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NASA-CR-196820

Final Report : NASA Grant NAG 5 1828 Part 1: Relationships Between Soil Hydrology/Soil-Geomorphic
Processes and Environmental Changes and Soil Parent Materials in
Principal Investigator: Leslie D. McFadden the Providence Mountains, Mojave Desert
Professor, Department of Earth & Plan. Science
University of New Mexico -

In 1991, the Soil Landscape Climate Program (SLCP) was
organized as part of the Solid Earth Sciences Program at NASA. Part
of the research to be conducted in the SLCP included studies of
the systematics of carbon storage and flux in the terrestrial
environment, specifically terrestrial soils. This report summarizes
the results of the research funded through the SLCP that supported
our efforts focussed on the nature of carbon behavior in arid
environments, where the majority of the carbon is present as
inorganic carbon stored as pedogenic carbonate in desert calcic soils.
The funding was used to support studies of soils in two areas of
western North America's major deserts: the Mojave Desert and the
Chihuahuan Desert. Part 1 of this report summarizes the results of
research conducted in the area of the Providence Mountains,
California in the eastern Mojave Desert, part of which was also
supported through a grant from the National Science Foundation.
The bulk of this research effort forms the body of a doctoral study
conducted under my advisement by Eric V. McDonald.

Part 2 of this report summarized the results of research in the
Sevilleta Wildlife Refuge in central New Mexico, site of one of the
UNM Biology Department's NSF-funded Long Term Ecological
Research. The bulk this research forms the body of a doctoral study
conducted under my advisement by Carol J. Treadwell. I believe that
these research efforts have resulted in important new ideas
regarding the factors influencing the rates, processes and magnitude
of accumulation of carbon in desert soils, which occupy much of the
area of arid regions of the world.

(NASA-CR-196820) LFACTORS

INFLUENCING THE RATES, PROCESSES Hatianat
ANC MAGNITUDE OF ACCUMULATION OF

CAR‘.*UV IN DESFRT SOILS] (New

Mexico Univ.) 30 P unctas

G3/46 0019816



TECHNICAL DESCRIPTION OF PROJECT AND RESULTS

Introduction

From 1 January, 1992 to 31 December, 1993 a project was conducted under the direction
Of Dr. Leslie McFadden of the University of New Mexico to determine the relative influences of
climatic change, desert dust, and lithology on soil hydrology and soil-geomorphic processes in
the desert environment of the Eastern Mojave Desert, California. Eric McDonald served as
principal assistant scientist and conducted research associated with this project for his Ph.D.
dissertation.

Our purpose in this project has been to isolate and study some of the key variables
controlling the formation of soils and the modification of geomorphic surfaces in arid and semi-
arid envirc Soil-landscape relationships are widely used to provide fundamental
stratigraphic and age information for Quaternary deposits in desert environments for studying
neotectonics, surficial processes, paleoclimatology, archeology, stratigraphy, and environmental
science. Many studies have shown, however, that processes controlling soil development and
landscape modification in desert environments are extremely susceptible to the 1) effects of
climate change, 2) the accumulation of fine-grained eolian sediment (dust), which in turn, is
indirectly related to climate change, and 3) the influence of lithology on soil-geomorphic
processes. The influence of these variables on soil-geomorphic processes have not been
integrated into one comprehensive study that addresses both the individual affects, as well as the
combined effects, on the origin and development of soils and desert landforms. Several key
attributes of the study area that was the focus of this research project provided an unprecedented
opportunity to evaluate and directly compare how climate change, the accumulation of desert
dust, and lithology control processes of soil-development and landscape modification: 1) a well-

defined record of Holocene and Late Pleistocene paleoclimatic and eolian activity in the Mojave
Desert, 2) established Quaternary stratigraphy for alluvial fans along nearby mountain
piedmonts, and 3) is the juxtaposition of four lithologically different sequences of Holocene and
Pleistocene alluvial fan deposits along the same mountain piedmont.

Some of the key questions we have addresses in the conduct of this work are: 1) what
are the ages of Quaternary deposits along the Providence Mountain piedmont and what are the
local and regional stratigraphic relationships between these deposits and others within the
region?, 2) how does soil formation and the development of desert pavements vary among
different lithologies?, and 3) how do spatial and temporal changes in the accumulation of dust,
climate, soil-water balance, and surface permeability influence soil-geomorphic processes on
alluvial fans, especially the development of calcic soils?

PRELIMINARY DATA AND RESULTS

Quaternary Stratigraphy of Alluvial Fans in the Providence Mountains

An important first step in this project was the comprehensive and detailed mapping of
Quaternary depositional units along the Providence Mountains. Seven major alluvial fan units
and three eolian units were defined based on relative degrees of development of soils and desert
pavements, stratigraphic relationships, and topographic position of depositional units (Table 1,
Figure 1, 2). We defined four separate fan sequences based upon the dominant lithologies that
make up the deposits in each sequence: 1) PM: leucocratic to mesocratic mixed-plutonic rocks
(mostly syenite and quartz monzonite), 2) QM: quartz monzonite, 3) VX: volcanic-mixed
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The Influence of Desert Dust and Lithology on the Origin and Evolution of Soils and
Desert Pavements )

Soil-Chronosequence Studies: Over 80 soil profiles were examined in ‘thc field of
which 65 soils were described in detail and sampled for laboratory analysis. Soils were
described for stratigraphic units Qf2 through Qf8 for each of the four fan-sequences. This large
number of studied soil profiles provides one of the most comprehensive soil data sets for )
examining spatial, temporal, and lithologic variation among soils in one st\.xdy area am_‘l proYldes
a solid foundation for detailed evaluation of the physiochemical processes involved with soils
and soil formation in desert environments. General attributes of each soil chronosequence are
shown in Table 1. . )

Soil-Geochemical Characterization: Standard laboratory analyses of: pamde:snc
distribution, calcium carbonate contents, pH, bulk density, and measurement of dithionftc- and
oxalate-extractable iron oxyhyroxides have been completed on many of the sampled soils: In
addition, X-ray diffraction of soil clays and X-ray florescence has been com.pleted on selected
soils, totaling 47 soil horizons. We are currently in the processes of evaluating the Frcmendous
volume of laboratory soil-characterization data. Data will be summarized and published a parts
of several publications that are currently in preparation. .

Modification of Alluvial fans and Formation of Desert Pavements: We examined the
origin and development of desert pavements and associated changes in the surfaf:c morghology
of alluvial fans using data from surface-transect measurements of features associated with desert
pavements and development of underlying Av horizons (i.e. clasts size, clasts col'or, deg_rce of
development of rock varnish, packing and smoothing of pavement clasts, Av horizon thickness).
Data was collected from over 100 25 meter transects across fan surfaces.

Results indicate that a strong correlation exists between pavement development an.d the
accumulation of eolian fines below pavement stones and within soils developing on alluvial fan
surfaces. Temporal relationships among the fan chronosequences show that t!lme is a strong
systematic trend between increases in the quality of the desert pavement and increases in the.
thickness of underlying Av horizons (Figs. 3, 4). These results prove the hypotheses regarding
the accumnulation of dust and development of desert pavements on basalt flows ﬁrst.proposcd by
Dr. McFadden and Dr. Wells (Geology, 15: 504-508). In addition, the results of this NSF
funded study indicates that 1) formation of pavements and Av horizons begins soon after
deposition of the alluvial deposits, 2) these two common desert featufes. coevolve
simultaneously, and 3) pavements on alluvial fans form the upward lifting of surface c}asts.from
the accumulation of eolian fines below pavement clasts and not deflation or upward migration of
clasts as had been generally hypothesized. )

Our results also indicate that important differences also occur among pavements derived
from different lithologies due to variations in dust trapping efficiency and bar-and-swale
microtopography (Fig. 3, 5). Av horizons and desert pavements form fas?est on ?-loloccne fan-
surfaces composed of resistant lithologies, such as limestone and ﬁne-g:?u.nc'd siliceous rocks,
that produce coarse-grained fan deposits (cobble-gravel) that 1) have an initially open
framework and 2) produce a strong bar-and-swale microtopography, features that increase dust
trapping efficiency. In contrast, Av horizons and pavements fon.n slowest on fan surfaces
composed of poorly-resistant lithologies, such as quartz monzonite, that 1) produce finer-grained
deposits (sandy-gravel) and 2) have a poor bar-and-swale mlcrotopgraph.y. Temporal
relationships indicate that a pronounced degradation of bar-and-swale microtopography occurs
with increased pavement development leading to the formation of broad, smooth pavement

covered surfaces that are common sights across the Mojave and other desert regions (Fig. 5).
Transect measurements indicate that progressive increases in the abundance of cracked, split,
and spalled cobbles and boulders at the surface, especially in bars, provide a ready source of
additional clasts for forming strong, interlocking pavements.

The results of our study of the origin and evolution of desert pavements on alluvial fans
will be of benefit to many other scientist especially in the fields of remote sensing, Quaternary
landscape evolution, and desert plant ecology. We have a manuscript in review that sets forth
the results of our study of pavement development on alluvial fans (McDonald et al., 199_a). In
addition, several sites in the Providence Mountains that have been mapped and analyzed in detail
are currently the focus of an additional NSF funded project under the supervision of Dr. Steve
Wells focused on the investigation the physical processes controlling pavement development.

Influence of the Accumulation of Desert Dust on Soil-Formation: Soil formation in
all lithologies show an immediate and systematic increase in clay and silt in near-surface A and
B horizons resulting form the accumulation of dust into developing soils (Fig. 6). In soils
formed from granitic lithologies (PM and QM fan-sequences), dust provides the primary source
of calcium carbonate. In soils formed in all lithologies the accumulation of dust provides
essentially all temporal increases in clay- and silt-sized particles, with only small amounts of the
secondary fine-grained material in these soils being derived from to the physiochemical
alteration of primary soil minerals. An ongoing debate in the study of soil formation in desert
environments is to what degree does the accumulation of eolian fines have on the chemical and
physical changes that occur during soil formation. The results of this project will go a long way
in addressing this issue.

Preliminary results also suggests that the rate of dust accumulation decreases over time
with increased development of desert pavements. In addition, lithologies that have the fastest
rates of pavement formation (VX and LS fan-sequences) also have slower rates of dust
accumulation than soils developed in granitic fan deposits (QM and PM fan-sequences) where
rates of pavement formation are relatively slower. For example, the accumulation of dust-
derived silt and clay in LS and VX soils totals about 5 to 10 g/cm? in about 50,000 years (Qf4
fan surfaces), whereas 8 to 30 g/cm? of silt and clay have accumulated in soils QM and PM soils.
These results indicate that the formation of smooth, flat-lying desert pavements probably exert a
strong control on the accumulation of desert dust because of reductions in dust-trapping
efficiency. Recognition of this type of intrinsic feedback between soil formation and the
modification of alluvial fan surfaces is critical for interpreting the systematic changes in soil
formation among soils formed in the different lithologies that make up the study area.
Systematic trends in soil development among soils formed in the different lithologies will
provide a powerful data base in which to directly quantify changes in developing soils that are

due only to the accumulation of dust from those that are due only to in-situ alteration of the soils
parent material. We are currently preparing a manuscript that will present our analysis of the
influence of dust on soil formation in arid environments (McDonald and McFadden, 199_a).

We are also currently developing a process-oriented model that uses soil particle-size
distribution data and mineral composition (XRF) to describe the influx and mixing of desert dust
within developing desert soils (McFadden et al., 199_a). This type of modelling approach is
imperative for correctly interpreting physiochemical processes associated with soil development
in arid and semi-arid environments.

Influence of the Accumulation of Desert Dust on Soil-Water Balance: Perhaps one
of the most significant results of our study of dust accumulation in soils is the strong affect that



temporal accumulations of dust have on soil-water balance. The development of Av horizons
and desert pavements have a profound impact on infiltration rates (Fig. 7). Measured infiltration
rates are reduced to about 35% to 1% of the infiltration rate for coarse-textured deposits that do
not have Av horizons. Accumulation of desert dust into soil B horizons that underlie the Av
horizon also have a strong effect on soil-water balance by decreasing infiltration rates and
increasing the soil-water holding capacity. For example, significant differences in the annual
flow of soil-water occur between weakly developed late Holocene soils and stronger developed
Pleistocene soils that have silt- and clay-rich B horizons (Fig. 8). Recognition of the strong
impact that temporal increases in texture have on soil-hydrology provide a very new direction in
which to evaluate soil formation and landscape evolution. For example, increases in surface
runoff that coincide with decreases in infiltration results in the degradation of soils and desert
pa e Ily leading to the establishment of surface drainage and the eventual
widespread dissection of alluvial fan surfaces. In other words, the systematic development of
soils and desert pavements directly controls surface hydrology by causing temporal increases in
surface runoff and promotes the eventual self-destruction of alluvial fan surfaces. Recognition
of the strong impact that temporal increases in texture have on soil-water balance provides
critical information for separating control of temporal changes in soil texture from climate
change on the profile distribution of carbonate.

We believe that this method of integrating field studies of soil and geomorphic
characteristics with quantification of soil-hydrologic characteristics and modeling of soil-water
balance will provide a powerful new method of evaluating short- and long-term landscape
evolution that will be of tremendous use to other geoscientists. We are currently preparing
manuscripts that will set forth the results of study that integrate evaluation of soil-water balance
modelling and soil formation (McDonald et al., 199_c; McDonald and McFadden, 199_a).

Inflaence of Lithology: The results of this study provide the first direct comparison of
soils developed from different and contrasting lithologies (Table 1). Clay-rich argillic (Bt)
horizons and strongly oxidized cambic (Bw) horizons have formed in soils developed from
granitic materials (QM and PM) but these soil features are virtually absent in soils developed
from calcareous materials (LS). By contrast, the accumulation of pedogenic carbonate is
strongest in the LS soils and weakest in the PM and QM soils. Soils developed from mixed
deposits (VX fan-sequence) represent a sort of half-way point between soil developed from
granitic materials and soils from calcareous materials. Other influences of lithology on soils and
desert pavements have been summarized above. The detailed quantitative analysis of the
influence of lithology on the formation of calcic soils in desert environments will be the subject
of a planned paper (McDonald and McFadden, 199_b).

In summary, the results of our examination of the origin and development of desert
pavements and soils derived from different lithologies will provide critical information for 1)
increasing the utility of desert pavements in establishing local and regional correlations among
Quaternary stratigraphic units 2) in using the quality of desert pavements and soil formation to
provide initial age information for Quaternary units, and 2) directly linking the influence of
lithology and the accumulation of desert dust on soil formation.

The influence of Holocene Climate Change on the Formation of Calcic Soils

We have made important new advances regarding the influence of Holocene climate
change on the profile distribution of pedogenic carbonates. Carbonate distribution in soils
formed on Pleistocene surfaces is commonly bimodal, with carbonate accumulation occurring

within the upper and lower parts of the soil profile (Fig. 9, 10). The bimodal distribution of
carbonate is generally thought to correspond to a general shift to relatively drier climates in
conjunction with the Pleistocene-Holocene climatic transition (line A, Fig 11). Paleoclimate
records derived from nearby pluvial lakes, however, indicate that the Holocene has been
punctuated by episodes of significantly wetter climate characterized by extreme increases in
rainfall that resulted in the formation of short-lived (~50 to 200 years) pluvial lakes (line B, Fig.
11). Shallow flooding of desert playas in the Mojave Desert has occurred several times during
the last 100 years during years with significant increases in winter and spring rainfall that are
generally associated with El Nino/Southern Oscillation anomalies in the Pacific (line C, Fig. 11).
An important part of this project has been to test our hypothesis that these episodic periods of
extreme climatic during the Holocene have influenced the profile distribution of soil carbonate.

We have been collaborating with Dr. Gerald Flerchinger and Dr. Fred Pierson (Research
Hydrologists: USDA-ARS) on adapting and applying a numerical soil-water/evapotranspiration
model (SHAW) for studying soil-water movement under varied conditions of climate, soil-
texture, and vegetation. Our strategy has been to use actual daily climate data from select years
to examine how climate variables associated with relatively "wet" (playa-flooding years with
extreme increases in rainfall) and "dry" climate (historical average annual rainfall) affect soil-
water movement. Previous studies of soil-water movement in calcic soils have largely relied on
monthly estimates of climate which provides only crude estimates of soil-water balance.

Preliminary results using SHAW indicate that carbonate within the upper and lower
zones of modelled soils strongly corresponds with soil-water flow associated with dry and wet
years (Fig. 9). The depth of soil-water flow can only reach the lower zone of carbonate
accumulation during "wet" years when extreme increases in winter/spring storm activity resulted
in the flooding of nearby desert playas. The depth of soil-water movement during "dry" years
corresponds to the upper zone of carbonate accumulation in soils formed on pre-Holocene
surfaces. Because of the linkage between extreme winter/spring storm activity and the flooding
of desert playas, we believe that our current work strongly suggests that the carbonate
distribution in calcic soils may largely be controlled by episodic and extreme climate events that
have occurred throughout the Holocene (line B, Fig. 11) rather than climate change associated
with the Pleistocene-Holocene transition (line A, Fig. 11). Empirical field relationships among
carbonate distribution between Pleistocene and late Holocene soils-also supports the conclusion
that extreme climatic events during the Holocene have control the depths of accumulation of
carbonate (Fig. 10). This conclusion is significant because 1) episodic changes in climate are
likely to also have a strong influence of soil characteristics (in addition to carbonate) and
surficial processes, and 2) calcic soils may provide a proxy record of Holocene climatic change.
The latter point is significant because of the ubiquitous occurrence of calcic soils in desert
environments. Two manuscripts are currently being prepared that will present the initial
findings of our integration of numerical models of soil-water balance and models of climate
change with the profile distribution of soil carbonate (McDonald et al., 199_c; McFadden et al
199_b)

Our next step in this process will be to combine the SHAW model with the
redevelopment of a geochemical model of the soil carbonate system (CALSOIL) to 1) study the
physiochemical development of calcic soils, 2) to evaluate temporal changes in the profile
distribution of pedogenic carbonate and 3) to use the vertical distribution of soil carbonate as a
proxy indicator for evaluating the impact of climate change on soil-water movement in arid and
semi-arid environments.
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Figure 1. General distribution of Quaternary depositional units along the Providence
Mountains piedmont. Four fan-sequences are defined based on lithologic composition:
1) PM: mixed-plutonic rocks, 2) QM: quartz monzonite, 3) VX: volcanic-mixed, and 4)
LS: limestone and marble. KB: Kelbaker road, UP Union Pacific railroad tracks.
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Figure 2. Preliminary correlations among Quaternary stratigraphic units in the eastern Mojave Desert.
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Figure 5. Temporal trends in degradation of mean bar-and-swale microtopgraphy. Each point

represents between 20 and 50 measurements for each particular fan sequence.
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four lithologic fan-sequences). Each soil has a plotted value for C horizon texture.
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Part 2: Quaternary Carbon Storage and Cycling Times in a Semiarir:l
Landscape, Sevilleta Long Term Ecological Research Site, New Mexico

Introduction

An increase in atmospheric PCO; since the start of the industrial revolution has created
concemns about greenhouse warming of the Earth. Earth scientists have responded by searching for
information about the causes for past and present atmospheric CO,, fluctuations, but these remain
poorly defined. For example, carbon budgets made for the most recent deglaciation seem to be
missing a large carbon sink (Sundquist, 1993). Atmospheric CO; is very sensitive to changes in the
larger pool of terrestrial carbon therefore, post-glacial uptake of carbon by vegetation and soil may
account for the missing carbon (Adams, et al., 1990, Harden et al., 1993). Desert soils store copious
amounts of carbon as calcium carbonate (CaCOs) and have a carbon isotopic signature that indicates
that it is a direct sink of atmospheric CO; (Cerling, 1984, Quade et al., 1989b). Furthermore,
deserts cover one-third of the Earth's surface and therefore the soils in deserts may constitute a
significant terrestrial carbon reservoir. A crude first estimate suggests that 35% of world soil carbon
is stored as inorganic carbon in desert soils (Schlesinger, 1982). This has important implications for
global climate because arid soils could act as a non-trivial sink or source for atmospheric carbon. It
is the intent of this report to demonstrate the flux rates of carbon through and out a semi-arid

landscape.

Method

Landscape dynamics are the key to long-term carbon fluxes in the terrestrial reservoir. By
examining the processes which have shaped the landscape, temporal changes in carbon pools are
estimated. Stable landforms promote carbon sequestration while degrading landscapes return carbon
to atmospheric or oceanic pools (figure 1). This study measures the volume of carbon stored in
pedogenic carbonate and assess its relative longevity in the landscape. Rates of carbon sequestration
are estimated by from soils of different ages on landforms of different ages. Carbon efflux rates are

measured by reconstructing erosional history and soil erosion rates in the landscape.
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Figure 1. Flux of carbon into and out of a drainage basin.

A single drainage basin has been chosen to represent a unit of landscape. Defined this way,
a drainage basin can be viewed as a closed system where inputs balanced against outputs define
carbon storage. The drainage basin of Palo Duro Canyon is chosen for this study because it
preserves a fill-cut terrace stratigraphy that resembles other Quaternary stratigraphies in New
Mexico and the desert southwest (Hawley, 1976, Birkeland, 1971; figure 2). Central New Mexico is
an ideal location for this study because the association of soil age to soil morphology and carbonate
content is well established nearby in southem New Mexico (Gile et al., 1966). In addition, the study
area is contained within the Sevilleta Long Term Ecological Research Site (LTER) which has been
protected from grazing and other manmade landscape perturbations for the last 20 years.

The first step in field investigations was to map the distribution of geomorphic surfaces in

the Palo Duro drainage basin. Next, a soil chronosequence were pled in order to time

dependent carbon sequestration. Soil toposequences were constructed to measure the spatial
distribution of carbon in the landscape. The volume of stored soil carbon was calculated from mass
of carbonate in each soil profile of different age and landscape position. Finally, the geomorphic
processes that have shaped the landscape in Palo Duro Canyon have been reconstructed. These time
dependent landscape changes are used to reconstruct changes in the volume of carbon stored in the

landscape through time.

Results

Extensive geomorphic surfaces in the Rio Grande Rift represent 10° years of carbon storage.
The carbon return time for these large reservoirs appears to be slow since the surface is relatively
undisected. Trenches excavated on these surfaces, however, reveal channel forms truncating stage
IV or stage V carbonate horizons that are overprinted by younger stage III carbonate accumulation
(terminology of Gile et al., 1966). These channels represent smaller scale carbon fluctuations within
a larger more stable reservoir.

A second time scale of carbon cycling is represented by the downcutting and aggradation
cycles effecting Palo Duro. Aggradation adds surface area in the basin that begins to act as a carbon
sink. Degradation removes surfaces that have accumulated significant amounts of carbon in the
past. Estimated ages for inset fill terraces suggest that the changes in carbon storage driven by basin

aggradation and degradation are on the same scale as Quatemnary climate change (10° years).
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Figure 2. Location of the study area and major geomorphic surfaces in the Albuquerque-Belen

Basin.

Superimposed on the cycle of basin degradation is the time it takes for eroded carbonate to
be dissolved or removed on clasts from the drainage basin. Following terrace formation, the first
stage of landscape development is manifested by truncation of soils at the front of terrace, while soils
at the back and middle are buried by colluvium. Erosion of previously formed terraces contributes
colluvial material to the younger terrace surface (figure 3a). The colluvial clasts have rinds of
pedogenic carbonate which enhance carbonate accumulation in the younger terrace soils. This
represents carbon “recycling” within the terrestrial reservoir.

As base level drops gullies incise the terrace (figure 3b). The gullies establish a dendritic
drainage patiemn that exploits the junction between the terrace and the adjoining scarp. At this
second stage, the terrace is isolated from the scarp and no longer receives colluvium. The gullies
intercept colluvium and divert it from the terrace surface into the main channel. This event is
significant because accumulation of pedogenic carbonate in terrace soils is no longer augmented by
colluvial contributions. In a third stage of landscape development, colluvium is stripped from the

back of the terrace by the intercepting gully (figure 3b).

Timing of Carbon Loss

Early Holocene terrace treads are spatially isolated but the latest Holocene terrace is not;
this indicates that 10 years are required for stage two to be completed. Late Pleistocene terrace
treads are isolated and colluvium has been stripped from the terrace back so the third stage of
development takes approximately 10° years to attain. These time scales of landscape development
are critical because in stage one there is an overall carbon gains and carbon as pedogenic carbonate
on colluvial pebbles is recycled back into the soils. At stage two, however, these clasts are diverted
from the surface by the intercepting gullies. This process contributes to carbon loss from the
landscape. In stage three of landscape development, the rate of carbon loss increases because
colluvium containing carbonate is lost from the landscape. This sequence of landscape evolution
represents initial gains of carbon followed by gradually accelerating losses of carbon from the

drainage basin in the late Pleistocene and to present.



Figure 3. Stages of landscape development and carbon loss in the inner valley of Palo Duro
Canyon. A) Stage 1: following terrace formation, the front of the terrace is truncated
while the back of the terrace is covered with colluvium. Carbon is “recycled” during
stage 1. B) Stage 2: Gullies cut headward into the back of the terrace and intercept
colluvium containing secondary carbonate. Carbon loss begins to be lost from the
landscape.

Volume Carbon Gain and Loss in the late Pleistocene and Holocene

Surface areas covered by a given terrace within a 1 km square area in the drainage basin are
used to calculate carbon losses and gains over the time intervals that the terrace soils have been
accumulating carbon. Present-day storage within the 1 km square block of landscape is 10,000
metric tons of carbon. The late Pleistocene terrace contains 8800 metric tons, early Holocene 1100
metric tons. The Recent terrace contains 77 metric tons of carbon in its soils. Yearly net losses for
the late Pleistocene terrace, implied from area eroded from the terrace, are 26 kg/m/yr. The losses
from the early Holocene terraces are 111 kg/m/yr. Yearly gains on the other hand suggest 87
kg/m/yr are sequestered by the late Pleistocene terrace while 133 Kg/m/yr are sequestered by the
early Holocene terrace. This implies that gains are out-competing losses but carbon losses are

catching up to carbon gains (figure 4).
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