On the Criterion of C. Carathéodory.

Haruo KITAHARA.* and Nobukazu MATSUOKA.**

In his axiomatic foundation of thermodynamics, C. Carathéodory had the following theorem about a Pfaffian form defined on the 3-dimensional Euclidean space.

Theorem.***

If a linear differential form H is such that in every neighbourhood of an arbitrary point P there exist points which cannot be attained from P by any integral curve of H, then H is completely integrable.

In this note, we shall generalize the above theorem to one on a differentiable manifold in C^{∞} -category.

Let M be an n-dimensional manifold. The Lie algebra V(M) of vector fields on M is a module over the ring F(M) of functions on M. A linear differential system H on M is an F(M)-submodule of V(M). For $p \in M$, H_p is a linear subspace $\{X(p) \mid X \in H\}$ of the tangent space M_p to M at p. The dimension of H_p is called the rank $r_H(p)$ of H at p. We shall suppose that H is of rank n-1, i. e. $r_H(p) = n$ -1 for all $p \in M$.

Definition. D(H) is the smallest Lie subalgebra of V(M) containing H. Clearly, $n-1=r_H$ $(p) \leq r_{D(H)}$ $(p) \leq n$ for all p.

(1) If $r_{D(H)}(H)(p) = n$ for some p, then $r_{D(H)}(q) = n$ for all points q sufficiently close to p.

Proof. Let X_i , i, $j = 1, \dots, n$, be the elements of D(H) which form a basis of $D(H)_p$. We put $X_i = \sum_{\gamma=1}^n A_{ij} \frac{\partial}{\partial x^j}$. Since the vector fields $\frac{\partial}{\partial x^j}$ form a basis of the tangent space at each point, the dimension of $D(H)_q$ is equal to the rank of $n \times n$ matrix $(A_{ij}(q))$. Hence we have $r_{D(H)}(q) = rank (A_{ij}(q)) = rank (A_{ij}(p)) = n$ for all q sufficiently close to p.

Definition. A curve $\sigma(t)$, $0 \le t \le 1$. is called an H-(D(H)-) integral curve if $\sigma'(t) \in H_{\sigma(t)}$ ($\sigma'(t) \in D(H)_{\sigma(t)}$), $0 \le t \le 1$.

Definition. A linear differential system H is said to satisfy the criterion of Carathéodory, if the following geometrical property (C) holds;

(C). For each point $p \in M$, there exist points q arbitrary close to p that are inaccessible from p along H-integral curves.

An integral curve $exp \ tY$, $|t| < \epsilon$, of the vector field Y can be considered

^{*}Department of mathematics.

^{**}Kanazawa Institute of Technology.

^{***}The geometrical proof of its generalization has been showed by S. KASHIWABARA.

as an orbit of a local one-parameter group of local diffeomorphisms generated by Y. Since a transformed vector field $(exp\ tY)_*(X)$ of a vector field X is defined by $(exp\ tY)_*(X(q)) = (exp\ tY)_*(X)$ $(exp\ tY\cdot q)$, $exp\ tY$ maps an integral curve of X to an integral curve of $(exp\ tY)_*(X)$. Then $s \to (exptY) \cdot (exp\ sX) \cdot p$ is an integral curve of $(exp\ tY)_*(X)$.

Hence we have the following:

- (2) $(exp\ tY) \cdot (exp\ sX) \cdot p = exp\ (s\ (exp\ tY)_*(X)) \cdot exp\ tY \cdot p$.
- (3) If H satisfies the property (C), then $H_p = D(H)_p$. Proof. Suppose that $H_p \neq D(H)_p$, i. e. $r_{D(H)}(p) = n$. Let X_a , a, b = 1,, n-1, be the elements of H which form a basis of H_p . Then there exists a pair X_a , X_b such that $(X_a, X_b) \subseteq H$ in a neighbourhood of p. Since, by definition.

$$(X_a, X_b)_p = \lim_{t\to 0} \frac{((exp\ tX_a)_{\bullet}(X_b))_{p^-}(X_b)_p}{t}$$

where the limit on the right hand side is taken with respect to the natural topology of the tangent space M_p , there exists some t such that $(exp\ tX_a)_{\oplus}(X_b) \equiv H$, $|t| < \varepsilon$. Then we can suppose that $(exp\ X_a)_{\oplus}(X_b) \equiv H$. By (2), every point that can be reached along a D(H)-integral curves can be reached along H-integral curves. Since $D(H)_q = M_q$ for all points q sufficiently close to p, those points q can be reached along H-integral curves. This cont-radicts the property (C).

Hence we have the following;

Theorem.

If a linear differential system H of rank n-1 satisfies the Criterion of Caratheodory, then H is completely integrable. The converse also holds.

Reference

- (1). M. DUTTA Sur l'intégrabilité des équations differentielles de Pfaff.
 C. R. Acad. Sc. Paris. t, 270 (1970) 890-893.
- (2). A. H. WILSON Thermodynamics and statistical mechanics, Cambridge. 1957.

(Received 1 st. Dec. 1970)