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1. Abstract

The Stefan problem is a particular kind of partial differential equations (PDEs) with

a moving boundary which are the so-called free boundary problems. We study the long-

time behavior of solutions of the one-phase Stefan problem in inhomogeneous media in

dimensions n ≥ 2.

We first consider the isotropic diffusion in periodic or stationary ergodic random me-

dia. Using the technique of rescaling, which is consistent with the evolution of the free

boundary, we are able to show the homogenization of the free boundary velocity as well

as the locally uniform convergence of the rescaled solution to a self-similar solution of the

homogeneous Hele-Shaw problem with a point source. Moreover, by viscosity solution

methods, we also deduce that the rescaled free boundary uniformly approaches a sphere

with respect to the Hausdorff distance.

Similar results apply for the anisotropic case when we restrict our consideration to the

periodic media with the space dimension n ≥ 3 . We first show that the rescaling in the

isotropic case is also compatible with the anisotropic case, therefore the same rescaling

is used. In this generalization, beside the homogenization of the free boundary velocity

as in the previous case, we also obtain the homogenization of the elliptic operator. More

precisely, we prove the locally uniform convergence of a rescaled solution to the solution

of the homogenized Hele-Shaw-type problem with a point source. Analogously to the

isotropic case, we show the convergence of the rescaled free boundary to a self-similar

profile with respect to the Hausdorff distance using viscosity arguments.

2. Introduction

The one-phase Stefan problem is a specific type of free boundary problems, which

typically models the melting of an ice body in contact with a water region due to heat

conduction and an exchange of latent heat energy. Here we assume that the ice is main-

tained at temperature 0. The one-phase Stefan problem includes the heat equation in

the liquid phase and an additional condition at the free boundary, which is the so-called

Stefan condition, that expresses the local velocity of a moving boundary.

More precisely, let n ≥ 2 and K ⊂ Rn be a compact set with sufficiently regular

boundary, for instance, ∂K ∈ C1,1, and assume that 0 ∈ intK. The one-phase Stefan

problem (on an exterior domain) with inhomogeneous latent heat of phase transition is

to find a function v(x, t) : Rn × [0,∞)→ [0,∞) that satisfies the free boundary problem

(2.1)



vt −∆v = 0 in {v > 0}\K,

v = 1 on K,

Vν = g(x)|Dv| on ∂{v > 0},

v(x, 0) = v0 on Rn,
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where D and ∆ are respectively the spatial gradient and the Laplacian, vt is the partial

derivative of v with respect to time variable t, Vν is the normal velocity of the free boundary

∂{v > 0}. v0 and g are given functions, see below. Note that the results in this chapter can

be trivially extended to general time-independent positive continuous boundary data, 1 is

taken only to simplify the exposition. The related Hele-Shaw problem is usually referred

to in the literature as the quasi-stationary limit of the one-phase Stefan problem when

the heat operator is replaced by the Laplace operator. This problem typically describes

the flow of an injected viscous fluid between two parallel plates which form the so-called

Hele-Shaw cell, or the flow in porous media.

In this work, we assume that the function g satisfies the following two conditions, which

guarantee respectively the well-posedness of (2.1) and averaging behavior as t→∞:

(1) g is a Lipschitz function in Rn, m ≤ g ≤ M for some positive constants m and

M .

(2) g(x) has some averaging properties so that 2.5 applies, for instance, one of the

following holds:

(a) g is a Zn-periodic function,

(b) g(x, ω) : Rn × A → [m,M ] is a stationary ergodic random variable over a

probability space (A,F , P ).

For a detailed definition and overview of stationary ergodic media, we refer to [5,4] and

the references therein.

Throughout most of the work, we will assume that the initial data v0 satisfies

(2.2)
v0 ∈ C2(Ω0\K), v0 > 0 in Ω0, v0 = 0, on Ωc

0 := Rn \ Ω0, and v0 = 1 on K,

|Dv0| 6= 0 on ∂Ω0, for some bounded domain Ω0 ⊃ K.

This will guarantee the existence of both the weak and viscosity solutions below and

their coincidence, as well as the weak monotonicity (3.5). However, the asymptotic limit,

Theorem 3.4, is independent of the initial data, and therefore the result applies to arbitrary

initial data as long as the (weak) solution exists, satisfies the comparison principle, and

the initial data can be approximated from below and from above by data satisfying (2.2).

For instance, v0 ∈ C(Rn), v0 = 1 on K, v0 ≥ 0, supp v0 compact is sufficient.

Due to the singularities of the moving boundary, the classical solution of the Stefan

problem in dimension n ≥ 2 is not expected to exist for all time. Thus, it is natural to

generalize the notion of solutions. The classical approach to define a generalized solution

is to integrate v in time and introduce u(x, t) :=
∫ t
0
v(x, s)ds [1, 11]. If v is sufficiently

regular, then u solves the variation inequality

(2.3)

u(·, t) ∈ K(t),

(ut −∆u)(ϕ− u) ≥ f(ϕ− u) a.e (x, t) for any ϕ ∈ K(t),
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where K(t) = {ϕ ∈ H1(D), ϕ ≥ 0, ϕ = 0 on ∂B, ϕ = t on K} with B is some large ball,

D = B\K and f is

(2.4) f(x) =


v0(x), v0(x) > 0,

− 1

g(x)
, v0(x) = 0.

We also use the notion of viscosity solutions introduced by Kim [2] in our work. The

problem is well-posed in both weak sense and viscosity sense (see [1,2]) and the coincidence

of two notions of solutions was obtained by Kim and Mellet [3, 4]. The regularity of

the one-phase Stefan problem was studied many authors. Furthermore, the asymptotic

behavior of solutions is one of the concerned problems in the literature. The asymptotic

homogenization of the Hele-Shaw and the one-phase Stefan problem was given in [9,3,4].

The convergence of the Stefan problem to Hele-Shaw as t → ∞ in homogeneous media

was observed in [8]. Moreover, the long-time behavior of the related Hele-Shaw problem

was studied in details in [5]. In our recent work, we focus on the long-time behavior

of the one-phase Stefan and Stefan-type problems in some periodic or random media in

dimension n ≥ 2.

The first main part of our work is the investigation of the behavior of the solution of

(2.1) and its free boundary when t→∞. Following [8,5] we use the natural rescaling of

solutions of the form

vλ(x, t) := λ(n−2)/nv(λ1/nx, λt) if n ≥ 3,

(see Section 3.1 for the corresponding rescaling for variational solutions and rescaling for

n = 2). Then the rescaled viscosity solution satisfies the free boundary velocity law

V λ
ν = g(λ1/nx)|Dvλ|.

Heuristically, if g has some averaging properties, such as in condition (2), the free bound-

ary velocity law should homogenize as λ→∞. Since the latent heat of phase transition

1/g should average out, the homogenized velocity law will be

Vν =
1

〈1/g〉
|Dv|,

where 〈1/g〉 represents the “average” of 1/g. More precisely, the quantity 〈1/g〉 is the

constant in the subadditive ergodic theorem such that

(2.5)

∫
Rn

1

g(λ1/nx, ω)
u(x)dx→

∫
Rn

〈
1

g

〉
u(x)dx for all u ∈ L2(Rn), for a.e. ω ∈ A.

In the periodic case, it is just the average of 1/g over one period. Since we always work

with ω ∈ A for which the convergence above holds, we omit it from the notation in the

rest of the work. Moreover, as t→∞ the diffusion in the process usually reaches to the

steady-state and the heat equation in the Stefan problem loses the first term vt. Thus, we
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can expect that the limit function of vλ, if exists, will satisfies the following homogeneous

Hele-Shaw problem with a point source

(2.6)


−∆v = Cδ in {v > 0},

vt =
1

〈1/g〉
|Dv|2 on ∂{v > 0},

v(·, 0) = 0,

where δ is the Dirac δ-function, C is a constant depending on K and n, the quantity 〈1/g〉
was defined by (2.5).

The subadditive ergodic theorem yields the first result on the homogenization of the

variational inequality. Using barrier arguments we can precise the singularity of the limit

function at the origin and then prove the locally uniformly convergence of the rescaled

variational solution to the solution of the limit obstacle problem corresponding to (2.6).

Next, we will use the coincidence of the weak and viscosity solution of the one-phase

Stefan problem and the viscosity arguments to obtain the locally uniform convergence of

the rescaled viscosity solution to the solution of (2.6) and show that the free boundary

approaches a sphere with respect to the Hausdorff distance. This part in a generalization

of the results in [5] for the Hele-Shaw problem. However, solutions of the Hele-Shaw

problem have a very useful monotonicity in time, which is missing in the Stefan problem.

This makes some steps more difficult. We instead take advantage of a weak monotonicity

property (3.5), which holds for regular initial data satisfying (2.2) and then show the

convergence result for general initial data using the uniqueness of the limit and the com-

parison principle. Moreover, the heat operator is not invariant under the rescaling, unlike

the Laplace operator. The rescaled parabolic equation becomes elliptic when λ → ∞,

which causes some issues when applying parabolic Harnack’s inequality, for instance.

The second main part of our work is the extension of the isotropic case to the

anisotropic case, where the heat operator is replaced by more general linear parabolic

operators of divergence form. Now, instead of (2.1), we observe the behavior of the

solution v of the problem

(2.7)



vt −Di(aijDjv) = 0 in {v > 0}\K,

v = 1 on K,

vt
|Dv|

= gaijDjvνi on ∂{v > 0},

v(x, 0) = v0 on Rn,

where D is the gradient, vt is the partial derivative of v with respect to time variable t and

ν = ν(x, t) is inward spatial unit normal vector of ∂{v > 0} at point (x, t). Here we use

Einstein summation convention. v0 is a given function satisfying (2.2). We also assume

that A(x) = (aij(x)) is symmetric, bounded, and uniformly elliptic, i.e, there exits some
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positive constants α and β such that

(2.8) α|ξ|2 ≤ aij(x)ξiξj ≤ β|ξ|2 for all x ∈ Rn and ξ ∈ Rn.

And moreover, aij and g are

(1) Lipschitz functions in Rn, m ≤ g ≤M for some positive constants m and M ,

(2) Zn-periodic functions.

In this consideration, besides the homogenization of the normal velocity as before, the

coefficients of the elliptic operator should also homogenize in the limit. In fact, we will

show that the limit function satisfies the homogenized Hele-Shaw-type problem with a

point source

(2.9)


−qijDijv = Cδ in {v > 0},

vt
|Dv|

=
1

〈1/g〉
qijDivνj on ∂{v > 0},

v(·, 0) = 0,

where δ is the Dirac δ-function, qij are constants satisfying a uniform ellipticity with some

elliptic coefficients, C is a constant depending on K,n, qij and the boundary data 1, and

the constant 〈1/g〉 is the average quantity of the latent heat L(x) = 1
g(x)

.

In this setting, the variational structure is preserved, thus we are still able to use

the notions of the weak solution as well as the viscosity solution and their coincidence.

However, the main difficulties come from the loss of radially symmetric solutions which

were used as barriers in the isotropic case and the homogenization problems appear not

only for velocity law but also for elliptic operators. To overcome the first difficulty,

we will construct some barriers for our problem from the fundamental solution of the

corresponding elliptic equation of divergence form. Unfortunately, even though the unique

fundamental solution of this elliptic equation exists for n ≥ 2, its behavior in the case

dimension n = 2 and dimension n ≥ 3 are significantly different. Moreover, we need to

make use of a very useful gradient estimate for the fundamental solution, which only holds

for the periodic structure. Therefore, we will restrict our problem into the problem in

periodic media and dimension n ≥ 3. From the construction of the barriers, we also obtain

the growth rate of the free boundary, more precisely, the free boundary expands with the

rate of t1/n when t is large enough, which is the same with the isotropic case. Thus we use

the same rescaling as before and obtain the locally uniform convergence of the rescaled

variational solution to the solution of the limit obstacle problem corresponding to (2.9).

Using the constructed barriers, we are able to prove the correct singularity of the limit

function as |x| → 0. The aim is then to prove the homogenization effects of the rescaling

to our problem, which will be done with the help of Γ-convergence techniques. As the

last step, we also use the viscosity method to prove the locally uniform convergence of

the rescaled viscosity solution and its free boundary to the asymptotic profile.
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3. Long-time behavior of the one-phase Stefan problem in periodic and

random media

3.1. Rescaling. We will use the following rescaling of solutions as in [5].

3.1.1. For n ≥ 3. For λ > 0 we use the rescaling

vλ(x, t) = λ
n−2
n v(λ

1
nx, λt), uλ(x, t) = λ−

2
nu(λ

1
nx, λt).

If we define Kλ := K/λ
1
n and Ωλ

0 := Ω0/λ
1
n then vλ satisfies the problem

(3.1)



λ
2−n
n vλt −∆vλ = 0 in Ω(vλ)\Kλ,

vλ = λ
n−2
n on Kλ,

vλt = gλ(x)|Dvλ|2 on Γ(vλ),

vλ(·, 0) = vλ0 ,

where gλ(x) = g(λ
1
nx). And the rescaled uλ satisfies the obstacle problem

(3.2)



uλ(·, t) ∈ Kλ(t),

(λ
2−n
n uλt −∆uλ)(ϕ− uλ) ≥ f(λ

1
nx)(ϕ− uλ) a.e (x, t) ∈ Rn × (0,∞)

for any ϕ ∈ Kλ(t),

uλ(x, 0) = 0,

where Kλ(t) = {ϕ ∈ H1(Rn), ϕ ≥ 0, ϕ = λ
n−2
n t on Kλ}.

Remark 3.1. We can take the admissible set Kλ(t) as above due to the continuity

with respect to the H1 norm of all terms in the variational inequality and the fact that

the variational solution u has a compact support in space at every time.

3.1.2. For n=2. For dimension n = 2, we use a different rescaling that preserves the

singularity of logarithm, namely

vλ(x, t) = logR(λ)v(R(λ)x, λt), uλ(x, t) =
logR(λ)

λ
u(R(λ)x, λt),(3.3)

where R(λ) is the unique solution of R2 logR = λ, limλ→∞R(λ) → ∞ (see [5] for more

details). vλ and uλ satisfy rescaled problems analogous to (3.1) and (3.2). In particular,

the term λ(2−n)/n in front of the time derivatives is replaced by 1/ log(R(λ)) → 0 as

λ→∞.

3.2. Convergence results. Let VC,L be the classical solution of (2.6), here C is a

constant taken from the asymptotic behavior of the near field limit in [8] and L = 〈1/g〉
is the constant defined by (2.5). VC,L has an explicit form as in [5]. Let UC,L(x, t) :=∫ t
0
VC,L(x, s) ds then as shown in [5], UC,L is the unique solution of the limit obstacle
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problem

(3.4)


w ∈ Kt,

a(w, φ) ≥ 〈−L, φ〉, for all φ ∈ V,

a(w,ψw) = 〈−L, ψw〉 for all ψ ∈ W,

where Kt =
{
ϕ ∈

⋂
ε>0H

1(Rn\Bε) ∩ C(Rn\Bε) : ϕ ≥ 0, lim
|x|→0

ϕ(x)
UC,L(x,t)

= 1
}
,

V =
{
φ ∈ H1(Rn) : φ ≥ 0, φ = 0 on Bε for some ε > 0

}
,

W = V ∩ C1(Rn),

and

a(u, v) :=

∫
Rn

Du ·Dvdx, 〈u, v〉 :=

∫
Rn

uvdx.

Lemma 3.2 (Convergence for radial case). Let θ(x, t) be a radial solution of the Stefan

problem (2.1) in exterior domain Rn\B(0, a) satisfying an initial condition θ(x, 0) =

θ0(|x|) if |x| ≥ a, a fixed boundary condition θ(x, t) = Ca2−n on {|x| = a} and the Stefan

condition on the free boundary. Then θλ converges locally uniformly to VA,L in the set

(Rn\{0})× [0,∞).

Using the radially symmetric solutions as the barriers for the Stefan problem and

the subadditive ergodic theorem, we are able to prove the convergence for the rescaled

variational solution.

Theorem 3.3. Let u be the unique solution of variational problem (2.3) and uλ be

its rescaling. Then the functions uλ converges locally uniformly to UA,L as λ → ∞ on

(Rn\{0})× [0,∞).

The convergence for viscosity solution and its free boundary will be proved by point-

wise viscosity arguments. Let v be the solution of the Stefan problem (2.1). We define

the half-relaxed limits in {|x| 6= 0, t ≥ 0}:

v∗(x, t) = lim sup
(y,s),λ→(x,t),∞

vλ(y, s), v∗(x, t) = lim inf
(y,s),λ→(x,t),∞

vλ(y, s),

Theorem 3.4. The rescaled viscosity solution vλ of the Stefan problem (2.1) converges

locally uniformly to V = VC,L in (Rn\{0})× [0,∞) as λ→∞ and

v∗ = v∗ = V.

Moreover, the rescaled free boundary {Γ(vλ)}λ converges to Γ(V ) locally uniformly with

respect to the Hausdorff distance.

We first prove Theorem 3.4 under the assumption (2.2) with the help of the following

monotonicity.
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Lemma 3.5. Suppose that v0 satisfies (2.2). Then there exist C ≥ 1 independent of x

and t such that

(3.5) v0(x) ≤ Cv(x, t) in Rn\K × [0,∞).

Then we deduce the convergence result for general initial data by the uniqueness of

the limit and the comparison principle.

4. Long-time behavior of one-phase Stefan-type problems with anisotropic

diffusion in periodic media

We will use the same rescaling for solutions as in Section 3.1.

4.1. Construction of a sub-solution and a super-solution from fundamental

solution. Since we do not have the radially symmetric solution as the isotropic case, we

instead construct a sub-solution θ1 of the form

θ1(x, t) :=

[
c1F (x) +

c2h(x)

t
− c3t(2−n)/n

]
+

χE(t),

where h(x) is a function having quadratic growth and satisfying Lh = n,Dh(x) =

(A(x))−1x,

E(t) := {x : F ′b(|x|, t) < 0}, Fb(r, t) := Cc1r
2−n +

c2c̃r
2

t
− c3t(2−n)/n,

C, c̃, c1, c2, c3 are constants and F ′b(r, t) is the derivative of Fb(r, t) with respect to r.

We also use a super-solution θ2 of the form

θ2(x, t) := [C1F (x)− C2t
(2−n)/n]+,

where C1, C2 are constants.

Using the estimates for the fundamental solution of an elliptic equation of divergence

form and its gradient, we can choose some appropriate constants c1, c2, c3, C1, C2 such

that θ1 is a sub-solution of (2.7) and θ2 is a super-solution of (2.7) and then we will use

θ1, θ2 as the barriers in our analysis. From the construction of barriers, we deduce that

the free boundary expands with the rate of t1/n when t large enough, which is the same

with the rate in the isotropic case obtained in [8]. Moreover, the homogenization of the

fundamental solution in the classical theory automatically yields the convergence of the

rescaled barriers.

4.2. Convergence results. Let VC,L be the classical solution of (2.9), here C is a

constant taken from the asymptotic behavior of the near field limit similar to [8] and

L = 〈1/g〉 is the constant defined by (2.5). VC,L is obtained by the solution of (2.6)

after changing the coordinate. Let UC,L(x, t) :=
∫ t
0
VC,L(x, s) ds then UC,L is the unique

solution of the corresponding obstacle problem of (2.9) similar to that in Section 3.

Using the barriers constructed in Section 4.1 and the Γ-convergence techniques, we

are able to prove a convergence result for the rescaled variational solution analogously to

the isotropic case in Section 3.
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Theorem 4.1. Let u be the unique solution of variational problem corresponding to

(2.7) and uλ be its rescaling. Then the functions uλ converge locally uniformly to UA,L as

λ→∞ on (Rn\{0})× [0,∞).

Finally, we obtain the convergence of the rescaled viscosity solution by the same

approach with the first case in Section 3.

Theorem 4.2. Let n ≥ 3. The rescaled viscosity solution vλ of the Stefan problem

(2.7) converges locally uniformly to V = VC,L in (Rn\{0})× [0,∞) as λ→∞ and

v∗ = v∗ = V.

Moreover, the rescaled free boundary {Γ(vλ)}λ converges to Γ(V ) locally uniformly with

respect to the Hausdorff distance.
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