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Abstract

In this thesis, we introduce a model-free predictive control method for linear and
nonlinear system based on polynomial regressors that according to Volterra series.
It is not only a class of polynomial representation of nonlinear system, but also nat-
ural extension of the classical linear system representation. Volterra series includes
a series of nonlinear terms that contain product of increasing order Volterra ker-
nel and input/output signal space, and the Volterra kernel and input/output signal
space are not interdependent. Therefore, input/output signal space of polynomial
regression can be used individually. The polynomial regression is a form that can
be extended by the linear regression; it describe one relationship between the in-
dependent variable and dependent variable, which was modeled as a pth degree
polynomial. Therefore, polynomial regression vectors can fit a nonlinear relation-
ship between the independent variable vectors and dependent variable vectors that
can describe nonlinear phenomena.

Model-free predictive control that directly computes the control input from mas-
sive input/output datasets and does not use a mathematical model. In contrast, con-
ventional model predictive control relies on mathematical models. Although the un-
derlying principle of model-free predictive control utilizes linear regression vectors
comprising input/output data, it can also be applied to control nonlinear systems.

In this study, the linear regression vectors are extended to polynomial regres-
sion vectors that contain the control input and measurement output. It has recently
been shown that the control offered by model-free predictive control can be im-
proved. There is an indicator for us to discuss the conclusion that is an error with
a reference trajectory based on the order of polynomial regressors. Using numer-
ical simulations, we demonstrate the effectiveness of this approach, and then we
extend these findings to multi-input multi-output nonlinear systems investigate the
effectiveness of the approach through application of a wastewater treatment process.
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Chapter 1

Introduction

The model-free predictive control is applicable to nonlinear systems assuming that
the controlled system can be locally linearized. This allows short-length vectors to
be constructed that are compatible with the regressor vector used in the autoregres-
sive model to identify a locally linear model. In this thesis, the considered problem
is how to to extend the short-length vectors to make them compatible with a poly-
nomial regression model and improve control performance

1.1 Motivations and Objectives
Over last three decades, the idea of predictive control have been developed based
on mathematical model. Generally, the objective of predictive control is compute
a future manipulated variable input u to optimize the future output y of plant that
can track a reference trajectory r. In other words, predictive control can predict
the a few steps ahead outputs at each instant t with a determined horizon P, it calls
predictive horizon. Predicted outputs y(t + k|t) k = 1, · · · N depend on past inputs
and outputs and the future inputs u(t−k|t), k = 0 · · · N−1 that can be sent to system
and calculated. Through the calculation, the future output as close as possible to the
reference trajectory r(t + k), as shown in Fig.1.1

Figure 1.1: The basic idea of predictive control

Model predictive control (MPC) is designed based on a mathematical model of
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plant. The model can be used in the system. Generally, the model can be designed
as a discrete state-space equation:

L(t + 1) = AL(t) + Bu(t) (1.1)
ym(t) = CL(t)

In the practical, most often systems are described with mathematical model by a
feedback loop. A simple structure shown in Fig.1.2. Although model predictive

Figure 1.2: The simple structure of model predictive control

control is a good method for predictive control. However, most often to control the
linear systems. When a difficult nonlinear system is involved, a corresponding per-
fect model will be required. Therefore, the computational burden will be increased.

Model-free predictive control was proposed as a data-driven control method
that does not explicitly require a mathematical model [1]-[10]. In contrast to the
standard model predictive control, which uses mathematical modeling, the model-
free predictive control method uses the records of past input and output datasets
and the current inputs and outputs to predict future inputs and outputs, as shown
in Fig.1.3 The underlying principle of the method is just-in-time modeling, which

Figure 1.3: General Overview of Data Driven method

was originally proposed in [11]-[14]. This aims to adaptively derive a local linear
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model using recorded data in the neighborhood of the query point [12, 13]. Just-
in-time modeling is also referred to as model-on-demand [14], [15], lazy learning
[16], or instance-based learning [17]. Just-in-time modeling is used in numerous
applications, e.g., for predicting the production processes in the steel industry [18]-
[21], PID parameter tuning [22], [23], and for soft sensors in industrial chemical
processes [24].

The model-free predictive control proposed in [1]-[3] used massive short-length
vectors cut from recorded past input and output sequences of the controlled sys-
tem. Optimal control was predicted from the set of nearest short-length vectors to
the most recent input and output sequences and the desired output. Although these
vectors can be used to identify an auto-regressive model, in [25], just-in-time mod-
eling was utilized to identify a local linear model for the standard model predictive
control, which was then directly used to predict the control input as the linearly
weighted average. A similar approach was followed in [4] and can be used to treat
discretized input systems [5]. It has also been applied to an inverted pendulum
system [6] and to a parallel mechanism with pneumatic drives [7]. To predict an
optimal control input, a local weighted average method is frequently adopted. Re-
cently, in [8] and [9], it has been suggested that the local linearly weighted average
can be replaced by solving a linear algebraic equation using a least-norm and an
`1-norm approach, yielding a mathematically much simpler model-free predictive
control algorithm. In [10], three methods for model-free predictive control were
compared in terms of their control performance.

1.2 Model-Free Predictive Control
The main contribution in the model-free predictive control is just-in-time modeling
and how to calculate the optimal input for systems. The basic idea is via a local
linear model that can be constructed successively, through expansion, it also can be
summarized as optimization problems.

1.2.1 Basic Idea of Just-In-Time Modeling
For unknown nonlinear function f (·): Rr → R

yi = f (xi) + εi, (1.2)

it generate a large amount of observation value (xi, yi) with observation noise εi.
The methdo of just in time collected the data from prior process to understand the
characteristic of the system, behavior of the movement and as a training data to
make the data driven in the future time. In Stenman paper [14], just-in-time mod-
eling is also referred to as model-on-demand that make the weighted matrix as the
nearest neighborhood data. He use the weights to optimize to get minimize point to
measure MSE (Mean Square Error). In the method, a JIT estimator was considered
that can give a consistent estimates as a function for same case in kernel method.
when the nonlinear system was considered in time domain that can predict the out-
put from the data sets of nonlinear system of prior input and output in dynamical
system, which via a local linear model to construct successively.
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Purely model-free predictive control with no model usage was proposed in [1]-
[3]. It basically uses input and output sequences that are cut out into short-length
vectors. Although the vectors can be used to identify an auto-regressive model,
they are instead used to estimate a short-length vector corresponding to future input
sequences by using locally weighted averaging. The idea can be used to treat dis-
cretized input systems [5]. It has also been applied to an inverted pendulum system
[6] and a parallel mechanism with pneumatic drives [7].

1.2.2 Optimization of Just-In-Time Method
Instead of the local linear model, an optimal control input can be directly predicted
by online current measured data and stored past data, do not using any local models.
Recently, in [3], [8], [9] it has been pointed out that locally weighted averaging
(LWA) can be replaced with optimization under a linear algebraic equation that
relates to least-norm solutions and `1 minimization. This yields us a mathematically
much simpler model-free predictive control algorithm. The effectiveness of the
simplified algorithms is investigated in [10].

• For the LWA method, the information vector ai are sorted according to the
distance to query vector b

d(ai1 , b) ≤ · · · ≤ d(aik , b) ≤ · · · ≤ d(aiN , b). (1.3)

Furthermore, the weights wi j for ai j that satisfy

wi1 ≥ wi2 ≥ · · · ≥ wik and
k∑

j=1

= 1, (1.4)

the distance based on the `1-norm

||w||1 =

k∑
i=1

|wi| (1.5)

that can be defined as

d(a, b) = ||Ω−1(a − b)||1, (1.6)

where Ω = diag(ω1, · · · , ωd). Then, for the a j,

ωi = max
j=1···N

a ji − min
j=1···N

a ji. (1.7)

The weight can be calculated as

ŵi = tr(Id −Ω−1(ai − b)(ai − b)T Ω−1) (1.8)

wi = ŵi/

k∑
i

ŵi. (1.9)
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Moreover, There are two methods to calculate the optimal input by linear equation
Aw = b, in here, A ∈ Rd×k, w ∈ Rk

• By least norm solution. when d > k, the solution can be given by a least mean
square solution as w = (AT A)−1AT b. when d < k, the solution can be given
by a minimum norm solution w = AT (AAT )−1b of

min
w
‖Aw − b‖2 (1.10)

• By `1-minimization. Using all vectors in matrix A, to solve the optimization
problem as

min
w
‖w‖1 subject to Aw − b = 0 (1.11)

From [10], we saw that the effectiveness of `1-minimization method is better than
least-norm solutions, therefore, we choose `1-minimization to calculate the optimal
input in this study.

In this thesis, the truncated Volterra series was used that is also a polynomial
regression model [26], [27]. Using it, the short-length vectors can be extended to
regressor vectors, thus the data in the vectors can become abundance. The effective-
ness of the polynomial regression in the model-free predictive control is illustrated
via simulations using linear and nonlinear system. In the simulations, a smoothing
filter was adopted for the reference signal to prevent instability arising in the closed
loop system because of abrupt changes in the signal.

1.3 Extension Via Polynomial Regressors
Volterra series can describe the nonlinear systems via the extended standard con-
volution description of linear systems by a series of polynomial integral operators
with increasing order. It similar to the Taylor series, the difference is the ability
to capture memory. Taylor series only can describe instantaneous input and output
of nonlinear systems, in contrast, Volterra series describe output of nonlinear sys-
tems that depends on the input at all past times. This provides the ability to capture
memory of systems. So it is very suitable for predictive control. On the other hand,
Volterra series consist of product of operator and input signal that was built up with
weighted sum of products or integral of products. There is not interdependence re-
lationship between the operator and input signal. Thus, we can use the input signal
alone with weighted sum of products. It is defined as polynomial regression models
that apply to extend the short-length vectors.

1.4 Applications
To verify the performance of model-free predictive control method based on poly-
nomial regression. We need different systems to illustrate the effectiveness of the
polynomial regression in the model-free predictive control
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• For system identification, auto- regressive eXogeneous often can be used that
structure is the simple linear difference equation

y(t) = θTφ(t) + ε(t) (1.12)

where θ(t) is the regression vector, φ(t) is a vector that include past input/output,
ε(t) is a noise.

• For the neural networks system, the output of the plant depends linearly on the
control input. It makes the computation of the latter relatively straightforward

y(t) = f [φ(t)] + ε(t) (1.13)

where f [·] is nonlinear function.

• For practical application, the activated sludge process was considered that is
a typical biodegradation wastewater treatment process (WWTP).

1.5 Outline of The Dissertation
The thesis is divided into three chapters, excluding the introduction chapter and
conclusion chapter. The first two chapter give a theory of Volterra series, and appli-
cate to the model-free predictive control. the last two chapter is about application
for linear/nonlinear system, and wastewater treatment process.

Chapter 2, we describe the model-free predictive control in detail, and how to
optimize the input.

Chapter 3 is the theory of Volterra series that can describe the nonlinear systems
via the extended standard convolution description of linear systems by a series of
polynomial integral operators with increasing order. And then we express how to
achieve performance of model-free predictive control by the polynomial regression,
moreover some simulations will be discussed.

Chapter 4, we use the wastewater treatment process to illustrate the performance
in practical application.
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Chapter 2

Model-Free Predictive Control

For the model-free predictive control, there are a lot of method to solve the opti-
mization problem. The methods are Locally Weight Average (LWA), Least Norm
and `1-norm minimization.

In this thesis, we use `1-norm minimization to solve the optimization prob-
lem.The key is weight factor w (Aw = b). The weight factor was used into the
system to get the optimal input u to the system. The database is made to enrich
the data that based on previous experiment and the database collected to be a single
matrix A. The b is called query vector that designed from a few past output (y),
reference signal (r) and a few past input (u).

2.1 Linear Regression Case
Consider the following discrete-time system:

y(t) = f (x1(t)) + ε(t), (2.1)

where u ∈ R is the control input, y ∈ R is the controlled output, ε is independent
and identically distributed noise, and

x1(t) =



x1(t)
...

xm̂(t)
xm̂+1(t)
...

xm̂+n̂(t)


=



u(t − m̂)
...

u(t − 1)
y(t − n̂)

...
y(t − 1)


∈ Rn̂+m̂ (2.2)

is the regression vector. We assume that n̂ and m̂ are unknown together with the
nonlinear function f .

The control objective is to let the h-step output trajectory

ŷ f (t) =


ŷ(t + 1)

...
ŷ(t + h)

 ∈ Rh (2.3)
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track the given reference trajectory

r(t) =


r(t + 1)

...
r(t + h)

 ∈ Rh. (2.4)

The parameter h is the prediction horizon. To achieve this control objective, we
predict an h-step future input sequence

û f (t) =


û(t|t)
...

û(t + h − 1|t)

 ∈ Rh. (2.5)

Assumption 1 When ε(k) ≡ 0 , there exists a û f (t) such that

ŷ f (t) = r(t). (2.6)

The model-free predictive control [1],[2] utilizes recorded past data {u(t), y(t)}. For
N pairs of the recorded data {u(t j), y(t j)} ( j = 1, 2, . . . ,N), we define the following
vectors:

a j =




up(t j)
yp(t j)
y f (t j)

 ∈ Rm+n+h−1, m ≥ 2,

yp(t j)
y f (t j)

 ∈ Rn+h, m = 1,

(2.7)

c j = u f (t j) ∈ Rh, (2.8)

where

up(t) =


u(t − m + 1)

...
u(t − 1)

 ∈ Rm−1, m ≥ 2, (2.9)

yp(t) =


y(t − n + 1)

...
y(t)

 ∈ Rn, (2.10)

y f (t) =


y(t + 1)

...
y(t + h)

 ∈ Rh, (2.11)

u f (t) =


u(t)
...

u(t + h − 1)

 ∈ Rh. (2.12)

Remark 1 The recorded data {u(t j), y(t j)} ( j = 1, 2, . . . ,N) must sufficiently cover
the operating points to track r, as discussed in Chapter 4.

Remark 2 The sizes m and n are parameters in model-free predictive control. Un-
less the exact values of m̂ and n̂ are available, m and n must be estimated to obtain
the best control performance, as discussed in Chapter 4.
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2.2 Optimization of Input
To find a future input sequence û f (t), using the most recent input and output tra-
jectories up(t), yp(t) and the reference trajectory r(t), a query vector is defined as
follows:

b =




up(t)
yp(t)
r(t)

 ∈ Rm+n+h−1, m ≥ 2,

yp(t)
r(t)

 ∈ Rn+h, m = 1,

(2.13)

we solve

Aw = b, (2.14)

where

A =
[
a1 · · · aN

]
∈ R(n+m+h)×N , (2.15)

w =


w1
...
wN

 ∈ RN , (2.16)

Then, the future input sequence is given as

û f (t) = Cw, (2.17)

where

C =
[
c1 · · · cN

]
∈ Rh×N . (2.18)

The first element û(t|t) of û f (t) is only applied to the system as u(t).

Remark 3 Matrices A and C comprise only recorded data. Query vector b is up-
dated according to the measured data, and vector w is determined in every sampling
interval. In [10], a method to update A and C in real-time was proposed.

In earlier studies [1]-[3], the linear equation was not used. Instead, only a few
vectors ai close to b were chosen. The vector w was determined using Akaike’s
Final Prediction Error as the criterion. In [8], a least-norm solution was proposed
for w. More recently, an `1-minimization

min
w
‖w‖1 subject to Aw − b = 0 (2.19)

was presented [9]. where ‖·‖1 is the `1 norm of the vector, defined as follows:

‖w‖1 =

N∑
i=1

|wi|. (2.20)

Using `1-minimization, we can avoid explicitly choosing a nearest vector ai. Multi-
ple algorithms have been proposed to solve the `1-minimization problem [30], and
a useful tool is now available [31].

9
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Chapter 3

Extension Via Polynomial Regressors

Volterra series can describe the nonlinear systems via the extended standard con-
volution description of linear systems by a series of polynomial integral operators
with increasing order. Volterra series describe output of nonlinear systems that de-
pends on the input at all past times. This provides the ability to capture memory of
systems.

3.1 Volterra Series
The Volterra model is a general nonlinear model with an output y(t) and an input u(t)
that earliest approach to a systematic characterization of nonlinear systems dates
back to V. Volterra (Volterra, 1887). For a system can be defined mathematically as
an output y(t) with the product of input x(t) and operator H which can be expressed
by

y(t) = Hx(t) + e(t) (3.1)

where e is independent and identically distributed noise. In traditional systems
theory, H is a linear operator vector, thus the system response can be described by
a convolution as

y(t) = Hx(t) + e(t) =

∫ t

0
h1(τ1)x(t − τ1)dτ1 + e(t) (3.2)

Volterra extended this linear system to nonlinear systems by adding a series of non-
linear integral operators as

y(t) = h0 +

∫ b

a
h1(τ1)x(t − τ1)dτ1

+

∫ b

a
h2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2

+

∫ b

a
h2(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3)dτ1dτ2dτ3

+ · · · + e(t) (3.3)

11



Comparing with continuous time systems, discrete system is simply described
by a function. Based on theory of convolution, the discretized Volterra series can be
defined as

y(t) = h0 +

P∑
p=1

b∑
τ1=a

· · ·

b∑
τp=a

hp(τ1, . . . , τp)
p∏

j=1

x(t − τ j) (3.4)

hp(τ1, . . . , τp) are called discrete time Volterra kernels. For the number P, a and b,
when P is finite, the series can be truncated. If a, b and P are finite, we can call
Volterra series is doubly finite Volterra series.

3.2 Polynomial Regression Models
In this section, we review a polynomial regression model that based on a Volterra
model [26], [27].

The so-called Volterra model is a general nonlinear model with an output y(t)
and an input u(t) that can be expressed as follows:

y(t) =

P∑
p=0

Hp(x1(t)) + e(t) (3.5)

where e is independent and identically distributed noise

x1(t) =


x1(t)
...

xL(t)

 ∈ RL, (3.6)

xi(t) = u(t − i), i = 1, . . . , L, (3.7)

and

Hp(x1(t)) =
∑L

i1=1 · · ·
∑L

ip=1 hp(i1, . . . , ip)

×
∏p

k=1 u(t − ik) (3.8)

where each hp(i1 · · · ip) is called a Volterra kernel of the system. In general, the
expansion order P is infinity. Here, we consider the truncated model, that is, for p >
P, |Hp(x1(t))| is sufficiently small. For p > 1, by defining the pth order monomials
(homogeneous) regressor vector

xp(t) = xp−1(t) ⊗ x1(t) ∈ RLp
, (3.9)

where ⊗ denotes the tensor (Kronecker) product; we can rewrite (3.8) as

Hp(x1(t)) = x>p (t)hp, (3.10)

where hp is a vector containing Volterra kernels hp(i1 · · · ip). By using (3.8), another
expression of (3.5) is given as

y(t) = φ>(t)h + e(t), (3.11)

12



where

φ>(t) =
[
1 x>1 (t) · · · x>P(t)

]
(3.12)

h =


h0

h1
...

hP

 ∈ R
∑P

p=0 Lp
(3.13)

By changing the meaning of the index t in (3.6) so as to neither limit the time
nor restrict xi(t) = u(t − i), we obtain a polynomial regression model. Since we can
set xi(t) = u(t − i), the Volterra model is a special polynomial regression model.

To use polynomial regression, we define another form of the Volterra model.
That is, we define

x1(t) =



x1(t)
...

xm(t)
xm+1(t)
...

xL(t)


=



u(t − 1)
...

u(t − m)
y(t − 1)

...
y(t − n)


(3.14)

and L = m + n. By adopting this model, we can reduce the truncated order P.
Since the tensor product is a particularly effective method to establish the topo-

logical vector space, it yields several duplicate terms. By eliminating these dupli-
cate terms, we define the pseudo-tensor product ⊗̃, for instance,[

a b
]
⊗̃

[
a b

]
=

[
a2 ab b2

]
, (3.15)

by unifying the duplicated term ab in
[
a b

]
⊗

[
a b

]
.

When we use the pseudo-tensor product in (3.9) as

xp(t) = xp−1(t)⊗̃x1(t) ∈ R

L + p − 1
L − 1


. (3.16)

the size of φ and h can be reduced to

1 +

P∑
p=0

(
L + p − 1

L − 1

)
. (3.17)

3.3 Extension to a Polynomial Regressor
It is known that the regression vector x1 in the nonlinear system (2.1) can be ex-
tended to a polynomial regressor as follows.

First, we define the pseudo-tensor ⊗̃ as removing duplicated terms in the usual
tensor (Kronecker) product ⊗. For example,[

a b
]>
⊗̃

[
a b

]>
=

[
a2 ab b2

]>
, (3.18)[

a b
]>
⊗

[
a b

]>
=

[
a2 ab ab b2

]>
. (3.19)
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Algorithm 1 Model-free predictive control algorithm
Determine m, n, N, h, and the order P. Construct A and C. t ← 0.
while t ≤ max(n,m) do

Measure y(t) and apply u(t) with an appropriate value. Increment the time as
t ← t + 1.

end while
repeat

Measure y(t) and define a query vector b.
Compute w by solving `1 minimization (2.19).
Apply u(t) := û(t|t) to the system.
t ← t + 1

until a terminate condition is met.

For p > 1, we define the pth order monomials regressor vector

xp(t) = xp−1(t)⊗̃x1(t) ∈ Rnp , (3.20)

where

np =

(
p + n̂ + m̂ − 1

n̂ + m̂ − 1

)
=

(p + n̂ + m̂ − 1)!
p!(n̂ + m̂ − 1)!

. (3.21)

Using the monomial regressor vectors xp, a polynomial regression model is defined
as follows:

y(t) = φ>(t)h + ε(t), (3.22)

where

φ>(t) =
[
1 x>1 (t) · · · x>P(t)

]
∈ Rnh , (3.23)

h =
[
h0 h>1 · · · h>P

]>
∈ Rnh . (3.24)

The size of φ and h is

nh = 1 +

P∑
p=1

np. (3.25)

When xi does not contain y, (3.22) is the truncated Volterra model.
Using the polynomial regression model expression, we can reformulate the model-

free predictive control as follows:

ap, j := ap−1, j⊗̃a1, j, a1, j := a j, (3.26)
bp := bp−1⊗̃b1, b1 := b. (3.27)

Using (3.26) and (3.27), we define the following equations:

A =


1 · · · 1

a1,1 · · · a1,N
...

...
aP,1 · · · aP,N

 ∈ RL×N , b =


1
b1
...

bP

 ∈ RL, (3.28)
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where

L = 1 +

P∑
p=1

Lp, (3.29)

Lp =

(
p + m + n + h − 2

m + n + h − 2

)
=

(p + m + n + h − 2)!
p!(m + n + h − 2)!

. (3.30)

The procedure for the model-free predictive control is summarized in Algorithm 1.

Remark 4 The computational complexity of the Dual Augmented Lagrangian Method
(DALM) in solving `1-minimization is O(L2+LN) [30]. Because size L is dominated
by Pm+n+h−1 when P becomes larger, the complexity of Algorithm 1 is O(P2(m+n+h−1) +

P(m+n+h−1)N). Theoretically, when P is large, computational burden is not avoid-
able. Thus, the potential practical application of model-free predictive control using
DALM is restricted to systems with slow dynamics.

3.4 Simulation Result and Discussions
In this section, we illustrate several simulation results to show the effectiveness
of the proposed method. Throughout the simulations, we used the square signal
reference

r(t) =


0 200k ≤ t < 50 + 200k
1 50 + 200k ≤ t < 100 + 200k
0 100 + 200k ≤ t < 150 + 200k
−1 150 + 200k ≤ t < 200 + 200k

k = 0, 1, . . . (3.31)

3.4.1 Linear System
We first used the linear system that is a ARX model.

y(t) − 1.7y(t − 1) + 0.72y(t − 2) = 0.1u(t − 1) + 0.2u(t − 2) + e(t) (3.32)

with stable poles 0.9 and 0.8 and an unstable zero −2 [33]. To apply a random se-
quence e(t) according to a Gaussian distribution with zero mean, variance 0.0012,
and a random sequence u(t) generated from a uniform distribution [−2, 2], we pre-
pared a dataset containing samples (N = 300) of u(t) and y(t), as shown in Fig. 3.1.

By using parameters for model-free predictive control m = 3, n = 2, P = 3, and
h = 2 under the noisy condition e(t) ∼ N(0, 0.0012), we obtained the control result
shown in Fig. 3.2. It shows that the output y can track the reference r.

Next, we used an overestimated order m = 3, with other parameters being the
same as before, i.e., n = 2, P = 3, and h = 2, and obtained the control result shown
in Fig. 3.3; this is similar to that shown in Fig. 3.2.

From the two results (Fig. 3.2 and 3.3), we see that the proposed method can
achieve the desired control performance even when the order of the system is over-
estimated.
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Figure 3.1: Stored measurement data of the linear system (3.32) for model-free
predictive control

Figure 3.2: Simulation result of model-free predictive control for the linear system
(3.32)

3.4.2 Nonlinear Systems
In this section, we present simulation results to demonstrate the application of our
proposed method to a nonlinear system.

y(t + 1) =
y(t)

1 + y(t)2 + u(t)3 + ε(t). (3.33)
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Figure 3.3: Simulation result of model-free predictive control with the overesti-
mated order for the linear system (3.32)

This system was also used in [10] to compare the model-free predictive control
methods. Clearly, when ε(k) ≡ 0, (3.33) has three fixed points (u, y) = (0, 0), (2−1/3, 1),
and (−2−1/3,−1), and only the first is unstable. In all simulations, we applied a ran-
dom sequence ε(t) using a Gaussian distribution ε(t) ∼ N(0, 0.12).

In the simulations, to prevent instability caused by abrupt changes in r, we ap-
plied a smoothing filter

r̃(t) =
1
α

α−1∑
i=0

r(t − i) (3.34)

for an integer α > 0 and redefined (2.4) as follows:

r(t) =


r̃(t + 1)

...
r̃(t + h)

 ∈ Rh. (3.35)

In all simulations, we set α = 5.

3.4.3 Comparison of datasets

We first compared two datasets containing N = 500 input and output samples, as
shown in Figs. 3.4 and 3.5. Using a uniform distribution [−

√
7/2,

√
7/2], u(t) was

generated and applied to (3.33) to obtain the first dataset. The second dataset was
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generated to use PI control:

u(t) = 0.6e(t) + 0.4
t∑

τ=−∞

e(τ) + v(t) (3.36)

e(t) = r(t) − y(t) (3.37)

Using a uniform distribution [−0.1, 0.1], v(t) was generated. In the second dataset
more y values were presented close to the references r = −1, 0, and 1 than in the first
dataset, as can be observed in the histograms in Figs. 3.4 and 3.5. To use parameters
(n,m, h) = (1, 2, 1) and P = 3, 2, and 1, we compared the performance of the model-
free predictive control when using two datasets. In the simulation results shown in
Figs. 3.6 and 3.7, the broken line represents the reference r. It can be observed that
the tracking error e = r− y in Fig. 3.7 is smaller than that in Fig. 3.6. Therefore, we
can conclude the following:

• Datasets containing many y around r are required to reduce the tracking error.

3.4.4 Comparison of Parameters
The output y(t) of (3.33) solely depends on y(t − 1) and u3(t − 1). Next, we in-
vestigated whether the size n = 1, m = 1, and P = 3 yielded the best control
performance. To select the 54 combinations of n, m, h, and P, we compared the
tracking error at a ratio of

20 log10

(∑300

t=1
e(t)2

)
/
(∑300

t=1
ε(t)2

)
. (3.38)

We generated 100 databases and another 100 random ε(t) values to simulate the
model-free predictive control. We conducted 100 trails of each combination of n,
m, h, and P. These are shown in the boxplots in Fig. 3.8, where the bottom of
the box represents the first quartile, the top of the box represents the third quartile,
the horizontal line near the middle of the box indicates the median, a vertical line
extends to the maximum value and another vertical line extends to the minimum
value, and the potential outliers are represented by “+”. From Fig. 3.8, it can be
observed that a smaller tracking error was observed when P = 3 than when P =

1, 2, for any combination of parameters. When we tried higher orders P = 4, 5, 6,
control failed several times. Therefore, we have omitted the results from Fig. 3.8
and conclude that P = 3 is the best. Noting that the order P = 1 corresponds to the
model-free predictive control using linear regression vectors, we can conclude the
following:

• Polynomial regressors are more effective for the model-free predictive control
of a nonlinear system than the linear regressor adopted in the existing model-
free predictive control.

Next, for P = 3, we compared the boxplots obtained with the 10 best combina-
tions of parameters (n,m, h). This is shown in Table 4.1, where (n,m, h) = (2, 1, 3);
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(n,m, h) = (1, 1, 3); and (n,m, h) = (1, 2, 6) show the lowest third quartile. More-
over, (n,m, h) = (2, 1, 3) showed a lower first quartile than (n,m, h) = (1, 1, 3) and
(n,m, h) = (1, 2, 6); its interquartile range (IQR), which measures the difference
between the third and first quartiles was smaller, indicating tighter distribution of
performance. Based on the results in Fig. 3.8 and Table 4.1, we conclude that the
optimal parameters are (n,m, h, P) = (2, 1, 3, 3) for the nonlinear system given by
(3.33) and

• There exists a best combination of parameters, the order P, sizes of n and m,
and horizon h.

• An appropriate combination of parameters must be selected to improve con-
trol performance.

• An unnecessarily large order P causes instability.

• There is no explicit criterion for selecting an appropriate prediction horizon h
as in standard model predictive control.

Remark 5 All simulations were performed in MATLAB on a Thirdwave Diginnos
PC with a dual-core 3.40GHz Intel Core i3-4130 processor and 4 GB of memory.
The execution time of DALM did not exceed 0.064 s for any combination of param-
eters (n,m, h, P).

Table 3.1: Best 10 quartiles when order P = 3, as in Fig. 3.8.

n, m, h Third quartile First quartile IQR
2, 1, 3 13.74 12.22 1.52
1, 1, 3 13.82 12.26 1.56
1, 2, 6 13.83 12.41 1.42
1, 2, 2 14.02 12.53 1.49
1, 2, 3 14.05 12.40 1.65
1, 1, 4 14.07 12.61 1.46
1, 1, 2 14.13 12.56 1.57
2, 1, 2 14.17 12.62 1.55
1, 2, 4 14.19 12.53 1.66
1, 2, 5 14.23 12.24 1.99

3.4.5 Supplemental Results
Using another nonlinear system in [32]

y(t) =
z(t)(y(t − 3) − 1)u(t − 2) + u(t − 1)

1 + y(t − 3)2 + y(t − 2)2 + ε(t),

z(t) = y(t − 1)y(t − 2)y(t − 3), (3.39)
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Table 3.2: Best 10 quartiles when order P = 2, as in Fig. 3.9.

n, m, h Third quartile First quartile IQR
2, 1, 3 10.28 8.80 1.48
1, 1, 3 10.36 8.90 1.46
2, 1, 2 10.56 9.29 1.27
2, 1, 4 10.87 9.24 1.63
2, 1, 5 11.06 9.29 1.81
1, 2, 3 11.60 10.20 1.4
1, 2, 4 11.78 10.35 1.43
2, 1, 6 11.80 9.86 1.94
1, 1, 4 12.10 9.64 2.46
1, 2, 5 12.17 10.35 1.82

we investigated the efficiency of utilization of polynomial regressor vectors in model-
free predictive control under the same conditions as in previous subsections. For
(3.39), we obtained boxplots, see Fig. 3.9, showing a smaller tracking error when
P = 2 than that when P = 1, 3, for any combination of parameters. In particular,
when P = 3 and h = 4, 5, 6, we observed several unstable results in 100 trials. Thus,
we omitted the boxplots when P = 3 and h = 4, 5, 6. Next, for P = 2, a comparison
of various combinations of parameters (n,m, h) is shown in Table 3.2. The results
shown in Fig. 3.9 and Table 3.2 support the conclusions in the previous subsections.
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Figure 3.4: Stored datasets for model-free predictive control of nonlinear system
(3.33) to obtain control results shown in Fig. 3.6. Histogram of values of output y
in the dataset used to obtain control results in Fig. 3.6.

Figure 3.5: Stored datasets for model-free predictive control of nonlinear system
(3.33) to obtain control results in Fig. 3.7. Histogram of values of output y in the
dataset used to obtain control results in Fig. 3.7.

21



Figure 3.6: Simulation results of model-free predictive control for the nonlinear
system (3.33) based on the datasets in Fig. 3.4 with (n,m, h) = (1, 2, 1). (a) Order
P = 1, (b) order P = 2, and (c) order P = 3.
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Figure 3.7: Simulation results of model-free predictive control for nonlinear system
(3.33) based on the datasets in Fig. 3.5 with (n,m, h) = (1, 2, 1). (a) Order P = 1,
(b) order P = 2, and (c) order P = 3.
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Figure 3.8: Boxplots when nonlinear system is given by (3.38).
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Figure 3.9: Boxplots when nonlinear system is (3.39).
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Chapter 4

Application of Wastewater
Treatment Process

The activated sludge process (ASP) is a typical biodegradation wastewater treat-
ment process (WWTP). The ASP continuously maintains and circulates a stock of
biological organisms. The WWTP principally comprises septic tanks, aerobic treat-
ment systems, and sedimentation tanks. The aerobic treatment systems provide
oxygen, controlling the substrate concentrations of aerobic organisms.

Figure 4.1: Wastewater Treatment Process
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4.1 The Model
The continuous-time activated sludge model No. 1 (ASM1)[34]-[36]is expressed by

dS
dt

= −
1
Y
µ(t)X(t) + {S in − (1 + λ(t))S (t)}D(t)

dC
dt

= −
K0

Y
µ(t)X(t) − (1 + λ(t))C(t)D(t)

+KLa(t)(CS −C(t)) + CinD(t)
dX
dt

= µ(t)X(t) − {(1 + λ(t))X(t) − λ(t)Xr(t)}D(t)
dXr

dt
= {(1 + λ(t))X(t) − (β(t) + λ(t))Xr(t)}D(t)

µ(t) = µmax
S (t)

KS + S (t)
C(t)

KC + C(t)

β(t) =
Qw

Q(t)
, λ(t) =

Qr

Q(t)
,

(4.1)

where t ∈ R and the symbols are listed in Table 4.1. The control input and output
are given by

u =

[
u1

u2

]
=

[
D

KLa

]
, y =

[
y1

y2

]
=

[
S
C

]
, (4.2)

where the dilution rate D and the oxygen mass transfer coefficient KLa are

D(t) =
Q(t)
V

, KLa(t) = αW(t). (4.3)

4.2 Simulation Results and Discussion
We applied MIMO model-free predictive control to the WWTP (4.1), discretized
by Euler’s method with the parameters and initial values given in Table 4.1. We set
the sampling time at Ts = 1 hour in the simulations.

We prepared datasets containing the samples (N = 300) of inputs/outputs shown
in Fig. 4.2, using random inputs u1 and u2 generated from uniform distributions
U(0.01, 0.36) and U(0.05, 1.36]). We used the datasets shown in Fig. 4.2 for model-
free predictive control throughout the simulations. In addition, we set the reference
trajectory to r1 for the ammonium concentration y1 = S and to r2 for the dissolved
oxygen concentration y2 = C as shown in Fig. 4.3.

We set the parameters for model-free predictive control as (m, n, h, P) = (1, 2, 1, 1)
and (m, n, h, P) = (1, 2, 1, 3). In the simulations, we used two measurement noises
for y1 and y2. These were generated according to N(0, σ2), where σ2 = 5 × 10−4.
We show the simulation results in Figs. 4.4 and 4.5. It can be seen that the output y
tracks the reference trajectory r without a large overshoot, limiting the tracking er-
ror r−y to ±0.5mg/l. The desired concentration of ammonium is therefore achieved
accurately in the effluent. The efficient removal of ammonium is also linked to the
reconstructed dissolved oxygen concentration. The tracking error r − y is lower
when P = 3, as in Fig. 4.5, than when P = 1, as in Fig. 4.4. This suggests that the
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Table 4.1: List of symbols and parameters (“∗” denotes the initial value).

Symbol Term Value Unit
S substrate concentration of

ammonium
19∗ [mg/l]

C dissolved oxygen concen-
tration

4.75∗ [mg/l]

X biomass concentration 251.4∗ [mg/l]
Xr recycled biomass concen-

tration
503.98∗ [mg/l]

Q influent volume 1.3∗ [m3/h]
V aerator volume 35 [m3/h]
Qr recycled waste volume 0.78 [m3/h]
Qw flowed waste volume 0.26 [m3/h]
D dilution rate Q/V 0.0389∗ [1/h]
W aeration rate 48.2∗ [m3/h]
β flowed waste rate Qw/Q 0.19∗ -
λ recycled waste rate Qr/Q 0.58∗ -
KLa oxygen mass transfer coef-

ficient αW
0.8684 ∗ -

Y biomass yield factor 0.65 -
α oxygen transfer rate 0.018 -
S in concentration of ammo-

nium in the influent
200 [mg/l]

CS maximum concentration
of dissolved oxygen

10 [mg/l]

Cin concentration of dissolved
oxygen

0.5 [mg/l]

KS saturation coefficient of
ammonium S

100 [mg/l]

KC saturation coefficient of
dissolved oxygen C

2 [mg/l]

K0 model constant 0.64 -
µ biomass growth rate 0.0173 [1/h]
µmax specific growth rate for au-

totrophs
0.15 [1/h]

introduction of polynomial regressor vectors can improve the control performance
for ASM1 (4.1), even when the linear regressor vectors gives a satisfactory control
result.
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Figure 4.2: Stored measurement input/output dataset for model-free predictive con-
trol

Figure 4.3: Reference inputs
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Figure 4.4: Simulation results for model-free predictive control when P = 1. Con-
trol starts at t = 3.
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Figure 4.5: Simulation results for model-free predictive control when P = 3. Con-
trol starts at t = 3.
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Chapter 5

Conclusions

In this thesis, we introduced polynomial regressors into the model-free predictive
control and investigated their effectiveness. Using numerical simulations of nonlin-
ear system we demonstrated that with an appropriate selection of the order of the
polynomial regressors and the size of the polynomial regression vectors, a better
control performance can be obtained compared to that obtained using the linear re-
gression of existing model-free predictive control approaches. We also showed that
rich datasets containing many output data y around the desired trajectory r must be
recorded in advance to reduce the tracking error. We introduced a smoothing filter
for the reference signal to prevent the instability arising in the closed loop system
due to abrupt changes in the reference signal. In our future study, we will investi-
gate the ways of selecting an appropriate combination of the parameters to improve
the control performance.

In this study, we investigated the effectiveness of MIMO model-free predictive
control using polynomial regressor vectors. Numerical simulations of a wastewater
treatment process confirmed that satisfactory control can be achieved by applying
MIMO model-free predictive control. In particular, the control performance can
be improved by replacing linear regressor vectors with polynomial regressor vec-
tors. In general, `1−minimization in model-free predictive control imposes a heavy
computational burden. Hence, nonlinear systems with slow dynamics, such as the
wastewater treatment process, are promising applications for model-free predictive
control.
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