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Chapter 1

Introduction

1.1 Introduction

The mathematical theory of partial differential equations (PDEs) has a long history

motivated by various physical phenomena such as sound, heat, fluid dynamics, elas-

ticity, quantum mechanics, etc. However, in many recent developments, PDEs find

their practical applications in other fields of science as well like quantum chemistry,

chemical kinetics, biology, economics and financial mathematics, or computer sci-

ence. Some PDEs also come from the pure mathematical problems of other branches.

In a boundary-initial value problem, which is the classical subject in the theory of

PDEs, the domain of the governing equation is fixed in space with specified data on

the boundary and at the initial time. Such problems were well studied in both stan-

dard analytical and numerical solution techniques. The more recent trend in PDEs

is to consider free boundary problems or moving interface problems with totally dif-

ferent features, namely, the space domains of the equations are separated by free

boundaries which are neither fixed nor known a priori and need to be determined

together with the solution.

Due to the difficulties from the unknown geometric information together with the

nonlinear nature and the singularities of the moving boundaries, only some simplest

free boundary problems have been showed to have classical solutions. It gave rise to

the question of generalizing the notion of solutions and defining some kinds of weak

solutions. The study of the regularity of the solution as well as the free boundary

itself, once the unique weak solution exists, is also one of the most interesting topics
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in the field of free boundary problems. Beside the interests of the well-posedness of

a PDE and the regularity of the solution, the homogenization problems for finding

an average solution of equations with highly oscillating coefficients have received a

lot of attention. Although the theory of homogenization was studied extensively for

classical initial boundary value problems, there are still many open questions for

homogenization of free boundary problems.

Among various types of free boundary problems, the Stefan problem is one of

the most classical ones, which typically models the melting (the phase transition)

of ice in contact with a water region due to heat conduction and an exchange of

latent heat energy. This physical problem was formulated in a mathematical model

by Slovene physicist and mathematician Josef Stefan (1835-1893) who treated the

formation of ice in the polar seas (Stefan 1891), and was considered earlier by Lamé

and Clapeyron (1831). The mathematical formulation of the problem consists of

the heat equation in each phase, the solid and the liquid phase, and an additional

condition at the free boundary, which is the so-called Stefan condition, that expresses

the local velocity of a moving boundary. A very common simplification of the Stefan

problem is the problem when we assume that the temperature is fixed at one of the

phases (usually by assuming that the body of ice is maintained at temperature

0) and it is called the one-phase Stefan problem. The one-phase Stefan problem

then contains only one heat equation in the liquid phase and a simpler form of

the Stefan condition by eliminating one of the temperature gradients. The related

Hele-Shaw problem is usually referred to in the literature as the quasi-stationary

limit of the one-phase Stefan problem when the heat operator is replaced by the

Laplace operator. This problem typically describes the flow of an injected viscous

fluid between two parallel plates which form the so-called Hele-Shaw cell, or the

flow in porous media.

The one-phase Stefan problem and Hele-Shaw problem in homogeneous media

in dimension n = 1 have the explicit classical solution ( [49]). However, we cannot

expect to have the classical solutions of both problems in dimension n ≥ 2 due to the

singularities on the free boundary which might develop in finite time. Thus there

are several approaches to define a notion of solutions including the notion of weak

solutions in the sense of distributions, the notion of variational inequalities solutions

and the notion of viscosity solutions. We will use the notion of weak solutions
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based on the variational inequality formulation and the notion of viscosity solutions

in our investigation. The well-posedness in a weak sense and regularity of these

problems were studied in detail by many authors such as Friedman, Kinderlehrer,

Rodrigues, Caffarelli, etc. (see [21, 51, 53, 7, 8, 34] and references therein). The

problem is also well-posed in viscosity sense and the coincidence of two notions of

solutions was obtained by Kim and Mellet [34,38,39]. Furthermore, the asymptotic

behavior of solutions has gained some attentions in the literature. The asymptotic

homogenization of the Hele-Shaw and the one-phase Stefan problem was given in

[50, 38, 39]. The convergence of the Stefan problem to Hele-Shaw as t → ∞ in

homogeneous media was observed in [49]. Moreover, the long-time behavior of the

related Hele-Shaw problem was studied in detail in [45].

In our recent work, we focus on the long-time behavior of the one-phase Stefan

and Stefan-type problems in some inhomogeneous media in dimension n ≥ 2. Using

the technique of rescaling which is consistent with the evolution of the free boundary,

we are able to show the homogenization of the free boundary velocity as well as the

locally uniform convergence of the rescaled solution to a self-similar solution of the

homogeneous Hele-Shaw problem with a point source for classical multi-dimensional

one-phase Stefan problem. In the anisotropic case, when the heat operator is gener-

alized by parabolic operators of divergence form, we also obtain the homogenization

of the elliptic operator, where the rescaled solution now converges locally uniformly

to a self-similar solution of the homogenized Hele-Shaw-type problem with a point

source. Moreover, by viscosity solution methods, we furthermore deduce that the

rescaled free boundary uniformly approaches that of the homogeneous Hele-Shaw

problem with respect to the Hausdorff distance.

In this chapter, we state some notations for the convenient use later. In Chap-

ter 2, we present some basic background of our problem, which motivated us to

consider the long-time behavior of the solutions. In Chapter 3, we investigate the

asymptotic behavior of the isotropic inhomogeneous one-phase Stefan problem for

long times in periodic and random media. The main reference of Chapter 3 is a

joint-work of the author with N. Požár [47]. The treatment of asymptotic long-

time behavior of anisotropic inhomogeneous Stefan-type problems is presented in

Chapter 4 with the main reference [48] which is another joint-work of the author

with N. Požár. It turns out that when we replace our simple heat equation by
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more general parabolic operators of divergence form, the construction of barriers is

more challenging. Thus in this case, we restrict our consideration to the problems

in dimension n ≥ 3 and in periodic media. Finally, Appendix A covers some basic

techniques of the fundamental solution of a uniformly elliptic equation of divergence

form used in our arguments.

1.2 Notation

We will use the following notations throughout this work.

For a set A, Ac is its complement.

Given a nonnegative function v, we denote the positive set and free boundary of

v by

Ω(v) := {(x, t) : v(x, t) > 0}, Γ(v) := ∂Ω(v),

and for fixed time t,

Ωt(v) := {x : v(x, t) > 0}, Γt(v) := ∂Ωt(v).

(f)+ is the positive part of f : (f)+ = max(f, 0).

We will denote the general elliptic operator of divergence form and its rescaling

as

Lu = Di(aijDju), Lλu = Di(aij(λ
1/nx)Dju),

where we have used the Einstein’s summation convention.
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Chapter 2

The one-phase Stefan problem and

the Hele-Shaw problem

2.1 Mathematical modeling and classical

formulation

2.1.1 The Stefan problem

As introduced above, the Stefan problem is a mathematical model, which typically

describes the process of phase transitions, the melting or freezing, between solid

(ice) and liquid (water) driven by the heat conduction and the exchange of latent

heat. The problem has numerous applications in industry and technology such as

the casting in manufacture of steel, the melting in thermal storage system, the

evaporation of water, the drying of food, etc., see [1, 27, 58, 18, 59] . We begin with

the most basic formulation of the Stefan problem to model the melting of a semi-

infinite solid in contact with a liquid region containing a fixed source, for example

a thin block of ice occupying the region 0 ≤ x < ∞ that melts due to the heating

by a heat source at the fixed boundary x = 0 (see Fingure 2.1).

We assume that the temperature in the solid phase is a constant, say, the ice is

maintained at temperature 0. At the fixed boundary, we prescribe a time dependent

positive continuous boundary data h(t). The moving phase-change boundary is

described by x = s(t). At time t, the liquid occupies the subset Ω(t) := {x : 0 < x <

s(t)} ⊂ [0,∞) and the free boundary is Γ(t) := {x = s(t)}. As time t increases, Γ(t)
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Figure 2.1: Semi-infinite slab melting from x = 0 due to a heat source h(t) at x = 0

.

travels from the left to the right and the liquid domain Ω(t) expands in the melting

process. The classical formulation of this problem is the temperature distribution

v(x, t) in the liquid phase and the location of the free boundary x = s(t). Even

though there are two phases present, the problem is called a one-phase problem

since the temperature is unknown only in the liquid phase.

1D Stefan problem. Find functions x = s(t) and v(x, t) : (0,∞) × [0,∞) →

[0,∞) satisfying

The liquid region 0 ≤ x < s(t)

ρcvt = kvxx, The heat equation in Ω(t)× (0,∞),

v(0, t) = h(t), The fixed boundary data, t > 0,

v(x, 0) = 0, The initial data,

The free boundary x = s(t)

Lρs′(t) = −kvx(s(t), t), The Stefan condition,

s(0) = 0, The initial position of the interface,

v(s(t), t) = 0, The continuity of temperature,

The solid region, s(t) < x <∞,

v(x, t) = 0,
The solid is maintained at temperature 0

for all t > 0.

Here ρ is the density, c is the specific heat, k is the thermal conductivity of the

liquid and L is the latent heat. In the liquid region, the temperature is governed

by the standard heat diffusion. The Stefan condition is important to include the

phase change to the model and can be understood by the energy conservation law

as follows. Assume that the temperature depends only on the horizontal direction

and let A be a small portion of the interface at time t = t0 having area S. At time

t0, the free boundary position is s(t0). As the solid melts, at time t, the boundary
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position is s(t) and the portion A has moved and formed a volume V . The energy

we need to change the volume V of solid into liquid from time t0 to t is

E1 = LρV = LρS(s(t)− s(t0)),

where L is the latent heat, the energy required to change one unit mass of substance

from solid to liquid. On the other hand, the energy delivered through the portion

A from time t0 to t can be computed as

E2 =

∫ t

t0

∫
A

q · νoutdτdS = S

∫ t

t0

q · νoutdτ,

where q is the heat flux density and νout = (1, 0, 0) is the unit outward normal

vector. By Fourier’s law of heat transfer, q = −kDv where k is a positive constant

called the thermal conductivity of the liquid and D is the gradient. Then putting

it in E2 we have

E2 = S

∫ t

t0

−kvx(s(τ), τ)dτ.

By the balance of energy, E1 must equal E2. Divide both sides by (t− t0) and take

the limit as t tends to t0. With the help of the mean value theorem we have

Lρs′(t0) = −kvx(s(t0), t0).

The phenomenon of solidification is formulated similarly. This problem can

model the phenomenon in two or three dimensional space where v is a function of

two or three variables. The derivation of the Stefan condition on the interface is

similar with noting that V = SVνout(t−t0), here Vνout is the outward normal velocity,

νout is the outward unit normal vector of the moving boundary and then we have

LρVνout = −kDv · νout on {x = s(t)}.

Since the free boundary is a level set of v then νout = − Dv
|Dv| and Vνout = vt

|Dv| and we

have an alternative form of the Stefan condition which is sometimes more useful for

analytical treatment as

vt =
k

ρL
|Dv|2.

Without loss of generality, we can assume that the constants are 1.

The mathematical problem is naturally generalized to an arbitrary dimension

n ≥ 1 and is still called the one-phase Stefan problem. Thus, the one-phase Stefan
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problem that we usually refer to is the following problem.

The multi-dimensional one-phase Stefan problem. Let n ≥ 1, K ⊂ Rn be a

compact set. The one-phase Stefan problem (on an exterior domain) is to find a

function v(x, t) : Rn × [0,∞)→ [0,∞) and a set {v > 0} satisfying

vt −∆v = 0 in {(x, t) : v(x, t) > 0, x ∈ Rn\K},

v = h on K,

vt = |Dv|2 on ∂{v > 0},

v(x, 0) = v0(x) on Rn,

(2.1)

where v0 and h = h(x, t) are given functions.

The one-phase Stefan problem can be generalized in many situations. First, if

we assume that the temperature can vary in both phases, then we have the so-

called two-phase Stefan problem. The derivation is analogous with an additional

heat equation in the second phase and a little more complicated form of the Stefan

condition. Since we only focus on the one-phase Stefan problem in our work, we

will not introduce the two-phase problem and refer to [54, 53, 28] for more details.

Moreover, if we assume that the constants in the model are now some nonnegative

smooth functions, we can have some more complex models. For example, if we

take ρ = c = k = 1 and L = 1/g(x), where g(x) > 0, then we will have the

Stefan condition of the form vt = g(x)|Dv|2. This problem is the one-phase Stefan

problem with an inhomogeneous latent heat of phase transition, which is the subject

for investigation of the next chapter. Furthermore, if in addition we assume that

the heat diffuses in an anisotropic body, then the thermal conductivity coefficients

vary through space and time, the heat flux vector q is expressed as q = −KDv, with

matrix K = (kij(x, t)). Then the heat equation in the positive set becomes a more

general parabolic equation of divergence form vt − div(KDv) = 0 and the Stefan

condition becomes vt = g(x)KDv · Dv. In Chapter 4, we will deal with this type

of the one-phase Stefan problem with some more assumptions on the coefficients,

say, K is a symmetric, bounded, uniformly elliptic matrix, independent of time.

Finally, if we consider the problem with zero specific heat, i.e., c = 0 then the heat

operator simplifies into the Laplace operator and the problem is usually referred to

the (one-phase) Hele-Shaw problem, which will be introduced in the next section.
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2.1.2 The Hele-Shaw problem as the quasi-stationary limit

of the Stefan problem

The classical Hele-Shaw problem is a two-dimensional mathematical model that

typically describes the flow of an injected viscous fluid in the thin gap between two

parallel plates, see Fig.2.2.

Figure 2.2: Hele-Shaw flow between two parallel flat plates separated by a small
gap of width h with the infinite pressure at the origin.

The governing equations of this problem are derived by gap-averaging the three-

dimensional Navier-Stokes equations as in [40, 29]. We will sketch some of main

features of this problem here. Let us consider the flow of a Newtonian, incom-

pressible, inviscid fluid, driven by the singularity of a point source at the origin.

Assume that at time t, the fluid occupies a domain Ω(t) in the (x, y)-plane with

free boundary Γ(t) := ∂Ω(t). If the injected fluid is slow enough for the flow to be

approximately stationary and the gap between two parallel plates h is small enough,

following [40,29], the averaged velocity over the gap v := 1
h

∫ h
0

vdz satisfies

v = − h2

12µ
Dp in Ω(t) (2.2)

away from singularity, where p is the pressure of the fluid, h is the distance be-

tween two plates and µ is the dynamic viscosity of the fluid. Moreover, by the
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incompressibility of the flow, div v = 0 and thus we have

∆p = 0 in Ω(t)\{0}.

We also need to specify the boundary condition on the moving interface Γ(t). If we

neglect the surface tension effects, the dynamic boundary condition is given by

p = 0 on Γ(t).

The kinematic boundary condition states that the fluid particles on the interface

remain on the interface for all time by the condition

Vνout = v · νout on Γ(t),

where νout is the unit outward normal vector on Γ(t). By (2.2), on Γ(t), Vνout can

be written as

Vνout = −kDp · νout, (2.3)

where k = h2

12µ
. Similar to the Stefan condition formulation, since the free boundary

is a level set of p, (2.3) can also be expressed as pt = k|Dp|2. This problem is

usually generalized to an arbitrary dimension. If k is a constant then we have a

homogeneous problem. We also have a flow in an inhomogeneous medium when

k is given by a function and in this case, we will have a finger shape interface as

in Figure 2.2. In our work, the limit problem is the homogeneous the Hele-Shaw

problem with a point source formally given as follows.

The multi-dimensional Hele-Shaw problem with a point source. Let

n ≥ 1, the Hele-Shaw problem with a point source is to find a function p(x, t) :

Rn × [0,∞)→ [0,∞) and a set {p > 0} satisfying the free boundary problem

∆p = 0 in {p > 0},

pt = |Dp|2 on ∂{p > 0},

p(x, 0) = 0 on Rn,

lim
|x|→0

p

Φ
= C,

(2.4)

where Φ is the fundamental solution of the Laplace equation and C is a constant.

From the mathematical point of view, the Hele-Shaw problem can be regarded as

the one-phase Stefan problem when the interface moves slowly, the flow is approxi-

mately stationary and the specific heat c is negligible. Indeed, if in the Hele-Shaw
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model, instead of the point source, we consider the movement under a fixed source

K with a prescribed boundary data h(t) and assume that at the initial time, the

pressure is given by some function p0 then we recover the following one-phase Ste-

fan problem with zero specific heat if the pressure p of the fluid is regarded as the

temperature of the liquid:

∆p = 0 in {p > 0}\K,

p = h on K,

pt = |Dp|2 on ∂{p > 0},

p(x, 0) = p0 on Rn,

(2.5)

where p0 and h = h(t) are given functions. This problem is also called a Hele-

Shaw-type problem. In some cases, the temperature and the free boundary in the

one-phase Stefan problem depend continuously on c. Thus, the free boundary of

the Stefan problem approaches that of the Hele-Shaw problem as c→ 0. Moreover,

as t→∞ the diffusion in the process usually reaches the steady-state and the heat

equation in the Stefan problem loses the first term vt. Thus, we also expect to get

the coincidence between the solutions as well as the free boundaries of these two

models in the asymptotic limit when t→∞.

The asymptotic convergence of the Stefan problem to Hele-Shaw is indeed the

consideration in [49], where the authors analyzed the asymptotic behavior of weak

solutions of both models in the multi-dimensional case n ≥ 2. They explained the

asymptotic behavior of the solutions in term of the near-field limit, i.e., the limit

of the solutions at a fixed point x in the space as time t → ∞, and the far-field

limit, i.e., the development in the region close to the free boundary. In the near-field

limit setting, the results in [49] stated that in both cases, the solutions converge to

the solution of the Dirichlet exterior problem for the Laplacian while in the far-field

limit, they converge to the solution of the Hele-Shaw problem with a point source.

The authors also showed that the free boundaries approach a sphere as t → ∞

with a precise asymptotic growth rate. The subjects of the study in [49] are the

classical Stefan problem and Hele-Shaw problem in homogeneous isotropic media.

Their results give rise to the question: Do the results hold for the inhomogeneous

anisotropic case?

The conclusions for the near-field limit can be automatically extended for the in-
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homogeneous case and also for the anisotropic case with some simple modifications.

However, the developments for the far-field limit will be more complicated, since

in [49] the analysis of the far-field limit is based on an appropriate rescaling and

in an inhomogeneous setting, the homogenization problems for the free boundary

velocity and the elliptic operator appear in the scaling limit. This question is par-

tially answered by Požár in [45] where the author proved that in an inhomogeneous

medium, the rescaled solution of the Hele-Shaw problem locally uniformly converges

to the solution of a homogeneous Hele-Shaw problem with a point source and the

free boundary also converges to a sphere with respect to the Hausdorff distance. We

will extend this result to the Stefan problem with an inhomogeneous latent heat in

Chapter 3 and that with an inhomogeneous latent heat and anisotropic conductivity

in Chapter 4.

In the Section 2.3 below, we will give a brief introduction of a homogenization

problem and how it is related to our investigation. Before that we will recall some

notions of solutions of the one-phase Stefan problem used in our work.

2.2 Notion of solutions

In this section, we will recall some notions of solutions of the one-phase Stefan

problem (2.1) for the space dimension n ≥ 2. We consider the problem (2.1) with

the initial data v0 satisfying

v0 ∈ C2(Ω0\K), v0 > 0 in Ω0, v0 = 0, on Ωc
0 := Rn \ Ω0, and v0 = 1 on K,

|Dv0| 6= 0 on ∂Ω0, for some bounded domain Ω0 ⊃ K.
(2.6)

2.2.1 Classical solutions

Let G(t) := Ωt(v)× {t} and QT :=
⋃

0<t<T G(t).

Definition 2.1. A classical solution of the one-phase Stefan problem in [0, T ] is

a pair (v(x, t),Γ(t)) with v ∈ C(QT )
⋂
C2,1(QT ), Dv ∈ C(QT\G(0))) and Γ(t) ∈

C1((0, T ]) ∩ C([0, T ]) that satisfy (2.1).

In case the space dimension is n = 1, the existence and uniqueness of the classical

solution of the Stefan problem with monotone free boundary exits globally in time

for various kinds of boundary and initial data, see [19,54]. However, the situation in
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multi-dimensional space is much more complicated. As observed in [28, 20, 31], the

singularities of the free boundary might develop in finite time such as the merging of

water regions that move independently or the closing of an ice region to a point, or

a piece of ice on melting, may break into two, etc. Thus, we do not expect that the

classical solution exists for all time, even if the data are smooth. Nevertheless, the

short time existence of the classical solution of (2.1) was established by Hanzawa

in [30] for some sufficiently smooth compatible boundary and initial data.

Figure 2.3: Singularities on the free boundary. (a)Two disc-shaped water regions
that move independently, (b)Merging of the two disc at a later time.

The lack of classical solutions of the one-phase Stefan problem motivated to the

study of weak solutions. In our work, we will use the following notions of weak

solutions and viscosity solutions.

2.2.2 Weak solutions

In 1981, Elliot and Janovský introduced a notion of weak solution to the Hele-Shaw

problem by taking integration in time of the classical solution and transforming

the problem into an elliptic variational inequality. Following this approach, it was

observed later by Duvaut [14] that we also can formulate the one-phase Stefan

problem as a parabolic variational inequality. This method was then developed by

Friedman and Kinderlehrer [21], Caffarelli [7, 8] and many other authors.

To motivate this method, let us suppose that (v(x, t),Γ(t)) is a classical solution

of the Stefan problem (2.1) and introduce u(x, t) :=
∫ t

0
v(x, s)ds. Fix R, T > 0 and

set B = BR(0), D = B\K. Following [21], it can be shown that, if R is large enough

(depending on T ), then the function u solves a variational problem. Indeed, since

the free boundary Γ(t) is C1((0, T ]) and vt > 0 on Γ(t), we represent the positive

13



domain Ω(t) by Ω(t) = {x : s(x) < t} for some nonnegative function s such that

Ω0 := {x : v0(x) > 0} = {x : s(x) = 0} . From the definition of u we have if x ∈ Ωc
0

then s(x) > 0 and

u(x, t) =


0 if 0 ≤ t ≤ s(x),∫ t

s(x)

v(x, s)ds if s(x) < t ≤ T.

Now direct computation gives

uxi =

∫ t

s(x)

vxi(x, s)ds− sxiv(x, s(x)) =

∫ t

s(x)

vxi(x, s)ds,

uxixi =

∫ t

s(x)

vxixi(x, s)ds− sxivxi(x, s(x))

(2.7)

for x ∈ Ωc
0, t > s(x).

Since v satisfies (2.1) in classical sense then Vνout = |Dv|. On the other hand,

since the positive domain of v is represented by s(x) then Vνout = 1
|Ds| and therefore

|Dv||Ds| = 1, the vectors Dv and Ds are parallel (and parallel to νout) but in

opposite directions then we have Dv ·Ds = −1. In view of (2.1) and (2.7) we have

∆u(x, t) =

∫ t

s(x)

vs(x, s)ds+ 1

= v(x, t) + 1

= ut(x, t) + 1.

Similarly, if x ∈ Ω0 then for all 0 < t ≤ T , u(x, t) =
∫ t

0
v(x, s)ds, s(x) = 0 and

∆u(x, t) =

∫ t

0

vs(x, s)ds

= v(x, t)− v(x, 0)

= ut(x, t)− v0(x).

Define

f(x) :=

 v0(x) if x ∈ Ω0,

− 1 if x ∈ Ωc
0.

Then finally u satisfies the nonlinear parabolic problem u > 0,

(ut −∆u)(ϕ− u) = f(ϕ− u),
for any ϕ ∈ K(t), x ∈ D, s(x) < t < T
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and u = 0,

(ut −∆u)(ϕ− u) = 0 ≥− ϕ = f(ϕ− u), ]
for any ϕ ∈ K(t), x ∈ D, 0 < t < s(x).

Here we set K(t) = {ϕ ∈ H1(D), ϕ ≥ 0, ϕ = 0 on ∂B, ϕ = t on K}. We use the

standard notation for Sobolev spaces Hk, W k,p.

In conclusion, we have transformed the classical problem (2.1) into the following

variational inequality problem.

Variational inequality problem. Find u ∈ L2(0, T ;H2(D)) such that ut ∈

L2(0, T ;L2(D)) and
u(·, t) ∈ K(t), 0 < t < T,

(ut −∆u)(ϕ− u) ≥ f(ϕ− u), a.e.(x, t) ∈ B × (0, T ) for any ϕ ∈ K(t),

u(x, 0) = 0 in D.

(2.8)

Note that u(x, t) is independent of the choice of B as long as R is large enough

[39, Lemma 3.6]. If v is a classical solution of (2.1) then u is a solution of (2.8),

but the inverse statement is not valid in general. However, we have the following

result [21, 51].

Theorem 2.2 (Existence and uniqueness of the variational problem). If v0 satisfies

(2.6), then the problem (2.8) has a unique solution satisfying

u ∈ L∞(0, T ;W 2,p(D)), 1 ≤ p ≤ ∞,

ut ∈ L∞(D × (0, T )),

and  ut −∆u ≥ f, u ≥ 0,

u(ut −∆u− f) = 0
a.e. in D × (0,∞).

We will thus say that if u is a solution of (2.8), then ut is a weak solution of the

corresponding Stefan problem (2.1). The theory of variational inequalities for an

obstacle problem is well developed, for more details, we refer to [21,51,38]. We now

collect some useful results on the weak solutions from [21,51].

Proposition 2.3. The unique solution u of (2.8) satisfies

0 ≤ ut ≤ C a.e.D × (0, T ),
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where C is a constant depending on f . In particular, u is Lipschitz with respect to t

and u is Cα(D) with respect to x for all α ∈ (0, 1). Furthermore, if 0 ≤ t < s ≤ T ,

then u(·, t) < u(·, s) in Ωs(u) and also Ω0 ⊂ Ωt(u) ⊂ Ωs(u).

Lemma 2.4 (Comparison principle for weak solutions). Suppose that f ≤ f̂ . Let

u, û be solutions of (2.8) for respective f, f̂ . Then u ≤ û, moreover,

θ ≡ ∂u

∂t
≤ ∂û

∂t
≡ θ̂.

Remark 2.5. Regularity of θ and its free boundary has been studied quite extensively,

including Caffarelli and Friedman (see [7, 8, 22]). It is known that a weak solution

is classical as long as Γt(u) has no singularity. The smoothness criterion (see [7,22],

[49, Proposition 2.4]) immediately leads to the following corollary.

Corollary 2.6. Radially symmetric weak solutions of the Stefan problem (2.1) are

smooth classical solutions.

Remark 2.7. If we consider the problem with an inhomogeneous latent of phase

transition L = 1/g(x) and an anisotropic diffusion K = (kij), then as shown in

Section 2.1.1, the governing equation is a parabolic equation of divergence form

vt −Di(kijDjv) = 0

in the positive domain and Stefan condition on the free boundary is given by

vt
|Dv|

= gkijDjvνi.

Here D is the space gradient, Di is the partial derivative with respect to xi, vt is the

partial derivative of v with respect to time variable t and ν = ν(x, t) is inward spatial

unit normal vector of ∂{v > 0} at point (x, t) and we use the Einstein summation

convention.

We can define a weak solution of this problem similarly to the homogeneous

isotropic case. We only need to replace the heat operator by a more general parabolic

operator of divergence form Di(kijDj) and change the form of f as

f(x) :=


v0(x) if x ∈ Ω0

− 1

g(x)
if x ∈ Ωc

0.
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All computations and almost all results remain to be valid. There are only some

issues concerning the regularity of θ in the anisotropic case. Furthermore, we do not

have classical radially symmetric solutions in the anisotropic case, which will lead

to some difficulties in constructing barriers for our arguments.

2.2.3 Viscosity solutions

The second notion of solutions we will use are the viscosity solutions introduced

in [34]. The main results in this work include the well-posedness of the Stefan

problem (2.1) and a comparison principle for viscosity solutions. We will recall here

some important ideas of viscosity solutions taken from [34,39].

First, for any nonnegative function w(x, t) we define:

w?(x, t) := lim inf
(y,s)→(x,t)

w(y, s), w?(x, t) := lim sup
(y,s)→(x,t)

w(y, s).

We will consider solutions in the space-time cylinder Q := (Rn\K)× [0,∞).

Definition 2.8. A nonnegative upper semicontinuous function v(x, t) defined in Q

is a viscosity subsolution of (2.1) if the following hold:

a) For all T ∈ (0,∞), the set Ω(v) ∩ {t ≤ T} ∩Q is bounded.

b) For every φ ∈ C2,1
x,t (Q) such that v − φ has a local maximum in Ω(v) ∩ {t ≤

t0} ∩Q at (x0, t0), the following holds:

i) If v(x0, t0) > 0, then (φt −∆φ)(x0, t0) ≤ 0.

ii) If (x0, t0) ∈ Γ(v), |Dφ(x0, t0)| 6= 0 and (φt −∆φ)(x0, t0) > 0, then

(φt − g(x0)|Dφ|2)(x0, t0) ≤ 0. (2.9)

Definition 2.9. A nonnegative lower semicontinuous function v(x, t) defined in Q

is a viscosity supersolution of (2.1) if for every φ ∈ C2,1
x,t (Q) such that v − φ has a

local minimum in Ω(v) ∩ {t ≤ t0} ∩Q at (x0, t0), the following holds:

a) If v(x0, t0) > 0, then (φt −∆φ)(x0, t0) ≥ 0.

b) If (x0, t0) ∈ Γ(v), |Dφ(x0, t0)| 6= 0 and (φt −∆φ)(x0, t0) < 0, then

(φt − g(x0)|Dφ|2)(x0, t0) ≥ 0. (2.10)
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Now let v0 be a given initial condition with support Ω0 and free boundary

Γ0 = ∂Ω0, we can define viscosity subsolution and supersolution of (2.1) with cor-

responding initial data and boundary data.

Definition 2.10. A viscosity subsolution of (2.1) in Q is a viscosity subsolution of

(2.1) in Q with initial data v0 and boundary data 1 if:

a) v is upper semicontinuous in Q̄, v = v0 at t = 0 and v ≤ 1 on Γ,

b) Ω(v) ∩ {t = 0} = {x : v0(x) > 0}.

Definition 2.11. A viscosity supersolution of (2.1) in Q is a viscosity supersolution

of (2.1) in Q with initial data v0 and boundary data 1 if v is lower semicontinuous

in Q̄, v = v0 at t = 0 and v ≥ 1 on Γ,

And finally we can define viscosity solutions.

Definition 2.12. The function v(x, t) is a viscosity solution of (2.1) in Q (with

initial data v0 and boundary data 1) if v is a viscosity supersolution and v? is a

viscosity subsolution of (2.1) in Q (with initial data v0 and boundary data 1).

Remark 2.13. By a standard argument, if v is the classical solution of (2.1) then it

is a viscosity solution of that problem in Q with initial data v0 and boundary data

1.

The existence and uniqueness of a viscosity solution as well as its properties were

studied in great detail in [34]. One important feature of viscosity solutions is that

they satisfy a comparison principle for strictly separated initial data.

Definition 2.14. We say that a pair of functions u0, v0 : D → [0,∞) are (strictly)

separated and denote by u0 ≺ v0 in D ⊂ Rn if:

a) {u0 > 0} ∩D is compact and

b) u0(x) < v0(x) in {u0 > 0} ∩D

Theorem 2.15 (Comparison principle, [34, 39]). Let v1, v2 be respectively viscosity

subsolution and supersolution of (2.1) in Q. If v1 ≺ v2 on the parabolic boundary

of Q, then v1(·, t) ≺ v2(·, t) in Q.
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One of the main tool we will use in this work is the following Theorem about

coincidence of weak and viscosity solutions. Following [39] we can state that:

Theorem 2.16 (Theorem 3.1, [39]). Assume that v0 satisfies (2.6). Let u(x, t) be

the unique solution of (2.8) in B × [0, T ] and let v(x, t) be the solution of

vt −∆v = 0 in Ω(u)\K,

v = 0 on Γ(u),

v = 1 in K,

v(x, 0) = v0(x).

(2.11)

Then the following hold:

a) v(x, t) is a viscosity solution of (2.1) in B × [0, T ] with initial data v(x, 0) =

v0(x).

b) u(x, t) =
∫ t

0
v(x, s)ds

Proof. See proof of Theorem 3.1, [39].

Remark 2.17. We want to clarify the definition of a solution v when Ω(u) is not

smooth. Since u is continuous and Ω(u) is bounded at all times (Lemma 3.6, [39])

then the existence of solution of (2.11) is provided by Perron’s method as follows:

v = sup{w|wt −∆w ≤ 0 in Ω(u), w ≤ 0 on Γ(u), w ≤ 1 in K,w(x, 0) ≤ v0(x)}.

It may happen that v is not continuous through its boundary in general. However,

from the regularity results of Caffarelli and Friedman, we know that in our case ut

is continuous in space and time, and we would have v = ut.

The coincidence of weak and viscosity solutions gives us a more general compar-

ison principle:

Lemma 2.18 (Corollary 3.12, [39]). Let v1 and v2 be, respectively, a viscosity sub-

solution and super solution of the Stefan problem (2.1) with continuous initial data

v1
0 ≤ v2

0 and boundary data 1. In addition, suppose that v1
0(or v2

0) satisfies condition

(2.6). Then v1
? ≤ v2 and v1 ≤ (v2)? in Rn\K × [0,∞).
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Remark 2.19. Similar to the notion of weak solutions, we can define a viscosity

solution of the one-phase Stefan problem with an inhomogeneous latent heat L =

1
g(x)

and an anisotropic conductivity K = (kij) as in Remark 2.7. For this problem,

the definition of a viscosity subsolution (resp. a viscosity supersolution) is analogous

to Definition 2.8 (resp. Definition 2.9), when we replace the Laplace operator by

Di(kijDj) and (2.9) (resp. (2.10)) by

(φt − gaijDjφνi|Dφ|)(x0, t0) ≤ 0,

(resp. the inequality ≥), where ν is inward spatial unit normal vector of ∂{v > 0}.

All the other definitions and results follow the same as in the homogeneous isotropic

case.

2.3 Homogenization and long-time behavior

problems

Homogenization theory is the study of partial differential equations with rapidly os-

cillating coefficients and extract homogenized equations. Many problems in physics,

mechanics or chemistry are processes in inhomogeneous media with a fine micro-

scopic structure. For example, we consider the steady state of the heat flow in

a periodic anisotropic medium which can be modeled by an elliptic equation of

divergence form

div(A(x)Du(x)) = f(x) in Ω,

where Ω is an bounded domain in Rn, A(x) is a nonnegative, bounded, periodic

matrix with period 1 and f is a smooth function. Now we look at the process from

far away, the period of the medium will be much smaller than the length scale of Ω,

say, period ε, we will then be concerned with the equation with rapidly oscillating

coefficients

div
(
A
(x
ε

)
Duε (x)

)
= f(x) in Ω.

When the scale of the microscopic periodic structure is very small in comparison

with the scale of the domain under consideration, the medium has homogenized (or

macroscopic) characteristics, see Figure 2.4 below.
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Figure 2.4: Checkerboard medium with self-averaging property

Thus we expect that as ε → 0, uε → u0 in an appropriate sense and u0 is a

solution of a homogenized (or effective) equation

div
(
A0Du0

)
= f in Ω,

where A0 is a homogenized matrix with constant coefficients. The main concerns of

the homogenization theory is to obtain the convergence (usually in a weak sense) of

the solution uε to u0 and to construct the homogenized matrix A0 (A0 is a constant

matrix in many cases). The homogenization was first developed for periodic struc-

tures and then generalized for other media with self averaging properties (almost

periodic, stationary ergodic). The operator type in a homogenization problem also

can be more general, time independent or dependent, linear or nonlinear. We would

like to refer to [6, 32, 11,12,13,57,7, 8] for more details.

The homogenization problems appear in our investigation as the following ob-

servation. Using the ideas in [49, 45], we will analyze the asymptotic behavior of

the solution of the one-phase Stefan problem (2.1) in far region and large time by

using an appropriate rescaling, i.e.,

vλ(x, t) := λ(n−2)/nv(λ1/nx, λt) if n ≥ 3,

and the corresponding rescaling for variational solutions

uλ(x, t) := λ−2/nu(λ1/n, λt) if n ≥ 3

(see Section 3.1.1 for n = 2). It is a natural rescaling since as shown in [49],

the position of the free boundary expands with the rate |x| ∼ t1/n. The rescaling

can be intuitively understood as looking at the solution from far away and for a
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very long time. The difference between our setting and that in [49] is that instead

of considering L to be a constant, we study the one-phase Stefan problem with an

inhomogeneous latent heat L(x) = 1
g(x)

. Then the rescaled viscosity solution satisfies

the free boundary velocity law

V λ
νout = g(λ1/nx)|Dvλ|.

Let us assume that the latent heat of phase transition L(x) = 1/g(x) has averaging

property, then it will average out as λ→∞ and the velocity become homogenized

as

Vνout =
1

〈1/g〉
|Dv|,

where 〈1/g〉 represents the “average” of 1/g. The convergence process of the rescaled

normal velocity to a limit with a homogeneous coefficient is a homogenization of the

free boundary velocity. Moreover, if the Laplace operator is replaced by a periodic

elliptic operator of divergence form L, then we see that vλ satisfies

λ(2−n)/nvλt − Lλvλ = 0 in Ω(vλ)\Kλ,

V λ
νout = g(λ1/nx)aij(λ

1/nx)Djv
λνi on Γ(vλ),

where L,Lλ were defined in Section 1.2 and νout, ν are the outward and inward unit

normal vector on Γ(vλ) respectively. As λ → ∞, the parabolic operator becomes

elliptic and the homogenization of the elliptic operator is also expected beside the

homogenization of the free boundary normal velocity.

The rescaling for the variational solution is similar, the rescaled variational so-

lution satisfies a variational inequality

(λ
2−n
n uλt − Lλuλ)(ϕ− uλ) ≥ fλ(x)(ϕ− uλ) (2.12)

a.e. (x, t) ∈ Rn × (0,∞), for any ϕ ∈ Kλ(t), where

fλ(x) := f(λ1/nx) =

 v0(λ1/nx) if x ∈ Ωλ
0 ,

− 1/g(λ1/nx) if x ∈ (Ωλ
0)c,

Ωλ
0 = Ω0/λ

1/n and Kλ(t) = {ϕ ∈ H1(Rn), ϕ ≥ 0, ϕ = λ
n−2
n t on Kλ}. As λ → ∞,

we also expect to have the homogenization of the variational inequality and the

elliptic asymptotic convergence of the rescaled parabolic operator. Therefore, the

homogenization processes are in particular extremely important to our problem.
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Even though the homogenization has a long history, most of the results were

obtained for boundary value problems (or initial boundary value problems) in a

bounded domain. There are very few results for the homogenization of a free bound-

ary problem. Fortunately, the homogenization of the one-phase Stefan problem was

studied by Rodrigues [50] for a periodic setting and generalized for a stationary er-

godic setting by Kim and Mellet [39]. Kim and Mellet also obtained similar results

for the Hele-Shaw problem earlier in [38]. However, our situation is considerably

different when the domain of rescaled variational solution uλ changes as λ→∞. In

fact, due to the rescaling, the fixed domain K shrinks to the origin and the solution

gets singularity in the limit. Thus we need to characterize the singularity of solution

as |x| → 0. For the isotropic inhomogeneous case in Chapter 3, this task can be

done by following directly the barrier arguments in [45] for the Hele-Shaw problem.

In anisotropic inhomogeneous case of Chapter 4, since we cannot use the classical

radially symmetric solution as barriers, we will construct some ones to modify the

treatment in Chapter 3. Moreover, in the anisotropic case, we need to deal with

the homogenization problem of the elliptic operator in the domain which together

with the specified boundary data, change as λ varies. Therefore, the known results

on the homogenization of the one-phase Stefan problem cannot be applied directly.

We will solve this problem with the help of the Γ-convergence techniques, which

are classical approaches for homogenization of nonlinear variational problems, with

some adaptations for our problem. Another characteristic of our problem which is

significantly different with the previous work is the fact that we need to combine

the homogenization problems with the long-time behavior problem. This kind of

work was done for the Hele-Shaw problem in [45], however, the arguments in [45]

rely on the very useful monotonicity of solutions while we do not have this property

in the Stefan problem. We will instead use a weaker monotonicity stated later. In

addition, the rescaled parabolic equation becomes elliptic when λ→∞, which also

causes some issues in analyzing the convergence of the rescaled free boundary to the

free boundary of the homogenized limit equation.

In our work, we will assume that the medium in the one-phase Stefan problem

is periodic or stationary ergodic over a probability space (A,F , P ). We recall [10,

38, 39] that a random variable g(x, ·) : A → R is said to be stationary ergodic if it

satisfies the following two conditions:
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1. The distribution of the random variable g(x, ·) is independent of x (this prop-

erty is referred as stationary). This can be expressed more precisely by the

existence, for each x ∈ Rn, of a measure-preserving transformation τx : A→ A

such that:

g(x+ x′, ω) = g(x, τx′ω) for all x′ ∈ Rn and ω ∈ A.

2. The underlying transformation τx is ergodic, that is, if B ⊂ A and τxB = B

for all x ∈ Rn, then P (B) = 0 or P (B) = 1.

This probabilistic setting, we can think about a random checkerboard for instance,

is a general extension of the notions of periodicity for a function to have some

self-averaging behavior. In particular, we will make use of the following important

application of the subadditive ergodic theorem.(see [38, Lemma 4.1])

Lemma 2.20 (cf. [38, Section 4, Lemma 7], see also [45]). For given g satisfying

(2), there exists a constant, denoted by 〈1/g〉, such that if Ω ⊂ Rn is a bounded

measurable set and if {uε}ε>0 ⊂ L2(Ω) is a family of functions such that uε → u

strongly in L2(Ω) as ε→ 0, then

lim
ε→0

∫
Ω

1

g(x/ε, ω)
uε(x)dx =

∫
Ω

〈
1

g

〉
u(x)dx a.e. ω ∈ A.
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Chapter 3

Long-time behavior of the

one-phase Stefan problem in

periodic and random media

We consider the one-phase Stefan problem in periodic and random media in a dimen-

sion n ≥ 2. The aim of this chapter is to understand the behavior of the solutions

and their free boundaries when time t→∞. The contents of this chapter is based

on the work that previously appeared in [47].

Let K ⊂ Rn be a compact set with sufficiently regular boundary, for instance

∂K ∈ C1,1, and assume that 0 ∈ intK. The one-phase Stefan problem (on an

exterior domain) with inhomogeneous latent heat of phase transition is to find a

function v(x, t) : Rn × [0,∞)→ [0,∞) that satisfies the free boundary problem

vt −∆v = 0 in {v > 0}\K,

v = 1 on K,

Vν = g(x)|Dv| on ∂{v > 0},

v(x, 0) = v0 on Rn,

(3.1)

where D and ∆ are respectively the spatial gradient and Laplacian, vt is the partial

derivative of v with respect to time variable t, Vν is the normal velocity of the

free boundary ∂{v > 0}. v0 and g are given functions, see below. Note that the

results in this chapter can be trivially extended to general time-independent positive

continuous boundary data, 1 is taken only to simplify the exposition.
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As introduced in Chapter 2, the one-phase Stefan problem is a mathematical

model of phase transitions between a solid and a liquid. A typical example is the

melting of a body of ice maintained at temperature 0, in contact with a region of

water. The unknowns are the temperature distribution v and its free boundary

∂{v(·, t) > 0}, which models the ice-water interface. Given an initial temperature

distribution of the water, the diffusion of heat in a medium by conduction and the

exchange of latent heat will govern the system. In this chapter, we consider an

inhomogeneous medium where the latent heat of phase transition, L(x) = 1/g(x),

and hence the velocity law depends on position. The related Hele-Shaw problem is

usually referred to in the literature as the quasi-stationary limit of the one-phase

Stefan problem when the heat operator is replaced by the Laplace operator. This

problem typically describes the flow of an injected viscous fluid between two parallel

plates which form the so-called Hele-Shaw cell, or the flow in porous media.

In this chapter, we assume that the function g satisfies the following two con-

ditions, which guarantee respectively the well-posedness of (3.1) and averaging be-

havior as t→∞:

1. g is a Lipschitz function in Rn, m ≤ g ≤ M for some positive constants m

and M .

2. g(x) has some averaging properties so that Lemma 2.20 applies, for instance,

one of the following holds:

a) g is a Zn-periodic function,

b) g(x, ω) : Rn × A → [m,M ] is a stationary ergodic random variable over

a probability space (A,F , P ).

For a detailed definition and overview of stationary ergodic media, we refer to [45,39]

and the references therein.

Throughout most of the chapter we will assume that the initial data v0 satisfies

v0 ∈ C2(Ω0\K), v0 > 0 in Ω0, v0 = 0, on Ωc
0 := Rn \ Ω0, and v0 = 1 on K,

|Dv0| 6= 0 on ∂Ω0, for some bounded domain Ω0 ⊃ K.
(3.2)

This will guarantee the existence of both the weak and viscosity solutions below and

their coincidence, as well as the weak monotonicity (3.35). However, the asymptotic
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limit, Theorem 3.1, is independent of the initial data, and therefore the result applies

to arbitrary initial data as long as the (weak) solution exists, satisfies the comparison

principle, and the initial data can be approximated from below and from above by

data satisfying (3.2). For instance, v0 ∈ C(Rn), v0 = 1 on K, v0 ≥ 0, supp v0

compact is sufficient.

The Stefan problem (3.1) does not necessarily have a global classical solution in

n ≥ 2 as singularities of the free boundary might develop in finite time. As shown in

Chapter 2, the classical approach to define a generalized solution is to integrate v in

time and introduce u(x, t) :=
∫ t

0
v(x, s)ds [5, 14, 21, 15, 51, 53, 52]. If v is sufficiently

regular, then u solves the variation inequalityu(·, t) ∈ K(t),

(ut −∆u)(ϕ− u) ≥ f(ϕ− u) a.e (x, t) for any ϕ ∈ K(t),

(3.3)

where K(t) is a suitable functional space specified in Section 2.2.2 and f is

f(x) =


v0(x), v0(x) > 0,

− 1

g(x)
, v0(x) = 0.

(3.4)

This parabolic inequality always has a global unique solution u(x, t) for initial data

satisfying (3.2) [21,51,53,52]. The corresponding time derivative v = ut, if it exists,

is then called a weak solution of the Stefan problem (3.1). The main advantage of this

definition is that the powerful theory of variational inequalities can be applied for the

study of the Stefan problem, and as was observed in [50,38,39] yields homogenization

of (3.3).

More recently, the notion of viscosity solutions of the Stefan problem was in-

troduced and well-posedness was established by Kim [34]. Since this notion relies

on the comparison principle instead of the variational structure, it allows for more

general, fully nonlinear parabolic operators and boundary velocity laws. Moreover,

the pointwise viscosity methods seem more appropriate for studying the behavior of

the free boundaries. The natural question whether the weak and viscosity solutions

coincide was answered positively by Kim and Mellet [39] whenever the weak solu-

tion exists. In this chapter we will use the strengths of both the weak and viscosity

solutions to study the behavior of the solution and its free boundary for large times.
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The homogeneous version of this problem, i.e, when g ≡ const, was studied by

Quirós and Vázques in [49]. They obtained the result on the long-time convergence

of weak solution of the one-phase Stefan problem to the self-similar solution of the

Hele-Shaw problem. The homogenization of this type of problem was considered by

Rodrigues in [50] and by Kim-Mellet in [38,39]. The long-time behavior of solution

of the Hele-Shaw problem was studied in detail by Požár in [45]. In particular,

the rescaled solution of the inhomogeneous Hele-Shaw problem converges to the

self-similar solution of the Hele-Shaw problem with a point-source, formally
−∆v = Cδ in {v > 0},

vt =
1

〈1/g〉
|Dv|2 on ∂{v > 0},

v(·, 0) = 0,

(3.5)

where δ is the Dirac δ-function, C is a constant depending on K and n, and the

constant 〈1/g〉 will be properly defined later. Moreover, the rescaled free boundary

uniformly approaches a sphere.

Here we extend the convergence result to the Stefan problem in the inhomoge-

neous medium. Since the asymptotic behavior of radially symmetric solutions of

the Hele-Shaw and the Stefan problem are similar and the solutions are bounded,

we can take the limit t→∞ and obtain the convergence for rescaled solutions and

their free boundaries. However, solutions of the Hele-Shaw problem have a very

useful monotonicity in time, which is missing in the Stefan problem. This makes

some steps more difficult. We instead take advantage of a weak monotonicity prop-

erty (3.35), which holds for regular initial data satisfying (3.2) and then show the

convergence result for general initial data using the uniqueness of the limit and

the comparison principle. Moreover, the heat operator is not invariant under the

rescaling, unlike the Laplace operator. The rescaled parabolic equation becomes

elliptic when λ→∞, which causes some issues when applying parabolic Harnack’s

inequality, for instance. Following [49, 45] we use the natural rescaling of solutions

of the form

vλ(x, t) := λ(n−2)/nv(λ1/nx, λt) if n ≥ 3,

and the corresponding rescaling for variational solutions

uλ(x, t) := λ−2/nu(λ1/n, λt) if n ≥ 3
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(see Section 3.1.1 for n = 2). Then the rescaled viscosity solution satisfies the free

boundary velocity law

V λ
ν = g(λ1/nx)|Dvλ|.

Heuristically, if g has some averaging properties, such as in condition (2), the

free boundary velocity law should homogenize as λ → ∞. Since the latent heat of

phase transition 1/g should average out, the homogenized velocity law will be

Vν =
1

〈1/g〉
|Dv|,

where 〈1/g〉 represents the “average” of 1/g. More precisely, the quantity 〈1/g〉 is

the constant in the subadditive ergodic theorem such that∫
Rn

1

g(λ1/nx, ω)
u(x)dx→

∫
Rn

〈
1

g

〉
u(x)dx for all u ∈ L2(Rn), for a.e. ω ∈ A.

In the periodic case, it is just the average of 1/g over one period. Since we always

work with ω ∈ A for which the convergence above holds, we omit it from the notation

in the rest of the chapter.

This yields the first main result of this chapter, Theorem 3.12, on the homog-

enization of the obstacle problem (3.3) for the rescaled solutions, with the correct

singularity of the limit function at the origin, and therefore the locally uniform

convergence of variational solutions. To prove the second main result in Theorem

3.16 on the locally uniform convergence of viscosity solutions and their free bound-

aries, we use pointwise viscosity solution arguments. In summary, we will show the

following theorem.

Theorem 3.1. For almost every ω ∈ A, the rescaled viscosity solution vλ of the

Stefan problem (3.1) converges locally uniformly to the unique self-similar solution

V of the Hele-Shaw problem (3.5) in (Rn\{0})× [0,∞) as λ→∞, where C depends

only on n, the set K and the boundary data 1. Moreover, the rescaled free boundary

∂{(x, t) : vλ(x, t) > 0} converges to ∂{(x, t) : V (x, t) > 0} locally uniformly with

respect to the Hausdorff distance.

It is a natural question to consider more general linear divergence form oper-

ators
∑

i,j ∂xi(aij(x)∂xj ·) instead of the Laplacian in (3.1) so that the variational

structure is preserved. This was indeed the setting considered in [39], with g ≡ 1
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and appropriate free boundary velocity law adjusted for the operator above. In the

limit λ → ∞, we expect that the rescaled solutions vλ to converge to the unique

solution of the Hele-Shaw type problem with a point source with the homogenized

non-isotropic operator with coefficients āi,j. This question is partially answered in

the next chapter.

Context and open problems

In recent years, there have been significant developments in the homogenization

theory of partial differential equations like Hamilton-Jacobi and second order fully

nonlinear elliptic and parabolic equations that have been made possible by the

improvements of the viscosity solutions techniques, see for instance the classical

[16,57,10,9] to name a few.

A common theme of these results is finding (approximate) correctors and use

the perturbed test function method to establish the homogenization result in the

periodic case, or use deeper properties in the random case, such as the variational

structure of the Hamilton-Jacobi equations or the strong regularity results for elliptic

and parabolic equations, including the ABP inequality.

One of the goals of this chapter is to illustrate the powerful combination of

variational and viscosity solution techniques for some free boundary problems that

have a variational structure. By viscosity solution techniques we mean specifically

pointwise arguments using the comparison principle.

Unfortunately, when the variational structure is lost, for instance, when the

free boundary velocity law is more general as in the problem with contact angle

dynamics Vν = |Dv| − g(x) so that the motion is non-monotone [36, 37], or even

simple time-dependence Vν = g(x, t)|Dv| [46], the comparison principle is all that

is left. Even in the periodic case, the classical correctors as solutions of a cell

problem are not available. This is in part the consequence of the presence of the

free boundary on which the operator is strongly discontinuous. [35, 36, 46] use a

variant of the idea that appeared in [10] to replace the correctors by solutions of

certain obstacle problems. However, the analysis of these solutions requires rather

technical pointwise arguments since there are almost no equivalents of the regularity

estimates for elliptic equations. An important tool in [46] to overcome this was
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the large scale Lipschitz regularity of the free boundaries of the obstacle problem

solutions (called cone flatness there) that allows for the control of the oscillations of

the free boundary in the homogenization limit.

For the reasons above, the homogenization of free boundary problems is rather

challenging and there are still many open problems. Probably the most important

one is the homogenization of free boundary problems of the Stefan and Hele-Shaw

type that do not admit a variational structure, such as those mentioned above, in

random environments. Currently there is no known appropriate stationary subaddi-

tive quantity to which we could apply the subadditive ergodic theorem to recover the

homogenized free boundary velocity law, for instance. Other tools like concentration

inequalities have so far not yielded an alternative.

Another important problem are the optimal convergence rates of the free bound-

aries in the Hausdorff distance. The techniques used in this chapter do not provide

this information, however viscosity techniques were used to obtain non-optimal al-

gebraic convergence rates in [37]. It is an interesting question what the optimal

rate in the periodic case is, even for problems like (3.1). The large scale Lipschitz

estimate from [46] could possibly directly give only ε| log ε|1/2-rate for velocity law

with g(x/ε), but there are some indications that a rate ε might be possible.

Outline

This chapter is organized as follows: In Section 3.1, we introduce the rescaling and

state some results for radially symmetric solutions. In Section 3.2, we recall the limit

obstacle problem and prove the locally uniform convergence of rescaled variational

solutions. In Section 3.3, we focus on treating the locally uniform convergence of

viscosity solutions and their free boundaries.

3.1 Preliminaries

3.1.1 Rescaling

Let v be the solution of the one-phase Stefan problem (3.1) and u be the solution

of the corresponding variational inequality (3.3), the definitions as well as the rela-
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tionship of v and u was introduced in Chapter 2. We will use the following rescaling

of solutions as in [45].

3.1.1.1 For n ≥ 3

For λ > 0 we use the rescaling

vλ(x, t) = λ
n−2
n v(λ

1
nx, λt), uλ(x, t) = λ−

2
nu(λ

1
nx, λt).

If we define Kλ := K/λ
1
n and Ωλ

0 := Ω0/λ
1
n then vλ satisfies the problem

λ
2−n
n vλt −∆vλ = 0 in Ω(vλ)\Kλ,

vλ = λ
n−2
n on Kλ,

vλt = gλ(x)|Dvλ|2 on Γ(vλ),

vλ(·, 0) = vλ0 , on Ωλ
0\Kλ,

(3.6)

where gλ(x) = g(λ
1
nx). And the rescaled uλ satisfies the obstacle problem

uλ(·, t) ∈ Kλ(t),

(λ
2−n
n uλt −∆uλ)(ϕ− uλ) ≥ fλ(x)(ϕ− uλ) a.e (x, t) ∈ Rn × (0,∞)

for any ϕ ∈ Kλ(t),

uλ(x, 0) = 0,

(3.7)

where

fλ(x) := f(λ1/nx) =


v0(λ1/nx) if x ∈ Ωλ

0 ,

− 1

g(λ1/nx)
if x ∈ (Ωλ

0)c.

Kλ(t) = {ϕ ∈ H1(Rn), ϕ ≥ 0, ϕ = λ
n−2
n t on Kλ}.

3.1.1.2 For n=2

For dimension n = 2, we use a different rescaling that preserve the singularity of

logarithm:

vλ(x, t) = logR(λ)v(R(λ)x, λt), (3.8)

where R(λ) is the unique solution of:

R2 logR = λ.
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Note that we have (see [45] for derivation):

lim
λ→∞

R(λ)

R∞(λ)
= 1 R∞(λ) =

(
2λ

log λ

)1/2

. (3.9)

If we define Kλ := K\R(λ) and Ωλ
0 := Ω0\R(λ) then the rescaling vλ satisfies the

following problem: 

1

logR(λ)
vλt −∆vλ = 0 in Ω(vλ)\Kλ,

vλ = logR(λ) on Kλ,

vλt = gλ(x)|Dvλ|2 on Γ(vλ),

vλ(·, 0) = vλ0

(3.10)

where gλ(x) = g(R(λ)x) derived in [45].

Consequently,we will use rescaling

uλ(x, t) =
logR(λ)

λ
u(R(λ)x, λt). (3.11)

And the rescaled uλ satisfies the obstacle problem:

uλ(·, t) ∈ Kλ(t),(
1

logR(λ)
uλt −∆uλ

)
(ϕ− uλ) ≥ f(R(λ)x)(ϕ− uλ) a.e (x, t) ∈ BR × (0, T )

for any ϕ ∈ Kλ(t),

uλ(x, 0) = 0.

(3.12)

Where Kλ(t) = {ϕ ∈ H1(Rn), ϕ ≥ 0, ϕ = logR(λ)t on Kλ}

Remark 3.2. We can take the admissible set Kλ(t) as above due to the continuity

with respect to the H1 norm of all terms in the variational inequality and the fact

that the variational solution u has a compact support in space at every time.

3.1.2 Convergence of radially symmetric solutions

We will recall the results on the convergence of radially symmetric solutions of (3.1)

as derived in [49]. First, we collect some useful facts of radial solution of the Hele-

Shaw problem and then use a comparison to have the information of radial solution

of the Stefan problem. The radially symmetric solution of the Hele-Shaw problem
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in the domain |x| ≥ a, t ≥ 0 is a pair of functions p(x, t) and R(t), where p is of the

form

p(x, t) =


Aan−2 (|x|n−2 −Rn−2(t))+

a2−n −R2−n(t)
, n ≥ 3,

A
(

log R(t)
|x|

)
+

log R(t)
a

, n = 2,

(3.13)

and R(t) satisfies a certain algebraic equation (see [49] for details).

This solution satisfies the boundary conditions and initial conditions

p(x, t) = Aa2−n for |x| = a > 0,

p(x, t) = 0 for |x| = R(t),

R′(t) =
1

L
|Dp| for |x| = R(t),

R(0) = b > a.

(3.14)

Furthermore,

lim
t→∞

R(t)

c∞t1/n
= 1, c∞ =

(
An(n− 2)

L

)1/n

if n ≥ 3,

lim
t→∞

R(t)

c∞ (t/ log t)1/2
= 1, c∞ = 2

√
A/L if n = 2.

In dimension n = 2, we will also use lim
t→∞

logR(t)
log t

= 1
2
.

The radial solution of the Stefan problem satisfies the corresponding conditions

similar to (3.14) together with the initial data

θ(x, 0) = θ0(|x|) if |x| ≥ a. (3.15)

The following results were shown in [49].

Lemma 3.3 (cf. [49, Proposition 6.1]). Let p and θ be radially symmetric solutions

to the Hele-Shaw problem and to the Stefan problem respectively, and let {|x| =

Rp(t)}, {|x| = Rθ(t)} be the corresponding interfaces. If Rp(0) > Rθ(0), p(x, 0) ≥

θ(x, 0) and, moreover, p(x, t) ≥ θ(x, t) on the fixed boundary, that is, for |x| = a, t >

0, then p(x, t) ≥ θ(x, t) for all |x| ≥ a and t ≥ 0.

This immediately leads to an upper bound for the free boundary of radial solu-

tions of Stefan problem, see Corollary 6.2, Theorem 6.4, Theorem 7.1 in [49].
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Lemma 3.4. Let {|x| = R(t)} be the free boundary of a radial solution to the

Stefan problem satisfying the corresponding conditions (3.14) and (3.15). There are

constants C, T > 0, such that, for all t ≥ T ,

R(t) ≤ Ct1/n, n ≥ 3, or R(t) ≤ C(t/log t)1/2, n = 2.

Moreover, we have

lim
t→∞

R(t)

t1/n
= (An(n− 2)/L)1/n , n ≥ 3, or lim

t→∞

R(t)

(t/ log t)1/2
= 2
√
A/L, n = 2.

The solution of the Stefan problem (not restricted to the radially symmetric

case) is bounded for all time.

Lemma 3.5 (cf. [49, Lemma 6.3]). Let θ be a weak solution of the Stefan problem

for n ≥ 2. There is a constant C > 0 such that, for all t > 0, 0 ≤ θ(x, t) ≤ C|x|2−n.

Next, we define the solution of the Hele-Shaw problem with a point source, which

will appear as the limit function in our convergence results,

V (x, t) = VA,L(x, t) =


A (|x|2−n − ρ2−n(t))+ , n ≥ 3,

A
(

log ρ(t)
|x|

)
+
, n = 2,

(3.16)

where

ρ(t) = ρL(t) = R∞ =

(An(n− 2)t/L)1/n , n ≥ 3,

(2At/L)1/2 , n = 2.

It is the unique solution of the Hele-Shaw problem with a point source,

∆v = 0 in Ω(v)\{0},

lim
|x|→0

v(x, t)

|x|2−n
= A, n ≥ 3, or lim

|x|→0
− v(x, t)

log(|x|)
= A, n = 2,

vt =
1

L
|Dv|2 on ∂Ω(v),

v(x, 0) = 0 in Rn\{0}.

(3.17)

The asymptotic result for radial solutions of the Stefan problem follows from The-

orem 6.5 and Theorem 7.2 in [49].

Theorem 3.6 (Far field limit). Let θ be the radial solution of the Stefan problem

satisfying the corresponding boundary and initial conditions (3.14), (3.15). Then

lim
t→∞

t(n−2)/n|θ(x, t)− V (x, t)| = 0 (3.18)
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uniformly on sets of form {x ∈ Rn : |x| ≥ δt1/n}, δ > 0 if n ≥ 3, and

lim
t→∞

log

√
2A

L
R(t)

∣∣∣∣∣∣θ(x, t)− A

log
√

2A
L
R(t)

(
log

√
2A

L
R(t)− log |x|

)
+

∣∣∣∣∣∣ = 0 (3.19)

uniformly on sets of form {x ∈ Rn : |x| ≥ δR(t)}, δ > 0 if n = 2.

Proof. Following the proof of Theorem 6.5 in [49] with recalling that we assume

θ = Aa2−n for |x| = a, we immediately get the result for n = 3.

For n = 2, let R1(t) be the solution of
R2

1

2

(
logR1 − 1

2

)
= At

L
with lim

t→∞
R1(t)
R(t)

=√
2A
L
. Thus, we can replace R1(t) in Theorem 7.2 in [49] by

√
2A
L
R(t).

Finally, we can improve Theorem 3.6 to have the following convergence result

for rescaled radial solutions of the Stefan problem which holds up to t = 0.

Lemma 3.7 (Convergence for radial case). Let θ(x, t) be a radial solution of the

Stefan problem satisfying the corresponding boundary and initial conditions (3.14)

and (3.15). Then θλ converges locally uniformly to VA,L in the set (Rn\{0})×[0,∞).

Proof. We will prove the uniform convergence in the sets Q = {(x, t) : |x| ≥ ε, 0 ≤

t ≤ T} for some ε, T > 0 and use notation V = VA,L. We consider the case

n ≥ 3 first. Set ξ = λ1/nx, τ = λt then an easy computation leads to V (x, t) =

λ(n−2)/nV (ξ, τ). Let t0 = ρ−1(ε/2). We split the proof into two cases:

(a) When 0 ≤ t ≤ t0: Clearly from the formula, we have V (x, t) = 0 in {(x, t) :

|x| ≥ ε, 0 ≤ t ≤ t0}. Besides, for λ large enough,

Rλ(t) =
R(λt)

λ1/n
≤ R(λt0)

λ1/n
< ρ(t0) +

ε

2
= ε (due to Proposition 3.4).

Thus, θλ = 0 = V in {(x, t) : |x| ≥ ε, 0 ≤ t ≤ t0} for λ large enough.

(b) When t0 ≤ t ≤ T , we have:

|θλ(x, t)− V (x, t)| = t(2−n)/nτ (n−2)/n|θ(ξ, τ)− V (ξ, τ)| (3.20)

Since t0 ≤ t ≤ T , t(2−n)/n is bounded. From Theorem 3.6, the right hand side

of (3.20) converges to 0 uniformly in the sets {ξ ∈ Rn : |ξ| ≥ δτ 1/n} = {x ∈

Rn : |x| ≥ δt1/n} ⊃ {(x, t) : |x| ≥ ε, t0 ≤ t ≤ T} for fixed ε and δ > 0 small

enough and thus we obtain the convergence for n ≥ 3.

For n = 2, we argue similar as the case n ≥ 3, but noting that lim
λ→∞

R(τ)
R(λ)

= t1/2

together with Theorem 3.6.
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3.1.3 Some more results for viscosity solutions

Following [45,49], we also can state some results for viscosity solutions.

Lemma 3.8. For L = 1/m (resp. L = 1/M), with m,M as in (1), let θ(x, t) be

the radial solution of Stefan problem (3.1) satisfying boundary conditions (3.14) and

initial condition (3.15) with g(x) = 1/L and a such that B(0, a) ⊂ K (resp. K ⊂

B(0, a)). Then the function θ(x, t) is a viscosity subsolution (resp. supersolution)

of the Stefan problem (3.1) in Q.

Proof. The statement follows directly from properties of radially solutions and the

fact that a classical solution is also a viscosity solution.

Using viscosity comparison principle, we also can get the same estimates for free

boundary as in Proposition 3.4 and boundedness for a general viscosity solution.

Lemma 3.9. Let v be a viscosity solution of (3.1). There exists t0 > 0 and constant

C,C1, C2 > 0 such that for t ≥ t0,

C1t
1/n < min

Γt(v)
|x| ≤ max

Γt(v)
|x| < C2t

1/n if n ≥ 3,

C1R(t) < min
Γt(v)
|x| ≤ max

Γt(v)
|x| < C2R(t) if n = 2,

and for 0 ≤ t ≤ t0, max
Γt(v)
|x| < C2. Moreover, 0 ≤ v(x, t) ≤ C|x|2−n for all n ≥ 2.

Proof. Argue as in [45] with using Lemma 3.4 and Lemma 3.5 above.

We also have the near field limit and the asymptotic behavior result as in [49].

Theorem 3.10 (Near-field limit). The viscosity solution v(x, t) of the Stefan prob-

lem (3.1) converges to the unique solution P (x) of the exterior Dirichlet problem
∆P = 0, x ∈ Rn\K,

P = 1, x ∈ Γ,

lim
|x|→∞

P (x) = 0 if n ≥ 3, or P is bounded if n = 2,

(3.21)

as t→∞ uniformly on compact subsets of Kc.

Proof. See proof of Theorem 8.1 in [49].

Lemma 3.11 (cf. [49, Lemma 4.5]). There exists a constant C∗ = C∗(K,n) such

that the solution P of problem (3.21) satisfies lim
|x|→∞

|x|n−2P (x) = C∗.
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3.2 Uniform convergence of the rescaled

variational solutions

3.2.1 Limit problem

We first recall the limit variational problem as introduced in [45] (see [45, section 5]

for derivation and properties). Let UA,L(x, t) :=
∫ t

0
VA,L(x, s) ds then UA,L(x, t) has

form:

UA,L(x, t) =



[
At|x|2−n +

L

2n
|x|2 − 1

2
(Ant)2/n

(
n− 2

L

)(2−n)/n
]

+

if n ≥ 3,[
A

2
t log

2At

Le|x|2
+
L|x|2

4

]
+

if n = 2.

(3.22)

For given A,L > 0, [45, Theorem 5.1] yields that UA,L(x, t) is the unique solution

of the limit obstacle problem
w ∈ Kt,

a(w, φ) ≥ 〈−L, φ〉, for all φ ∈ V,

a(w,ψw) = 〈−L, ψw〉 for all ψ ∈ W,

(3.23)

where Kt =
{
ϕ ∈

⋂
ε>0H

1(Rn\Bε) ∩ C(Rn\Bε) : ϕ ≥ 0, lim
|x|→0

ϕ(x)
UA,L(x,t)

= 1
}
,

V =
{
φ ∈ H1(Rn) : φ ≥ 0, φ = 0 on Bε for some ε > 0

}
, (3.24)

W = V ∩ C1(Rn), (3.25)

and

aΩ(u, v) :=

∫
Ω

Du ·Dvdx, 〈u, v〉Ω :=

∫
Ω

uvdx.

We omit the set Ω in the notation if Ω = Rn.

3.2.2 Uniform convergence of rescaled variational solutions

Now we are ready to prove the first main result, similar to Theorem 6.2 in [45].

Theorem 3.12. Let u be the unique solution of variational problem (2.8) and uλ be

its rescaling. Let UA,L be the unique solution of limit problem (3.23) where A = C∗ as

in Lemma 3.11, and L = 〈1/g〉 as in Lemma 2.20. Then the functions uλ converges

locally uniformly to UA,L as λ→∞ on (Rn\{0})× [0,∞).
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Proof. We argue as in [45]. Fix T > 0. By Lemma 3.9, we can bound Ωt(u
λ) by

Ω := Bδ(0) for some δ > 0, for all 0 ≤ t ≤ T and λ > 0. For some ε > 0, define

Ωε := Ω\B(0, ε), Qε := Ωε × [0, T ] . We will prove the convergence in Qε.

Let v be the viscosity solution of the Stefan problem (3.1). We can find constants

0 < a < b such that K ⊂ Ba(0) and Ω0 ⊂ Bb(0). Set L = 1/M and A = max v0.

Choose radially symmetric smooth θ0 ≥ 0 such that θ0 ≥ v0 on Ω0 \ Ba(0) and

θ0 = 0 on Rn \ Bb(0). The radial solution θ of the Stefan problem on Rn \ Ba(0)

with such parameters will be above v by the comparison principle. Thus, for λ large

enough, the rescaled solutions satisfy

0 ≤ vλ ≤ θλ in Qε/2.

On the other hand, by Lemma 3.7, θλ converges to VA,L as λ → ∞ uniformly

on Qε/2 and VA,L is bounded in Qε/2 and therefore for λ large enough so that

(Ba(0))λ := Ba(0)

λ1/n
⊂ Bε/2(0),

‖uλt ‖L∞(Qε/2) = ‖vλ‖L∞(Qε/2) ≤ C(ε). (3.26)

Since uλ satisfies (3.7), we have

∆uλ(ϕ− uλ) ≤
(
λ(2−n)/nuλt − f(λ1/nx)

)
(ϕ− uλ) a.e for any ϕ ∈ Kλ(t).

As uλt is bounded, uλ satisfies the elliptic obstacle problem

∆uλ(ϕ− uλ) ≤
(
Cλ(2−n)/n − f(λ1/nx)

)
(ϕ− uλ)

a.e for any ϕ ∈ Kλ(t) such that ϕ− uλ ≥ 0.

Now we can use the standard regularity estimates for the obstacle problem (see

[51, Proposition 2.2, chapter 5] for instance),

‖∆uλ(·, t)‖Lp(Ωε/2) ≤
∥∥∥∥Cλ(2−n)/n − 1

gλ

∥∥∥∥
Lp(Ωε/2)

≤ C0 for all 1 ≤ p ≤ ∞,

for all λ large so that also Ωλ
0 ⊂ Bε/2(0). Using (3.26) and uλ(x, t) =

∫ t
0
vλ(x, s)ds,

we conclude ‖uλ(·, t)‖Lp(Ωε/2) is bounded uniformly in t ∈ [0, T ] and λ large.

Using elliptic interior estimate results for obstacle problem again (for example,

[51, Theorem 2.5]), we can find constants 0 < α < 1 and C2, independent of t ∈ [0, T ]

and λ� 1, such that

‖uλ(·, t)‖W 2,p(Ωε) ≤ C2,

‖uλ(·, t)‖C0,α(Ωε) ≤ C2,
for all 0 ≤ t ≤ T, λ� 1.
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Moreover, using (3.26) again, we have |uλ(x, t) − uλ(x, s)| ≤ C3|t − s|. Thus uλ is

Hölder continuous in x with 0 < α < 1 and Lipschitz continuous in t. In particular,

uλ satisfies

‖uλ‖C0,α(Qε) ≤ C4(C2, C3) for all λ ≥ λ0.

The argument for case n = 2 is similar.

By the Arzelà-Ascoli theorem, we can find a function ū ∈ C((Rn \{0})× [0,∞))

and a subsequence {uλk} ⊂ {uλ} such that

uλk → ū locally uniformly on (Rn \ {0})× [0,∞) as k →∞,

Due to the compact embedding of H2 in H1, we have, uλk(·, t)→ ū(·, t) strongly in

H1(Ωε) for all t ≥ 0, ε > 0.

To finish the proof, we need to show that the function ū is the solution of limit

problem (3.23) and then by the uniqueness of the limit problem, we deduce that the

convergence is not restricted to a subsequence.

Lemma 3.13 (cf. [45, Lemma 6.3]). For each t ≥ 0, w̄ := ū(·, t) satisfies

a(w̄, φ) ≥ 〈−L, φ〉 for all φ ∈ V, (3.27)

a(w̄, ψw̄) = 〈−L, ψw̄〉 for all ψ ∈ W, (3.28)

where L = 〈1/g〉 as in Lemma 2.20 and V,W as in (3.24) and (3.25).

Proof. Consider n ≥ 3. Following the techniques in [45], fix t ∈ [0, T ] and denote

wk := uλk(·, t). Take φ ∈ V first. Analogously to Remark 3.2, we only need to prove

the inequality for functions φ with compact support, the conclusion for general

function φ in V will follow by the continuity of all terms in the inequality. There

exists k0 > 0 such that for all k ≥ k0, Ωλk
0 ⊂ Bε(0) and φ = 0 on Bε(0). Set

ϕk = φ + wk ∈ Kλk(t). Substitute the function ϕk into the rescaled equation (3.7)

and integrate both sides and integrate by parts, which yields

a(wλk , φ) ≥ −λ(2−n)/n
k

〈
uλkt (·, t), φ

〉
+

〈
− 1

gλk
, φ

〉
.

The linear functional w 7→ a(w, φ) is bounded in H1. Recalling Lemma 2.20 and

that uλkt is bounded, since wk → w̄ strongly in H1 as k →∞, we can send λk →∞

and obtain (3.27).
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Now take ψ ∈ W . As above, we assume that ψ has compact support, and

without loss of generality we can also assume that 0 ≤ ψ ≤ 1, ψ = 0 on Bε(0)

(otherwise consider ψ
maxRn ψ

instead). Take k0 such that Ωλk
0 ⊂ Bε(0) for all k ≥ k0.

Since ψ ∈ W then ψw̄ ∈ V . As above we have a(w̄, ψw̄) ≥ 〈−L, ψw̄〉. Moreover,

consider ϕk = (1− ψ)wk ∈ Kλk(t), k ≥ k0. Then,

a(wk, ψwk) = −a(wk, ϕk − wk) ≤
〈
− 1

gλk
, ψwk

〉
− λ(2−n)/n

k

〈
uλkt (·, t), ψwk

〉
.

Again using Lemma 2.20, boundedness in L∞(Rn) of wk and uλkt , the lower semi-

continuity in H1 of the map w 7→ a(w,ψw), and the fact that wk → w̄ strongly in

H1 as k →∞ we can conclude the equality (3.28).

Again, n = 2 is similar.

Finally, the next lemma establishes that the singularity of ū as |x| → 0 is correct.

Lemma 3.14 (cf. [45, Lemma 6.4]). We have

lim
|x|→0

ū(x, t)

UC∗,L
(x, t) = 1

for every t ≥ 0, where L = 〈1/g〉 as in Lemma 2.20 and C∗ as in Lemma 3.11.

Proof. Let C∗ as in Lemma 3.11 and fix a ε > 0. By Lemma 3.11, there exists a

large enough such that ∣∣∣∣ P (x)

|x|2−n
− C∗

∣∣∣∣ < ε

2

for all x, |x| ≥ a. In particular, ∣∣∣∣P (x)

a2−n − C∗
∣∣∣∣ < ε

2
.

Consider the Stefan problem in the set Ωa := {|x| ≥ a},Ωa ⊂ Rn\K for a large

enough. The fixed boundary {|x| = a} is a compact subset of Rn\K. Then by

Theorem 3.10, there exists t0 > 0 such that for all t ≥ t0:∣∣∣∣v(x, t)

a2−n −
P (x)

a2−n

∣∣∣∣ < ε

2
.

Thus by triangle inequality we have for all t ≥ t0, for all x such that |x| = a,∣∣∣∣v(x, t)

a2−n − C∗
∣∣∣∣ ≤ ε.
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Now let θ+, θ− be respective radial solutions of the Stefan problem satisfying

boundary and initial data

θ±
a2−n = C∗ ± ε on |x| = a, θ−(x, t0) < v(x, t0) < θ+(x, t0),

Rθ+(t0) = max
x∈Γt0 (v)

|x|, Rθ−(t0) = min
x∈Γt0 (v)

|x|,

R′θ±(t) =
1

L±
|Dθ|, L+ =

1

M
,L− =

1

m

where M,m as in (1).

The comparison principle for viscosity solutions tell us that

θ+ ≤ v ≤ θ− for all |x| ≥ a, t ≥ t0.

Then the respective rescaling satisfies

θλ+ ≤ vλ ≤ θλ− in {(x, t) : λ1/n|x| ≥ |a|, λ ≥ t0/t} for n ≥ 3,

or

θλ+ ≤ vλ ≤ θλ− in {(x, t) : R(λ)|x| ≥ |a|, λ ≥ t0/t} for n = 2.

Note that Lemma 3.7 gives us the locally uniform convergence of θλ± to solutions of

the Hele-Shaw problem with a point source V± := VC∗±ε,L± on (Rn\{0}) × [0,∞)

as λ → ∞. Applying the Baiocchi transform of vλ we get, for λ1/n|x| ≥ a (or

R(λ)|x| ≥ a) and λ ≥ t0/t:

uλ(x, t) =

t∫
0

vλ(x, s)ds

≤
t0/λ∫
0

vλ(x, s)ds+

t∫
t0/λ

θλ+(x, s)ds.

We see that:

• Similar to the explanation before, for every λ , function vλ is bounded in the

set {(x, t) : λ1/n|x| ≥ a (or R(λ)|x| ≥ a) and 0 ≤ s ≤ t0/λ}, the first term of

right hand side tends to 0 as λ→∞ ,

• By Lemma 3.7, θλ+ → V+ uniformly in (Rn\{0})×[0,∞) as λ→∞ then by the

dominated convergence theorem, the second term converges to
t∫

0

V+(x, s)ds as

λ→∞.
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Using the same argument we can find the lower bound for uλ and ve have

t∫
0

V−(x, s)ds ≤ lim inf
λ→∞

uλ(x, t) ≤ ū(x, t) ≤ lim sup
λ→∞

uλ(x, t) ≤
t∫

0

V+(x, s)ds (3.29)

for all (x, t) ∈ (Rn\{0})× [0,∞).

Consider the case n ≥ 3, dividing (3.29) by |x|2−n and taking the limit when

|x| → 0 we have

lim inf
|x|→0

1

|x|2−n

t∫
0

V−(x, s)ds ≤ lim inf
|x|→0

ū(x, t)

|x|2−n

≤ lim sup
|x|→0

ū(x, t)

|x|2−n
≤ lim sup

|x|→0

1

|x|2−n

t∫
0

V+(x, s)ds.

(3.30)

We know from Section 3.2.1 that

t∫
0

V±(x, s)ds = U±(x, t) := UC∗±ε,L±(x, t),

and U± have explicit form as in (3.22) with respective constants then

lim
|x|→0

1

|x|2−n

t∫
0

V±(x, s)ds = lim
|x|→0

U±(x, t)

|x|2−n
= (C∗ ± ε)t.

We do the same way for the case when n = 2, just replace |x|2−n by − log |x|

and obtain the similar result. Now since ε > 0 is arbitrary, we can take the limit

when ε→ 0+ to get

lim
|x|→0

ū(x, t)

|x|2−n
= C∗t = lim

|x|→0

UC∗,L(x, t)

|x|2−n

which finish the proof of Lemma 3.14.

This finishes the proof of Theorem 3.12 .

3.3 Uniform convergence of the rescaled

viscosity solutions and free boundaries

In this section, we will deal with the convergence of vλ and their free boundaries.

Let v be a viscosity solution of the Stefan problem (3.1) and vλ be its rescaling. Let
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V = VC∗,L be the solution of Hele-Shaw problem with a point source as in (3.16),

where C∗ is the constant of Lemma 3.11 and L = 〈1/g〉 as in Lemma 2.20.

We define the half-relaxed limits in {|x| 6= 0, t ≥ 0}:

v∗(x, t) = lim sup
(y,s),λ→(x,t),∞

vλ(y, s), v∗(x, t) = lim inf
(y,s),λ→(x,t),∞

vλ(y, s),

Remark 3.15. V is continuous in {|x| 6= 0, t ≥ 0}, therefore V∗ = V = V ∗.

To complete Theorem 3.1, we prove a result similar to [45, Theorem 7.1.]

Theorem 3.16. The rescaled viscosity solution vλ of the Stefan problem (3.1) con-

verges locally uniformly to V = VC∗,〈1/g〉 in (Rn\{0})× [0,∞) as λ→∞ and

v∗ = v∗ = V.

Moreover, the rescaled free boundary {Γ(vλ)}λ converges to Γ(V ) locally uniformly

with respect to the Hausdorff distance.

To prepare for the proof of Theorem 3.16, we need to collect some results which

are similar to the ones in [39] and [45] with some adaptations to our case. All the

results for n ≥ 3 we have in this section can be obtained for n = 2 by using limit

1
logR(λ)

→ 0 as λ→∞. Thus, from here on we only consider case n ≥ 3, the results

for n = 2 are omitted.

3.3.1 Some necessary technical results

Lemma 3.17 (cf. [39, Lemma 3.9]). The viscosity solution v of the Stefan problem

(3.1) is strictly positive in Ω(u), satisfies Ω(v) = Ω(u) and Γ(v) = Γ(u).

Lemma 3.18. Let vλ be a viscosity solution of the rescaled problem (3.6). Then

v∗(·, t) is subharmonic in Rn \ {0} and v∗(·, t) is superharmonic in Ωt(v∗)\{0} in

viscosity sense.

Proof. We will prove the statement for subharmonic case using contradiction argu-

ment, the proof for superharmonic case is similar.

Assume that v∗(·, t0) is not subharmonic in Ωt0(v
∗)\{0} in viscosity sense. Then

there exists a function ϕ ∈ C2(Ωt0(v
∗)\{0}) that touches v∗(·, t0) from above at x0

in Br(x0) := B(x0, r) ⊂ Ωt0(v
∗)\{0} and ∆ϕ(x) < 0 in Br(x0).

44



Consider a smooth perturbation of ϕ, we can assume that there exists some

small constants δ, r > 0 such that ϕ ≥ 0 in Br(x0) and

ϕ(x) < v∗(x, t0)− δ, for all x ∈ Bδ(x0), (3.31)

ϕ(x) > max
Br(x0)

v∗(y, t0) + δ, for all x ∈ ∂Br(x0). (3.32)

From (3.32) and the fact that v∗ is upper semicontinuous function we have

there exists t1 < t0 such that ϕ(x) > max
Br(x0)×[t1,t0]

v∗(y, t) for all x ∈ ∂Br(x0). In-

deed, assume that for every t1 < t0, there exists x0 ∈ ∂Br(x0) such that ϕ(x0) ≤

max
Br(x0)×[t1,t0]

v∗(y, t). Choose a sequence {tn1 = t0 − 1
n
}, for each tn1 , there exists xn ∈

∂Br(x0) and (yn, tn) ∈ Br(x0) × [t1, t0] such that ϕ(xn) ≤ v∗(yn, tn). Since all the

sequences are bounded, there exists subsequences {xnk} converges to x∗ ∈ ∂Br(x0)

and {(ynk , tnk)} converges to (y0, t0) ∈ Br(x0)× {t0}. Taking lim sup of ϕ(xnk) and

v∗(ynk , tnk) as k → ∞ we have ϕ(x∗) ≤ v∗(y0, t0) which yields a contradiction with

(3.32).

Let Q(x0, t0) := Br(x0)×(t1, t0) and Γp := ∂pQ(x0, t0) be the parabolic boundary

of Q(x0, t0). Consider function

ϕ̃(x, t) := ϕ(x) +
t0 − t
t0 − t1

(
max

Γp
v∗(y, t)

)
.

We have on ∂Br(x0)× [t1, t0],

ϕ̃(x, t) > ϕ(x) > max
Γp

v∗(y, t),

and on Br(x0)× {t1},

ϕ̃(x, t1) = ϕ(x) + max
Γp

v∗(y, t) > max
Γp

v∗(x, t).

Therefore ϕ̃ > max
Γp

v∗(y, t) on the parabolic boundary ∂pQ(x0, t0) of Q(x0, t0).

Moreover, for compact set Γp, for all ε > 0, there exists λ0 > 0 such that

vλ ≤ max
Γp

v∗ + ε on Γp

for all λ ≥ λ0. Choose

ε = min
ΓP

 ϕ̃(x, t)−max
Γp

v∗

2


we have vλ < ϕ̃ on Γp for all λ ≥ λ0.
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Besides, we have ∆ϕ̃ = ∆ϕ is strictly negative in Q(x0, t0) and λ
(2−n)/n
k → 0 as

k →∞,

ϕ̃t =
1

t1 − t0
max

Γp
v∗(y, t) is a finite constant.

Then for k large enough we have:

λ(2−n)/nϕ̃t −∆ϕ̃ > 0 in Q(x0, t0).

Therefore ϕ̃ is a supersolution of elliptic equation in (3.6) in Q(x0, t0) for λ large

enough and we have

ϕ̃ ≥ vλ in Q(x0, t0). (3.33)

On the other hand, by the definition of lim sup, there exists a subsequence

{vλk} ⊂ {vλ}, and {yk}, {sk} such that

yk → x, sk → t0 as k →∞,

v∗(x, t0) = lim
k→∞

vλk(yk, sk).

Thus, for every δ > 0, there exists k0 such that
∣∣vλk(yk, sk)− v∗(x, t0)

∣∣ ≤ δ/2 for all

k ≥ k0. Let δ as in (3.31), since ϕ̃ is continuous, we have

vλk(yk, sk) ≥ v∗(x, t0)− δ/2 > ϕ(x) + δ/2 ≥ ϕ̃(yk, tk)

for some x ∈ Bδ(x0) and k large enough, which is in contradiction with (3.33).

Therefore, for each t, v∗(·, t) is subharmonic in Ωt(v
∗) and v∗(·, t) = 0 in Ωc

t(v
∗)\{0}.

Such function is subharmonic in Rn\{0} as we expected.

The behavior of functions v∗, v∗ at the origin and their boundaries can be estab-

lished by following the arguments in [45] and [39].

Lemma 3.19 (v∗ and v∗ behave as V at the origin). The functions v∗, v∗ have a

singularity at 0 with:

lim
|x|→0+

v∗(x, t)

V (x, t)
= 1, lim

|x|→0+

v∗(x, t)

V (x, t)
= 1, for each t > 0. (3.34)

Proof. See [45, Lemma 7.4].

Lemma 3.20 (cf. [39, Lemma 5.4]). Suppose that (xk, tk) ∈ {uλk = 0} and (xk, tk, λk)→

(x0, t0,∞). Then:
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a) U(x0, t0) = 0,

b) If xk ∈ Γtk(u
λk) then x0 ∈ Γt0(U),

where U = UC∗,L is the limit function in Theorem 3.12.

Proof. See proof of [39, Lemma 5.4].

The rest of the convergence proof in [45] relies on the monotonicity of the so-

lutions of the Hele-Shaw problem in time. Since the Stefan problem lacks this

monotonicity, we will show that sufficiently regular initial data satisfies a weak

monotonicity below. The convergence result for general initial data will then follow

by the uniqueness of the limit and the comparison principle.

Lemma 3.21. Suppose that v0 satisfies (3.2). Then there exist C ≥ 1 independent

of x and t such that

v0(x) ≤ Cv(x, t) in Rn\K × [0,∞). (3.35)

Proof. Let γ1 := min∂Ω0 |Dv0|, γ2 := max∂Ω0 |Dv0|. Note that 0 < γ1 ≤ γ2 < ∞.

For given ε > 0, let w be the solution of boundary value problem
∆w = 0 in Ω0\K,

w = ε on K,

w = 0 on Ωc
0.

For x close to ∂Ω0 we have v0(x) ≥ γ1
2

dist(x, ∂Ω0). Since γ1 > 0, v0 > 0 in Ω0

and ∂Ω0 has a uniform ball condition, we can choose ε > 0 small enough such that

w ≤ v0 in Rn\K. By Hopf’s Lemma, γw := min∂Ω0 |Dw| > 0. It is clear that w

is a classical subsolution of the Stefan problem (3.1) and the comparison principle

yields

w ≤ v in (Rn\K)× [0,∞). (3.36)

Now assume that (3.35) does not hold, that is, for every k ∈ N, there exists

(xk, tk) ∈ Rn\K × [0,∞) such that

1

k
v0(xk) > v(xk, tk). (3.37)

Clearly xk ∈ Ω0. {tk} is bounded by Theorem 3.10 since v0 is bounded. Therefore,

there exists a subsequence (xkl , tkl) and a point (x0, t0) such that (xkl , tkl)→ (x0, t0).
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Since v0 is bounded, we get v(x0, t0) ≤ 0 and thus x0 ∈ ∂Ω0 by (3.36). Consequently,

for kl large enough,

w(xkl) ≥
1

2
γwdist(xkl , ∂Ω0) =

(
γw
4γ2

)
2γ2dist(xkl , ∂Ω0) ≥ γw

4γ2

v0(xkl).

Combine this with (3.36) and (3.37) to obtain

1

kl
v0(xkl) >

γw
4γ2

v0(xkl)

for every kl large enough, which yields a contradiction since v0(xkl) > 0.

Some of the following lemmas will hold under the condition (3.35).

Lemma 3.22. Let u be the solution of the variational problem (2.8), and v be the

associated viscosity solution of the Stefan problem, and suppose that (3.35) holds.

Then

u(x, t) ≤ Ctv(x, t). (3.38)

Proof. The statement follows from checking that ũ := Ctv is a supersolution of the

heat equation in Ω(u) and the classical comparison principle. Indeed, ũt − ∆ũ =

Cv + Ct(vt −∆v) ≥ v0 ≥ f = ut −∆u in Ω(u) by (3.35).

Lemma 3.23 (cf. [39, Lemma 5.5]). The function v∗ satisfies Ω(V ) ⊂ Ω(v∗). In

particular v∗ ≥ V .

Proof. Assume that the inclusion does not hold, there exists (x0, t0) ∈ Ω(V ) and

v∗(x0, t0) = 0. By (3.35) and Lemma 3.22, there exists C > 1 such that u(x, t) ≤

Ctv(x, t). This inequality is preserved under the rescaling, uλ(x, t) ≤ Ctvλ(x, t)

in (Rn\Kλ) × [0,∞). Taking lim inf∗ of both sides gives the contradiction 0 <

U(x0, t0) ≤ Ct0v∗(x0, t0) = 0.

The inequality v∗ ≥ V follows from the elliptic comparison principle as v∗ is

superharmonic in Ω(v∗) \ {0} by Lemma 3.18 and behaves as V at the origin by

Lemma 3.19.

Lemma 3.24. There exists constant C > 0 independent of λ such that for every

x0 ∈ Ωt0(u
λ) and Br(x0) ∩ Ωλ

0 = ∅ for some r, for every λ large enough we have

sup
x∈Br(x0)

uλ(x, t0) > Cr2.
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Proof. Follow the arguments in [38, Lemma 3.1] while noting that since uλt is

bounded then, for λ large enough, uλ is a strictly subharmonic function in Ωt0(u
λ)\

Ωλ
0 .

Corollary 3.25. There exists a constant C1 = C1(n,M, λ0) such that if (x0, t0) ∈

Ω(vλ) and Br(x0) ∩ Ωλ
0 = ∅ and λ ≥ λ0, we have

sup
Br(x0)

vλ(x, t0) ≥ C1r
2

t0
.

Proof. The inequality follows directly from Lemma 3.22 and Lemma 3.24.

Lemma 3.26 (cf. [39, Lemma 5.6 ii]). We have the following inclusion:

Γ(v∗) ⊂ Γ(V ).

Proof. Argue as in [39, Lemma 5.6 ii] together with using Lemma 3.20 and Lemma

3.24 above.

Now we are ready to prove Theorem 3.16.

3.3.2 Proof of Theorem 3.16

Proof. Step 1. We prove the convergence of viscosity solutions and the free bound-

aries under the conditions (3.2) and (3.35) first.

Lemma 3.9 yields that Ωt(v
∗) is bounded at all time t > 0. Since Ω(V ) is simply

connected set, Lemma 3.26 implies that

Ω(v∗) ⊂ Ω(V ) ⊂ Ω(VC∗+ε,L) for all ε > 0.

We see from Lemma 3.18, v∗(·, t) is a subharmonic function in Rn \ {0} for every

t > 0 and lim|x|→0
v∗(x,t)
V (x,t)

= 1 for all t ≥ 0 by Lemma 3.19, comparison principle

yields v∗(x, t) ≤ VC∗+ε,L(x, t) for every ε > 0.

By Lemma 3.23, V (x, t) ≤ v∗ and letting ε→ 0+ we obtain by continuity

V (x, t) ≤ v∗(x, t) ≤ v∗(x, t) ≤ V (x, t).

Therefore, v∗ = v∗ = V and in particular, Γ(v∗) = Γ(v∗) = Γ(V ).

Now we need to show the uniform convergence of the free boundaries with respect

to the Hausdorff distance. Fix 0 < t1 < t2 and denote:

Γλ := Γ(vλ) ∩ {t1 ≤ t ≤ t2}, Γ∞ := Γ(V ) ∩ {t1 ≤ t ≤ t2},
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a δ-neighborhood of a set A in Rn × R is

Uδ(A) := {(x, t) : dist((x, t), A) < δ}.

We need to prove that for all δ > 0, there exists λ0 > 0 such that:

Γλ ⊂ Uδ(Γ
∞) and Γ∞ ⊂ Uδ(Γ

λ), ∀λ ≥ λ0. (3.39)

We prove the first inclusion in (3.39) by contradiction. Suppose therefore that we

can find a subsequence {λk} and a sequence of points (xk, tk) ∈ Γλk such that

dist((xk, tk),Γ
∞) ≥ δ. Since Γλ is uniformly bounded in λ by Lemma 3.9, there

exists a subsequence {(xkj , tkj)} which converge to a point (x0, t0). By Lemma 3.20,

(x0, t0) ∈ Γ(U) = Γ(V ). Moreover, since t1 ≤ tkj ≤ t2 then t1 ≤ t0 ≤ t2 and

therefore, (x0, t0) ∈ Γ∞, a contradiction.

The proof of the second inclusion in (3.39) is more technical. We prove a point-

wise result first. Suppose that there exists δ > 0, (x0, t0) ∈ Γ∞ and {λk}, λk → ∞,

such that dist((x0, t0),Γλk) ≥ δ

2
for all k. Then there exists r > 0 such that

Dr(x0, t0) := B(x0, r)× [t0 − r, t0 + r] satisfies either:

Dr(x0, t0) ⊂ {vλk = 0} for all k, (3.40)

or after passing to a subsequence,

Dr(x0, t0) ⊂ {vλk > 0} for all k. (3.41)

If (3.40) holds, clearly V = v∗ = 0 in Dr(x0, t0) which is in a contradiction with the

assumption that (x0, t0) ∈ Γ∞.

Thus we assume that (3.41) holds. In Dr(x0, t0), vλk solves the heat equation

λ(2−n)/nvλkt −∆vλk = 0. Set

wk(x, t) := vλk(x, λ
(2−n)/n
k t)

then wk > 0 in Dw
r (x0, t0) := B(x0, r) × [λ

(n−2)/n
k (t0 − r), λ(n−2)/n

k (t0 + r)] and wk

satisfies wkt −∆wk = 0 in Dw
r (x0, t0). Since λ

(n−2)/n
k

r
2
→∞ as k →∞, by Harnack’s

inequality for the heat equation, for fixed τ > 0 there exists a constant C1 > 0 such

that for each t ∈ [t0 − r
2
, t0 + r

2
] and λk such that τ < λ

(n−2)/n
k

r
4

we have

sup
B(x0,r/2)

wk(·, λ(n−2)/n
k t− τ) ≤ C1 inf

B(x0,r/2)
wk(·, λ(n−2)/n

k t).
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This inequality together with Corollary 3.25 yields:

C2r
2

t− λ(2−n)/n
k τ

≤ sup
B(x0,r/2)

vλk(·, t− λ(2−n)/n
k τ) ≤ C1 inf

B(x0,r/2)
vλk(·, t)

for all t ∈ [t0− r
2
, t0 + r

2
], λk ≥ λ0 large enough, where C2 only depends on n,M, λ0.

Taking the limit when λk →∞, the uniform convergence of {vλk} to V gives V > 0

in B(x0,
r
2
)× [t0 − r

2
, t0 + r

2
], which is a contradiction with (x0, t0) ∈ Γ∞ ⊂ Γ(V ).

We have proved that every point of Γ∞ belongs to all Uδ/2(Γλ) for sufficiently

large λ. Therefore the second inclusion in (3.39) follows from the compactness of

Γ∞.

This concludes the proof of Theorem 3.16 when (3.35) holds.

Step 2. For general initial data, we will find upper and lower bounds for the

initial data for which (3.35) holds, and use the comparison principle. For instance,

assume that v0 ∈ C(Rn), v0 ≥ 0, such that supp v0 is bounded, v0 = 1 on K.

Choose smooth bounded domains Ω1
0,Ω

2
0 such that K ⊂ Ω1

0 ⊂ Ω1
0 ⊂ supp v0 ⊂

Ω2
0. Let v1

0, v
2
0 be two functions satisfying (3.2) with positive domains Ω1

0,Ω
2
0, re-

spectively, and v1
0 ≤ v0 ≤ v2

0. If necessary, that is, when v0 is not sufficiently regular

at ∂K, we may perturb the boundary data for v1
0, v2

0 on K as 1 − ε and 1 + ε,

respectively, for some ε ∈ (0, 1).

Let v1, v2 be respectively the viscosity solution of the Stefan problem (3.1) with

initial data v1
0, v

2
0. By the comparison principle, we have v1 ≤ v ≤ v2 and after

rescaling vλ1 ≤ vλ ≤ vλ2 . By Step 1, we see that vλ1 → VC∗,1−ε,L and vλ2 → VC∗,1+ε,L.

Since C∗,1±ε → C∗ as ε → 0 by [49, Lemma 4.5], we deduce the local uniform

convergence of vλ → V = VC∗,L.

The convergence of free boundaries follows from the ordering Ω(v1) ⊂ Ω(v) ⊂

Ω(v2) and the convergence of free boundaries of VC∗,1±ε,L to the free boundary of

VC∗,L locally uniformly with respect to the Hausdorff distance.
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Chapter 4

Long-time behavior of one-phase

Stefan-type problems with

anisotropic diffusion in periodic

media

We consider an anisotropic one-phase Stefan-type problem with periodic coefficients

in a dimension n ≥ 3. Our purpose is to investigate the asymptotic behavior of the

solution of the following problem (4.1) and its free boundary as time t → ∞. The

results in this chapter, which also appeared in the main reference [48], are the

generalizations of our previous work in Chapter 3 for the isotropic case.

Let K ⊂ Rn be a compact set and 0 ∈ intK. Furthermore, assume that K has

a sufficiently regular boundary, for instance ∂K ∈ C1,1. The one-phase Stefan-type

problem is to find a function v(x, t) : Rn × (0,∞)→ [0,∞) satisfying

vt −Di(aijDjv) = 0 in {v > 0}\K,

v = 1 on K,

vt
|Dv|

= gaijDjvνi on ∂{v > 0},

v(x, 0) = v0 on Rn,

(4.1)

where D is the space gradient, Di is the partial derivative with respect to xi, vt is

the partial derivative of v with respect to time variable t and ν = ν(x, t) is inward

spatial unit normal vector of ∂{v > 0} at point (x, t). Here we use the Einstein
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summation convention.

We prescribe the Dirichlet boundary data 1 on the fixed source K and an initial

temperature distribution of water v0. Note that the results in this chapter apply to a

more general time-independent positive fixed boundary data, the constant function

1 is taken only to simplify the notation. We also specify an inhomogeneous medium

with the latent heat of phase transition L(x) = 1
g(x)

and an anisotropic diffusion

with the thermal conductivity coefficients given by aij(x). The unknowns here are

the temperature distribution in the water v and the water-ice interface ∂{v > 0},

which is the so-called free boundary. Since the free boundary is a level set of v, the

outward normal velocity of the moving interface is given by vt
|Dv| . The free boundary

condition thus says that the interface moves outward with the velocity gaijDjvνi in

the normal direction. Note that we can also rewrite the free boundary condition as

vt = gaijDjvDiv. (4.2)

Throughout this chapter, we will consider the problem under the following as-

sumptions. The matrix A(x) = (aij(x)) is assumed to be symmetric, bounded, and

uniformly elliptic, i.e., there exits some positive constants α and β such that

α|ξ|2 ≤ aij(x)ξiξj ≤ β|ξ|2 for all x ∈ Rn and ξ ∈ Rn. (4.3)

Moreover, we are interested in the problems with highly oscillating coefficients

that guarantees averaging behavior in the scaling limit, in particular aij and g are

Lipschitz functions in Rn,m ≤ g ≤M for some positive constants m and M,

Zn-periodic functions.

(4.4)

From the ellipticity (4.3) and the boundedness of g, we also have

mα|ξ|2 ≤ gaijξiξj ≤Mβ|ξ|2 for all x ∈ Rn and ξ ∈ Rn. (4.5)

Furthermore, we assume the following initial data throughout most of the chapter,

v0 ∈ C2(Ω0\K), v0 > 0 in Ω0, v0 = 0, on Ωc
0 := Rn \ Ω0, and v0 = 1 on K,

|Dv0| 6= 0 on ∂Ω0, for some bounded domain Ω0 ⊃ K.
(4.6)

As in Chapter 3, this assumption on the initial data guarantees the well-posedness

of the Stefan problem (4.1) and the coincidence of weak and viscosity solutions be-

low, as well as a very useful weak monotonicity (4.28). However, the asymptotic
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limit, Theorem 4.1 is independent of the initial data, therefore we are able to apply

the results for more general initial data. In particular, it is sufficient if the initial

data guarantees the existence of the (weak) solution satisfying the comparison prin-

ciple, and the initial data can be approximated from below and from above by data

satisfying (4.6). For instance, v0 ∈ C(Rn), v0 = 1 on K, v0 ≥ 0, supp v0 compact is

enough.

As seen in Chapter 2, the global classical solution of the Stefan problem (4.1) in

multi-dimensional space is not expected to exist due to the singularities on the free

boundary which might appear in finite time. In our consideration, we continue to

use the notions of weak solutions and viscosity solutions introduced in Chapter 2,

which were well developed in the literature. Recall that a weak solution is defined by

taking the integral in time of the classical solution v and looking at the equation that

the new function u(x, t) :=
∫ t

0
v(x, s)ds satisfies. It turns out that if v is sufficiently

regular, then u(·, t) solves the obstacle problem (see [5, 14,21,15,51,53,52])u(·, t) ∈ K(t),

(ut −Di(aijDju)) (ϕ− u) ≥ f(ϕ− u) a.e (x, t) for any ϕ ∈ K(t),
(4.7)

where K(t) is a suitable functional space specified in Section 2.2.2 and f is

f(x) =


v0(x), v0(x) > 0,

− 1

g(x)
, v0(x) = 0.

(4.8)

This formulation interprets the Stefan problem as a fixed domain problem and

allows us to apply the well-known results in the general variational inequality theory.

Indeed, the obstacle problem (4.7) has a global unique solution u for the initial data

(4.6). If the corresponding time derivative v = ut exists, it is called a weak solution

of the Stefan problem (4.1). Moreover, the homogenization of this problem was

also observed based on the approach of homogenization of variational inequalities,

see [50, 38, 39]. In a different consideration, Kim introduced the notion of viscosity

solutions of the Stefan problem as well as proved the global existence and uniqueness

results in [34]. The analysis of viscosity solutions relies on the comparison principle

and point-wise arguments, which is more appropriate to study the behavior of the

free boundaries. The notions of weak and viscosity solutions were first introduced for

the classical homogeneous isotropic Stefan problem where g(x) = 1 and the parabolic
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operator is the simple heat operator, however, it is natural to define the same notions

for our Stefan problem (4.1) and obtain the analogous results as observed in [50,39].

Moreover, the notion of viscosity solutions is also applicable for more general, fully

nonlinear parabolic operators and boundary velocity laws since it does not require

the variational structure. One interesting result obtained in [39] is that the weak

and the viscosity solutions of (4.1) coincide whenever the weak solution exists, thus

we will use the strengths of both weak and viscosity solutions to study our problem.

The historical story of the study of the asymptotic and large time behavior of

solutions of the one-phase Stefan problem, as we mentioned in Chapter 3, observed

the work of Quirós and Vázquez [49] on the convergence of the one-phase Stefan

problem to Hele-Shaw in homogeneous isotropic case, the homogenization of the

Stefan problem of type (4.1) by Rodrigues [50] and Kim and Mellet [39]. Dealing

directly with the long-time behavior of the solutions in inhomogeneous media, the

work of the Požár in [45], and then the results in Chapter 3 showed the convergence

in appropriate rescaling of solutions of both the Hele-Shaw problem and the Stefan

problem to the self-similar solution of the Hele-Shaw problem with a point-source in

the isotropic setting. The convergence of the rescaled free boundary is also obtained,

and it uniformly approaches a sphere.

In this chapter, we extend the previous results in Chapter 3 to the anisotropic

case, where the heat operator is replaced by more general linear parabolic operators

of divergence form. This was indeed the setting considered in [50] for periodic

homogenization problem and in [39] for more general random media. In this setting,

the variational structure is preserved, thus we are still able to use the notions of

weak solutions as well as viscosity solutions and their coincidence. However, the

main difficulties come from the loss of radially symmetric solutions which were used

as barriers in the isotropic case and the homogenization problems appear not only

for velocity law but also for the elliptic operators. To overcome the first difficulty,

we will construct barriers for our problem from the fundamental solution of the

corresponding elliptic equation of divergence form. Unfortunately, even though the

unique fundamental solution of this elliptic equation exists for n ≥ 2, its behavior in

the case dimension n = 2 and dimension n ≥ 3 are significantly different. Moreover,

we need to make use of a very useful gradient estimate (4.13) for the fundamental

solution, which only holds for the periodic structure. Therefore, we will restrict our
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problem into the problem in periodic media and dimension n ≥ 3. Following [49,45]

and Chapter 3, we use the rescaling of solutions as

vλ(x, t) := λ(n−2)/nv(λ1/nx, λt), uλ(x, t) := λ−2/nu(λ1/nx, λt).

Using this rescaling we can deduce the uniform convergence of the rescaled solution

to a limit function away from the origin. In the limit, the fixed domain K shrinks

to the origin due to the rescaling, and the rescaled solutions develop a singularity

at the origin as λ → ∞. Moreover, in a periodic setting, the elliptic operator and

velocity law should homogenize as λ → ∞, and therefore heuristically, the limit

function should be the self-similar solution (under the corresponding rescaling) of

the following Hele-Shaw type problem with a point-source
−qijDijv = Cδ in {v > 0},

vt =
1

〈1/g〉
qijDivDjv on ∂{v > 0},

v(·, 0) = 0,

(4.9)

where δ is the Dirac δ-function, qij are constants satisfying a uniform ellipticity with

some elliptic coefficients, C is a constant depending on K,n, qij and the boundary

data 1, and the constant 〈1/g〉 is the average value of the latent heat L(x) =

1
g(x)

. Similarly, the limit variational solution should satisfy the corresponding limit

obstacle problem.

The first main result of this chapter, Theorem 4.15, is the locally uniform con-

vergence of the rescaled variational solution to the solution of the limit obstacle

problem. Using the constructed barriers, we are able to prove that the limit func-

tion has the correct singularity as |x| → 0. Moreover, from the construction of

the barriers, we also obtain the growth rate of the free boundary, more precisely,

the free boundary expands with the rate of t1/n when t is large enough, which is

the same with the isotropic case. The aim is then to prove the homogenization

effects of the rescaling to our problem. The shrinking of the fixed domain K in

the rescaling also makes our current situation slightly different from the standard

classical homogenization problem of variational inequalities, where the domain of

observation and the boundary condition are usually fixed. In addition, we also need

to show that the rescaled parabolic operator becomes elliptic when λ→ 0. We will

use the notion of the Γ-convergence introduced by De Giorgi and homogenization
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techniques developed by G. Dal Maso and L. Modica in [11,12,13] to our problem.

The issue here is that we need to modify the Γ-convergence sequence in order to

use the integration by part formula for the variational inequality. This task will

be done with the help of a cut-off function and the fundamental estimate for the

Γ-convergence. Note that our techniques is applicable not only for the periodic case

but also for the random case, thus we expect to extend our results to the problem

in random media in future.

As the last step, we will use the coincidence of the weak and viscosity solutions

of the problem (4.1) and the viscosity arguments to obtain the locally uniform con-

vergence of the rescaled viscosity solution and its free boundary to the asymptotic

profile in the second main result, Theorem 4.24. Fortunately, all the viscosity argu-

ments of the isotropic case can be adapted for the anisotropic case. Therefore, the

proof is similar to the the proof of Chapter 3, Theorem 3.16, where we make use of

a weak monotonicity (4.28) together with the comparison principle. An important

point in the proof of Chapter 3, Theorem 3.16 is that we need to apply Harnack’s

inequality and we can do the same way here since the rescaled elliptic operator

does not change the constant in Harnack’s inequality. As the arguments require

only some simple modifications, we will skip the proofs of some lemmas and refer

to Chapter 3 for more details.

In summary, we will show the following theorem.

Theorem 4.1. The rescaled viscosity solution vλ of the Stefan-type problem (4.1)

converges locally uniformly to the unique self-similar solution V of the Hele-Shaw

type problem (4.9) in (Rn\{0})×[0,∞) as λ→∞, where qij are constants satisfying

a uniform ellipticity, C depends only on qij, n, the set K and the boundary data 1.

Moreover, the rescaled free boundary ∂{(x, t) : vλ(x, t) > 0} converges to ∂{(x, t) :

V (x, t) > 0} locally uniformly with respect to the Hausdorff distance.

As mentioned above, almost all of the arguments in our recent work hold for

ergodic-stationary random case. However, in this situation, we lose a very important

point-wise gradient estimate (4.13) for the fundamental solution of the corresponding

elliptic equation to construct the barriers. In fact, for non-periodic coefficients, even

though the optimal bounds for gradient continue to hold for a bounded domain, it

cannot hold in the large scale when |x− y| → ∞. The results in [42,25] tell us that

57



for random stationary coefficients satisfying a logarithmic Sobolev inequality, we can

have similar bounds for gradient in local square average forms. This result cannot

be upgraded to the point-wise bounds since there is no regularity to control the

square average integral as in [25, Remark 3.7], however, it suggested the possibility

to modify our approach to the random case. Another question is the completeness

of the present results for the dimension n = 2. Since the unique (up to an addition

of a constant) fundamental solution of the corresponding elliptic equation exists

and the gradient estimates also hold in 2D case, we expect to obtain analogous

results as in this chapter. The essential reason that it remains open is the lack of

homogenization result for the fundamental solution (Green’s function) in 2D, which

is of an independent interest. This issue is under the investigation by the authors.

Outline:

In Section 4.1, we recall some basic facts of the fundamental solution of the corre-

sponding elliptic equation. The rescaling is introduced and we discuss the conver-

gence of the fundamental solution in the rescaling limit. The core of this section is

the construction of a subsolution and a supersolution of the Stefan problem (4.1) in

Subsection 4.1.3. Moreover, we state some limit problems before giving the proofs

of the main results in later sections. Section 4.2 is our major work, where we prove

the locally uniform convergence of the rescaled variational solutions. In Section 4.3,

we deal with the locally uniform convergence of viscosity solutions and their free

boundaries.

4.1 Preliminaries

4.1.1 The fundamental solution of linear elliptic equation

Note that we use the notation of elliptic operators L,Lλ as introduced in Section

1.2 and consider Lε := Dj(aij(x/ε)Di).

In this section, we will recall some important facts about the fundamental solu-

tion of the self-adjoint uniformly elliptic second order linear equation in divergence

form

− Lu = 0, (4.10)
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in dimension n ≥ 3, where L is defined as in Section 1.2 and aij(x) satisfy (4.3) and

(4.4). This fundamental solution will be used to construct barriers for the Stefan

problem. The facts of the fundamental solution are proved in more detail in the

Appendix A.

We will take the definition of the fundamental solution of (4.10) as Green’s

function in the whole space introduced in [41,2].

Definition 4.2. We say that G : Rn×Rn → R is the fundamental solution (Green’s

function) of (4.10) if G(·, y) is the weak (distributional) solution of −LG(·, y) = δy,

where δy is the Dirac measure at y, i.e.,∫
Rn
aijDjG(·, y)Diϕdx = ϕ(y), ∀y ∈ Rn, ∀ϕ ∈ C∞0 (Rn),

and lim|x−y|→∞G(x, y) = 0.

The existence and uniqueness of the fundamental solution were given by the

remark following [41, Corollary 7.1] or more precisely by [2, Theorem 1].

Theorem 4.3 (cf. [2, Theorem 1]). Assume that n ≥ 3, aij(x) satisfy (4.3) and

(4.4). Then, there exists a unique fundamental solution G(x, y) of (4.10) such that

G(·, y) ∈ H1
loc(Rn\{y}) ∩W 1,p

loc (Rn), p < n
n−1

, and for some constant C > 0 we have

C−1|x− y|2−n ≤ G(x, y) ≤ C|x− y|2−n, ∀x, y ∈ Rn. (4.11)

Remark 4.4. Note that in any bounded domain U of Rn\{0}, G(·, y) satisfies all

the properties of a weak solution of a uniformly elliptic equation. The fundamental

solution of (4.10) also has the following properties (for more details, see [41,43,24]):

• G(x, y) = G(y, x)

• G(·, y) ∈ C1,α(U) for some α > 0.

• The function u(x) =
∫
Rn G(x, y)f(y)dy is a weak solution in H1

loc(Rn) of the

equation −Lu = f for any f ∈ C∞0 (Rn).

• When the coefficients aij are constants, the fundamental solution can be given

explicitly as

G0(x, y) :=
1

(n− 2)αn
√
|A|

(∑
ij

(A−1)ij(xi − yi)(xj − yj)

)(2−n)/2

, (4.12)
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where (A−1)ij are the elements of the inverse matrix of (aij), |A| is the deter-

minant of (aij) and αn is the volume of the unit ball in Rn.

Moreover, in a periodic setting, the results in [2, Proposition 5] give bounds on

the gradient of the fundamental solution.

Lemma 4.5 (cf. [2, Proposition 5]). If n ≥ 2 and A is periodic then the fundamental

solution of (4.10) satisfies the following gradient estimates:

∃C > 0, ∀x ∈ Rn, ∀y ∈ Rn, |DxG(x, y)| ≤ C

|x− y|n−1
, (4.13)

∃C > 0, ∀x ∈ Rn, ∀y ∈ Rn, |DyG(x, y)| ≤ C

|x− y|n−1
. (4.14)

Using the technique of G-convergence, the authors in [60] established results on

the homogenization and the asymptotic behavior of the fundamental solution of

(4.10). We refer to [60, 13] for the definition of G-convergence and more details of

the homogenization problem.

Lemma 4.6 (cf. [60, Theorem 2, Chapter III]). Let n ≥ 3, A satisfy (4.3), (4.4)

and Gε(x, y) be the fundamental solution of

− Lεu = 0. (4.15)

Then Gε converges locally uniformly to G0 in R2n\{x = y} as ε→ 0, where G0(x, y)

is the fundamental solutions of

− L0u = 0, (4.16)

and L0 is a uniform elliptic operator with constant coefficients. Moreover, if we de-

note G(x, y) as the fundamental solution of (4.10), then we will have an asymptotic

expression

G(x, y) = G0(x, y) + |x− y|2−nθ(x, y), (4.17)

where θ(x, y)→ 0 as |x− y| → ∞ uniformly on the set {|x| + |y| < a|x− y|}, a is

any fixed positive constant.

4.1.2 Rescaling

Let v be the solution of the one-phase Stefan problem (4.1) and u be the solu-

tion of the corresponding variational inequality (4.7), the definitions as well as the

relationship of v and u was introduced in Chapter 2.
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4.1.2.1 Rescaling for n ≥ 3

Following the idea in [49, 45], for λ > 0 and n ≥ 3 we will use the rescaling of

solutions as

vλ(x, t) = λ
n−2
n v(λ

1
nx, λt).

If we define Kλ := K/λ
1
n and Ωλ

0 := Ω0/λ
1
n then as derived in [45], vλ is a solution

of the problem



λ
2−n
n vλt − Lλvλ = 0 in Ω(vλ)\Kλ,

vλ = λ
n−2
n on Kλ,

vλt
|Dvλ|

= gλ(x)aλij(x)Djv
λνi on Γ(vλ),

vλ(·, 0) = vλ0 in Rn,

(4.18)

where vλ0 (x) = λ
n−2
n v0(λ1/nx) and gλ(x) = g(λ

1
nx), aλij(x) = aij(λ

1/nx).

Also as in [45], we will use the corresponding rescaling of weak solutions

uλ(x, t) = λ−
2
nu(λ

1
nx, λt).

The rescaled uλ satisfies the obstacle problem:

uλ(·, t) ∈ Kλ(t), 0 < t <∞,

(λ
2−n
n uλt − Lλuλ)(ϕ− uλ) ≥ fλ(x)(ϕ− uλ) a.e. (x, t) ∈ Rn × (0,∞)

for any ϕ ∈ Kλ(t),

uλ(x, 0) = 0,

(4.19)

where Kλ(t) = {ϕ ∈ H1(Rn), ϕ ≥ 0, ϕ = λ
n−2
n t on Kλ} and fλ(x) = f(λ1/nx).

Remark 4.7. We can take the admissible set Kλ(t) as above due to the continuity

with respect to the H1 norm of all terms in the variational inequality and the fact

that the variational solution u has a compact support in space at every time. Note

that for any fixed time t, the admissible set Kλ(t) depends on λ.

4.1.2.2 Convergence of the rescaled fundamental solution

By Lemma 4.6, we have the following convergence result on the rescaled fundamental

solution.
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Lemma 4.8. Let G be the fundamental solution of (4.10) in dimension n ≥ 3.

Consider the rescaling

Gλ(x, y) = λ
n−2
n G(λ1/nx, λ1/ny).

Then Gλ is the fundamental solution of

− Lλu = 0, (4.20)

and |Gλ(x, y) − G0(x, y)| → 0 uniformly on every compact subset of R2n\{(x, x) ∈

R2n} where G0 is the fundamental solution of (4.16).

Proof. We will show that Gλ is the fundamental solution of (4.20), then the result

follows directly from Lemma 4.6 with ε = λ−1/n.

For simplicity, we will check that Gλ satisfies the definition of the fundamental

solution of (4.20) for fixed y = 0, F (x) = G(x, 0) and F λ(x) := λ(n−2)/nF (λ1/nx).

Indeed, we have DjF
λ(x) = λ(n−1)/nDjF (λ1/nx). Take a function ϕ ∈ C∞0 (Rn),

then∫
Rn
aλij(x)DjF

λ(x)Diϕ(x)dx =

∫
Rn
λ(n−1)/naij(λ

1/nx)DjF (λ1/nx)Diϕ(x)dx

=

∫
Rn
λ−1/naij(y)DjF (y)Diϕ(λ−1/ny)dy

=

∫
Rn
aij(y)DjF (y)Diϕ̃(y)dy

= ϕ̃(0) = ϕ(0),

where ϕ̃(y) = ϕ(λ−1/ny). Moreover, F λ satisfy the estimate (4.11) since F has this

property. Hence, by definition, F λ is the fundamental solution of (4.20).

Remark 4.9. The rate of this convergence as well as the rate of convergence for

derivatives were also derived in [4].

4.1.3 Construction of a sub-solution and a super-solution

from a fundamental solution

The main goal of this section is to construct a sub-solution and a super-solution of

(4.1) from a fundamental solution of the elliptic equation so that we can use them

as barriers to track the behavior of the support of a solution of (4.1).
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From now on, we will let L0 be the limit of the operators of Lλ as in Lemma 4.6

and consider the fundamental solutions of (4.10), (4.20) and (4.16) with pole at the

origin as

F (x) := G(x, 0), F λ(x) := Gλ(x, 0) = λ(n−2)/nF (λ1/nx), F 0(x) := G0(x, 0)

respectively. Note that F 0 is preserved under the rescaling by (4.12).

4.1.3.1 Construction of a supersolution

Define

θ(x, t) := [C1F (x)− C2t
(2−n)/n]+,

where C1, C2 are non-negative constants chosen later. It easily follows that in {θ >

0}\{0},

θt(x, t) =
C2(n− 2)

n
t(2−2n)/n ≥ 0,

Dθ(x, t) = C1DF (x),

Lθ = 0,

θt − Lθ ≥ 0.

Due to estimates (4.11) and (4.13), there exists a constant C such that

C−1|x|2−n ≤ F (x) ≤ C|x|2−n,

|DF (x)| ≤ C|x|1−n.
(4.21)

Then for (x, t) ∈ ∂{θ > 0} we have

C2t
(2−n)/n = C1F (x) ≥ C1C

−1|x|2−n,

which yields

t1/n ≤
(
C1

CC2

)1/(2−n)

|x|.

Thus on ∂{θ > 0},

θt =
C2(n− 2)

n
t(2−2n)/n ≥ n− 2

n

(
C1

C

) 2−2n
2−n

C
n

2−n
2 |x|2−2n.

Fix any t0 > 0. We can choose C1 large enough and C2 small enough such that

θt ≥MβC2
1C

2|x|2−2n ≥Mβ|Dθ|2 on ∂{θ > 0}, (4.22)

θ > 1 on K and θ(x, t0) > v(x, t0), (4.23)

where α, β are constants from (4.3). By (4.5), θt ≥ aijDjθDiθ on ∂{θ > 0} and by

(4.2), θ is a supersolution of (4.1) in Rn × [t0,∞).
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4.1.3.2 Construction of a subsolution

Let h(x) be the barrier constructed in [39, Appendix A] with Lh = n,Dh(x) =

(A(x))−1x and let c, c̃ be non-negative constants such that

c|x|2 ≤ h(x) ≤ c̃|x|2. (4.24)

Consider the following function with non-negative constants c1, c2, c3:

θ(x, t) :=

[
c1F (x) +

c2h(x)

t
− c3t

(2−n)/n

]
+

χE(t) (4.25)

where

E(t) := {x : F ′b(|x|, t) < 0}, Fb(r, t) := Cc1r
2−n +

c2c̃r
2

t
− c3t

(2−n)/n,

C, c̃ are constants as in (4.21), (4.24) and F ′b(r, t) is the derivative of Fb(r, t) with

respect to r. We claim that we can choose constants c1, c2, c3, t0 such that θ is a

subsolution of (4.1) for t ∈ [t0,∞). The differentiation of θ on the set {θ > 0}\{0}

leads to

Dθ(x, t) = c1DF (x) +
c2A

−1(x)x

t
,

Lθ(x, t) =
c2n

t
,

θt(x, t) = −c2h(x)

t2
+
c3(n− 2)

n
t(2−2n)/n = t(2−2n)/n

[
c3(n− 2)

n
− c2h(x)

t2/n

]
,

θt(x, t)− Lθ(x, t) = t(2−2n)/n

[
c3(n− 2)

n
− c2h(x)

t2/n
− c2n

t(2−n)/n

]
< 0 when t is large enough.

(4.26)

Thus, we can choose t0 large enough such that θt − Lθ < 0 for t ≥ t0.

Now we will prove the continuity of θ. We have

0 ≤ θ(x, t) ≤ [Fb(|x|, t)]+χE(t) =: F+
b (x, t), (4.27)

hence Ωt(θ) ⊂ Ωt(F
+
b ) for all t. We see that

F ′b(r, t) = Cc1(2−n)r1−n +
2c2c̃r

t
< 0⇔ r <

(
Cc1(n− 2)

2c2c̃

)1/n

t1/n =: r0(t) (4.28)

or E(t) = {x : |x| < r0(t)}. We have θ is continuous in time and for each time

t, θ(·, t) is continuous in E(t), θ(·, t) = 0 on (E(t))c. We will show that we can

choose the constants such that θ(·, t) is continuous through boundary of E(t) for all

t. Indeed, for x0 ∈ ∂E(t),

Fb(|x0|, t) = Fb(r0(t), t) = CFbt
(2−n)/n,
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where CFb = (Cc1)2/n(c2c̃)
(n−2)/n

[(
n−2

2

)2/n n
n−2

]
− c3 . We can choose c1, c2, c3

such that CFb < 0 then Fb(|x0|, t) < 0 for all t. Since Fb(·, t) is continuous at

x0, there exists a small neighborhood B(x0, ε(t)) of x0 such that in that neigh-

borhood, Fb(|x|, t) < 0 and therefore F+
b (x, t) = 0 and by (4.27), θ(x, t) = 0 for

x ∈ B(x0, ε(t)). Thus θ(·, t) is continuous at x0 and therefore it is continuous in Rn.

Note that CFb < 0 if and only if

c3 ≥ C0(c1)2/n(c2)(n−2)/n, (4.29)

where C0 is a constant depending only on n,C, c̃.

We finally need to show that we can choose suitable constants such that θ satisfies

the sub-inequality on the free boundary.

We first note that θ(x, t) ≥ θ̃(x, t) :=
[
Cc1|x|2−n − c3t

(2−n)/n
]

+
then Ω(θ̃) ⊂

Ω(θ), or more precisely, there exists a constant C̃ such that

|x| ≥ C̃t1/n for all (x, t) ∈ ∂{θ > 0}. (4.30)

By (4.26) we have

θt ≤ c3t
(2−2n)/n,

|Dθ|2 = c2
1|DF (x)|2 +

2c1c2

t
DF (x) · A−1x+

c2
2

t2
|A−1x|2,

≥ 2c1c2

t
DF (x) · A−1x+

c2
2

t2
|A−1x|2.

Since A is a symmetric bounded matrix satisfying the ellipticity (4.3), then these

properties also hold for A−1 and A−2 with some other constants. Hence,

|Dθ|2 ≥ c2
2

t2
α̃|x|2 − 2c1c2

t
CA|DF (x)||x| for some α̃, CA > 0

≥ c2
2

t2
α̃|x|2 − 2c1c2

t
CCA|x|2−n ( by (4.21))

≥
(
c2

2α̃C̃
2 − 2c1c2CCAC̃

2−n
)
t(2−2n)/n ( by (4.30)).

We want to choose c1, c2, c3 such that θt ≤ mα|Dθ|2 on ∂{θ > 0}, which will hold if

c3 ≤ mα
(
c2

2α̃C̃
2 − 2c1c2CCA|C̃2−n

)
=: C1

0c
2
2 − C2

0c1c2, (4.31)

where C1
0 , C

2
0 are fixed positive constants. Then by (4.15), θt ≤ gaijDjθDiθ on

∂{θ > 0}.
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The conditions (4.29) and (4.31) hold if we choose some suitable c1, c2, c3, for

example, fix any c1 > 0, choose c2 large enough such that

C0(c1)2/n(c2)(n−2)/n < C1
0c

2
2 − C2

0c1c2.

Note that the above inequality holds for c2 large enough since for fixed c1 > 0, the

right hand side tends to ∞ as c2 → ∞ faster than the left hand side. Then (4.29)

and (4.31) hold for any c3 which is between these two numbers. Fix t0 such that

θt − Lθ < 0 in {θ > 0} for chosen c2, c3 and t ≥ t0. Choosing a smaller c1 if it is

needed, we can assume that the support of θ(·, t0) is contained in Ωt0(v), θ(x, t0) ≤

v(x, t0) and θ < 1 in K. Thus, with the help of (4.2), we see that θ is a subsolution

of the Stefan problem (4.1) for that choice of constants.

4.1.3.3 Some results on the barriers for the Stefan problem (4.1)

As the construction above, we can use the functions of the form

θ(x, t) := [C1F (x)− C2t
(2−n)/n]+ (4.32)

where C1, C2 > 0 as the barriers for the Stefan problem (4.1). As our purpose is

to study the asymptotic behavior, we first observe the convergence of the rescaled

barriers.

Lemma 4.10. Let θ be a function of the form (4.32) and θλ := λ(n−2)/nθ(λ1/nx, λt).

Then θλ → θ0 locally uniformly in (Rn\{0})× [0,∞), where

θ0(x, t) := [C1F
0(x)− C2t

(2−n)/n]+. (4.33)

Proof. We have

θλ(x, t) = [C1F
λ(x)− C2t

(2−n)/n]+,

where F λ(x) = λ(n−2)/nF (λ1/nx) . By Lemma 4.8, F λ → F 0 locally uniformly in

Rn\{0} and the lemma follows.

Moreover we will also need to know the integration of the barriers in time on the

way to analyze the weak solution of the Stefan problem (4.1).

Lemma 4.11. Let Θ(x, t) :=
∫ t

0
θ(x, s)ds. Then Θ(x, t) has form

Θ(x, t) =

[
C1F (x)t− C2n

2
t2/n + o(F (x))

]
+

, as |x| → 0. (4.34)
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Proof. We can derive (4.34) simply by integrating the function θ of the form (4.32).

Since θ has the form (4.32), we see that

θ > 0 if t > s(x),

θ = 0 if t ≤ s(x),
where s(x) =

(
C1

C2

F (x)

)n/(2−n)

.

Thus,

Θ(x, t) =


0, t ≤ s(x),∫ t

s(x)

(C1F (x)− C2s
(2−n)/n)ds, t > s(x).

When t > s(x),

Θ(x, t) = C1F (x)t− C2n

2
t2/n − C1F (x)s(x) +

C2n

2
(s(x))2/n

= C1F (x)t− C2n

2
t2/n +

n− 2

2

(C1)2/(2−n)

(C2)n/(2−n)
(F (x))2/(2−n)

= C1F (x)t− C2n

2
t2/n + C(F (x))2/(2−n).

Since F (x) has a singularity at x = 0 (by (4.11)) then C(F (x))2/(2−n) = o(F (x)) as

|x| → 0 which completes the proof.

From these barriers, we can obtain the rate of expanding support for viscosity

solutions.

Lemma 4.12. Let n ≥ 3 and v be a viscosity solution of (4.1). There exists t0 > 0

and constants C,C1, C2 > 0 such that for t ≥ t0,

C1t
1/n ≤ min

Γt(v)
|x| ≤ max

Γt(v)
|x| < C2t

1/n

and for 0 ≤ t ≤ t0,

max
Γt(v)
|x| < C2.

Moreover,

0 ≤ v(x, t) ≤ C|x|2−n.

Proof. We figure out the boundedness for v(x, t) first. Let F (x) be the fundamental

solution of elliptic equation (4.10) as in section 4.1.3 then θ̂ = CF (x) is a stationary

solution of the equation vt − Lv = 0. Its integration in time is also a solution

of variational inequality problem with f̂ = CF (x). If we take C large enough

then f̂ ≥ f and θ̂ ≥ 1 on K. Applying the comparison principle for variational
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problem ( [49, Proposition 2.2]) we have v(x, t) ≤ CF (x) ≤ C̃|x|2−n (by (4.11)). The

boundedness of the support of v(·, t) at all times has been proved in [39, Lemma 3.6.]

Consider θ1, θ2 which are a subsolution and a supersolution of the Stefan problem

(4.1) for t ≥ t0 as constructed in Section 4.1.3.1 and 4.1.3.2. The bounds on the

support of v for t ≥ t0 follow directly from the behavior of the support of θ1, θ2.

4.1.4 Limit problems

The expected limit problem is the corresponding Hele-Shaw type problem with a

point source.

4.1.4.1 Limit problem for vλ

We expect vλ to converge to a solution of

qijDijv = 0 in {v > 0},
vt
|Dv|

= (1/L)qijDjvνi on ∂{v > 0},

lim
|x|→0

v

F 0
= C,

v(x, 0) = 0 in Rn\{0},

(4.35)

where C,L are positive constants, qij are constants of the operator L0 and F 0 is the

fundamental solution of (4.16).

Since Q := (qij) is symmetric and positive definite, we can write Q = P 2, where

P is a symmetric positive definite matrix. Let ṽ(x, t) := v(Px, t). A direct com-

putation then shows that equation (4.35) becomes the classical Hele-Shaw problem

with a point source for function ṽ,

∆ṽ = 0 in {ṽ > 0},

ṽt = (1/L)|Dṽ|2 on ∂{v > 0},

lim
|x|→0

ṽ

|x|2−n
= C,

ṽ(x, 0) = 0 in Rn\{0}.

(4.36)

The problem (4.36) has a unique classical solution Ṽ which is given explicitly (see

Chapter 3, [45] for instance). Thus (4.35) has unique classical solution V (x, t) :=

Ṽ (P−1x, t), which is continuous in (Rn\{0})× [0,∞).
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4.1.4.2 Limit problem for uλ

Assume that V = VC,L is the classical solution of (4.35) above and

U(x, t) :=

∫ t

0

V (x, s)ds. (4.37)

It is known that the time integral of classical Hele-Shaw problem with a point source

(4.36) satisfies an obstacle problem derived in [45]. Following [45] and using a change

variables again, we see that U uniquely solves the following problem, which is our

limit variational problem:
w ∈ Kt,

q(w, φ) ≥ 〈−L, φ〉 , ∀φ ∈ W1,

q(w,ψw) = 〈−L, ψw〉 , ∀ψ ∈ W2,

(4.38)

where

Kt =

{
ϕ ∈

⋂
ε>0

H1(Rn\Bε) ∩ C(Rn\Bε) : ϕ ≥ 0, lim
|x|→0

ϕ(x)

F 0(x)
= Ct

}
,

W1 =
{
φ ∈ H1(Rn\Bε) : φ ≥ 0, φ = 0 on Bε for some ε > 0

}
, (4.39)

W2 = W1 ∩ C1(Rn). (4.40)

We also use the standard notation for the bilinear form on H1 and inner product in

L2, in particular

aΩ(u, v) :=

∫
Ω

aijDjuDivdx, 〈u, v〉Ω :=

∫
Ω

uvdx.

We omit the set Ω in the notation if Ω = Rn, q(u, v) is defined analogously when

aij are replaced by qij.

4.1.4.3 Near-field limit

Using the boundedness results of Lemma 4.12, we have the following general near-

field limit adapted for viscosity solutions and the asymptotic behavior result for

solution of limit problem as in [49].
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Theorem 4.13 (Near-field limit). The viscosity solution v(x, t) of the Stefan prob-

lem (4.1) converges to the unique solution P (x) of the exterior Dirichlet problem
Dj(aijDiP ) = 0, x ∈ Rn\K,

P = 1, x ∈ K,

lim
|x|→∞

P (x) = 0

(4.41)

as t→∞ uniformly on compact subsets of Kc.

Proof. Follow the arguments in the proof of [49, Lemma 8.4] and note that by

Lemma 4.12, the support of v expands to the whole space as time t→∞.

The results on the isolated singularity of solutions of linear elliptic equation

in [56] allow us to deduce the asymptotic behavior of P as |x| → ∞.

Lemma 4.14. There exists a constant C∗ = C∗(K) such that the solution P of

problem (4.41) satisfies

lim
|x|→∞

P (x)

F (x)
= C∗

where F (x) is a fundamental solution of elliptic equation Dj(aijDiv) = 0 in Rn.

Proof. Lemma 4.14 is a direct corollary of [56, Theorem 5]. The arguments follow

the same techniques as in [49, Lemma 4.3] using a general Kelvin transform and

Green’s function for linear elliptic equations. Following [49, Lemma 4.3], it can

also be shown that the constant C∗ depends continuously on the data of the fixed

boundary Γ. We will make a detail proof of this lemma in the Appendix A.

4.2 Uniform convergence of the rescaled

variational solutions

Our first main result is the uniform convergence of the rescaled variational solutions,

which is similar to Chapter 3, Theorem 3.12.

Theorem 4.15. Let u be the unique solution of variational problem (2.8) and uλ be

its rescaling. Let UA,L be the unique solution of limit problem (4.38) where A = C∗ as

in Lemma 4.14, and L = 〈1/g〉 as in Lemma 2.20. Then the functions uλ converge

locally uniformly to UA,L as λ→∞ on (Rn\{0})× [0,∞).
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The classical homogenization results of variational inequalities are usually stated

for a fixed bounded domain. Since our admissible set Kλ(t) defined in Section 4.1.2

changes with λ, we will need to refine the proof. We will use the techniques of

Γ-convergence introduced in [13] and [39]. Note that these techniques can be ap-

plied not only for periodic case but also for stationary ergodic coefficients over a

probability space (A,F , P ).

4.2.1 Γ-convergence of functionals

We recall some basic concepts and results of the Γ-convergence which are taken

from [13]. Let Ω be a bounded open set in Rn. Consider the functional

Jλ(u,Ω) :=


∫

Ω

aij(λ
1/nx)DiuDjudx if u ∈ H1(Ω),

∞ otherwise.

(4.42)

By [13, Chapter 8], we can define the Γ-convergence of a sequence of functionals

as follows.

Definition 4.16. Let X be a metric space. A sequence of functionals Fh is said to

Γ(X)-converge to F if the following conditions are satisfied:

(i) For every u ∈ X and for every sequence (uh) converging to u in X, we have

F (u) ≤ lim inf
h→0

Fh(uh).

(ii) For every u ∈ X, there exists a sequence (uh) converging to u in X, such that

F (u) = lim
h→0

Fh(uh).

From [13, 39], we have that the Γ-convergence of Jλ is equivalent to the G-

convergence of elliptic operator Lλ and a crucial result on Gamma-convergence of

Jλ as follows.

Theorem 4.17 (cf. [39, Theorem 4.3]). The functionals Jλ Γ(L2)-converge as λ→

∞ to a functional J0, where J0 is a quadratic functional of the form

J0(u) :=


∫

Ω

qijDiuDjudx if u ∈ H1(Ω),

∞ otherwise.

Here qij are the constants coefficients of the limit operator L0 as in Lemma 4.6.
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To deal with the Dirichlet boundary condition, we need to use the cut-off function

and the fundamental estimate.

Definition 4.18. [13, Definition 18.1] Let A be the class of all open subsets of Ω

and A′, A′′ ∈ A with A′ b A′′. We say that a function ϕ : Rn → R is a cut-off

function between A′ and A′′ if ϕ ∈ C∞0 (A′′), 0 ≤ ϕ ≤ 1 on Rn, and ϕ = 1 in a

neighborhood of A′ .

Definition 4.19. [13, Definition 18.2] Let F : Lp(Ω) × A → [0,∞] be a non-

negative functional. We say that F satisfies the fundamental estimate if for every

ε > 0 and for every A′, A′′, B ∈ A, with A′ b A′′, there exists a constant M > 0

with the following property: for very u, v ∈ Lp(Ω), there exists a cut-off function ϕ

between A′ and A′′, such that

F (ϕu+ (1− ϕ)v, A′ ∪B) ≤ (1 + ε)(F (u,A′′) + F (v,B))

+ ε(‖u‖pLp(S) + ‖v‖pLp(S) + 1) +M‖u− v‖pLp(S),
(4.43)

where S = (A′′\A′) ∩ B. Moreover, if F is a class of non-negative functionals on

Lp(Ω) × A, we say that the fundamental estimate holds uniformly in F if each

element F of F satisfies the fundamental estimate with M depending only on

ε, A′, A′′, B, while ϕ may depend also on F, u, v.

The result in [13, Theorem 19.1] provides a wide class of integral functionals

uniformly satisfying the fundamental estimate.

Theorem 4.20. [13, Theorem 19.1] Let c1, c2, c3, c4 be real numbers with ci ≥ 0,

and let σ : A → [0,∞] be a superadditive increasing function with σ(A) < ∞ for

every A b Ω. Denote by F = F(p, c1, c2, c3, c4, σ) the class of all local functionals

F : Lp(Ω) × A → [0,∞] for which there exists a function a ∈ L1
loc(Ω) and two

non-negative Borel functions

f : Ω×R× Rn → [0,∞) and g : Ω× Rn → [0,∞)

(depending on F ) such that

(i) F (u,A) =


∫
A

f(x, u(x), Du(x))dx, if u ∈ W 1,1
loc (A),

∞, otherwise,
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(ii) g(x, ξ) ≤ f(x, s, ξ) ≤ c1g(x, ξ) + c2|s|p + a(x),

(iii) 0 ≤ g(x, ξ) ≤ c3|ξ|p + a(x),

(iv) g(x, ·) is convex on Rn,

(v) g(x, 2ξ) ≤ c4(2g(x, ξ) + a(x)),

(vi)
∫
A
a(x)dx ≤ σ(A),

for every u ∈ Lp(Ω), A ∈ A, x ∈ Ω, s ∈ R, ξ ∈ Rn. Then the fundamental estimate

holds uniformly in the class F .

Note that each functional F : Lp(Ω)×A → [0,∞] of the form

F (u,A) =


∫
A

f(x,Du(x))dx, if u ∈ W 1,1
loc (A),

∞, otherwise,

with

f(x, ξ) =
n∑

i,j=1

aij(x)ξiξj, and 0 ≤
n∑

i,j=1

aij(x)ξiξj ≤ β|ξ|2,∀x ∈ Ω,∀ξ ∈ Rn

belongs to the class F = F(p, 1, 0, β, 2, σ), with σ is the usual Lebesgue measure in

n-dimension. For each functional in F , we can choose a = 0, g(x, ξ) = |ξ|2 and then

all the conditions from (i) to (vi) in Theorem 4.20 hold. Thus for every F ∈ F ,

there exists the cut-off function ϕ such that (4.43) hold with constant M does not

depend on F . In particular, our functional Jλ belongs to F and it guarantees the

existence the cut-off function ξλ with constant M independent of λ.

4.2.2 Uniform convergence of the rescaled variational

solutions

Now we are ready to prove Theorem 4.15.

Proof of Theorem 4.15. Fix T > 0. By Lemma 4.12, we can bound Ωt(u
λ) by

Ω := Bδ(0) for some δ > 0, for all 0 ≤ t ≤ T and λ > 0. For some ε > 0, define

Ωε := Ω\B(0, ε), Qε := Ωε × [0, T ] . We will prove the convergence in Qε.

We argue the same way as in the proof of Chapter 3, Theorem 3.12. Using the

boundedness of uλ, uλt and the standard regularity estimates for an elliptic obstacle
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problem which hold uniformly in λ, we obtain a uniform Hölder estimate for uλ.

Then by the Arzelà-Ascoli theorem and diagonalization argument, we can find a

function ū ∈ C((Rn \ {0})× [0,∞)) and a subsequence {uλk} ⊂ {uλ} such that

uλk → ū locally uniformly on (Rn \ {0})× [0,∞) as k →∞,

uλk(·, t)→ ū(·, t) strongly in H1(Ωε) for all t ≥ 0, ε > 0.

To finish the proof, we need to show that the function ū is the solution of the

limit problem (4.38) and then by the uniqueness of the limit problem, we deduce

that the convergence is not restricted to a subsequence. Firstly we show that ū has

the correct singularity by the following lemma.

Lemma 4.21. We have

lim
|x|→0

u(x, t)

UC∗,L(x, t)
= 1

for every t ≥ 0, where L = 〈1/g〉 as in Lemma 2.20 and C∗ as in Lemma 4.14.

Proof. Let C∗ as in Lemma 3.11 and F be the fundamental solution of (4.10) as in

Section 4.1.3. Fix ε > 0. By Lemma 3.11, there exists a large enough such that∣∣∣∣P (x)

F (x)
− C∗

∣∣∣∣ < ε

2
, in {|x| ≥ a}. (4.44)

In particular, (4.44) holds for every x, |x| = a.

Consider the Stefan problem in the set Ωa := {|x| ≥ a}, K ⊂ Ωa for a large

enough. The fixed boundary {|x| = a} is a compact subset of Rn\K. Then by

Theorem 3.10, there exists t0 > 0 such that for all t ≥ t0,∣∣∣∣v(x, t)

F (x)
− P (x)

F (x)

∣∣∣∣ < ε

2
, for all x, |x| = a.

Thus by triangle inequality we have for all t ≥ t0, for all x such that |x| = a,∣∣∣∣v(x, t)

F (x)
− C∗

∣∣∣∣ < ε.

Let Φ(x, t) be the fundamental solution of parabolic equation

ut − Lu = 0. (4.45)

As shown in [19,3], such unique fundamental solution exists and satisfies

N−1t−
n
2 e−

N|x|2
t ≤ Φ(x, t) ≤ Nt−

n
2 e−

|x|2
Nt (4.46)
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for some N > 0. We consider θ1, θ2 as follows:

θ1(x, t) :=

[
(C∗ − ε)F (x) +

c2h(x)

t
− c3t

(2−n)/n

]
+

χE(t),

θ2(x, t) := (C∗ + ε)F (x) + C2Φ(x, t),

where E(t), h(x) are defined as in Section 4.1.3.2. We will show that we can choose

the coefficients such that θ1 is a subsolution and θ2 is a supersolution of (3.1) in

{|x| ≥ a} × {t ≥ t0} for some t0. Since we fix the first coefficient of θ1 and θ2, we

need to be more careful to check the boundary and initial conditions.

Note that on the set {|x| = a}, θ1 → (C∗ − ε)F (x) and θ2 → (C∗ + ε)F (x)

uniformly as t → ∞. Thus we can choose a large time t0 such that θ1 ≤ v ≤ θ2

on {|x = a|} × {t ≥ t0}. By (4.28), we can choose c2 large enough such that

supp θ1(·, t0) ⊂ E(t0) ⊂ Ba(0) and then θ1(·, t0) ≤ v(·, t0) in {|x| ≥ a}. Following

Section 4.1.3.2, by choosing larger c2, t0 if necessary and c3 satisfying (4.29), (4.31)

then θ1 is a subsolution of (3.1) in {|x| ≥ a} × {t ≥ t0}.

Fix the time t0 such that θ1 is a subsolution of (3.1) in {|x| ≥ a} × {t ≥ t0} as

above. By (4.11) and (4.46), θ2 > 0 in Rn. Moreover, since F (x) and Φ(x, t) are

the fundamental solutions of (4.10) and (4.45) respectively, then (θ2)t −Lθ2 = 0 in

Rn. If we choose C2 large enough then θ2(·, t0) > v(·, t0) and θ2 is a super solution

of (3.1) in {|x| ≥ a} × {t ≥ t0}.

By comparison principle, θ1 ≤ v ≤ θ2. Moreover,

θ1(x, t) ≥ θ̃1(x, t) :=
[
(C∗ − ε)F (x)− c3t

(2−n)/n
]

+
.

Therefore θ̃λ1 ≤ vλ ≤ θλ2 .

Noting that Φλ(x, t) := λ(n−2)/nΦ(λ1/nx, λt)→ 0 uniformly as λ→∞ by (4.46),

then by Lemma 4.10, θ̃λ1 , θ
λ
2 converges locally uniformly to θ0

1, θ
0
2 of the form

θ0
1(x, t) :=

[
(C∗ − ε)F 0(x)− c3t

(2−n)/n
]

+
,

θ0
2(x, t) := (C∗ + ε)F 0(x),

where F 0 is the fundamental solution of −L0u = 0, L0 is the limit of the operators

Lλ as in Lemma 4.6. Applying the same method as in [45] we have∫ t

0

θ0
1(x, s)ds ≤ u(x, t) ≤

∫ t

0

θ0
2(x, s)ds. (4.47)
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By Lemma 4.11 we obtain[
(C∗ − ε)F 0(x)t− c3n

2
t2/n + o(F 0(x))

]
+
≤ u(x, t) ≤ (C∗ + ε)F 0(x)t

as |x| → 0. Dividing both sides of by F 0(x) and taking the limit as |x| → 0 we get

(C∗ − ε)t ≤ lim inf
|x|→0

u(x, t)

F 0(x)
≤ lim sup

|x|→0

u(x, t)

F 0(x)
≤ (C∗ + ε)t.

Since ε > 0 is arbitrary, we have the correct singularity by sending ε to 0.

Finally, we will check that the limit function ū satisfies the inequality and equal-

ity in (4.38).

Lemma 4.22. For each 0 ≤ t ≤ T , w = u(·, t) satisfies

q(w, φ) ≥ 〈−L, φ〉 , ∀φ ∈ W1, (4.48)

q(w,ψw) = 〈−L, ψw〉 , ∀ψ ∈ W2, (4.49)

where L = 〈1/g〉 and W1,W2 were defined as in Section 4.1.4.2.

Proof. Fix t ∈ [0, T ] and take any φ ∈ W1. By continuity, we can choose φ with a

compact support contained in Ω := B(0, R)\B(0, ε0) for some R, ε0. Let wk(x) :=

uλk(x, t) and ϕ := w+ φ ∈ H1(Rn). By Theorem 4.17, there exists a sequence {ϕk}

that converges strongly in L2(Ω) to ϕ such that

Jλk(ϕk,Ω)→ J0(ϕ,Ω). (4.50)

We will show that we can modify ϕk into ϕ̃k such that ϕ̃k ∈ Kλk(t) and all the

convergences are preserved.

First, we see that J0(ϕ̄,Ω) < ∞ since ϕ̄ ∈ H1(Ω). By (4.50), Jλk(ϕk,Ω) < ∞

and hence ϕk ∈ H1(Ω) when k is large enough.

Next, we need to modify ϕk so that the boundary condition on Kλk is satisfied.

Since ϕ ∈ H1(Ω), for every ε > 0, there exists a compact set A(ε) ⊂ Ω such that

suppφ ⊂ A(ε) and ∫
Ω\A(ε)

|Dϕ|2 dx < ε. (4.51)

Let A′(ε), A′′(ε) such that A(ε) ⊂ A′(ε) b A′′(ε) b Ω and B(ε) = Ω\A(ε). By

[13, Theorem 19.1], the fundamental estimate (4.43) holds uniformly in the class of

all functionals of the form (4.42). Thus there exists a constant M ≥ 0 independent
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of λk and a sequence of cut off functions ξkε ∈ C∞0 (A′′(ε)), 0 ≤ ξkε ≤ 1, ξkε = 1 in a

neighborhood of A′(ε) such that

Jλk(ξkεϕ
k + (1− ξkε )(wk + φ),Ω) ≤(1 + ε)(Jλk(ϕk, A′′(ε)) + Jλk(wk + φ,B(ε)))

+ ε(‖ϕk‖2
L2(Ω) + ‖wk + φ‖2

L2(Ω) + 1)

+M‖ϕk − wk − φ‖2
L2(Ω).

(4.52)

Define

ϕkε(x) :=

 ξkε (x)ϕk(x) + (1− ξkε (x))(wk(x) + φ(x)) if x ∈ Ω,

wk(x) if x /∈ Ω.

Then ϕkε ∈ H1(Rn), ‖ϕkε − ϕ̄‖L2(Ω) ≤ ‖ϕk − ϕ̄‖L2(Ω) + ‖wk + φ − ϕ̄‖L2(Ω) → 0 as

k →∞ and ϕkε − wk has compact support in Ω.

By ellipticity (4.3) we have

Jλk(wk + φ,B) ≤ β

∫
B(ε)

|D(wk + φ)|2 dx. (4.53)

By (4.51), choose the sequence εn := 1
n

and denote ϕkn := ϕkεn . By (4.52), (4.53), the

convergences ϕkn → ϕ in L2(Ω) and wk → w in H1(Ω) as k → ∞, for each n there

exists k0(n) such that
‖ϕkn − ϕ‖L2(Ω) ≤ min

{
1

n
,

1

Mn

}
,

Jλk(ϕkn,Ω) ≤
(

1 +
1

n

)(
J0(ϕ,Ω) +

β + 1

n

)
+

1

n

(
2‖ϕ‖L2(Ω) +

1

n
+ 1

)
+

2

n
,

(4.54)

for every k ≥ k0(n). We can choose k0(n) such that k0 is an increasing function of

n and k0(n)→∞ as n→∞. We will form a new sequence {ϕ̂k} from the class of

sequences {ϕkn}. The idea is that for each k, we will choose an appropriate n(k) and

set ϕ̂k := ϕkn(k). We need to choose a suitable n(k) such that n(k)→∞ and (4.54)

holds for ϕkn(k) when k is large enough. To this end it we we introduce an “inverse”

of k as

n(k) := min{j ∈ N : k < k0(j + 1)}.

n(k) is well-defined, non-decreasing and tends to∞ as k →∞. From the definition

of n(k) we see that if k ≥ k0(2) then n(k) ≥ 2 and k0(n(k)) ≤ k < k0(n(k) + 1)

(otherwise n(k) is not the minimum). Thus by (4.54) and definition of ϕ̂k we have
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for all k ≥ k0(2),

‖ϕ̂k − ϕ‖L2(Ω) ≤ min

{
1

n(k)
,

1

Mn(k)

}
,

Jλk(ϕ̂k,Ω) = Jλk(ϕkn(k),Ω)

≤
(

1 +
1

n(k)

)(
J0(ϕ,Ω) +

β + 1

n(k)

)
+

1

n(k)

(
2‖ϕ‖L2(Ω) +

1

n(k)
+ 1

)
+

2

n(k)
.

Sending k to ∞ we get
lim
k→∞
‖ϕ̂k − ϕ̄‖L2(Ω) = 0,

lim sup
k→∞

Jλk(ϕ̂k,Ω) ≤ J0(ϕ̄,Ω).

On the other hand, by Theorem 4.17,

J0(ϕ̄,Ω) ≤ lim inf
k→∞

Jλk(ϕ̂k,Ω)

and thus we can conclude that ϕ̂k → ϕ̄ strongly in L2(Ω) and Jλk(ϕ̂k,Ω)→ J0(ϕ̄,Ω).

Moreover, by the definitions of ϕkε , ϕ̂
k, we also have ϕ̂k ∈ H1(Ω) and ϕ̂k − wk has

compact support in Ω.

Now, following the argument in the proof of [39, Lemma 4.5], if we set ϕ̃k := |ϕ̂k|

then ϕ̃k ∈ H1(Ω), ϕ̃k ≥ 0, ϕ̃k = wk in Ωc ⊃ Kλk for k large enough, and thus ϕ̃k ∈

Kλk(t) for k large enough. Moreover, ϕ̃k → ϕ̄ in L2(Ω) and Jλk(ϕ̃k,Ω)→ J0(ϕ̄,Ω).

Since wk, ϕ̃k ∈ Kλk(t) and supp(ϕ̃k−wk) ⊂ Ω, by (4.19) and integration by parts

formula we have

aλkΩ (wk, ϕ̃k − wk) ≥ −λ(2−n)/n
k

〈
uλkt , ϕ̃

k − wk
〉

Ω
+

〈
− 1

gλk
, ϕ̃k − wk

〉
Ω

.

The inequality aλk(u, v − u) ≤ 1
2
Jλk(v)− 1

2
Jλk(u) for any u, v implies

1

2
Jλk(ϕ̃k,Ω) ≥ 1

2
Jλk(wk,Ω)− λ(2−n)/n

k

〈
uλkt , φ

k
〉

Ω
+

〈
− 1

gλk
, φk
〉

Ω

,

where φk := ϕ̃k−wk → φ in L2(Ω). Taking the lim inf as k →∞ and using the fact

that uλkt is bounded give

1

2
J0(ϕ,Ω) ≥ 1

2
J0(w,Ω) + 〈−L, φ〉Ω . (4.55)
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This holds for any φ ∈ W1 and therefore also for δφ, where 0 < δ < 1. Replacing φ

in (4.55) by δφ we have

1

2
J0(w̄ + δφ,Ω) ≥ 1

2
J0(w̄,Ω) + 〈−L, δφ〉

⇔ 1

2

[
J0(w̄,Ω) + 2δqΩ(w̄, φ) + δ2J0(φ)

]
≥ 1

2
J0(w̄,Ω) + 〈−L, δφ〉 .

Dividing both sides by δ and sending δ → 0 we obtain

qΩ(w, φ) ≥ 〈−L, φ〉Ω .

Since suppφ ∈ Ω, we conclude that (4.48) holds in Rn.

Now take ψ ∈ W2. As above, we assume that ψ has a compact support contained

in Ω, and without loss of generality we can also assume that 0 ≤ ψ ≤ 1, ψ = 0 on

Bε(0) (otherwise consider ψ
maxRn ψ

instead). Since ψ ∈ W2 then ψw ∈ W1 and (4.48)

holds for ψw̄, we have q(w,ψw) ≥ 〈−L, ψw〉. For the reverse inequality, define

ϕ := (1 − ψ)w ∈ H1(Ω). Arguing as before, we can choose ϕ̃k ∈ Kλk(t) such that

ϕ̃k → ϕ in L2(Ω), Jλk(ϕ̃k,Ω) → J0(ϕ,Ω). Again, since wk, ϕ̃k ∈ Kλk(t), by (4.19)

and the inequality aλk(u, v − u) ≤ 1
2
Jλk(v)− 1

2
Jλk(u) we have

1

2
Jλk(ϕ̃k,Ω) ≥ 1

2
Jλk(wk,Ω)− λ(2−n)/n

k

〈
uλkt , ϕ̃

k − wk
〉

Ω
+

〈
− 1

gλk
, ϕ̃k − wk

〉
Ω

,

Taking lim inf as k →∞ and arguing the same as in the proof of (4.48) we get

qΩ(w,ϕ− w) ≥ 〈−L, ϕ− w〉Ω

⇔ −qΩ(w,ψw) ≥ −〈−L, ψw〉Ω

⇔ qΩ(w,ψw) ≤ 〈−L, ψw〉Ω .

Thus we have q(w,ψw) = 〈−L, ψw〉 for every ψ ∈ W2.

This completes the proof of Theorem 4.15.

4.3 Uniform convergence of the rescaled

viscosity solutions and free boundaries

In this section, we will deal with the convergence of vλ and their free boundaries.

Let v be the viscosity solution of the Stefan problem (4.1) and vλ be its rescaling.
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Let V = VC∗,L be the solution of Hele-Shaw problem with a point source (4.35),

where C∗ is the constant of Lemma 4.14 and L = 〈1/g〉 as in Lemma 2.20.

We define the half-relaxed limits of vλ in {|x| 6= 0, t ≥ 0}:

v∗(x, t) = lim sup
(y,s),λ→(x,t),∞

vλ(y, s), v∗(x, t) = lim inf
(y,s),λ→(x,t),∞

vλ(y, s),

Remark 4.23. V is continuous in {|x| 6= 0, t ≥ 0}, therefore V∗ = V = V ∗.

We will prove a result similar to Chapter 3, Theorem 3.16.

Theorem 4.24. Let n ≥ 3. The rescaled viscosity solution vλ of the Stefan problem

(4.1) converges locally uniformly to V = VC∗,〈1/g〉 in (Rn\{0}) × [0,∞) as λ → ∞

and

v∗ = v∗ = V.

Moreover, the rescaled free boundary {Γ(vλ)}λ converges to Γ(V ) locally uniformly

with respect to the Hausdorff distance.

All the viscosity arguments used in Chapter 3, Section 3.3 can be applied in our

anisotropic case with some minor adaptations. Therefore, we will omit some of the

proofs and refer to Chapter 3, Section 3.3 and [38, 39, 45] for more details. Let us

give a brief review of the techniques in the spirit of Chapter 3, Section 3.3 as follows.

1. We first prove the convergence of the rescaled viscosity solution and their free

boundary under the condition (4.6).

• By the regularity of the initial data v0 as in (4.6), we deduce a weak

monotonicity of the solution v.

• Using the weak monotonicity and point-wise arguments with comparison

principles, we then show the convergences for regular initial data.

2. For general initial data, we will find upper and lower regular bounds for initial

data and use a comparison principle together with the uniqueness of limit

function to have the conclusion.

We will state the necessary results here with some remarks on the adaptations

for the anisotropic case.
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4.3.1 Some necessary technical results

First, we have the correct singularity of v∗ and v∗ at the origin, which can be

established similarly to Lemma 4.21.

Lemma 4.25 (cf. Chapter 3, Lemma 3.19, v∗ and v∗ behave as V at the origin).

The functions v∗, v∗ have a singularity at 0 with

lim
|x|→0+

v∗(x, t)

V (x, t)
= 1, lim

|x|→0+

v∗(x, t)

V (x, t)
= 1, for each t > 0. (4.56)

Proof. Arguing as in the proof of Lemma 4.21.

We will also make use of an uniform estimate on uλ and the convergence of

boundary points deduced from convergence of variational solutions.

Lemma 4.26 (cf. [38, Lemma 3.1]). There exists constant C > 0 independent of λ

such that for every x0 ∈ Ωt0(u
λ) and Br(x0) ∩ Ωλ

0 = ∅ for some r, for every λ we

have

sup
x∈Br(x0)

uλ(x, t0) > Cr2.

Proof. We will prove the statement for x0 ∈ Ωt0(u
λ) first, the results then follows

by continuity of uλ. Since Br(x0) ∩ Ωλ
0 = ∅ then uλ satisfies

λ(2−n)/nuλt − Lλuλ = −1

g
in {uλ > 0} ∩ (Br(x0)× {t = t0})

and λ(2−n)/n → 0 as λ → ∞, uλt (·, t0) is bounded, −1

g
≤ − 1

M
then there exists a

positive constant C0(n,M, λ0) such that −Lλuλ ≤ −C0 in {uλ > 0}∩(Br(x0)×{t =

t0}) for λ ≥ λ0 large enough.

Define

wλ(x) = uλ(x, t0)− C0

n
hλ(x− x0)

where hλ(x) is the barrier with quadratic growth corresponding to elliptic operator

Lλ stated in Section 4.1.3.2. We have {wλ > 0}∩Br(x0) ⊂ {uλ > 0}∩ {t = t0} and

therefore, for all λ ≥ λ0,

−Lλwλ ≤ 0 in {wλ > 0} ∩Br(x0).

We see that wλ(x0) > 0, then maximum of wλ in Br(x0) is positive and by

maximum principle, wλ attains the maximum on the boundary {wλ > 0}∩ ∂Br(x0)
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and therefore

sup
Br(x0)

uλ(x, t0) ≥ sup
|x−x0|=r

uλ(x, t0) > inf
|x−x0|=r

C0

n
hλ(x− x0).

By the quadratic growth of hλ, where the coefficients on the growth rate only de-

pends on the elliptic constants, we have

sup
Br(x0)

uλ(x, t0) ≥ Cr2,

for some constant C which does not depend on λ.

Lemma 4.27 (cf. [39, Lemma 5.4]). Suppose that (xk, tk) ∈ {uλk = 0} and (xk, tk, λk)→

(x0, t0,∞). Let U = UC∗,L be the limit function as in Theorem 4.15. Then:

a) U(x0, t0) = 0,

b) If xk ∈ Γtk(u
λk) then x0 ∈ Γt0(U),

Proof. See proof of [39, Lemma 5.4].

The weak monotonicity in time of the solution of the Stefan problem is given by

the following lemma.

Lemma 4.28 ([cf. Chapter 3, Lemma 3.21, Lemma 3.22, Weak monotonicity). Let

u be the solution of the variational problem (4.7), and v be the associated viscosity

solution of the Stefan problem (4.1). Suppose that v0 satisfies (4.6). Then there

exist C ≥ 1 independent of x and t such that

v0(x) ≤ Cv(x, t) and u(x, t) ≤ Ctv(x, t) in Rn\K × [0,∞). (4.57)

Proof. Following the same arguments as in Chapter 3, Lemma 3.21, Lemma 3.22, we

obtain (4.57) simply by using elliptic operator L instead of the Laplace operator.

Lemma 4.26 and Lemma 4.28 automatically give us a crucial uniform estimate

on vλ and allow us to show the relationship between v∗, v
∗ and V .

Corollary 4.29. There exists a constant C1 = C1(n,M) such that if (x0, t0) ∈ Ω(vλ)

and Br(x0) ∩ Ωλ
0 = ∅, we have for every λ

sup
Br(x0)

vλ(x, t0) ≥ C1r
2

t0
.

82



Lemma 4.30. Let vλ be a viscosity solution of (4.18). Then the following state-

ments hold.

i) v∗(·, t) is subsolution of (4.16) in Rn\{0} and v∗(·, t) is supersolution of (4.16)

in Ωt(v∗)\{0} in viscosity sense.

ii) Ω(V ) ⊂ Ω(v∗) and in particular v∗ ≥ V .

iii) Γ(v∗) ⊂ Γ(V ).

Proof. i) follows from a standard viscosity argument with noting that we can take

a sequence of test functions for rescaled elliptic equation that converges to the test

function for (4.16) by classical homogenization results.

ii) See Chapter 3, Lemma 3.23, the conclusion holds by i), Lemma 4.56 and

Lemma 4.28.

iii) See [39, Lemma 5.6 ii].

Now we are ready to prove Theorem 4.24.

4.3.2 Proof of Theorem 4.24

Proof. (See proof of Chapter 3, Theorem 3.16 for more details).

Step 1. We prove the convergence of viscosity solutions and the free boundaries

under the conditions (4.6) and (4.57) first.

By Lemma 4.30, the correct singularity of v∗ from Lemma 4.56 and the compar-

ison principle for elliptic equation (4.16) we have

V (x, t) ≤ v∗(x, t) ≤ v∗(x, t) ≤ VC∗+ε,〈1/g〉(x, t).

Let ε→ 0 we obtain v∗ = v∗ = V by continuity and in particular, Γ(v∗) = Γ(v∗) =

Γ(V ).

Now we need to show the uniform convergence of the free boundaries with respect

to the Hausdorff distance. Fix 0 < t1 < t2 and denote:

Γλ := Γ(vλ) ∩ {t1 ≤ t ≤ t2}, Γ∞ := Γ(V ) ∩ {t1 ≤ t ≤ t2},

a δ-neighborhood of a set A in Rn × R is

Uδ(A) := {(x, t) : dist((x, t), A) < δ}.
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We need to prove that for all δ > 0, there exists λ0 > 0 such that:

Γλ ⊂ Uδ(Γ
∞) and Γ∞ ⊂ Uδ(Γ

λ), ∀λ ≥ λ0. (4.58)

The first inclusion follows by contradiction argument, using Lemma 4.27 above.

For the second inclusion in (4.58), we will prove a pointwise result first. Suppose

that there exists δ > 0, (x0, t0) ∈ Γ∞ and {λk}, λk →∞, such that dist((x0, t0),Γλk) ≥
δ

2
for all k. Then there exists r > 0 such that Dr(x0, t0) := B(x0, r)× [t0− r, t0 + r]

satisfies either:

Dr(x0, t0) ⊂ {vλk = 0} for all k, (4.59)

or after passing to a subsequence,

Dr(x0, t0) ⊂ {vλk > 0} for all k. (4.60)

If (4.59) holds, clearly V = v∗ = 0 in Dr(x0, t0) which is in a contradiction with the

assumption that (x0, t0) ∈ Γ∞. Thus we assume that (4.60) holds. Since the rescaled

parabolic operator becomes elliptic in the limit, we will apply the Moser-Harnack’s

inequality for vλk in a shrinking domain of time by setting

wk(x, t) := vλk(x, λ
(2−n)/n
k t)

then wk > 0 in Dw
r (x0, t0) := B(x0, r) × [λ

(n−2)/n
k (t0 − r), λ(n−2)/n

k (t0 + r)] and wk

satisfies wkt − Lλwk = 0 in Dw
r (x0, t0). Since λ

(n−2)/n
k

r
2
→ ∞ as k → ∞, by Moser-

Harnack’s inequality for the parabolic equation, for fixed τ > 0 there exists a con-

stant C1 > 0 such that for each t ∈ [t0 − r
2
, t0 + r

2
] and λk such that τ < λ

(n−2)/n
k

r
4

we have

sup
B(x0,r/2)

wk(·, λ(n−2)/n
k t− τ) ≤ C1 inf

B(x0,r/2)
wk(·, λ(n−2)/n

k t).

Note that C1 depends only on τ and elliptic constants, and therefore does not depend

on λk. This inequality together with Corollary 4.29 yields:

C2r
2

t− λ(2−n)/n
k τ

≤ sup
B(x0,r/2)

vλk(·, t− λ(2−n)/n
k τ) ≤ C1 inf

B(x0,r/2)
vλk(·, t)

for all t ∈ [t0− r
2
, t0 + r

2
], λk ≥ λ0 large enough, where C2 only depends on n,M, λ0.

Taking the limit when λk →∞, the uniform convergence of {vλk} to V gives V > 0

in B(x0,
r
2
)× [t0 − r

2
, t0 + r

2
], which is a contradiction with (x0, t0) ∈ Γ∞ ⊂ Γ(V ).

84



We have proved that every point of Γ∞ belongs to all Uδ/2(Γλ) for sufficiently

large λ. Therefore the second inclusion in (4.58) follows from the compactness of

Γ∞. This concludes the proof of Theorem 4.24 when (4.57) holds.

Step 2. For general initial data, arguing as in step 2 of the proof of Chapter 3,

Theorem 3.16, we are able to find upper and lower bounds for the initial data for

which (4.57) holds. The comparison principle for viscosity solution of the Stefan

problem (4.1) then yields the convergence since the limit function V is unique, does

not depend on the initial data.
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Appendix A

The fundamental solution of an

uniformly elliptic equation of

divergence form

In this section, we will recall about the fundamental solution or Green’s function

of an uniformly second order elliptic equation of divergence form and some useful

results used in our work. More specifically, as in Section 4.1.1, we consider a self-

adjoint uniformly elliptic second order linear operator of divergence form −L in

dimension n ≥ 3, where L is defined as in Section 1.2 and A(x) = (aij(x)) is

a symmetric, bounded matrix satisfying the ellipticity (4.3) as well as the highly

oscillating property (2.20).

We define Green’s function g(x, y) of the operator −L on a bounded domain

Ω ⊂ Rn as the weak solution (in distributional sense), vanishing on ∂Ω of the

equation

− Lg = δy, (A.1)

where δy is the Dirac measure at y. The basic facts of Green’s function were first

proved for elliptic operator of the form −L with symmetric bounded measurable

coefficients in a bounded domain Ω in Rn, n ≥ 3, by Littman, Stampacchia and

Weinberger in [41]. Their results were then studied extensively for more general

elliptic operators with non-symmetric coefficients in [26], where the author proved

the existence, the uniqueness and the bounds for Green’s function in a bounded

domain with the constants in the estimate are independent of the domain. These
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results are also obtained by compactness methods in [4]. More precisely, we have

the following theorem taken from [26, Theorem 1.1]. Let us denote some notations

of the weak Lp spaces. Let Ω be a bounded domain in Rn and p ∈ [1,∞]. We define

a Banach space Lp,∞ as

Lp,∞(Ω) = {f : Ω→ R, f measurable, ‖f‖Lp,∞(Ω) <∞},

where

‖f‖Lp,∞(Ω) = sup
t≥0

{
tµ({x ∈ Ω, |f(x)| > t})1/p

}
,

µ is the Lebesgue measure in Rn. Note that (see [26,2]), for any 0 < ε < p− 1,

C(p, ε,Ω)‖f‖Lp−ε(Ω) ≤ ‖f‖Lp,∞(Ω) ≤ ‖f‖Lp(Ω). (A.2)

The explicit formula of C(p, ε,Ω) was given, see [26, 2] and references therein for

more details.

Theorem A.1 (cf. [26, Theorem 1.1]). Assume that A is a bounded, measurable

and uniformly elliptic matrix. Then there exists a unique Green’s function gR(x, y)

of −L in the ball BR := B(0, R), i.e., the function gR : Ω×Ω→ R such that gR ≥ 0,

gR(·, y) ∈ W 1,1(Ω)∩H1
loc(Ω\{y}) satisfying (A.1) in BR and gR(·, y) = 0 if |x| = R.

Moreover for each y ∈ BR,

‖gR(·, y)‖
L

n
n−2 ,∞(BR)

≤ C, (A.3)

‖DgR(·, y)‖
L

n
n−1 ,∞(BR)

≤ C, (A.4)

and for every (x, y) ∈ BR ×BR,

C1|x− y|2−n ≤ gR(x, y) ≤ C2|x− y|2−n, (A.5)

for some constants C,C1, C2.

The optimal constants C1, C2 were given in the remark following [26, Theorem

1.1] as

C1 = C(n)

(
β

α

)n−2
n
(

1 + log

(
β

α

))
,

C2 = c(n)1+( βα)
1/2

,

which are independent of the domain BR as well as the pole y. The point-wise

bounds for the gradient and second derivatives of Green’s function gR were also
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established in [26], however, the constants in the estimates priori depend on the

domain BR.

The remark following [41, Corollary 7.1] says that we can define Green’s function

G(x, y) in the whole space by taking the limit of Green’s functions gR(x, y) in B(0, R)

as the radius R→∞. This Green’s function has all the basic properties of Green’s

function in a bounded domain such as G is symmetric, non-negative, the total mass

of G in the whole space is 1 and the convolution of G with a H1-function ψ is the

solution of the problem 
−Lu = ψ,

lim
x→∞

u = 0.

This function is not inH1(Rn) but it is inW 1,p
loc (Rn)∩H1

loc(Rn\{y}) for every p < n
n−1

.

Moreover, the bounds (A.5) for Green’s function gR hold uniformly in Rn, therefore

also hold for the limit function. These results are proved in detail by Anantharaman,

Blanc and Legoll in [2]. Especially, in this paper the authors also addressed the

question of the decay of the derivatives of G at infinity. In this section, we show the

proof of the existence and uniqueness results, Theorem 4.3, as well as the proof for

the bounds of gradients, Lemma 4.5 taken from [2].

Proof of Theorem 4.3. These following arguments are given in the proof of [2, The-

orem 1].

Let R > 0 and gR be Green’s function of −L in BR. If R′ > R then gR′ ≥ gR

in BR × BR by the maximum principle. Therefore gR is a non-decreasing function

of R, bounded in every compact set in R2n\{x = y} by (A.5), which implies that

gR converges to some function G in R2n\{x = y} as R → ∞. In addition, by

(A.5), (A.2) and the Dominated Convergence Theorem, we also can deduce that

gR → G in Lploc(R2n) and gR(·, y) → G(·, y) in Lploc(Rn), p < n
n−2

. The limit

function G has all the basic properties of gR such as it is non-negative, symmetric

and lim|x−y|→∞G(x, y) = 0. G also satisfies the estimate (A.5).

We will check that the limit function G satisfies (A.1) in Rn and G(·, y) belongs to

the space W 1,1(Rn)∩H1
loc(Rn\{y}). Let Ω ⊂ Rn be any bounded domain. By (A.4)

and (A.2), DgR(·, y) is bounded in (Lp(Ω))n for every R such that Ω ⊂ BR and any

p < n
n−1

. Hence, extracting a subsequence if necessary, there exist a T ∈ (Lp(Ω))n

such that DgR(·, y) ⇀ T weakly in (Lp(Ω))n, p < n
n−1

. Since gR(·, y) → G(·, y) in
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Lp(Ω), p < n
n−2

then T = DG(·, y). Now for every ϕ ∈ C∞0 (Rn), choose Ω such that

the support of ϕ is contained in Ω. For every R such that Ω ⊂ BR, since gR is

Green’s function of −L in BR then∫
Ω

aij(x)DigR(x, y)Djϕ(x)dx =

∫
BR

aij(x)DigR(x, y)Djϕ(x)dx = ϕ(y), ∀y ∈ BR.

(A.6)

Sending R → ∞ in (A.6) we can conclude that G satisfies (A.1) in distributional

sense. Moreover, by (A.3) and (A.4), we see that G(·, y) ∈ W 1,p
loc (Rn) for any p < n

n−1
.

The fact that G(·, y) ∈ H1(Rn\{y}) was obtained in the proof of Theorem A.1 in [26]

where the arguments do not require the boundedness of the domain.

It remains to check the uniqueness of the function G, then the convergence of

gR to G is not restricted to a subsequence. Assume that G1, G2 are two Green’s

functions, then H = G1 − G2 is a solution of −LH(·, y) = 0 in Rn for any y ∈ Rn.

Fix a y ∈ Rn. By [44, Theorem 4], sup|x−y|=rH(·, y)− inf |x−y|=rH(·, y) must grow at

least like a power of r as r →∞ provided H is not a constant. This is a contradiction

with the growth of G1, G2 provided by (A.5).

Remark A.2. All the arguments used in the proof of Theorem 4.3 are still valid for

elliptic operators of the form −L with non-symmetric coefficients, the only needed

assumptions here are the ellipticity (4.3) and the bounded measurable property of

the coefficients.

Remark A.3. The existence and uniqueness of the fundamental solution of elliptic

operator −L was also deduced in the case n = 2. This result was fist observed by

Kenig and Ni in [33]. An alternative proof was also given in [2]. In particular, we

have the following theorem.

Theorem A.4 (cf. [2, Theorem 2]). Let n = 2 and A is bounded, measurable and uni-

formly elliptic matrix. Then there exist a unique (up to the addition of a constant)

Green’s function G of −L in Rn such that G(·, y) ∈ W 1,p
loc (Rn)∩H1

loc(Rn\{y}), p < 2

and

∃C > 0, ∀(x, y) ∈ R2n, |G(x, y)| ≤ C(1 + | log |x− y||).

The proof of [2, Theorem 2] is based on an approach similar to the proof of

Theorem 4.3 by defining first Green’s function gR of −L in BR, then search for a

limit as R → ∞. However, the estimates in Theorem A.1 cannot be applied since
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they hold only for case n ≥ 3. Instead, in the proof of [2, Theorem 2], the authors

used a gradient bound to construct a limit of DgR and then checked that the limit

is the gradient of Green’s function in Rn. The proof is more technical than the one

for the case n ≥ 3. For more details, see [2].

Now we will show the proof of the gradient estimates, Lemma 4.5 for the case

n ≥ 3. The result for the dimension n = 2 was also established by more complicated

techniques again and is omitted in this work. Note that Lemma 4.5 requires stronger

assumptions than Theorem 4.3 where it holds only for operator −L with bounded,

not necessary symmetric coefficients satisfying (4.3) and (4.4).

Proof of Lemma 4.5 for the case n ≥ 3. This is a part of the proof of [2, Proposi-

tion 5].

This lemma follows by applying an important L∞ estimate of the gradient for a

solution of an uniformly elliptic equation with periodic coefficients in [4, Lemma 16]

and the bound for Green’s function provided by Theorem 4.3. More specifically,

by [4, Lemma 16] we have

∀x ∈ Rn, ∀y ∈ Rn, ∀r < |x− y|, ‖DG(·, y)‖L∞(B(x, r
2

)) ≤
C

r
‖G(·, y)‖L∞(B(x,r)),

where C only depends on the elliptic constants of the operator−L and the dimension

n. Now, by (A.5) we have

‖DG(·, y)‖L∞(B(x, r
2

)) ≤
C

r
sup

z∈B(x,r)

1

|z − y|n−2
. (A.7)

By the continuity of DG(·, y) away from y, (A.7) holds for the point-wise gradient.

Let r = |x−y|
2

, we have

|x− y| ≤ |x− z|+ |z − y| ≤ 1

2
|x− y|+ |z − y|.

This together with (A.7) imply

|DG(·, y)| ≤ 2n−1C

|x− y|n−1

then (4.13) holds. Next, we will show (4.14). If the matrix A is symmetric then

G(x, y) = G(y, x) and (4.14) automatically follows. Otherwise we see that G̃(x, y) =

G(y, x) is Green’s function of the adjoint operator −L∗ = −Di(ajiDj), (see [26,

Theorem 1.3]). Applying (4.13) to G̃ we get (4.14).
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Remark A.5. The proof of [2, Proposition 5] also covers the gradient estimate for

case n = 2. The basic idea is to use the relationship of Green’s function G in 2D

with Green’s function G̃ of operator L̃ in 3D, where L̃u = −Lu − utt and deduce

the estimate for G from the estimate for G̃.

Moreover, the authors in [2] also obtained the bounds for second derivatives of

Green’s function as follows.

Proposition A.6 (cf. [2, Proposition 7]). Assume that the matrix A in the operator L

is a bounded, not necessary symmetric matrix with the coefficients satisfying (4.3)

and (4.4). Then Green’s function of the operator −L satisfies the following estimate:

∃C > 0, ∀x ∈ Rn, y ∈ Rn, |DxDyG(x, y)| ≤ C

|x− y|n
.

Note that similar estimates as in Lemma 4.5 and Proposition A.6 are well-known

for Green’s function in a bounded domain, see [26] for instance. The important point

here is that these estimates continue to hold at infinity. However, as stated before,

even though the bounds for Green’s function hold for elliptic operators with any

bounded, measurable coefficients, the bounds for its gradient require a stronger

assumption of the regularity and periodicity of the coefficients.

In this work, we will refer to the fundamental solution of the elliptic operator

−L as Green’s function of −L in the whole space. We include here the proof of the

asymptotic expansion of the fundamental solution (Green’s function) in dimension

n ≥ 3, Lemma 4.17. This result was proved in [60, Chapter III,Theorem 2] using

the techniques of G-convergence. It turns out that the asymptotic expansion is

determined by the behavior of the fundamental solution of the corresponding G-

convergence operator (see [60, Chapter III]). In a periodic (or stationary ergodic)

setting, the standard homogenization results guarantee that the family of operator

Lε := Dj (aij(ε
−1x)Di) has the G-limit is L0 := qijDij in Rn where qij are constants

(see [60, 32]). We recall the definition of G-convergence in [60,32] as follows.

Let V be a Hilbert space, and let V ∗ be the dual of V . Consider a sequence of

linear operators Aε : V → V ∗ that are uniformly coercive and uniformly bounded:

〈Aεu, u〉 ≥ ν1‖u‖2
V , ν1 > 0,

‖Aεu‖V ∗ ≤ ν2‖u‖V .
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By the Lax-Milgram Lemma, any coercive bounded operator A : V → V ∗ has an

inverse one A−1 : V ∗ → V .

Definition A.7 (cf. [60, Definition 2, §1, Chapter I]). A bounded operator A0 :

V → V ∗ satisfying the coerciveness inequality 〈A0u, u〉 ≥ ν1‖u‖2 is called the G-

limit operator for the sequence Aε (and we write Aε
G−→ A0), if for any f ∈ V ∗

A−1
ε f ⇀ A−1

0 f weakly in V.

Now we will show the proof of Lemma 4.17 taken from the proof of [60, Chap-

ter III,Theorem 2].

Proof of Lemma 4.17. Since A is periodic matrix, [60, Chapter II, Theorem 1] im-

plies that Lε G-converges to a uniform elliptic operator L0 = qijDij with constant

coefficients qij. Without loss of generality, we can assume that L0 = ∆, otherwise

we can use a change of coordinates to recover the general case. Let G,Gε, G0 be

the fundamental solutions as in the assumption of Lemma 4.17. We will show the

uniform convergence of Gε to G0 first.

Let ϕ ∈ C∞0 (Rn), Q be a bounded domain in Rn. Define

uε(x) :=

∫
Rn
Gε(x, y)ϕ(y)dy

then uε is the H1
loc(Rn) solution of the problem

−Lεuε = ϕ in Rn,

lim
|x|→∞

(x) = 0.

Since |Gε| ≤ C1|x − y|2−n by Theorem 4.3 then |uε| ≤ C2|x|2−n, where C2 is inde-

pendent of ε. Moreover, using an estimate for solution of an elliptic equation we

have

‖uε‖H1(Q′) ≤ C(‖uε‖L2(Q) + 1),

where C does not depend on ε. Therefore uε is uniformly bounded in H1(Q′) for

any bounded domain Q′ ⊂ Rn. Hence, there exists a subsequence uεk such that

uεk ⇀ u0 weakly in H1(Q′). Since the G-limit of Lε in Rn is ∆ then by the classical

G-convergence results (see [60]), u0 is the solution of −∆u0 = ϕ in Rn,

|u0(x)| ≤ C2|x|2−n in Rn.
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By the uniqueness of u0, the convergence is not restricted to a subsequence.

Now we have for every ϕ(x), ψ(x) ∈ C∞0 (Rn),∫
R2n

Gε(x, y)ψ(x)ϕ(y)dxdy =

∫
Rn
uε(x)ψ(x)dx→

∫
Rn
u0(x)ψ(x)dx

=

∫
R2n

Φ(x, y)ψ(x)ϕ(y)dxdy,

(A.8)

where Φ is the fundamental solution of Laplace equation. Besides, Gε is uniformly

bounded in any compact set in Rn\{0}. By elliptic regularity, Gε are uniformly

Hölder continuous with respect to ε. Thus, by Arzelà-Ascoli, there exists a subse-

quence Gεk that locally uniformly converges to a function Ĝ in Rn\{0}. Now by

(A.8) and the fundamental lemma of calculus of variations, we have Ĝ = Φ. Since

the limit function Φ is unique then ve conclude that Gε → Φ locally uniformly in

Rn\{0}.

It remains to show the asymptotic expansion formula. Define

θ(x, y) :=
G(x, y)− Φ(x, y)

|x− y|2−n
. (A.9)

Similar to the computations in the proof of Lemma 4.8, we see that Gε(x, y) =

ε2−nG(x
ε
, y
ε
) for every ε > 0. Therefore, for every ε > 0 we have

θ(x, y) =
εn−2Gε(εx, εy)− Φ(x, y)

|x− y|2−n
=
εn−2 (Gε(εx, εy)− Φ(εx, εy))

|x− y|2−n
.

Fix a positive constant a and let ε = |x − y|−1, (x′, y′) = (εx, εy). If (x, y) ∈ A :=

{|x|+ |y| < a|x− y|} then ε > 0 and |x
′|+ |y′| < a,

|x′ − y′| = 1.

Moreover, θ(x, y) = θ̃(x′, y′) = Gε(x′, y′)−Φ(x′, y′)→ 0 uniformly in the set {|x′|+

|y′| < a, |x′ − y′| = 1} as ε → 0. Thus, θ converges uniformly to 0 as |x − y| → ∞

in the set A. By (A.9) then we have an asymptotic expansion of G as

G(x, y) = Φ(x, y) + |x− y|2−nθ(x, y), (A.10)

where θ(x, y)→ 0 as |x− y| → ∞, uniformly on the set {|x|+ |y| < a|x− y|}, a is

any fixed positive constant.
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Lastly, we would like to recall one of the crucial tools to analyze a solution of an

elliptic equation of the form

− Lu = 0 (A.11)

in a punctured domain Ω := {0 < |x| < R} or in a exterior domain Ωe := {|x| > R},

where L is the operator as considered at the beginning of this appendix. The method

we mention here is a generalized Kelvin transformation, which allows us to take a

uniformly elliptic equation (A.11) defined in an exterior domain Ωe into another

uniformly elliptic equation of the same form (with different coefficients) defined in

a punctured domain, and vice versa. This transformation, similarly to the classical

one, can be defined using the fundamental solution of operator −L. Using this

transformation, we are able to prove the asymptotic behavior of the solution of

near-field limit problem, Lemma 4.14.

We recall a generalization of the Kelvin inversion transformation for Laplace’s

equation, which was established by Serrin and Weinberger in [56].

Lemma A.8 (cf. [56, Section 3]). Let u and w be two solutions of the elliptic equa-

tion (A.11) in a domain Ω with w > 0. Let yk = yk(x1, x2, ..., xn), k = 1, , 2, ..., n,

be a continuously differentiable one to one coordinate transformation with non-

vanishing Jacobian J = det(∂yk/∂xi) and inverse xi = xi(y1, ..., yn). Then the

function

v(y) =
u(x(y))

w(x(y))
(A.12)

is a solution of the elliptic equation

Dl(āklDkv) = 0 (A.13)

in the image domain Ω′, where

ākl =
w2

|J |
aij
∂yk
∂xi

∂yl
∂xj

. (A.14)

Proof. As shown in the proof of the first lemma of [56, Section 3], we need to check
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that v is a weak solution of (A.13). Let ϕ ∈ C∞0 (Ω′) then∫
Ω′
āklvkϕldy =

∫
Ω′

w2

|J |
aij
∂yk
∂xi

∂yl
∂xj

vkϕldy

=

∫
Ω

w2

|J |
aij

∂v

∂xi

∂ϕ

∂xj
|J |dx (By a change of variables and chain rule)

=

∫
Ω

w2aij

( u
w

)
i
ϕjdx

=

∫
Ω

aijϕj(uiw − uwi)dx

=

∫
Ω

aij[(ϕw)jui − (ϕu)jwi]dx (By symmetry of aij)

= 0.

The last equality follows from the fact that ϕ = ϕ(y(x)) is a function with compact

support in Ω, u and w are solutions of (A.13), and we also have ϕw, ϕu ∈ C∞0 (Ω).

Therefore, v is a solution of (A.13) in Ω′.

Next, we will show that if w is taken as the fundamental solution of −L and

the coordinate transformation is the inversion yk = xk
|x|2 then the equation (A.13)

is a uniformly elliptic equation with the elliptic constants that depend only on the

elliptic constants of L.

Lemma A.9 (Generalized Kelvin transformation, cf. [56, Theorem 2, Theorem 3]).

Let G be the fundamental solution of −L and F (x) := G(x, 0). If u is a solution of

the uniformly elliptic equation (A.11) in Ω (resp. Ωe), then

v(y) =
u(y/|y|2)

F (y/|y|2)
(A.15)

is a solution of the uniformly elliptic equation (A.13) in {|y| > R−1} (resp. {0 <

y < R−1}), and elliptic constants of (A.13) depends only on the elliptic constant of

(A.11).

Proof. This lemma is a particular case of [56, Theorem 2, Theorem 3] and we include

the proof from there.

Since G is the fundamental solution of (A.11) and F (x) = G(x, 0), by Theo-

rem 4.3, there exists a positive constant C depending only on the elliptic constants

of L such that

C−1/2|x|2−n ≤ F (x) ≤ C1/2|x|2−n, (A.16)
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for every x ∈ Rn, where n ≥ 3.

By the inversion yk = xk
|x|2 , the domain Ω (resp. Ωe) is transformed into {|x| >

R−1} (resp. {0 < |x| < R−1}). Differentiating yk leads to

∂yk
∂xi

=
1

|x|2

(
δik −

2xixk
|x|2

)
.

A simple computation also shows that the matrix O :=
(
δik − 2xixk

|x|2

)
is a symmetric

orthogonal matrix. Indeed, it is clear that O is symmetric and

O2 = I − 4

|x|2
B +

4

|x|4
B2,

where B = (xixk). We have B2 = (bik), where bik =
∑n

s=1 xixsxsxk = xixk|x|2.

Thus B2 = |x|2B, then O2 = I and | detO| = 1.

Now let u be a solution of (A.11) in Ω, v as in (A.15). Since F is a solution of

(A.11) in Rn\{0} then by Lemma A.9, v is a solution of (A.13) in Ω′ = {|x| > R−1},

where the new coefficients are defined by (A.14). We have

|J | = 1

|x|2n
,

ākl =
F 2

|x|4−2n
aij

(
δik −

2xixk
|x|2

)(
δjl −

2xjxl
|x|2

)
.

By (A.16),

C−1aij

(
δik −

2xixk
|x|2

)(
δjl −

2xjxl
|x|2

)
≤ ākl ≤ Caij

(
δik −

2xixk
|x|2

)(
δjl −

2xjxl
|x|2

)
and

C−1 〈Oη,AOη〉 ≤ āklηkηl ≤ C 〈Oη,AOη〉 .

By ellipticity (4.3),

C−1α|Oη|2 ≤ āklηkηl ≤ Cβ|Oη|.

Moreover, since O is an orthogonal matrix then |Oη|2 = |η|2 and we get

C−1|η|2 ≤ āklηkηl ≤ Cβ|η|2.

In conclusion, the function v defined by (A.15) is a solution of the uniformly elliptic

equation (A.13) with the elliptic constants depending only on the elliptic constants

of (A.11). An analogous result holds for u is a solution of (A.11) in Ωe and v is

defined as in (A.15).
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Now we are ready to prove the asymptotic behavior of the near-filed limit prob-

lem, Lemma 4.14.

Proof of Lemma 4.14. Let P be the unique solution of the exterior Dirichlet problem

(4.41). Consider the inversion mapping I : x 7→ x
|x|2 . Let Ω̃ = I(Rn\K). Thus Ω̃ is

a bounded domain and ∂Ω̃ = I(∂K). Let P̃ be the Kelvin transformation of P , i.e.,

P̃ (x) =
P (x/|x|2)

F (x/|x|2)
.

By Lemma A.9, P̃ is the weak solution of
Di(āijDjP̃ ) = 0 in Ω̃,

P̃ (x) =
1

F (x/|x|2)
on ∂Ω̃.

By Lemma 4.12 we have 0 ≤ P (x) ≤ CF (x), thus 0 ≤ P̃ (x) ≤ C. Therefore P̃ is

not singular at the origin and it is the regular solution of Di(āijDjP̃ ) = 0 in Ω̃∪{0}

that satisfies the corresponding boundary condition. From that we can conclude

that

lim
|x|→∞

P (x)

F (x)
= P̃ (0) = C∗.

The constant C∗ can be computed explicitly as

P̃ (0) =

∫
∂Ω̃

1

F (x/|x|2)
āij(x)DigΩ̃(x, 0)νj(x)dS,

where gΩ̃ is Green’s function of the elliptic operator of (A.13) in Ω̃. The constant

C∗ depends only on K,n and the boundary condition applied on K.
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