L²-vector fields on a non-compact Riemannian manifold with boundary

T. Aoki, J. S. Pak and S. Yorozu

(Received April 12, 1988)

1. The results of the study of conformal and Killing vector fields on a compact Riemannian manifold with boundary had been listed in Yano's book [3]. It has been tried by the third named author to generalize to the non-compact case, that is, in [5], the non-existence of L²-Killing vector fields on a non-compact Riemannian manifold with boundary was discussed.

The purpose of the present paper is to investigate the properties and the non-existences of L^2 -conformal and Killing vector fields on a non-compact Riemannian manifold with boundary.

We shall be in C^{∞} -category. Latin indices run from 1 to n+1 and Greek ones from 1 to n. The Einstein summation convention will be used.

2. Let \mathscr{M} be a complete, non-compact, connected and orientable Riemannian manifold of dimension n+1 with a Riemannian metric g. Let ∇ be the Riemannian connection on \mathscr{M} associated with g. We take a non-compact manifold $\overline{M} = \partial M \cup M$ such that M is a non-compact, connected and open submanifold of \mathscr{M} and $\partial M = \overline{M} - M$ is an n dimensional, compact, connected submanifold of \mathscr{M} , where \overline{M} denotes the closure of M in \mathscr{M} . Then \overline{M} is an orientable Riemannian manifold with boundary ∂M and the Riemannian metric induced from g on \mathscr{M} . We denote by g the induced Riemannian metric on \overline{M} and by ∇ the Riemannian connection on \overline{M} associated with g. It is trivial that \overline{M} is complete as a metric space with the distance determined by g.

At each point p of ∂M , there exists a coordinate neighborhood system $\{U, (x^i)\}$ of p in \mathscr{M} such that $U \cap \overline{M}$ is represented by $x^{n+1} \ge 0$ and $U \cap \partial M$ is represented by $x^{n+1} = 0$. Such a coordinate neighborhood system is called a boundary coordinated system. And let $\{U \cap \partial M, (x^{\alpha})\}$ be the induced coordinate neighborhood system on ∂M . If $\{U, (x^i)\}$ and $\{V, (y^i)\}$ are boundary coordinate systems satisfying $U \cap V \ne \phi$, then we have

(2.1)
$$\frac{\partial y^{n+1}}{\partial x^{n+1}} > 0$$
 and $\frac{\partial y^{n+1}}{\partial x^{\alpha}} = 0$ (for any α)

on $\partial M \cap U \cap V$. Since the Jacobian of the coordinate transformation of $\{U, (x^i)\}$ and $\{V, (y^i)\}$ is positive, the Jacobian of the coordinate transformation of $\{U \cap \partial M, (x^{\alpha})\}$ and $\{V \cap \partial M, (y)^{\alpha}\}$ is positive. Thus ∂M is orientable.

Let $i: \partial M \longrightarrow \overline{M}$ be the inclusion. Let $\{U, (x')\}$ be a boundary coordinate system of $p \in \partial M$ in \mathscr{M} and $\{U', (u^{\alpha})\}$ be a coordinate neighborhood system of p in ∂M such that $U' \subset U \cap \partial M$. Then the inclusion i may be represented locally by

(2.2)
$$x^{i} = x^{i} (u^{\alpha}).$$

We denote by B the differential of the inclusion i, that is,

(2.3)
$$B = (B_{\alpha}^{i}) = (\frac{\partial x^{i}}{\partial u^{\alpha}}).$$

The induced metric $\widetilde{g} = (\widetilde{g}_{\alpha\beta})$ on ∂M is given by

(2.4)
$$\widetilde{g}_{\alpha\beta} = B^i_{\alpha} B^j_{\beta} g_{ij}$$
,

where $g=(g_{ij})$. We may choose the unit outer normal vector field N on ∂M . Let $\widetilde{\nabla}$ be the Riemannian connection on ∂M associated with \widetilde{g} . The equations of Gauss and Weingarten are stated as follows:

$$(2.5) \qquad \nabla_{i_{-}} \widetilde{X} i_{*} \widetilde{Y} = i_{*} (\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}) + h(\widetilde{X}, \widetilde{Y}) \cdot N$$

(2.6)
$$\nabla_{i_*\tilde{X}}N = i_*(-A\tilde{X})$$

for any vector fields \widetilde{X} and \widetilde{Y} on ∂M , where h denotes the second fundamental form of ∂M with respect to N and A is defined by $h(\widetilde{X}, \widetilde{Y}) = \widetilde{g}$ $(A\widetilde{X}, \widetilde{Y})$.

3. Let $\Lambda^s(\overline{M})$ (resp. $\Lambda^s(\partial M)$) be the space of all s-forms on \overline{M} (resp. ∂M). Let d (resp. \overline{d}) denote the exterior derivative on $\Lambda^s(\overline{M})$ (resp. $\Lambda^s(\partial M)$). An operator δ (resp. $\overline{\delta}$) is defined by

(3.1)
$$\delta = (-1)^m * d * \text{ (resp. } \widetilde{\delta} = (-1)^m * \widetilde{d} *)$$

on $\Lambda^s(\overline{M})$ (resp. $\Lambda^s(\partial M)$), where m=sn+s+n(resp. m=sn+n+1) and * denotes the star operator.

subspace of $\Lambda^s(M)$ (resp. $\Lambda^s(\partial M)$) composed of forms with compact supports. For examthe global scalar product on $\Lambda_0^s(M)$ (or $\Lambda_0^s(\partial M)$). Here $\Lambda_0^s(M)$ (resp. $\Lambda_0^s(\partial M)$) denotes the The local scalar product on $\Lambda^s(M)$ (or $\Lambda^s(\partial M)$) is denoted by <,>, and let \ll,\gg be

pie, we have

for any ξ , $\eta{\in}\Lambda_0^s(\overline{M})$. Then we have

$$\ll 36, 3 \gg = \ll 2, 3b \gg \qquad (8.8)$$

 $^{11}T_{11}S = <T, R > vd$ $=\int_{\mathbb{A}} \frac{1}{2!} S_{ij} T^{ij} * I$ ([5]). We remark that the local scalar product in [3] is given on \overline{M} with compact supports, we have that $\ll\!\!S,\ T\!\!> = \!\!\int_{\overline{M}} <\!\!S,\ T\!\!> *\!\!1$ extended to the space of (u, v)—tensor fields on M. For any (0, 2)-tensor fields S and Tthe scalar product \ll , \gg . We set $\| \cdot \| = \ll$, $\gg^{1/2}$. We remark that \ll , \gg is for any $\xi \in \Lambda_0^s(\overline{M})$ and $\zeta \in \Lambda_0^{s+1}(\overline{M})$. Let $L^{z,s}(\overline{M})$ be the completion of $\Lambda_0^s(\overline{M})$ with respect to

For any $\eta \in \Lambda^1(M)$ and $\xi \in \Lambda^1(\partial M)$, we define $t \eta \in \Lambda^1(\partial M)$, $n \eta \in \Lambda^0(\partial M)$ and $\zeta \in \Lambda^1(\partial M)$

 $\forall a (M6)^t A \Rightarrow$

$$(\tilde{Y}_*i) \ \eta = (\tilde{Y}) \ (\eta i)$$

$$(N)u = uu$$
 (4.8)

$$(YA) \tilde{Z} = (Y) (\tilde{Z}D)$$

For a vector field $X = \xi^1 \partial x^1$ on M, the 1-form ξ dual to X is defined by $\xi = \xi_1 dx^1$ for any vector field Y on aM.

 $=g_{ij} \not\in dx^i$. We set

$$\nabla_i = \nabla_{a/ax^i}$$
 and $\nabla^i = g^{ij}\nabla_j$,

where (g¹¹) denotes the inverse matrix of (g₁₁). Then we have following expression:

$$|\xi_{1} \nabla - |\xi_{1} \nabla = \xi_{1}(\xi_{b})$$

$$|\xi_{1} \nabla - |\xi_{2} \nabla = \xi_{b}$$

$$|\xi_{1} | H = |\xi_{2} \rangle$$

$$(3.5)$$

$$\begin{split} & n\boldsymbol{\xi} = \boldsymbol{\xi}_{i} N^{i} \\ & C \left(t\boldsymbol{\xi} \right)_{\alpha} = A_{\alpha}^{\beta} B_{\beta}^{i} \boldsymbol{\xi}_{i} \\ & \nabla_{i} \nabla_{j} \boldsymbol{\xi}^{i} - \nabla_{j} \nabla_{i} \boldsymbol{\xi}^{i} = R_{ij} \boldsymbol{\xi}^{i} \end{split}$$

where R_{ii} denote the components of the Ricci tensor field of ∇ ([3], [5]). Moreover, we define $D(\delta \xi)$, $\Delta \xi$ and $\Box X$ as follows:

$$(D(\delta \xi))^i = \nabla^i (\delta \xi) = -\nabla^i \nabla^j \xi_i$$

(3.6)
$$(\triangle \xi)_{i} = (d\delta \xi + \delta d\xi)_{i} = -\nabla^{j}\nabla_{j}\xi_{i} + R\{\xi_{i}\}_{i}$$

$$(\Box X)^{i} = \nabla^{j}\nabla_{j}\xi^{i} + R\{\xi_{i}\}_{i}$$

where $R_{j}^{i} = g^{ik}R_{kj}([3], [5])$.

Let X be a vector field on \overline{M} and ξ the dual 1-form. Then $X \mid_{\partial M}$ has the following expression:

(3.7)
$$X = i_* \tilde{X} + (n\xi) \cdot N$$
 on ∂M ,

for some vector field \tilde{X} on ∂M .

Definition 3.1 ([3]). A vector field X on \overline{M} is called *tangential* (resp. *normal*) to ∂M if $n\xi = 0$ (resp. $t\xi = 0$) for the dual 1-form ξ to X.

By (3.7), we remark that $t\xi=0$ is equivalent to $i_*\tilde{X}=0$.

DEFINITION 3.2. A vector field X on \overline{M} is called a *conformal vector field* if $L_Xg = 2\lambda \cdot g$, where L denotes the Lie derivative operator and λ is a function on \overline{M} .

Definition 3.3. A vector field X on \overline{M} is called a Killing vector field if $L_X g = 0$.

By local expression, a vector field X on \overline{M} is a conformal (resp. Killing) vector field if

$$(3.8) \qquad \nabla_{i}\xi_{j} + \nabla_{j}\xi_{i} = 2\lambda \ g_{ij} \ (resp. \ \nabla_{i}\xi_{j} + \nabla_{j}\xi_{i} = 0),$$

where ξ is the dual 1-form to X.

DEFINITION 3.4 ([4]). A vector field X on \overline{M} has finite L^2 -norm if $\xi \in L^{2,1}(\overline{M}) \cap \Lambda^1(\overline{M})$ for the dual 1-form ξ to X. A vector field X on \overline{M} with finite L^2 -norm is called an L^2 -vector field.

We remark that, in [4], an L^2 -vector field is called a vector field with finite global norm. An L^2 -vector field X on \overline{M} satisfies $||X|| < \infty$.

4. For each point p of \overline{M} , we denote by $\rho(p)$ the distance from p to ∂M . Since ∂M is compact and connected, ρ is well-defined. We set

$$(4.1) \qquad B(2r) = \{p \in \overline{M} \mid \rho(p) \leq 2r\}$$

for any r>0. A function μ on R satisfies the following properties:

$$0 \le \mu(t) \le 1 \qquad \text{on R}$$

$$(4.2) \qquad \mu(t) = 1 \qquad \text{for } t \le 1$$

$$\mu(t) = 0 \qquad \text{for } t \ge 2.$$

Then we define locally Lipschitz continuous functions ω_r on \bar{M} by

(4.3)
$$\omega_{\mathbf{r}}(\mathbf{p}) = \mu \ (\rho(\mathbf{p})/\mathbf{r}) \qquad \mathbf{r} = 1, 2, \cdots$$

for any $p \in \overline{M}$.

LEMMA 4.1 ([1], [4]). There exists a positive number C, depending only on μ , such that

$$\begin{aligned} &|| \ d\omega_{r} \Lambda \eta \ ||_{B(2r)}^{2} \leq \ (n+1) \ C \ r^{-2} || \ \eta \ ||_{B(2r)}^{2} \\ &|| \ d\omega_{r} \Lambda * \eta \ ||_{B(2r)}^{2} \leq (n+1) \ C \ r^{-2} || \ \eta \ ||_{B(2r)}^{2} \\ &|| \ d\omega_{r} \bigotimes \eta \ ||_{B(2r)}^{2} \leq (n+1) \ C \ r^{-2} || \ \eta \ ||_{B(2r)}^{2} \end{aligned}$$

for any $\eta \in \Lambda^s(\overline{\mathbb{M}})$, where $||\cdot||_{B(2r)}^2 = \ll \cdot$, $\cdot \gg_{B(2r)} = \int_{B(2r)} < \cdot$, $\cdot > *1$.

We remark that, for any $\eta \in L^{2,s}(\overline{M}) \cap \Lambda$ (\overline{M}) , $\omega_r \eta \in \Lambda_0^s(\overline{M})$ and $\omega_r \eta \longrightarrow \eta$ as $r \longrightarrow \infty$ in the strong sense.

LEMMA 4.2. For any $\eta \in \Lambda^1(\overline{M})$, it holds that

$$d (\omega_r^2 \eta) = \omega_r^2 d \eta + 2\omega_r d\omega_r \Lambda \eta \qquad a. e. on M$$

$$\delta (\omega_r^2 \eta) = \omega_r^2 \delta \eta - * (2\omega_r d\omega_r \Lambda * \eta)$$
 a. e. on M,

where "a. e." means "almost everywhere".

5. By the direct calculation, we have

Proposition 5.1. Let X be a vector field on \overline{M} and ξ the dual 1-form to X. Then it holds that

$$< \square X - (1 - \frac{2}{n+1}) D (\delta \xi), \ \omega_r^2 X >$$

$$+ < L_X g + \frac{2}{n+1} (\delta \xi) \cdot g, \ L_{(\omega_r^2 X)} g + \frac{2}{n+1} (\delta (\omega_r^2 \xi)) \cdot g >$$

$$= -\delta (i (\omega_r^2 X) (L_X g) + \frac{2}{n+1} (\omega_r^2 \delta \xi) \cdot \xi).$$

By Stokes' theorem, we have

(5.1)
$$\int_{B(2r)} d \left(* (\omega_r^2 \eta) \right) = \int_{\partial B(2r)} \omega_r^2 \eta (N) * 1.$$

Since d $(*(\omega_r^2\eta)) = -*\delta(\omega_r^2\eta)$ and $\partial B(2r) = \partial M \cup \{p \in \overline{M} \mid \rho(p) = 2r\}$, (5.1) implies

(5.2)
$$-\int_{\mathbf{R}(2r)} \delta (\omega_r^2 \eta) * 1 = \int_{\mathbf{a}M} \eta (\mathbf{N}) * 1.$$

By Proposition 5.1 and (5.2), we have

Proposition 5.2. Let X be a vector field on \overline{M} and ξ the dual 1-form to X. Then it holds that

$$\ll \square X - (1 - \frac{2}{n+1}) D (\delta \xi), \ \omega_r^2 X \gg_{B(2r)}$$

$$\begin{split} &+ \ll L_{\rm X} {\rm g} + \frac{2}{{\rm n}+1} \left(\delta \boldsymbol{\xi}\right) \cdot {\rm g}, \; L_{(\omega^{\sharp}{\rm X})} {\rm g} + \frac{2}{{\rm n}+1} \left(\delta \left(\omega_{\rm r}^2 \boldsymbol{\xi}\right)\right) \cdot {\rm g} \gg_{\rm B(2r)} \\ &= \int_{\partial {\rm M}} \left(L_{\rm X} {\rm g} + \frac{2}{{\rm n}+1} \left(\delta \boldsymbol{\xi}\right) \cdot {\rm g}\right) \left({\rm X}, \; {\rm N}\right) * 1. \end{split}$$

Thus we have

THEOREM 5.3. Let X be an L^2 -vector field on \overline{M} and ξ the dual 1-form to X. Then X is an L^2 -conformal vector field on \overline{M} if and only if

PROOF. If X satisfies (#), then, by Proposition 5.2, we have

$$\begin{split} 0 = & \ll L_{\mathbf{X}} \mathbf{g} + \frac{2}{\mathsf{n}+1} \left(\delta \boldsymbol{\xi} \right) \cdot \mathbf{g}, \ L_{(\boldsymbol{\omega}_{\mathbf{i}}^{2} \mathbf{X})} \mathbf{g} + \frac{2}{n+1} \left(\delta (\boldsymbol{\omega}_{\mathbf{r}}^{2} \boldsymbol{\xi}) \right) \cdot \mathbf{g} \gg_{\mathsf{B}(2\mathsf{r})} \\ = & ||\boldsymbol{\omega}_{\mathbf{r}} \left(L_{\mathbf{X}} \mathbf{g} + \frac{2}{\mathsf{n}+1} \left(\delta \boldsymbol{\xi} \right) \cdot \mathbf{g} \right)||_{\mathsf{B}(2\mathsf{r})}^{2} + 4 \ll \boldsymbol{\omega}_{\mathbf{r}} (L_{\mathbf{X}} \mathbf{g} + \frac{2}{\mathsf{n}+1} (\delta \boldsymbol{\xi}) \cdot \mathbf{g}), \ d\boldsymbol{\omega}_{\mathbf{r}} \otimes \boldsymbol{\xi} \gg_{\mathsf{B}(2\mathsf{r})}. \end{split}$$

Thus we have, by Lemma 4.1,

$$\begin{split} &||\omega_{r}(L_{x}g + \frac{2}{n+1} (\delta \xi) \cdot g)||_{B(2r)}^{2} \\ &= -4 \ll \omega_{r} (L_{x}g + \frac{2}{n+1} (\delta \xi) \cdot g), d\omega_{r} \otimes \xi \gg_{B(2r)} \\ &\leq \frac{1}{2} ||\omega_{r}(L_{x}g + \frac{2}{n+1} (\delta \xi) \cdot g)||_{B(2r)}^{2} + 8 (n+1) Cr^{-2} ||\xi||_{B(2r)}^{2}. \end{split}$$

Thus we have

$$\frac{1}{2}||\omega_r(L_Xg + \frac{2}{n+1}(\delta\xi)\cdot g)||_{B(2r)}^2 \le 8 (n+1) Cr^{-2}||\xi||_{B(2r)}^2.$$

As $r \longrightarrow \infty$, we have

$$||L_{x}g + \frac{2}{n+1}(\delta \xi) \cdot g||^{2} = 0.$$

Therefore X is an L^2 -conformal vector field on \overline{M} . The converse is trivial.

The following theorem is given as corollary of Theorem 5.3.

THEOREM 5.4: Let X be an L^2 -vector field on \overline{M} and ξ the dual 1-form to X. Then X is an L^2 -Killing vector field on \overline{M} if and only if

$$\Box X = 0$$
 and $\delta \xi = 0$ on \overline{M}
 $(L_x g) (X, N) = 0$ on ∂M

Let τ be the mean curvature of the boundary ∂M defined by

(5.3)
$$\tau = \Sigma_{\alpha} \ h(\widetilde{X}_{\alpha}, \widetilde{X}_{\alpha}),$$

where $\{\tilde{X}_{\alpha}\}$ denotes the orthonormal local frame on ∂M with respect to \tilde{g} .

LEMMA 5.5. Let X be a vector field on \overline{M} and ξ the dual 1-form to X. Then, on ∂M , it holds that

$$(\nabla_{\mathbf{N}}\boldsymbol{\xi})\ (\mathbf{N}) = \widetilde{\boldsymbol{\delta}}\ \widetilde{\boldsymbol{\xi}} + \boldsymbol{\tau}\ (\mathbf{n}\boldsymbol{\xi}) - \boldsymbol{\delta}\ \boldsymbol{\xi}$$

$$(L_{xg}) (X, N) = (\nabla_{N} \xi) (X) + h (\widetilde{X}, \widetilde{X}) + \tau (n\xi)^{2}$$

$$+ 2 \cdot (n\xi) \cdot \widetilde{\delta} \widetilde{\xi} - \widetilde{\delta} ((n\xi) \widetilde{\xi}) - (n\xi) \cdot \delta \xi,$$

where $X = i_* \tilde{X} + (n\xi) \cdot N$ and $\tilde{\xi}$ denotes the dual 1-form to \tilde{X} .

By Theorems 5.3 and 5.4 and Lemma 5.5, we have

COROLLARY 5.6. Let X be an L^2 -vector field on \overline{M} tangential (resp. normal) to the boundary ∂M and ξ the dual 1-form to X. Then X is an L^2 -conformal vector field on \overline{M} if and only if

(resp.
$$\tau \cdot (n\xi)^2 - \frac{n-1}{n+1} (n\xi) \cdot \delta \xi = 0$$
 on ∂M).

COROLLARY 5.7. Let X be an L^2 -vector field on \overline{M} tangential (resp. normal) to the boundary ∂M and ξ the dual 1-form to X. Then X is an L^2 -Killing vector field on \overline{M} if and only if

$$\Box X = 0, \quad \delta \xi = 0 \qquad on \ \overline{M}$$

$$(\nabla_{N} \xi) (X) + h (\widetilde{X}, \ \widetilde{X}) = 0 \qquad on \ \partial M$$

$$(\text{resp.} \quad \tau \cdot (n\xi)^{2} = 0 \qquad on \ \partial M).$$

6. Let X be a conformal vector field on \overline{M} , that is, $L_X g=2\lambda \cdot g$, and let ξ be the dual 1-form to X. We define a 1-form η by

(6.1)
$$\eta = (\nabla_i \xi_i) \xi^j dx^i$$
.

Then we have

LEMMA 6.1. It holds that

$$\begin{split} &-\delta\eta = <\mathscr{R}\ \xi,\ \xi> -2 < \nabla\xi,\ \nabla\xi> + (\mathsf{n}+1)\ < \mathsf{d}\lambda,\ \xi> +2\ (\mathsf{n}+1)\ < \lambda,\ \lambda> \\ &-\delta\xi = (\mathsf{n}+1)\ \lambda \\ &<\mathsf{N},\ \eta> = <\widetilde{\mathsf{d}}\ (\mathsf{n}\xi),\ \mathsf{t}\xi> + <\mathsf{C}\ (\mathsf{t}\xi),\ \mathsf{t}\xi> \\ &* (2\omega_r \mathsf{d}\omega_r\Lambda*\eta) = -2 < \omega_r\ \mathsf{d}\omega_r \otimes\xi,\ \nabla\xi>, \end{split}$$

where $(\xi)_i = \mathbb{R} \{ \xi_i \text{ and } (\nabla \xi)_{ij} = \nabla_i \xi_i \}$

Proposition 6.2. Let X be a conformal vector field on \overline{M} and ξ the dual 1-form to X. Then it holds that

$$=\int_{\partial M} \langle \widetilde{\mathbf{d}} (\mathbf{n}\boldsymbol{\xi}), \, \mathbf{t}\boldsymbol{\xi} \rangle + \langle \mathbf{C} (\mathbf{t}\boldsymbol{\xi}), \, \mathbf{t}\boldsymbol{\xi} \rangle * 1.$$

PROOF. For a 1-form $\eta = (\nabla_i \xi_i) \xi^i dx^i$ on \overline{M} , we have

(6.2)
$$d (*(\omega_r^2 \eta)) = - * \delta (\omega_r^2 \eta)$$
$$= * (\omega_r^2 (-\delta \eta) + * (2\omega_r d\omega_r \Lambda * \eta)).$$

By Stokes' theorem, we have

(6.3)
$$\int_{B(2r)} d(*(\omega_r^2 \eta)) = \int_{\partial B(2r)} \langle N, \omega_r^2 \eta \rangle * 1.$$

By Lemma 6.1, (6.2) and (6.3), we have

$$(6.4) \qquad \ll \omega_{r} \mathscr{R} \; \xi, \; \omega_{r} \xi \gg_{B(2r)} - 2 \ll \omega_{r} \nabla \xi, \; \omega_{r} \nabla \xi \gg_{B(2r)}$$

$$+ (n+1) \ll \omega_{r} d\lambda, \; \omega_{r} \xi \gg_{B(2r)} + 2(n+1) \ll \omega_{r} \lambda, \; \omega_{r} \lambda \gg_{B(2r)}$$

$$-2 \ll d\omega_{r} \otimes \xi, \; \omega_{r} \nabla \xi \gg_{B(2r)}$$

$$= \int_{\partial B(2r)} \omega_{r}^{2} \; \{ < \widetilde{d} \; (n\xi), \; t\xi > + < C \; (t\xi), \; t\xi > \} \; * 1.$$

Since $\partial B(2r) = \partial M \cup \{p \in \overline{M} \mid \rho(p) = 2r\}$, $\omega_r = 1$ on ∂M and $\omega_r = 0$ on $\{p \in \overline{M} \mid \rho(p) = 2r\}$, the right hand side of (6.4) is equal to $\int_{\partial M} \langle \widetilde{d}(n\xi), t\xi \rangle + \langle C(t\xi), t\xi \rangle * 1$.

LEMMA 6.3. It holds that

$$\ll \omega_r d\lambda$$
, $\omega_r \xi \gg_{B(2r)} = -(n+1) \ll \omega_r \lambda$, $\omega_r \lambda \gg_{B(2r)} - \ll \omega_r \lambda$, $*(2 d\omega_r \Lambda * \xi) \gg_{B(2r)}$.

Then Proposition 6.2 and Lemma 6.3 imply

$$\begin{split} & \ll \omega_r \mathscr{R} \ \xi, \ \omega_r \xi \gg_{B(2r)} \\ & = 2||\omega_r \bigtriangledown \xi||^2_{B(2r)} + (n+1) \ (n-1)||\omega_r \lambda||^2_{B(2r)} + (n+1) \ll \omega_r \lambda, \ * (2 \ d\omega_r \Lambda * \xi) \gg_{B(2r)} \\ & + 2 \ll d\omega_r \bigotimes \xi, \ \omega_r \bigtriangledown \xi \gg_{B(2r)} + \int_{\partial M} <\widetilde{d} \ (n\xi), \ t\xi > + < C \ (t\xi), \ t\xi > * 1 \end{split}$$

By the Schwarz inequality and Lemma 4.1, we have

$$2 \mid \ll \omega_{r}\lambda, * (d\omega_{r}\Lambda * \xi) \gg_{B(2r)} \mid$$

$$\leq 2||\omega_{r}\lambda||_{B(2r)}||d\omega_{r}\Lambda * \xi||_{B(2r)}$$

$$\leq 2||\omega_{r}\lambda||_{B(2r)}^{2} + (n+1)C \cdot 2^{-1}r^{-2}||\xi||_{B(2r)}^{2}$$

and

$$2 \mid \ll d\omega_r \otimes \xi, \ \omega_r \nabla \xi \gg_{B(2r)} \mid$$

$$\leq \mid \mid \omega_r \nabla \xi \mid \mid_{B(2r)}^2 + (n+1) \ Cr^{-2} \mid \mid \xi \mid \mid_{B(2r)}^2.$$

Thus we have

 $\ll \omega_r \mathcal{R} \xi, \omega_r \xi \gg_{B(2r)}$

$$\geq 2||\omega_{r}\nabla\xi||_{\mathsf{B}(2r)}^{2} + (n+1)(n-1)||\omega_{r}\lambda||_{\mathsf{B}(2r)}^{2}$$

$$-2(n+1)||\omega_{r}\lambda||_{\mathsf{B}(2r)}^{2} - (n+1)^{2}C \cdot 2^{-1}r^{-2}||\xi||_{\mathsf{B}(2r)}^{2}$$

$$-||\omega_{r}\nabla\xi||_{\mathsf{B}(2r)}^{2} - (n+1)Cr^{-2}||\xi||_{\mathsf{B}(2r)}^{2}$$

$$+ \int_{\partial M} <\widetilde{d}(n\xi), \ t\xi > + < C(t\xi), \ t\xi > *1$$

$$= ||\omega_{r}\nabla\xi||_{\mathsf{B}(2r)}^{2} + (n+1)(n-3)||\omega_{r}\lambda||_{\mathsf{B}(2r)}^{2}$$

$$+ \int_{\partial M} <\widetilde{d}(n\xi), \ t\xi > + < C(t\xi), \ t\xi > *1$$

$$- (n+1)(n+3)C \cdot 2^{-1}r^{-2}||\xi||_{\mathsf{B}(2r)}^{2} .$$

Proposition 6.4. Let X be an L^2 -conformal vector field on \overline{M} and ξ the dual 1-form to X. If dim $\overline{M}=n+1 \geq 4$ and $\lim_{n \to \infty} \sup \ll \omega_r \mathscr{R} \xi$, $\omega_r \xi \gg_{B(2r)} < \infty$, then

$$\underset{r\to\infty}{\lim\sup}\ll\omega_r\boldsymbol{\mathscr{R}}\ \xi,\ \omega_r\xi\gg_{B(2r)}$$

$$\geq ||\nabla \xi||^2 + (n+1) (n-3)||\lambda||^2 + \int_{\partial M} <\widetilde{d} (n\xi), \ t\xi > + < C (t\xi), \ t\xi > * 1.$$

COROLLARY 6.5 ([5]). Let X be an L²-Killing vector field on \overline{M} and ξ the dual 1-form to X. If $\limsup \ll \omega_r \mathscr{R} \xi$, $\omega_r \xi \gg_{B(2r)} < \infty$, then

 $\limsup_{r\to\infty}\ll\omega_r\,\mathscr{R}\,\,\xi,\,\,\omega_r\xi\!\gg_{B(2r)}$

$$\geq \mid\mid \nabla \xi \mid\mid^2 + \int_{\partial M} <\widetilde{\mathbf{d}} \ (\mathbf{n}\xi), \ \mathbf{t}\xi > + < C \ (\mathbf{t}\xi), \ \mathbf{t}\xi > * \ 1.$$

If the second fundamental form of ∂M with respect to N is non-negative, then we have

$$\int_{\partial M} \langle C(t\xi), t\xi \rangle * 1 \ge 0.$$

Thus, by Proposition 6.4 and Corollary 6.5, we have

Theorem 6.6. (i) Suppose that $\limsup \ll \omega_r \mathcal{R} \ \xi, \ \omega_r \xi \gg_{B(2r)} \leq 0$ for any $\xi \in L^{2,1}(\overline{M}) \cap \Lambda^1(\overline{M})$, the second fundamental form on ∂M with respect to the unit outer normal vector field is non-negative, and $\dim \overline{M} = n+1 \geq 4$. Then every L^2 -conformal vector field on \overline{M} tangential to ∂M is parallel. (ii) Suppose that $\limsup \ll \omega_r \mathcal{R} \ \xi, \ \omega_r \xi \gg_{B(2r)} \leq 0$ for any $\xi \in L^{2,1}(\overline{M}) \cap \Lambda^1(\overline{M})$ and $\dim \overline{M} = n+1 \geq 4$. Then every L^2 -conformal vector field on \overline{M} normal to ∂M is parallel.

Theorem 6.7 ([5]). (i) Suppose that $\limsup \ll \omega_r \mathcal{R} \xi$, $\omega_r \xi \gg_{B(2r)} \leq 0$ for any $\xi \in L^{2,1}(\overline{M}) \cap \Lambda^1(\overline{M})$ and the second fundamental form of ∂M with respect to the unit outer normal vector field is non-negative. Then every L^2 -Killing vector field on \overline{M} tangential to ∂M is parallel. (ii) Suppose that $\limsup \ll \omega_r \mathcal{R} \xi$, $\omega_r \xi \gg_{B(2r)} \leq 0$ for any $\xi \in L^{2,1}(\overline{M}) \cap \Lambda^1(\overline{M})$. Then every L^2 -Killing vector field on \overline{M} normal to ∂M is parallel.

Theorem 6.8. (i) Suppose that \bar{M} is of negative Ricci curvature, $\dim \bar{M} = n+1 \ge 4$, and the second fundamental form of ∂M with respect to the unit outer normal vector field is non-negative. Then there are no non-zero L^2 -conformal vector fields on \bar{M} tangential to ∂M . (ii) Suppose that \bar{M} is of negative Ricci curvature and $\dim \bar{M} = n+1 \ge 4$. Then there are no non-zero L^2 -conformal vector fields on \bar{M} normal to ∂M .

Theorem 6.9 ([5]). (i) Suppose that \overline{M} is of negative Ricci curvature and the second fundamental form of ∂M with respect to the unit outer normal vector field is non-negative. Then there are no non-zero L²-Killing vector fields on \overline{M} tangential to ∂M . (ii) Suppose that \overline{M} is of negative Ricci curvature. Then there are no non-zero L²-Killing vector fields on \overline{M} normal to ∂M .

Example 6.10. We set $r=(x^2+y^2+z^2)^{1/2}$ for any point $(x, y, z) \in \mathbb{R}^3$ and

 $x=r \cos \theta_1$ $y=r \sin \theta_1 \cos \theta_2$ $z=r \sin \theta_1 \sin \theta_2$

that is, (θ_1, θ_2, r) is the spherical coordinates in R³. For two positive constant numbers a_1 and a_2 ($a_1 < a_2$), we consider a metric ds² on R³ such that

$$\begin{split} ds^2 &= r^2 \ ((d \, \theta_1)^2 + \sin^2 \theta_1 \ (d \, \theta_2)^2) + (dr)^2 & r \leq a_1 \\ \\ ds^2 &= r^{-2/3} ((d \, \theta_1)^2 + \sin^2 \theta_1 \ (d \, \theta_2)^2) + (dr)^2 & r \geq (a_1 + a_2)/2. \end{split}$$

Then $(\mathcal{M}, ds^2) = (R^3, ds^2)$ is a complete, non-compact, connected and orientable Riemannian manifold. We set $\overline{M} = \{(\theta_1, \theta_2, r) \in \mathcal{M} \mid r \geq a_2\}$, then \overline{M} is a non-compact, connected and orientable Riemannian manifold with a compact and connected boundary $\partial M = \{(\theta_1, \theta_2, r)\}$ $\in \mathcal{M} \mid r=a_2\}$. Then $X=r^{-1/3} \partial/\partial r$ is an L^2 -conformal vector field on \overline{M} normal to ∂M .

LEMMA 6.11. Let W be a Riemannian manifold with a Riemmannian metric gw and X a Killing vector field on W with respect to the metric gw. If f be a positive function on W such that $X(f) \neq 0$ on W, then X is a conformal vector field on W with respect to the metric f·gw.

In Lemma 6.11, if gw is a complete metric on W and f is a bounded function on W, then $f \cdot g_W$ is a complete metric on W ([2]). Thus L²-conformal vector fields on \overline{M} tangential to ∂M are given by examples in [5].

REMARK 6.12. If, in Theorems 6.8 and 6.9, we take that M is of non-positive Ricci curvature and of infinite volume, then we also have the same conclusion.

REFERENCES

- [1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 313-362.
- [2] K. Nomizu and H. Ozeki, The existence of complete Riemannian metrics, Proc. Amer. Math. Soc. 12 (1961), 889-891.
- [3] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, INC, New York, 1970.
- [4] S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc. 84 (1982), 115-120.
- [5] S. Yorozu, Killing vector fields on non-compact Riemannian manifolds with boundary, Kodai Math. J. 5 (1982), 426-433.

Toshihiko Aoki

Department of Liberal Arts

Kanazawa Institute of Technology

Nonoichi-machi, 921 Japan

Jin Suk Pak

Department of Mathematics

Teachers College

Kyungpook National University

Taegu, 635 Korea

Shinsuke Yorozu

Department of Mathematics

College of Liberal Arts

Kanazawa University

Kanazawa, 920 Japan