science 

Award 
 

TEACHING EXPERIENCE 
   
September 2006 –  Teaching Assistant at Utah State University 
May 2011     1210 General Chemistry I Recitations 
    1220 General Chemistry II Recitations 



 

 

217
    1215 General Chemistry Laboratory 

 1225 General Chemistry Laboratory 
 3520 Inorganic Chemistry Laboratory 
 Undergraduate Tutoring Resource Room 
 

October 2005 –  Teaching Assistant at Silesian University of Technology 
July 2006 General Chemistry I Recitations 

 General Chemistry II Recitations 
 Basic Inorganic Chemistry I Laboratory 
 Basic Inorganic Chemistry II Laboratory 
 

INTERNSHIPS 
 
August 2004  ZM „BUMAR” Łab ędy, Poland 
   Laboratory Technician 

I was given training in fields of European Quality Certificates and 
Measurement. 

 
July 2004  Police Dept. in Katowice, Poland 
   Laboratory Technician in the Drugs and Alcohol Department  

My duties involved analysis of drugs, alcohol, and burnt materials. 
I was trained in using GC-MS, IR and specific drugs tests.  

 
AFFILIATIONS 
 
o Member of the American Chemical Society 
o Member of the Collaborative Institutional Training Initiative 

 
LANGUAGE SKILLS 
  
Fluent in Polish and English 

 
 


	Ligand and Metal Effects of the Co-Release Reactivityof Metal Acireductione and Flavonolate Complexes
	Recommended Citation

	tmp.1317311760.pdf.ZkimC

