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Abstract 

 

Objectives: Familial Mediterranean fever (FMF) is an autoinflammatory disease 

caused by mutations in MEFV. Mutations in exon 10 are associated with typical FMF 

phenotypes, whereas the pathogenic role of variants in exons 2 and 3 remains 

uncertain. Recent evidence suggests that circulating microRNAs are potentially useful 

biomarkers in several diseases. Therefore, their expression was assessed in FMF. 

Methods: The subjects were 24 patients with FMF who were between attacks: 8 with 

exon 10 mutations (group A), 8 with exon 3 mutations (group B), and 8 without exon 

3 or 10 mutations (group C). We also investigated 8 cases of PFAPA as disease 

controls. Exosome-rich fractionated RNA was subjected to microRNA profiling by 

microarray. Results: Using the expression patterns of 26 microRNAs, we classified 

FMF (groups A, B, and C) and PFAPA with 78.1% accuracy. In FMF patients, groups 

A and B, A and C, and B and C were distinguished with 93.8, 87.5, and 100% 

accuracy using 24, 30, and 25 microRNA expression patterns, respectively. 

Conclusions: These findings suggest that expression patterns of circulating 

microRNAs differ among FMF subgroups based on MEFV mutations between FMF 

episodes. These patterns may serve as a useful biomarker for detecting subgroups of 

FMF. 
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Introduction 

 

Familial Mediterranean fever (FMF) is an inherited autoinflammatory disease 

that is characterized by recurrent episodes of fever with serositis, synovitis, or skin 

rash [1]. FMF is caused by autosomal recessive mutations in the MEFV gene, which 

has 10 exons encoding a 781-amino acid protein called pyrin [1]. Pyrin is expressed in 

innate cells, including granulocytes, cytokine-activated monocytes, dendritic cells, 

and synovial and peritoneal fibroblasts. This protein appears to act as a pivotal 

regulator of inflammation and apoptosis, and mutated pyrin leads to aberrant 

production of interleukin-1β in FMF [2]. FMF was originally described in countries 

around the Mediterranean basin; however, the availability of genetic testing has 

broadened the clinical and ethnic spectrum of the disease. Pathogenic mutations of 

MEFV are concentrated in exon 10. Clinical diagnosis of FMF is based on the 

presence of short (12 hours to 3 days), recurrent episodes of fever with painful 

manifestations in the abdomen, chest, joints, or skin, with no discernible infectious 

cause [3]. The Tel Hashomer criteria are the most widely used to establish a 

diagnosis; however, milder cases without exon 10 mutations sometimes pose 

diagnostic problems in Western nations and in Japan [4]. 

MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in post-

transcriptional regulation of gene expression and play important roles in control of 

many biological processes, such as cellular development, differentiation, proliferation, 

apoptosis, and metabolism [5, 6]. These molecules can be detected in serum and 

plasma, and aberrant expression profiles of circulating miRNAs have been 

increasingly described in many pathological conditions, including cancer and 

autoimmune diseases [7, 8]. In this study, we analyzed the expression profiles of 
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circulating miRNAs in subgroups of FMF that were formed based on MEFV 

mutations, and we discuss the potential usefulness of these patterns as a novel 

biomarker in FMF. 
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Materials and Methods 

 

Patients 

The subjects were 24 patients affected with FMF (Table 1). A diagnosis of 

FMF was made on the basis of the Tel Hashomer criteria [9]. A typical FMF attack 

was defined as recurrent episodes lasting 12 hours to 3 days with fever of 38°C or 

higher. An attack was considered ‘atypical’ if it differed from the definition of a 

typical attack in only 1 or 2 of the following features: temperature less than 38°C, an 

attack duration longer or shorter than specified (but not shorter than 6 hours or longer 

than a week), no signs of peritonitis during an abdominal attack, localized abdominal 

attacks, or an unusual distribution of arthritis. The patients were divided into 3 

subgroups based on MEFV mutations. Patients carrying exon 10 mutations, such as 

M694I, M680I, and V726A, were classified as group A. Patents without exon 10 

mutations were classified into two groups based on exon 3 variants: those with 

P369S/R408Q were defined as group B, and those without exon 3 mutations as group 

C. Exon 2 variants such as E148Q were not used for classification because these 

mutations frequently occur in parallel with other mutations, including those in exon 

10. There were no patients with systemic amyloidosis. Eight patients with periodic 

fever, aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA) were evaluated 

as disease controls. The diagnosis of PFAPA was determined clinically [10]. All 

patients were of Japanese ancestry, except for one FMF patient with M680I/V726A 

mutations. There was no consanguinity in any of the families. Blood samples were 

collected during a clinically stable, afebrile phase in all patients with FMF and 

PFAPA. Approval for the study was obtained from the Human Research Committee 
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of Kanazawa University Graduate School of Medical Science, and informed consent 

was provided according to the Declaration of Helsinki. 

 

Mutation analysis 

DNA was extracted from blood samples using a standard method. Direct 

sequencing of the MEFV gene was performed as described previously [11]. 

  

RNA preparation and miRNA microarray 

Exosome-rich fractionated RNA was prepared using Exoquick (System 

Biosciences, CA, USA) [12]. Briefly, 900 µl of serum or plasma was mixed with 250 

µl of Exoquick and incubated for 12 h at 4°C. The tubes were centrifuged at 1500 g 

for 30 min at room temperature and then supernatant was discarded. The pellet was 

dissolved in 200 µl of PBS with vigorous vortex. RNA was extracted using a 

miRNeasy mini kit (Qiagen, Hilden, Germany). Expression of miRNAs was assessed 

by microarray (Agilent human microRNA microarray release 14.0) [12]. 

Hybridization signals were detected with a DNA microarray scanner G205B (Agilent 

Technology) and the scanned images were analyzed using Agilent feature extraction 

software (v10.10.1.1). Raw data (gProcessedSignal) were normalized so that each 

expression level had a mean of zero and a sample variance of one. Principal 

component (PC) analysis (PCA), as well as categorical regression analysis to confirm 

significant differences between selected components, were performed [12-17]. 

Accuracy was assessed using leave-one-out cross-validation [18]. 

 

Statistical Analysis 
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PCA-based unsupervised feature extraction (FE) was used to identify miRNAs 

for discrimination [12-17]. The mathematical details are in the supplementary 

material. Briefly, in this methodology, in contrast to normal use of PCA, miRNAs 

(rather than samples) are embedded into low dimensional space. Then, PC scores are 

attributed to each miRNA. After identifying PC loadings attributed to samples for 

miRNA selection, outlier miRNAs along identified PCs with assumed multiple 

Gaussian distributions for PC scores (adjusted P<0.01) are selected.  The selected 

miRNAs are further re-embedded into low dimensional space with PCA, and PC 

loadings are re-attributed to samples and used for discrimination between samples 

using linear discriminant analysis. 
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Results 

 

Patient characteristics 

Clinical and sequencing data for the patients are shown in Table 1. A 

heterozygous M694I mutation was found in 7 of the 8 patients in group A. The other 

patient had a compound heterozygous M680I/V726A mutation in exon 10 of MEFV. 

Consistent with a previous report [19], P369S and R408Q, both of which are located 

in exon 3, were found in cis in all 8 patients in group B, and were not detected in 

group A. The E148Q variant in exon 2 was found frequently in groups A (7/8) and B 

(6/8). Other variants, such as E84K in exon 1, L110P in exon 2, R202Q in exon 2, 

G304R in exon 2, and S503C in exon 5, were occasionally observed in each group. 

No MEFV variant was found in 4 of the 8 patients in group C. Five patients with 

PFAPA showed sequence variants in exon 2 or 3 of MEFV, but exon 10 mutations 

were not detected in any patients with PFAPA. 

Typical FMF attacks were observed in all patients in group A and most 

patients in group C (7/8), whereas most patients in group B had atypical attacks, in 

line with previous findings [19]. All patients showed FMF symptoms and elevated 

levels of acute-phase reactants, including C-reactive protein (CRP), during attacks, 

regardless of MEFV mutations (data not shown), and all were well and had neither 

leukocytosis nor elevated levels of CRP between attacks (Table 1). No patient with 

PFAPA had a FMF attack, despite some carrying MEFV variants. 

 

Unique expression patterns of miRNAs in FMF 

To discriminate among the three FMF groups and the PFAPA controls, 

expression of 887 human miRNAs was assessed by microarray. We chose 26 miRNA 



 

9 

expression patterns for classification among these four groups by PCA (Fig. 1 and 

Table 3). The accuracy of diagnosis was 68.75% by leave-one-out cross-validation 

(Table 2). Thirty-one miRNA expression patterns according to subtype are shown in 

Fig. 2. Categorical regression analysis showed that each selected PC was significantly 

distinct among the four groups (Fig. 2). 

Next, we attempted to discriminate between two arbitrary groups. The 

accuracies of diagnoses were 78.1% between all FMF cases and PFAPA cases using 

26 miRNA expression patterns, 93.8% between FMF groups A and B using 24 

miRNA expression patterns, 87.5% between FMF groups A and C using 30 miRNA 

expression patterns, 100% between FMF groups B and C using 25 miRNA expression 

patterns, 68.8% between FMF group A and PFAPA using 26 miRNA expression 

patterns, 81.3% between FMF group B and PFAPA using 20 miRNA expression 

patterns, and 75% between FMF group C and PFAPA using 21 miRNA expression 

patterns (Tables 2 and 3). 
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Discussion 

 

Diagnosis of FMF is still based on clinical criteria, despite improved 

recognition of a number of MEFV gene variants. More than 310 MEFV sequence 

variants are now listed in the Infevers online database 

(http://fmf.igh.cnrs.fr/ISSAID/infevers/). Most disease-associated mutations are 

missense substitutions clustered in exon 10, such as M694V, V726A, M680I, and 

M694I [4]. Exons 2 and 3 include various missense changes that are considered to be 

benign polymorphisms or of unknown pathogenic significance. On the other hand, 

approximately 30% of patients with a typical clinical presentation of FMF have only 

one demonstrable mutation, although FMF is an autosomal recessive disease [1], and 

no mutation is found in 10% of patients [1]. Recent nationwide surveys in patients 

with FMF in Japan have indicated allele frequencies of M694I, R408Q, P369S, 

G304R, R202Q, E148Q, and E84K of 21.7%, 5.9%, 6.1%, 1.6%, 1.8%, 35.4%, and 

2.4%, respectively, and only 3.2% of patients were homozygous for exon 10 

mutations or were compound heterozygotes carrying two different exon 10 mutations 

[20, 21]. These Japanese data further support the consensus that genetic testing can 

support diagnosis of FMF, but not necessarily exclude it [4]. Thus, interpretation of 

genetic testing of MEFV is complicated. In addition to the genotypic variability, FMF 

is phenotypically variable [22]. Patients with exon 10 mutations generally have a 

typical FMF phenotype, including a favorable response to colchicine, whereas clinical 

phenotypes of individuals carrying MEFV variants in exon 2 or 3 range from the 

typical FMF phenotype to no overt signs of disease [23]. Therefore, a novel 

biomarker to distinguish subgroups of FMF is highly desirable. 
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Accumulating evidence has suggested potential roles of expression profiles of 

circulating miRNAs as diagnostic and prognostic biomarkers in several human 

diseases, including inflammatory disorders [8]. miRNAs regulate gene expression at a 

posttranscriptional level by degrading mRNA molecules or blocking their translation, 

and thus miRNAs may contribute to disease pathogenesis. In fact, characteristic 

miRNA expression patterns have been described in autoimmune diseases, including 

rheumatoid arthritis, systemic lupus erythematosus, and Sjögren syndrome [8, 24, 25], 

as well as in autoinflammatory diseases, including tumor necrosis factor receptor-

associated periodic syndrome and systemic onset juvenile idiopathic arthritis [26, 27]. 

Therefore, we examined if expression levels of circulating miRNAs can distinguish 

among three subgroups of FMF: typical cases carrying exon 10 mutations; cases 

without exon 10 mutations but with the P369S/R408Q variant in exon 3, which is 

infrequently associated with a typical phenotype; and cases with a typical phenotype 

despite having no exon 10 mutation. 

In this study, we were able to show that three subgroups of FMF and a disease 

control (PFAPA) were clearly distinguishable from each other by leave-one-out cross-

validation using selected miRNA expression profiles. We did not find a particular 

miRNA with the capability of classifying the FMF subgroups, indicating no evidence 

for preferential expression of a specific miRNA in each subgroup. However, an 

expression pattern of multiple miRNAs represents a novel and valuable biomarker to 

distinguish the subgroups. In particular, FMF patients with an exon 10 mutation in 

MEFV (group A) were clearly distinguishable from those without an exon 10 

mutation (groups B or C) with high accuracy (93.8% and 87.5%, respectively). For 

patients exhibiting a typical FMF phenotype, it is clinically difficult to differentiate 

between those with and without exon 10 mutations, and there are also no current 
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biomarkers that differentiate these cases. Most patients in group C showed a typical 

FMF phenotype, and thus our results indicate that expression profiles of circulating 

miRNAs are useful biomarkers to differentiate between subgroups of FMF patients 

with a typical phenotype with or without an exon 10 mutation. Conversely, there are 

no biomarkers that distinguish among subgroups of FMF patients without exon 10 

mutations. The pathogenic significance of most variants of exons 2 and 3 remains 

debatable, but our results distinguished group B from group C with 100% accuracy. 

However, it is unclear whether the different expression pattern of circulating miRNAs 

was a consequence of the presence or absence of the P369S/R408Q variant because 

patients in group B tended to exhibit an atypical FMF phenotype, unlike those in 

group C. The disease control group (PFAPA) was well differentiated from all FMF 

patients and from each FMF subgroup. Because of possible age-dependent changes in 

some circulating miRNAs [28] and younger age in patients with PFAPA compared to 

those with FMF, it is necessary to confirm this difference in age-matched samples. 

Taken together, this approach may be valuable for distinguishing among subgroups of 

FMF. 

Circulating miRNAs examined in this study were prepared from serum or 

plasma between FMF attacks, at a time when all patients were afebrile and felt 

completely well. White blood cell counts, acute phase reactants, and serum cytokines 

usually normalize during this clinically stable, afebrile phase in patients with FMF, 

regardless of genotypic and phenotypic variations [29]. The characteristic expression 

patterns of circulating miRNAs in FMF patients between attacks may suggest the 

presence of persistent subclinical inflammation, which could lead to the next FMF 

attack. Further studies are required to assess whether altered expression profiles of 

miRNAs have a role in the pathogenesis of FMF. There is also a need to evaluate 
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circulating miRNAs during a FMF attack and miRNAs from cells expressing the 

MEFV product, pyrin, such as monocytes. Other limitations of this study include the 

small number of patients, the ethnically homogeneous samples, and the absence of 

quantitative analysis of miRNAs. In addition, this study did not take into account 

from which circulating miRNA were generated. While plasma and serum generally 

have similar miRNA expression patterns, considerable differences in their miRNA 

content could occur due to the presence or absence of factors including anticoagulants, 

platelets, and a clotting process [30, 31]. Moreover, additional disease controls 

including other autoinflammatory diseases and infectious diseases are required to 

assess whether expression patterns of miRNAs represent a biomarker for diagnosis of 

FMF.  

Biological functions of most of the selected miRNAs for classifying FMF 

subgroups remain to be determined. However, miR-320 is known to have a wide 

range of biological effects [32, 33]. In particular, miR-320 regulates the nucleotide-

binding oligomerization domain 2 (NOD2), an intracellular pathogen recognition 

sensor, whose deficiency leads to upregulation of the activity of NF-kB and 

transcription of downstream proinflammatory cytokines [34]. Higher expression of 

miR-320 in group A compared to other groups may support a possible role of miR-

320 in the compensatory inhibition of chronic inflammation caused by exon 10 

mutations of MEFV. Further studies are necessary to assess putative pathways and 

target genes of the selected miRNAs. 

In summary, our results show that expression patterns of circulating miRNAs 

in patients between FMF episodes differ among FMF subgroups based on MEFV 

mutations. These patterns may serve as useful biomarkers and diagnostic tools for 

identifying subgroups of FMF. 
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Table 1.  Patient characteristics. 
 
  FMF patients  PFAPA 

 with exon 10 with exon 3 without patients 

 mutations mutations exon 3 or 10 

 (Group A) (Group B) mutations 

   (Group C) 

 

n = 8 8 8 8 

Age (y)a 31.6 ± 20.2 21.6 ± 10.2 16.1 ± 6.7 10.0 ± 9.1 

Male/Female 2/6 3/5 3/5 3/5 

Typical FMF attacks 8/8 2/8 7/8 0/8 

Atypical FMF attacks 0/8 6/8 1/8 0/8 

WBC* 7410 ± 1270 6820 ± 3550 5690 ± 1230 7330 ± 2190 

CRP* 0.08 ± 0.07 0.57 ± 0.84 0.36 ± 0.28 0.35 ± 0.79 

MEFV mutations  

   M694I/E148Q 4/8 

   M694I/L110P/E148Q 3/8 

   M680I/V726A 1/8 

   P369S/R408Q  2/8 

   P369S/R408Q/E148Q  4/8  1/8 

   P369S/R408Q/E148Q/R202Q  1/8 

   P369S/R408Q/E148Q/G304R  1/8 

   E84K/wt   1/8 

   L110P/E148Q   1/8 2/8 

   E148Q/wt    2/8 

   R202Q/wt   1/8 

   S503C/wt   1/8 

   wt/wt   4/8 3/8 

 
a Data at sample collection. WBC, white blood cells; CRP, C-reactive protein; wt, 

wild type. 

 



Table 2. List of miRNAs that were used for discrimination. 
 

miRNA 
 

FMF-A/ 
FMF-B/ 
FMF-C/ 
PFAPA 

FMF 
(A, B, 
C)/ 
PFAPA 

FMF-
A/ 
FMF-B 

FMF-
A/ 
FMF-C 

FMF-
B/ 
FMF-C 

FMF-
A/ 
PFAPA 

FMF-
B/ 
PFAPA 

FMF-
C/ 
PFAPA  

hsa-miR-1225-5p * * * *  *   
hsa-miR-1915-3p     *    

hsa-miR-2861 * *  * * * * * 
hsa-miR-320b * * * *  *   
hsa-miR-320c * * * * * * * * 
hsa-miR-320d * * * * * * *  
hsa-miR-320e * * * * * * *  
hsa-miR-3665    * *    
hsa-miR-3960 * * * * * * * * 
hsa-miR-4270   * *  *   
hsa-miR-4281 * * * * * * * * 

hsa-miR-4485-5p * * * *  *   
hsa-miR-4516 * * * * * * * * 
hsa-miR-451a * * * * * * * * 
hsa-miR-6087 * * * * * * * * 
hsa-miR-6088 * * * * * * * * 
hsa-miR-6089 * * * * * * * * 
hsa-miR-6090 * * * * * * * * 
hsa-miR-6125 * * * * * * * * 
hsa-miR-638 * *  * *   * 

hsa-miR-6510-5p * * * *  * * * 
hsa-miR-6800-5p * * * * * * * * 
hsa-miR-6821-5p    * *   * 
hsa-miR-6869-5p * * * * * *  * 
hsa-miR-6891-5p * * * * * * * * 
hsa-miR-7107-5p * * * * * * * * 
hsa-miR-7110-5p   * *  *   

hsa-miR-7150 * * * * * * * * 
hsa-miR-7704 * *  * *   * 
hsa-miR-7975 * * * * * * *  
hsa-miR-8069 * *  * * * * * 

 
FMF-A, FMF group A; FMF-B, FMF group B; FMF-C, FMF group C. 
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Table 3. Classification of 3 subgroups of FMF and PFAPA by leave-one-out cross-
validation. 
 
a. Classification among 3 subgroups of FMF and PFAPA 

 FMF-A FMF-B FMF-C PFAPA 
FMF-A 6 1 0 0 
FMF-B 2 7 0 0 
FMF-C 0 0 5 4 accuracy 
PFAPA 0 0 3 4 68.8% 

 
b. Classification between pairs of subgroups 

 FMF (A, B, and C) PFAPA 
FMF (A, B, and C) 18 1 accuracy 

PFAPA 6 7 78.1% 
 

 FMF-A FMF-B 
FMF-A 7 0 accuracy 
FMF-B 1 8 93.8% 

 
 FMF-A FMF-C 

FMF-A 7 1 accuracy 
FMF-C 1 7 87.5% 

 
 FMF-B FMF-C 

FMF-B 8 0 accuracy 
FMF-C 0 8 100% 

 
 FMF-A PFAPA 

FMF-A 5 2 accuracy 
PFAPA 3 6 68.8% 

 
 FMF-B PFAPA 

FMF-B 7 2 accuracy 
PFAPA 1 6 81.3% 

 
 FMF-C PFAPA 

FMF-C 5 1 accuracy 
PFAPA 3 7 75.0% 
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Figure Legends 

 

Fig. 1.  Principal component analysis of miRNA expression analysis. 

The horizontal and vertical axes are the first and second principal components, 

respectively.   

 

Fig. 2.  Boxplots for selected miRNAs. 

Thirty-one miRNA expression patterns were used for discrimination among 3 

subgroups of FMF and PFAPA. The vertical axis shows the relative expression level 

of miRNA. Dots are the relative expression level in individuals. P-values were 

assessed by categorical regression analysis. 
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Figure 1 
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Figure 2 
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