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Simulating a Large Wasatch Front,
Utah, Earthquake Using Small Earthquake
Recordings as Green's Functions

1. INTRODUCTION

The effects of long and short period vibrations on missile systems and their sup-
port facilitics have been a concern of the Air Force for some time. Such in-ground
vibrations can be caused by ions, ional P! large

P and earthquak These can p! gnifi 4
over distances of hundreds of kilometers from a site. Latcly, there has been a signi-

d motion even

ficant amount of research on the use of small earthquake recordings us Green's func-
tions for the synthesis of larger events (Section 2.3). In this report such a method is
used to predict ground motion from an earthquake at a station that has not had an on-
scale recording of a major event from the particular source region. This report con-
tains a description of the method and a chosen data set. It includes the results of
several sensitivity experiments as a test of the feasibility of the method for Air Force
needs.

2. TEST AREA

The general area of concern for this study is the central and western United
States. Initinlly a single test site and single source region are used for a case study.

(Reczived for publication 27 May 1986)
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The test receiver location of Golden, Colorado, the site of a WWSSN (World-Wide
Standard Seismograph Network) station, was chosen. The source region for the study

is the Wasatch Front ir Utah, the scene of severa! moderate to large carthquakes.

2.1 Wasatch Front Earthquakes

The Wasatch Front is u segment of the Intermountain Scismic Belt, which is a
1300 km long north-south zone of generally normal faults and high seismicity. The
zone marks the transition between the basin and range province to the west and the
Colorado Plutcau to the east. Earthquake activity along this area is generally diffuse
with shallow focal depths (less than 15 km), often occurs in swarms, and generally
results in lfault plune solutions which exhibit east-west cxlcnsion'. Although many
Wasatch Front earthquakes are located to the cast of this physiographic boundary, it is
generally recognized that the Intermountuain Seismic Belt separates two continental sub-
plates. As such. carthquakes from this region do not exhibit purely "intraplate"
source characteristics. Table 1 lists the carthquake records usced in this study. All
were from the WWSSN station at Golden, digitized by hand. Size estimates of the maxi-
mum magnitude earthquake vary from the northern part of the Wasatch Front to the
southern part. The latter possesses the higher seismic hazard (see Figure 1, Table 2).
Historically the largest event to occur in Utah was the 1934 Hansel Valley earthquake
(M = 6.8). Typical design criteria for critical structures often choose a maximum
carthquake size that is 1/2 10 1 magnitude higher than the largest historical event.
According to the calculations of llunis2 such an event may have a return period of
approximately 250 years. Geologicul data suggest 100 to 200 years although no event
of that size has occurred since the area was populated (-~ 1850). This study models a
7.0- 1.5 ML carthquake. Seismic waves from the Wasatch Front traveling to Golden
cross two geclogic provinces: the Colorado Plateau and South Rocky Mountains.

2.2 Crutal Structure

The Wasatch Fault lies at the eastern edge of the Basin and Range tectonic prov-

ince of western North America. The Basin and Range is characterized by thin crust

(30-35 km), low P velocity (7.8 km/sec), and recent extensional lectonicss'4.

1. Smith, R.B., (1975) "Seismicity and Earthquake Hazards of the Wasatch Front,
Utah," Hearing before the Committee on Aeronautical and Space Sciences,
United States Senate, 94th Congress, U.S. Government Printing Office,
Washington, D.C.

2. Battis, J.C., (1982) "Seismic Huzard Study for Utah," AFGL-TR-82-0319, ADA 129238,

3. Hamilton, W., and Myers, W.B. (1966) Cenozoic Tectonics of the Western
United States, Reviews of Geophysics, A‘('No. 4) :509-549.

4. Priestley, K., and Brune, J. (1978) Surface Waves and the Structure of the Great
Basin of Nevada and Western Utah, J. Geophys. Res., ‘8_3'5"0. BS5):2265-2272.
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Table 1. Source Data for Chosen Earthquake Records
— ———3
LOCATION CONVERTED FAULT PLANE
EVT DATE TIME LAT LONG MEASURED MAG DIST DEPTH ESTIMATES*
NO. M-D-Y (GMT) (DEGREES) MAG Ms RECORDS (KM) (KM) (AZ AND DIP)
1 06-02-72 03:15 38.7 -112.1 4.6M , 2.7 SHORT PERIOD 592 5(ISC) 170, 86W;
4.0 ML Z 275, 15N
2 03-17-66 11:47 41.6 -111.6 4.6 ML 3.7 LONG PERIOD §67 40(ISC)
Z
3 10-04-67 10:20 38.5 -112.1 5.2 \:L. 4.7 LONG PERIOD 597 170, 86W,
s.2my NS, EW, Z 95, I5N
1 10-11-77 07:56 40.5 -110.5 BN, 3.9 LONG PERIOD 446 3-6(ISC, NEIS)
4.7 ML NS, EW, 2
5 09-05-62 16:04 40.7 112.1 5.2 ML' 4.7 LONG PERIOD 584 330, 30NE:
5.0 My Z 177, 60SW

*DOSER AND SMITH, 1982
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Figure !. Earthquake Source Zones for Seismic Hazard Estimates
(Johnston, 1983)
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Table 2. Recurrence Relations for Zonation Scheme of Figure 1 (Johnston 1983)

a Return Period
Source Area Log N, =A - B M, Min | Max of M1, Max
Zone (km)?2 A B My | Mg (years)
TZ 6.15 % 10° 2.2 0.7 4.0 | 6.5 223
RGR | 7.38x10° 3.7 0.8 4.0 | 7.0 79
B7 1.86 ¥ 10° 4.2 1.0 4.0 | 6.75 354
WFA | 6.56 x 10% 3.3 0.8 4.0 | 7.0 200
WFB | 1.29x 10° 2.3 0.5 a.0 | 7.75 38
' CP 3.5 ¥ 10° 4.2 1.0 4.0 | 7.0 630

*N, = cumulative number of events per annum of magnitude greater than or
equal to My for each source zone (not normalized to area).

%)




Eastward of the Wasatch Fault lies the Colorado Plateau, an uplifted area of thick crust

locity (7.8 km/sec) that has been relati v stable tectonically

(40-42 km) and low Pp,

since Paleozoic tim

8 ‘6t

Keller et al.” inf major te o rp along the transition zone between the
Basin and Range and Colorado Plateau. Their int retation of seism!c refraction meas-
urements indicates a crustal thickness of sbout 25 km and an abnormally low Pj, velocity

tered on the Wasatch Fault. East and west from

of 7.5 km/sec in a zone 80 k

velocities increase as outlined above.

this zone, the crust thickens ar

The WWSSN station at Golden, Colorado, (GOL) is located near the eastern edge

of the southern Rocky Mountains, approximately 400 km from the Wasatch Fault. The

48 km in the central part of the mountain range to
10

over 50 km in the Front Range near Gelden; P, velocity is 7.9 km/secg’ . These

variations in crustal structure sre best illustrated by a west-east profile of crustal

crust thickens from approximately

models (Figure 2). Keferences for tnese models are listed in Table 3. Note especially
the Moho upwarp and low P velocities in the transition zone, the area of the Wasatch

Fault zone.
Depth to the low velocity zone in the western United States is measured as

, and surface wnves‘.

12

1
60-70 km from body \va e travel lmn's‘ . body waveforms
Biswas and hnu;.nn inverted long-period surface data between Dugway, Utah and
Golden, Colorado, finding that the best estimate of S-wave velocity and thickness of
the mantle ebove the low velocity zone (lid) is 4.45 km/sec and 35 km, respectively.
5. Bucher, R.L., and Smith, R.B. (1971) Crustal Structure of the Eastern Basin and

Range Province and the Northern Colorado Plateau fiom Phase Velocities of

Rayleigh Wa in The Structure and Physical Properties of the Earth's Crust,
John G. Heacock, ed., Geophysical Monograph 14, AGU, Washington, D.C.

6. Keller. G.R., Braile, L.W., and Morgan, P. (1979) Crustal Structure, Geophysi-
cal Models and Contemporary Tectonism of the Colorado Plateau, Tectonophysics,
§1;131-147.
7. Thompson, G.A., Zoback, M.L. (1979) Regional Geophysics of the Colorado
Plateau, Tectonophysics, §1(No. 1-3):149-181.
8. Kelier, G.R., Smith, R.B., and Braile, L.W. (1975) Crustal Structure Along the
Great Basin - Colorado Plateau Transition from Seismic Refraction Studies,
J. Geophys. Res., %Na. 8):1093-1098.

9. Jackson, W.H., and Pakiser, L.C. (1965) Seismic Study of Crustal Structure in
the Sov*hern Rocky ins, U.S. G Survey Prof. Paper 525D,
pp. D85-D92.

10. Prodehl, C., and Pakiser, L.C. (1980) Crustal Structure of the Southern Rocky
Mountains from Seismic Measurements Bull. Seismol. Soc. Am., 91:147-155.

11. Archambeau, C.B., Flinn, E.A., and Lambert, D.G. (1969) Fine Structure of the
Upper Mantle, J. Geophys. Res., wNo. 25) :5825-5865.

12. Burdick, L.J. (1977) 3road-Band Seismic Studies of Body Waves, Ph.D. Thesis,

California Institute of Technology.

13. Biswas, N.N., and Knopoff, L. (1974) The Structure of the Upper Mantle under
the United States from the Dispersion of Rayleigh Waves, GJIRAS, wNo. 3):515-
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Figure 2, Selected Structural Models from the Basin and Range Eastward to the
Great Plains. First number or single number is the P-wave velocity, second is
the S-wave velocity. Single lines are layer boundaries; double Hne is the Moho:
hatchures indicate a low velocity layer. Arrows indi in
velocity. Letters below each profile indicate references ln Table 3

Anelastic jon mente are much sp than velocity results and
considerably more scattered. Results of three studies are presented in Figure 3. In
both the Colorado Plateau and the Basin and Range, a low-Q upper crust is underlain
by a high Q lower crust. The CIT 112 model is a world-wide average of long-period
surface wave Q measurements. Clearly, more work is needed to adequately define

ismic wave on a regional basis.

S. THEORETICAL BACKGROUND AND HISTORY OF GREEN'S FUNCTION APPROACH

The pt of eart size is multi 1 » such as
i and i ity, are pop ly used to give some pelative w-le for the meas-
urement of seismic events; however, a single cannot q character-

ize such a dynamic process. This study utilizes many properties of an earthquake such
as rupture velocity, fault length, fault width, fault slip, stress drop, propagation
history, earthquake moment, earthquake energy and finally earthquake magnitude.

BEST COPY AVAILABLE



CRUSTAL Q8

Table 3a. References for Figure 2

_ a =
Profile Investigator Method /Model 104 & 160 85
— *: 300
A Priestley and Brune, 1978 surface wave dispersion 2000~ 300
B Hil! and Pakiser, 1967 P-wave refraction (in Basin and Range) 204 2000 2000
C Berg et al., 1960 P-wave refraction 5
D Keller et al., 1975 P- and S-wave refraction (Model A) 301 S
) _ _ 1000 150
E Braile et al., 1974 P- and S-wave refraction (Model 1) -500-
F Keller et al., 1976 surface wave dispersion 407 -500~ e
(N. Colorado Plateau) 150
G Roller, 1965 P-wave refraction
50
H Bucher and Smith, 1971 surface wave dispersion (Model C7) -200-
I Prodehl and Fakiser, 1980 P-wave refraction (Lumberton to 60
Sinclair)

X . -180-
J Jackson and Pakiser, 1965 P-wave refraction (Climax model)
X i A B D c E
K Jacks=on et al., 1963 P-wave refraction (Model A)

Figure 3. Crustal Q ' as a Function of Depth

Table 3b. Crustal Q Measurements, References for Figure 3

The seismic moment, llo. which can be measured from the amplitude spectrum at very

Profile Investigator Method /Model long periods, represents, more than any of the other size estimates mentioned above,
A Archambeau et al., 1969 CIT 112 the actual physical di si of an q . The fault length, L, and width, W,
and fault ., B, are to the seismi by the t
B Bache et al., 1978 NTS-ALQ & d
modulus, », by the equation
c Bache et al., 1978 NTS-TUC
14
D Cheng and Mitchell, 1981 Colorado Plateau M,=sLWD  (see Aki and Richards ")
E Chi d Mitchell, 1981
e ehe Hashand sy The mechanics of fault rupture can be quite complicated. The entire area of a
fault involved in the rupture does not instantaneously slip; rather, a portion starts the
fracture and this can propagate with a certain rupture velocity throughout the earth-
quake fault area. It can stop and restart with many variations (see, for example,
14, and Richards, P.G. (1979) Quantitative sdmolosz. Theory and Methods,
Vol. I, W.H. Freeman and Co., San Fran » 3
8 9
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Joyner and llooruis for a description of rupturing during the Parkfield earthquake).
If we consider separately a precise location in space and time along a rupturing front
(whatever configuration that might have), we could reduce a complicated rupturing
history to a series of unit impulses. The resulting displacement field from such a
source is the elastodynamic Green's X'unclum“. Mathematically it can be represented

as follows: A displacement at X caused by a displacement discontinuity
(UCE, 7)1

across I s

&= ffo vo 4L (sce Aki and Richards'?)
\ Pg np.q

where * denotes convolution:

‘_,G”P . is the elastodynamic Green's function, und "'pq is the moment tensor.
o€

The model in this paper uses the recordings at the observation point which incor-

porate the WWSSN instrument response in the integrated above. That is, these record-

ings ure the responses to an impulse rupture at the fault (along £ ). Rather than
modeling the impulscs along the source, and then having to compensate for effects along
the ray path, the aim of this study is to produce a time history of a large event recorded

at a distant site by approximating the unit impulse response at distance, due to a ruptur-

ing area, by recordings of small earthquakes. These will be referred to as the "seed"
events. In other words, small earthquakes are being added together as components of
one large earthquuke.

Variations of the method have been used by previous investigators (sce Table 4).
Nurlzolm used two aftershocks of the 1940 Imperial Velley event recorded at El Centro
scaled for moment by a simple lincar multiplication to add up to the total moment of the
basic event. Heaton'? used synthetic Green's functions for a halfspace to model near-
field motion from the 1971 San Fernando earthquake. Kumlmo!'lls combined the Borrego

15. Joynor, W.B. and Boore, D.M. (1985) "On Slmulaung Large Earmquakes by
Green's Function Addition of Smuller Earth to the
Proceedings of the 5th Maurice Ewing Sympostum = l-.nrlhqunke Source Mechanics,
May 19-23, (1985) Harriman, N.Y.

16. Hartzel, S H. (1978) Earthquake Aftershocks as Green's Functions, Gﬁhxs. Res.
l.clls._SJNo. 1.

17. Heaton, T.H. (1978) Generalized Ray Models of Strong Ground Motion, Ph.D.
Thesis, California Institute of Technology, Pasadena, California,

'8. Kanamori, H. (1979) A Semi-Empirical Approach to Prediciion of Long-Period
Ground Motions from Great Earthquakes, Uull. Seismol. Soc. Am.‘sa(No. 6) :1645.

10
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Table 4. Previous Investigations of Green's Functions Used to Synthesize Earthquakes

Investigator

Subject

Input to Model

Hartzell {1978)

Heaton (1978, 1982)

Kanamori (1979)

Hadley and
Helmberger (1980)

Irikura (1983)
Wu (1983)
Hutchings (1985)

Johnston
(Present Study)

Imperial Valley 1940
San Fernando
Feb. 9, 1971 (M=6.4)

Large historical
carthquake (1857)

Parkfield
June 27, 1966
(N=5.7)

1980 Izu-Hanto-
Toho-Oki (M=6.7)

1982 Tangshan
(M=5.3)

San Fernando (1971)

Theoretical M=7.5 for
Wasutch Front, Utah

Aftershocks recorded at El Centro
used as Green's functions

P waves below 5 Hz with synthetics
as Green's functions

Used 1968 Borrego records as
Green's functions

Aftershocks used as Green's
functions

Delayed summation of small events
Aftershocks used as Green's
functions (used accelerograms)
Small aftershocks (M<3.0)

Magnitude 4-5 Earthquakes, time
delayed

mourtain records to predict or present a model of a record for the large historical
earthquake that occurred pre-instrumentally.

Hadley and Helmlmrgn:r'9 modeled the

Parkfield earth using after Irikurnm used the delayed summation of smull
events to model the 1980 Isu-Manto-Toho-Oki event in Japan. \\Iu2 used uccclomgrum
recordings of aftershocks to rep the 1982 Tanshan carthquake. H =

used small aftershocks (less than magnitude 3.0) to synthesize the 1971 San Fernando
earthquake. Muramato and Ohnumnz:l and Yoshikawa et "|24 have also elaborated on the

19. Hadley, D.M., and Helmberger, D.V. (1980) Simulation of Strong Ground Motion,
Bull. Seismol. Soc. Am. 70(No. 2).

20. Irikura, K. (1983) Semi-Empirical Estimation of Strong Ground Motions l)urmg
Large Earthquakes, Bull. Disas. Prev. Res. Inst., Kyoto Univ., 33(Part 2
No. 298):63.

21. Wu, F.T. (1983) A ground motion synthesis study using small earthquukes as
Green's functions, Conference on Earthquake Hazards, Beijing, China.

22. Hutchings, L. (1985) Modeling Ea J Dept.
of Geological and Environmental Studies, State Univ. of N.Y., Binghamton, N.Y.

23. Ohnuma, H., Muramatsu, I. (1985) Synthesis of strong ground motions by using
the seismograms of aftershocks as Green's functions, Tokyo, Jupan.

24. Yoshikawa, S., Kitano, T., Iwasaki, Y.T., and Tai, M. (1985) Prediction of
strong g motion by synthesis of small events records and site spectral
ratio, Tokyo, Japan.
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method. There huve been several others who have successfully modeled moderate to

lurge earthquukes using cither fore ! iftershocks, or small, real or synthetic
events from the area of the target lurge earthquake.
Modeling a future cvent gives rise to the same questions as modeling a past, pre

instrumental ev

nt How is the validity

of the result to be judged? There are various,
obvious criteria for the addition of the

se

vents. Possibilities for the synthesis
include the del

d uddition of sced cvents, based on geometry (sum of seed rupture

areas equals total foult area turget event), energy and moment. The synthesized

waveforms will have new amplitudes und frequency content. If the amplitude were the

only concern it could be ruised by & simple scaling: however the spectrum of the com

posite event must also mateh that of the magnitude reasonably at both high and low
frequencies. The basic assumption of this method is that the seismograms recorded at
a distant site from small earthquake

y approximate the response at the site to a

unit impulse at the hypocenter, and therefore artificial incorporation of the effects of

inhomogeneit

ilong the ruy path and attenuation with distance can be climinated.

However, the noise will be urtificially accumulated ; its effect must be compensated.

The approach tt

rt takes toward the discrimination of a good synthesis of
ground motion is to r

heavily on the previous conclusions of others who have suc
cessfully modeled a real event and to examine the consequences of the parameters

chosen in our synthesis through the use of sensitivity tests of the data.

4. GREE}

S FUNCTION ADDITION OF SMALL EARTHQUAKES

4.1 Source Parameters Estimates and Conversions

after close examination of 15 events recorded at Golden, Colorado in the proper
magnitude and distance range, five were used finally in the study. They had digitiz-
able components, better signal versus noise and better reproduction of the record.
Short period records at this range were especially difficult to digitize. The selected
records are listed in Table 1. Their geographic locations and fault mechunisms, where
available, are plotted on Figure 4, the numbers correspond to those on Table 1. The
horizontal components huve not been transformed into radial and transverse components
since the actual epicenter station pair recording at Golden is to be modeled. Since

many of the empirical relationships developed to relate fault and earthquake parameters

12
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Figure 4. Location of Earthquakes Used in the Study. Single numbers refer to
events in Table 1. Distances to Golden, Colorado, are listed in kilometers
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to carthquake size utilize the surface wave magnitude scale (Ms) the observed magni-
tudes of the chosen events were converted to M‘. The empiricully derived relationships

r
of Nuttli2® were used for this:

Ms = (mb - 1.93)/0.61

Ms = (M, - 2.28)/0.625

L

Energy estimates for several magnitudes are compiled in Table 5. The calculated values

92
are derived from the relutionship of Uuth'ﬁ:

log E - 1.44 .\lﬁ + 12.24

where E is the sy over the entire spectral range. Kanamori and :\nderson27 have
verified that E ~ Hll's.\l, from a theorctical examination of a simple dislocation model.
>

The values of m,_, except when measured directly for the particular events, were con-

o 28
verted by the cquation of Brazee™ :

m, = 1,276 + 0.749 .\Il

b

because this conversion relation scemed consistent with this data set. One column of

2
moments (.\Io) arc approximated from m, using Nuuli’ss"9 average data for mid -plate

b
earthquakes:

log 10 Mo = 2.0 m, * 13.2

25. Nuttli, O.W. (1979) State-of-the-Art for Assessing Earthquake Hazards in the
United States. Report 16, The Relation of Sustainc| Maximum Ground Acceler-
ation_and Velocity to Earthquuake Intensity and Magnitude, Miscellancous Paper
$-73-1, U.S. Army Engineer Waterways Experiment Station.

26. Bath, M. (1958) The encrgies of scismic body waves and surfuce waves, in
Contributions in Geophysics: In Honor of Beno Gutenberg, Benioff, H..

Ewing, M., Howell, Jr., B.F., and Press, F. Editors, Pergamon Press,
New York, pp. 1-16.

27. Kanamori, H., Anderson, D.L. (1975) "Theoretical Basis of Some Empirical
Relationships in Seismology." Bull. Seismol. Soc. Am..‘sév(No. 5):1077-1095.

28. Brazee, R.J. (1976) An Analysis ol Earthquuke Intensities With Respect to Attenu-
ation, Mignitude and Rate of Recurrence, Final Report, NOAA Technical Mcmo-
randum EDS NGSDC-2.

29. Nuttli, O.W. (1983) "Average Seismic Source-Parameter Relations for MID-Plate
Earthquakes,” Bull. Seismol. Soc. Am.. 73(No. 2):519-535.
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Table 5.

Empirically Based Magnitude - Energy, Moment Pairs with Estimated Rupture

RUP AREA

Event M M Mg Energy++ M, M; L w ‘I‘O‘l‘2 D ”g':pﬁd ::dim:
(Dyne-cm) (km) (km™) (m) (km) (km)
1 4.6 4.0 2.7 1.3x10'% 25x10%%2 45x1022 2.0 2.0 4.0 .014 10
2 4.8 4.6* 3.7 3.7x107 6.3x1022 81x102 3.0 3.0 9.0 .02 10 7.2
4 a.8* 4.7¢ 3.9 7.2x10"7 6.3x10°2 43x10® 30 3.0 9.0 .02 10
3,5 5.1 5.2« 4.7 1x10°  25x10% 2.5x102* 40 4.0 160 .03 10 4.6
.0x102® 3.1 3.1 96
6.5 7.0 7.5 1x10°  1.6x10%® 7.1x102® 20 13 269 1.1 10
6.9 7.5 8.3 1.6x10°" 1.0x102" 2.1x10%® 40 20 800 3.7 10

* Actual Observed for Event
** Nuttli Equation
+ Doser and, Smith Equations

++ Bath 1958 Equation




The equutions of Doser and smith3? for moments in the Utah areu actually were used in
calcuiations for the simulated composite events. The Wasateh Front earthquakes are
not typical of the mid-plate regime, but lie scmewhere between intra and interplate
cvents in their characteristics (Nuulizs. personal communication). Accordingly, size
estimates for source dimensions were adjusted to full between estimates of intra and
interplate carthquakes (Table 5). Where studies have been performed on the specific
events, these estimates arc listed under "Source Radius”.

Figure 5 shows the complete digitized records for events 1 through 5. The
Fourier amplitude spectrum of each record was computed and is shown in Figure 6.

4.2 Geometric Approach

Initially the problem was approached from strictly geometric considerations.
Estimates of the number of sceds and the dimensions of the culls were determined by o
retio of estimated rupture area of the seed events to that of the large carthquakes.

Fizare 7 illustrates the concept. After a total fault rupture width and length are
sclected, the total area is divided up into cells of, in this report, equal arca. In order
to reduce the introduction of spurious periods from repetitive spacing the sced events
are placed in random locations, one per cell. The location of the initial rupture is
specified (generally at one end) and the earthquake seed recordings are stacked with
delays corresponding to distance from the initial rupture cell denuded by the rupture
velocity (see Figure 8). This computational procedure was followed for all the models,
only the number of cells and consequently the number of sceds as well s the cell dimen-
sions are changed.

The resulting composite carthquakes from this stacking had unsatisfactorily small
amplitudes and energies of the modeled event, however, several valuable sensitivity

tests were performed with this initial modcl.
4.2.1 RUPTURE VELOCITY SENSITIVITY

To demonstrute the effect of assumed rupture velocity on the composite event, the
Z components of cvents number 3 and 5 were used. In Figure 9a and b, the first record
is the actual recording of the seed carthquake, the next 3 records are the result of
deluyed summuation of 67 seed events at rupture velocities of 2.0 km/sec, 2.5 km/sec und
1.7 km/sec in sequence. The last records in a and b are for a stacking of 2.0 km/scc
but with double the originai number of sced events. In all cases the total fault arca
modelled was 45 km by 29 km. Inspection of Figure 9 reveals what would generally be
expected: as the velocity of rupture increases less of the high frequency character of
the original waveform is preserved. Also, holding the rupture velocity and the

30. Doser, D.I., and Smitk, R.B. (1982) "Seismic Moment Rates in the Utah Region,"
Bull. Seismol. Soc. Am., 72(No. 2):525-551.
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This stacking shifts the maximum period from approximately 8 seconds up to 33 seconds.
The spectrum dips dramatically at a frequency corresponding to the period it takes for

the rupture to propugute from one end of the fault to the other.

4.2.2 INITIAL CRACKING POSITION

The predominunt long period peak produced in Figure 9b and 10 was examined
more closely As seen from Figure 9b, it is not sensitive to reasonnble changes in
rupture velocity nor to a factor of 2 change in the number of seed events. Figure 1la
and 11b show the 2.0 km/sec rupture model with crack initiution ai the center for the
Richfield (a) and Magna (b) earthquakes

At this distance, starting the crack at the center of the fault, rather than at one

side, can be compared to having a fault one half the length with the cell number held
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effect on the umplitude is to raise it as if doubling the number of seed events.

4.2.2 NOISE ACCUMULATION

This algorithm for stacking seed carthquake recordings also stacks the noise in
the record. In the examples Scection 4.2.1, 4.2.2 above, the noise during the minutes
previous to the onset of the event was digitized. These were then stacked according
to the same geometry as the composite earthquake. For these sensitivity tests the con-
tribution was an order of magnitude smaller than the resulting signal so the noise was
ignored. This assumes that the noise was more or less constant from the time prior to
the arrival into the first few minutes of the seed event. In later runs (Section 4.3
below, where larger numbers of seeds were added), the noise accumulation effects were
corrected by either 1) filtering the noise from the seed cvents before stacking or

2) filtering the composite event recording.
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4.3 Energy and Moment Approach
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The geometric approach (Section 4.2) from energy considerations alone elearly
leads to underestimates in the number of sced events. This is probably because the
total rupture area that might be associated with an e rthquake is larger than the cell

size associated with an echelon ruptu. =. Figure 10. Ma, Blr! unko Records and Spectru Before Stack-
ing and After h‘l 29
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For seismic hazard purposes, often more important than the absolute level of
ground motion is the frequency at which it occurs. For this reason, the final composite
cvents were synthesized aceording to the criteria of Joyner and Boore's. Their analy -
sis showed that, as in the present cuse where the recording distances arc large com-
pared to the source dimensions, the spectrum of the composite event can be made to
conform st both high and low frequencies to the « -squared fault rupture model with
constant \I“ruJ scaling (M = composite moment, f, = corner frequency).

Their criterion for the random summation is as follows:

n = (M_/M
o

k= i) M
where A\loe is the seed event moment: 7 is the number of seed events to be summed;
« i< a scaling factor. - Table 6 lists these values for the trial seed events 1 through 5
for a target event of moment = 2.1 x 1026 dyne-cm for a total fault arca of 900 km®
(45 km x 20 km).

Figure 12 shows the resulting waveforms. Note the very prominent long per-
iudicity of the resulting waveform. Figure 13 presents the spectra. The spectrum of
the noise previous to event number one was analyzed and filtered out of the record,
(the noise is artificially lated with the posite methodology). A high pass
filter cutoff of 0.25 Hz was applied to event 1 shown in Figure 12a and a cutoff of
.025 Hz was applied to event 4's waveform. Event 4 is shown after filtering in Fig-

urz 12,

3
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Tak!2 6. Composite P: s for fi in Figure 12
Suggested Cell
Scale Factor Dimensions
Event Component n (x) (km) AMP (Sced)
1 sz 170,241 0.049 0.072 108
2 Lz 1,650 0.157 0.738 i0®
3 LNS 367 0.229 1.566 10%
LEW 10!
Lz 10%
4 LNS 3,838 0.127 0.484 10°
LEW 10°
Lz 10°
5 Lz 4,226 0.124 0.461 10°

Tabulated in Table 6 are the ratios of original peak amplitude from the digitized
portion of the sced record to that of the resulting composite. They are in the range of
ll)'z - 10'3 which is what would be expected for the larger target magnitude. Since the
seed earthquakes are all in the magnitude range of' 4 to 5, they really are too large to
be considered as having the full high frequency content of the true impulse response,
however, with this station's sensitivity smaller events are not well-recorded at this dis-
tance range.

4.3.1 INCOHERENT RUPTURE

Extensive sensitivity tests of barrier effects were not run because of the hypo-
thetical nature of a future event. Figure 14 does show the results of breaking the fault
into two pieces, with less than a half kilometer separation. Figure 14a is the cohcrent
fault rupture for comparison purposcs and Figure 14b is the "broken" rupture. The
difference in this case is minimal. Further discussion of this topic can be found in
Section 5.

5. DISCUSSION
There was some success modeliaig at least arrival times for som2 of the sced events
with conventional synthetics. The best match of the initial arrivals for a few test cases

used a trapazoidal time function of 1.5 to 2 second's duration. At earth structure of
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Figure 12. Composite Earthquakes from Front as Predicted to be

Measured at Gol. Short period record event number 1 high-pass filtered
at 0.25 Hz. Long period record event number 4 high-pass filtered at
0.025 Hz; (12d cont) Event 4: (12%) Event 5
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P,S, P, h= 6.2 km/sec, 3.6 km/sec, 2.7 glcma. 2.5 km; 6.8 km/sec, 1.9 km/sec,
2.8 glclua. 15 km over a 7.8 km/sec, 4.5 km/sec halfspace was used (h = thickness).

However, several i 31,32 1 ave i ded at Golden
for similar although longer paths. Helmberger and Bnmm:'l lonnd that long period
fc were § itive to crustal variations to the point where a simple layer over

a halfspace model would suffice. They used a P-velocity, S-velocity and density of
6.2 km/sec, 3.5 km/sec and 2.7 g/cc resp ly with a thick of 32 km, over un
8.2 km/sec, 4.5 km/sec, 3.4 g/sec halfspace. Figure 15a shows their analysis of
arrivals for the long period, east-west record at Golden from an earthquuke in
California. In Figure 15b, a long period, east-west record from the current datu base
is shown for comparison p . Note the y of the arrivals (Pn. I’L.
Rayleigh) in the Richficld event (Figure 15b) to those in Figure 15a.

In none of the calculated composite events has more than one recording becn used
repetitively. If the event is conjectured to involve several faults, on which small earth-
quakes have occurred, then, for example, one third of the modeled fault could use
sequential addition of one recording, the middle could use another and the last third

yet another, as in some of the aftershock P (Section 3.).

This study was undertaken 0 examine the feasibility of using the method as a test
case. If the high fr of the g motion is of interest, the range of
usefulness of the method is limited in this area. The high freq: jes are supp
for two reasons: 1) the high freq y of the posite event is
by the spectra of the sced cvents. To in fact be a P P » smaller
secd cvents must be used (M{ 3.5), and 2) the of the posite event per-

mits the low frequencies to add coherently and the high freq ies to add i y.

The first reason is a practical constraint caused by the need for clear, digitizable,
broad-band waveforms at the large distance range. The second is a real effect of the
physical rupture process.

6. CONCLUSIONS

Construction of a composite earthquake as in this report climinates the need for
detailed understanding of the crustal structure. The effects of inhomogenities along
the ray path have been incorp: into the ing f The

validity of this hod has been p by other in S. in the present

31. Helmberger, D.V., and Engen, G.R. (1980) Modeling the Long-Period Body Waves
from Shallow Earthquakes at Regional Distances, Bull. Seismol. Soc. Am.,
_”No. $):1699-1714.

32. Wallace, T.C., Helmberger, D.V., and Mellman, G R (llﬂ) A ‘l‘ochnlque for the
Inversion of Regional Data is Suum P J. phys. Res..
B6(No. B3):1679-168S.
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Helmbes ger and Engen, 1980)
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Figure 15b. Two Kecordings at Golden WWSSN, Richfield Earth-
nuake (this study)
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analysis are the effects of incoherent rupture (other than Figure 14), irregular major
asperities or starting and stopping phases. The extent to which irregularities in the
rupture process might occur during a large event for the Wasatch arca is at present
unpredictable. However, sensitivity tests can be conducted with various artificial
rupture barrier models and it is useful to do so. Such conditions have been known to
cause high frequency spikes in the ground motion of large earthquakes. In this unaly-
sis the effects of small sca'c asperities have been included by the incorporation of ran
dom positioning of seed events within the cells. The resulting waveforms have been
shown to be insensitive to realistic variations in rupture velocity, and to smal! changes
in rupture initiation position.

The fi ] d in ion 4.3, gh h £l in high
frequency, can be used to model ground motion from a large (M~ 7.5) earthquakes
from the exact seed locations to be recorded at the site of the Golden, Colorado WWSSN
instrument.

NOTE: T. Hentonn (personal communication, 1985) found the suitable moment ratio for
summation to be tentatively “nn‘oe = 2/3 where Ilo is the composite moment und hlw is

the secd moment. He based his p Y on a sy is of the Chilean
(1960) earthquake ground motion with a Western US site seed event. dis constraint was
the ing of the i to that of the composite and he used larger sized

seeds (M~ 6 to 8) since it was necessary to use large ranges.

33. Heaton, T. (1985) "Strong motion for the
Cascadia Subduction Zone," paper presented at "AGU mnﬂnz. Dec 9-13, 1985.
San Francisco, California.
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