On the structure semigroups of L-subalgebras generated by spectral measures

Yûich KANJIN

(Received 1st. Oct., 1981)

Introduction. Let **T** be the circle group realized as \mathbb{R}/\mathbb{Z} . Let M (**T**) be the set of all bounded regular Borel measures on **T**. It is known that M (**T**) is a commutative Banach algebra with the convolution product and the norm of total variation and contains $L^1(\mathbb{T})$ as a closed ideal. The object of this paper is to obtain the identification of the structure semigroup of an L-subalgebra of $M(\mathbb{T})$ which is generated by a spectral measure.

Yu. A. Šreider [5] gave a description of the elements of the maximal ideal space Δ of M (T) as generalized characters. Moreover J. L. Taylor [6] showed the following result; For every convolution measure algebra N (e.g., an L-subalgebra of M (T)), there exists a compact abelian jointly continuous semigroup Σ (N) (the structure semigroup of N) such that N is embedded as a weak* dense L-subalgebra of the measure algebra M (Σ (N)) and the complex homomorphisms of N are induced by the continuous semicharacters of Σ (N). G. Brown and W. Moran [1] gave the successful description of the structure semigroup of a certain single generator L-subalgebra of M (T). In this paper, using the work of M. Queffelec [4], we shall obtain the description of the structure semigroup of an L-subalgebra of M (T) generated by a spectral measure.

1. Preliminaries and definitions. A closed subalgebra N of M (T) is called an L-subalgebra if $\nu \in N$ whenever $\nu \in M$ (T), $\mu \in N$ and $\nu \ll \mu$ (ν is absolutely continuous with respect to μ). An element $\chi = \{\chi_{\mu} ; \mu \in N\}$ of the product space

$$\prod_{\mu \in N} L^{\infty}(\mu)$$

is called a generalized character of an L-subalgebra N of M (T) if (1) $\chi_{\mu} = \chi_{\nu}$ (ν a.e.) if $\nu \ll \mu$,

(2)
$$\chi_{\mu * \nu} (x+y) = \chi_{\mu}(x) \chi_{\nu}(y) (\mu \times \nu \text{ a.e. } (x, y)), \text{ and}$$

(3)
$$1 \ge \sup \{ \parallel \chi_{\mu} \parallel_{\infty}; \mu \in \mathbb{N} \} > 0.$$

Every generalized character χ of N gives rise to a complex homomorphism of N according to the formula

$$\mu \mapsto \int \chi_{\mu} \ d\mu \ (=\hat{\mu}(\chi) = \chi(\mu))$$

for every $\mu \in N$ and in this way the maximal ideal space $\Delta(N)$ of N can be realized as the set of all generalized characters of N with the topology induced from the $\sigma(L^{\infty}(\mu), L^{1}(\mu))$ -topology on each factor in the product space (cf. Yu. A. Šreider [5]). For $\chi = \{\chi_{\mu}\}$ and $\xi = \{\xi_{\mu}\}$ in $\Delta(N)$ we define $\chi \xi, \overline{\chi}$ and $\chi + \chi + \chi_{\mu} = \chi_{\mu} \xi_{\mu}$, $\chi + \chi_{\mu} = \chi_{\mu} \xi_{\mu}$, where these operations are defined pointwise in $\chi + \chi_{\mu} = \chi_{\mu} \xi_{\mu}$. These operations yield new elements of $\chi + \chi_{\mu} = \chi_{\mu} \xi_{\mu}$ for each $\chi + \chi_{\mu} = \chi_{\mu} \xi_{\mu}$. These operations yield new elements of $\chi + \chi_{\mu} = \chi_{\mu} \xi_{\mu}$ forms a separately continuous semigroup.

For $\mu \in N$, we denote by $\Delta(N)_{\mu}$ the space $\{\chi_{\mu}; \chi \in \Delta(N)\}$ with the $\sigma(L^{\infty}(\mu), L^{1}(\mu))$ -topology. The space $\Delta(N)_{\mu}$ is regarded as a subsemigroup of $L^{\infty}(\mu)$. For a measure $\mu \in M(\mathbf{T})$, we denote by $N(\mu)$ the L-subalgebra of $M(\mathbf{T})$ generated by μ . It is known that $\Delta(N(\mu))$ and $\Delta(N(\mu))_{\mu}$ are homeomorphic as topological spaces and isomorphic as semigroups by the map $\mu \mapsto \chi_{\mu}$ (cf. [1]).

Let $q = \{q_1, q_2, \dots, q_n, \dots\}$ be a sequence of integers such that $q_n \ge 2$ $(n=1, 2, \dots)$. Let $p_0 = 1$ and $p_n = q_1 q_2 \dots q_n$ $(n=1, 2, \dots)$. A complex sequence $\alpha = \{\alpha$ (0), $\alpha(1), \dots, \alpha(n), \dots\}$ is called q-multiplicative if

$$\alpha (a+bp_n)=\alpha (a) \alpha (bp_n)$$

for all integers n, a and b such that $n \ge 0$, $b \ge 0$ and $0 \le a < p_n$. For a q -multiplicative sequence α such that $|\alpha(n)| = 1$ $(n = 0, 1, \dots)$, the limit

$$\gamma(k) = \lim_{N \to \infty} \frac{1}{N} \sum_{j=0}^{N-1} \alpha(j+k) \overline{\alpha(j)}$$

exists for all integers $k \ge 0$ (cf. [2], [4]). Set $\gamma(k) = \gamma(-k)$ for negative integers k. By the Bochner-Herglotz theorem, there exists a probability measure λ such that

$$\hat{\lambda}(k) = \int_{\tau} e^{2\pi i k x} d\lambda(x) = \gamma(k)$$
 for all integers k .

The measure λ is called the spectral measure associated with a q-multiplicative sequence α such that $|\alpha(n)| = 1$ (n = 0, 1, ...). The class of all such measures is denoted by \mathscr{S} . We define some subsets of \mathscr{S} in the following;

```
\mathscr{S}_c = \{ \lambda \in \mathscr{S}; \lambda \text{ is continuous} \},
```

 $\mathcal{G}_d = \{ \lambda \in \mathcal{G}; \lambda \text{ is discrete} \}$,

 $\mathscr{S}_0 = \{ \lambda \in \mathscr{S}; \lambda^n \text{ is in } L^1(\mathbf{T}) \text{ for some positive integer } n \}$, and

 $\mathcal{S}_1 = \{ \lambda \in \mathcal{S}; \delta(x) * \lambda^n \text{ and } \lambda^m \text{ are mutually singular for all } x \in \mathbf{T} \text{ and all positive integers } n \text{ and } m \text{ such that } n \neq m \}$

where λ^n is the n times convolution product and $\delta(x)$ is the unit mass concentrated at a point x. These classes were studied by J. Coquet, T. Kamae and M. Mendès France [2] and M. Queffelec [4]. And, it was proved that $\mathscr S$ is the disjoint union of $\mathscr S_c$ and $\mathscr S_d([2])$. Let H be a countable subgroup of T. A measure $\mu \in M$ (T) is called H-ergodic if for all Borel sets E of T such that E+H=E, either $|\mu|(E)=0$ or $|\mu|(E)=\|\mu\|$. A measure μ is called H-quasi-invariant if $|\mu|(x+E)=0$ for every $x \in H$ and all Borel sets E such that $|\mu|(E)=0$. We denote by D the countable subgroup of T generated by $\{1/p_n; n=0, 1, \ldots\}$. M. Queffelec showed that the following results ([4]);

- (A) If $\lambda \in \mathcal{S}$, then λ is *D*-ergodic,
- (B) if $\lambda \in \mathcal{S}_c$, then λ is D-quasi-invariant, and
- (C) $\mathcal{G}_c = \mathcal{G}_0 \cup \mathcal{G}_1$.
- **2.** Maximal ideal spaces. Let λ be an element of \mathscr{S} . We denote by $A(\lambda)$ the smallest L-subalgebra of M (T) containing $\{\lambda, \delta(d); d \in D\}$. If we set $A_c(\lambda) = \{\mu \in A(\lambda); \mu \text{ is continuous}\}$ and $A_d(\lambda) = \{\mu \in A(\lambda); \mu \text{ is discrete}\}$, we have a direct sum decomposition $A(\lambda) = A_d(\lambda) \oplus A_c(\lambda)$. We regard D as a discrete group and denote by \hat{D} the dual group of it.

PROPOSITION. (i) If λ is in \mathscr{S}_c , then $\Delta(A(\lambda))$ is identified with the disjoint union $\Delta(N(\lambda))_{\lambda} \cup \widehat{D}$.

- (ii) If λ is in \mathscr{S}_1 , then $\Delta(M(\mathbf{T}))_{\lambda} \supset \{u \in \mathbb{C}; | u | \leq 1\}$, and
- (iii) $\Delta(N(\lambda))_{\lambda} \cup \{0\} = \Delta(M(\mathbf{T}))_{\lambda}$, where 0 is the null function in $L^{\infty}(\lambda)$.

PROOF. Since $A_c(\lambda)$ is a closed ideal in $A(\lambda)$ and $A_d(\lambda)$ is a subalgebra of $A(\lambda)$, $\Delta(A(\lambda))$ is identified with the disjoint union $\Delta(A_c(\lambda)) \cup \Delta(A_d(\lambda))$. The algebra $A_d(\lambda)$ is isomorphic with $L^1(D)$ and $A_c(\lambda) = N(\lambda)$ since λ is D-quasi-invariant by (B). Note that $\Delta(N(\lambda)) = \Delta(N(\lambda))$, and $\Delta(L^1(D)) = \hat{D}$. Then we have

- (i). (A), (B) and C. C. Graham and O. C. McGehee [3, Theorem 6. 1. 5. (iii)] imply that, for every u with $|u| \le 1$, there exists $\chi \in \Delta(M(\mathbf{T}))$ such that $\chi_{\lambda} = u$ (λ a.e.). This means (ii). The inclusion $\Delta(N(\lambda))_{\lambda} \cup \{0\} \supset \Delta(M(\mathbf{T}))_{\lambda}$ is obvious. For $\chi \in \Delta(N(\lambda))$, we decompose $\chi = \chi_1 \chi_2$ where $|(\chi_1)_{\lambda}|^2 = |(\chi_1)_{\lambda}|$ (λ a.e.) and (χ_2) $_{\lambda} \ge 0$ (λ a.e.) (cf. [6]). (A), (B) and [3, Theorem 6. 1. 8. (i)] imply that $|\chi_{\lambda}| = a$ (λ a.e.) for some $0 < a \le 1$. Therefore $|(\chi_1)_{\lambda}| = 1$ (λ a.e.) and (χ_2) $_{\lambda} = a$ (λ a.e.). By the extension theorem (cf. [1, (2.2)]), there exists $\chi_1' \in \Delta(M(\mathbf{T}))$ such that (χ_1') $_{\lambda} = (\chi_1)_{\lambda}(\lambda$ a.e.). By (ii), there exists $\chi_2' \in \Delta(M(\mathbf{T}))$ such that (χ_2') $_{\lambda} = a$ (λ a.e.). Since $\chi_1' \chi_2' \in \Delta(M(\mathbf{T}))$ and ($\chi_1' \chi_2'$) $_{\lambda} = \chi_{\lambda}$, we have (iii).
- **3.** Structure semigroups. We recall the following definitions ([6], cf. [1, § 6]).

Let N and N' be L-subalgebras of $M(\mathbf{T})$. Let θ be an algebra homomorphism of N into N'. Then θ is called a CM-morphism if the following conditions are satisfied;

- (1) If $0 \le \mu \in N$, then $\|\theta \mu\| = \|\mu\|$,
- (2) if $0 \le \mu \in N$, then $\theta \mu \ge 0$, and
- (3) if $\mu \in N$, $\nu \in N'$, $\mu \ge 0$ and $0 \le \nu \le \theta \mu$, then

there exists $\omega \in N$ such that $0 \le \omega \le \mu$ and $\theta \omega = \nu$. It is known that for every L -subalgebra N of $M(\mathbf{T})$ there uniquely exists a compact abelian topological semigroup $\Sigma(N)$ which satisfies the following condition; There exists a CM -morphism $\theta: N \to M(\Sigma(N))$ such that

- (1) $\theta(N)$ is dense in $M(\Sigma(N))$ by the $\sigma(M(\Sigma(N)), C(\Sigma(N)))$ -topology,
- (2) $\hat{\Sigma}(N)$ separates points of $\Sigma(N)$, and
- (3) the complex homomorphisms of N are given by

 $\mu \to \int f \ d\theta \mu$ for $f \in \widehat{\Sigma}(N)$. Here $M(\Sigma(N))$ is the Banach algebra of all bounded regular Borel measures on $\Sigma(N)$ and $\widehat{\Sigma}(N)$ is the set of all nontrivial continuous semicharacters on $\Sigma(N)$. We call $\Sigma(N)$ the structure semigroup of N.

Let λ be an element of \mathcal{S}_1 . For every $\chi \in \Delta(A(\lambda))$, set

$$\phi(\chi)(d) = \hat{\delta}(d)(\chi) \quad (d \in D).$$

Then $\phi(\chi)$ is in \widehat{D} for every χ in $\Delta(A(\lambda))$ and ϕ is a continuous semigroup homomorphism of $\Delta(A(\lambda))$ onto \widehat{D} such that $\phi(\overline{\chi}) = \overline{\phi(\chi)}$ for every $\chi \in \Delta(A(\lambda))$. We use the following result;

(D) ([4, Lemma 5]) Let λ be an element of \mathcal{G}_c and \mathcal{X} an element of $\Delta(M(\mathbf{T}))$

such that χ_{λ} is not a null function. Then χ_{λ} is a constant function if and only if $\phi(\chi)$ is equal to the constant one.

We denote by G the set of all elements of $\Delta(M(\mathbf{T}))_{\lambda}$ such that the absolute values are equal to the constant function 1. We note that G becomes a group under the multiplication induced from $\Delta(M(\mathbf{T}))_{\lambda}$, and also by Proposition we can regard G as a subgroup of $\Delta(A(\lambda))$. Set $H = \phi(G)$. Then H is a subgroup of \widehat{D} and we regard H as a discrete group. We denote by π the dual homomorphism of the embedding of H into \widehat{D} with the discrete topology. Note that π is a surjection of \widehat{D} onto \widehat{H} , where \widehat{D} is the Bohr compactification of D.

Let N be the semigroup of positive integers with the discrete topology. We denote by \overline{N} the almost periodic compactification of N. And, recall that N is naturally contained in \overline{N} and continuous semicharacters of \overline{N} separate points (cf. $[1, \S 6]$).

Under the above notations, we have the following theorem.

THEOREM. If λ is in \mathcal{S}_1 , then

- (i) $\Sigma(N(\lambda)) = \bar{N} \times \hat{H}$, and
- (ii) $\Sigma(A(\lambda)) = \bar{D} \cup (\bar{N} \times \hat{H}),$

where the topology is that of the disjoint union and the multiplication is that of disjoint union together with the linking formula $x+(y, z)=(y, \pi(x)+z)$ ($z \in \overline{D}$, $y \in \overline{N}$, $z \in \widehat{H}$).

PROOF. By Proposition, we note that G contains the unit circle $\{u \in \mathbb{C}; |u| = 1\}$. Consider the sepuence

$$0 \to \mathbf{T} \overset{\iota}{\to} G \overset{\phi}{\to} H \to 0,$$

where ι is the map taking $t \in \mathbf{T}$ to the constant function with value $e^{2\pi it}$. By (D), we have $\ker \phi = \operatorname{Im} \iota$, and so the sequence is exact. Since \mathbf{T} is divisible, the exact sequence splits, i. e., there exist homomorphisms $\kappa : G \to \mathbf{T}$ and $\psi : H \to G$ such that $\kappa \circ \iota$ and $\phi \circ \psi$ are the identity maps on \mathbf{T} and H respectively. Define a homomorphism $\tau : G \to \mathbf{T} \times H$ by $\tau(\chi) = (\kappa(\chi), \phi(\chi))$ for each χ in G. Then τ is an isomorphism. Topologize G so that τ gives rise to a homeomorphism. Then the topology of G is stronger than topology induced on G as a subset of $\Delta(A(\lambda))$. Thus for each positive measure $\nu \in A(\lambda)$, $\hat{\nu} \mid_G$ is a continuous positive definite function on G, where $\hat{\nu} \mid_G$ is the restriction of the Gelfand transform $\hat{\nu}$ to G. Using Bochner's theorem and the fact that the value $\hat{\nu} \mid_G$

at the identity element of G is equal to $\|\nu\|$ we hav a positive isometric algebra homomorphism $\theta: A(\lambda) \to M(\hat{G})$ such that for $\nu \in A(\lambda)$ the Fourier-Stieltjes transform of $\theta(\nu)$ coincides with $\hat{\nu}$ on G. By the same argument as [1, (6.3)], it follows that θ is a CM-morphism. The dual homomorphism τ^* induces a CM-isomorphism of $M(\hat{G})$ onto $M(\mathbf{Z} \oplus \hat{H})$. Denote by Θ this map composition Θ . Then Θ is a CM-morphism $A(\lambda)$ into $M(\mathbf{Z} \oplus \hat{H})$.

We show that supp $\Theta(\lambda^n) = \{n\} \times \hat{H}$ for each positive integer n. Set $f(h) = \hat{\lambda}(\psi(h))$ for every $h \in H$. Then f is a positive definite function on the discrete group H. By Bochner's theorem there exists a positive measure ρ on \hat{H} such that $\hat{\rho}(h) = \hat{\lambda}(\psi(h))$ for every $h \in H$. And, $\Theta(\lambda)$ is equal to the product measure $\delta_1 \times \rho$ on $\mathbf{Z} \oplus \hat{H}$, where δ_1 is the unit mass concentrated at 1 in \mathbf{Z} . In fact,

$$\widehat{(\delta_{1} \times \rho)} (\tau(\chi)) = \widehat{\delta}_{1}(\kappa(\chi)) \widehat{\rho} (\phi(\chi))$$

$$= \iota(\kappa(\chi)) \widehat{\lambda} (\psi(\phi(\chi)))$$

$$= \widehat{\lambda}(\iota(\kappa(\chi)) \psi(\phi(\chi)))$$

$$= \widehat{\lambda}(\chi)$$

$$= \widehat{\Theta}(\widehat{\lambda}) (\tau(\chi)) (\chi \in G).$$

Thus it follows that the support of $\Theta(\lambda)$ is contained in $\{1\} \times \hat{H}$. By (B), we have $\Theta(\lambda) \approx \Theta(\lambda) * \Theta(\delta(d))$ for all $d \in D$. It is not difficult that $\Theta(\delta(d)) = \delta(0, \pi(d))$ for every $d \in D$ and $\pi(D)$ is dense in \hat{H} . Thus we have supp $\Theta(\lambda) = \{1\} \times \hat{H}$. Since supp $\Theta(\lambda^n)$ is contained in supp $\Theta(\lambda^{n-1}) + \text{supp } \Theta(\lambda)$ and $\Theta(\lambda^n) \approx \Theta(\lambda^n) * \delta(0, \pi(d))$, it follows that supp $\Theta(\lambda^n) = \{n\} \times \hat{H}$. Note that $\Theta(\nu)$ is supported on $\bar{N} \times \hat{H}$ for every $\nu \in N(\lambda)$.

We prove assertion (i). The canonical injection $\mathbf{N} \to \bar{\mathbf{N}}$ induces a CM-morphism from M ($\mathbf{N} \times \hat{H}$) to M ($\bar{\mathbf{N}} \times \hat{H}$). Composing this map with Θ , we obtain a CM-morphism $\Lambda: N(\lambda) \to M$ ($\bar{\mathbf{N}} \times \hat{H}$). Since semicharacters of $\bar{\mathbf{N}}$ separate points, the same is true of $\bar{\mathbf{N}} \times \hat{H}$. The union of the supports of the measures $\Theta(\lambda^n)$ ($n=1, 2, \cdots$) is dense in $\bar{\mathbf{N}} \times \hat{H}$, and hence $\Lambda(N(\lambda))$ is weak* dense in $M(\bar{\mathbf{N}} \times \hat{H})$.

Next we show that the complex homomorphisms of $N(\lambda)$ are given by $\nu \to \int f \ d\Lambda(\nu)$ for $f \in (\bar{\mathbb{N}} \times \hat{H})$. Let χ be an element of $\Delta(N(\lambda))$. We decompose $\chi = \chi_1 \chi_2$, where $|(\chi_1)_{\lambda}| = 1$ (λ a. e.), $0 < a \le 1$ (cf. Proof of Proposition). By (ii) and (iii) of Proposition, χ_1 belongs to G. Thus $\tau(\chi_1)$ can be regarded as a character of $\mathbb{Z} \oplus \hat{H}$. We have a semicharacter ξ_1 of $\bar{\mathbb{N}} \times \hat{H}$ which is naturally induced by $\tau(\chi_1)$. For every $\nu \in N(\lambda)$,

$$\hat{\boldsymbol{\nu}}(\boldsymbol{\chi}_1) = \widehat{\boldsymbol{\Theta}}(\boldsymbol{\nu}) (\boldsymbol{\tau}(\boldsymbol{\chi}_1))$$

$$= \int \boldsymbol{\tau}(\boldsymbol{\chi}_1) d\boldsymbol{\Theta}(\boldsymbol{\nu})$$

$$= \int \boldsymbol{\xi}_1 d\boldsymbol{\Lambda}(\boldsymbol{\nu}).$$

We define ξ' by $\xi'(n, x) = a^n(n=1, 2, \cdots)$ and denote by ξ_2 the semicharacter on $\bar{\mathbf{N}} \times \hat{\mathbf{H}}$ induced by the semicharacter ξ' of $\mathbf{N} \times \hat{\mathbf{H}}$, and set $\xi = \xi_1 \xi_2$. Then we show that

$$\hat{\boldsymbol{\nu}}(\boldsymbol{\chi}) = \int \zeta d\Lambda(\boldsymbol{\nu})$$

for every $\nu \in N(\lambda)$. In fact, for a measure $\nu \in N(\lambda)$, we have a norm convergent decomposition

$$v = \sum_{n=1}^{\infty} v_n$$

where each ν_n is a measure which is absolutely continuous with respect to λ^n . Since $(\chi_2)_{\lambda n} = a^n(\lambda^n a.e.)$ and $\Lambda(\nu_n)$ is supported on $\{n\} \times \hat{H}$, we have

$$\int \zeta d\Lambda (\nu_n) = a^n \int \zeta_1 d\Lambda (\nu_n)$$
$$= a^n \hat{\nu}_n(\chi_1).$$

Since Λ is bounded, it follows that

$$\int \zeta d\Lambda(\nu) = \sum_{n=1}^{\infty} \int \zeta d\Lambda (\nu_n)$$
$$= \sum_{n=1}^{\infty} a^n \hat{\nu}_n (\chi_1)$$
$$= \hat{\nu}(\chi).$$

It is clear that every semicharacter of $\bar{N} \times \hat{H}$ gives rise to an element of $\Delta(N(\lambda))$. This completes the proof of (i).

We denote by Σ the semigroup $\bar{D} \cup (\bar{N} \times \hat{H})$ described in (ii). Every $\nu \in A(\lambda)$ can be decomposed in the form $\nu = \nu' + \nu''$, where $\nu' \in N(\lambda)$ and ν'' is the

discrete part of ν . We define $\Lambda': A(\lambda) \to M(\Sigma)$ by

$$\Lambda'(\nu) = \Lambda(\nu') + \Phi(\nu'') \quad (\nu \in A(\lambda)),$$

where Φ is the canonical map from $A_d(\lambda)$ to $M_d(\bar{D})$ regarded as a subalgebra of $M(\Sigma)$. It is not difficult that Λ' is a CM-morphism with weak* dense image. It is clear that the elements of $\hat{\Sigma}$ separate points of Σ . Using the fact that the non zero complex homomorphisms of $N(\lambda)$ correspond to evaluation at a semicharacter of $\bar{N} \times \hat{H}$, we have that for χ in $\Delta(A(\lambda))$ there exists an semicharacter of Σ which gives rise to χ .

Let η be an element of $\widehat{\Sigma}$ which is not identically zero on $\overline{\mathbf{N}} \times \widehat{H}$. Since $\eta \mid_{\widehat{\mathbf{N}} \times \widehat{H}}$ is a non-trivial semicharacter of $\overline{\mathbf{N}} \times \widehat{H}$, there exist $h \in H$ and $a \in C$ with $0 < |a| \le 1$ such that $\eta((n, z)) = a^n h(z)$ for all $n \in \mathbb{N}$ and $z \in \widehat{H}$. For all n in \mathbb{N} , x in \overline{D} and z in \widehat{H} , we have

$$a^{n}h (\pi(x)+z) = \eta((n, \pi(x)+z))$$

$$= \eta (x+(n, z))$$

$$= \eta (x) \eta((n, z))$$

$$= \eta (x) a^{n}h(z),$$

and hence $\eta(x) = h(\pi(x))$ for all $x \in \overline{D}$. Let χ be the element of $\Delta(A(\lambda))$ defined by $\chi_{\lambda}(s) = a \psi(h)(s)$ (λ a.e.). Then we have

$$\int \eta d\Phi(\nu'') = \int h d\nu''$$

for all $\nu \in A(\lambda)$. Let η be an element of $\hat{\Sigma}$ which is identically zero on $\bar{N} \times \hat{H}$. Then η is induced by some $\gamma \in \hat{D}$ on \bar{D} . Let χ be the generalized character which is zero on $N(\lambda)$ and is induced by γ on $A_d(\lambda)$. We have

$$\int \chi_{\nu} d\nu = \int \gamma d\nu''$$
$$= \int \eta d\Lambda'(\nu)$$

for all $\nu \in A(\lambda)$. This completes the proof of the theorem.

REFERENCES

- [1] G. Brown and W. Moran, Bernoulli measure algebras, Acta Math., 132 (1974), 77-109.
- [2] J. Coquet, T. Kamae et M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. math. France, 105 (1977), 369-384.
- [3] C. C. Graham and O. C. McGhee, Essays in Commutative Harmonic Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [4] M. Queffelec, Mesures spectrales associées a certaines suites arithmétiques, Bull. Soc. math. France, 107 (1979), 385-421.
- [5] Yu. A. Šreider, The structure of maximal ideals in rings of measures with convolution, Mat. Sb., 27 (1950), 297-318, Amer. Math. Soc. Transl., (1) 8 (1962), 365-391.
- [6] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., 119 (1965), 150-166.