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Abstract

We study the Hele-Shaw problem in oscillating media, and mainly are interested

in the averaging behavior of the free boundary velocity, that is a homogenization

problem. Our focus is only on the one-phase Hele-Shaw problem neglecting the

surface tension. A general formula for the homogenized velocity is unknown.

Current results are known for the media periodic only in space or only in time.

In this work, we develop an efficient numerical scheme to estimate the averaging

velocity in two dimensions with periodic coefficients in both space and time. Also

for comparison, we implement the regular finite difference to obtain a numerical

solution and we describe how to get a free boundary position. We present several

computation experiments to test the error of both for the numerical solution and

the free boundary position.
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Chapter 1

Introduction

1.1 Introduction

Patterns in nature have been of interest for many years in various fields of science.

They appear in numerous natural phenomena that have an order or repeated

systematic structure. Scientists want to capture them in their models to understand

the rules of their formulation. Interestingly, different natural phenomena may have

similar pattern. For instance, the pattern in branching of a tree look similar to the

ice crystallization, dendritic copper, and the burned wet pine if the electricity is

run between two nails sunk into it, and also to the flow of viscous fluid.

Particularly in the fluid mechanics, researches studying a pattern of a flow in

order to learn various of its behavior, such as abnormality, direction, strength,

etc. In fluids, the patterns are usually caused by instabilities. For example in

the interaction of two fluids, Rayleigh-Taylor instability shows a mushroom-like

pattern as an indication of mixing two different densities of the fluids. There is

also an instability caused by the difference between tangential velocities of fluids

that shows as a triangle-wave pattern forms a cloud-like shape. The example

study of such instabilities can be found in the Saffman-Taylor instability. They

1
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discovered a finger-like pattern on the interface in between fluids with different

viscosities, called viscous fingering. They observed such a pattern in the porous

medium and Hele-shaw cell [1]. Hele-Shaw cell is an experiment invented by Henry

Selby Hele-Shaw. It presents a fluid flow through a narrow gap between parallel

plates, which for many years was used as a model to approximate various problems

of viscous fluid in fluid mechanics.

Furthermore, a pattern occurs in two different types of geometry, radial and

rectangular. Viscous fingering in a rectangular geometry refers to the Hele-Shaw

cell with a less viscous fluid injected continuously from one end of the cell. In this

situation, the interface is transported by the gradient of pressure (sufficiently high)

through a more viscous area and an instability occurs which forms a finger-like

pattern on the interface. The interface is initially flat. Once the pressure drives

to the more viscous part, the interface starts to show a single finger where the

gradient is locally highest at the tip. After some time the tip will turn blunt, then

split into a branch of fingers. Each finger on the branch growths independently.

Figure 1.1: Hele-Shaw cell experiment (Pozar, 2018. Used with permission.).

On the other hand, radial viscous fingering occurs when injecting a Hele-Shaw

cell through a source point in the middle of the plates. Initially, the interface is

given by a circle, then it spreads and splits turning into radial fingering pattern.

Unlike in the rectangular fingering, there is no such single finger appearance in

radial geometry. Once the interface becomes unstable, it will turn into radial

fingering-look. This pattern also looks familiar with a typical pattern in bacteria
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growth, crystal growth, and tumor growth for instance. Hele-shaw problem appears

in many fields area. It is an example of non-linear diffusion phenomena. Many

industry fields implement the Hele-shaw model to approximate the real situation in

their sector, for example, a molding process in the plastic industry [2], petroleum

extraction in the oil industry, and many other examples.

In many years, Hele-Shaw problems have been one of popular model in fluid

mechanics. Researchers in porous media and the flow in between two parallel plates

consider this problem as a reliable model. In this work, we study the Hele-Shaw

problem in oscillating media, and mainly are interested in the averaging behavior

of the free boundary velocity, namely the homogenization problem. Our focus is

only on the one-phase Hele-Shaw problem neglecting surface tension.

One can merely represent this problem as a flow of a liquid through the valleys

area, and we are interested in the homogenized behavior of the free boundary.

For a general type of media, the homogenized solution for Hele-Shaw is unknown.

Current results know only for the media that periodic only in space or only in

time [3]. We recently developed a numerical scheme to estimate the homogenized

normal velocity in the Hele-Shaw problem with periodic coefficients in both space

and time, see [4].

The homogenization method has many important practical implementations in

material sciences since the macroscopic appearance are mostly used in industry. It

comes from the fact that the macroscopic appearance has better characteristics

in a practical industry than the microscopic point of view. In the microscopic

appearance, there will appear the heterogeneities that become a source of error

such that computationally it is difficult to be implemented. Therefore the theory

of homogenization which describes the behavior of a composite material from the

local characteristics of the heterogeneities answering the difficulties.
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Instead of directly solving the problem, using the fact that the Hele-Shaw problem

can be described as the zero specific heat limit of the one-phase Stefan problem,

we consider a Stefan problem in enthalpy formulation to solve the problem. Since

the Stefan equation is a nonlinear equation, we must find a method that reduces

the nonlinearity so that we perform the computation significantly faster than the

explicit finite difference scheme. We use the method firstly developed by Berger,

Brézis, and Rogers in [5] to solve a similar nonlinear homogeneous problem. We

will refer to it as the BBR method. As it uses an implicit scheme, it is also essential

to choose an efficient numerical method to solve the implicit scheme. It turns out

that a multigrid scheme for the linear elliptic problem works well even though

there is a jump across the free boundary.

1.2 Content of the thesis

We are interested in developing a numerical method to efficiently compute the

numerical solution of Hele-Shaw problem for both Dirichlet and Neumann boundary

data. Furthermore, we apply the method to approximate a numerical solution of a

homogenized problem of a given media that are periodic both in space and time,

and moreover to observe the homogenized velocity in such periodic media. The

content of the thesis is as follows. In chapter 2, we brief the formulation of the

governing equation for the Hele-shaw problem and the homogenization problem.

We explain current results for averaging free boundary velocity if the media depends

only on time or only on space. The idea to approximate the average normal velocity

for general direction in 2D is adapted from the one specific direction case only.

In chapter 3, we explain the consideration of indirectly solving the Hele-Shaw

problem via the Stefan problem in the enthalpy formulation. Here, we consider

two problems, the problem with source spreading from the middle of the area

of the plate (Dirichlet boundary data), and a Neumann problem. In chapter 4,
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explicit finite difference scheme is explained to obtain a numerical solution in

both one dimension and two dimensions, especially how to approximate the free

boundary. We also make several observations of the numerical solution. In chapter

5, we explain the advanced implicit method to solve the equation in the enthalpy

form, which we call the BBR scheme. In chapter 6, we describe how does the

Multigrid linear solver is adapted to our problem. Finally, in chapter 7, we give

the implementation of the BBR scheme to estimate the free boundary velocity in

two dimensions. Several interesting results are shown in this chapter.



Chapter 2

Hele-Shaw Problem

2.1 Physical Phenomena

In two dimensional case, Hele-shaw problem is a two dimensional model for the

pressure-driven flow of viscous liquid throughout a very tiny gap of two plates with

given boundary data on the source. This model has several applications, such as in

electro-machining, injection molding, and even basic model for tumor growth, and

many other industrial fields. Furthermore, in three-dimensional model Hele-Shaw

problem appears in the porous medium, i.g pipe injection in the petroleum field. In

the plastic molding process, in particular, it is useful to determine the end position

of the melting plastic will be filling the mold, which is the circulation hole for the

air to way out.

There are several more specific problem refer to this model. One-phase Hele-Shaw

problem is usually describing the evolution of a liquid being injected into a Hele-

shaw cell, and the free boundary problem occurs on the liquid surface against the

air. Meanwhile, a two-phase Hele-shaw problem can be a model for free boundary

problem of two liquids having a different viscosity. In three dimensional case, this

model refers to the problem called porous medium equation. However, in this

6
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research work, our interest is in the one-phase Hele-shaw problem in two dimensions

with neglecting the effect of surface tension on the boundary.

2.1.1 Governing Equation for Hele-Shaw Flow

This work focus only on the scope of the Newtonian fluid. In fluid dynamics,

Hele-Shaw flow is one of Stokes flow of a liquid that distributes through a very tiny

space between two plates which continually injected by fluid from the source inside

the fluid area. This phenomenon can be derived from conservation law of mass,

where saying that a density changing per unit volume depend only on the flux

passing through its boundary, either due to the absence of fluid transport or due

to volume movement, and a given external source. It states that changing a mass

in the fixed domain V is proportional to a given flux q moves to the boundary of

V in the normal direction, and a given external source contribution f(x, t).

d

dt

∫
V

ρdV =

∫
S

q · dS +

∫
V

f(x, t)dV

=

∫
V

∇ · qdV +

∫
V

f(x, t)dV , by divergent theorem

⇔ ρt −∇ · (q) = f(x, t) ,since fixed volume V.

(2.1.1)

Since the flux is caused by the difference of pressure u, q = −ρ∇u and no outer

source, then from the we obtain,

ρt +∇(ρ∇u) = 0. (2.1.2)



Chapter 2. Hele-Shaw Problem 8

We assume that the liquid is an incompressible fluid (e.g water), therefore it remains

the following Laplace equation.

∆u = 0 (2.1.3)

In a Hele-Shaw cell, we consider the flow of a Newtonian viscous fluid that is

incompressible, and driven by pressure caused by a constant given source in the

middle of the cell. Hele-shaw problem can be derived from the equation for the

motion of viscous fluid, i.e Navier-Stokes equation with neglecting the external

body force. Suppose that Ωt be the diffuse region in coordinate (x, y) of a liquid

at time t and 2h is a length of gap between the plates. Outside of diffuse region

is filled only by the air and we assume has zero pressure u = 0. For h → 0, the

velocity in the vertical direction z is parabolic and determining the constants so as

to make the velocity q = 0 at z = ±h, so that it satisfies

q = − 1

2µ
(h2 − z2)∇u (2.1.4)

where µ is a fluid viscosity, such that the average of velocity over the gap is following

q̄ =
1

2h

∫ h

−h
qdz = − h2

12µ
∇u. (2.1.5)

The average velocity q̄ also satisfies the continue equation in 2D, such that it

implies that the pressure u in Ωt satisfies Laplace equation

∆u = 0.

For the boundary condition on the free boundary ∂Ωt, there are dynamic and

kinetic boundary condition. The dynamic boundary condition occurs to be

u = 0 on ∂Ωt,
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since we neglecting the surface tension. And for the kinematic boundary condition,

the normal velocity of the fluid particles on the boundary satisfying

Vn = q̄ · ν on ∂Ωt (2.1.6)

where ν is the unit outer normal vector on ∂Ωt. Since u can be seen as a level set,

(2.1.6) can be rewritten as

Vn = −k|∇u| = ut
|∇u|

(2.1.7)

where k is a constant equals to − h2

12µ
.

2.1.2 Hele-shaw Problem as a limit of Stefan Problem

Suppose the Hele-Shaw problem is in Rn, n = 2. Given Ω0 as an initial domain for

given initial data u0, and K ⊂ Ω0 ⊂ Ωt, t > 0 be a closed subset. We want to find

a pair of u(x, t) and free boundary ∂Ωt that satisfying (HS).



∆u(x, t) = 0 for (x, t) ∈ (Ωt \K)× (0,∞)

ut = g(x, t)|∇u|2, for(x, t) ∈ ∂Ωt × (0,∞)

u(x, t) = 1 for(x, t) ∈ K × (0,∞)

u(x, t) = 0 for(x, t) ∈ (Rn \ Ωt)× (0,∞)

(HS)

Solution u(x, t) represents the pressure of some viscous fluid that is injected into

Hele-shaw cell. The area with no fluid is assumed to have zero pressure, and function

g(x, t) is a given continuous positive function, denoting media representation. As in

the original Hele-shaw problem, this function is some constant k which describing

a homogeneous structure of the media. 1
g

can be representing a depth of the hole
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Figure 2.1: Hele-Shaw cell for problem (HS)

must be filled by a liquid when evolving. This value change in the position and

time.

If we look at the one-phase Stefan problem, the free boundary problem is similar

except on the term first time derivative in the Stefan problem. The heat diffusion

speed depends on the heat specific parameter c (see chapter 3), that is the quantity

of heat required to change the temperature 1 degree celsius in one unit of mass.

As c→ 0 the Stefan problem approaches the Hele-shaw problem, and as t→∞

the temperature diffusion will reach the steady-state and no longer has the term

first-time derivative. The work in [6] explains the asymptotic behavior of the

solutions between two problems including the free boundaries as t → ∞. They

explain the behavior in the aspect of the near-field limit and far-field limit. It states

for 1 dimensional case when g(x, t) is constant both in x and t, the self-similar

solution of two problems converge to the same constant as t→∞ for every x > 0.

The convergence is not uniform. Despite the free boundary of both problem have

the same growth rate
√
t, the free boundary of the 1-D Stefan problem converge to

Hele-Shaw when c→ 0.

Different to the 1-D case, The solution of Stefan problem is not ultimately to

be the Hele-shaw as t → ∞, for n >= 2 there is only the convergence behavior

to a stationary state of both problem, and the asymptotic behavior is different.

Meanwhile, in 2 dimensions case, it shows that the Stefan problem simplifies to
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the Hele-shaw. An unlikely 1-D case, the HS and SF problem for multidimensional

spaces do not always have a classical solution. However, they always have a weak

solution globally over time.

2.2 Homogenized Hele-Shaw Problem

Homogenization theory is concerned with the effects of rapidly varying coefficients

to the solution of PDE. This problem appears in obtaining the macroscopic equation

for the system with a fine microscopic structure for instance, which is to be our

interest. Suppose that we have two different length scale of oscillation period in

PDE respectively for macroscopic and microscopic structure, 1 and 0 < ε < 1. For

fixed ε we have a solution uε for microscopic scale and u for the macroscopic, are

different and complicated in general. Homogenization theory studies the limiting

behavior of the solution of microscopic to the homogenized problem as ε→ 0. The

idea is the limit effects toward homogenized problem will be the averaged out of

the fine-structure.

For example in a periodic homogenization of elliptic problem, we have quantity u

satisfying the elliptic equation

−∇ · (A(x)∇u(x)) = f(x). (2.2.1)

The microscopic solution uε for fixed oscillation period ε satisfies

−∇ · (A(
x

ε
)∇uε(x)) = f(x). (2.2.2)

As ε→ 0, we have uε → uh, where uh is solution satisfied the homogenized form

−∇ · (Ah∇uh). (2.2.3)
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Thus, homogenization problem are to find the asymptotic convergence of solution

uε → uh, and to obtain the expression for Ah which is not simply the average of

A(x
ε
) in general.

However, for the Hele-shaw problem we are interested in the convergence as ε→ 0

of the solution uε, and the structure of homogenized free boundary velocity. In the

work of [7], they derive the explicit formula for homogenized free boundary velocity

with function g = g(x) depends only on space variable, and establish the uniform

convergence of the free boundary. Furthermore, [3] consider the homogenization in

heterogeneous media both in space and time, and found that the free boundaries

for various dependence of normal velocity converge locally uniformly in Hausdorff

distance. It was also observed that non-periodic, fractal-like variations in the flow

lead to anomalous diffusion in Stefan and Hele-Shaw problems [8].

2.2.1 Homogenized Hele-Shaw Problem

Suppose that the Hele-shaw cell in the periodic media is given by the problem to

find u = u(x, t), Ω ⊂ Rn × [0,∞), (Ω(t) : {x|(x, t) ∈ Ω}) such that:



∆u(·, t) = 0 in Ω(t) \K, t > 0

V (x, t) = g(x
ε
, t
ε
)|∇u(x, t)| x ∈ ∂Ω(t), t > 0

Ω(0) = Ω0

u = h on K

u = 0 on ∂Ω(t), t > 0

(2.2.4)

for given h > 0, and g > 0 1-periodic function (g(x+ k, t+ l) = g(x, t), k ∈ ZN , l ∈

ZN).
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and for scale ε > 0 we introduce the rescaled gε(x, t) := g(x
ε
, t
ε
). Note that in

general scaling g(εαx, εβt) is possible, but it leads to a simpler behavior than this

critical scaling α = β, see for example [9]. Keeping all other parameters fixed, for

every given ε > 0 we get a solution {Ωε
t}t≥0, uε of (2.2.4) with g = gε. The goal is

to identify the homogenization limit ε→ 0 of these solutions.

We shall denote

Ω =
⋃
t≥0

Ωt × {t} and Ωε :=
⋃
t≥0

Ωε
t × {t}.

In [3], under certain regularity assumptions on the data K, Ω0 and g, it was proved

that there exist limits {Ωt}t≥0 and u such that uε → u in the sense of half-relaxed

limits and ∂Ωε → ∂Ω in Hausdorff distance. Furthermore, the pair (Ω, u) is the

unique solution of the homogenized problem in which Ω evolves with the normal

free boundary velocity

V = r(∇u) x ∈ ∂Ωt (2.2.5)

and u is again the solution of (HS), where r : Rn → R is a nonnegative function

that depends only on g.

A straightforward modification of the arguments in [3] shows the same homoge-

nization result if the Dirichlet boundary condition on ∂K in (HS) is replaced by a

Neumann boundary condition ∂u
∂ν

(·, t) = 1.

However, there does not seem to be any explicit formula for r(q), and it is not even

known whether r is continuous in general. It is only known that r∗(a1q) ≤ r∗(a2q)

for any 0 < a1 < a2 and any q ∈ Rn \ {0}, where r∗ and r∗ denote the upper and

lower semicontinuous envelopes of r, respectively. See [3] for more details. Formal

calculations indicate that r(q) is in general only 1
2
-Hölder continuous if g is smooth

and r(q) might be discontinuous if g is only Hölder [10]. Our goal is to estimate
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r(q) numerically. We are in particular interested whether the homogenized problem

has solutions whose free boundary develops flat parts (facets).

2.2.2 Homogenized Problem in 1-D

x

uε

1Ω0

K

-q

LetK = (−∞, 0] and Ω0 = (−∞, 1), and we use the boundary condition ux(0, t) = q

on ∂K = {0} for some q < 0 in (HS). Then Ωε
t = (−∞, yε(t)) for some yε > 0.

The solution of Laplace’s equation is uε(x, t) = q(x− yε(t)) in this case. The free

boundary velocity equation for Ωε simplifies to


(yε)′(t) = g(y

ε(t)
ε
, t
ε
)|q|, t > 0,

yε(0) = 1,

(2.2.6)

which is a simple initial-value problem for an ordinary differential equation (ODE).

It is known, see [9, 11], that yε converges locally uniformly as ε → 0+ to the

solution y of the ODE


y′(t) = r(q), t > 0,

y(0) = y0,

where r : R → R depends only on g. This equation has the unique solution

y(t) = y0 + tr(q). We can therefore estimate r(q) numerically by solving (2.2.6)
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for a small ε > 0 and finding

r(q) = y(1)− y0 ≈ yε(1)− y0.

By a scaling argument, this can be shown equivalent to solving (2.2.6) with ε = 1

for a large time T � 1 and then finding

r(q) =
y(T )− y0

T
≈ y1(T )− y0

T
.

Since (2.2.6) can be efficiently solved numerically, we can estimate r(q) rather

easily.

The actual form of r(q) is known only in certain cases [9]:

• g(x, t) = g(t): if g depends only on t, then r(q) = 〈g〉q, where 〈g〉 =
∫ 1

0
g(t) dt

is the average of g.

• g(x, t) = g(x): if g depends only on x, then r(q) = 1

〈 1g 〉
q, where

〈
1
g

〉
=∫ 1

0
1

g(x)
dx is the average of 1

g
.

If g depends on both x and t nontrivially, the explicit form of r(q) is not known

and in fact it can be very complicated, see Figure 2.2 for an example. The number

r(q) is related to Poincaré’s rotation number.

Nonetheless, we can still find the value of r(q) at least for particular q. Particularly

interesting is the existence of intervals of constant velocity, which we call pinning

intervals. See also [10] for a related problem on a droplet motion.

Lemma 2.2.1. Suppose that g(x, t) = f(x−t) where f = f(x) is a positive periodic

continuous function. Then r(q) = 1 for q ∈ [− 1
min f

,− 1
max f

].

Proof. Let L > 0 be a period of f . Fix q ∈ [− 1
min f

,− 1
max f

]. Since 1
|q| ∈

[min f,max f ], there exists ξ ∈ R such that f(x0) = 1
|q| for all x0 ∈ ξ + LZ.
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0 1 2 3 4
q

0

2

4

6

8

10

r(q
)

Figure 2.2: Sample r(q) in one dimension for g(x, t) = sin(2π(x+t))+sin(2π(x+
3t)) + 3. Note the pinning intervals at speeds 2k − 1 for k = 1, 2, . . . , 5.

But yε(t) = εx0 + t is then a solution of (2.2.6) for any x0 ∈ ξ +LZ and ε > 0. By

uniqueness of (2.2.6) (comparison principle), we conclude that yε(T )−yε(0)
T

= 1 for

any ε > 0 and therefore r(q) = 1.

Figure 2.3: Free boundary position of homogenized problem with g(x, t) = g(t).

2.3 Homogenization in 2-D

The shape of the free boundary ∂Ωε is in general not simple in two dimensions and

therefore the solution of (HS) is not a linear function anymore. We therefore have
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Figure 2.4: Free boundary position of homogenized problem with g(x, t) = g(x).

to solve the full problem to estimate r(q). We first observe that for a given q ∈ Rn

the moving plane

Pq(x, t) := |q|
(
r(q)t− x · q

|q|

)
x ∈ Rn, t ∈ R,

Ωq,t := {x : Pq(x, t) > 0} =

{
x : x · q

|q|
< r(q)t

}

is a solution of the homogenized problem (2.2.5).

Let us suppose that q = (q1, 0) for some q1 < 0. We consider the Hele-Shaw

problem with K := (−∞, 0] × R ⊂ Ω0 := (−∞, L0) × R ⊂ R2 for some fixed

L0 > 0, with Neumann boundary condition ux1(0, x2) = q1 for all x2 ∈ R. Clearly,

Ωq,t + L0(e1, 0), Pq(· − L0e1, ·) is a solution of the homogenized problem in this

setting. Let Ωε, uε be the solution of the ε-problem with the same boundary and

initial data. By [3], we know that ∂Ωε → ∂Ωq + L0(e1, 0) in Hausdorff distance.

Let us fix L1 > L0 and define the first time the free boundary of the solution of

the ε-problem touches the set {x1 = L1},

Tε := sup {t > 0 : Ωε
t ∩ {x1 = L1} = ∅}.
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x2

x1
L1∂Ω0

Ω0

∂Ωε
t

∂β(z)
∂x1

= q1 Ωε
t

Figure 2.5: Neumann problem (6.1.1) in 2D case to estimate the value of r(q).

By the convergence in the Hausdorff distance, we see that Tε → L1−L0

r(q)
as ε→ 0.

This allows us to estimate r(q) by choosing 0 < ε� 1 and using

r(q) ≈ L1 − L0

Tε
.

We will find Tε numerically by solving the problem on a bounded domain. To this

end, we observe that if ε = 1
ω

for some ω ∈ N sufficiently large, the uniqueness of

solutions of the ε-problem implies that Ωε, uε are 1-periodic in the x2-direction,

that is, Ωε + (e2, 0) = Ωε, uε(x+ e2, t) = uε(x).

Therefore we introduce the numerical domain U = (0, 1)2 and solve the Hele-Shaw

problem on U with boundary conditions

Ωε + (e2, 0) = Ωε,

ux1(0, x2, t) = q1 0 ≤ x2 ≤ 1, t ≥ 0,

u(x1, x2 + 1, t) = u(x1, x2, t) x ∈ Ωε
t , t ≥ 0,

see Figure 2.5.

There are direct methods to solve the Hele-Shaw problem, however, for simplicity
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and efficiency, we use the fact that the solution of the Hele-Shaw problem can be

in the limit c→ 0 approximated [12, 13] by the solution of the Stefan problem


cut −∆u = 0 in Ω,

V = gε|Du| on ∂Ω,

(2.3.1)

with initial condition u(·, 0) = u0, where u0 is the 1-periodic-in-x2 solution of


−∆u0 = 0 in Ω0 \K

u0 = 0 on ∂Ω0,

∂x2u0 = q1 on {x2 = 0}.

This problem can be rewritten in the enthalpy formulation by introducing β(s) :=

max(s, 0) and solving formally for z : Rn × R→ R the solution of



czt −∆β(z) = −
(
∂

∂t

1

gε

)
χint {z<0} in U × (0,∞),

∂β(z)

∂x1

(0, x2, t) = q1 x2 ∈ [0, 1], t > 0,

z 1-periodic in x2,

z(·, 0) = u0χΩ0 −
1

cgε(·, 0)
χΩ{

0
in U,

(2.3.2)

where the first equation is understood in the sense of distributions. We can recover

u as β(z) and Ω as {z > 0}.

If gε = gε(x), the well-posedness of problem (2.3.2) is well known from the theory of

variational obstacle problems, see for example [14], [15], and u = β(z) is continuous

[16]. We do not address the well-posedness when gε = gε(x, t), but show at least

that (2.3.2) is equivalent to (2.3.1) with the same boundary data for classical

solutions.

Let us therefore assume that there exists a differentiable function s : Kc → [0,∞),
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Ds 6= 0 for t > 0, such that z ∈ C2(Q+) ∩ C1(Q+) ∩ C1(Q−) ∩ C(Q−), z > 0 in

Q+, z(x, s(x)) = 0 if s(x) > 0, z < 0 in Q− where

Q± := {(x, t) : x ∈ Kc, t > 0,±(t− s(x)) > 0}.

By z ∈ C(Q−) we understand the z has a limit denoted as z(x, s(x)−) as (y, t)→

(x, s(x)) along sequences with t < s(y).

Assume that z satisfies (2.3.2), where the first equation is understood in the sense

of distributions. Let us take a test function ϕ ∈ C∞c (Kc × (0,∞)). We have

0 =

∫
Kc

∫ ∞
0

czϕt + β(z)∆ϕ−
(
∂

∂t

1

gε

)
χint {z<0}ϕ dx dt =

=

∫
Q+

β(z)(cϕt + ∆ϕ) dx dt+

∫
Q−

czϕt −
(
∂

∂t

1

gε

)
ϕ dx dt := I+ + I−.

Integration by parts on the individual terms I± yields

I+ =

∫
Kc

∫ ∞
s(x)

cβ(z)ϕt dt dx+

∫ ∞
0

∫
{s(x)<t}

β(z)∆ϕ dx dt

= −
∫
Q+

(c∂tβ(z)−∆β(z))ϕ dx dt−
∫ ∞

0

∫
{s(x)=t}

Dβ(z) · Ds
|Ds|

ϕ dHn−1 dt

where we used that z(x, s(x)) = 0 and that the unit outer normal vector to

{x : s(x) < t} is Ds
|Ds| , and

I− =

∫
Q−

(
−czt −

(
∂

∂t

1

gε

))
ϕ dx dt+

∫
Kc

cz(x, s(x)−)ϕ(x, s(x)) dx.

From this we immediately have that u = β(z) satisfies cut −∆u = 0 in Q+, and

z = − 1
cgε

in Q−. In particular, z(x, s(x)−) = − 1
cgε(x,s(x))

. The coarea formula

yields

∫ ∞
0

∫
{s(x)=t}

Dβ(z) · Ds
|Ds|

ϕ dHn−1 dt =

∫
Kc

Dβ(z) ·Dsϕ(x, s(x)) dx.
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Therefore

∫
Kc

(
− c

cgε(x, s(x))
−Du(x, s(x)) ·Ds(x)

)
ϕ(x, s(x)) dx = 0.

But V = 1
|Ds| and −Du ·Ds = |Du||Ds| and therefore we conclude that

V = gε|Du|.



Chapter 3

Stefan Problem

3.1 Stefan Problem

On the other hand, Stefan problem appeals Hele-shaw equation as the zero heat

limit of One-phase Stefan problem. Mathematically they have almost the same

equation structure, except in the heat operator. One-phase of Stefan problem itself

describes a melting of ice with a region of water, where the temperature of the ice

is preserved to be zero. The retained interests are to obtain the temperature in

the water area and to understand the phase interface between ice and water.

Surely solving Stefan problem numerically in enthalpy form is more straightfor-

ward than the temperature form. [17] implemented straightforward implicit finite

difference to the enthalpy formulation of Stefan problem, and show the convergence

of solution of the used modification Gauss-seidel method in order to solve a linear

system.

In Stefan problem, refer to conservation law for energy, the change of heat amount

per unit volume is u = ρcPT where cP is the specific heat at constant pressure

and T is a temperature. The heat flux has two components due to conduction

22
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and transport. The flux from conduction is q = −k∇T where k denotes thermal

conductivity. And the transport flux is ρcPTV on the region of phase change.

Therefore the heat equation can be described by the following equation with

assuming ρ, cP , and k are constant.

∂T

∂t
=

k

ρcP
∆T , in the water area

∂T

∂t
= 0 , in the ice area

∂T

∂t
= νS · ∇T , on the phase change area.

(3.1.1)

Nevertheless, this work will consider the weaker form of (3.1.1) which physically

describing the energy or more exactly enthalpy heat in the whole system. Given as

the following equation for some parameter ε.

cut = ∆h(u) (3.1.2)

Where h(u) is defined as

h(u) = u+ (3.1.3)

represents the temperature.

We are interested in developing an efficient numerical method to find a free boundary

decently and more importantly to adjust the solution of averaging velocity in a

periodic media.

The weak formulation for Stefan problem is based on the extension of the equation

in term of temperature to the enthalpy energy balance, where the energy indicates

the absence of jump at the critical temperature due to the change of phase.
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3.1.1 Enthalpy Formulation

Since the free boundary position is unknown and has to be determined each time t,

numerically the solution of (SF1) cannot be obtained straightforward. Technically

in the numeric point of view, it is simpler to consider the problem in the form of

enthalpy energy equation instead than directly solving the equation (SF1).

Let u(·, ·) : Rn × {t > 0} → R. Physically u(x, t) can be describe the enthalpy per

unit volume at position x and t. The enthalpy energy in the system consists of

the heat energy and the work to change the physical state of the material. The

enthalpy energy in the solid and liquid region can be written as

u(x, t) =


ρks(T (x, t)− Tmelting) , T (x, t) < Tmelting in solid region

ρkl(T (x, t)− Tmelting) + ρL , T (x, t) > Tmelting in the liquid region.

(3.1.4)

where L is latent energy equals to −1/g in problem (SF1), ks and kl are respectively

specific heat of solid and liquid. In one-phase case, when the temperature in solid

state is preserved to be equal to Tmelting = 0, we define β(·) : R 7−→ [0,∞) is

mapping the enthalpy to the temperature in one-phase ice and water region, such

that β(u) = u+. We realize that there exist a jump at critical temperature Tmelting

due to the change of phase caused by L, which in our case is not constant.

Thus, the enthalpy form of one-phase Stefan problem (with ρ = 1) is given by

(SF2), where c = kl.
cut −∆β(u) = 0 in (Rn \K)× (0,∞)

u = 1 in K × (0,∞)

u(·, 0) = u0 in Rn

(SF2)
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3.1.2 Normal Velocity Derivation

Obviously since β is not even differentiable wherever u = 0, (SF2) can not give

a point-wise interpretation to (SF1). Then, the equation can only be understood

in the sense of distribution or weak sense. Formally we multiply (SF2) both side

with test function ϕ(x, t) ∈ C∞c ((Rn \K)× (0,∞)) and do integration by part. Let

denote Q := (Rn \K)× (0,∞), then we do the following computation.

cut −∆β(u) = 0 in Q

⇒
∫
Q

(cut −∆β(u))ϕdxdt = 0 for any test function ϕ(x, t) ∈ C∞c (Q)

⇒ 0 =c

∫
Q

utϕdxdt−
∫
Q

∆β(u)ϕdxdt

=− c
∫
Q

uϕtdxdt+ c

∫
Rn\K

u(x, 0)ϕ(x, 0)dx

+

∫
Q

∇β(u) · ∇ϕdxdt−
∫
∂(Rn\K)×(0,∞)

∇β(u) · νϕdS(x)dt

=

∫
Q

(−cuϕt +∇β(u) · ∇ϕ) dxdt

=

∫
Q

(−cuϕt − β(u)∆ϕ) dxdt+

∫
∂(Rn\K)×(0,∞)

β(u)
∂ϕ

∂ν
dxdt

⇒0 =

∫
Q

(cuϕt + (βu)∆ϕ) dxdt

(3.1.5)

Solution u of (3.1.5), is a weak solution (in distribution sense) of (SF2). And the

equation (3.1.5) is called weak form of (SF2).

We denotes {u > 0} := (Ωt\K)×(0,∞) and {u < 0} := Ωc
t×(0,∞). The area Q can

be split satisfying Q := {u > 0}∪{u < 0}, such that to be more specific we observe

the weak form in the following cases. We assume that u ∈ C({u > 0} ∪ {u < 0}),

β(·) ∈ C2,1({u > 0}), and β(·) ∈ C2,1({u < 0}).
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For ϕ ∈ C∞c ({u > 0)}

0 =

∫
Q

(cuϕt + β(u)∆ϕ) dxdt

=

∫
{u>0}

(cuϕt + β(u)∆ϕ) dxdt

=

∫
{u>0}

(−cutϕ−∇β(u) · ∇ϕ) dxdt+

∫
Ωt\K

cu(x, 0)ϕ(x, 0)dx

+

∫
∂(Ωt\K)×(0,∞)

β(u)
∂ϕ

∂νx
dSdt, (integration by part)

=

∫
{u>0}

(−cutϕ−∇β(u) · ∇ϕ) dxdt+ 0

=

∫
{u>0}

(−cutϕ+ ∆β(u)ϕ) dxdt−
∫
∂(Ωt\K)×(0,∞)

∇u · νxϕdSdt, (integration by part)

=

∫
{u>0}

−(cut −∆u)ϕdxdt+ 0

⇒ cut −∆u = 0

(3.1.6)

For ϕ ∈ C∞c ({u < 0}),

0 =

∫
{u<0}

(cuϕt + β(u)∆ϕ) dxdt

=

∫
{u<0}

(cuϕt) dxdt, (since β(u) = 0 in {u < 0})

=

∫
{u<0}

(−cutϕ) dxdt, by integration by part

⇒ cut = 0

(3.1.7)

Moreover, it is necessary to observe a weak form through the interface. In purpose

to obtain the formula for normal velocity on the interface, we assume the common

boundary of {u > 0} and {u < 0} is a smooth surface in Rn+1, and the complete

unit outer normal vector of {u > 0} denoted by ν = (νt, νx). So therefore we do
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this following computation

0 =

∫
Q

(cuϕt + β(u)∆ϕ) dxdt

=

∫
Q

−cuϕt +∇β(u) · ∇ϕdxdt , ∀ϕ ∈ C∞c (Q)

=

∫
u>0

−cuϕt +∇β(u) · ∇ϕdxdt+

∫
u<0

−cuϕt +∇β(u) · ∇ϕdxdt

=

∫
u>0

(cut −∆u)ϕdxdt+

∫
∂{u>0}

(−cu,∇u) · (νt, νx)ϕdS(x, t)

+

∫
u<0

cutϕ− 0ϕdxdt+

∫
∂{u<0}

(−cu, 0) · (−νt,−νx)ϕdS(x, t)

=

∫
∂{u>0}

(
−cu|+νt +∇u|+ · νx + cu|−νt

)
ϕdS(x, t)

(3.1.8)

Therefore, on the free boundary of {u > 0}, it is satisfied the following formula.

∇u|+ · νx + cu|−νt = 0 on ∂{u > 0} (3.1.9)

Normal vector on the moving boundary.

(νt, νx) =
1√

(ut|+)2 + |∇u|+|2
(ut|+,∇u|+)

Therefore, the formula for the normal velocity can be written as follow.

0 = ∇u|+ · νx + cu|−νt

= |∇u|+|2 + cu|−u+
t

⇒ u+
t

|∇u|+|
=
−|∇u|+|
cu|−

=
1

c
g(x)|∇u|

(3.1.10)

Considering u from the negative side as, u|− = − 1
gc(x)

= − 1
cg(x)

, we will obtain the

same formula of normal velocity as in Hele-Shaw equation (HS). Therefore, by

taking limit c→ 0 the solution of Latent heat problem (SF2) in area {u > 0} is
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expected to approach the given Hele-Shaw Problem, where {x ∈ Rn|(x, t) ∈ {u >

0}} was denoted as Ωt in the Hele-Shaw equations.

It implies to the chosen of initial data u0. Therefore if we expect to approximate

HS by system (SF2), the initial data u0 require to be the following form,

u0 = 1K + 1Ω0\Kv − 1Ω0
c

1

gc
(3.1.11)

where Ω0 is a given initial domain, and v is harmonic function in Ω0 \K.

Meanwhile, in one-phase Stefan problem such an ice melting, the problem is to

find a function T (x, t) and free boundary ∂Ωt which satisfying:



cTt −∆T (x, t) = 0 for (x, t) ∈ (Ωt \K)× (0,∞)

Tt = g(x, t)|∇T |2, for(x, t) ∈ ∂Ωt × (0,∞)

T (x, t) = 1 for(x, t) ∈ K × (0,∞)

T (x, t) = 0 for(x, t) ∈ (Rn \ Ωt)× (0,∞)

T (x, 0) = T0(x) for x ∈ Rn

(SF1)

The problem models the ice material contacting the water, which in one-phase case

the ice temperature is preserved to be 0◦C. The constant c represent a specific

heat of water, and −1/g(x, t) represents the latent energy of ice with g > 0.

In [18], it discusses the asymptotic convergence of the SF to HS. It states for 1

dimensional case when g(x, t) is constant in x and t, the self-similar solution of

u and T converge to the same constant as t → ∞ for every fixed x > 0, Yet

the convergence is not uniform. Despite the free boundary of both problem have

the same growth rate
√
t, the free boundary of 1-D Stefan problem converge to

Hele-Shaw when c→ 0.
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Different to the 1-D case, problem SF is not ultimately to be HS as t → ∞,

for n >= 2 there is only the convergence behavior to a stationary state of both

problem, and the asymptotic behavior is different. Meanwhile, in 2-dimensional

case, it shows that the SF simplifies to HS. Unlikely in the 1-D case, the HS and

SF problem for multidimensional spaces do not always have a classical solution.

However, they always have a weak solution globally in time.
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Explicit Methods and

Implementation

4.1 Explicit Finite Difference Method

4.1.1 Discretization Scheme for One Dimensional Case

In this section we explain how to apply explicit finite difference to obtain numeric

solution for u of (SF2). In the scheme, we implement the explicit form, so that

the computation is restricted by the stability condition. In order to apply Finite

Difference Method for numerical purpose, space domain in problem (SF2) restricted

to be bounded, such that for 1-D case we consider problem (4.1.1).



cut −∆β(u) = 0 in (0, Xmax)× (0,∞)

u = 1 in (−∞, 0]× (0,∞)

βx(u)(Xmax, t) = 0 for t ∈ (0,∞)

u(x, 0) = 1(−∞,0] + 1(0,xf (0))v − 1[xf (0),Xmax)
1
gc

(4.1.1)

30
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where v is a linear decrease monotone function in (1, xf (0)) with v(0) = 1.

4.1.1.1 Numerical Scheme

Let M be a number of discretization points for domain of x such that for some

Xmax satisfying (0, xf (t)) ⊂ [0, Xmax), ∆x = Xmax
M

.

And uki denote a value of solution u in the discrete note (i∆x, k∆t). The discretized

scheme for the equation cut = ∆β(u) can be written by standard Finite difference

scheme as:

uk+1
i = uki +

(
∆t

c∆x2

)(
β(uki−1)− 2β(uki ) + β(uki+1)

)
(4.1.2)

for k = 0, 1, · · · , NT and i = 1, 2, ·,M − 1

with stability condition,

∆t

c∆x2
<

1

2
. (4.1.3)

4.1.1.2 Adjusting Free Boundary Position

In solving Hele-Shaw problem through the Stefan equation describe above, It is

noteworthy to decently adjust the free boundary position in the problem. For

one-dimension case we consider that numeric position of free boundary is computed

as :

xkf = min{xi|uki uki+1 < 0, i = 0, 1, ...,M − 1} (4.1.4)

or by interpolation as described at figure 4.1, such that the free boundary position

is approximated as formula (4.1.5).

xkf ≈ x̂f = xi + ∆x(
uki−1

uki−1 − uki
− 1) (4.1.5)
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∆x

uki−1

uki

xi−1 xi x̂fxf xi+1

Figure 4.1: Extrapolation to estimate x̄f

4.1.2 The scheme for Two Dimensional Case

Let D ⊂ R2 be a bounded rectangle domain, and given closed set K ⊂ D. In order

to apply finite difference method in 2-D case, we assume u always be differentiable

on ∂D such that for numerical purpose, we consider problem (4.1.6),



cut −∆β(u) = 0 in (D \K)× (0,∞)

u(·, t) = 1 in K × (0,∞)

∂β(u)
∂n

= 0 on ∂D × (0,∞)

u(·, 0) = u0 in Rn

(4.1.6)

where the initial condition u0 follows the form at (3.1.11).

4.1.2.1 Numerical Scheme

We assume that ∆y = ∆x. The discretization scheme of explicit method for (4.1.6)

as follows.

uk+1
i,j =

uki,j +

(
∆t

c∆x2

)
{β(uki−1,j)

+ β(uki+1,j)− 4β(uki,j) + β(uki,j+1) + β(uki,j−1)}

(4.1.7)
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with stability condition,

∆t

c∆x2
<

1

4
. (4.1.8)

4.1.2.2 Adjusting Numeric Free Boundary in 2D Cartesian Grid

• • •

•

•

•

pi,j pi−1,j pi+1,j

pi,j−1

pi,j+1

u < 0

u > 0

u = 0

Figure 4.2: Boundary lies on the Cartesian grid between a 5-point stencil

Similarly to the scheme explained above. In order to adjust free boundary position

lying on the Cartesian grid, we consider the situation of boundary across the grid

between the 5-point stencil, where the center point as the reference. Figure 4.2

describes a situation when the boundary lies on the grid in 5-point stencil, where

pi,0 is a reference point. Since in our case, the boundary represents ∂{u > 0} where

the solution of Hele-shaw defined, we consider Pi,0 which returning u > 0 as the

approximation of boundary position.

We may also extrapolate the position of free boundary crossing the legs of a 5-point

stencil, by using two closest points in {u > 0} side straight through the edge.

4.2 Numerical Results and Discussion

4.2.1 One Dimensional Case

Let K = (−∞, 0], Ω0 = (−∞, xf(0)) for given xf(0), and K ⊂ Ω0, and Ωt =

(−∞, xf (t)). The exact solution of 1-dimensional Hele-Shaw problem for the given
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Ω0 and K is as follow.

u(x, t) =


1 , for (x, t) ∈ K × [0,∞)

1− x
xf (t)

, for (x, t) ∈ Ωt \K × [0,∞), xf (t) > 0

0 , for (x, t) ∈ Ωt
c × [0,∞)

(4.2.1)

and the velocity at xf (t) is given by:

Vn = x′f (t) = g(xf , t)|∇u(xf , t)| =
g(xf , t)

xf (t)
, by taking constant g(x, t) = 1

(4.2.2)

and noticing that xf (t) is non-decreasing function with xf (0) > 0, we obtain :

dxf (t)

dt
=

1

xf (t)

⇒ xf (t) =
√

2t+ xf (0) is the solution of free boundary for this particular case.

4.2.1.1 Numerical Solution

To confirm the accuracy, we implement the scheme to the particular case and

compare the result to its analytic solution.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

1.0

1.2

1.4

1.6

1.8

x f
(t)

exact
num

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.004

0.005

0.006

0.007

0.008

0.009

|x
k f

x f
(t)

|

Figure 4.3: Free Boundary Position and its absolute error

Figure 4.3 shows the numerical solution of free boundary position in time from

Finite Difference Method (showing on the left), and its error computation, e =
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|xkf − xf(k∆t)| (on the right). We can see from the error that the method is not

satisfying enough, maxt |e| > ∆x for small enough ε = 10−4. Figure 4.4 shows

the error of numerical solution is still big enough. Nevertheless, it shows an error

reduction in time.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055
|e

|

c =0.1
c =0.01
c =0.001
c =0.0001

Figure 4.4: Maximum error of Solution in time, with ∆x = 0.004 and ε = 0.0001

4.2.1.2 Numerical Error of Solution and Free Boundary Position

We observe the truncation error of the finite difference method and the error caused

by parameter heat specific parameter c. Figure 4.5 shows the error behavior either

for the numerical solution of HS problem and the free boundary position influenced

by c and ∆x. Figure 4.5 shows the maximum error of numerical solution during

computation per time step affected by ∆x and c, e = maxx,t |uNum − u|. We

conclude that for the small c, Finite Difference scheme (4.1.2) gives only the error

order 1. In the figure 4.6 we can observe the error of free boundary position during

computation per time step affected by ∆x and c, e = maxx,t |xfNum − xf |. We

conclude that for the small c, the scheme gives only the error order up to 1. The

smaller c after some level does not give significant error reducing in both solutions,

which is what we expecting.
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Figure 4.5: Error of numerical solution in the logarithmic scale.
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Figure 4.6: Error of numeric free Boundary Position in the logarithmic scale.

4.2.2 Two Dimensional case

Suppose that K = B(0, Rk) ⊂ R2, Ω0 = B(0, Rf(0)) ⊂ R2, Rf(0) = R0, and

K ⊂ Ω0, and Ωt = B(0, Rf(t)) denotes a domain at time t.The exact solution of

Hele-Shaw equation as (HS) for the given Ω0 and K is as follows.

u(x, t) =


1 , for x ∈ K

log |x|−logRf (t)

logRk−logRf (t)
, for x ∈ Ωt \K

0 , for x ∈ Ωt
c

(4.2.3)
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with a normal velocity is given by :

Vn(x) = g(x, t)|∇u(x, t)| , for x ∈ ∂(Ωt \K) (4.2.4)

For particular case, by taking g(x) = 1 we have radially symmetry behavior for the

position of free boundary against the center point. Therefore, for Rf (t) = |x|, x ∈

∂(Ωt \K) ⊂ R2 we can write:

Vn = R′f (t) = g(x)|∇u(x)| = g(x)

log |Rk|x| ||x|
=

1

Rf (t) log Rk
Rf (t)

(4.2.5)

We expect to obtain explicitly the formula for Rf (t), which appears as the ordinary

differential equation. Yet for the numerical purpose, it is sufficient to compute the

exact solution by fourth-order Runge-Kutta approximation method.

3.0 2.5 2.0 1.5 1.0 0.5 0.0
log10c

1.6

1.4

1.2

1.0

0.8

M = 64
M = 128
M = 256
M = 512
M = 1024

Figure 4.7: Maximum absolute error of solution with x-axis ε

4.2.2.1 Numerical Solution in Periodic Media

We experiment for one example g(x) with c = 4 in Figure 4.9. We expect faster

and better computation rather than using explicit finite different. We also observe

from the Figure 4.10, 4.11, and 4.12, there must be reasonable set between mesh
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3.0 2.5 2.0 1.5 1.0 0.5 0.0
log10c
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0.6

M = 64
M = 128
M = 256
M = 512
M = 1024

Figure 4.8: Maximum absolute error of free boundary with x-axis ε

Figure 4.9: Maximum absolute error of solution with x-axis ε

size M and the oscillating coefficient ε. We can see ffrom the pictures, on the mesh

size with M = 128, 256 the error obtained from ε = 0.1 is smaller than the ε = 0.01

has, but the value is closer to the ε = 0.001.
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Figure 4.10: Error behavior for g(x, t) = sin(2x−t
0.1 )

Figure 4.11: Error behavior for g(x, t) = sin(2x−t
0.01 )
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Figure 4.12: Error behavior for g(x, t) = sin( 2x−t
0.001)



Chapter 5

BBR Scheme as an Efficient

Method

A numerical solution of problem (2.3.2) can be found efficiently by the method

introduced by Berger, Brézis and Rogers [5], in the form further studied by

Murakawa [19]. We refer to this scheme as the BBR scheme. Choosing a time step

τ > 0, we iteratively find the sequences
{
uk
}
k≥1

,
{
zk
}
k≥0

of solutions of



cµk−1uk − τ∆uk = cµk−1β(zk−1) in U,

∂uk

∂x1

(0, ·) = q1,

uk(1, ·) = 0,

uk 1-periodic in x2,

(5.0.1a)

zk = zk−1 + µk−1(u− β(zk−1))− τ

c

(
∂

∂t

1

gε

)
(·, tk− 1

2
)χint{zk−1<0}, (5.0.1b)

µk =
1

δ + β′(zk)
, (5.0.1c)

41
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for k = 1, 2, . . ., with z0 := z(·, 0). Here δ > 0 is a chosen regularization parameter

that we discuss below, and we define

β′(s) :=


1, s > 0,

0, s ≤ 0.

Note that we add the source −1
c

(
∂
∂t

1
gε

)
(·, tk− 1

2
)χint{zk−1<0}, tk− 1

2
= (k − 1

2
)τ , to

the update of z in (5.0.1b) rather than the problem (5.0.1a) as was done in [5].

This is to avoid any unwanted diffusion in {z < 0} that would otherwise occur.

Let us comment on the choice of τ , δ and c. The time step restriction comes from

the fact that the free boundary can advance at most distance h (one node distance)

in one-time step. We therefore take the time step τ < h
2Vmax

, where Vmax is some

reasonable estimate on the maximum velocity of the free boundary in the problem.

The maximum principle yields uk > 0 on U . The regularization parameter δ > 0

guarantees a presence of a boundary layer in the neighborhood of the free boundary

where uk is sufficiently large so that z is increasing there. Let us estimate its width.

Assuming a one-dimensional situation for simplicity, with free boundary position of

zk−1 located at x1 = 0 with zk−1 < 0 for x1 > 0, (5.0.1a) simplifies in {x1 > 0} to

c

δ
uk − τukx1x1 = 0,

and therefore the dominating term in the solution will be φ(x1) = Ce−
√

c
δτ
x1 , where

C ≈ −q1

√
δτ
c

so that the derivative φx1 is approximately q1 at x1 = 0.

From (5.0.1b), the total amount of energy deposited into the negative z per one

time step is therefore
∫∞

0
zk− zk−1 dx1 = 1

δ

∫∞
0
φ dx1 ≈ −q1

τ
c
, which is as expected

from Fourier’s law. We need to choose δ > 0 so that the majority is deposited near

the free boundary {x1 = 0}. The ratio deposited in {a < x1} for some a > 0 is

given by
∫∞
a
φ dx1/

∫∞
0
φ dx1 = e−

√
c
δτ
a. For this to be equal to a given γ ∈ (0, 1)
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with a = wh, w > 0, we need to take

δ =

(
w

log γ

)2
ch2

τ
.

We have not observed any ill effect if we choose small w, so we in general set w = 1,

γ = 0.01, which yields the formula

δ ≈ 4.7× 10−2 ch
2

τ
. (5.0.2)

Let us explain how we implement the update of z in the set {z < 0} in the BBR

method (5.0.1b). Since the set {z > 0} is monotonically increasing if z is the exact

solution of (2.3.2), z = − 1
cgε

in {z < 0}. However, in the BBR method (5.0.1b),

the value of zk is also influenced in
{
zk−1 < 0

}
by uk since uk > 0 in U by the

comparison principle. On the other hand, uk decreases exponentially with the

distance from
{
zk−1 > 0

}
as observed above. We therefore make use of this fact

and at a given fixed point x, we set zk(x) = − 1
cgε(x,tk)

at the first time step k

such that uk(x) > 10−3δ, where δ is the regularization parameter in (5.0.1c), and

only at the later time steps we apply the update (5.0.1b) at this node. This leads

to a significant increase in the accuracy of the estimate of r(q), especially in a

neighborhood of the pinning intervals.

Since we need to find the solutions of the Hele-Shaw problem for many different

q over a large time interval (relative to ε) to get a reliable estimate on r(q), it is

important to develop an efficient numerical method to solve the elliptic problem

(5.0.1a) for uk. It turns out that a multigrid scheme for the linear elliptic problem

for uk works well even though µk−1 has a jump across the free boundary.
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Multigrid Method

6.1 Multigrid

In this section we focus on the linear elliptic problem



au− h2∆u = f in U = (0, 1)2

ux1(0, x2) = q1 for x2 ∈ [0, 1)

u(1, x2) = 0 for x2 ∈ [0, 1)

u 1-periodic in x2,

(6.1.1)

where h > 0 will be the discretization step and a is a given bounded nonnegative

function.

We will choose M = 2p for some p ∈ N as the resolution and set h = 1
M

and

introduce xi = ih, i = 0, . . . ,M . We discretize the PDE using the standard finite

difference method with the central difference on a 5-point stencil. We therefore

look for vi,j, i, j = 0, . . . ,M − 1, that approximate u(xi, xj). For the Neumann

boundary condition, we use a ghost grid point assuming v−1,j = v1,j − 2q1h. This

44
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Figure 6.1: Transfer between grids, restriction and prolongation.

leads to the linear system



(4 + ai,j)vi,j − vi−1,j − vi+1,j − vi,j−1 − vi,j+1 = fi,j,

i = 1, . . . ,M − 1, j = 0, . . . ,M − 1,

(4 + ai,j)v0,j − 2v1,j − v0,j−1 − v0,j+1 = f0,j − 2q1h,

j = 0, . . . ,M − 1,

vi,−1 = vi,M−1,

vi,M = vi,0,

vM,j = 0,

(6.1.2)

where fi,j := f(xi, xj) and ai,j := a(xi, xj).

To solve this system, we use the standard multigrid method, see for example [20].

We introduce a sequence of spaces

V 2mh = R(M/2m−1)×(M/2m−1), m = 0, . . . , p.
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On each of these we will solve the linear system with appropriately adjusted M .

We need to introduce the grid transfers. The restriction operator I2h
h : V h → V 2h

is defined by the standard weighted sum

(I2h
h v

h)i,j =
vh2i,2j

4
+
vh2i−1,2j + vh2i+1,2j + vh2i,2j−1 + vh2i,2j+1

8

+
vh2i−1,2j−1 + vh2i+1,2j−1 + vh2i−1,2j+1 + vh2i+1,2j+1

16
,

where we assume the periodic extension in j and we assume that vh is even across

i = 0, that is,

vh−1,j = vh1,j,

vhi,−1 = vhi,M−1, vhi,M = vhi,0.

This is motivated by the fact that the error correction will satisfy the boundary

condition ux1(0, x2) = 0.

The prolongation operator Ih2h : V 2h → V h is the standard prolongation

(Ih2hv
2h)2i,2j = v2h

i,j ,

(Ih2hv
2h)2i+1,2j =

1

2

(
v2h
i,j + v2h

i+1,j

)
,

(Ih2hv
2h)2i,2j+1 =

1

2

(
v2h
i,j + v2h

i,j+1

)
,

(Ih2hv
2h)2i+1,2j+1 =

1

4

(
v2h
i,j + v2h

i,j+1 + v2h
i+1,j + v2h

i+1,j+1

)
,

again assuming the periodic extension v2h
i,M = v2h

i,0.

By A2mh we will denote the matrix of the linear system (6.1.2) for grid with

resolution M/2m with a2mh defined recursively as

a2h = 4I2h
h a

h.
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We perform the following multigrid V-cycle:

(a) k1 times iterate the smoother for Ahvh = bh with initial guess vh,(0), obtaining

vh,(k1).

(b) Find the residual rh = bh − Ahvh,(k1)

(c) Restrict the right-hand side b2h = 4I2h
h r

h.

(d) Solve A2he2h = b2h on a half-resolution grid recursively.

(e) Correct the approximation ṽh,(k1) = vh,(k1) + Ih2he
2h.

(f) k2 times iterate the smoother for Ahvh = bh with initial guess ṽh,(k1).

The problem A1e1 = b1 is solved exactly.

To improve the convergence, we solve for e2h using two V-cycles, with initial guess

e2h = 0.

As a smoother we implement the damped Jacobi method with damping constant

ω = 2
3
. We perform k1 = k2 = 4 relaxation iterations. This reduces the maximum

norm of the residual by about a factor of 10 per iteration, see Table 6.1.

To estimate the time complexity, we observe that the matrix multiplication and

the application of prolongation and restriction operators have each approximately

the time complexity of a single Jacobi iteration. With these parameters, a simple

estimate places the time complexity of the V-cycle at about 22 Jacobi iterations.

Moreover, the method is parallelizable in a straightforward manner. We did not

explore this point since we need to run a large number of computations and

therefore can take advantage of process-level parallelism.
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iteration k
∥∥r(k)

∥∥
0 1.95× 10−3

1 3.11× 10−5

2 1.54× 10−6

3 8.95× 10−8

4 5.53× 10−9

5 3.43× 10−10

6 2.13× 10−11

7 1.33× 10−12

8 8.44× 10−14

9 5.88× 10−15

10 9.44× 10−16

11 7.77× 10−16

Table 6.1: Evolution of the residual in the multigrid method with M = 1024,
h = 1/M , bh = 0, ai,j = 1000h2 if xi + 0.1 sin(6πxj) > 0.5 and ai,j = h2

otherwise, and fi,j = 0, with initial guess vh = 0.



Chapter 7

Numerical Implementation for

Hele-shaw Problem

7.1 Application of the multigrid solver to the

BBR scheme

To find uk in (5.0.1a), we apply the above multigrid solver to (6.1.1) with a =

ch2

τ
µk−1 and f = ch2

τ
µk−1β(zk−1), and we use uk−1 as the initial guess. In our

computations it is generally sufficient to perform a fixed number of V-cycles per

time step. We perform in general 1–3 V-cycles.

7.2 Estimating Error caused by non-periodic g

Now we estimate the error caused by approximating g̃ by a periodic function. Let

ω = 1
ε

be a number of oscillation and n = bωc be a largest integer smaller that ω,

such that g̃ is 1-periodic function in [0, εn]2 ⊂ [0, 1]2. If we write the average of

49
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function 〈1
g̃
〉 in unit rectangle [0, 1]2 as follow,

〈1
g̃
〉 :=

∫
[0,1]2

1

g̃(x
ε
, y
ε
)
dxdy =

∫
[0,εn]2

1

g̃(x
ε
, t
ε
)
dxdt+

∫
[0,1]2\[0,εn]

1

g̃(x
ε
, y
ε
)
dxdy

= εn〈1
g
〉+

∫
[0,1]2\[0,εn]

1

g̃(x
ε
, y
ε
)
dxdy

then we can estimate,

∣∣∣∣〈1g 〉 − 〈1g̃ 〉
∣∣∣∣ ≤ ∣∣∣∣(1− (εn)2)〈1

g
〉
∣∣∣∣+

∣∣∣∣∫
[0,1]2\[0,εn]

1

g̃(x
ε
, y
ε
)
dxdy

∣∣∣∣
≤ (1− (εn)2

[〈
1

g

〉
+

1

gmin

]
= (1− (

bωc
ω

)2)

[〈
1

g

〉
+

1

gmin

]
≤ 2

ω

[〈
1

g

〉
+

1

gmin

]

such that the error of r(q) caused by approximating function g̃ is bounded, depends

on ω as the following computation.

∣∣∣r(q)− (̃r)(q)
∣∣∣ = |q|

∣∣∣∣∣∣ 1〈
1
g

〉 − 1〈
1
g̃

〉
∣∣∣∣∣∣

= |q|

∣∣∣∣∣∣
〈

1
g̃

〉
−
〈

1
g

〉
〈

1
g

〉〈
1
g̃

〉
∣∣∣∣∣∣

≤ |q|2gmax
ω
〈

1
g

〉 [〈1

g

〉
+

1

gmin

]
≤ C
|q|
ω

Therefore, the error caused by approximating g̃ by periodic function goes smaller

as ω increases.
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7.3 General direction

So far we have assumed that q = (q1, 0) with q1 < 0. To handle general q ∈ R2\{0},

we rotate the coordinate system so that q is of this form. That is, instead of g we

consider

g̃(x, t) = g(x1ν + x2ν
⊥, t),

where ν⊥ = (−ν2, ν1) =
(
q2
|q| ,−

q1
|q|

)
.

Of course, in general g̃ is not periodic in x2, unless there exist integers n1, n2 ∈ Z,

n1n2 6= 0, such that n1q1 + n2q2 = 0, that is, unless q is a rational direction. These

are however the only directions that we can consider numerically.

By taking σ = q1
n2

= − q2
n1

and m1 = n2, m2 = −n1, it can be easily seen that q is

a rational direction if and only if there exist σ > 0 and two integers m1,m2 ∈ Z

such that q = (m1σ,m2σ). Let us show how we can choose ε so that the solution

of the ε-problem is 1-periodic in the x2 direction. To this end, we shall find the

minimal period of g̃ first. This is equivalent to finding the smallest s > 0 such that

sν⊥ ∈ Z2.

Lemma 7.3.1. If m1 and m2 are co-prime, then s = (m2
1 +m2

2)
1
2 is the smallest

s > 0 such that sν⊥ ∈ Z2.

Proof. Note that ν⊥ = (m2,−m1)

(m2
1+m2

2)
1
2

. Clearly

sν⊥ = (m2,−m1) ∈ Z2.

Now suppose that there is 0 < s̃ < s such that s̃ν⊥ ∈ Z2. But then s̃
s
sν⊥ =

s̃
s
(m2,−m1) ∈ Z2. In particular s̃

s
∈ Q. Suppose that s̃

s
= p

q
, where p, q are coprime.
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Since p
q
< 1, q > 1 is a divisor of both m1 and m2. But that is a contradiction

with m1 and m2 being coprime.

Given a general q = (m1σ,m2σ), it is therefore sufficient to choose

ε =
gcd(m1,m2)

d(m1 +m2)
1
2

for some integer d ∈ N and the solution will be 1-periodic in the x2 direction.

Note that this limits the angular resolution of our method. For example, near the

x1-axis, to compute q = (m1σ, σ) near a fixed q̂ = (q̂1, 0), we must take ε < 1
m1

which requires large resolution M for small σ since m1 = q̂1
σ

.

7.4 Numerical results

To test the numerical method, we estimate the homogenized velocity r(q) for a few

simple functions g. Namely, we consider

g(x, t) = sin(2π(x1 + t)) + 2, (7.4.1a)

g(x, t) = sin(2π(x1 + t)) + sin(2π(x2 + t)) + 3, (7.4.1b)

g(x, t) =
1

2
cos(2πt)

(
sin(2πx1) + sin(2πx2)

)
+ 2, (7.4.1c)

g(x, t) = sin(2π(x1 + t)) + sin(2π(x1 + 3t)) + 3. (7.4.1d)

By Lemma 2.2.1, the pinning interval with r(q) = 1 in (7.4.1a) is [1
3
, 1]×{0}. Note

that (7.4.1c) is a superposition of four traveling waves moving with speed 1 in

directions (1, 0), (−1, 0), (0, 1) and (0,−1).

We always take c = 10−7, τ = h
8

and δ as in (5.0.2), and L0 = 0.1, L1 = 0.9.

The values of r(q) are estimated for a range of q = (m1σ,m2σ), with σ = 6.4
M

,
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m1,m2 ∈ Z. For given q, we determine ε following Section 7.3 as

ε =
1

N(m2
1 +m2

2)
1
2

, N = max

(
1, round

(
9M

64(m2
1 +m2

2)
1
2

))
.

This is done so that neighboring points have similar ε. Values σ smaller than

the above lead to high frequency oscillations in the estimate of r(q) since ε is

then forced to be too small in proportion to h = 1
M

. We always use 2 V-cycles

per time step, unless otherwise noted. These parameters produce very consistent

results across a wide range of resolutions 64 ≤ M ≤ 1024 that we tested, see

Figures 7.1–7.5.

The computational time necessary to estimate a single r(q) is O(M3), and to

produce a contour plot with the above resolution of σ is O(M5).

7.4.1 Discussion

We observed a number of pinning intervals for a few examples of coefficients g.

The behavior of r(q) in a neighborhood of the pinning intervals is surprisingly

consistent across our computations. Namely, the velocity is pinned to a constant

value only along a single critical direction, and far away from the pinning interval

the value r(q) is proportional to |q| as in the time-independent case. Moreover, r(q)

appears to be only Lipschitz continuous at the points on the relative interior of the

pinning interval, see Figure 7.2. For the critical direction, this has a boosting effect

for smaller |q| and slowing effect for larger |q| along the pinning interval, compared

to the nearby directions. We observed that this leads to an appearance of a stable

flat part (facet) of the free boundary in the critical direction, see Figure 7.6.

In the particular case (7.4.1b), there is an indication of the appearance of a whole

class of pinning intervals near the main diagonal (1, 1) as a sort of resonance

between the pinning intervals in directions (1, 0) and (0, 1), see Figure 7.3. Some of
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M
ε−1

8 16 32 64 128
64 8.7× 10−2 6.3× 10−2 5.2× 10−1 1.0× 100 1.5× 100

128 5.9× 10−2 5.3× 10−2 5.9× 10−2 3.9× 10−1 1.0× 100

256 6.5× 10−2 5.8× 10−2 2.1× 10−2 5.0× 10−2 4.0× 10−1

512 7.9× 10−2 5.7× 10−2 2.0× 10−2 1.1× 10−2 5.9× 10−2

Table 7.1: The maximum of the error of the numerical estimate of r(q) for
g(x, t) = sin(2π(x1 + t)) + 2 as compared to the estimate of r(q) using the ODE
method in one dimension described in Section 2.2.2 for q = (q1, 0), with a small
sample of values q1 away from the ends of the pinning interval [1

3 , 1] for various
values a parameters M and ε. Our method appears to be first order accurate in

M if ε is chosen appropriately.

the level sets in the first quadrant have an appearance of the level set the `1 norm

‖p‖1 := |p1|+ |p2|, which is a typical example of a so-called crystalline anisotropy.

Somewhat surprisingly, no such effect is apparent in the case (7.4.1c) with four

traveling waves in the axis directions, see Figure 7.5.

Our estimate of r(q) appears to be first order accurate in M , see Table 7.1, and

consistent when changing the resolution and other parameters, see Figure 7.1 and

Figure 7.6.
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Figure 7.1: (Top) The contour plot of r(q) with g(x, t) = sin(2π(x1 + t)) + 2.
The pinning interval [1

3 , 1]×{0} is apparent, see Lemma 2.2.1, where the average
velocity is pinned to 1. The solid contours were obtained with M = 256, while
the dotted contours were obtained with M = 128. (Bottom) Detail of the pinning

interval computed with M = 512.
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Figure 7.2: Values of r(q), q = (q1, q2), for g(x, t) = sin(2π(x + t)) + 2 with
M = 1024 as a function of q2 for several chosen of q1.
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Figure 7.3: (Top) Contour plot of r(q) with g(x, t) = sin(2π(x1 + t)) +
sin(2π(x2 + t)) + 3 and M = 256. As expected, pinning intervals appear
in directions (1, 0) and (0, 1), however, there is also a visible pinning interval
in direction (1, 1) where the velocity appears to be pinned to

√
2. The plot is

symmetric with respect to the reflection across the direction (1, 1). (Bottom)
Detail with M = 1024 around the pinning interval with velocity

√
2. There

might be other pinning intervals nearby. The small squares along the diagonal
are artifacts of contour reconstruction.
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Figure 7.4: Contour plot of r(q) with g(x, t) = sin(2π(x1 + t)) + sin(2π(x1 +
3t)) + 3 computed with M = 256. The two visible pinning intervals along the q1

axis where the velocity is pinned to 1 and 3.
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Figure 7.5: Contour plot of r(q) with g(x, t) = 1
2 cos(2πt)(sin(2πx1) +

sin(2πx2)) + 2 with M = 256. Pinning intervals appear in the directions
of (1, 0), (−1, 0), (0, 1) and (0,−1) (the plot is symmetric with respect to the

rotation by π
2 ).
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Figure 7.6: (Top) The free boundary of the numerical solution of the Hele-Shaw
problem with a given source f = 1500 max{0.1− |x− (1

2 ,
1
2)|, 0} and a function

g(x, t) = sin(2π(x1 + t)) + 1.05 with initial data Ω0 =
{
x : |x− (1

2 ,
1
2)| < 0.1

}
.

The free boundary is plotted at times t = 0.02m, m ∈ N . A facet seems to
appear in direction (1, 0). It reaches its maximum length at t ≈ 0.12. Solid line
is the solution with M = 8192, ε = 1

512 , while the dotted line is with M = 2048,
ε = 1

128 . We used 1 V-cycle. (Bottom) Detail of the region with facets.
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