

Ann. Sci. Kanazawa Univ. Vol. 21, pp. 7-18, 1984

Stability theorems for Γ -foliations associated with semi-simple flat homogeneous spaces

Haruo KITAHARA*)

(Received May 1, 1984)

1. Introduction.

An important problem in the foliation theory is to describe the influence exerted by a compact leaf upon the global structure of a foliation. For certain classes of foliations, this problem is reasonable. Stability theorems have been studied by G. Reeb [9], B.L. Reinhart[10], R.A. Blumenthal[1] and others:

THEOREM A (Reeb Stability[9]). Let E be a foliation of codimension one on a compact connected manifold. If E has a compact leaf with finite fundamental group, then all the leaves of E are compact with finite fundamental group.

THEOREM B (Reinhart Stability[10]). Let E be a complete riemannian foliation of codimension $q \ge 1$ on a connected manifold. Then all the leaves of E have the same universal cover. In paticular, if E has a compact leaf with finite fundamental group, then all the leaves of E are compact with finite fundamental group.

THEOREM C (Blumenthal Stability[1]). Let E be a complete conformal foliation of codimention $q \ge 3$ on a connected manifold. Then all the leaves of E have the same universal cover. In particular, if E has a compact leaf with finite infinitesimal holonomy group of order 2, then all the leaves of E are compact with finite infinitesimal holonomy group of order 2.

The aim of this paper is to prove the stability theorem for a foliation with the structure pseudogroup Γ of local automorphisms of a certain 2nd order G-structure which implies the some stability theorems.

^{*)} Department of mathematics.

After the completion of this paper, the author recieved a preprinted form of Blumenthal's paper entitled "Cartan connections in foliated bundles". The author obtained the results in this paper independently.

THEOREM. Let E be a complete Γ -foliation associated with a semi-simple flat homogeneous space L/L_0 . Suppose that the Spencer cohomology $H^{2,1}$ (1) of the graded Lie algebra 1 of L vanishes. Then all the leaves of E have the same universal cover. In particular, if E has a compact leaf N_0 with finite infinitesimal holonomy group $H^2(N_0, x_0)$ of N_0 based at x_0 , then all the leaves of E are compact and $H^2(N, x)$ is finite for all leaves N of E.

We shall be in C^{∞} -category, and manifolds are supposed to be paracompact, Hausdorff spaces.

2. Semi-simple flat homogeneous spaces.

We shall review a brief survey of the basic materials on semi-simple flat homogeneous spaces. For details, see S. Kobayashi and T. Nagano[3], S. Kobayashi and T. Ochiai[4] and T. Ochiai[8].

A (transitive) semi-simple graded Lie algebra means a semi-simple Lie algebra $\mathfrak{l} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1$, dim $\mathfrak{g}_p < \infty$ (p = -1, 0, 1) such that $(\mathfrak{g}_p, \mathfrak{g}_q) \subset \mathfrak{g}_{p+q}$ for all $p, q \ge -1$ and $(X, \mathfrak{g}_{-1}) \ne 0$ for each non-zero $X \in \mathfrak{g}_p$, $p \ge 0$. \mathfrak{g}_{-1} is the dual vector space of \mathfrak{g}_1 by the nondegeneracy of the Killing form of \mathfrak{l} . Semi-simple graded Lie algebras have been classified in [3].

The Lie algebra cohomology $H(\mathfrak{l})=H(\mathfrak{g}_{-1}, \operatorname{ad}_{\mathfrak{l}}|\mathfrak{g}_{-1}, \mathfrak{l})$ of the abelian Lie algebra \mathfrak{g}_{-1} with respect to its adjoint representation on \mathfrak{l} is called the Spencer cohomology of a graded Lie algebra $\mathfrak{l}=\mathfrak{g}_{-1}+\mathfrak{g}_0+\mathfrak{g}_1$. More precisely, let $C^{p,q}=\mathfrak{g}_{p-1}\otimes \Lambda^q(\mathfrak{g}_{-1})^*$ be the vector space of all \mathfrak{g}_{p-1} -valued q-linear alternating map on \mathfrak{g}_{-1} . Define a coboundary operator $\partial: C^{p,q} \longrightarrow C^{p-1,q+1}$ by

$$(\partial c)(X_1, ..., X_{q+1}) = \sum_{i} (-1)^{i+1} [X_i, c(X_1, ..., \hat{X}_i, ..., X_{q+1})]$$

for $c \in C^{p,q}$ and $X_1, ..., X_{q+1} \in g_{-1}$. Then $\partial^2 = 0$ and the Spencer cohomology $H(\mathfrak{l}) = \sum H^{p,q}(\mathfrak{l})$ is defined by

$$H^{p,q}(1) = \partial^{-1}(0) \cap C^{p,q}/\partial (C^{p+1,q-1}).$$

Let L/L_0 be a connected homogeneous space on which a (not necessarily connected) semi-simple Lie group L acts effectively and transitively. Since L_0 is the isotropy subgroup of L at the origin of L/L_0 , there is a natural representation ρ of L, called the linear isotropy representation of L_0 , on the tangent space of L/L_0 at the origin. ρ is a homomorphism from L_0 into $GL(g_{-1})=GL(q;\mathbf{R})$, $q=\dim L/L_0$. Let L_1 be the kernel of ρ . L/L_0 is called a semi-simple flat homogeneous space of order 2 if the Lie algebra 1 of L has a semi-simple graded Lie algebra structure $I=g_{-1}+g_0+g_1$ such that g_0+g_1 is the Lie algebra of L_0 . It is known that L_0 0 is the Lie algebra of the

linear isotropy subgroup $G_0 = L_0/L_1 \subset GL(q; \mathbf{R})$ and L_0 is a semi-direct product $G_0 \cdot G_1$ of G_0 and the vector group $G_1 = \exp g_1$.

Example 1. $l = \mathfrak{sl}(q+1; \mathbf{R}) \ (q \ge 1)$.

$$\mathbf{g}_{-1} = \left\{ \begin{pmatrix} 0 & 0 \\ \xi & 0 \end{pmatrix} \right\}, \ \mathbf{g}_{0} = \left\{ \begin{pmatrix} a & 0 \\ 0 & A \end{pmatrix} | a + \text{Trace } A = 0 \right\}, \ \mathbf{g}_{1} = \left\{ \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix} \right\},$$

where ξ is a row q-vector, u is a column q-vector, $A \in \mathfrak{gl}(q; \mathbf{R})$ and $a \in \mathbf{R}$. The corresponding semi-simple flat homogeneous space L/L_0 of order 2 is a real projective space of dimension q, where $L = GL(q+1; \mathbf{R})/\mathbf{R}^*I_{q+1}$ and $L_0 = \left\{ \begin{pmatrix} b & v \\ 0 & B \end{pmatrix} \in GL(q+1; \mathbf{R}) \right\}$

Example 2. $l=o(q+1, 1)=\{X \in \mathfrak{gl}(q+2; \mathbf{R})|^t XS + XS = 0\}(q \ge 3),$

where
$$S = \begin{bmatrix} 0 & 0 & -1 \\ 0 & I_q & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

 R^*I_{q+1} .

$$\mathbf{g}_{-1} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ \xi & 0 & 0 \\ 0 & {}^{t} \xi & 0 \end{pmatrix} \right\}, \ \mathbf{g}_{0} = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & -a \end{pmatrix} \right\}, \ \mathbf{g}_{1} = \left\{ \begin{pmatrix} 0 & u & 0 \\ 0 & 0 & {}^{t} u \\ 0 & 0 & 0 \end{pmatrix} \right\},$$

where ξ is a row q-vector, $A \in \mathfrak{o}(q)$, u is a column q-vector and $a \in \mathbf{R}$. The corresponding semi-simple flat homogeneous space L/L_0 of order 2 is a Möbius space of dimension q (q-sphere S^q), where $L = \{X \in GL(q+2; \mathbf{R}) | {}^tXSX = S\}/\{\pm I_{q+2}\}$ and

$$L_0 = \left\{ X = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} | {}^t X S X = S \right\} / \{ \pm I_{q+2} \}.$$

Example 3. $l = \{X \in \mathfrak{gl}(q+2; \mathbf{R}) | {}^{t}XS + SX = 0\} (q \ge 3),$

where
$$S = \begin{pmatrix} 0 & 0 & 1 \\ 0 & S_{r,s} & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
, $S_{r,s} = \begin{pmatrix} I_r & 0 \\ 0 & -I_s \end{pmatrix}$, $r+s=q$, $r \ge s \ge 0$.

$$\mathbf{g}_{-1}\!=\!\left\{\left[\begin{array}{cccc} 0 & 0 & 0 & 5 \\ \xi' & 0 & 0 & 0 \\ \xi'' & 0 & 0 & 0 \\ 0 & {}^t\!\xi' & -{}^t\!\xi'' & 0 \end{array}\right]\right\},\;\;\mathbf{g}_0\!=\!\left\{\left(\begin{array}{cccc} a & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & -a \end{array}\right)\right\},\;\;\mathbf{g}_1\!=\!\left\{\left[\begin{array}{cccc} 0 & u' & u'' & 0 \\ 0 & 0 & 0 & {}^t\!u' \\ 0 & 0 & 0 & -{}^t\!u'' \\ 0 & 0 & 0 & 0 \end{array}\right]\right\},\;\;\mathbf{g}_1\!=\!\left\{\left(\begin{array}{cccc} 0 & u' & u'' & 0 \\ 0 & 0 & 0 & {}^t\!u' \\ 0 & 0 & 0 & 0 \end{array}\right)\right\},\;\;\mathbf{g}_1\!=\!\left\{\left(\begin{array}{cccc} 0 & u' & u'' & 0 \\ 0 & 0 & 0 & {}^t\!u' \\ 0 & 0 & 0 & 0 \end{array}\right)\right\},\;\;\mathbf{g}_2\!=\!\left(\begin{array}{cccc} 0 & u' & u'' & 0 \\ 0 & 0 & 0 & {}^t\!u' \\ 0 & 0 & 0 & 0 \end{array}\right)\right\},\;\;\mathbf{g}_2\!=\!\left(\begin{array}{cccc} 0 & u' & u'' & 0 \\ 0 & 0 & 0 & {}^t\!u' \\ 0 & 0 & 0 & 0 \end{array}\right)\right\},\;\;\mathbf{g}_2\!=\!\left(\begin{array}{cccc} 0 & u' & u'' & 0 \\ 0 & 0 & 0 & {}^t\!u' \\ 0 & 0 & 0 & 0 \end{array}\right)\right\},\;\;\mathbf{g}_3\!=\!\left(\begin{array}{cccc} 0 & u' & u'' & 0 \\ 0 & 0 & 0 & {}^t\!u' \\ 0 & 0 & 0 & 0 \end{array}\right)\right\},\;\;\mathbf{g}_3\!=\!\left(\begin{array}{cccc} 0 & u' & u'' & 0 \\ 0 & 0 & 0 & {}^t\!u' \\ 0 & 0 & 0 & 0 \end{array}\right)\right\}$$

where $\xi'(\xi'')$ is a row r-vector (s-vector), u'(u'') is a column r-vector (s-vector), $A \in \mathfrak{g}(r,s) = \{B \in \mathfrak{g}(q;\mathbf{R}) | {}^tBS_{r,s} + S_{r,s}B = 0\}$ and $a \in \mathbf{R}$. The corresponding semi-simple flat homogeneous space L/L_0 of order 2 is the quotient space $E_{r,s} = S^r \times S^s / \sim$ of $S^r \times S^s$ by the equivalence relation \sim defined by $(x, y) \sim (-x, -y)$ for $(x, y) \in S^r \times S^s([7])$.

$L_{ m o}$ -structure of order 2 associated with $L/L_{ m o}$

We will refer to [7] and [11] in this and the following sections. Let B be a manifold of dimension q. Let $G^r(q) \longrightarrow p^r(B) \xrightarrow{\tilde{\pi}_r} B$ be the r-th frame bundle of $GL(q; \mathbf{R}) = G^{1}(q)$ may be identified with a subgroup of $G^{r}(q)$ in canonical way. Then the natural projection $\tilde{\pi}_r^s: P^r(B) \longrightarrow P^s(B)$ for r > s is $GL(q; \mathbf{R})$ -equivariant and satisfies $\tilde{\pi}_s \circ \tilde{\pi}_r^s = \tilde{\pi}_r$. Let $\Gamma(B)$ be the pseudogroup of all local diffeomorphisms of B. The r-th prologation $\gamma^{(r)}$ of $\gamma \in \Gamma(B)$ is a local $G^r(q)$ -bundle map of $P^r(B)$ such that $\tilde{\pi}_r \circ \gamma^{(r)} = \gamma \circ \tilde{\pi}_r$.

Now, we review the definition of the r-th canonical form $\tilde{\theta}^{(r)}$ on $P^r(B)$. We define the distinguished element $e^r \in P^r(\mathbb{R}^q)$ by $e^r = j_0^r$ (identity) and set $\mathfrak{p}^r(q) =$ $T_{e^r}(P^r(\mathbf{R}^q))$. The natural action of $G^r(q)$ on $\mathfrak{p}^{r-1}(q)$ is denoted by Ad. The map \mathfrak{p}_s^r : $\mathfrak{p}^r(q) \longrightarrow \mathfrak{p}^s(q)$ means the differential of $\tilde{\pi}_r^s : P^r(\mathbf{R}^q) \longrightarrow P^s(\mathbf{R}^q)$ for r > s at e^r . In particular, $\mathfrak{p}^0(q) = \mathbf{R}^q$, $\mathfrak{p}^1(q) = \mathbf{R}^q + \mathfrak{gl}(q)$, which may be identified with the Lie algebra of the group of affine automorphisms of R^q and $p_1^0: p^1(q) \longrightarrow p^0(q)$ is the projection to the first factor. The r-th canonical form $\tilde{\theta}^{(r)}$ is a $\mathfrak{p}^{r-1}(q)$ -valued 1-form on $P^r(B)$ defined as follows. Let $u=j_0^r(f)\in P^r(B)$ and $f:\mathbb{R}^q\longrightarrow B$ be a local diffeomorphism defined around the origin 0. Then the correspondence $j_0^{r-1}(\gamma) \longrightarrow j_0^{r-1}(f \cdot \gamma)$ defines a local diffeomorphism $\bar{f}: P^{r-1}(\mathbf{R}^q) \longrightarrow P^{r-1}(B)$ defined around e^{r-1} such that $\bar{f}(e^{r-1})$ $=u'=\tilde{\pi}_r^{r-1}(u)$, and the differential $\bar{u}:\mathfrak{p}^{r-1}(q)\longrightarrow T_u(P^{r-1}(B))$ of \bar{f} at e^{r-1} is independent of choice of f. $\tilde{\theta}^{(r)}$ is defined by

$$\tilde{\theta}^{(r)}(X) = \bar{u}^{-1}(\tilde{\pi}_r^{r-1})_* X$$
 for $X \in T_u(P^r(B))$.

It satisfies

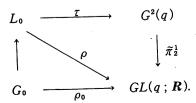
$$R_a^* \tilde{\theta}^{(r)} = Ad(a^{-1}) \tilde{\theta}^{(r)} \qquad \text{for } a \in G^r(q),$$

$$(\tilde{\pi}_r^s)^* \tilde{\theta}^{(s)} = p_{r-1}^{s-1} \tilde{\theta}^{(r)} \qquad \text{for } r > s,$$

where R_a means the right translation of $P^r(B)$ by $a \in G^r(q)$. In particular, let $\tilde{\theta}_{-1}$ and $ilde{ heta}_0$ be the ${m R}^q$ -component and $\mathfrak{gl}(q\,;{m R})$ -component of the 2nd canonical form $ilde{ heta}^{(2)}$ on $P^2(B)$ respectively, so that $\tilde{\theta}^{(2)} = \tilde{\theta}_{-1} + \tilde{\theta}_0$. Then we have

$$d\tilde{\theta}_{-1}+(\tilde{\theta}_{0}, \tilde{\theta}_{-1})=0.$$

Let L/L_0 be a semi-simple flat homogeneous space of order 2. We set $\rho_0 = \rho |G_0$. Then we have a commutative diagram;



 ρ_0 is an injective homomorphism, which identifies G_0 with the Lie subgroup $\rho(L_0)$ of $GL(q; \mathbf{R})$. Let $L_0 \longrightarrow Q \longrightarrow B$ be a principal L_0 -subbundle of $P^2(B)$, which is called a structure of order 2 associated with semi-simple flat homogeneous space L/L_0 . For each Q, let Γ be the pseudogroup of local automorphisms of Q, that is.

$$\Gamma = \{ \gamma \in \Gamma(B) | \gamma^{(2)} Q \subset Q \}.$$

We define a G_0 -subbundle P of $P^1(B)$ by $P = \tilde{\pi}_2^1(Q)$, which is the G_0 -structure associated with Q. It should be noted that for each $\gamma \in \Gamma$ the lst prologation $\gamma^{(1)}$ leaves P invariant, since $\gamma^{(1)} \cdot \tilde{\pi}_2^1 = \tilde{\pi}_2^1 \cdot \gamma^{(2)}$.

Example 4. Let L/L_0 be as Example 1 in § 2. The linear isotropy subgroup G_0 coincides with $GL(q; \mathbf{R})$, and P is the bundle of linear frames on B. Γ is nothing but the pseudogroup of local projective transformations of a torsion-free linear connection on B.

EXAMPLE 5. Let L/L_0 be as Example 2 in § 2. The linear isotropy subgroup G_0 coincides with CO(q), and P is a CO(q)-structure on B. Γ is nothing but the pseudogroup of local conformal transformations of a riemannian metric on B. It should be noted that P contains O(q)-structure (i.e. riemannial structure) as subbundle.

EXAMPLE 6. Let L/L_0 be as Example 3 in § 2. The linear isotropy subgroup G_0 coincides with CO(r,s), and P is a CO(r,s)-structure on B. Γ is nothing but the pseudogroup of local conformal transformations of a pseudo-riemannian metric of signature (r,s) on B.

4. Γ -foliations associated with L/L_0 .

Let M be a connected smooth manifold of dimension n and B be an another connected smooth manifold of dimension $q = \dim L/L_0$. Let $\Gamma(B)$ be the pseudogroup of local diffeomorphisms on B. Then a $\Gamma(B)$ -foliation \widehat{E} may be defined by a $\Gamma(B)$ -cocycle $\widehat{E} = \{(U_\alpha, f_\alpha, \gamma_{\alpha\beta})\}_{\alpha,\beta\in A}$ such that

- (i) $\{U_{\alpha}\}$ is an open cover of M,
- (ii) $f_{\alpha}: U_{\alpha} \longrightarrow B$ is a submersion,
- (iii) for each $x \in U_{\alpha} \cap U_{\beta}$, there exists $\gamma_{\alpha\beta}^x \in \Gamma(B)$ such that $f_{\beta} = \gamma_{\alpha\beta}^x f_{\alpha}$ in some neighborhood of x.

In the other words, the fibers of each submersion f_{α} are pieced togather to define the leaves of the foliation \widehat{E} . The kernel of the differentials $(f_{\alpha})_*$ of submersions f_{α} constitute an integrable subbundle \widehat{E} of the tangent bundle TM. A pair (U_{α}, f_{α}) is called an adapted chart to \widehat{E} .

In the same way, we may define a Γ -foliation E replacing $\Gamma(B)$ with Γ in the definition of the foliation \widehat{E} . It should be noted that both \widehat{E} and E have the same structure of leaves. We shall define the r-th frame bundle $P^r(\widehat{E})$ for \widehat{E} and the r-th canonical form $\theta^{(r)}$ on $P^r(\widehat{E})$.

Take a point $o \in B$ and fix it once for all. Choose a local diffeomorphism $f : \mathbb{R}^q \longrightarrow B$ defined around 0 such that f(0) = o and $j_0^2(f) \in Q$, and then identify a neighborhood of 0 in \mathbb{R}^q with a neighborhood of o in B by means of f. We set

 $P^r(\widehat{E}) = \{j_x^r(f)| f \in \widehat{E} \text{ defined around } x \text{ with } f(x) = 0\},$ and define the projection $\pi_r : P^r(\widehat{E}) \longrightarrow M$ by $\pi_r(j_x^r(f)) = x$. The group $G^r(q)$ acts on $P^r(\widehat{E})$ from right by

$$j_x^r(f) \cdot j_o^r(\varphi) = j_x^r(\varphi^{-1} \circ f)$$
 for $j_o^r(\varphi) \in G^r(q)$.

Then we have a $G^r(q)$ -bundle $G^r(q) \longrightarrow P^r(\widehat{E}) \xrightarrow{\pi_T} M$. Note that $P^r(\widehat{E})$ may be identified with the r-th prologation of the frame bundle of the normal bundle $\nu(\widehat{E}) = TM/\widehat{E}$. The natural projection $\pi_r^s \colon P^r(\widehat{E}) \longrightarrow P^s(\widehat{E})$ for r > s is also GL(q; R)-equivariant and satisfies $\pi_s \colon \pi_r^s = \pi_r$. Let $f \colon V \longrightarrow B$ be a local submersion in \widehat{E} . For each $j_x^r(\varphi) \in P^r(\widehat{E})$ with $x \in V$, there exists a local diffeomorphism $\psi \colon R^q \longrightarrow B$ defined around 0 such that $\psi(0) = f(x)$ and $\psi \circ \varphi = f$ around x. Then the correspondence $j_x^r(\varphi) \longrightarrow j_0^r(\psi)$ defines a $G^r(q)$ -bundle map $f^{(r)} \colon P^r(\widehat{E}) | V \longrightarrow P^r(B)$. It satisfies $\widetilde{\pi}_r \circ f^{(r)} = f \circ \pi_r$.

Let $v=j_x^r(f)\in P^r(B)$ and set $v'=\pi_r^{r-1}(v)$. For each $j_y^{r-1}(\varphi)\in P^{r-1}(\widehat{E})$ near to v, there exists a local diffeomorphism $\psi:\mathbf{R}^q\longrightarrow\mathbf{R}^q$ defined around 0 such that $\psi(0)=f(y)$ and $\psi\circ\varphi=f$ around x. The correspondence $j_y^{r-1}(\varphi)\longrightarrow j_0^{r-1}(\psi)$ defines a local map $\overline{f}:P^{r-1}(\widehat{E})\longrightarrow P^{r-1}(\mathbf{R}^q)$ defined around v' with $\overline{f}(v')=e^{r-1}$. The differential $\overline{v}:T_{v'}(P^{r-1}(\widehat{E}))\longrightarrow \mathfrak{p}^{r-1}(q)$ of \overline{f} at v' is independent of the choice of f. $\theta^{(r)}$ is defined by

$$\theta^{(r)}(x) = \bar{v}(\pi_r^{r-1})_* X$$
 for $X \in T_v(P^r(\widehat{E}))$.

Then the following relations hold;

$$R_a^*\theta^{(r)} = Ad(a^{-1})\theta^{(r)}$$
 for $a \in G^r(q)$,
 $(\pi_r^s)^*\theta^{(s)} = p_{r-1}^{s-1}\theta^{(r)}$ for $r > s$,
 $\theta^{(r)} = f^{(r)*}\tilde{\theta}^{(r)}$ on $P^r(\widehat{E})|V$, for each local submersion $f: V \longrightarrow B$ in \widehat{E} .

LEMMA 1 ([7]). Let $E = \{f_{\alpha}\}_{{\alpha} \in \Lambda}$ be a Γ -foliation associated with L/L_0 on M. Then (i) There exists a unique L_0 -subbundle Q(E) of $P^2(\widehat{E})$ such that $Q(E)|U_{\alpha}=(f_{\alpha}^{(2)})^{-1}Q$ for each $f_{\alpha}:U_{\alpha}\longrightarrow B$ in E.

- (ii) There exists a unique G_0 -subbundle P(E) of $P^1(\widehat{E})$ such that $P(E)|U_a=(f_a^{(1)})^{-1}P$ for each $f_a:U_a\longrightarrow B$ in E.
 - (iii) $\pi_2^1 Q(E) = P(E)$.

Lemma 2 ([11]). There exists a G_0 -equivariant section $s: P(E) \longrightarrow Q(E)$ of the bundle $\pi_2^1: Q(E) \longrightarrow P(E)$.

We recall the existence theorem of Tanaka-Ochiai for a Cartan connection on the structure Q of order 2 associated with L/L_0 .

THEOREM 3 ([8],[12]). If the Spencer cohomology $H^{2,1}(\mathfrak{l})=0$, then there exists a unique normal Cartan connection of type L/L_0 on Q.

We shall require following properties of a normal Cartan connection \tilde{w} :

- (i) \tilde{w} is a 1-valued 1-form on Q.
- (ii) \tilde{w} is invariant under Γ .
- (iii) Let $L \longrightarrow Q^L = Q \times_{L_0} L \longrightarrow B$ be the group extension of Q by L. Then \tilde{w} is extended to a unique L-connection form on Q^L , which is also defined by \tilde{w} .
- (iv) Let $\widetilde{w}_i(i=-1, 0, 1)$ be the projection of \widetilde{w} with respect to the decomposition $\mathfrak{l}=\mathfrak{g}_{-1}+\mathfrak{g}_0+\mathfrak{g}_1$, so that $\widetilde{w}=\widetilde{w}_{-1}+\widetilde{w}_0+\widetilde{w}_1$. We may regard $\mathfrak{g}_{-1}+\mathfrak{g}_0$ as a Lie subalgebra of $\mathfrak{p}^1(q)=\mathbf{R}^q+\mathfrak{gl}(q;\mathbf{R})$ by the map $id\oplus\rho_0$, where the differential of $\rho_0:G_0\longrightarrow GL(q;\mathbf{R})$ is also denoted by ρ_0 . Then $\widetilde{\theta}^{(2)}=\widetilde{w}_{-1}+\widetilde{w}_0$ on Q, and hence $\widetilde{w}_{-1}=p_1^n\widetilde{\theta}^{(2)}$ on Q.

Hereafter we suppose that $H^{2,1}(1)=0$.

At each point $q \in Q$, we define a subspace H_q of $T_q(Q)$ by

$$H_q = \{ X \in T_q(Q) | \langle X, \tilde{w}_0 \rangle = 0, \langle X, \tilde{w}_1 \rangle = 0 \}.$$

Since $\langle X, \tilde{w} \rangle = 0$ for every non-zero vector X on Q, we have

$$H_q \cap (g_0 + g_1) = \{0\}.$$

And it is easily proved that $\tilde{w}_{-1}: H_q \longrightarrow \mathbb{R}^q$ is an isomorphism. Then \tilde{w} restricted to Q defines an absolute parallelism on Q.

Let $L \longrightarrow Q(E)^L = Q(E) \times_{L_0} L \longrightarrow M$ be the group extension of Q(E) by L. For a submersion $f_\alpha: U_\alpha \longrightarrow B$ in E, the natural extension $Q(E)^L | U_\alpha \longrightarrow Q^L$ of the bundle map $f_\alpha^{(2)}: Q(E) | U_\alpha \longrightarrow Q$ is also denoted by $f_\alpha^{(2)}$. Now, the Γ -invariance of the normal Cartan connection \tilde{w} implies the following Lemma.

Lemma 4 ([7]). There exists a unique L-connection form w on $Q(E)^L$ such that $f_a^{(2)*}\tilde{w}=w$ on $Q(E)^L|U_a$ for each $f_a:U_a\longrightarrow B$ in E.

It should be noted that w respected to Q(E) denotes an absolute parallelism on Q(E).

Let Q = dw + (1/2)(w, w) be the curvature of w and decompose w and Q with respect to the decomposition $l = g_{-1} + g_0 + g_1$,

$$w = w_{-1} + w_0 + w_1,$$
 $Q = Q_{-1} + Q_0 + Q_1.$

Then we have the following relations;

$$w_{-1} = p_1^0 \theta^{(2)},$$

$$Q_{-1} = dw_{-1} + (w_0, w_{-1}) = 0,$$

 $[w_{-1}, Q_0] = 0.$

Choose a G_0 -equivariant section $s: P(E) \longrightarrow Q(E)$ by Lemma 2. Then the pull back $\overline{w}_0 = s^* w_0$ of w_0 is a G_0 -connection form on P(E). The curvature of \overline{w}_0 is denoted by \overline{Q}_0 .

Proposition 5. Define a subbundle $E^{(1)}$ of T(P(E)) with the same dimension as E by

$$E^{(1)} = \{ X \in T(P(E)) | (\pi_1)_* X \in E, \langle X, \bar{w}_0 \rangle = 0 \}.$$

Then $E^{(1)}$ is an integrable subbundle of T(P(E)).

PROOF. Note that $\theta^{(1)} = s^* w_{-1}$ on P(E) and $d\theta^{(1)} + (\bar{w}_0, \theta^{(1)}) = 0$. Taking g_0 -component of Q, we have

$$Q_0 = dw_0 + (1/2)(w_0, w_0) + (w_{-1}, w_1),$$

and hence

$$\bar{\mathcal{Q}}_0 = s^* \mathcal{Q}_0 - (s^* w_{-1}, s^* w_1).$$

Let X and Y be in $E_v^{(1)}$ with $v \in P(E)$ and choose $f_\alpha: U_\alpha \longrightarrow B$ in E with $\pi_1(v) \in U_\alpha$. Then $\Omega_0 = f^{(2)*}\tilde{\Omega}_0$ on $Q(E)|U_\alpha$ by Lemma 4, and hence $s^*\Omega_0 = s^*f_\alpha^{(2)*}\tilde{\Omega}_0$ on $P(E)|U_\alpha$. Since $\tilde{\Omega}_0$ is holizontal and

$$\tilde{\pi}_{2*}(f_{\alpha}^{(2)} * S_* X) = f_{\alpha*} \pi_{2*} S_* X = f_{\alpha*} \pi_{1*} X = 0,$$

we have $(s^*\mathcal{Q}_0)(X,Y)=0$. On the other hand, $\theta^{(1)}(X)=0$ with $X \in T(P(E))$ if and only if $(\pi_1)_*X \in E$. This fact implies that

$$[s^*w_{-1}, s^*w_1](X, Y) = 0$$
 for $X, Y \in E_v^{(1)}$.

Then we have $\bar{\mathcal{Q}}_0(X,Y)=0$ for X, $Y \in E_v^{(1)}$, which implies that $d\bar{w}_0=0$ on $E^{(1)}$. Therefore, $E^{(1)}$ is an integrable subbundle of T(P(E)) with the same dimension as E.

Let $N^{(1)}$ be a leaf of $E^{(1)}$. If $N = \pi_1(N^{(1)})$ is a leaf of E, then $\pi_1|N^{(1)}:N^{(1)} \longrightarrow N$ is a regular cover.

Proposition 6. Define a subbundle $E^{(2)}$ of T(Q(E)) with the same dimension as E by

$$E^{(2)} = \{ X \in T(Q(E)) | (\pi_2)_* X \in E, \langle X, w_0 \rangle = 0, \langle X, w_1 \rangle = 0 \}.$$

Then $E^{(2)}$ is an integrable subbundle of T(Q(E)).

PROOF. Let X and Y be in $E_v^{(2)}$ with $v \in Q(E)$ and choose $f_\alpha: U_\alpha \longrightarrow B$ in E with $\pi_2(v) \in U_\alpha$. Then $Q = f_\alpha^{(2)*} \tilde{Q}$ on $Q(E) | U_\alpha$ by Lemma 4. Since \tilde{Q} is horizontal and $\tilde{\pi}_{2*}(f_{\alpha*}^{(2)*}X) = f_{\alpha*}\pi_{2*}X = 0$, we have Q(X,Y) = 0, which implies that

$$d(w_0+w_1)=0$$
 on $E^{(2)}$.

Therefore, $E^{(2)}$ is an integrable subbundle of T(Q(E)) with the same dimension as E.

Let $N^{(2)}$ be a leaf of $E^{(2)}$. If $N' = \pi_2(N^{(2)})$ is a leaf of E, then $\pi_2|N^{(2)}:N^{(2)} \longrightarrow N'$ is a regular cover.

5. Stability theorem I.

Let M be a connected manifold of dimension n and E be a foliation on M of dimension n-q. It is well-known that for $X \in TM$ the following conditions are equivalent:

- (i) $[X,Y] \in E$ for any $Y \in E$.
- (ii) In any neighborhood in M, the local one parameter group generated by X preserves the foliation E.
- (iii) In any adapted chart (U_a, f_a) , X may be written of the form $X = \sum_{i=1}^{n-q} X^i(x^1, \dots, x^{n-q}, y^1, \dots, y^q) \partial/\partial x^i + \sum_{a=1}^q X^a(y^1, \dots, y^q) \partial/\partial y^a,$ in terms of corresponding coordinates $(x^1, \dots, x^{n-q}, y^1, \dots, y^q)$.

 $X \in TM$ is called a foliated vector field if X satisfies one of the above conditions. The image \bar{X} of a foliated vector field X under the map: {foliated vector fields} \longrightarrow {foliated vector fields}/E is called a transversal field associated with X. Let $\nu(E) = TM/E$ be the normal bundle of E. Then \bar{X} is a section of $\nu(E)$. We may regard \bar{X} as a transversal vector field (associated with a foliated vector field X) by identifying the normal bundle $\nu(E)$ of E with the complement E^\perp of E. Since a foliated vector field X is written of the form (iii) in (U_a, f_a) , by means of the above identification, we may write \bar{X} of the form

$$\bar{X} = \sum_{a=1}^{q} X^a(y^1, ..., y^q) \bar{\partial}/\partial y^a,$$

where $\bar{\partial}/\partial y^a = \partial/\partial y^a + \sum_{i=1}^{n-q} A^i_a \partial/\partial x^i$ and A^i_a are functions on U_a .

A transversal parallelism with respect to E means that a family $\{\bar{X}_1, ..., \bar{X}_q\}$ of transversal vector fields associated foliated vector fields is linearly independent at each point of M. Then we also say that the normal bundle $\nu(E)$ of E has an absolute parallelism. Moreover, a transversal parallelism $\{\bar{X}_1, ..., \bar{X}_q\}$ with respect to E is complete if each \bar{X}_q is a complete vector field.

Lemma 7 ([1],[6]). If M admits a complete transversal parallelism with respect to E, then the group Aut(M, E) of diffeomorphisms of M which preserve E acts transitively on M.

Let E be a Γ -foliation of dimension n-q on M associated with L/L_0 . Then Q(E) admits a transversal parallelism with respect to $E^{(2)}$. In fact, for any $X \in E^{(2)}$ and any $Y \in \nu(E^{(2)})$, we have Q(X,Y)=0 by identifying the normal bundle $\nu(E^{(2)})$ with the complement $E^{(2)\perp}$ of $E^{(2)}$. Then, since Q(E) has an absolute parallelism by means of the connection w, we have $\{X,Y\}=0$. Therefore, $\nu(E^{(2)})$ has an absolute parallelism.

A Γ -foliation E associated with L/L_0 is called to be complete if each vector field defining a transversal parallelism is a complete vector field.

Without loss of generality, we may suppose (by passing to a finite cover of M if necessarily) that $P^2(E)$, and hence Q(E), is connected. If E is a complete Γ -foliation associated with L/L_0 , then Aut $(Q(E), E^{(2)})$ acts transitively on Q(E), and hence all the leaves of $E^{(2)}$ are diffeomorphic. Since the leaves of $E^{(2)}$ are covers of the leaves of E, all the leaves of E have the same universal cover.

Summing up, we have the following.

THEOREM 8 (Stability theorem I). Let E be a Γ -foliation associated with a semi-simple flat homogeneous space L/L_0 of order 2. Suppose that the Spencer cohomology $H^{2,1}(1)$ of the graded Lie algebra 1 of L vanishes. If E is complete, then all the leaves of E have the same universal cover.

REMARK 1. We have many examples of the graded Lie algebra $\mathfrak{l}=\mathfrak{g}_{-1}+\mathfrak{g}_0+\mathfrak{g}_1$ with $H^{2,1}(\mathfrak{l})=0$ ([8], Proposition 7-1, p. 177). In particular, the graded Lie algebras \mathfrak{l} in Example 1 ($q \ge 2$), Example 2 and Example 3 satisfy $H^{2,1}(\mathfrak{l})=0$.

Thus we have

Corollary 9. If E is a complete conformal (projective) foliation, then all the leaves of E have the same unversal cover.

REMARK 2. If E is a complete riemannian foliation, then P(E) admits a complete transversal parallelism with respect to $E^{(1)}$, and hence Aut $(P(E), E^{(1)})$ acts transitively on P(E). Thus we have that if E is a complete riemannian foliation, then all the leaves of E have the same universal cover (Theorem E).

5. Infinitesimal holonomy group and Stability theorem II.

Let E be a foliation of dimension n-q on a connected manifold M and N be a leaf of E. Take $x_0 \in N$ and fix it once for all. Let $\sigma: [0, 1] \longrightarrow N$ be a loop at x_0 . Choose a cover of M by a finite sequence of adapted charts (U_0, f_0) , (U_1, f_1) , ..., $(U_m, f_m) = (U_0, f_0)$ with $x_0 \in U_0$, $f_0(x_0) = o$ (a fixed point of B) and $U_i \cap U_{i+1} \neq \phi$ for i = 0, 1, ..., m-1. For each $i(0 \le i \le m-1)$, there exists a diffeomorphism $\gamma_{i+1,i}: f_i(U_i \cap U_{i+1}) \longrightarrow f_{i+1}(U_i \cap U_{i+1})$ such that $f_{i+1} = \gamma_{i+1,i} \circ f_i$ on $U_i \cap U_{i+1}$. Then $\gamma_{m,m-1} \circ \cdots \circ \gamma_{1,0}$ is contained in the group G(q) of all local diffeomorphisms in $\Gamma(B)$ fixing o defined around o (equivalently, the group of local diffeomorphisms in $\Gamma(R^q)$ fixing o defined around o0. Let o0 be its germ at o0. Since o0 depends only on the homotopy class of o0, we may define a homomorphism o1.

The image of H is called the holonomy group $H_1(N, x_0)$ of N based at x_0 . The infinitesimal holonomy group $H^2(N, x_0)$ of order 2 of N at x_0 is defined as the image of $\pi^2 \circ H$, where $\pi^2 : G(q) \longrightarrow G^2(q)$ is the canonical projection. The restriction Q(E)|N has a canonical flat connection with the holonomy group $H^2(N, x_0)$. In fact, by definition, $j_0^2(\gamma_{m,m-1}\circ \cdots \circ \gamma_{1,0})$ is a 2-jet of an element of the holonomy group of the Bott connection on N. We have $(\pi_2^1)_*E^{(2)}=E^{(1)}$, and Q(E) has an absolute parallelism. And $\pi_2|N^{(2)}:N^{(2)}\longrightarrow N$ is a regular cover. Therefore, $\pi_2:N^{(2)}\longrightarrow N$ is a regular cover whose group of all deck transformations is isomorphic to $H^2(N, x_0)$.

In the same way, the holonomy group $H^1(N, x_o)$ is isomorphic to the group of Jacobians of elements of the holonomy group of the Bott connection on P(E) ([2],[5]).

Then we have the following:

THEOREM 10 (Stability theorem II). Let E be a complete Γ -foliation associated with a semi-simple flat homogeneous space L/L_0 of order 2. Suppose that the Spencer cohomology $H^{2,1}(1)$ of the graded Lie algebra 1 of L vanishes. If E has a compact leaf N_o with finite infinitesimal holonomy proup $H^2(N_o, x_o)$ of N_o based at x_o , then all the leaves of E are compact and $H^2(N, x)$ is finite for all leaves N of E.

COROLLARY 11. Let E be a complete conformal (projective) foliation. If E has a compact leaf No with finite infinitesimal holonomy group $H^2(N_o, x_o)$, then all the leaves of E are compact and $H^2(N, x)$ is finite for all leaves N of E.

Remark 3. For a riemannian foliation, we have Theorem B togather with Remark 2.

References

- [1] R.A. Blumenthal: Stability theorems for conformal foliations (preprint).
- [2] H. Kitahara and N. Matsuoka: Notes on a differential geometric interpretation for a holonomy group of a leaf; Ann. Sci. Kanazawa Univ. 9 (1972), 49-58.
- [3] S. Kobayashi and T. Nagano: On filtered Lie algebras and geometric structures I; J. Math. Mech. 13 (1964), 875-908.
- [4] S. Kobayashi and T. Ochiai: G-structures of order two and transgression operators; J. Differential Geometry 6 (1978), 213-230.
- [5] A. Morgan: Holonomy and metric properties of foliations in higher codimension; Proc. Amer. Math. Soc. 58 (1976), 155-261.
- [6] P. Molino: Géométrie globale des feuilletages riemanniens; Indag. Math. 44 (1982), 45-76.
- [7] S. Nishikawa and M. Takeuchi: Γ -foliations and semisimple flat homogeneous spaces; Tohoku Math. J. 30 (1978), 307-335.
- [8] T. Ochiai: Geometry associated with semisimple flat homogeneous spaces; Trans. Amer. Math. Soc. 152 (1970), 159-193.

- [9] G. Reeb: Sur certains properiétés topologiques des variétée feuilletée; Actualités Sci. Indust. no. 1183, Hermann, Paris, 1952.
- [10] B.L. Reinhart: Foliated manifolds with bundle-like metrics; Ann. Math. 60 (1959), 119-132.
- [11] M. Takeuchi: On foliations with the structure group of automorphisms of a geometric structure; J. Math. Soc. Japan 32 (1980), 119-152.
- [12] N. Tanaka: On the equivalence problems associated with a certain class of homogeneous spaces;J. Math. Soc. Japan 17 (1965), 103-139.