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Tempearture Dispersion Relation for Impedance
Hisanobu ISHIBASHI and Syurei IwA0

Abstract

An impedance for the substance is considered to be a function of both temperature and
frequency of the applied alternating current. We have specifically investigated the temperature
dependence of reactance at the fixed frequency from the available data.

1. Introduction

The dispersion relation for the impedance with respect to the frequency at a fixed
temperature is a famous example on the subject.” We shall first present it as a warming
-up and discuss the once-subtracted dispersion relation. Unfortunately we do not have the
experimental data on this case, so we will point out only the specific properties involved
in the subtraction technique. »

From the summary of the experinental data® on the resistance one finds that it is a
function of temperature. Thus it is suitable to consider that the impedance is a simultane-
ous function of both temperature and frequency. Instead of conmsidering the double
dispersion relation for these two parameters we shall investigate the temperature depen-
dence of dispersion relation at the fixed frequency. There is no suggestion on the symme-
try properties of resistance and reactance under the temperature reversal, so we shall
consider all the possibilities.

Section 2 is devoted to the fixed T dispersion relation, so one can skip this section if
he is familiar with the subject. In Section 3, the dispersion relation for T at the fixed
frequency is discussed. Its numerical study is presented in Section 4. The last section
summarizes our result.

2. Frequency Dispersion Relation

This is a well known dispersion theory on impedance with respect to the frequency. It
seems, however, natural to explain shortly an essential aspect of the theory in order to
develop that for the temperature. '
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Let us extend our concept of impedance to that which is a complex function of the
complex variable of the angular frequency w. However, the observed impedance is a
function of the real value w,, which then appears on the real axis on the contour of upper
complex plane for the Cauchy integral represenfation of the assumed analytic function
Z(w). In this case one has to take the principal value of the integral, viz.,

_ 1 Z(w)
Z(wn) = —= P§ 2220 do, (1
where one decomposes Z(w) into
Z(@) = Rlw) + i X(w). (2)

Here R and X are the resistance and reactance, respectively. Since
PIr—2t G =, 3)
@ — @y .

one can subtract the corresponding null contributions from the real and the imaginary parts
of Eq. (1) and find

Ra) = 47, Zel=X@) 4 @
and
X(wn) = —f7, ROIRlen) 4, (%)

In writing out Egs. (4) and (5), we assumed Eq. (3) together with the null contribution of
the integrand fr(_)m the upper large semicircle of the contour. This point will be recovered
further by taking into account the so-called subtracted dispersion relation‘(see, later
discussion). In addition to this their representations, however, contain the contribution
from an unobservable negative frequency effect. This uncomfortable situation can be
remedied if we take into account the symmetry properties of the resistance and the
reactance under the frequency reversal. As is known from an elementary text book it is
natural to assume

R(—w) = R(w) (6)
and
X(~w) = —X(w). o (7)

Substituting these relations into Egs. (4) and (5) under an elementary rule known in the real
integral, one finds immediately as

xJ0 @2 — wy?

and
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X(an) = =22 Rl@)-Rlw) 4, | ()

@ — @p?
One sees from these expressions that the convergence property of the integral at infinite
" frequency is better in the latter than the former, if X (w) and R(w) take the similar
behavior at @ =00, ,
Let us turn our attention to a once subtracted dispersion relation which is obtained
from Eq. (8) or (9) by changing the argument from w, to another one, say, w, and taking the
difference of two relations. By an algebraic calculation one finds

R(@)=Rlw) = L[

(@~ ) wX (@)= @* (@1 X (1) — @0 X (@0)) + @@ (w0 X (@) — @, X (a))

(@%—a®) (@*— o ?)

dw (10)

and

X (@)= X (@) = _%/om ( (M—C_oo)w"’R(w)*wz(wa(wl)—woR(a)o))'i-wocol(wx—coo)R(co)

(@®— @) (@*— @ ®) '

+ @y (@ R(w,) — @, R(wxy))

) dow. )

Here R(wp) and X () are so-called subtraction constants which are assumed to be known
if we wish to estimate R(w,) and X(w) from the measured quantities appearing in each
expression. Comparing Egs. (8) and (10) one sees that the convergence property of the
integrand at infinite frequency becomes better in the latter, while it is not improved in case
of reactance as seen by the comparison of Eqgs. (9) and (1. One may proceed to work out
a relation with further subtraction if necessary.

3. Temperature Dispersion Relation

As we discussed the impedance is considered to be a function of the frequency and the
terperature, Z(w, T'), where T is the absolute terperature. If we consider the fixed
frequency dispersion relation the derivation of the terperature dispersion relation proceeds

completely parallel to the one discussed in the previous section, viz., one finds

1) = 5 P§ AL ar. 02

Here one should take again the principal value of the Cauchy integral on the upper half
plane of the complex T plane, owing to the reality of 7, on the contour assumed.

In order to perform our program we have to assume the symmetry properties of the
resistance as well as the reactance under the temperature reversal operation. We do not
know apriori which symmetry we have to choose unless the time and temperature corre-
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spondence holds in our example, so we shall consider the following four possibilities.

(i) R(=T)=R(T), X(-T) = -X(T),
(i) R(=T)=R(T), X(-T) = X(T),
(iii) R(—=T)= —R(T), X(—T) = X(T)
and

(iv) R(—T)= —R(T), X(~T) = =X(T).

16)-

Here the dispersion relations for the first case are written down immediately by replacing

simply @ by T in Egs. (8) and (9). For the sake of completeness we shall spell out all of

them explicitly.

They are summarized as follows.

Case (i)

rmy - Ly TEQZGEDD o

x(m) = -2y ROEQ. o,
Case (ii) :

ety - 2B SPAD o

xem) = -2l ROEE oy,
Case (iii)

R(T;) = the same as Eq. (18a),

x(1y) = ~Lf IRI)- LR 7.
Case (iv)

R(Ty) = the same as Eq. (17a),
X(T;) = the same as Eq. (19b).

4. Temperature dependence of Reactance

(17a)

(17b)

(18a)

(18b)

(19a)

(19b)

(20a)
(20b)

“The terperature dependence of resistance for 53 metals is listed in the available table?

for us at this moment. However, they are measured only at 6 temperature points in the

range T =78 to 1473°K(otherwise specified explicitly), they are not enough to test the -

theoretical expressions obtained in the previous section. One should be satisfied by
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getting a’ qualitative feature found by our fit and by finding how to apply theory to the
experimental study. There are two possibilities for the reactance Egs. (17b) and (19b).
In order to apply them one has to replace the integral by a sum. In practice we shall
replace the lower and upper limit of the integral by the observed minimum and maximum
of the data. If we make these approximations we find the modified expressions for
reactance as

x1) = —2h 3 RLJ=RL) (7, 7, )
and
x(7) = —2 3 LRIIZLRI) (1, o

for Eqs. (17b) and (19b), respectively. We shall compare these expressions numerically
at 6 terperature points. In order to perform our program a literal use of Egs. (21) and (22)
by computer study leads a trouble, because the computer does not care the cancellation of
null in the numerator and the denominator in the sum. What T; and T, should we choose
when we want to estimate X’(Tp.,) and X(Tiay), respectively? How about X’(T) at an
intermediate 7;?. Some of these questions may be avoided if we have enough data points.

In order to avoid first questions we added fictitious data with negligif)le contributions
just below and just above Ty and Thax, respectively.  We shall be satisfied by the straight
line approximation as an interpolating value in our crude estimate, so only five terperature
intervals appear in the sum. If we shift 7, by a small amount, say, 0.1°K at the interest
of study for X’(Ty), the secbnd trouble can also be avoided by the same account, in a good
approximation, for the present purpose.

In this study we have chosen three metals Al, Cu and Li as our examples. The
experimental data for them are tabulated in Table 1.

Table 1. Temperature dependence of resistance for Al, Cu and Li.

RX10% (Q)
T(K) 78 273 373 573 973 1473
Al 0.21 2.50 3.55 5.9 24.7 32.1
Cu 0.2 1.55 2.23 3.6 6.7 21.3(1356)
Li 1.04 8.55 12.4 30 40.5 53

As seen from the table the resistance increases monotonically.
The same tendency applies to all other metals except for Zr.
Our estimated results are tabulated in Table 2.
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Table 2. Estimated reactance X’(T;)X 10° (Q)

T 78 273 373 573 973 1473
Al(21) —1.41 —4.84 ~5.84 —8.20 ~15.5 -14.8
(22) -12.8 . -14.0 —14.2 -15.3 —21.0 -19.1
(1356)

Cu(21) —.591 -1.99 -2.15 —2.27 -3.13 -14.3
(22) —4.62 —5.07 —4.92 —4.58 —4.87 -15.7
Li(21) —4.23 —14.9 —18.3 —19.4 —-15.9 —19.6
(22) —34.1 —38.0 —39.2 —3.69 —29.1 —29.9

In the first column of the table the applied formula’s number is indicated in addition to the -
specification of metal. In general Eq. (22) gives the bigger value of X’(7;) than that for
Eq. (21). Our estimate is very approximate in nature, however, a more detailed study
from the refined data may possibly discriminate which symmetry from (i) — (iv) should
be preferred by nature.

5. Summary and Conclusion

We have developed the temperature dispersion relation for the impedance of metals in
analogous manner to the known frequency one. A crude numerical estimate of the
reactances of the three metals in given from the measured resistances at limited number
of temperatures for them. A general tendency obtained from our study indicates a
possibility to find out which symmetry from four possibilities suggested under the tempera-
ture reversal should be realized in nature.

We hope that this little work will induce the interest of the reader and put forward it
to complete check of the symmetry problem under discussion. ‘
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