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RIEMANNIAN FOLIATION
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1. Introduction
Let (M, g) be a (p+ g)-dimensional riemannian manifold and H a compact subgroup
of the Lie group of all isometries of M. We suppose that all orbits of H have the same
dimension p (codimension g). Then H defienes a riemannian foliation & of codimension
g. The leaf space M /&= N is a riemannian Satake manifold. Let [J be the Laplace
-Beltrami operator on M and A(O) its radial part in the sense of S. Helgason ( [H] ). We
shall prove.

Theorem. Let (] be the Laplace-Beltrami operator on M and Ay the Ldplace—Beltmmi
operator on N associated with the rviemannian metric defined by transversal component of
the metric on M. If the mean curvature vector field H of & is an infinitesimal automor-
phism, then the radial part A(LJ—H) is given by

AO—H)=06"12Ay - 12— 0712AN(8"2),
where & is the Sfunction givem by (3.5).

H. Kitahara and S. Yorozu ( [KY] ) proved the similar theorem by means of the
second connection defined by I. Vaisman ( [V] ). Moreover, in this paper we shall study
some formulae of Laplace-Beltrami operators, which-give relations between Ph. Tonduer’
s formulae ([T]) and I. Vaisman-H. Kitahara’s ones ([V]), [K]).

Finally, we shall give a simple proof about eigenvalues of Y. Muto ([M]).

2. The basic Laplacian on Qg*

Let (M, &, g) be a (p+ ¢q)—dimensional manifold with a riemannian foliation & of
codimension g=n—p. The foliation & defines the intégrable subbundle L of TM. The
normal bundle Q of fiber-dimension g is the quotient bundle @ : =TM L. Equivalently,
@ Appears in the exact sequence of vector bundles;

21  0-L->THZQ-0,
By means of the riefnannian metric g, TM splits orthogona]ly as

TM=L®L* ,
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with ¢:Q=L* splitting (2.1). The metric g on TM is a direct sum,;
g=g.Pgr* ,

With gg=0*g,* , the splitting map ¢ : (Q, go)—> (L, gr*)is isometric. Let(U, (x, x%)) be
a distinguished coordinate chart, i. e., x*=constants defines & locally. Hereafter we use
indices as the following ranges; 1 = 4,7, &, - S p;1=<a,8, v, = q. Let (X, X,) be
the basic adapted framing to & and (w°, §°) its dual framing. Recall that X; is tangent to
the leaves of & and g(X;, X,)=0. Weset g;;:=g(X;, X;) and g5 =g(X,, X5). Then the
metric g is locally written as

g | u=3.8,x, 1)@ Q@i +2 58 ,4(x7)0°R6”.

Let Qj be the space of t-forms on M. @ € Q% is a (s, »)-from if @ is written as
locally :
o | U=#2¢i‘...i,,,...m(x", 1)@ A Aw "AGUA A G,
Then we have the decomposition of forms;
QY =S om0, |
where Qjf is the space of (s, »)-forms on M. Let z,,: Q4—Q3 be a projection operator for
each s and ». The above decomposition induces the decomposition of the exterior
differential operator d and its formal adjoint ¢;
(2.2) d=d'+d’+d" and 6=0¢"+6"+06".
Note that d”: Qjf—Qj/*' and 6”:=* % 4" * is the Hodge star operator with respect to
& An operator [I:= éd+d¢ acting on Qj is the Laplace-Beltrami operator. Moreover
we can define two operators [1' := ¢"d’+d’¢’ and 0" := ¢”d”+d”¢". A form w € Q)
is a basic form on M if d’w=0, equivalently, i(X)w =0 and Lyw =0 for all vector fields
X tangent to the leaves, where i( ) and L, , are the interior product and the Lie derivative
respectively.

Let Qp* be the space of the basic forms on M. Let a form v € Q} be the transversal
(closed) volume form associated to the transversal holonomy invariant riemannian metric
dsh =3 2.50°®6°. Then the characteristic form xg of & is the p-form defined by g 4
:= *vp. Thus the riemannian volume form yx is given by v A x5 . Then we hayé the
Rummler’s Formula ; '

(2.3) dxstx s xg=d" xs,
where x is the dual form of the mean curvature vector field H of &. Suppose that x&
Q}. Then we have dx=0.

Let* : Q3—Q%" be the star operator associated to dsh. Then we have

@4  Fa=(=)P""%(ahys), @ € O}
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(2.5) *a = ’Eang, a € Q.
We set dg :=d | Q= d’. For a € Q5,
a=(— 1D+l % g7 % o
= (=10 (37 (R @)Ag o)+ (= 1M R (= 1)T Tk aAd  5)
The first term in the RHS=(—1)*r++(—1)P-V% d” % o
=(—1)9"*V+1 % ¢” ¥ o and the second term in the RHS=(—1y*"*!(—=1)*7% ( * aAd”x 9=
i(H)a.
Then we have, for é € 053, ,
(26) a=(—1)""" kg ka + i(H)a.
Moreover, note that for a € Q%, we have
d'(¥ Ay s=(rand(* 2))rxs € Qb= {0},
d"(} a)rgg=(nond(* a)hxs € Q"
d” (¥ e)bxg=(m1nd(* adage= {0},
and
(= 1)Y= 1) "% (k aAd % 5)
= k(=L g Ad g g) = * y(a),
where y(a):=(—1)#*+0+ % yAd’’«. Then we have, for
a € Qp, .
@2.7)  da = (—lMikdxa
= (=) d(* adxg)
= (—1)rr0+k (d(* a)Ax s+ (—1)""* andyg)
= §"a + *yla),
On the other hand, we have, for « € Qf,
2.8) da = &’a + & a (notethat &a = 0).
Therefore, we have
2.9 &a = *y(a) for a € Q5.
Suppose that H is an infinitesimal automorphism of g, equivalently, x is a basic one form. .

Then we have
2.10) 0’a = dga for a € Q3
where dpa :=(—1)1""*1% (dy—xa)* a. Thus we have for

a € Q3
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211) Oa = Oga + (),

where —

(2.12) Op := 6pdp + dzds,

(213)  gla) = *y(d"a) + d*y(e).
On the other hand, we have (cf. [TY])

(2.14) Oa = Oa + m,* Lya + z(a),

where

(2.15) 07 = é6,d + do,

(2.16) Gy 1= (1)L R g %

Then we have, for a € Qj,

2.17) Ogae = O"a + m,* Lya.

Fact 2.1. O = zny*Ay where =y : U — N is a local riemannian submersion defin-
ing & and Ay is the Laplace-Beltrami operator on N.

Fact 2.2([TY]). Let (M, &, g) be a (p+g)-dimensional riemannian manifold with a
. riemannian foliation & of codimension ¢. Then the Laplace-Beltrami operator (] acting
on QY has a decomposition ;
o=0 + 05,5 + H
3. Proof of Theorem

Let M be a (p+ g)-dimensional riemannian manifold and & compact subgroup of the
Lie group of alll isometries of M. We suppose that -all orbits of H are of the same
dimenaion p(codimension g). Then H defines a riemannian foliation & of codimension ¢
whose each compact leaf is H,/ H,,, where H,, is the isotropy group at m € M.

Key Lemma ([Mo]). Let (M, &, g) be a (p + q)-dimensional riemannian manifold with a
riemannian foliation F of codimension q with compact leaves. Then M/ F= ' N admils
a natural structure of a q-dimensional Satake manifold such that the natural projection = '
M—N is a morphism of Satake manifolds. |

Let Q) (resp. 0%,) be the space of smooth functions (resp. smooth functions with
compact support) on N. We may define a map @ : Q3—QY% by ®(f)(z(m)) . =£(m) which
is injective. Let Qj5: =®7(QY). It is clear that f € QY if and only if f€ QY.

Lemma. Suppose that the mean curvature vector field H is an infinitesimal automorphism.
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If f € QY5 then (O—-H)f) € QY5
Proof. For f € QY5 we have (O—H)f)=O+0O0")()=0"f € Q5.

By means of the riemannian metric g =g;,(%3)0 '@’ + g,4(y)6°®6”, the volume
element dvoly of M is given by

(3.2)  dvol,=[det(§i f’,aﬁ)] U2y 1A A PAB A A BT,
For a distinguished chart (U,(x,y)) and the natural projection = . U—»N
33)  do=|det(g,y) | V26'a-007

may be regarded as the volume elememt dvoly of N, since {U, I, z(U)} is a local
uniformizing system for z(U) in N. And | det(g;(xy)) | "2@'A - Aw? is the volume
element d=, on the leaf H - m through a point m . =(xy). For f € Q%, (. = the space
of basic functions on M with compact support), the Fubini Theorem implies that

B4 [uf dvoly = [w[[u. nf dZn] dvoly(n(m)),

where “ ” denotes the image under ®. Since d3,, is invariant under H, it must be a
scalar multiple of dh ;

4%, = 8(m)dh,

where di is an H -invariant measure on each orbit H - m. Then the function & is in Q5
We set

35 ¢ =@
Therefore we have
36)  [uf dvoly=[y[[u.nf(h - m)dh] s(x(m)dvoly(z(m)).

- Ay is defined by the Levi-Civita connection associated with the normal component
dsh. Then we see that

3.7 A(O—-H)=Ay+lower order terms.

It follows from Fact 2.2 that the operator [J—H restricted to Q%, is symmetric with
respect to dvoly, ie., '

(38)  [ul@-H)A]k dvoly=[uf(O—H)f dvoly
for £, £ € Q%,.
For f € 0}, and m € M, we have

B9 [u.nf dh=flzim)e,



6 ’ Tae Ho Kang, Haruo Kitahara and Jin Suk Pak |
where ¢ =fH.mfd;L#:0. Setting fi © =®(f), - =B(f)
for £, € Q%,, we have
[u@=H)E) dvoly,
= [w{[n. Q- H)A)fedh] 6 dvoly

=/ [fy.m(D—H)(ﬁ)diz] 8 £ dvoly

= czf&((D — H)(A)f)d dvoly.

Then we have
310)  [v(@O—H)A))S dvoly

= [ w0~ H)(£)S dvoly
for £, £ € Q%,, We have, by definition, (J—H)(f)=
A(B—-H)() for f € Qj, so that

[n[A@-E)E)]£6 dvoly= [vfi[A(@O—H)E)] 8 dvoly.

This equality implies that A((CJ— H)) is symmetric with respect to ddvoly and it clearly
agrees with Ay up to lower order terms. The symmetric operators A(CJ— H)) and 6-1/2
Ay - &' agree up to an operator of order < 1, so that this operator, being symmetric, must
be a function. Applying the operators to the constant function 1, we have

A((D —_ H)) (l)_ 6\—1/2AN . 6112 _ 6_1I2AN(61l2).
Therefore, we have

(B1)  A(O-H)=6""Ay - 612~ 12AN(6"),

4. Examples-
(1) Let M : =B x, F be a warped product of dimension p+¢. Then we have

Oh=Aph+(q/f)grad f)h,
so that A(OD—(¢g./f)(grad f))=As.

(2) Let 0(n) be the orthogonal group acting on (R” can). In R™\ {the origin} , we set
f . =7 . =the geodesic distance from x to the origin. Then we have

can=dr2+»%462.
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Setting f : =7 in (1), we have

2 -
AO-H)=- zaarz - nr . 887 :

5. The minimal foliations
Let (M, &, g) be a (p+q)-dimensional riemannian manifold with a riemannian
foliation & with compact minimal leaves of codimension ¢. It follows from (2.14) and
Fact 2.1 that, for a basic 1-form «,

(1) (O=-#) (2)=0"a=(z*Ay)a.
Note that * y(a) is orthogonal to Q}, then we have

Fact 5.1. Let a : =n*ay be a basic 1-form pulled back from a 1-form ay on N. Thén
Oa—z*(Ayay)X)=0 if and only if (Lya)X)=0 for any basic vector field X.

Corollary 1 ([M]). Let (M, &, g) be as above. Let @ - =n*ay be a basic 1-form pulled
back Jrom a 1-form ay. such that Ayay=2A - ay. Then (Da— + 7)a(X)=0 for any
basic vector field X.

Corollary 2 ([P)]. Let n: M—N be a riemannian submersion with minimal fibes.
Then the pull-back a . n*ay of a harmonic 1-form ay on N is a harmonic 1-form on M
if M is compact.

In fact, it is sufficient to note that « € Qj.
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