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In this work, we use the smoothed particle hydrodynamics (SPH) method coupled with a rigid body simulation
to study the surfing problem. We simulate a surfing board on top of an ocean wave which moves at a constant
velocity. A fluid-rigid body coupling is handled by using pure hydrodynamics-based force. External forces are
applied to the board, representing a surfer trying to stabilize the board at a desired point along the uphill part
of the ocean wave. An ordinary differential equation (ODE) control is used to manipulate the distribution of
the external forces based on a position, velocity, and an inclination angle of the surfing board relative to the
ocean wave. The control system successfully helps the surfing board to move and maintain its position at the
desired point.

Dissertation Abstract
1 Introduction
In what we called the surfing problem, the goal is to maintain the position of the surfing board on top of the
upslope part of the ocean wave as long as possible. In this work we propose an ODE control that is capable
to control the movement of the surfing board and maintain the position of the surfing board to be at a given
desired point. Here we validate the ODE control by performing a coupled fluid-rigid body SPH simulation for
the surfing problem.

2 Governing Equations

2.1 Fluid Dynamics

The motion of fluid is governed by following conservation laws which are the Euler’s equations of the fluid
dynamics [1]:

1. Conservation of mass:

Dρ

Dt
= −ρ div(u),

2. Conservation of momentum:

Du

Dt
= −1

ρ
∇p+ b,

where ρ, p, and u are density, pressure, and velocity field, respectively, b is a body force per unit mass, and
D
Dt is a so-called substantial derivative defined as Df

Dt = ∂f
∂t + u · ∇f for any field function f(x, t), with u is a

velocity field.

2.2 Rigid Body Dynamics

Rigid body can only undergo a linear and a rotational transformation which follow the conservation of a linear
momentum and the conservation of an angular momentum, respectively.

1. Conservation of linear momentum:

dG(t)

dt
= F (t),

2. Conservation of angular momentum:

dL(t)

dt
= K(t),

where G(t) = MU(t) and L(t) = J(t)ω(t) are a linear momentum and an angular momentum of the rigid
body at a given time t, respectively, with M , U , J, and ω are a mass, linear velocity of the rigid body, moment
of inertia tensor, and an angular velocity of the rigid body, respectively. We can choose such a reference
configuration of the rigid body so we can have a moment of inertia tensor to be a diagonal matrix Ĵ called a
principal moment of inertia tensor. Let R(t) be an orthogonal rotation matrix of the rigid body at a given
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Figure 1: (A) Sideview of the illustration of the frame of system’s domain, (B) Solution of the ODE by

using direct ODE solver.

time t. The angular velocity is defined as a vector ω(t) = (ω1(t), ω2(t), ω3(t)) satisfies

d

dt
R(t) = W(t)R(t), W(t) =


0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)

−ω2(t) ω1(t) 0

 .
This leads to the Euler’s equation of the rigid body dynamics,

ω̂(t)× Ĵω̂(t) + Ĵ ˙̂ω(t) = K̂(t),

where K̂(t) = RT (t)K(t), ω̂(t) = RT (t)ω(t), and ˙̂ω(t) = dω̂(t)
dt .

2.3 ODE Control

We choose the frame of the system to be parallel with the upslope part of the ocean wave and moves together
with the ocean wave with a constant velocity (see Figure 1a).

The goal of the surfing problem is to control the position of the surfing board to be at the desired point.
Here we want to control the surfing board on one axis only, in this case, the Z-axis. The only parameter that
we can control is the inclination angle of the surfing board. We propose the following ODE control for the
inclination angle,

θ̇(t) = a(Z(t)− Z̃) + b(V (t)− Ṽ ) + c(θ(t)− θ̃), (1)

where Z and V are the third component of position and linear velocity of the surfing board, respectively, θ
is the inclination angle of the surfing board, Z̃, Ṽ , and θ̃ are the desired position, velocity, and the desired
inclination angle, respectively. Because of the choice of the frame, we set Ṽ = 0. Z̃ is given. Up to now we
do not have any information about θ̃. a, b, and c are given parameters that can make the system stable.

To find suitable parameters for a, b, and c, we consider a simplified linearized ODE model with the ODE
control (1). 

Ż(t) = V (t),

V̇ (t) = −µθ(t)− µvV (t)− µzZ(t)− µ0,

θ̇(t) = a(Z(t)− Z̃) + bV (t) + c(θ(t)− θ̃),

(2)
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Figure 2: The locations of contact points.

where µ, µv, µz, and µ0 are constants related to the drag and gravity forces. For now let us assume µv = µz = 0

for simplicity. Although the assumption is not correct, it does not seem to influence the stability of the system.

We can write (2) in a matrix form as

ξ̇(t) =


0 1 0

0 0 −µ
a b c

 ξ(t) +


0

−µ0

0

 =: Aξ(t) + ζ.

The stationary point will be stable if all eigenvalues of matrix A have negative real parts. The characteristic
equation of A is

det(A − λI) = −λ3 + cλ2 − bµλ− aµ = 0. (3)

Let us set the roots of (3) to be λ1 = −3, λ2 = −4, and λ3 = −5. This yields the equation

−λ3 − 12λ2 − 47λ− 60 = 0. (4)

Comparing (4) with (3), we get a = 60
µ , b = 47

µ , and c = −12.

Since we do not know the actual value of µ in our case, our choice of µ might differ from the actual µ, leads to
mismatch between a, b, and c with the correct ones. To observe the effect of the choice of µ to the behaviour
of the ODE, we solve the ODE by using direct ODE solver with different values of µ. In the direct ODE
solver, we set Z̃ = −0.5, µactual = 20, and θ̃ = 0. We can observe some oscillations occurred when we choose
the value of µ far from µactual. The oscillation is decreasing when the µ is getting closer to µactual. We
also observe that the stable position is shifted from the desired point Z̃ for some choices of µ. This problem
happens because of the wrong choice of θ̃.

The ODE control is implemented into the system by giving two external forces to each tip of the surfing board,
mimicking the action of the surfer in an attempt to control the movement of the surfing board via their feet.
The distribution of the forces is controlled by the inclination angle given from the ODE control,

Fc1(t) = T (t)W, Fc2(t) = (1− T (t))W, T (t) = 0.5− σ(θ̂(t)− min(θ(t),−0.05)),

where W is a weight of the surfer, Fc1(t) and Fc2(t) are the forces given at each tip of the surfing board at a
given time t. θ̂(t) is an observed inclination angle. σ is a constant. In this work we set W = 10 and σ = 10.
We do not impose T (t) ∈ [0, 1], which is possible in a real case if the surfer straps their feet to the surfing
board.
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3 Smoothed Particle Hydrodynamics

3.1 Basic Idea of the SPH Method

The basic idea of the SPH method comes from a convolution operation af any field function f(x) with a
sufficiently smooth mollifier ψ ∈ Ck

c (Rn),

(f ∗ ψ) (x) :=
∫
Rn

f(y)ψ(x− y) dy.

We define

ψh(x) :=
1

hn
ψ
(x
h

)
, h > 0, x ∈ Rn.

For more detail, see [2].

For
∫
Rn ψ(x) dx = 1, a family of {ψh}h>0 is called an approximate identity. If f ∈ Ck(Rn) for some 1 ≤ k <∞,

then we have f ∗ ψh → f uniformly as h→ 0,

f(x) ≈
∫
Rn

f(y)ψh(x− y) dy, (5)

and by following the differentiation of a convolution in [2], the approximation for the derivative of f is

∂αf(x) ≈
∫
Rn

f(y)∂αψh(x− y) dy, |α| ≤ k, (6)

for ψ ∈ Ck
c (Rn). Both (5) and (6) are SPH approximations for a field function and its derivative in an integral

form. In this work we are using a compactly-supported piecewise cubic kernel function [3]

ψ(x) =
αn

6


(2− |x|)3 − 4(1− |x|)3, 0 ≤ |x| < 1

(2− |x|)3, 1 ≤ |x| < 2

0, 2 ≤ |x|
(7)

where αn is 1, 15
7π , or 3

2π for n = 1, 2, 3 respectively. Note that ψ ∈ C2
c (Rn).

We approximate the integral (5) and (6) by using discrete summations over N points,

f(x) ≈
N∑
i=1

f(ri)ψh(x− ri)Vi, ∂αf(x) ≈
N∑
i=1

f(ri)∂
αψh(x− ri)Vi,

where Vi is a volume of the neighborhood around a point ri. A common approximation for V (Ei) is by using
a mass and density at point ri,

V (Ei) ≈
mi∑N

j=1mjψh(ri − rj)
.

3.2 Discretization of the Fluid Dynamics

Let us discretize the fluid into N points. The SPH approximations in their anti-symmetrized form can be
written as
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1. Conservation of mass [3]:

dρi
dt

= ρi

N∑
j=1

mj

ρj
(ui − uj) · ∇ψh(ri − rj),

2. Conservation of momentum:

dui
dt

= −
N∑
j=1

(
mj

(
pi
ρ2i

+
pj
ρ2j

)
∇ψh(ri − rj)

)
+ bi,

The SPH approximation for the conservation of mass in an anti-symmetrized form can be written as [3]

dρi
dt

= ρi

N∑
j=1

mj

ρj
(ui − uj) · ∇ψh(ri − rj),

where mi is a mass of a point ri, ρi(t) and ui(t) are density and velocity of a point ri at a given time t,
respectively.

The SPH approximation for the conservation of momentum in an anti-symmetrized form is

dui
dt

= −
N∑
j=1

(
mj

(
pi
ρ2i

+
pj
ρ2j

)
∇ψh(ri − rj)

)
+ bi,

where pi(t) is a pressure of a point ri at a given time t, and bi is a body force per unit mass at a point ri.

In this work we assume the fluid to be “slightly compressible”, so we can approximate the pressure at any
points as a function of the density [4][5]

pi =
c2ρ0
γ

((
ρi
ρ0

)γ

− 1

)
,

where ρ0 is a reference density of fluid, c is a speed of sound in a fluid, and γ = 7 for water-like fluid.

As is common in the SPH literature, we use the leapfrog time integrator scheme to evolve physical quantities
of material points as follows

ui

(
t+

τ

2

)
= ui

(
t− τ

2

)
+
dui
dt

(t)τ (8)

ri (t+ τ) = ri(t) + ui

(
t+

τ

2

)
τ (9)

ui(t+ τ) = ui

(
t+

τ

2

)
+
dui
dt

(t)
τ

2
(10)

ui(−
τ

2
) = ui(0)−

dui
dt

(0)
τ

2
, (11)

where τ is a timestep.

3.3 Discretization of the Rigid Body Dynamics

The rigid body is discretized into a set of boundary points which can interact with other fluid points using a
pure hydrodynamics-based force. The density of the rigid body points is set to be always equal to the reference
density, ρi = ρ0. Let us discretize the rigid body into Nb points. The force applied to the rigid body point i
by the influence of all fluid points j is equal to

fi = −micV

 N∑
j=1

mj
pj
ρ2j

∇ψh(ri − rj)

+ bi

 ,

where cV = h3

Vi
. cV is needed since there is a discrepancy between the “real volume” and the “SPH volume”

of the rigid body point i.
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The linear movement of the rigid body is done by calculating its linear acceleration

A(t) =
1

M

((
Nb∑
i=1

fi(t)

)
+ Fc1 + Fc2

)
,

where M is a mass of the rigid body. After that, the position and linear velocity of the rigid body are updated
using the leapfrog time integrator scheme similar with (8)–(11).

To evolve the rotational movement of the rigid body, we follow the algorithm from [6]. In the spirit of the
leapfrog time integrator scheme, we can update the angular velocity of the rigid body by using

ω̂(m+1)
α

(
t+

τ

2

)
= ω̂α

(
t− τ

2

)
+

τ

Jα

(
K̂α(t) + ω̂

(m)
β (t)ω̂(m)

γ (t) (Jβ − Jγ)
)
,

where (α, β, γ) = (1, 2, 3) , (2, 3, 1) , and (3, 1, 2), (m) is an iteration step, K̂(t) = RT (t)K(t), ω̂(t) = RT (t)ω(t),
and ˙̂ω(t) = dω̂(t)

dt . We set

ω̂(0)
α

(
t+

τ

2

)
= ω̂α

(
t− τ

2

)
,

and

ω̂
(m)
β (t)ω̂(m)

γ (t) =
1

2

(
ω̂β

(
t− τ

2

)
ω̂γ

(
t− τ

2

)
+ ω̂

(m)
β

(
t+

τ

2

)
ω̂(m)
γ

(
t+

τ

2

))
.

The moment of force K(t) is calculated by using

K(t) =

(
Nb∑
i=1

(ri(t)−X(t))× fi(t)

)
+ (rc1(t)−X(t))× Fc1 + (rc2(t)−X(t))× Fc2,

After that we update the rotation matrix by using

R(t+ τ) = R(t) + τ
d

dt
R
(
t+

τ

2

)
= R(t) + τW

(
t+

τ

2

)
R
(
t+

τ

2

)
= Θ

(
t+

τ

2

)
R(t),

where

Θ
(
t+

τ

2

)
=

I
(
1− τ2

4 ω
2
(
t+ τ

2

))
− τW

(
t+ τ

2

)
1 + τ2

4 ω
2
(
t+ τ

2

) +
τ2

2 (ω ⊗ ω)
(
t+ τ

2

)
1 + τ2

4 ω
2
(
t+ τ

2

) ,
Then we update the position and velocity of each rigid body point i by using

ri(t+ τ) = X(t+ τ) + R(t+ τ)RT (t) (ri(t)−X(t)) ,

ui(t+ τ) = U
(
t+

τ

2

)
+
τ

2
A(t) + ω(t+ τ)× (ri(t+ τ)−X(t+ τ)) ,

where X(t) is a position of the center of mass of the rigid body at time t.

3.4 Algorithm of the Simulation

The algorithm of the simulation can be seen on Figure 3.
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Update pi Update ρi. Finish.

Figure 3: The algorithm of the simulation.

4 Results and Discussions

4.1 Simulation Set-up

We choose the inclination angle of the ocean wave relative to the world horizon to be ϕ = 10◦ with the
ocean wave moves with a constant velocity Vf = 2.5. The frame of the system’s domain is located at the
upslope part of the ocean wave and moves together with the ocean wave (see Figure 1a). Gravity acts as an
external body force per unit mass is set to be g = −9.81(0, cos ϕ, sin ϕ). The size of the domain is set to be
1 × 0.6 × 1.6 with the depth of the water is 0.18. The system has a periodic boundary condition in x-axis,
non-zero Dirichlet boundary on some parts of left boundary by using ghost points (rendered with light blue
color in Figure 4a) for −0.3 ≤ y < −0.12, bottom boundary is also set to be a non-zero Dirichlet boundary by
using a non-moving boundary points (rendered with dark blue color in Figure 4a) for −0.8 ≤ z < 0.56, and
free boundary in right boundary, top boundary, left boundary for −0.12 ≤ y < 0.3, and bottom boundary for
0.56 ≤ z ≤ 0.8. Take a note that the origin point is located at the center of the domain. The size of the rigid
body is 0.2× 0.06× 0.8. The rigid body is represented by red points in Figure 4a. Initially, the center of mass
of rigid body is positioned at (0,−0.04,−0.27).

The density reference ρ0 is set to be ρ0 = 1000, while the density of the rigid body is ρb = 100. The fluid is
initialized to have an initial velocity ui(0) = Vf = 2.5 toward +z-axis, and initial density to be ρi(0) = ρ0 for
all fluid points ri. By our choice of piecewise cubic kernel (7) as a mollifier function and choose the points
to be initialized in a regular grid with a distance h in each axis, Vi and mi for all points are Vi = 8 × 10−6

and mi = 0.008. We set the parameter of the kernel function to be h = 0.02. Time step size is set to be
τ = 0.0005 with the speed of sound is chosen to be c = 20. The positions of contact point 1 and contact point
2 are rc1 = (0., −0.03, −0.4) and rc2 = (0., −0.03, 0.4), respectively, relative to the position of the center of
mass of the rigid body.

Free boundary condition is implemented by changing the type of any fluid points leaving the domain into a
ghost point which its velocity does not change with time and its density always equal to the reference density
ρ0, but still interacts with other points. If a ghost point enters the domain, it will be marked as a normal
fluid point again. But if it leaves the domain farther than h, the point will be removed from the simulation.

Before we run the actual simulation, we run the “relaxation” process to stabilize the flow of the water up to
t = 1.5. The initial condition after relaxation can be seen on Figure 4b.

To find the best combination of parameters, we run simulations with each combination of θ̃ ∈ {−0.05,−0.06,

−0.07,−0.08,−0.09,−0.1} and µ ∈ {1, 2, 5, 10, 20, 50} for each Z̃ ∈ {−0.6,−0.5, −0.4,−0.3,−0.2}. We take
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(a) (b)

Figure 4: (A) The initial configuration of the system, (B) The configuration of the system after the relaxation
process.

the average of positional error for a given combination of parameters (µ, θ̃, Z̃) for the whole simulation time,

ϵZ(µ, θ̃, Z̃) :=

∑Υ
m=0

∣∣∣Z(µ, θ̃, Z̃,mτ)− Z̃
∣∣∣

Υ+ 1
,

where Υ is a number of time steps. The graph of the average positional error can be seen in Figure 5. Then
we take the average of error over all parameters Z̃,

ϵZ(µ, θ̃) :=

∑
Z̃∈Z̃set

ϵZ(µ, θ̃, Z̃)

#Z̃set
, Z̃set = {−0.6,−0.5,−0.4,−0.3,−0.2} ,

and calculate the cumulative error for each θ̃ and µ. The average of error over all parameters Z̃ can be seen
in Table1.

Table 1: Table of the average of error over all parameters Z̃ and its cumulative errors for each θ̃ and µ.

µ\θ̃ −0.05 −0.06 −0.07 −0.08 −0.09 −0.10 C.E.
1 5.74e-02 5.81e-02 5.33e-02 5.80e-02 5.98e-02 5.44e-02 3.41e-01
2 5.30e-02 5.13e-02 5.08e-02 4.67e-02 5.48e-02 5.94e-02 3.16e-01
5 5.02e-02 5.29e-02 4.62e-02 4.76e-02 4.53e-02 4.89e-02 2.91e-01
10 5.97e-02 5.13e-02 4.66e-02 4.65e-02 5.08e-02 6.29e-02 3.18e-01
20 8.47e-02 7.04e-02 5.07e-02 5.07e-02 6.92e-02 9.33e-02 4.19e-01
50 1.28e-01 1.08e-01 7.15e-02 7.00e-02 9.97e-02 1.72e-01 6.49e-01

C.E. 4.33e-01 3.92e-01 3.19e-01 3.20e-01 3.80e-01 4.91e-01

As we can see from Table 1, θ̃ = −0.07 and µ = 5 give the smallest cumulative errors for each θ̃ and µ,
respectively. Now let us see more in detail the simulation results for θ̃ = −0.07 in Figure 6.

As we can see from Figure 6, there are some oscillations of the position of the rigid body. As the value of µ
is increasing, the amount of oscillations is dampened. The oscillation is occurred because of the wrong choice
of the µ compared to the actual value µ of the system. As the value of µ is increasing (we assume that it
is getting closer to the actual value of µ as it increases), the oscillation is dampened. Besides, our previous
assumption that µv = µz = 0 is also not correct in the real case. As we choose the frame to be inclined relative
to the world horizon, the gravity influences the velocity of the flow, yielding different velocities at different
positions, and leading to the dependency of the drag to the position. Since now the flow is not constant, the
drag also depends on the velocity of the flow, leading to the dependency of the drag to the velocity as well.

We also notice that we face another problem: shifted stable position. This problem is due to the wrong choice
of θ̃. We set θ̃ to be the same value for the whole simulation. Adding an additional ODE control for θ̃ will
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Figure 5: The graphs of the average positional error.

help the board to move slowly to the desired position after the “pre-stable condition” is achieved. In a real
case, θ̃ is learned by the surfer as the “target inclination angle” if they want to move the surfing board to
a desired point along the ocean wave. Finding correct parameters for an additional ODE control for θ̃ can
be seen as an effort to learn those target inclination angle if the position of the surfing board is off from the
desired position.

If we looks closer and compare Figure 1b with Figure 6, we can see that the oscillations on the direct solver
is on the inclination angle and velocity, while in the SPH simulation the oscillations occur on the position.
This problem happens because of the delayed response in the SPH simulation. The change of the inclination
angle from the ODE control cannot be translated instantly into the change of the inclination angle in the SPH
simulation.

5 Summary
An ODE control is successfully implemented into a coupled inviscid fluid-rigid body SPH simulation in an
attempt to control the movement of the surfing board. For our system, the best values for θ̃ and µ are
θ̃ = −0.07 and µ = 5. Although µ = 5 does give the best result, it does not mean the actual µ of our system
is equal to 5. Several problems still occur, such as oscillations and shifted stable position. The oscillation
problem can be solved by finding correct values for all µ, µv, and µz. Adding an additional control for θ̃
will solve the shifted stable position problem by nudging the surfing board slowly toward the desired position
after the system is almost stable. The delayed response from the SPH simulation also has a responsibility on
the oscillations problem, since the change of the inclination angle from the ODE control cannot be translated
instantly into the SPH simulation.
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Figure 6: The z-axis-component position of surfing board for θ̃ = −0.07.
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