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In this note we will first give a property of singularities of involutive linear
differential systems and then prove the theorems of a certain submanifold of a
riemannian manifold similar to ones owing to W. S. Massey in a surface of Gaussian
curvature 0 in 3-euclidean space. (3]

We shall always be in the C=~-category. Let L(M) be the Lie algebra of the
vector fields on an n-dimensional manifold M.

Definition. An involutive differential system is a Lie subalgebra L of L(M).

Given such an involutive system L and a point p in M, we put L(p) = {u(p) | uel}.
L({p) is a real subspace of the tangent space T,(M) to M at p. An integral
manifold of L is a connected submanifold N of M such that T,(N) =L(p) at every
point p in N.

1. We choose a neighbourhood U of p in M and denote by O(U) the oscillation
of dim. L(p) ; O(U) = max. (dim. L(x)-—dim. L(¥)). The oscillation O(p) at p in

x,yeU
M is defined by O(p) = n['zjm o). If VcU we have O(MH=<OU). As O(U) is
3p

an integer-valued function, there exists a neighbourhocod U’ of p in M such that
OUY=0(p). A point p for which O(P)=0(0(p)x0) will be called L-regular
(L-singular). For a L-regular point p, there exists a neighbourhood U such that
O(H=0(p)=0, i. e. dim. L(x)=constant for all x in U.

(1.1) The set £ of L-singular points is a closed set without interior points.

Let p be a limit point of £ and let U be a neighbourhood of p. Then there
exists at least one point % in U such that O(x)0, i. e. ¥ has a neighbourhood V
such that Vc U, O(V)=0(x)2c0. This implies that O(U)x0, and since U was
arbitrary, we have O(p)= 0, i. e. pef2. 2 is closed.

Let p be an interior point of £, and let U be a set such that p U@, O(U)
=0(p). Then there exists a point y in U such that O(p)=dim. L{(p)-dim. L(»),
and there exists a set V such that y ¢ VU, O(y)=0(V). Then there exists z in
V such that O()=dim. L(y)—dim. L(z). Since O@)=x0, we have dim. L(p)-
dim. L(2)=0()+0W)>0(p), z ¢ U. This implies O(U)>0(p), contradictory to
that O(U)=0(p). Hence p cannot be an interior point of £2.

(1.2) The set £ is nowhere dense in M.

It follows from that a locally compact Hausdorff space is a Baire space.

(1.8) For each connected component M, of the set of L-regular points,
dim. L(p)=constant for all p in M,. ’
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(1.4) The boundary of each connected component M, of L-regular points
consists of L-singular points.

Applying the Frobenius integrability theorem to each connected component of
L-regular points, we have,

(1.5) Let M, be a connected component of the set of L-regular points in M.
Then through each p in M, there exists an unique maximal connected submanifold
@ such that 7,(Q)=L(q) for each ¢q in Q.

Summarlizing the aboves, we have,

Theorem 1.

Let L be an involutive linear differential system on M. Then the set 2 of
L-singular points in M is nowhere dense in M, and through each  in each connected
component in the set of L-regular points in M, there exists an integral manifold
of L. '

2. Let M be an #n-dimensional riemannian manifold. Each point p in A has a
positive definite product <, > by the metric. M carries the riemannian connection V/.
Let N be a submanifold of codimension k. Since each tangent space T,(IN) to N at
p in N is identified with a subspace of the tangent space T,(M) to M at p in M,
the given inner product <, > on T,(M) can be restricted to T,(IN) to define
a positive definite inner product there also. Thus N inherits a riemannian metric.
(so—called, induced metric). For p in N let T;L (N) be the orthogonal complement
of TH(N) in Tp(M) with respect to < , >. For u ¢ T-(N), v, w <T,(N) we
choose the vector fields X, Y, Z such that X and Y are tangent to N, Z normal to
N, so that X(p)=v, Y(P)=w, Z(p)=u and define the second fundamental form
S by Sulv, w)=<Vx Y, Z>@P)=<V=x Y(), Z(Pp)>.

Definition. A vector v € T,(N) is a characterisitic vector of S,(v, To(N)) =0
for all u ¢ T;L (N). C, denotes the subspace of T,(N) of these characterisitic
vectors at p in N, Let C', be the following subspace of C, ;

Cr={ve Cy| R (v, T,(\N)) (T,(N)) cT,(N)}, where R denotes the
curvature tensor on M.

Let C be the set of vector fields X on M such that X(p) ¢ C', for each p in
N. Then C defines a linear differential system on N. We define the oscillations O
corresponding to ones of L. A point p for which O (p) =0 (0) will be called
C'-regular (C'-singular).

Theorem 2. The set of C -singular points is nowhere dense in V.

Theorem 3.. Suppose that R (C'p; C'p To(VN)) (Tpo(N)) =0, for all p € N,
where ; denotes the covariant derivatives of the curvature tensor R on M. Let N,
be a connected component of the set of C'-regular points in N. Then through each
p in No there is an unique maximal connected submanifold € such that T,(@)=C',
for each ¢ in Q. Further, @ is a totally geodesic submanifold of N such that tangent
spaces are self-parallel along @.

Proof. If we show that Vx Y ¢ C' for X, Y ¢ C, we have (X, Y) ¢ C'. Then
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C' is involutive. Let X and Y be any vector fields in C' and Z any tangent vector
field on N.

VVXYZ=VZVXY+ vzY, Z)

=R(Z, X) (Y)+Vx(VzY)+V 1z, 1y Y+ (VzY, Z]

But VzX, VrZand YV (z, r) Y are tangent to N, since <VzX, #>()=S.(X, Z),=0,
<vZ, w>()=Su.Y,Z)p=0. for all u normal to N. and (Z,X) is tangent to

N. Then viYZ is tangent to N for any tangent vector field Z on N, which
proves that (VxY), ¢ C, for all p in N. Now, for Z, W tangent to N,R(VxY, Z)(W)
=Vx (R(Y,ZY(W))-R(Y,VxZ) (W)—~R(Y,Z) (VxW) whichis tangent to N.
Therefore VxY ¢ C'. The second statement is evident. q. e. d.
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