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§1. Introduction

In our previous papers[3],[4], we studied certain convergence conditions for stochastic
processes associated with time-homogeneous Lévy generating operators. In this note, we
consider such a condition in time-inhomogeneous cases ; besides, we make a detailed
explanation and a slight improvement to the results in [3], [4].

By a d-dimensional Lévy generating operator, say shortly Lévy operator, we mean the
following type integro-differential operator :

Lf(s, x)=L(s)f(s, %)

d d
=_1T S a*(s, 2)0;kf (s, x)+ = bi(s, )01 (s, x)
k=1

I j=1
d
+ el 249~ (s, D57 S af(s, 2) 33)uls, x: dy)
J=

(s=20, x&R9), where 3;=93/ax;, a=(a’*(s, x)) is a nonnegative definite symmetric d X d-
matrix, b=(b%(s, x)) is a d-vector, and v=wv(s, x ; dy) is a ¢-finite measure on R*\ {0} for
each s=0 and x&R* such that

Srey [912Q+191D) vs, x; dy)<oo  (s20, xER9).

The data a, b, and v of the operator L are called the diffusion matrix, the drift vector, and
-the Lévy measure of L, respectively. Then L is said to be the Lévy operator made of data
[a, b, v]. In particular, the Lévy operator made of constant data defines the infinitesimal
generator of a d-dimensional Lévy process. v

The convergence conditions are described in terms of the data of Lévy operators, and
they ensure the weak convergence of corresponding processes under a certain uniqueness
condition on the limit operator. We will treat the weak convergence of stochastic

processes associated with Lévy operators in the scheme of the martingale ‘formulation
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introduced by Stroock and Varadhan (i.e. the martingale problem).

Such convergence conditions for Lévy operators were first studied by Skorokhod (7],
and recently by Jacod-Shiryaev [2], Chap. IX, §4a and by the authors. Their conditions
somewhat differ from each other. Our condition is given in the form of a natural exten-
sion of the convergence condition for infinitely divisible distributions. Those convergence
conditions are expected to have several applications. For example, in [5], we used it to
show the uniqueness of solutions to the martingale problem for certain Lévy operators.
There, we have to show the convergence of the semigroups associated with approximate
Lévy operators of the original one. This is done by combining an analytical method with
a convergence property of stochastic processes associated with the approximate operators.

§2. Notations and preliminaries

First we introduce some notations. For the d-dimensional Euclidean space R*¢, we set
Q=1[0, o)X R® and further, for T, R>0, Qr,z=[0, T]x{|x| <R}, where {|x| =R}=
{x€R?: |x|<R}. Then we denote the supremum norms of functions defined on R4 and
Qr.z byll-|| and [|-]| ;& respectiveiy. When G is any subspace of a Euclidean space, we
denote by C,(G) the space of bounded continuous functions on G. For n=1, 2, oo,
C2(R9) stands for the subspace of C,(R?) consisting of those functions which have bounded
continuous derivatives up to order # ; CHR?) stands for the subspace of C3(R?) consisting
of those functions whose derivatives up to order # vanish at infinity ; CH(R*9) stands for the
subspace of C#R? consisting of those functions which have compact support. Cy(Q)
denotes the subspace of C,(Q) consisting of those functions which have bounded continuous
time derivatives of the first order and bounded continuous spatial derivatives up to order
2.

Next, following Stroock [8], we state the martingale problem for Lévy operators.
" Let Q be the Skorokhod space (with the Skorokhod topology) of R¢-valued cadlag func-
tions on [0, ). Given w<Q, we denote by x(# ) the position of @ at time £. Let .#%
and .# ¢ be the o-algebras of subsets of Q generated by {x(u):s<u=<t} and {x(u):s<u} ,
respectively. A probability measure P on (Q, # °) is called a solution to the martingale
problem for a Lévy operator L starting at (s, x)€@, if P[x(u)=x 0<u<s]=1 and for
every fE€CH(Q)

MAD=S(t, x(8)—F (s, 2(s)— [4{@/Ou~+L(w)} f (u, x(u))du

is a P-martingale with respect to the filtration {.# §}. It is known that a probability
measure P-is a solution of the martingale problem for L if and only if Mk¢) is a P-
martingale with respect to the filtration {# 5} for every fEC2(R? (see [8], Theorem (1.
1)). For f&C3(RY, M{¢?) is given in the form:






A Convergence Condition for Stochastic Processes
Associated with Lévy Generating Operators 3

MA)=f (x()—f (x(s)— LAt),
where
LA = [iL(w)f (e(u))de.
We denote by <M,> the predictable quadratic variation process for the martingale M}.
- For the Lévy measure v of L, we set

2
V(s x; dy)=ﬁ_ﬂ|y|—z v(s, x; dy)

and v (s, x; {0})=0. Then ¥ can be regarded as a function from Q to Cy(R’, the dual
space (with the weak*-topology) of the Banach space C,(R?) (with the norn|| - ||). Hence we
define continuity and boundedness of ¥ by the corresponding properties of the function :
(s, )EQ—>V (s, x; -)€Cy(RY. For example, the continuity of ¥ means that [r W7V,

% ; dy) is continuous for every f €Cy(RY). '
In the following, for simplicity, we assume that the starting time s is equal to 0.

ProposiTioN 2.1.(cf. [3], Prop. 2.1) Assume that a, b, and v of L are bounded. Then,

Jor any solution. P to the martingale problem for L, we have
(i) for each fC%(RY)

Mp(8)=Lp(t)—2[tf (u)dLAw) (P-a.s.),

(i) Ple(®)#x(t=)]=0 for each ¢20.

Proor. (i) By the definition of MA¢#) and M (1),

{MAD)} = Ly(8)— { LAY — 2 (x(0)) LAL) —2MUt) LAL)+ M (1) — 2 (x(0)) MAD).
~ From [1], p. 343, Theorem 18, it follows that

MAY) LAY = [§ MAw)dALAu)+ [ LAu—)dMAw),
where [, 3Lf(u—)dM,(u) = [{LAu)dMAu) is a stochastic integral with respect to the martin-
gale MAt). Using the above equality and the equality 2§ LAu)dLAu)={LA%))? we have
{MA)Y = Lys(8) =25 f (e(u))ALAu)+ M pi(£)—2f (x(O) MA)— 2 [ L Aw)dM ().

This implies the conclusion, because La()—2f3f (x(u))dLAw) is a continuous process with
paths of finite variation and M x(¢)—2f(x(0) MA)—2[  LAu)dMAx) is a P-martingale.
(ii) Since ET{MA)—MA)1=E[M>(D—<Mp(s)] (t> s), PLMAD%MAt—)]=0.
Hence, using the fact that C3(R?) separates points of R¢, we have the conclusion.

RemARk. By Proposition 2.1 (ii), we see that if P,— P weakly as #n—o and P is a
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solution to the martingale problem for L, then any finite dimensional distribution of P,
converges to that of P. -

§3. The convergence condition

In this section, L and L, (=1, 2, ---) denote the Lévy operators made of data [a, ,
v] and [an, bn, va] (=1, 2, ---), respectively. Denote by e=o(s, x ; §) the symbol of L (as
a pseudo-differential operétor) :

o(s, x;8)=e " *°L(s)e*’

14 d
=—7 S a¥*(s, x)ajak"‘ig bi(s, x)6;

k=1 j=1

8- i6- .
+freo (72— 1= vls, %5d9),

where i=v —1 , 8=(6,, 6,,-, 8,), and the symbol - means the inner product in R% For
each (s, x)€R?, o(s, x ; 6) defines the logarithmic characteristic function of the infinitely
divisible distribution having a(s, x), b(s, x), and v(s, x ; dy) as its diffusion matrix, drift
vector, and Lévy measure, respectively. Therefore the data of L are uniquely determined.
Furthermore, if L.f(s, x) —Lf (s, x) as n—oo for every (s, x)=Q and f&C3}(R9), then it
holds that for each (s, 2)EQ ‘

(i) lim lim sup {/j,c33va(s, % ; dy)+ai(s, x)}

el0 7n—00

=lim lim inf {/}, e 39svn(s, % ; d)+ai(s, %)}

el0 n—
=ajk(s) x) (j: k=1y 2""1 d);
(ii) limlbil(s: x)_bj(s: x)l =0 (j=1, 2’ R d);

7n—00

(i) lim/[ge gO)unls, x; dy)=[r« gO)v(s, x; dy)

n—o0

for every bounded continuous function g vanishing in some-neighborhood of 0 (cf.

(6D).

Note that (i) and (ii) are equivalent to the following (i) and (iii’), respectively :

(i") lim lim sup|/, e di¥eva(s, % ; dy)+ai(s, x)—a’*(s, x)| =0

ell n—co
(jl k:11 2) M) d);
(iii’) there exists a sequence {&,} such that &, | 0 and, fo_r every g€ Cy(R9),






A Convergence Condition for Stochastic Processes -
Associated with L&vy Generating Operators 5

Wm0 80)vnls, %5 )= ),y 120, 2O)V(s, x5 ),

because the equivalence of (i ) and ( i ") follows from a general property of sequences and
that of (iii) and (iii’) is a known result on the weak convergence (ct.[6]).
Motivated by the above fact, we introduce the following convergence condition :

© @) {[an b, T}z, is uniformly bounded and [g, 5, 7] are bounded.
(2) For every T, R>0,

(i) liflol lim sup||/jy < cddevn(*, * ; dy)+ait—a®*|| 7, g=0
(jx k=1’ 2’ ) d);

(i) Lim|[b3—5||7,2=0 =12, -, d);

n—oco

(iii) there exists a sequence {&,} such that & | 0 and, for every g C,(R9)

B [ fiy e, 20X(e, « 3 )= (-, - 5 ) | 7. =0,

ReMARK. In the above condition, if we replace || - || T, by the supremum norxh over @, .
then the uniform boundedness of {[ @ bn, Vnl}e. follows from the boundedness of [g, 5,
v].

In the case where the data [q, 5, 'fi]‘of L are bounded continuous, Stroock [8] proved

the existence of solutions to the martingale problem for L, and moreover we see that if f
ECH(R) (resp. fEC}(RY), then Lf =C,(RY) (resp. Lf Cy(RY).

THEOREM 3.1. Assume that the data (@n, bn, V2] of L, (n=1, 2, -} ave bounded and

that the data [a, b, V] of L are bounded continuous. Then, under the convergence
condition (C), it holds that, for FECYRY,

L.f(s, x) —>Lf(s, x) as n—oo
locally uniformly and boundedly in (s, x)=Q.

To prove the theorem, we need the following lemma.
LEMMA 3.2. Under the same assumption as in Theorem 3.1, it holds that if & belongs
lo the sequence {e.} in the condition 2 (iii) of (C), then

lim”./iylge f(’ +y){u,,(~, *s dy)—l/('_, * ;dy)}”T,Rzo
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for every fECy(RY).

Proor. Let
0 (ly|=!?
cm(y):{lyl—l (Ig|y|=1+1)
1 (ly|=1+1).

Since f@(y)7 (s, x; dy) is bounded continuous and [ (»)V (s, ¥;dy) |0 as [—oo, using
Dini’s theorem, we see thét

}EII/«;’:@)?(-, . ;dy)”T;R:O-
This fact implies that

}i_{'folollf|34>:l'(", | r;r=0;

hence, by using 2 (iii) of (C), we see that for any » >0 there exists a positive number , such
that

”.[Iy|>kl'('r‘ *s dy)”T;R<77

and

lim sup|| /i, 4 val, s )| 7,2 <27
n—>00

Next we divide the integral into two parts:

Siise FE+)nnls, 25 dy)=vls, x5 )}

=fiyize FE+D{1 =@, 0)}Hvals, x; dy)—v(s, x ; dy)}

+fiize FE+9)0, 0N wals, 25 )= v(s, 2 d)).
The function f(x+y) on {|x|<R}x{e=|y|=<hL+1} can be uniformly approximated by
functions of the form glgj(x)h,-(y), where g;(x) and h;(y) (j=1,2,---,m) are confinuous on
{lxI=R)} and {e<|y I; b+1} , respectively. Therefore

[ fiyime £C+9)Xunls, «5 ) —=v(, + 5} 7.2

=3lgll | fiy0{1- o, OHuales 5 B)—v(-, -3 M7

1 Iylz
J hj ) I
|x|§R,S§|y|g1°+1|{f( +) j2=1g (x)hi(y)} _I__F_l
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X Asup|| T al, +; RY)|| 7.x+ 1| TC, - 5 RY|| 7:)

AN o, 5y | > oD 7,2+ [0, -5 {91 > 0D 7,8)-
Consequently, the above estimates yield the conclusion.

Proor oF TreoREM 3.1. It is enough to show the locally uniform convergence. For
simplicity, we write 9,f(x) and 9;0:f(x) as f,/{(x) and f,;.(x), respectively. Then
(Ln.—L)f (s, x) '

=,}sz’ {isccronvnls, % ; dy)+aik(s, £)—a™(s, H)}f ()
+2 {bils, = b5, D)

2 e [s A= Ot 89)=Fnle)) dO1aumn(s, x5 d9)
+§ ﬁj(fc)fly|< I Vals, % ; dy)

~fiptee UFx+3) —f(x)—TlinTJZﬁj(x)yj}v(s, x; dy)

+[fiy1ze fx+3)—f (x)_T]MTZﬁj(x)yj} {vals, x; dy)—v(s, x; dy)}

=1 +II+I+IV+V +VIL
Then

1 . . ‘
[T ||T;R§§'2k||ﬁy|<;yjykvn(', s dy)tadt—a®|| 1 gl Ll
I

NI 7 =2 67— [ 7, rlI /]l
7
Denote the modulus of continuity of a.function g on {|x|<R} by wr(g;d):

wrl@; )= sup |gx+y)—gx)| (6>0).
|x|=R,|y| <6

Theh
||m||T;R§2k wrp(fin; e) sup|| Vale, + s RY|| 1.5
pa n

Moreover
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NIVl 7 r=eZ|f 5]l supl| Tul-, « s R 7
j ”n

HVIires {%llﬁjkll+2llﬁj||} (5 {yl<edllr;
P J

Finally we get
B ||VI“T,R§ “/|y|ge f(‘+y){1’n(': ¢ ;dy)_v(', * ;dy)}”T;R

FNA Wiize {vales =5 =vC 5|7 .e
Yi . .
+§||f;.7” ”flylgeﬂmz_ {Vn(°a * dy)—l’(‘, * dy)}”T,R
Hence, for ¢ belonging to the sequence {&.} of 2 (iii) in (C), using Lemma 3.2, we have

lim || V1| 7, =0.

n—>00

Therefore, using the above estimates and the convergence condition (C), we have the
conclusion.

THEOREM 3.3. Assume that the data [@n, by, V] of L, (n=1, 2, ---) are bounded and

that the data [a, b, v] of L are bounded continuous. For n=1,2, -, let P, be a solution
to the martingale problem for L, starting at (s, x(s)) such that '

lim sup P,[|x(s)| > 1] =0.
l»c0 n
If .
L.f(u, x) —> Lf(u, x) as n—oo

locally uniformly and boundedly in (u, x) €Q for every f€C2(R9Y), thqn {Pr}3, is tight
and any limit point P, of {P,}5, is a solution to the martingale problem for L.

The theorem is proved in exactly the same way as in Appendix II (1°) (ii) of [5];
hence the proof is omitted. ‘

Suppose that the uniqueness to the martingale problem holds for L, (n=1, 2, ---) and
L, respectively. Then denote by P{} and Fs,. the solutions to the martingale problems for
L, and L starting at (s, x)= @, respectively. Let { T} and { T} be the time-inhomogeneous
semigroups on Cy(R) associated with L, and L, respectively, that is,

T (x)= B [F (x(0)],

Tof ()=E™*[f(x(1)],
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where f€C,(R?), 0=s=<¢, and x&R? Then, noting Remark to Proposition 2.1, we have

CoRrOLLARY 3.4. Under the uniqueness assumption to the martingale problems for L, and

L and under the assumption of Theorem 3.3, it holds that

m TQf (x)= Toof (x)

—>00

Jor 0s<t fEC,(RY), and x=R“.

(1]

(2]

(3]

(4]

(5]

(6]
(7

(8]
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