Notes on space-like foliations of codimension one in Lorentz manifolds

Shinsuke Yorozu

(Received May 6, 1986)

1. Introduction.

This note is divided into three parts. In the first part, we will give spherically symmetric maximal foliations of codimension one in a Lorentz 4-manifold with a Lorentz metric:

$$ds^{2} = -g(r)dt^{2} + f(r)dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\varphi^{2}.$$

The result given by Reinhart[7] is a special case. If g(r)=f(r)=1 for r>0, then the metric is called the Lorentz-Minkowski metric. In the second part, we will prove that a spherically symmetric maximal foliation of codimension one in the Lorentz-Minkowski (n+1)-space is totally geodesic. This is essentially Cheng and Yau's Theorem[1] (foliation version). Because we consider only spherically symmetric foliations, our method is different from one in[1] and is elementary. In the third part, we will discuss the geometric properties of space-like foliations of codimension one in connected Lie groups with left inveriant Lorentz metrics, and several examples will be shown.

The discussion in this note is motivated by Reinhart's paper[7] and extension of Oshikiri's Theorem ([8]) to non-compact case.

All the objects in this note are of class C^{∞} unless otherwise stated.

2. Foliation of codimension one.

A foliation of codimension one in a manifold M is a family of hypersurfaces filling M. Each hypersurface is called a leaf of the foliation. The exact definition of foliation of codimension one is as follows. If a 1-form ω on a manifold M satisfies the integrability condition, i.e. $d\omega = \eta \wedge \omega$, then ω is called to define a foliation $\mathscr F$ of

codimension one in M ([6]). And the foliation $\mathscr F$ is called to be defined by $\omega=0$. In other words, if an integrable subbundle E of rank dim M-1 of the tangent bundle TM over M annihilates ω , then E is called to define $\mathscr F$ ([8]). Here, E is integrable if $[X,Y] \in \Gamma(E)$ for any $X,Y \in \Gamma(E)$, and E annihilates w if w(X)=0 for any $X \in \Gamma(E)$ ($\Gamma(E)$ denotes the space of all the sections of the bundle E). Each maximal connected integral manifold of E is called a leaf of $\mathscr F$. For details, see Reinhart[6].

A foliation \mathcal{F} of codimension one in a Lorentz manifold M is space-like if each leaf of \mathcal{F} is a space-like hypersurface of M ([4], [7]).

3. Spherically symmetric maximal foliations and special Lorentz metrics.

Let $N(a) = \{(x^1, x^2, x^3) \in \mathbb{R}^3 | r = ((x^1)^2 + (x^2)^2 + (x^3)^2)^{1/2} > a\}$ where $a \ge 0$. We consider a Lorentz manifold $M = \mathbb{R} \times N(a)$ with a Lorentz metric

(1)
$$ds^2 = -g(r)dt^2 + f(r)dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\varphi^2$$

by means of the spherical coordinate (r, θ, φ) on N(a), where g and f are positive valued functions of r on an open interval (a, ∞) . Let $\mathscr F$ be a space-like foliation of codimension one in M defined by $\omega=0$. The foliation $\mathscr F$ is spherically symmetric if ω can be expressed by

(2)
$$\omega = dt + h(r)dr$$

where h is a function of r on (a, ∞) ([7]). The foliation $\mathcal F$ is maximal if the trace of the second fundamental form (by means of the Levi-Civita connection ∇ with respect to the metric (1)) of each leaf of $\mathcal F$ is zero ([7], [8]). We will seek a closed 1-form $\omega = dt + h(r)dr$ on M such that the space-like foliation $\mathcal F$ defined by $\omega = 0$ is maximal.

The unit normal vector field T to the leaves of $\mathscr F$ is given by

$$T = (g(r)^{-1} - f(r)^{-1}h(r)^{2})^{-1/2} \left(-g(r)^{-1}\frac{\partial}{\partial t} + f(r)^{-1}h(r)\frac{\partial}{\partial r}\right).$$

We notice that $g(r)^{-1}-f(r)^{-1}h(r)^2>0$ because $\mathscr F$ is space-like. An orthonormal frame field $\{X_1,\ X_2,\ X_3\}$ tangent to the leaves of $\mathscr F$ is given by

$$X_{1} = (g(r)^{-1} - f(r)^{-1}h(r)^{2})^{-1/2} \left(-f(r)^{-1/2}g(r)^{-1/2}h(r)\frac{\partial}{\partial t} + f(r)^{-1/2}g(r)^{-1/2}\frac{\partial}{\partial r}\right)$$

$$X_2 = r^{-1} \frac{\partial}{\partial \theta}$$

$$X_3 = r^{-1} (\sin \theta)^{-1} \frac{\partial}{\partial \varphi}.$$

Then we have

$$\begin{split} & \sum_{i=1}^{3} < \nabla_{X_{i}} X_{i}, \ T > \\ & = (g(r)^{-1} - f(r)^{-1} h(r)^{2})^{-3/2} r^{-1} \Big\{ -2f(r)^{-1} g(r)^{-1} h(r) \\ & + 2f(r)^{-2} h(r)^{3} - r f(r)^{-1} g(r)^{-1} h'(r) \\ & - r f(r)^{-1} g(r)^{-2} g'(r) h(r) + \frac{1}{2} r f(r)^{-2} f'(r) g(r)^{-1} h(r) \\ & + \frac{1}{2} r f(r)^{-2} g(r)^{-1} g'(r) h(r)^{3} \Big\}, \end{split}$$

where <, > denotes the inner product with respect to the metric (1), and ' denotes the derivative with respect to r. The trace of the second fundamental form vanishes if and only if

(3)
$$h'(r) = \left(\frac{1}{2}f(r)^{-1}f'(r) - g(r)^{-1}g'(r) - 2r^{-1}\right)h(r) + \left(\frac{1}{2}f(r)^{-1}g'(r) + 2f(r)^{-1}g(r)r^{-1}\right)h(r)^{3}.$$

The differential equation (3) is easily solved by means of an auxiliary variable : $k(r) = g(r)^{1/2} f(r)^{-1/2} h(r)$. Then (3) can be rewritten in the form

(4)
$$k'(r) = \left(\frac{1}{2}g(r)^{-1}g'(r) + 2r^{-1}\right)(-k(r) + k(r)^3)$$

Then, the equation (4) has the solutions:

$$k(r) = \pm (1 + Cg(r)r^4)^{-1/2}$$
, or =0,

where C is a constant.

Thus we have

THEOREM 1. Let $M = \mathbb{R} \times N(a)$ be a Lorentz 4-manifold with a Lorentz metric (1), and let \mathscr{F} be a spherically symmetric space-like foliation of codimension one in M

defined by $\omega=0$, where $\omega=dt+h(r)dr$. Then $\mathcal F$ is maximal if and only if

$$h(r) = \pm g(r)^{-1/2} f(r)^{1/2} (1 + Cg(r)r^4)^{-1/2}, \text{ or } = 0$$

on (a, ∞) for some constant C.

The case g(r)=f(r)=1 for $r \in (0, \infty)$, that is, the case of the Lorentz-Minkowski space, is discussed in the next section. The case of g(r)=1-2m/r and $f(r)=g(r)^{-1}$ for $r \in (2m, \infty)$ was discussed by Reinhart[7], and then (M, ds^2) is the Schwarzschild exterior space-time ([4]). We must remark that Reinhart has found all spherically symmetric maximal foliations in extended Schwarzschild space ([7]).

Now we may consider the case $g(r)=1-4m^2/r^2$ and $f(r)=r^{-2}g(r)^{-1}$ for $r \in (2m, \infty)$. Then we have

(5)
$$ds^{2} = -(1 - 4m^{2}/r^{2})dt^{2} + r^{-2}(1 - 4m^{2}/r^{2})^{-1}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\varphi^{2}.$$

If we set

(6)
$$\hat{t} = t + \log(r^2 - 4m^2)^{1/2}$$

then the metric (5) can be rewritten in the form

(7)
$$ds^{2} = -(1 - 4m^{2}/r^{2})\hat{dt}^{2} + 2r^{-1}\hat{dt}dr + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\varphi^{2}.$$

The metric (7) has been introduced by Otsuki[5], who has discussed the "black holes" by means of smooth "general connection" on the space-time with this metric (7). If we set

(8)
$$v = (r^2 - 4m^2)^{1/2} \sinh t$$
$$u = (r^2 - 4m^2)^{1/2} \cosh t$$

then the metric (5) can be also rewritten in the form

(9)
$$ds^{2} = r^{-2}(-dv^{2} + du^{2}) + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\varphi^{2}.$$

Thus we may have analogous discussion on the space $R \times N(0)$ with the metric (5) as Reinhart's discussion ([7]) on extended Schwarzschild space.

4. Spherically symmetric maximal foliations in the Lorentz-Minkowski space.

Let M be the Lorentz-Minkowski (n+1)-space with the global coordinate (t, x^1, \dots, x^n) and the Lorentz metric

(10)
$$ds^2 = -dt^2 + (dx^1)^2 + \dots + (dx^n)^2.$$

Let $r=((x^1)^2+\cdots+(x^n)^2)^{1/2}$, and we set that $M^+=\{(t, x^1, \dots, x^n) \in M | r>0\}$. Then M^+ is an open Lorentz submanifold of M ([4]). By means of the spherical coordinate $(r, \theta_1, \dots, \theta_{n-1})$, the induced metric on M^+ from (10) can be rewritten in the form

(11)
$$ds^2 = -dt^2 + dr^2 + r^2(d\theta_1)^2 + \sum_{j=2}^{n-1} r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{j-1}(d\theta_j)^2$$

We consider a 1-form ω on M defined by

(12)
$$\omega = dt + \sum_{i=1}^{n} f_i dx^i$$

where f_i are functions on M, and we suppose that ω defines a foliation $\mathscr F$ of codimension one in M. Then the foliation $\mathscr F$ is spherically symmetric if the 1-form ω is written as follows on M^+ ;

(13)
$$\omega = dt + h(r)dr$$

where h is a function of r > 0.

Under the assumption that the foliation \mathcal{F} in M is space-like, \mathcal{F} is totally geodesic if the second fundamental form (by means of the Levi-Civita connection with respect to the metric (10)) of each leaf of \mathcal{F} vanishes identically ([4], [8]).

Hereafter we suppose that the foliation $\mathscr F$ of codimension one in M defined by ω =0 is spherically symmetric and space-like. Let $\mathscr F|M^+$ be the restricted foliation of $\mathscr F$ in M^+ . Since $\mathscr F|M^+$ is space-like, we have that $1-h(r)^2>0$ for r>0.

By means of the coordinate $(t, r, \theta_1, \dots, \theta_{n-1})$ in M^+ , the unit normal vector field T to the leaves of $\mathcal{F}|M^+$ is given by

$$T = (1 - h(r)^2)^{-1/2} \left(-\frac{\partial}{\partial t} + h(r) \frac{\partial}{\partial r} \right)$$

and an orthonormal frame field tangent to the leaves of $\mathcal{F}|M^+$ is given by

$$X_{1} = (1 - h(r)^{2})^{-1/2} \left(-h(r) \frac{\partial}{\partial t} + \frac{\partial}{\partial r} \right)$$

$$X_{2} = r^{-1} \frac{\partial}{\partial \theta_{1}}$$

$$X_{k} = (r \sin \theta_{1} \cdots \sin \theta_{k-2})^{-1} \frac{\partial}{\partial \theta_{k-1}} \qquad k = 3, 4, \cdots, n.$$

Then we have

$$\sum_{i=1}^{n} < \nabla_{X_i} X_i, \ T > = -(1 - h(r)^2)^{1/2} \{ h'(r) + (n-1)r^{-1}h(r)(1 - h(r)^2) \}.$$

Thus the trace of the second fundamental form of each leaf of $\mathcal{F}|M^+$ is zero if and only if

(14)
$$h'(r) = -(n-1)r^{-1}h(r)(1-h(r)^2) \qquad (r>0).$$

The differential equation (14) has the solutions

(15a)
$$h(r) = \pm (1 + Cr^{2(n-1)})^{-1/2}$$
 $(r > 0)$

(15_b)
$$h(r) = 0$$
 $(r > 0)$

where C is a positive constant.

REMARK. A function $f(r)=(1+Cr^{2(n-1)})^{-1/2}$ is well-defined on $[0, \infty)$ for any positive constant C. As r goes to infinity, f(r) approaches 0. And we have that f(0)=1.

Then we have the following theorem:

THEOREM 2. Let M be the Lorentz-Minkowski (n+1)-space and $\mathcal F$ a spherically symmetric and space-like foliation of codimension one in M defined by $\omega=0$, where $\omega=dt+\sum_{i=1}^n f_i dx^i$ and f_i are functions on M. If $\mathcal F$ is maximal, then $\mathcal F$ is totally geodesic.

We will give a proof of Theorem 2 for n=3. By our assumption, the function h in (13) is given by (15_a) or (15_b). We may set

$$x^{1} = r\cos\theta_{1}$$

$$x^{2} = r\sin\theta_{1}\cos\theta_{2}$$

 $x^3 = r \sin \theta_1 \sin \theta_2$.

By (12) for n=3 and (13), we have

$$f_1\cos\theta_1 + f_2\sin\theta_1\cos\theta_2 + f_3\sin\theta_1\sin\theta_2 = h(r)$$
(16)
$$-f_1\sin\theta_1 + f_2\cos\theta_1\cos\theta_2 + f_3\cos\theta_1\sin\theta_2 = 0$$

$$-f_2\sin\theta_1\sin\theta_2 + f_3\sin\theta_1\cos\theta_2 = 0.$$

Let N be the vector field dual to ω , that is,

(17)
$$N = -\frac{\partial}{\partial t} + \sum_{i=1}^{3} f_i \frac{\partial}{\partial x^i}.$$

Since \mathcal{F} is space-like, N is a time-like vector field on M ([4]).

For any fixed $t^* \in \mathbb{R}$, we consider a curve $c: \mathbb{R} \longrightarrow M$ given by $c(s) = (t^*, 2^{-1/2}s, 2^{-1}s, 2^{-1}s)$. By (16), we have, for $s \neq 0$,

$$2^{1/2}f_1(c(s)) + f_2(c(s)) + f_3(c(s)) = 2h(|s|)$$

$$-2^{1/2}f_1(c(s)) + f_2(c(s)) + f_3(c(s)) = 0$$

$$-f_2(c(s)) + f_3(c(s)) = 0.$$

We suppose that $h(r) = \pm (1 + Cr^4)^{-1/2}$ (i.e. (15a) for n=3). As r approaches 0, h(r) approaches ± 1 . Thus, as s approaches 0, (18) implies that

$$f_1(c(0)) = \pm 2^{-1/2}$$

 $f_2(c(0)) = f_3(c(0)) = \pm 2^{-1}$.

By (17), we have

$$N_{c(0)} = -\frac{\partial}{\partial t}\Big|_{c(0)} + \left(2^{-1/2}\frac{\partial}{\partial x^1}\Big|_{c(0)} + 2^{-1}\frac{\partial}{\partial x^2}\Big|_{c(0)} + 2^{-1}\frac{\partial}{\partial x^3}\Big|_{c(0)}\right),$$

which is a light-like vector ([4]). This contradicts the fact that N is a time-like vector field on M.

Therefore, we have that h(r)=0 (r>0). Then, by (16), we have

$$f_i = 0$$
 $i = 1, 2, 3$

on M. Thus we have that $\omega = dt$ on M, which means that $\mathscr F$ is totally geodesic. By the same way as above, we can prove Theorem 2 for n > 3.

5. Space-like foliations in Lie groups.

Let G be an n+1 dimensional connected Lie group and g be the associated Lie algebra of all vector fields on G that are invariant under left translations. If we take a Lie subalgebra \mathfrak{h} of \mathfrak{g} , then we have a foliation $\mathscr{F}(\mathfrak{h})$ in G([8]). In fact, for each point $x \in G$, a submanifold $L_x(H)$ of G is the leaf through x of the foliation $\mathscr{F}(\mathfrak{h})$ in G, where L_x denotes the left translation of G by $x \in G$, and H is a connected subgroup of G whose Lie algebra is \mathfrak{h} . Let $\{e_0, e_1, \dots, e_n\}$ be a basis of \mathfrak{g} . Then we denote by $C_{I^{K}}$ the structure constants of \mathfrak{g} with respect to $\{e_0, e_1, \dots, e_n\}$. Here and hereafter, unless otherwise stated, I, I, K=0, 1, \dots , n and i, j=1, \dots , n.

In this section, we consider G whose Lie algebra g is given by

(19)
$$q = \{e_0\} + b$$

where $\mathfrak h$ is an ideal of codimension one of $\mathfrak g$, and $\{e_1, \cdots, e_n\}$ is a basis of $\mathfrak h$. Now we can take a Lorentz inner product < , > on $\mathfrak g$ such that

$$\langle e_0, e_0 \rangle = -1$$
 $\langle e_0, e_i \rangle = 0$ $\langle e_i, e_j \rangle = \delta_{ij}$.

Then we have a left invariant Lorentz metric <, > on G induced from the Lorentz inner product <, > on g ([2], [3]). Let ∇ be the Levi-Civita connection on G with respect to the left invariant Lorentz metric <, > ([2], [3]).

Thus we have a space-like foliation $\mathcal{I}(\mathfrak{h})$ in G with the left invariant Lorentz metric < , >. We set

$$h_{ij}^0 = \langle \nabla_{e_i} e_i, e_0 \rangle = (C_{0i}^i + C_{0i}^j)/2.$$

Then we have the following definitions ([8]): $\mathcal{I}(\mathfrak{h})$ is maximal (resp. totally geodesic) if

$$\sum_{i=1}^{n} h_{ii}^{0} = 0$$
 (resp. $h_{ij}^{0} = 0$ for all i, j).

And $\mathcal{I}(\mathfrak{h})$ is of constant mean curvature if $\sum_{i=1}^n h_{ii}^0$ is a constant. Next, the curvature tensor R of ∇ defined by

$$R(e_I, e_I)e_K = \nabla_{[e_I, e_I]}e_K - \nabla_{e_I}\nabla_{e_I}e_K + \nabla_{e_I}\nabla_{e_I}e_K$$

and the Ricci curvature $Ric(e_0)$ in the direction of e_0 is defined by

$$Ric(e_0) = \sum_{i=1}^{n} \langle R(e_0, e_i)e_0, e_i \rangle$$

([2], [4]). By the direct calculation, we have

$$Ric(e_0) = -\sum_{i=1}^{n} (C_{0i}^i)^2 - \frac{1}{2} \sum_{i < j} (C_{0j}^i + C_{0i}^j)^2$$

Thus we have the following Proposition:

PROPOSITION 3. Let $\mathcal{F}(\mathfrak{h})$ be a space-like foliation of codimension one in the above Lie group G with the above left invariant Lorentz metric. Then the Ricci curvature $Ric(e_0)$ in the direction of e_0 is non-positive. Moreover $Ric(e_0)=0$ if and only if $\mathcal{F}(\mathfrak{h})$ is totally geodesic. In particular, if the left invariant Lorentz metric is flat then $\mathcal{F}(\mathfrak{h})$ is totally geodesic.

EXAMPLE 1.

$$G = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a, b, c \in \mathbf{R} \right\} : \text{Heisenberg group}$$

$$g = \left\{ \begin{bmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{bmatrix} \mid x, y, z \in \mathbf{R} \right\}$$

$$e_0 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[e_0, e_1] = e_2 \quad [e_0, e_2] = 0 \quad [e_1, e_2] = 0$$

$$\mathfrak{h} = \{e_1, e_2\}$$

$$< , > : \text{a left invariant Lorentz metric on } G \text{ such that}$$

$$< e_0, e_0 > = -1 \quad < e_0, e_i > = 0$$

 $\langle e_i, e_i \rangle = \delta_{ii}$ (i, j=1, 2)

$$Ric(e_0) = -1/2$$

Then the space-like foliation $\mathcal{I}(\mathfrak{h})$ of codimension one in G is maximal and not totally

geodesic.

EXAMPLE 2.

$$G = \left\{ \begin{bmatrix} a & 0 & b \\ 0 & a & c \\ 0 & 0 & 1 \end{bmatrix} \mid a > 0, b, c \in \mathbf{R} \right\}$$

$$g = \left\{ \begin{bmatrix} x & 0 & y \\ 0 & x & z \\ 0 & 0 & 0 \end{bmatrix} \mid x, y, z \in \mathbf{R} \right\}$$

$$e_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[e_0, e_1] = e_1 \quad [e_0, e_2] = e_2 \quad [e_1, e_2] = 0$$

$$\mathfrak{h} = \{e_1, e_2\}$$

$$< , > : a \text{ left invariant Lorentz metric on } G \text{ such that }$$

$$< e_0, e_0 > = -1 \quad < e_0, e_i > = 0$$

$$< e_i, e_j > = \delta_{ij} \quad (i, j = 1, 2)$$

 $Ric(e_0) = -2$ Then the Lorentz manifold (G, < , >) is of constant curvature -1, and the space-like foliation $\mathcal{I}(\mathfrak{h})$ of codimension one in G is of constant mean curvature (not

Example 3.

maximal).

$$G = \left\{ \begin{bmatrix} \cos\theta & -\sin\theta & a \\ \sin\theta & \cos\theta & b \\ 0 & 0 & 1 \end{bmatrix} \mid \theta, \ a, \ b \in \mathbf{R} \right\} : \text{group of rigid motions of }$$

$$g = \left\{ \begin{bmatrix} 0 & -x & y \\ x & 0 & z \\ 0 & 0 & 0 \end{bmatrix} \mid x, \ y, \ z \in \mathbf{R} \right\}$$

$$e_0 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[e_0, \ e_1] = e_2 \quad [e_0, \ e_2] = -e_1 \quad [e_1, \ e_2] = 0$$

$$\mathfrak{h} = \{e_1, \ e_2\}$$

< , > : a left invariant Lorentz metric on G such that

$$\langle e_0, e_0 \rangle = -1$$
 $\langle e_0, e_i \rangle = 0$
 $\langle e_i, e_j \rangle = \delta_{ij}$ $(i, j=1, 2)$

$$Ric(e_0)=0$$

Then (G, < , >) is a flat Lorentz manifold, and the space-like foliation $\mathcal{F}(\mathfrak{h})$ of codimension one in G is totally geodesic.

Example 4.

$$G = \left\{ \begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \mid a > 0, b, c, d \in \mathbf{R} \right\}$$

$$g = \left\{ \begin{bmatrix} x & y & z \\ 0 & x & u \\ 0 & 0 & x \end{bmatrix} \mid x, y, z, u \in \mathbf{R} \right\}$$

$$e_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad e_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[e_0, e_i] = 0 \quad (i = 1, 2, 3) \quad [e_1, e_2] = 0 \quad [e_1, e_3] = e_2 \quad [e_2, e_3] = 0$$

$$\mathfrak{h} = \{e_1, e_2, e_3\}$$

$$< , > : \text{a left invariant Lorentz metric on } G \text{ such that}$$

$$< e_0, e_0 > = -1 \quad < e_0, e_i > = 0$$

$$< e_i, e_j > = \delta_{ij} \quad (i, j = 1, 2, 3)$$

$$Ric(e_0) = 0 \quad Ric(e_1) = -1/2$$

Then the space-like foliation $\mathcal{F}(\mathfrak{h})$ of codimension one in G is totally geodesic.

References

- [1] S.-Y. Cheng and S.-T. Yau, Maximal space like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. 104 (1976), 407-419.
- [2] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293 -329.
- [3] K. Nomizu, Left invariant Lorentz metrics on Lie groups, Osaka Math. J. 16 (1979), 143-150.
- [4] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [5] T. Otsuki, A certain space-time metric and smooth general connections, Kodai Math. J. 8 (1985), 307-316.
- [6] B.L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132.
- [7] B.L. Reinhart, Maximal foliations of extended Schwarzschild space, J. Math Phys. 14 (1973), 719.
- [8] R. Takagi and S. Yorozu, Minimal foliations on Lie groups, Tohoku Math. J. 36 (1984), 541-554.

Department of Mathematics College of Liberal Arts Kanazawa University Kanazawa, 920 Japan