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1. Introduction.

This note is divided into three parts. In the first part, we will give spherically
symmetric maximal foliations of codimension one in a Lorentz 4-manifold with a
Lorentz metric:

ds?=— g(r)dt*+ f(r)dr*+ r*d6*+ r*sin*0de>.

The result given by Reinhart[7] is a special case. If g(»)=/(»)=1 for » >0, then
the metric is called the Lorentz-Minkowski metric. In the second part, we will prove
that a spherically symmetric maximal foliation of codimension one in the Lorentz-
Minkowski (n+1)-space is totally geodésic. This is essentially Cheng and Yau's
Theorem[1] (foliation version). Because we consider only spherically symmetric
foliations, our method is different from one in[1] and is elementary. In the third part,
we will discuss the geometric properties of space-like foliations of codimension one in
connected Lie groups with left inveriant Lorentz metrics, and several examples will be
shown. '

The discussion in this note is motivated by Reinhart’s paper[7] and extension of
Oshikiri’s Theorem ([8]) to non-compact case.

All the objects in this note are of class C* unless otherwise stated.

2. Foliation of codimension one.

- A foliation of codimension one in a manifold M is a family of hypersurfaces
filling M. Each hypersurface is. called a leaf of the foliation. The exact definition of
foliation of codimension one is as follows. - If a 1-form w on a manifold M satisfies the
integrability condition, ie. dwo=7Aw, then @ is called to define a foliation & of
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codimension one in M ([6]). And the foliation . is called to be defined by w=0. In
other words, if an integrable subbundle E of rank dim M —1 of the tangent bundle TM
over M annihilates w, then E is called to define & ([8]). Here, E is integrable if [ X,
Y]eI'(E) for any X, Y €I'(E), and E annihilates w if w(X)=0 for any X e I'(E)
(I'(E) denotes the space of all the sections of the bundle E). Each maximal connected

- integral manifold of E is called a leaf of #. For details, see Reinhart[6].
A foliation # of codimension one in a Lorentz manifold M is space-like if each

leaf of ¥ is a space-like hypersurface of M ([4], [7]).

3. Spherically symmetric maximal foliations and special Lorentz metrics.

Let N(a)={(x", x% x%) € R3|r=((x")*+(x*)?*+(x**"?> a} where a=0. We consider
a Lorentz manifold M=R x N(a) with a Lorentz metric

(1) ds*=— g(7)dt*+ f(r)dr?+ r*d6*+ r*sin*0de* ‘

by means of the spherical coordinate (», 6, ¢) on N(a), where g and f are positive
valued functions of » on an open interval (g, ). Let .# be a space-like foliation of
codimension one in M defined by w=0. The foliation .# is spherically symmetric if o
can be expressed by

(2) w=dt+h(r)dr
where /i is a function of » on (g, ©) ([7]). The foliation . is maximal if the trace of
the second fundamental form (by means of the Levi-Civita connection V with respect to
the metric (1)) of each leaf of & is zero ([7], [8]). We will seek a closed 1-form w=

dt+n(r)dr on M such that the space-like folxatlon & defined by w=0 is maximal.
The unit normal vector field T to the leaves of # is given by

T=(g(r) " = £y W) = ()G 1) ) ).

We notice that &(»)'—f(r)'h(7)*>0 because & is space-like. An orthonormal
frame field {X), X, Xi} tangent to the leaves of .& is given by

=@ = K W) () )y Dt £y g ()L )
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10
Xz—T 36

Xa=vr“‘(sin6)"§%
Then we have

Z<V X, T>

=(e(r)" = £ W Yy > { =2 ') ()
+2(r) 207 Y~ #f(r)"'g(r) "' (7)
— () () g (M) + 5 () (1)) A7)

+ 57 ()8 g (A Y),

where < , > denotes the inner product with respect to the metric (1), and * denotes
the derivative with respect to ». The trace of the second fundamental form vanishes
if and only if

®  KO=(FH ) g (=27 i)

+(FH g D+ 21 () g )

The differential equation (3) is easily solvedAby means of an auxiliary variable : £(7)=
g(r)?f(»)"*n(r). Then (3) can be rewritten in the form "

W KO=(380) g )42 (k) + RGP
Then, the equation (4) has the solutions :

k(r)=x(1+Cg(»)r*)™"?, or =0,

where C is a constant.
Thus we have

TueoreM 1. Let M=RXN(a) be a Loventz 4-manifold with a Lorentz metric (1),
and let & be a sphervically symmetric space-like foliatioi of codimension one in M
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defined by w=0, where w=dt+h(»)dr. Then & is maximal if and only if
Wr)=+g(r)"f(r)"*(1+ Ce(r)r*)™"2, or =0

on (@, ©) for some constant C.

The case g(r)=f(r)=1 for re€(0, o), that is, the case of the Lorentz-
Minkowski space, is discussed in the next section. The case of g(r)=1—2m/r and
f(r)=g(r)™ for » € (2m, o) was discussed by Reinhart[7], and then (M, ds?) is the
Schwarzschild exterior space-time ([4]). We must remark that Reinhart has found all
spherically symmetric maximal foliations in extended Schwarzschild space ([7]).

Now we may consider the case g(»)=1—4m?/»* and f(r)=r'2§(r)" for »r¢€
(2m, ). Then we have

(5) ds’=—(1—4m*[r?)dt*+ r (L —4m?*[v*) " dr*+ v2d6* + r*sin*dde*.
If we set
(6) T=t+log(r*—dm?)V?

‘then the metric (5) can be rewritten in the form
(7) ds*=—(1—4m?/r>)dF?+2» " \didr + r*d6*+ r2sin®@dg*.
The metric (7) has been introduced by-Otsuki[5], who has discussed the “black
holes” by means of smooth “general connection” on the space-time with this metric (7).

If we set

v=(72—4m*)"%sinht
u={(r>—4m?"?cosht

8)
then the metric (5) can be also rewritten in the form

(9) ds’=r"Y— dv*+ du®)+ r*d6*+ r*sin*6d¢>.

Thus we may have analogous discussion on the space R X N(0) with the metric (5) as.
" Reinhart’s discussion ([7]) on extended Schwarzschild space.
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4. Spherically symmetric maximal foliations in the Lorentz-Minkowski space.

Let M be the Lorentz-Minkowski (% +1)-space with the global coordinate (¢, %,
-+, ™) and the Lorentz metric

(10) v ds*= —dtz+(dx‘)2-|;-~-+(dx")2.

Let 7=((x")2+-+(x")?)", and we set that M*={(¢, x', -, x") € M|»>0}. Then M* is
an open Lorentz submanifold of M ([4]). By means of the spherical coordinate (7, 6,
*=, O-1), the induced metric on M* from (10) can be rewritten in the form

) ds*= — dt*+ dr*+ »¥(d0.)? + 234 »*sin? Gy -sin® 05-1(d6;)?.
We consider a 1-form @ on M defined by
(12 w=dt+ 2. fidx’

where f; are functions on M, and we suppose that w defines a foliation & of
codimension one in M. Then the foliation ¢ is spherically symmetric if the 1-form w
is written as follows on M*;

@ w=dt+Wr)dr

where % is a function of »>0.

Under the assumption that th_e foliation ¥ in M 1is space-like, ¥ is totally
geodesic if the second fundamental -form (by means of the Levi-Civita connection with
respect to the metric (0)) of each leaf of % vanishes identically ([4], [8]).

Hereafter we suppose that the foliation . of codimension one in M defined by w
=0 is spherically symmetric and space-like. Let & |M* be the restricted foliation of 5
in M*. Since &|M* is space-like, we have that 1—/4(7)*>0 for »>0.

By means of the coordinate (¢, 7, 6, ***, 6n-1) in M™, the unit normal vector field
T to the leaves of & |M* is given by '

T=(— k) —+ k)L

and an orthonormal frame field tangent to the leaves of .#|M™* is given by
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X=(=hr P - hr) S+ L)

X, 10
Xz——?" 3(91

Xu=(rsiné; - sinfe_s)"'2 E=3 4, -, 7.
s

Then we have
S<VnX:, T>= —A=Wr)D"™W (r)+(n—1)7r""h(»)(1— (7))}

Thus the trace of the second fundamental form of each leaf of #|M* is zero if and
only if

19 K(r)=—(n=r""0»)1-ur)®)  (r>0).
The differential equation (14) has the solutions

(152) 7)==+ Crn-n)-12 (r>0)
(15) Wr)=0 (>0)

where C is a positive constant.

Remark. A function f(7)=(1+4Cr**V)""2 is well-defined on [0, o) for any
positive constant C. As » goes to infinity, #(») approaches 0. And we have that
£(0)=1.

Then we have the following theorem :
THEOREM 2. Let M be the Lorentz- Minkowski (n+1)-space and & a Spherically
symmetric and space-like foliation of codimension one in M defined by w=0, where w

=dt+ 2% fidx’ and f; are functions on M. If 5 is maximal, then & is totally geodesic.

We will give a proof of Theorem 2 for #»=3. By our assumption, the function 4
in (13 is given by (15.) or (15,). We may set

x'=rcosb

x*=rsinbicos b



space-like foliations 21

x°=rsinbisinf..

By (12)b for n=3 and (13, we have

ficosby+ fesinbicos b+ fssinbisin b= h(7)
— fisin G+ facos 6icos &+ fscos Gisinfo=0
— fosinBisin b+ fsinbicos =0

Let N be the véctor field dual to w, that is,

—_9 sy (0
(17) N—_ at +23=1fz axi-

Since . is space-like, N is a time-like vector field on M ([4D.

For any fixed t* € R, we consider a curve ¢: R — M given by c(s)=(t*, 27",
271s, 27's). By (8, we have, for s=0,

212£,(c(s)) + £ c(s)) + foe(s)) =2h(s])
—2"2f(c(s))+ fl c(s)) + fc(s)) =0
—fle(s)) + £ e(s))=0.

(t]

We suppose that #(»)=£(1+Cr*)™"* (i.e. (152) for n=3). As » approaches 0,
“~ (r) approaches *=1. Thus, as s approaches 0, (18 implies that

Ae(0))==£2712
FLc(0))=1(c(0))=%27".

By (17, we have

Neoy= —7%

—12_0_ -1_0
+<2 ox' c(0)+2 ox*

-1 d
1
(0) + ox®

c(0)

)
<(0)

which is a light-like vector ([4]). This contradicts the fact that N is a time-like vector
field on M. ‘

Therefore, we have that 4(»)=0 (»>0). Then, by (6, we have

fi=0  i=1,2 3
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on M. Thus we have that w=dt on M, which means that . is totally geodesic.
By the same way as above, we can prove Theorem 2 for n>3.

5. Space-like foliations in Lie groups.

Let G be an n+1 dimensional connected Lie group and g be the associated Lie
algebra of all vector fields on G that are invariant under left translations. If we take
a Lie subalgebra § of g, then we have a foliation #(§) in G ([8]). In fact, for each
point x € G, a submanifold L,}(H ) of G is the leaf through x of the foliation .#(%) in
G, where L. denotes the left translation of G by x€ G, and H is a connected subgroup
of G whose Lie algebra is §. Let {e, e, -**, e} be a basis of g. Then we denote by
Cix the structure constants of g with respect to {e, e, ‘-, e.). Here and hereafter,
unless otherwise stated, I, J, K=0, 1, ---, » and i, j=1, -, =.

In this section, we consider G whose Lie algebra g is given by

19 g ={e}+ b

where Y is an ideal of codimension one of g, and {e;, -, es}is a basis of §. Now we

can take a Lorentz inner product < , > on g such that

<ep, >=-—1 < eo, e;>=0 < e, ej>=8ij.

Then we have a left invariant Lorentz metric < , > on G induced from the Lorentz
inner product < , > on g ([2], [3]). Let V be the Levi-Civita connection on G with
respect to the left invariant Lorentz metric < , > ([2], [3]).

Thus we have a space-like foliation #(§) in G with the left invariant Lorentz
metric < , >. We set

W= <Vee;, e>=(Cé+ Ci:)/2.

’

Then we have the following definitions ([8]) : .#(%) is maximal (resp. totally geodesic)
if ) '

ih%=0  (resp. 4%=0 for all i, j).

And #(9) is of constant mean curvature if 3)7-,4% is a constant. Next, the curvature
tensor R of V defined by
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R(er, e))ex=Ve, e1ex —VeVeex+VeVeex,
and the Ricci curvature Ric(eo) in the direction of e is defined by
Ric(e))=2%-1< R(en, ei)en, €:>

([2], [4]). By the direct calculation, we have
Ric(en) =~ Sur i — 5 Zi< Cli-+ CY-.

Thus we have the following Proposition :

ProrosiTioN 3. Let 9(9) be a space-like foliation of codimension one in the
above Lie group G with the above left invariant Lbrentz metric. Then the Ricci
curvature Ric(eo) in the direction of eo is mon-positive. Moreover Ric(e))=0 if and
only if () is totally geodesic. In particular, if the left invariant Loventz metric is
flat then 5(%) is totally geodesic.

EXAMPLE

1

—
- N
o

G=

(=]
)

1.
[ | @, b, ce R; : Heisenberg group
Xy ]
g= 0 |x, v, z€ R}
0 0

0

0

0

10 0 00 0 01
00 e=| 0 0 1 e=| 0 00
0 0 000 0 00

o
o

o O
N

=

[eo, ell=ez  [en, e2]=0 [e, e]=0
b={e, ez}
< , > :a left invariant Lorentz metric on G such that
<ey e>=-1 <e, e;>=0
<ei, e,>=0; (i, 7=1,2)
Ric(e))=-1/2
. Then the space-like foliation .#(§) of codimension one in G is maximal and not totally



24 Shinsuke YOROZU

geodesic.
ExawmpiE 2.
[a 0 5]
G=y! 0 a c| |a>0, b, ceR
[Loo 1)
g= 0 x z| |x, v, z¢ R
L 0 0 0
100 0 01 0 00
a=| 0 1 0 e={ 0°0 0 e= 0 0 1
0 00 000 000
le, al=er e, @]=e; [e, e]=0
b={e, e}
< , > ! a left invariant Lorentz metric on G such that
<ey, e>=-—1 <eo e;>=0
<ei e>=08; (i, j=1, 2)
Ric(e))=—2
Then the Lorentz manifold (G, < , >) is of constant curvature —1, and the space-

like foliation .#(%) of ‘codimension one in G is of constant mean curvature (not
maximal).

ExampLE 3.
[ [ cosd —sinb a _  rieid moti ;
. :group of rigid motions o
G=1{| sinf cosf b| |6, a beR g p & '
Euclidean 2-space
0 0 1
(T 0 —x vy
s=y| x 0 z||x, 9 2€R
L 0 0 0
0 -10 001 000
€= 1 0 0 e = 0 00 2= 001
0 0 0 000 0 0 0
leo, al=e: " [e, &2]l=—a [e, e]=0
h={e), e}

< , > : a left invariant Lorentz metric on G such that
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<ey e>=-—1 < ey ei>=0
<ey e;>=08; (i, j=1,2)
Ric(e))=0 l ,
Then (G, < , >)is a flat Lorentz manifold, and the space-like foliation #(b) of
icodimension one in G is totally geodesic. ' ) ‘

ExaMPLE

IN)
o~
(9

4.

[ a d| |a>0,b,c, deR
y z
g= x |x, v, 2, u€R
00

1

0

0

00 010 0 01 000
10 e=| 0 0 0 e=| 0 0 0 es=| 0 0 1
01 0 00 0 00 000

o
o

[
]

e=

(e, e]=0 (i=1,2 3) [e, e=0 [e, es]l=ex [es es]=0
h ={e, e, e3} ,
< , > : a left invariant Lorentz metric on G such thét
<ey e>=-—1 <e, e;>=0
<e, e;>=08; (i, j=1,2,3)
Ric(eo)=0  Ric(e)=-1/2 .
Then the space-like foliation .#(H) of codimension one in G is totally geodesic.
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