A Theorem Concerning with a Transversal Map to the Foliation.

Haruo KITAHARA*

(Received Jan. 5, 1970)

In this note, we will prove a theorem concerning with a foliation induced by a transversal map to the given foliation on a manifold. We shall be in C^{∞} -category and follow R. S. Palais for the terminology for foliation.

Let M be an m-dimensional Hausdorff manifold with a regular foliation L of codimension k, and A an n-dimensional Hausdorff manifold. If M is a manifold, $T_x(M)$ denotes the tangent space to M at x. If f is a map of A to $M, f_*: T_\alpha(A) \longrightarrow T_{f(\alpha)}(M)$ denotes the linear map induced on tangent vectors.

Definition. A map f of A into M is said to be transversal to L at a point a in A if $f_{*,a}$ $(T_a(A)) + L_{f(a)} = T_{f(a)}(M)$ (direct sum). f is said to be transversal to L if it is transversal to L at every point of A.

(1) f is transversal to L if and only if there is a subspace E of $T_a(A)$ of dimension k such that $f_{*,a}E$ is injective and $f_{*,a}(E)\cap L_{f(a)}=\{0\}$

If the above condition is satisfied, since dim. $f_{*,a}(E) + dim$. $L_{f(a)} = dim$. $T_{f(a)}(M)$, we have $f_{*,a}(E) + L_{f(a)} = T_{f(a)}(M)$. Hence f is transversal to L at a. Conversely, if f is transversal to L at a, let E' be a subspace of $f_{*,a}(T_a(A))$ of dimension k such that $E' \cap L_{f(a)} = \{0\}$. There is a subspace E of $T_a(A)$ of dimension k such that $f_{*,a}(E) = E'$ and the result follows.

(2) For each $a \in A$, let L'_a be the set of vectors in T_a (A) mapped by f_* into $L_{f(a)}$. Then $L'; p \longrightarrow L'_p$ is a regular foliation of codimension k in A.

If $a \in A$ then we can find a cubical coordinate system $(y_1, \ldots, y_m; Q)$ in M centered at f(a) flat with respect to L such that for a leaf $\sum_{f(a)}$ of L through f(a), $Q \cap \sum_{f(a)} = \{ p \in Q \mid y_i(p) = 0, i = 1, \ldots, k \}$.

Since $(dy_i)_{f(a)} \mid L_{f(a)} = 0$, it follows that $(dy_i) \mid E'$ are linearly independent.

Since $f_{*,a}: E \longrightarrow E'$ is an isomorphism, $d(y_i^{\circ}f)_a \mid E$ are linearly independent, in particular, $d(y_i^{\circ}f)_a$ are linearly independent.

Since $f^{-1}(Q) \cap f^{-1}(\sum_{f(a)}) = \{ p \in f^{-1}(Q) \mid (y_i \circ f) \ (p) = 0 \}, f^{-1}(\sum_{f(a)}) \text{ is a regularly imbedded submanifold in } A \text{ of codimension } k.$ Then we can find a coordinate system $(x_1, \ldots, x_n; Q')$ in A such that $x_i = y_i \circ f$. We can assume that $(x_1, \ldots, x_n; Q')$ is cubical, centered at a and $f(Q') \subseteq Q$. The relation $dx_i = d(y_i \circ f) = f_* dy_i$ together with the fact that $dy_i(1, \ldots, k)$ are a base for the annihilator of L implies that dx_i are a base for the annihilator of $L' = f_*^{-1}(L)$. Then $(x_1, \ldots, x_n : Q')$ is flat with respect to L', therefore L' is involutive and regular.

Since $f_{*,a}$ $(L'_a)\subseteq L_{f(a)}$ for all $a\in A$, there exists a differentiable map h of A/L' to

^{*} Department of Mathematics

M/L satisfying $\pi_L \cdot f = h \cdot \pi_{L'}$ where $\pi_L(\pi_L) : M \longrightarrow M/L(A \longrightarrow A/L')$ is an natural projection.

- (3) h is a local diffeomorphism of A/L' into M/L. π_L and $\pi_{L'}$ are projection-like maps and dim. (A/L') = dim. (M/L) = k. Then the fact that rank $(f_*) = k$ implies that rank $(h_*) = k$.
- (4) For each $\Sigma' \in A/L'$, $f_* \mid \Sigma'$ is a differentiable map of Σ to h (Σ'). Let Σ'_a be a leaf of L containing $a \in A$. Since f (Σ'_a) is in a regularly imbedded submanifold $\Sigma_{f(a)}$, $f \mid \Sigma'_a$ is differentiable.
- (5) Let A/L' be compact, connected. and M/L connected. If h is an open map, then (A/L', h) is a covering space for M/L.
- h (A/L') is an open and compact, and hence open and closed subset of M/L, so h (A/L') = M/L. If $\sum \epsilon M/L$, then, since h is a local diffeomorphism, h^{-1} (\sum) is a discrete subset of A/L'. hence (A/L', h) is a covering space for M/L. Summerizing the aboves, we have,

Theorem. Let M be an m-dimensional Hausdorff manifold with a regular foliation L of codimension k, and A an n-dimensional Hausdorff manifold. Let f be a transversal map to L. For each $a \in A$, let L'_a be the set of vectors in $T_a(A)$ mapped by f_* into $L_{f(a)}$. Then $L': a \longrightarrow L'_a$ is a regular foliation of codimension k in A. There is a local diffeomorphism f of f into f into f with following properties.

- 1) For each $\Sigma' \in A/L'$, $f_* \mid \Sigma$ is a differentiable map of Σ' to h (Σ') .
- 2) Let A/L' be compact, connected and M/L connected. If h is an open map, then (A/L', h) is a covering space for M/L.

Reference

R. S. Palais A global formulation of the Lie theory of transformation groups.
Memoirs of A. M. S. No. 22. 1957.