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1. Introduction.

An important problem in the foliation theory is to describe the influence exerted
by a compact leaf upon the global structure of a foliation. For certain classes of
foliations, this problem is reasonable. Stability theorems have been studied by G. Reeb
[9], B.L. Reinhart[10], R.A. Blumenthal[l] and others:

TueoreM A (Reeb Stability[9]). Let E be a foliation of codimension one on a
compact connected manifold. If E has a compact leaf with finite fundamental group,
then all the leaves of E are compact with finite fundamental group. .

Tueorem B (Reinhart Stability[10]). Let E be a complete riemannian foliation of
codimension q21 on a connected manifold. Then all the leaves of E have the same
universal cover. In paticular, if E has a compact leaf with finite fundamental group,
then all the leaves of E are compact with finite fundamental group.

TueoreM C (Blumenthal Stability[1]). Let E be a complete conformal foliation of
codimention q=3 on a connectéd manifold. Then all the leaves of E have the same
wniversal cover. In particular, if E has a compact leaf with finite infinitesimal
holonomy group of order 2, then all the leaves of E are compact with finite infinitesimal
holonomy group of order 2.

The aim of this paper is to prove the stability theorem for a foliation with the
structure pseudogroup I" of local automorphisms of a certain 2nd order G-structure
which implies the some stability theorems.

* Department of mathematics.
After the completion of this paper, the author recieved a preprinted form of Blumenthal’s paper -
entitled “Cartan connections in foliated bundles”. The author obtained the results in this paper
independently. i :
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TueoreM. Let E be a complete I'-foliation associated with a semi-simple flat
homogeneous space L/L,. ’Suppose that the Spencer cohomology H?*' (1) of the graded
Lie algebra | of L vanishes. Then all the leaves of E have the same universal cover.
In particular, if E has a compact leaf No with finite infinitesimal holonomy group
H?2(No, x0) of No based at %o, then all the leaves of E ave compact and H? (N, x) is
finite for all leaves N of E.

We shall be in C*-category, and manifolds are supposed to be paracompact,
Hausdorff spaces.

2. Semi-simple flat homogeneous spaces.

We shall review a brief survey of the basic materials on semi-simple flat
homogeneous 'spaces. For details, see S. Kobayashi and T. Nagano[3], S. Kobayashi
and T. Ochiail4] and T. Ochiailg].

A (transitive) semi-simple graded Lie algebra means a semi-simple Lie algebra [
=g_1+go+g1, dim gp<o0 (p=—1, 0, 1) such that (g5, 8¢)JCgs+¢ for all p, g=—1 and (X,
g-1)#0 for each non-zero X €gp, p=0. g-1 is the dual vector space of g, by the
nondegeneracy of the Killing form of . Semi-simple graded Lie algebras have been
classified in[3]. '

The Lie algebra cohomology H({)=H(g-1, adilg-1, [) of the abelian Lie algebra
a-, with respect to its adjoint representation on { is called the Spencer cohomology of
a graded Lie algebra (=g-1+go+g:. More precisely, let C*"=g,-1®A%(g-1)* be the
vector space of all gp-,-valued g-linear alternating map on g-i. Define a coboundary
operator 9:C??.— CP™M%*! by

(3AXy, ey Xon)=Z(=1)"(X;, c(X, oo, Xi, oy Xan1))

for ce C?? and Xi, ..., Xq+1€a-1. Then 3*=0 and the Spencer cohomology H(I)=
SH?9(1) is defined by
H?(1)=0"(0)N C*7/a(CP**71). .

Let L/Lo be a connected homogeneous space on which a (not necessarily
connected) semi-simple Lie group L acts effectively and transitively. Since L, is the
isotropy subgroup of L at the origin of L/Lo, there is a natural representation o of L,
called the linear isotropy representation of Lo, on the tangent space of L/Lo at the
origin. o is a homomorphism from L, into GL(g-1)=GL(q; R), g=dim L/L,. Let L,
be the kernel of o. L/Ls is called a semi-simple flat homogeneous space of order 2 if
the Lie algebra [ of L has a semi-simple graded Lie algebra structure [=g_,+go+g:
such that go+g: is the Lie algebra of Lo. It is known that go is the Lie algebra of the
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linear isotropy subgroup Go=Lo/L:CGL(g; R) and L, is a semi-direct product Go- G:
of Go and the vector group Gi=exp 8.

ExampiE 1. [=38l(g+1; R) (g=1).

el ol el

where £ is a row g-vector, u is a column g-vector, A€gl(g; R) and a€ R. The
corresponding semi-simple flat homogeneous space L/L, of order 2 is a real projective

. bv
space of dimension g, where L=GL(g+1; R)/R*Is+1 and Lo={(0 B)E GL(g+1; R)}/
R*an.

ExampLE 2. [=o0(g+1, 1)={X€gllg+2; RI*'XS+XS=0}(¢g=3),

0 0 —1
where S=| 0 I, 0
-10 0

000 a0 0 ‘ 0% 0
g-1= <E 0 0) y 80= <0A 0> , 1= (00 t”) )
00 00 —a 00 0

where £ is a row g-vector, A€o(g), u is a column g-vector and a€ R. The
corresponding semi-simple flat homogeneous space L/Lo of order 2 is a M&bius space
of dimension g (g-sphere S?), where L={X € GL(q¢+2; R)|'XSX =S}/ {£Is+:} and

Lo= X=<0 * *>|tXSX=S /{ilqu}.
00*

ExampLE 3. (={X egl(g+2; RI'XS+SX=0}(g=3),

0 0 1 :
I 0
where S=<0 Srs 0), Sr,s=( ), r+s=gq, r=s=0.

0 -1
100 °
00 0 5 0w u O
, a0 0
g_5000 Aloa o oo 0o
e o o o [T SV o0 0 | [
’ ” Oo—a
0 & —t£" 0 00 0 0

where & (£”) is a row 7-vector (s-vector), «’ (%) is a column 7-vector (s-vector),
Ae€o(r, s)={Begl(q; R)'BS+s+S-sB=0} and a € R. The corresponding semi-simple
flat homogeneous space L/Lo of order 2 is the quotient space E-s=S"xS%/ ~ of S™X
S°® by the equivalence relation ~ defined by (x, ¥)~(—=x, —y) for (x, ¥)€ S™x S*([7)).
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3. Lo-structure of order 2 associated with L/L.

We will refer to [7] and [11] in this and the following sections. Let B be a
manifold of dimension q. Let G7(q) — p"(B) _Tr, B be the r-th frame bundle of

B. GL(g; R)=G'(q) may be identified with a subgroup of G™(q) in canonical way.
Then the natural projection #7: pT(B) — P%(B) for r>s is GL(q ; R)-equivariant
and satisfies TseTi=7r Let I'(B) be the pseudogroup of all local diffeomorphisms of .
B. The »-th prologation 0 of ye I'(B) is a local G’(q)-bundle map of P7(B) such
that #,oy"=7°7r. | | ‘

Now, we review the definition of the »-th canonical form g on P7(B). We
define the distinguished element e"e PT(R?) by e'= jd(identity) and set p"(g)=
T.-(P"(R%)). The natural action of G™(g) on p™"*(q) is denoted by Ad. The map ps:
p7(q) — »°(q) means the differential of 7#$: P"(R?) — PS(RY) for »>s at e”. In
particular, p°(¢)=R?, p'(q)= R?+ql(q), which may be identified with the Lie algebra of
the group of affine automorphisms of R? and p2:p'(g) — p°(g) is the projection to
the first factor. The 7-th canonical form 8 is a p™"(g)-valued 1-form on P™(B)
defined as follows. Let u= ji(f)e P'(B) and f: R? — B be a local diffeomorphism
defined around the origin 0. Then the correspondence 75~ '(y) — &Y (f-7) defines a
local diffeomorphism f : P"H(R®) — Pr-1(B) defined around ¢’ such that Fle™)
— ' =77 (u), and the differential wp Ng) — TP (B)) of 7 at e’ is
independent of choice of f. 8" is defined by

GX)=a (AT X for X € Tu(P"(B)).
It satisfies

RSAGP=Ad(a)§"  for a€ G(q),

(78 §@=p3710" for r>s,
where R. means the right translation of P7(B)by a€ G'(g). In particular, let §-, and
g, be the R- component and gl(g; R)- component of the 2nd canonical form 8% on
P*(B) respectively, so that §®= g_,+ @o. Then we have

d6-1+(§o, §-1)=0.

Let L/Lo be a semi-simple flat homogenéous space of order 2. We set po=p|Go.
Then we have a commutative diagram;

Lo —&—— GYa)

Y\ It

Go — Q% GL(q; R).
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oo is an injective homomorphism, which identifies Go with the Lie subgroup o(L.) of

GL(q;R); Let Ly — Q —— B be a principal Lo-subbundle of P?*B), which is

called a structure of order 2 associated with semi-simple flat homogeneous space L/L..

For each @, let I" be the pseudogroup of local automorphlsms of @, that is,
r={rer(B)y?QcQ)}.

We define a Go-subbundle P of P'(B) by P=7#3(Q), which is the Go-structure

associated with Q. It should be noted that for each y € I' the Ist prologation 7" leaves

(1), (2)

P invariant, since ¥ =737

ExampLE 4. Let L/Lo be as Example 1 in §2. The linear isotropy subgroup G,
coincides with GL(g ; R), and P is the bundle of linear frames on B. I is nothing but
the pseudogroup of local projective transformations of a torsion-free linear connection

on B.

ExampLE 5. Let L/Lo be as Example 2 in § 2. The linear isotropy subgroup Go
coincides with CO(q), and P is a CO(g)-structure on B. I' is nothing but the
pseudogroup of local conformal transformations of a riemannian metric, on B. It
should be noted that P contains O(g)-structure (i.e. riemannial structure) as subbundle.

ExampLE 6. Let L/Lo be as Example 3 in § 2. The linear isotropy subgroup G
coincides with CO(7,s), and P is a CO(r,s)-structure on B. I' is nothing but the
pseudogroup of local conformal transformations of a pseudo-riemannian metric of
signature (7,s) on B.

4. I -foliations associated with L/Ls.

Let M be a connected smooth manifold of dimension » and B be an another
connected smooth manifold of dimension ¢=dim L/L,. Let I"(B) be the pseudogroup
of local diffeomorphisms on B. Then a I'(B)-foliation £ may be defined by a I'(B)
-cocycle E={(Us, fa, 7a8)}asea such that

(i) {U.} is an open cover of M,

(ii) f«:Us — B is a submersion,

(i) for each x€ U.N U, there exists y3€I'(B) such' that fs=7&f. in some
neighborhood of x.
In the other words, the fibers of each submersion f, are pieced togather to define the
leaves of the foliation E. The kernel of the differentials (fz)« of submersions fa
constitute an integrable subbundle E of the tangent bundle TM. A pair (U, f.) is
called an adapted chart to E. ‘
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'In the same way, we may define a I"'-foliation E replacing I’'(B) with I' in the
definition of the foliation E. It should be noted that both E and E have the same
structure of leaves. We shall define the »-th frame bundle P7(E) for E and the 7-th
canonical form 6 on P7(E). |

Take a point 0 € B and fix it once for all. Choose a local diffeomorphism f: R?
— B defined around 0 such that f(0)=0 and j3(f)€Q, and then identify a
neighborhood of 0 in R? with a neighborhood of o in B by means of f. We set ,

PT(E)={jif)\f € E defined around x with f(x)=0},
and define the projection 7 : P"(E) — M by n:(ji(f))=x. The group G7(q) acts on
P7(E) from right by L

X f)isle)=7K e o f) for ji(e)€ G™(q).
Then we have a G™(g)-bundle G(g) — P7(E) L& M. Note that P7(E) may be

identified with the 7-th prologation of the frame bundle of the normal bundle v(E)=
TM/E. The natural projection 15 P7(E) — PS(E) for r>s is also GL(q; R)-
equivariant and satisfies 7s-17=n-. Let f:v — B be a local submersion in E. For -
each jX@)eP(E) with x€ V, there exists a local diffeomorphism ¢:R* — B
defined around 0 such that ¢(0)=/(x) and ¢°@=/ around x. Then the correspondence
ji(@) — j4(¢) defines a G"(q)-bundle map /' PT(E)V — P7(B). It satisfies 7,
ofM= for,.

Let v=jI(f)€ P"(B) and set v'=x7"'(v). For each j§“(¢)éP"‘(E) near to v,
there exists a local diffeomorphism ¢ : R? —— R defined around 0 such that ¢(0)=
f(y) and ¢op=f around x. The correspondence i (@) — ji~*(¢) defines a local
map f :P"(E) — P *(R?) defined around ¢" with F(v')=e™*. The differential
7: To(P™Y(E)) — p™'(q) of f at v is independent of the choice of f. 07 is
defined by

67(x)=o(aF " WX for X € To(P7(E)).
Then the following relations hold ;
R 6 =Ad(a™")8" for a€ G'(q),
(7)*6'=p5z16" for r>s,
g = f* G on PT(E)|V, for each local submersion f: V — B in E.

Levma 1 ([7]). Let E=1{felaes be a I'-foliation associated with L/Lo on M. Then
(i) There exists a unique Lo- subbundle Q(E) of P2(E) such that Q(E)NU.=
(&) Q for each fo: Ua — B in E. v
(ii) There exists a unique Go- subbundle P(E) of PYE) such that P(E)\Ua=
(/)P for each fo: Us — B in E.
(i) mQ(E)=P(E).
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Lemma 2 ([11])). There exists a Go-equivariant section s : P(E) — Q(E) of the
bundle n; : Q(E) — P(E).

We recall the existence theorem of Tanaka-Ochiai for a Cartan connéction on
the structure @ of order 2 associated with L/L..

‘ THEOREM 3 ([81,112]). If the Spemcer cohomology H 2“([)=0,‘then there exists a
unique normal Cartan connection of type L/Lo on Q.

We shall require following properties of a normal Cartan connection i :

(i) @ is a [-valued 1-form on Q.

(ii) @ is invariant under I'.

(iii) Let L — Q*=@Qx L — B be the group extension of @ by L. Then % is
extended to a unique L-connection form on Q% which is also defined by @

(iv) Let @w:(i=—1, 0, 1) be the projection of % with respect to the decomposition =
g-1+go+g:, so that @W=1i_,+wWe+ . We may regard g-1+go as a Lie subalgebra of
p'(g)=R%+gl(q; R) by the map id@p., where the differential of 0o: Go — GL(q: R)
is also denoted by po. Then §®=4_,+@o on Q, and hence W_1=p4? on Q.

Hereafter we suppose that H?'({)=0.
At each point ¢ € Q, we define a subspace H, of T¢(Q) by
Hi={X € T{QXKX, wo>=0, <X, >=0}.
Since <X, @w>=0 for every non-zero vector X on @, we have
HqN(go+a1)=1{0}.
And it is easily proved that #@-,:Hs — R? is an isomorphism. Then % restricted to
@ defines an absolute parallelism on Q.
Let L — QE)Y=Q(E)X L — M be the group extension of Q(E) by L.
For a submersion f: Us — B in E, the natural extension Q(E)Us — Q* of the
bundle map f&: Q(E)|U. — Q is also denoted by f{¥. Now, the "-invariance of the

normal Cartan connection #% implies the following Lemma.

LemMa 4 ([7]). There exists a unique L-connection form w on Q(E)* such that
fE*G=w on QE)| U4 for each fo: U« — B in E.

It should be noted that w respected to Q(E) denotes an absolute parallelism on
Q(E).
Let 2=dw+(1/2)(w,w) be the curvature of w and decompose w and £ with
respect to the decomposition [=g-1+go+g, '
w=w-1+wo+w, Q=01+ 20+ 2.
Then we have the following relations;
w-1=p36%,
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= dw-1+ (wo,w-1)=0,
[w—l, .Qo]=0.
Choose a Go-equivariant section s: P(E) — Q(E) by Lemma 2. Then the pull
back o= s*wo of wo is a Go-connection form on P(E). The curvature of o is denoted
by .Qo.

PROPOSITION 5. Define a subbundle E® of T(P(E)) with the same dimension as
E by
EV={Xe T(P(E)Wm):X €E, <X, wo>=0}.
Then E® is an integrable subbundle of T(P(E)).

Proor. Note that 8%=s*w_, on P(E) and df"+(w.,6")=0. Taking go-
component of £, we have
Qo= dwo+(1/ 2)wo,wo)+ (w-1,w1),

and hence

Qo=5*Q0—[s*w-1,8*wr).
Let X and Y be in E with v€ P(E) and choose fa: Ua — B in E with 7n(v)€ U..
Then Qo=f®*Q2 on Q(E) U by Lemma 4, and hence s*Qo=s*/?*Q on P(E )I U..

Since &, is holizontal and

Toa([Pe52X )= farT2a 54 X = faxmix X =0,
we have (s*20)(X,Y)=0. On the other hand, §*(X)=0 with X € T(P(E)) if and only
if (m1)«+X € E. This fact implies that

(s*w-1, s*wn)(X,Y)=0 for X, Y €EM.
Then we have Qo(X,Y)=0 for X, Y €E{, which implies that dwo—O on E®,
Therefore, E® is an integrable subbundle of T(P(E)) with the same dimension as E.

Let N© be a leaf of E®. If N=m(N®) is a leaf of E, then m|N®: N® —

N is a regular cover.

PROPOSITION 6. Define a subbundle E® of T(Q(E)) with the same dimension as E
by ,
E?={Xe T(QEN(r):X € E, <X, wo>=0, <X, w>=0}.
Then E® is an integrable subbundle of T(Q(E)).

Proor. Let X and Y be in E® with v€ Q(E) and choose fz: U, — B in E
with 72(v)€ Us. Then =7*3 on Q(E) U. by Lemma 4. Since £ is horizontal and
Fan(f@ X )= fas7t2e X =0, we have Q(X,Y)=0, which implies that

d(wo+w1)=0 on E®.
Therefore, E® is an integrable subbundle of T(Q(E)) with the same dimension as E.
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Let N be a leaf of E®. If N'=m(N®) is a leaf of E, then mN®: N® —>
N’ is a regular cover.

5. Stability theorem 1.

Let M be a connected manifold of dimension » and E be a foliation on M of
dimension #z-g. It is well-known -that for X € TM the following conditions are
equivalent :

(i) (X,Y)eE for any Y €E.

(ii) In any neighborhood in M, the local one parameter group generated by X
preserves the foliation E.

(iii) In any adapted chart (Ua, fa), X may be written of the form

_ X=X (%", ..., 2779 ¥, ., ¥9)0 o'+ 28 X%y, ..., ¥7)3/dy?,
in terms of corresponding coordinates (x*, ..., x*7%, »%, ..., ¥9).

. X € TM is called a foliated vector field if X satisfies one of the above conditions.
The image X of a foliated vector field X under the map: {foliated vector fields} —
{foliated vector fields}/E is called a transversal field associated with X. Let v(E)=
TM/E be the normal bundle of E. Then X is a section of v(E). We may regard X
as a transversal vector field (associated with a foliated vector field X) by identifying
the normal bundle v(E) of E with the complement E* of E. Since a foliated vector
field X is written of the form (iii) in (U., fz), by means of the above identification, we
may write X of the form

X=31.Xy", ..., y)o/ay°,
where 0/ay®=0/dy®+27:7A%3/dx* and A% are functions on U. _

A transversal parallelism with respect to £ means that a family {X,, ..., X4} of
transversal vector fields associated foliated vector fields is linearly independent at each
point of M. Then we alsp say that the normal bundle v(E) of E has an absolute
parallelism. Moreover, a transversal parallelism {X,, ..., )? ¢} with respect to E is
complete if each X, is a complete vector field.

Lemma 7 ([11,[6)). If M admits a complete transversal parallelism with respect to E, then
the group Aut (M, E) of diffeomorbhisms of M which preserve E acts transitively on M.

Let E be a I'-foliation of dimension #-g on M associated:with L/L.. Then
Q(E) admits a transversal parallelism with respect to E®. In fact, for any X € E®
and any Y € y(E®), we have Q(X,Y)=0 by identifying the normal bundle v(E®) with
the complement E®* of E®@, Then, since Q(E) has an absolute parallelism by means
of the connection w, we have (X,Y)=0. Therefore, v(E®) has an absolute parallelism.
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A I'foliation E associated with L/L, is called to be complete if each vector field
defining a transversal parallelism is a complete vector field.

Without loss of generality, we may suppose (by passing to a finite cover of M if
necessarlly) that P%(E), and hence Q(E), is connected. If E is a complete I"-foliation
associated with L/Lo, then Aut (Q(E), E®) acts transitively on Q(E), and hence all the
leaves of E® are diffeomorphic. Since the leaves of E® are covers.of the leaves of E,
all the leaves of E have the same universal cover.

Summing up, we have the following.

TueoreM 8 (Stability theorem 1). Let E be a I"-foliation associated with a semi
-simple flat homogeneous space L/Lo of order 2. Suppose that the Spencer cohomology
H?*'() of the graded Lie algebra | of L vanishes. If E is complete, then all the leaves
of E have the same universal cover.

RemaRk 1. We have many examples of the graded Lie algebra [=g-1+go+a:
with H2(1)=0 ([8], Proposition 7-1, p. 177). In particular, the graded Lie algebras I in
Example 1 (¢=2), Example 2 and Example 3 satisfy H>'(1)=0.

Thus we have

CoroLLARY 9. If E is a complete conformal (projective) foliation, then all the
leaves of E have the same unversal cover.

Remark 2. If E is a complete riemannian foliation, then P(E) admits a complete
transversal parallelism with respect to E® and hence Aut (P(E), E®) acts transitively
on P(E). Thus we have that if E is a complete riemannian foliation, then all the
leaves of E have the same universal cover (Theorem B).

5. Infinitesimal holonomy group and Stability theorem II.

Let E be a foliation of dimension z-¢ on a connected manifold ¥ and N be a
leaf of E. Take x0€ N and fix it once for all. Let o [0, 1] — N be a loop at %o.
Choose a cover of M by a finite sequence of adapted charts (Us, fo), (Uy, fi), -y (Un,
fn)=(Us, fo) with zo€ Us, fo(x0)=0 (a fixed point of B) and U:NUin*¢ for i=0, 1,
..., m—1. For each i(0si=m— 1) there exists a diffeomorphism 7i+1:: f,(U,ﬂUm)
——  fir(UiNUisy) such that fin=7iofi on U0 Uin Then 7Ymm-1°""°710 1S
contained in the group G(g) of all local diffeomorphisms in I'(B) fixing o defined
around o0 (equlvailently, the group of local diffeomorphisms in I'(RY) fixing 0 defined
around 0). Let H(o) be its germ at 0. Since H (o) depends only on the homotopy
class of o, we may define a homomorphism H : 1.(N, x0) — G(g) up to conjugacy.
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The image of H is called the holonomy group Hi(N, x,) of N based at x.. The
infinitesimal holonomy group H?(N, x,) of order 2 of N at %, is defined as the image
of n2°H, where 7°: G(q) — G?*(q) is the canonical projection. The restriction
Q(E)|N has a canonical flat connection with the holonomy group H*(N, x,). In fact,
by definition, j§(Ymm-1°-"°710) is a 2-jet of an element of the holonomy group of the
Bott connection on N. We have (r}).E®=E", and Q(E) has an absolute parallelism.
And mIN®:N® — N is a regular cover. Therefore, m:: N¥ — N is a regular
cover whose group of all deck transformations is isomorphic to H%(N, xo).

In the same way, the holonomy group H'(N, x,) is isomorphic to the group of -
Jacobians of elements of the holonomy group of the Bott connection on P(E) ([2],[5]).

Then we have the following:

v Tueorem 10 (Stability theorem II). Let E be a complete I'-foliation associated
with a semi-simple flat homogeneous space L/Lo of order 2. Suppose that the Spewncer
cohomology H*'(1) of the graded Lie algebra | of L vanishes. If E has a compact leaf
No with finite infinitesimal holonomy proup H*(No, x0) of No based at xo, then all the
leaves of E arve compact and H*(N, x) is finite for all leaves N of E.

CoroLLARY 11. Let E be a complete conformal (pro}'ectz've) foliation. If E has a
compact leaf No with finite infinitesimal holonomy group H*(No, %o), then all the leaves
of E are compact and H*(N, x) is finite for all leaves N of E.

Remark 3. For a riemannian foliation, we have Theorem B togather with
Remark 2.
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