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1. The results of the study of conformal and Killing vector fields on a compact Rieman-
nian manifold with boundary had been listed in Yano’s book [3]. It has been tried by the
third named author to generalize to the non-compact case, that is, in [5], the non-existence
of L*-Killing vector fields on a non-compact Riemannian manifold with boundary was
discussed. '

The purpose of the present paper is to investigate the properties and the non-exis-
tences of L?-conformal and Killing vector fields on a non-compact Riemannian manifold
with boundary. )

We shall be in C*-category. Latin indices run.from 1 to n+1 and Greek ones from 1
ton. The Einstein summation convention will be used.

2. Let # be a complete, non-compact, connected and orientable Riemannian manifold of
dimension n+1 with a Riemannian metric g. Let ¥ be the Riemannian connection on
# associated with g. We take a non-compact manifold M=aMUM such that M is a
non-compact, connected and open submanifold of # and 8M=M—M is an n dimensional,
compact, connected submanifold of .#, where M denotes the closure of M in.#. Then M
is an orientable Riemannian manifold with boundary 8M and the Riemannian metric
induced from g on .#. We denote by g the induced Riemannian metric on M and by Vthe
Riemannian connection on M associated with g. It is trivial that M is complete as a metric
space with the distance determined by g.

At each point p of 9M, there exists a coordinate neighborhood system {U, (x!)} of p
in # such that UNM is represented by x**'=0 and UNaM is represented by x™!=0,
Such a coordinate neighborhood system is called a boundary coordinated system. And let
{UNnoM, (x*)} be the induced coordinate neighborhoodv system on @M. If {U, (x?)} and
{V.(y")} are boundary coordinate systems satisfying UNV # ¢, then we have
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a n+1 ayn“‘l
2.1) —%ﬂ—w and —5

3 <= =0 (for any a)

on @M NUNV. Since the Jacobian of the coordinate transformation of {U, (x')} and {V,
(y")} is positive, the Jacobian of the coordinate transformation of {UNaM, (x%)} and {V
NaM, (v)*} is positive. Thus aM is orientable.

Let i : 9M—>M be the inclusion. Let {U, (x)} be a boundary coordinate system of
pEdM in #and {U, (u*)} be a coordinate neighborhood system of p in @M such that U’
cUNaM. Then the inclusion 7 may be represented locally by

2.2) x'=x' (u*).
We denote by B the differential of the inclusion Z, that is,

ax')
ou*”

23) B=(B))= (
. The induced metric g =(g ,,) on oM is given by
(2.4 E ap= Bian,g,,,

where g=(g;). We may choose the unit outer normal vector field N.on 9M. Let ¥ be
the Riemannian connection on &M associated with g. The equations of Gauss and
Weingarten are stated as follows:

25 Vi 2, 7=i,(VY¥)+h &, V)N
(2.6) Vi.XN=i*(—AX)
for any vector fields X and ¥ on @M, where h denotes the second fundamental form of aM

with respect to N and A is defined by h(X, ¥)=¢ AX, V).

3. Let AS(J) (resp. AS(dM)) be the space of all s-forms on M (resp. 2M). Let d (resp. d)
denote the exterior derivative on AS(M) (resp. AS(@M)). An operator & (resp. d') is defined
by '

(8l o=(—1)"%d* (resp. §=(—1)"* d %)

on AS(M) (resp. AS(dM)), where m=sn +s+n(resp. m=sn+n+1) and * denotes the star
operator. ‘ '
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n&=&N'
C (t8), =A%Bjé;
ViV &'V, V&'=Ry&'

where R;; denote the components of the Ricci tensor field of v ([3], [5]). Moreover, we
define D(d%), A& and [JX as follows:

(D(ag))'=V" (68)=—-V'V'§
(B6)  (A&)=(d0&+0dE)=—V'V,&+Rig
(OX)'=viv,;&'+R}i&’
where Rj=g""R.([3], [5]).
Let X be a vector field on.l\_/I and & the dual 1-form. Then X | , has the following
expression :
37 X=i,X+@m&-N on oM,

for some vector field X on M.

DeFiniTiON 3.1 ([3]). A vector field X on M is called tangential (resp. normal) to oM
if n&=0 (resp. t&=0) for the dual 1-form & to X. ~

By (3.7), we remark that t&=0 is equivalent to 7, X =0.

DEFINITION 3.2. A vector field X on M is called a conformal vector field if Lyg
=221 -g, where L denotes the Lie derivative operator and A is a function on M.

DerFiNITION 3.3. A vector field X on M is called a Killing vector field if Lyg=0.

By local expression, a vector field X on M is a conformal (resp. Killing) vector field
if

'(3.8) Vi&+ V& =21 g; (resp. V &+ V;&=0),
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where & is the dual 1-form to X.

DEeFINITION 3.4 ([4]). A vector field X on M has finite L*-norm if £€L*(M)N A*(M)
for the dual 1-form & to X. A vector field X on M with finite L2-norm is called an
L2-vector field.

We remark that, in [4], an L*-vector field is called a vector field with finite global
norm.” An L2-vector field X on M satisfies | X | <oo. ‘

4. For each point p of M, we denote by p(p) the distance from p to @M. Since aM is
compact and connected, p is well-defined. We set

(41) B@r)= {peM | plo)s2r}

for any r>0. A function x on R satisfies the following properties :

0=pt)=1 on R
4.2) r (t)=1 for t<1
ux ®)=0 for t=2.

Then we define loéally Lipschitz continuous functions @, on M by
(4.3) w(@)=p (p@)r) r=1, 2,
for any pcM. ‘
Lemma 4.1 ([1], [4]). There exists a positive number C, depending only on u, such that
Il dorAr ||3an= (n+1) C r?| 7 |[3ey
|| dooxA lrlllzmzr)é(ni-l) C |l 7 |l 3en
lldex® 7|1 bea=@+1) C r2| 7 || 3

Jor any neASM), where ||-||3py= <<, > pen=[Ben<+, +> 1.
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We remark that, for any y€L>M)NA (M), expEA§(M) and @y —> 7 as r—> ©
in the strong sense. '

LemMA 4.2. For any nANM), it holds that
d (0in7)=wid 7420 dexAy a e onM
S (oin)=wion— * (Zaor decA*7) a e onM,

where “a. e.” means “almost everywhere”.

5. By the direct calculation, we have

PropOSITION 5.1. Let X be a vector field on M and & the dual 1-form to X. Then it
holds that '

<Dx—(1—n—i1—) D (6), wiX>
+<Lxgt—oi7 1 (98)-g L8+ 3T 1 (¢ (@i8))-g>
=0 1) (Lx@) + 37 (o106)-8)
" By Stokes’ theorem, we have
6D [yl (¢ @I)=[ py0tn M)+ L
Since d (* (w27))=—* & (02y) and 8BE@N=0MU{pM | p(p)=2r} , (5.1) implies
62  —[ged @) *1=[_ 7 MN)*1.
By Proposition 5.1 and (5.2), we have

" PROPOSITION 5.2. Let X be a vector field on M and 4‘;-' the dual 1-form to X. Then it
holds that

<[OX-@ —nL-l-l) D (68), @X>>puy
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2 2
+ <<Lxg+m (5";")'8: L(m;X)g+n_H (0 (@%8))-g>> gy
=/ o Ixg+—27 (68)-2) (X, N) %1,

Thus we have

THEOREM 5.3. Let X be an L*-vector field on M and & the dual 1-form to X. Then
X is an L*-conformal vector field on M if and only if

2 _ _
DX—(]. —m) D (06)—0 on M
# ) :
(Iacg+m(6‘5)'g)(X,N)=0 on dM
Proor. If X satisfies (#), then, by Proposition 5.2, we have
0= <<Lxg+ 1 (08)-g, L& t—— ” _|_ 7 (M(@iE))-g>>pay
=||ex (Lig‘l'ni_'_l (d‘:";’)~g)||§(2r)+4<<w.-(Lxg+ 55) ), dox®& >>pen.
Thus we have, by Lemma 4.1,
2 2
|| r(Lxg AT (08)- 2|3
=—d<Lax (Lxg+'—n%(6«5)-g), dwd®& >> sen
S—”&k(Lxg"‘—(aé—) g)“ 4en+8 n+1) Cr- 2||¢;"||rs(zr)

Thus we have

- gllodLxe+ T 09)-BlkerS8 @+D Crl| £l by
As r— 0, we have
|| Lag+—2— (38)-g]|=0
T n+1 '

Therefore X is an L2—conformal vector field on M. The converse is trivial.
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The following theorem is given as corollary of Theorem 5.3.

THEOREM 5.4: Let X be an L*—vector field on M and & the dual 1-form to X. Then
X is an L*-Killing vector field on M if and only if

OX=0 and 6£=0 on M
(Lx g) (X, N)=0 ‘ on @M

Let 7 be the mean curvature of the boundary M defined by .
(5.3) r=3, h&X,, X,),
where {X,} denotes the orthonormal local frame on @M with respect to g.

LemMa 5.5. Let X be a vector field on M and & the dual 1-form to X. Then, on 9M,
it holds that

(Vng) N)=F Z4+7 @E)—0&

(Lxg) X, N)=(V &) X)+h &, X)+7 (&)
+2:m&)-3 E~35 (&) &)—é)-s¢,

where X=1,X+0&)-N and E denotes the dual 1-form to X.
By Theorems 5.3 and 5.4 and Lemma 5.5, we have
COROLLARY 5.6. Lét X be an L*-vector field on M tangential (resp. normal) to the

boundary dM and & the dual 1-form to X. Then X is an L?-conformal vector field on M
if and only if

Dx—u—%) D (62)=0 on M
(V&) X)+h(&, X)=0 on oM
n—1

(resp. 7+(n&)*— ] n&)-6&=0 on oM).
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CoroLLARY 5.7. Let X be an L*-vector field on M tangential (resp. normal) to the

boundary dM and & the dual 1-form to X. Then X is an L*-Killing vector field on M if
and only if

OX=0, ¢&=0 on M
(Vx&) X)+h X, X)=0 on dM

(resp. 7-(n&P=0 on oM).

6. Let X be a conformal vector field on M, that is, Ly g=21-g, and let & be the dual
1-form to X. We define a 1-form » by

6.1 . #=(V;&) & dx"
Then we have
LemMA 6.1. It holds that

—0n=<P & &E>—-2<VE, VE>++]) <dA, £>+2 (n+1) <4, A>
—0&=(n+1) 2
<N, #>=<d &), t&>+<C (t&), t&>
* QoxdaxA * 7)=—2< & dax®&, V&>,

where ( §)i=Ri§ and (V&);=V, §

PROPOSITION 6.2. Let X be a conformal vector field on M and & the dual 1-form fo X.
Then it holds that

LR & wr Epon—2KVE, @ VEpan
+0+1) <or dd, &r E>pen+2 (0+1) <<wxd, &rd >>pen

-2 dm.—@&', aJrVé'>> B(2r)
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=/, <d (8), t&>+<C (t§), t&> * 1.
Proor. For a 1-form #=(V;&) & dx' on M, we have

6.2) d(»(win)=—+*3 (ot7)
=+ (0¥—07)+ * CoxdaxA * 7)).

By Stokes’ theorem, we have

63) [ d(* (@2)= [ gy <N, win> + 1.

| By Lemma 6.1, (6.2) and (6.3), we have

64) <K& @fpen—2<KeVE xVE>san
++1)<<wdd, @&>>pent+20+1) <<ord, ord >>pen
—’2<<dmr®€r @V &> pan
= [ ppey@? (< d@E), t&>+<C (t8), t&>} + 1.

Since 8B(2r)=0MU {pEM | p(p)=2r} , &x=1 on &M and w:=0 on {peM | p (p)=2r} ,
the right hand side of (6.4) is equal to [ou<d (&), t&>+<C (t§), t&> + L.

LEmMA 6.3. It holds that

<< Gerl N @r§>> B(2r) — —(l'l+ 1) << (drl N wr). > B(zr)." < CaJrl , X (2 d(nJrA * (‘;'.) > B(2r)-

Then Proposition 6.2 and Lemma 6.3 imply
< Wrg ‘f’ @r§>> B(2r)
=2||@rV §|[3en+@+1) 1=D)||@rd |[fen+0+1)<Kard, * (2 derd * £)>>sen

+2<Kdox®E, &xVE>pan+ [,, < d08), t&>+<C (t&), t&> » 1
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By the Schwarz inequality and .Lemma 4.1, we have
2| Kawrd, *([dwrA * E)>>pen |
=2||@rd||pen||dexA * &||pen
=2||ex |[fen +@+1)C-27' 172 &|[3en

and ,
2| Kde®E, @ VE>>pan |
=||erV &|len +M0+1) Cr?||&]lken.

Thus we have

KLxr R &, @& > per
22|V & |Ben +(n+1) ('ﬂ—l)”wrl”zs(zr)

=2 (n+1)||wri||§(zr)—(n+l)’C‘Z_lr"z”*;"Hfa(zr)-

—||exrV &l [3en—@+1) Cr=?||&][ken

+[ou<d &), t&>+<C (t&), t&> » 1 |
=|0rV &|[hen +(0+1) @—3)||wrA |[ben

+ [, <T @&), t&>+<C (t&), t&> » 1

—(n+1) @+3) C-27'r7?||&|[3en-

PROPOSITION 6.4, Let X be an L2-conformal vector field on M and & the dual 1-form
to X. If dim M=n+1=4 and lim sup<K @@ & &> pen <o, then

lim sup<<L P &, &&>>pen

r—»o
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z||VEIP+@+]) @-3)|A|*+ [, <d @E), t&>+<C (t8), t&> + 1.

COROLLARY 6.5 ([5]). Let X be an L*-Killing vector field on M and & the dual 1-form
to X. If lim sup<K P & @r&>>pen<oo, then

lim sup LR & @& >>pan

r—co

z||V&|P+[,,<d &), t&>+<C (&), t&> + L.
If the second fundamental form of M with respect to N is non-negative, then we have
Jou<C (&), t&> + 120.
Thus, by Proposition 6.4 and Corollary 6.5, we have

THEOREM 6.6. (i) Suppose that lim SUp<K @ & @& >>pen<0 for any E€L*(M)N
AYM), the second fundamental form on M with respect to the unit outer normal vector
field is non-negative, and dim M =n+124. Then every L*-conformal vector field on
M tangential to dM is parallel. (ii) Suppose that lim sup<< @R &, w:&>>pen=0 for any
sl (M)NA'M) and dim M=n+124. Then every L*-conformal vector field on M
normal to @M is parallel.

THEOREM 6.7 ([5]). (i) Suppose that lim sup<< wr P & @& >pan=0 for any & €

- LA(MYNAYM) and the second fundamental form of M with respect to the unit outer

normal vector field is non-negative. Then every L?-Killing vector field on M tangential to
M is parallel. (i) Suppose that lim sup<< wx P & @& >>pen=0 for any EEL*M)N
AM). Then every L*-Killing vector field on M normal to dM is parallel.

THEOREM 6.8. (i) Suppose that M is of negative Ricci curvature, diim M=n+124, and
the second fundamental form of M with verpect to the unit outer normal vector field is
non-negative. Then there are no non-zero L*-conformal vector fields on M tangential to
OM. (ii) Suppose that M is of negative Ricci curvature and dim M=n+124. Then there
are no non-zero L-conformal vector fields on M normal to dM.

THEOREM 6.9 ([5]). (i) Suppose that M is of negative Ricci curvature and the second
fundamental form of dM with respect to the unit outer normal vector field is non-negative.
Then there are no non-zero L*-Killing vector fields on M tangential to dM. (ii) Suppose
that M is of negative Ricci curvature. Then there are no non-zervo L*-Killing vector fields
on M normal to aM. :

ExampLE 6.10. We set r=(x’+y?+2%)"* for any point (x, y, z) €R® and

X=r cos 6 y=r sin 6, cos 6, z=r sin 6, sin 6,
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that is, (6, &, r) is the spherical coordinates in R®. For two positive constant numbers a;
and a; (a; <a,), we consider a metric ds? on R? such that

ds’=r? ((d6,)*+sin®6, (d&)?)+(dr)? r<a,
ds?=r"%3((d6,)* +sin%6, (d6,)?)+(dr)? r= (a, +a,)/2.

Then (# , ds?)=(R?, ds?) is a complete, non-compact, connected and orientable Riemannian
manifold. Weset M = {(4, &, r)4# |r=a,} ,then M is a non-compact, connected and
orientable Riemannian manifold with a compact and connected boundary M= {(6,, 6,, r)
e# |r=a,} . Then X=r"'® 3/ar is an L2-conformal vector field on M normal to oM.

LemMMA 6.11. Let W be a Riemannian manifold with a Riemmannian metric gy and X
a Killing vector field on W with respect to the metric g. If f be a positive function on W
such that X(£)=0 on W, then X is a conformal vector field on W with respcet to the metric
f ‘gw. .

In Lemma 6.11, if gw is a complete metric on W and f is a bounded function on W, then
f-gw is a complete metric on W ([2]). Thus L2-conformal vector fields on M tangential to
oM are given by examples in [5].

REMARK 6.12. If, in Theorems 6.8 and 6.9, we take that M is of non-positive Ricci
curvature and of infinite volume, then we also have the same conclusion.
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