現地観測に基づく水温躍層の破壊と鉛直混合に関す る研究

著者	久保 慎也, 二宮 順一, 森 信人, 馬場 康之, 水谷 英朗, 久保 輝広, 内山 雄介, 渡部 靖憲, 山田 朋 人, 大塚 淳一, 猿渡 亜由未
著者別表示	Kubo Shinya, Ninomiya Junichi, Mori Nobuhito, Baba Yasuyuki, Mizutani Hideaki, Kubo Teruhiro, Uchiyama Yusuke, Watanabe Yasunori, Yamada Tomohito, Otsuka Junichi, Saruwatari Ayumi
雑誌名	土木学会論文集B2(海岸工学)
巻	72
号	2
ページ	I_487-I_492
発行年	2016-11-15
URL	http://doi.org/10.24517/00049526

doi: 10.2208/kaigan.72.I_487

現地観測に基づく水温躍層の 破壊と鉛直混合に関する研究

久保慎也¹・二宮順一²・森 信人³・馬場康之⁴・水谷英朗⁵・ 久保輝広⁶・内山雄介⁷・渡部靖憲⁸・山田朋人⁸・大塚淳一⁹・猿渡亜由未¹⁰

 ¹金沢大学大学院 環境デザイン学専攻(〒920-1192 石川県金沢市角間町) E-mail: kuboshin.1993@gmail.com
 ²正会員 金沢大学助教 理工研究域 環境デザイン学系(〒920-1192 石川県金沢市角間町) ³正会員 京都大学准教授 防災研究所(〒611-0011 京都府宇治市五ケ庄)
 ⁴正会員 京都大学准教授 防災研究所(〒649-2201 和歌山県西牟婁郡白浜町堅田 2500-106)
 ⁵正会員 京都大学助教 防災研究所(〒649-2201 和歌山県西牟婁郡白浜町堅田 2500-106)
 ⁶京都大学技術職員 防災研究所(〒649-2201 和歌山県西牟婁郡白浜町堅田 2500-106)
 ⁷正会員 神戸大学教授 大学院工学研究科(〒657-8501 兵庫県神戸市灘区六甲台町1-1)
 ⁸正会員 北海道大学准教授 大学院工学研究院(〒060-8628 北海道札幌市北区北13 条西8 丁目)
 ⁹正会員 北海道大学助教 大学院工学研究院(〒060-8628 北海道札幌市地区北13 条西8 丁目)

台風イベント時の水温躍層の破壊・再形成のプロセスに着目して,観測データの解析を行うことでプロセスの経過について検討した.水温躍層は水域内の流動に大きな影響を与え,水質問題が生じる要因にもなるため,詳細な現象の把握が求められている.そこで本研究では,台風イベント時の観測データからプラント・パイサラ振動数およびリチャードソン数を算出し,成層の安定性を評価した.その結果,密度成層期には,まず高波 浪により成層の安定が崩され強風により更に不安定さが促進されるという仮説を得た.また,混合期は成層が不安定で,台風接近前からシア流の不安定が生じていて混合が生じていることがわかった.これらの結果を踏まえて,更にTS 図を作成し混合期の水塊の特性を評価した.

Key Words: vertical mixing, field observation, thermocline, stratification

1. はじめに

和歌山県田辺湾は紀伊半島南西端近くに位置する湾 口幅4.05 km,面積17.95 km²の西側方向に開いた湾で, 湾口部周辺の水深は約30mで海底地形は概ね平坦であ る.当湾は黒潮の影響を受けるもののやや閉鎖性の強 い湾である.湾内では多様な生態系の形成や養殖が行 われているが,富栄養化に伴った赤潮や底泥の巻き上 げなどに伴った青潮の発生による湾内環境の悪化が度々 確認されている.したがって,その湾内環境を詳細に 把握することは重要である.

京都大学防災研究所・白浜海象観測所では,毎年夏 季から秋季にかけて台風接近時の気象・海象データ計 測を目的とした集中観測を実施している.現在までの 研究で,風速,流速,水温の相関についての検討が複 数行われており,台風接近時に吹送流の発生や表層付 近の水温の低下が確認されている^{1),2),3),4)}.

海洋表層付近の観測を対象とした研究では,強風イ ベントと水温の鉛直分布の相関について検討したもの が数多くある.例えば馬場ら²⁾は,観測塔を利用して 得られた水温分布を台風接近前後で比較した結果,台 風接近前の水温の鉛直構造が大きく変化していること, 台風接近時には全層にわたって水温が一様化して台風 通過後も表層を除いて混合した状態が継続する結果を 示している.また,内山ら⁴⁾は,台風が来襲するたび に鉛直混合作用を受けて水温が一様化し,台風通過後 の潜熱低下や河川出水によって再成層化するというプ ロセスを確認している.

水温躍層の破壊は強い水平流速のシアや,高波浪時 の水塊運動,砕波によって生じる乱流などに伴った鉛 直混合によって行われると考えられる.しかし,これ らの観測例はいずれも強風イベントによって影響を受 けた様々な要素のうち,いずれの要素が水温躍層の破 壊の支配要因となっているかを十分に説明するにいたっ ていない.

一方,北村ら⁵⁾はADCP(Acoustic Doppler Current Profiler:超音波流速計)および複数の水温計から得ら れるデータから,水温躍層が強風時の風速と流速の相 関の水深方向変化に影響を与えていることを示唆して いる.これは,水温躍層の破壊によるエネルギー消費 量の増加と解釈されているが,水温躍層付近でどのよ うな現象が発生しているかは詳細に理解されていない. 水温躍層は,太陽からの放射熱による海洋表層と底 層の温度差によって生じる.したがって,強風イベン ト前後での密度プロファイリングや成層の強度を評価 する諸パラメータを算出することで,強風イベント時 の水温躍層付近での挙動に対する新たな知見が得られ ると考えられる.

本研究では複数年に渡る観測結果によって得られた 水温躍層の破壊・再形成のプロセスに着目して,その 経過について検討を行う.その結果から海洋表層の鉛 直混合に関する新たな知見を得るとともに,水温躍層 が少なからず環境悪化に影響を与えていると考えられ る田辺湾内の環境の把握に寄与する.

2. 現地観測

(1) 観測概要

現地観測は田辺湾湾口部に位置する京都大学防災研 究所・田辺中島高潮観測塔において行われた.観測塔 は湾口中心付近の中島と呼ばれる水深10mの浅瀬を いただく急峻な孤立海底山の上に設置されている.観 測塔では風向・風速,日射,気温・湿度・気圧,波高, 水温(水深5m,10m)が常時観測されており,観測 データはリアルタイムで観測所に収集され,観測所の ホームページで1時間毎に公開されている.集中観測 時にはADCP および多数の水温計を追加で設置してい る.図-1に集中観測の概要図を示す.

2013,2014年の観測期間中には4つの台風が田辺湾 に来襲した.本研究では密度成層期のイベントである 台風 MAN-YI(201318号)来襲時と,季節的な混合期 のイベントである台風 PHANFON(201418号),台風 VONGFONG(201419号)来襲時の観測結果を基に議 論していく.

(2) 観測結果

a) 台風 MAN-YI (201318 号) 来襲時

台風 MAN-YI は 9 月 16 日に田辺湾に最接近した. 図-2 に台風 MAN-YI 来襲時の主な観測データの時間変 化を示す.上段から気圧,風速,平均波高・平均周期, 水温の時間変化を示す.この期間の流速は欠測してい る.台風最接近時の中心気圧は約 965 hPa,観測塔での 計測気圧は約 980 hPa,最大風速は約 20 m/s であった. 平均波高・平均周期は台風最接近直前にピークに達し, それぞれ約 1.5 m,12 秒を計測した.水温鉛直分布から は,台風接近前に形成されていた水温躍層が台風の接 近に伴って破壊され,台風の通過後に再形成する過程 が確認できる.水深 15 m までの表層は,波高が高くな り始める 9 月 15 日の 18 時付近から混合が開始し,台 風接近に伴った更なる高波浪・強風によって混合が底

図-1 観測塔概要図

層にまで達している.

b) 台風 PHANFON (201418 号) 来襲時

台風 PHANFONE は 10月6日に田辺湾に最接近した. 図-3に台風 PHANFONE 来襲時の主な観測データの時 間変化を示す.上段から気圧,風速,平均波高・平均周 期,水温,流速の時間変化を示す.台風最接近時の中 心気圧は約965 hPa,観測塔での計測気圧は約970 hPa, 最大風速は約20 m/s であった.平均波高・平均周期は 台風最接近時にピークに達し,それぞれ約4m,12秒 を計測した.水温鉛直分布は,季節的な密度成層期は終 了していたものの,台風接近前の10月4日の20時付 近から台風通過後の10月6日19時付近まで混合が起 こっていることが確認できる.流速鉛直分布からは,台 風最接近時に約0.3 m/s 前後の速い流れが全層にわたっ て確認できる.

c) 台風 VONGFONG (201419号) 来襲時

台風 VONGFONG は 10月 13 日に田辺湾に最接近し た.図-4に台風 PHANFONE 来襲時の主な観測データ の時間変化を示す.台風最接近時の中心気圧・観測塔 での計測気圧は,共に約980hPa,最大風速は約20m/s であった.平均波高のピークは,台風最接近時と台風 接近前の10月11日の22時付近に2回確認でき,それ ぞれ約1.5m,2.5mを計測した.平均周期は台風接近 前から10秒前後の周期の長い波が継続して計測され, 台風通過に伴って減少している.台風接近前の波高の ピークや継続した長い周期の波は,田辺湾の南海上に 台風が存在したことが原因として考えられる.水温鉛 直分布は,台風接近前から季節的な混合層を形成して おり,台風による混合を明確に確認できない.流速鉛 直分布からは,台風最接近時に0.25m/s前後の速い流

図-3 台風 PHANFON (201418 号) 来襲時の観測データの時 間変化

速が全層にわたって確認できる.

3. 解析結果

(1) 鉛直1次元の安定性解析

成層の安定度は密度および,式(1a)で定義される ブラント・バイサラ振動数と式(1b)で定義されるリ チャードソン数を観測データから算出して評価した.

$$N^2 = -\frac{g}{\rho_0} \frac{\partial \rho}{\partial z} \tag{1a}$$

$$R_{i} = \frac{-g\partial\rho/\partial z}{\rho_{0}\left(\partial U/\partial z\right)^{2}} = \left(\frac{N}{\Omega}\right)^{2}$$
(1b)

図-4 台風 VONGFONG (201419号) 来襲時の観測データの 時間変化

図-5 台風 MAN-YI (201318 号) 来襲時の鉛直 1 次元の安定 性解析結果

ここで, g は重力加速度, z は鉛直方向位置, ρ は密度, ρ_0 は平均密度, U は流速, $\Omega = \partial U/\partial z$ は平均流のシアの大きさである. $N^2 > 0$ のときの状態の成層を安定成層 ⁶⁾, $R_i > 1/4$ のときの状態を流れが安定であるという ⁷⁾.

a) 台風 MAN-YI (201318 号) 来襲時

台風 MAN-YI (201318号) 来襲時の密度(水深3,4, 5,6,7,8,9,15,20,25,30 m 地点), ブラント・バ イサラ振動数の鉛直分布の時間変化を図–5 に示す.図 中の σ_t は密度(kg/m³)から1000を引いた値である. ブラント・バイサラ振動数は図では赤色が成層の安定, 青色が不安定を表している.密度は水温に依存すると ころが大きいため,密度の鉛直分布は水温の鉛直分布 に応じて変化しており,密度成層が水温躍層と同様に

図-6 台風 PHANFONE (201418 号) 来襲時の鉛直 1 次元の 安定性解析結果

図-7 台風 VONGFONG (201419 号) 来襲時の鉛直 1 次元の 安定性解析結果

台風接近前後で破壊・再形成している様子が確認できる.成層の破壊は波高のピーク時に始まり,台風最接近時の強風により混合が促進されている.また,成層の破壊期間は風速が10 m/s を超える期間とほぼ一致しており,強風が密度成層の破壊と密接に関わっていることがわかる.ブラント・バイサラ振動数の鉛直分布から,台風接近前は成層が全体を通して安定であることが確認できるが,風速が5 m/s を超える風が継続する9月14日の午後6時付近から9月15日の午前6時付近までの期間に表層でやや不安定な水塊が見られる. 台風の接近に伴い表層で不安定な水塊が見られる. している.台風通過後は再び成層が安定な状態に戻る が,表層付近は風による影響を受けやすいため,間欠 的に不安定な水塊が見られる.

b) 台風 PHANFONE (201418 号) · 台風 VONG-FONG (201419 号) 来襲時

台風 PHANFONE (201418号) 来襲時の密度(水深 0.5,2,3.5,5,6,15,20,25,30m地点), ブラン ト・バイサラ振動数およびリチャードソン数の鉛直分布 の時間変化を図-6に示す.密度の鉛直分布は,季節的 な成層期が終了しているため,台風接近前の時点で表 層から底層までの差が 0.5 kg/m³ 以内に収まっている. 台風の接近による影響はほとんど見られないが,台風 通過後の10月8日の正午前後に表層付近で密度が高い 水塊が確認できる.これは,鉛直水温分布の逆転現象 が発生していることに対応する.ブラント・バイサラ 振動数の鉛直分布からは,表層付近で間欠的にやや安 定な水塊が見られるものの, 台風の接近に関わらずや や不安定な状態が継続している.また,密度分布と対 応して 10 月 8 日の正午前後に表層付近で不安定な水塊 が確認できる.表層5m付近までのリチャードソン数 の鉛直分布からは,台風接近前は間欠的にシア流の不 安定が生じているものの,下層ほど安定した様子が確 認できる.台風最接近時にはリチャードソン数の時間 的変化が著しくなっている.台風通過後は鉛直水温分 布の逆転に対応して水深 4~5 m 付近で流れが不安定な 状態が継続しており,鉛直水温分布の逆転現象とシア 流の不安定性との間に相関関係を見出すことが出来る.

台風 VONGFONG (201419号)来襲時の密度(水深 0.5,2,3.5,5,6,15,20,25,30 m 地点),ブラン ト・バイサラ振動数およびリチャードソン数の鉛直分布 の時間変化を図-7 に示す.密度の鉛直分布は,水温躍 層が確認できる10月11日の午後1時付近まで密度成 層を形成しているが,それ以降は台風接近前後での時間 的な水温低下の影響が全層にわたって見られる程度で, 季節的な混合が生じている.ブラント・バイサラ振動数 の鉛直分布は,間欠的に表層付近で不安定な水塊が見 られるものの,全体としては値に差がなく一様である. 表層5 m 付近までのリチャードソン数の鉛直分布は,台 風接近前と台風最接近時において台風 PHANFONE 接 近時と同様の様子が確認できる.

(2) 水塊特性解析

台風 PHANFONE (201418 号),台風 VONGFONG (201419 号)来襲時のように密度成層期が終了し季節 的な混合が生じていると,台風イベントによる水塊特 性への影響評価が困難であることがわかった.そこで, ここではTS 図から台風イベント時の海水特性の時間変 化をより詳細に見ていく.

図-8 TS 図(上段: 台風 PHANFONE (201418 号) 来襲時, 下段: 台風 VONGFONG (201419 号) 来襲時, 左から水深4m, 15m, 30m 地点)

台風 PHANFONE・台風 VONGFONG 来襲時の水深 4,15,30m 地点の TS 図を図-8 に示す.

台風 PHANFONE 来襲時は季節的な混合の影響で,水 温・塩分濃度は各層で近いものになっているものの,水 深が深くなると台風の影響を受けにくいことがわかる. 水温・塩分濃度は水深4m地点でそれぞれ2度,0.5 PSU 低下しているが,塩分低下のタイミングと強い雨の期 間がほぼ一致しているため,河川水流入の影響と考え られる.水深15m,30m地点では明確な塩分濃度の変 化が見られず,水温も水深4m地点の半分程度の低下 となっていることから,少なくとも水深15m以深は河 川水流入の影響が大きくないことが考えられる.

一方台風 VONGFONG 来襲時は,台風 PHANFONE 接近時と異なり全層にわたって類似した変化が見られ る.特に水深4m地点と水深15m地点の挙動がほぼ一 致しており,この期間は台風 PHANFONE 来襲時より も更に季節的な混合が促進されていると考えられる.

(3) 乱流エネルギー(TKE)フラックス

最後に大気側からの TKE フラックスを式(2)から 算出して,強風に起因する乱流の成層破壊への寄与度 を評価した.

$$K_k \frac{\partial k}{\partial z} = \alpha_{CB} u_*^3 \qquad (z = \varsigma) \tag{2}$$

ここで, K_k は TKE についての鉛直方向拡散係数, k は 乱流エネルギー, u_* は摩擦速度, α_{CB} は理論値 100 の 経験定数である. 図-9に台風 MAN-YI(201318号),台風 PHANFONE (201418号),台風 VONGFONG(201419号)来襲時 の大気側からの TKE フラックスの時間変化を示す.密 度成層期である台風 MAN-YI 来襲時は,成層破壊時と TKE フラックスのピーク時が一致しており,強風が混 合に与える影響が大きいことがわかる.

季節的な混合が生じている台風 PHANFONE,台風 VONGFONG 来襲時は,リチャードソン数の低下時と TKE フラックスのピーク時が一致することから,強風 が流れの乱れに影響を与えることがわかった.しかし, プラント・バイサラ振動数との相関は見られなかったた め,この時期の混合は現行の海洋モデルと異なり,強 風に起因する乱流以外の影響を受けていることが示唆 された.

4. 結論

本研究では,複数年にわたる田辺湾の観測データか ら得られた台風イベント時の水温躍層の破壊・再形成 のプロセスに着目して,鉛直1次元の安定性解析およ び水塊特性解析を行い,プロセスの経過について検討 した.以下にその結果を示す.

 台風 MAN-YI(201318号)来襲時の鉛直1次元の 安定性解析から,明確な水温躍層を形成している 期間(密度成層期)の台風イベント時には,まず 高波浪により成層の安定が崩され強風により更に 不安定さが促進されるという仮説を得た.

図-9 大気側からの TKE フラックス(上段:台風 MAN-YI (201318号)来襲時,中段:台風 PHANFONE(201418 号),下段:台風 VONGFONG(201419号)来襲時)

- 台風 PHANFONE(201418号),台風 VONGFONG (201419号)来襲時の鉛直1次元の安定性解析から,季節的な成層期が終了している期間(混合期) は成層が不安定で,台風接近前からシア流の不安 定が生じていて混合が生じていることがわかった.
- ・ 台風 PHANFONE,台風 VONGFONG 来襲時の水 塊特性解析から,混合期は水温の低下が小さく,塩 分濃度もほとんど変化しないことがわかった。
- 台風 PHANFONE,台風 VONGFONG 来襲時の水 塊特性解析から,時間の経過に伴い鉛直水温分布 および鉛直密度分布からは確認できないレベルで, 季節的な混合が促進されているという仮説を得た.
- 大気側からのTKE フラックスを算出した結果,成層 期の成層破壊は強風に強く依存することがわかった.
- 大気側からの TKE フラックスを算出した結果,混合

期の混合は強風の影響が少ないことが示唆された. 本研究では,観測データのみから水温躍層の破壊・再形 成のプロセスを評価しようとした.しかし,流速計測 の主目的が表層の吹送流の観測であったため,底層の 流れの安定性を解析をすることが出来なかった.また, 水温計・塩分計の設置地点が限られていたため,解析 結果の解像度が低くなった.今後の課題として,設置 機器を拡張した観測およびデータ解析を継続して上記 の仮説の検証を行うこと,水温躍層付近での諸現象を 明らかにするために,正確なモデルを用いた数値計算 を行うことが考えられる.

謝辞: 本研究の一部は,京都大学防災研究所・一般 共同研究費および科学研究費補助金による成果である.

参考文献

- 1) 森信人,鈴木崇之,木原直人:海洋表層鉛直混合におよ ぼす風応力と波浪の影響,土木学会論文集 B2(海岸工 学), Vol.66, No.1, pp. I_311-I_315, 2010.
- 馬場康之,久保輝広,森信人,木原直人:田辺中島高潮 観測塔における2011年夏季台風接近時の現地観測結果, 京都大学防災研究所年報,第55号B,pp.343-350,2012.
- 内山雄介,西井達也,森信人,馬場康之:紀伊半島沿岸域 における台風通過に伴う海水温低下と海洋構造変化につ いて,土木学会論文集 B2(海岸工学),Vol.69,No.2, pp.I.481-I.485,2013.
- 内山雄介,松川大佑,神吉亮佑,馬場康之,森信人,水谷英朗,渡部靖憲,大塚淳一,山田朋人,猿渡亜由未,二宮順一:紀伊半島田辺湾湾口部における海水交換特性に関する研究,土木学会論文集B2(海岸工学),Vol.70, No.2, pp.I_446-I_450,2014.
- 5) 北村康司, 仲座栄三, Shak RAHAMAN, 中川勝広, 津嘉 山正光: 強風時における吹送流および水温の鉛直構造に 関する研究, 海岸工学論文集, 第 52 巻, pp.I_311-I_315, 2005.
- 6)有田正光,池田裕一,中井正則,中村由行,道奥康治,村 上和男:水圏の環境,東京電機大学出版,404p.,1998.
- 7) 宇野木早苗:沿岸の海洋物理学,東海大学出版,672p., 1993.

(2016.3.16 受付)

A STUDY ON DESTRUCTION OF THERMOCLINE AND VERTICAL MIXING BASED ON FIELD MEASUREMENT

Shinya KUBO, Junichi NINOMIYA, Nobuhito MORI, Yasuyuki BABA, Hideaki MIZUTANI, Teruhiro KUBO, Yusuke UCHIYAMA, Yasunori WATANABE, Tomohito YAMADA, Junichi OTSUKA, Ayumi SARUWATARI

This study focuses on the process of thermocline's destruction and reformation during typhoons using field observation data. The thermocline has a large effect on the circulation and would be a factor to make water worse. Therefore, it is necessary to understand its process deeply. In this study, the stability of density stratification was evaluated based on the Brant-Vaisala frequency and the Richardson number. The results suggested that high wave destroyed the stratification and high wind mixed ocean water vertically more energetically during stratified season. On the other hand, it was found that stratification was unstable regardless of typhoon intensity during unstratified season. Moreover, the characteristics of water-mass were evaluated on the TS diagram during unstratified season.