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Abstract

We study the Hele-Shaw problem in oscillating media, and mainly are interested in the

averaging behavior of the free boundary velocity, that is a homogenization problem. Our

focus is only on the one-phase Hele-Shaw problem neglecting the surface tension. A

general formula for the homogenized velocity is unknown. Current results are known for

the media periodic only in space or only in time. In this work, we develop an efficient

numerical scheme to estimate the averaging velocity in two dimensions with periodic

coefficients in both space and time. Also for comparison, we implement the regular finite

difference to obtain a numerical solution and we describe how to get a free boundary

position. We present several computation experiments to test the error of both for the

numerical solution and the free boundary position.
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1 Introduction

In many years, Hele-Shaw problem have become one of popular model in fluid me-

chanics. For two dimensions case, this is a popular model for pressure driven flow of

an incompressible liquid between two parallel plates, names Hele-Shaw cell. And for

three dimensions case, this is a model for pressure driven flow of an incompressible

liquid in porous medium. In this work, we study the Hele-Shaw problem in oscillating

media, and mainly are interested in the averaging behavior of free boundary velocity, i.e

homogenization problem. Our focus is only on One-phase Hele-Shaw problem neglecting

surface tension. One can simply represent this problem is flowing a liquid through the

valleys area containing air only. For general periodic media, the homogenized solution is

unknown. Current results have been revealed for the media that periodic only either in

space or in time. We develop a numerical schemes to estimate the homogenized solution

of normal velocity in Hele-Shaw problem with periodic coefficients in both space and

time. Instead of directly solving the problem, we use the fact that One-phase Hele-Shaw

problem is a zero heat specific limit of One-phase Stefan problem, then consider the

equation in the enthalpy form. We implement the efficient numerical scheme, namely

BBR method to solve the PDE, and use the idea in 1D case to estimate the average

velocity r(q) in two dimensions.

2 Problem Statement

Suppose the Hele-Shaw problem is in Rn, n = 2. Given Ω0 as an initial domain, closed

subset K ⊂ Ω0, with Ω0 ⊂ Ωt, t > 0 is increasing. We want to find a pair of u(x, t) and

free boundary ∂Ωt that satisfying (HS).



∆u(x, t) = 0 for (x, t) ∈ (Ωt \K)× [0,∞)

ut = g(x, t)|∇u|2, for(x, t) ∈ ∂Ωt × (0,∞)

u(x, t) = 1 for(x, t) ∈ K × (0,∞)

u(x, t) = 0 for(x, t) ∈ (Rn \ Ωt)× (0,∞)

(HS)

Solution u(x, t) represents pressure of some viscous fluid that is injected into the air

as in Figure HS. Neglecting surface tension, the area with air is assumed to have zero

pressure on ∂Ωt, and function 1
g(x,t) represents the depth of hole at the free boundary

that the liquid must fill while it is advancing. In fact, (HS) can be approximated by

limiting specific heat coefficient c −→ 0 in the One-phase Stefan problem. The form of

the One-phase Stefan problem is only distinguished by replacing the Laplace operator on

(HS) with Heat operator with heat specific coefficient c > 0.

cut −∆u(x, t) = 0
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Figure 1: Hele-Shaw cell for problem (HS)

On the Stefan problem, the solution of u models the temperature diffusion in ice melting,

where the temperature in the ice region is preserved to be 0oC. Here, −1g is specified to

be a latent energy in the phase transition solid to liquid. Then for numerical scheme, we

rewrite the Stefan problem into the enthalpy formulation as written in (SF2).
cut −∆h(u) = 0 in (Rn \K)× (0,∞)

u = 1 in K × (0,∞)

u(·, 0) = u0 in Rn
(SF2)

Operator h(u) = u+, where implicitly revealing (Ωt \K) := {x|u(x, t) > 0}.

2.1 Homogenization Problem

Suppose that the Hele-shaw cell in the periodic media is given by the problem to find

u = u(x, t), Ω ⊂ Rn × [0,∞), (Ω(t) : {x|(x, t) ∈ Ω}) such that:



∆u(·, t) = 0 in Ω(t) \K, t > 0

V (x, t) = g(xε ,
t
ε)|∇u(x, t)| x ∈ ∂Ω(t), t > 0

Ω(0) = Ω0

u = h on K

u = 0 on ∂Ω(t), t > 0

(2.1)

for given h > 0, and g > 0 1-periodic function (g(x+ k, t+ l) = g(x, t), k ∈ ZN , l ∈ ZN ).

The homogenized problem of (2.1) has almost the same form except on the formula for the

normal velocity. Let uε denotes the solution of (2.1) for any specific ε. In Pozar (2015),

there exist r = r(q), r : RN 7→ [0,∞) depending only on g such that uε → u,Ωε → Ω as

ε→ 0, where (u,Ω) is the solution of (2.1) with V (x, t) = r(∇u(x, t)). In general, r(q)

has no explicit form. However, in special cases we know the following formula for r(q).



5

• If g = g(t) depends only on t, then r(q) = 〈g〉|q|, where 〈g〉 =
∫ 1
0 g(τ)dτ is the

average of g.

• If g = g(x) depends only on x, then r(q) = 1
〈 1
g
〉 |q|, where 〈1g 〉 =

∫ 1
0

1
g(τ)dτ is the

average of 1
g .

If g depends on both x and t, the explicit form of r(q) is not known in general, and can

appear to be complicated. The number of r(q) is related to Poincare’s rotation number.

Nonethelesss, for particular case of q, it is interesting to observe the existence of the

interval where velocity becoming constant, namely pinning interval.

Lemma 2.1. Suppose that g(x, t) = f(x + t) where f = f(x) is a positive periodic

continuous function. Then r(q) = 1 for q ∈ [ 1
max f ,

1
min f ].

Figure 2: graph of r(q) in 1D for g(x, t) = sin(2π(x+ t))2 + 1/2 pinning interval is
shown for constant r(q) = 1 in [2/3, 2]

However in the higher dimension, if function g is time-independent, homogenized solution

convergence to r(q) = 1
〈 1
g
〉 |q| , the same as in 1-D case. Also for simple scaling argument,

it shows that solution homogenization with g = g(t) converge to r(q) = 〈g〉|q|.

2.2 Estimating The Average Normal Velocity

To estimate the average normal velocity in 2D, we are motivated by the idea in 1D case,

where the homogenized problem can be simplified to the ODE{
(yε)′(t) = g(y

ε(t)
ε , tε)|q|, t > 0,

yε(0) = y0,
(ODE)

and the solution yε converge locally uniformly as ε→ 0+ to the solution of linear ODE.{
y′(t) = r(q), t > 0,

y(0) = y0,
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Therefore, we can estimate r(q) in 1D by solving (3.3) for a small ε > 0.

r(q) = y(1)− y0 ≈ yε(1)− y0.

Or by scaling argument, fix ε = 1 and solve (3.3) for a large time T � 1.

r(q) =
y(T )− y0

T
≈ y1(T )− y0

T
.

x2

x1
L1∂Ω0

Ω0

∂Ωε
t

∂β(z)
∂x1

= q1 Ωε
t

Figure 3: The setting of initial condition in 2D case to estimate the value of r(q).

By the convergence in the Hausdorff distance, we see that Tε → L1−L0
r(q) as ε→ 0. This

allows us to estimate r(q) by choosing 0 < ε� 1 and using

r(q) ≈ L1 − L0

Tε
.

3 Numerical Method

3.1 Explicit Finite Difference Method

For two dimension case, the numerical scheme of explicit finite difference for problem

(SF2) can be written as (3.1),

uk+1
i,j =

uki,j +

(
∆t

c∆x2

)
{h(uki−1,j)

+ h(uki+1,j)− 4h(uki,j) + h(uki,j+1) + h(uki,j−1)}

(3.1)

with stability condition as the follows.

∆t

c∆x2
<

1

2
. (3.2)
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The explicit finite difference method is implemented to obtain numeric solution of Hele-

Shaw problem with radial source in periodic media, see Figure 1. The result is verified

to the solution of isotropic case, which is given an initial Ω0 = B(0, Rf (0)) ⊂ R2 and

K = B(0, Rk) on homogeneous media by setting g = 1. The exact solution appears to

be solution of the ordinary differential equation (ODE), (3.3).

Vn = R′f (t) = |∇u(x)| = 1

Rf (t) log Rk
Rf (t)

(3.3)
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M = 1024

Figure 4: Maximum absolute error of solution with x-axis ε

Explicit finite different is very restricted to the stability condition. The reasonable small

parameter of specific heat and acceptable mesh size compare to coefficient periodic, even

lead to the computation much slower. Therefore, we do not recommend this method for

numeric solution homogenization in 2D.

3.2 BBR Scheme as Implicit Method

Since the explicit method restrict the computation with the stability condition and

the reasonable size of M for the coefficient period ε, we provide an efficient numerical

scheme firstly introduced by Berger, Brézis and Rogers (1979) and the further studied by

Murakawa(2011) for the the types of non-linear equation such a (SF2). We refer to this

scheme as BBR scheme. Choosing a time step ∆t > 0, we iteratively find the sequences
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Figure 5: Numeric free boundary by explicit method for a given initial open ball
domain with periodic function g(x, t) > 0

.

{
uk
}
k≥1,

{
zk
}
k≥0 of solutions of



cµk−1uk − τ∆uk = cµk−1β(zk−1) in U,

∂uk

∂x1
(0, ·) = q1,

uk(1, ·) = 0,

uk 1-periodic in x2,

(3.4a)

zk = zk−1 + µk−1(u− β(zk−1))− τ

c

(
∂

∂t

1

gε

)
(·, tk− 1

2
)χint{zk−1<0}, (3.4b)

µk =
1

δ + β′(zk)
, (3.4c)

for k = 1, 2, . . ., with z0 := z(·, 0). Here δ > 0 is a chosen regularization parameter that

we discuss below, and we define

β′(s) :=

1, s > 0,

0, s ≤ 0.
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Figure 6: The contour plot of r(q) with g(x, t) = sin(2π(x1 + t)) + 2. The pinning
interval [ 13 , 1]× {0} is apparent, where the average velocity is pinned to 1. The solid
contours were obtained with M = 256, while the dotted contours were obtained with

M = 128.
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Figure 7: Values of r(q), q = (q1, q2), for g(x, t) = sin(2π(x+ t)) + 2 with M = 1024
as a function of q2 for several chosen of q1.
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Figure 8: (Top) The free boundary of the numerical solution of the Hele-Shaw
problem with a given source f = 1500 max{0.1− |x− ( 12 ,

1
2 )|, 0} and a function g(x, t) =

sin(2π(x1 + t)) + 1.05 with initial data Ω0 =
{
x : |x− ( 1

2 ,
1
2 )| < 0.1

}
. The free boundary

is plotted at times t = 0.02m, m ∈ N . A facet seems to appear in direction (1, 0). It
reaches its maximum length at t ≈ 0.12. Solid line is the solution with M = 8192,
ε = 1

512 , while the dotted line is with M = 2048, ε = 1
128 . We used 1 V-cycle. (Bottom)

Detail of the region with facets.
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