A FORMULA FOR THE RADIAL PART OF THE LAPLACE -BELTRAMI OPERATOR ON THE RIEMANNIAN FOLIATION

Tae Ho Kang*, Haruo Kitahara and Jin Suk Pak*)

1. Introduction

Let (M, g) be a (p+q)-dimensional riemannian manifold and H a compact subgroup of the Lie group of all isometries of M. We suppose that all orbits of H have the same dimension p (codimension q). Then H defienes a riemannian foliation $\mathcal F$ of codimension q. The leaf space $M/\mathcal F=:N$ is a riemannian Satake manifold. Let \square be the Laplace -Beltrami operator on M and $\Delta(\square)$ its radial part in the sense of S. Helgason ([H]). We shall prove.

Theorem. Let \square be the Laplace-Beltrami operator on M and Δ_N the Laplace-Beltrami operator on N associated with the riemannian metric defined by transversal component of the metric on M. If the mean curvature vector field H of $\mathcal F$ is an infinitesimal automorphism, then the radial part $\Delta(\square-H)$ is given by

$$\Delta(\square - H) = \delta^{-1/2} \Delta_N \cdot \delta^{1/2} - \delta^{-1/2} \Delta_N (\delta^{1/2}),$$

where δ is the function given by (3.5).

H. Kitahara and S. Yorozu ([KY]) proved the similar theorem by means of the second connection defined by I. Vaisman ([V]). Moreover, in this paper we shall study some formulae of Laplace-Beltrami operators, which give relations between Ph. Tonduer's formulae ([T]) and I. Vaisman-H. Kitahara's ones ([V]), [K]).

Finally, we shall give a simple proof about eigenvalues of Y. Muto ([M]).

2. The basic Laplacian on Ω_B^*

Let (M, \mathcal{F}, g) be a (p+q)-dimensional manifold with a riemannian foliation \mathcal{F} of codimension q=n-p. The foliation \mathcal{F} defines the integrable subbundle L of TM. The normal bundle Q of fiber-dimension q is the quotient bundle Q:=TM/L. Equivalently, Q Appears in the exact sequence of vector bundles;

$$(2.1) 0 \rightarrow L \rightarrow TM \stackrel{\pi}{\rightleftharpoons} Q \rightarrow 0.$$

By means of the riemannian metric g, TM splits orthogonally as

$$TM = L \oplus L^{\perp}$$
,

^{*)} The first and third authors were partially supported by TGRC-KOSEF.

with $\sigma: Q \cong L^{\perp}$ splitting (2.1). The metric g on TM is a direct sum;

$$g = g_L \oplus g_{L^{\perp}}$$
.

With $g_Q = \sigma^* g_L^{\perp}$, the splitting map $\sigma: (Q, g_Q) \rightarrow (L^{\perp}, g_L^{\perp})$ is isometric. Let $(U, (x^i, x^a))$ be a distinguished coordinate chart, i. e., $x^a = \text{constants}$ defines $\mathcal F$ locally. Hereafter we use indices as the following ranges; $1 \leq i, j, k, \dots \leq p$; $1 \leq \alpha, \beta, \gamma, \dots \leq q$. Let (X_i, X_α) be the basic adapted framing to $\mathcal F$ and (ω^i, θ^a) its dual framing. Recall that X_i is tangent to the leaves of $\mathcal F$ and $g(X_i, X_\alpha) = 0$. We set $g_{ij} := g(X_i, X_j)$ and $g_{\alpha\beta} := g(X_\alpha, X_\beta)$. Then the metric g is locally written as

$$g \mid_{U} = \sum_{ij} g_{ij}(x^{i}, x^{\alpha}) \omega^{i} \otimes \omega^{j} + \sum_{\alpha\beta} g_{\alpha\beta}(x^{\gamma}) \theta^{\alpha} \otimes \theta^{\beta}.$$

Let Ω_M^t be the space of t-forms on M. $\varphi \in \Omega_M^t$ is a (s, r)-from if φ is written as locally

$$\varphi \mid_{\mathbf{U}} = \frac{1}{S!r!} \sum_{\varphi_{\mathbf{i}_1 \cdots \mathbf{i}_s \alpha_1 \cdots \alpha_r}} (x^k, x^{\gamma}) \omega^{i_1} \wedge \cdots \wedge \omega^{i_s} \wedge \theta^{\alpha_1} \wedge \cdots \wedge \theta^{\alpha_r}.$$

Then we have the decomposition of forms;

$$\Omega_M^t = \sum_{s+r=t} \Omega_M^{s,r},$$

where $\Omega_M^{s,r}$ is the space of (s, r)-forms on M. Let $\pi_{s,r}: \Omega_M^t \to \Omega_M^{s,r}$ be a projection operator for each s and r. The above decomposition induces the decomposition of the exterior differential operator d and its formal adjoint δ ;

(2.2)
$$d = d' + d'' + d'''$$
 and $\delta = \delta' + \delta'' + \delta'''$

Note that $d'': \Omega_M^{\mathfrak{s}_T} \to \Omega_M^{\mathfrak{s}_T+1}$ and $\delta'':=\pm *d'' *$ is the Hodge star operator with respect to g. An operator $\Box:=\delta d+d\delta$ acting on Ω_M^* is the Laplace-Beltrami operator. Moreover we can define two operators $\Box':=\delta''d'+d'\delta'$ and $\Box'':=\delta''d''+d''\delta''$. A form $\omega\in\Omega_M^t$ is a basic form on M if $d'\omega=0$, equivalently, $i(X)\omega=0$ and $L_X\omega=0$ for all vector fields X tangent to the leaves, where $i(\cdot)$ and $L_{(\cdot)}$ are the interior product and the Lie derivative respectively.

Let Ω_B^* be the space of the basic forms on M. Let a form $\nu \in \Omega_B^q$ be the transversal (closed) volume form associated to the transversal holonomy invariant riemannian metric $ds_Q^2 := \sum g_{\alpha\beta} \theta^{\alpha} \otimes \theta^{\beta}$. Then the characteristic form $\chi_{\mathcal{F}}$ of \mathcal{F} is the p-form defined by $\chi_{\mathcal{F}} := *\nu$. Thus the riemannian volume form μ is given by $\nu \wedge \chi_{\mathcal{F}}$. Then we have the Rummler's Formula;

$$(2.3) d\chi_{\mathfrak{S}} + \kappa \wedge \chi_{\mathfrak{S}} = d^{\prime\prime\prime} \chi_{\mathfrak{S}},$$

where κ is the dual form of the mean curvature vector field H of \mathcal{S} . Suppose that $\kappa \in \Omega_B^1$. Then we have $d\kappa = 0$.

Let $\bar{*}: \Omega_B^r \to \Omega_B^{rr}$ be the star operator associated to ds_Q^2 . Then we have

(2.4)
$$\bar{*} \alpha = (-1)^{p(q-r)} * (\alpha \Lambda \chi_{\mathcal{G}}), \ \alpha \in \Omega_{\mathcal{B}}^{r}$$

$$(2.5) *\alpha = \bar{*} \alpha \Lambda \chi_{\mathcal{S}}, \alpha \in \Omega_{\mathcal{B}}^{r}.$$

We set $d_B := d \mid \Omega_B^* = d''$. For $\alpha \in \Omega_B^r$,

$$\delta'' \alpha = (-1)^{n(r+1)+1} * d'' * \alpha$$

$$= (-1)^{n(r+1)+1} * (d''(\bar{*}\alpha) \wedge \chi_{\mathcal{S}}) + (-1)^{n(r+1)+1} * ((-1)^{q-r} \bar{*}\alpha \wedge d'' \chi_{\mathcal{S}})$$

The first term in the $RHS = (-1)^{n(r+1)+1} (-1)^{p(r-1)} \, \bar{*} \, d^{\prime\prime} \, \bar{*} \, \alpha$

 $=(-1)^{q(r+1)+1} \bar{*} d'' \bar{*} \alpha \text{ and the second term in the } RHS = (-1)^{n(r+1)+1} (-1)^{q-r} * (\bar{*} \alpha \wedge d'' \chi_S) = i(H)\alpha.$

Then we have, for $\alpha \in \Omega_B^r$,

$$(2.6) \qquad \delta^{\prime\prime} \alpha = (-1)^{q(r+1)+1} \,\bar{\ast} \, d^{\prime\prime} \,\bar{\ast} \, \alpha \, + \, i(H)\alpha.$$

Moreover, note that for $\alpha \in \Omega_B^r$, we have

$$d'(\bar{*}\alpha) \wedge \chi_{\mathcal{G}} = (\pi_{(1,0)} d(\bar{*}\alpha)) \wedge \chi_{\mathcal{G}} \in \Omega_{M}^{p+1,q-r} = \{0\} ,$$

$$d''(\bar{*}\alpha) \wedge \chi_{\mathcal{G}} = (\pi_{(0,1)} d(\bar{*}\alpha)) \wedge \chi_{\mathcal{G}} \in \Omega_{M}^{p,q-r+1} ,$$

$$d'''(\bar{*}\alpha) \wedge \chi_{\mathcal{G}} = (\pi_{(-1,2)} d(\bar{*}\alpha)) \wedge \chi_{\mathcal{G}} = \{0\} ,$$

and

$$(-1)^{n(\tau+1)+1}(-1)^{q-\tau} * (\bar{*} \alpha \Lambda d''' \chi_{\beta})$$

$$= * (-1)^{p(\tau+1)+q\tau+1-\tau} (\bar{*} \alpha \Lambda d''' \chi_{\beta}) = * \gamma(\alpha),$$

where $\gamma(\alpha) := (-1)^{(p+1)(r+1)+qr} \bar{*} \alpha \Lambda d''' \alpha$. Then we have, for $\alpha \in \Omega_B^r$,

(2.7)
$$\delta\alpha = (-1)^{n(r+1)+1} * d * \alpha$$

$$= (-1)^{n(r+1)+1} * d(\bar{*}\alpha \wedge \chi_{\mathcal{S}})$$

$$= (-1)^{n(r+1)+1} * (d(\bar{*}\alpha) \wedge \chi_{\mathcal{S}} + (-1)^{q-r} \bar{*}\alpha \wedge d\chi_{\mathcal{S}})$$

$$= \delta''\alpha + * \gamma(\alpha),$$

On the other hand, we have, for $\alpha \in \Omega_M^{0,r}$,

(2.8)
$$\delta \alpha = \delta'' \alpha + \delta''' \alpha$$
 (note that $\delta' \alpha = 0$).

Therefore, we have

(2.9)
$$\delta''\alpha = *\gamma(\alpha)$$
 for $\alpha \in \Omega_B^r$.

Suppose that H is an infinitesimal automorphism of \mathfrak{g} , equivalently, κ is a basic one form. Then we have

(2.10)
$$\delta''\alpha = \delta_B\alpha$$
 for $\alpha \in \Omega_B^*$ where $\delta_B\alpha := (-1)^{q(r+1)+1} \bar{*} (d_B - \kappa \Lambda) \bar{*} \alpha$. Thus we have for $\alpha \in \Omega_B^r$,

$$(2.11) \qquad \Box \alpha = \Box_B \alpha + \eta(\alpha),$$

where

$$(2.12) \qquad \Box_B := \delta_B d_B + d_B \delta_B,$$

$$(2.13) \eta(\alpha) := * \gamma(d''\alpha) + d * \gamma(\alpha).$$

On the other hand, we have (cf. [TY])

$$(2.14) \qquad \Box \alpha = \Box''_{0}\alpha + \pi_{0,r} \cdot L_{H}\alpha + \eta(\alpha),$$

where

$$(2.15) \qquad \square^{\prime\prime}{}_{0} := \delta_{\kappa}d + d\delta_{\kappa^{\prime}}$$

(2.16)
$$\delta_{\kappa} := (-1)^{q(r+1)+1} \bar{*} d'' \bar{*}.$$

Then we have, for $\alpha \in \Omega_B^r$,

$$(2.17) \qquad \square_B \alpha = \square''_0 \alpha + \pi_{0,r} \cdot L_H \alpha.$$

Fact 2.1. $\Box''_0 = \pi_U^* \Delta_N$ where $\pi_U : U \to N$ is a local riemannian submersion defining \mathcal{F} and Δ_N is the Laplace-Beltrami operator on N.

Fact 2.2([TY]). Let (M, \mathcal{S}, g) be a (p+q)-dimensional riemannian manifold with a riemannian foliation \mathcal{S} of codimension q. Then the Laplace-Beltrami operator \square acting on Ω_M^0 has a decomposition;

$$\square = \square' + \square''_0 + H.$$

3. Proof of Theorem

Let M be a (p+q)-dimensional riemannian manifold and H compact subgroup of the Lie group of all isometries of M. We suppose that all orbits of H are of the same dimension $p(\operatorname{codimension} q)$. Then H defines a riemannian foliation $\mathcal F$ of codimension q whose each compact leaf is $H \nearrow H_m$, where H_m is the isotropy group at $m \in M$.

Key Lemma ([Mo]). Let (M, \mathcal{F}, g) be a (p+q)-dimensional riemannian manifold with a riemannian foliation \mathcal{F} of codimension q with compact leaves. Then $M/\mathcal{F}=:N$ admits a natural structure of a q-dimensional Satake manifold such that the natural projection $\pi:M\to N$ is a morphism of Satake manifolds.

Let $\Omega_N^0(\text{resp. }\Omega_{N,o}^0)$ be the space of smooth functions (resp. smooth functions with compact support) on N. We may define a map $\Phi: \Omega_B^0 \to \Omega_N^0$ by $\Phi(f)(\pi(m)) := f(m)$ which is injective. Let $\Omega_{M,B}^0:=\Phi^{-1}(\Omega_N^0)$. It is clear that $f \in \Omega_{M,B}^0$ if and only if $f \in \Omega_B^0$.

Lemma. Suppose that the mean curvature vector field H is an infinitesimal automorphism.

If $f \in \Omega^0_{M,B}$, then $(\Box - H)(f) \in \Omega^0_{M,B}$.

Proof. For
$$f \in \Omega^0_{M,B}$$
, we have $(\Box - H)(f) = (\Box' + \Box''_0)(f) = \Box''_0 f \in \Omega^0_{M,B}$.

By means of the riemannian metric $g:=g_{ij}(x,y)\omega^i\otimes\omega^j+g_{\alpha\beta}(y)\theta^\alpha\otimes\theta^\beta$, the volume element $dvol_M$ of M is given by

(3.2)
$$\operatorname{dvol}_{M} = \left[\det(\S i i \int_{\S_{\alpha B}}^{0})\right]^{1/2} \omega^{1} \Lambda \cdots \Lambda \omega^{p} \Lambda \theta^{1} \Lambda \cdots \Lambda \theta^{q}.$$

For a distinguished chart (U,(x,y)) and the natural projection $\pi: U \to N$

(3.3)
$$d\sigma = |\det(g_{\alpha\beta})|^{1/2} \theta^1 \Lambda \cdots \Lambda \theta^q$$

may be regarded as the volume element dvol_N of N, since $\{U, \Gamma, \pi(U)\}$ is a local uniformizing system for $\pi(U)$ in N. And $|\det(g_{ij}(x,y))|^{1/2}\omega^1 \wedge \cdots \wedge \omega^p$ is the volume element $d\Sigma_m$ on the leaf $H \cdot m$ through a point m := (x,y). For $f \in \Omega^0_{B,o}$ (:= the space of basic functions on M with compact support), the Fubini Theorem implies that

(3.4)
$$\int_{M} f \operatorname{dvol}_{M} = \int_{N} \left[\int_{H} f d\Sigma_{m} \right] \operatorname{dvol}_{N}(\pi(m)),$$

where "____" denotes the image under Φ . Since $d\Sigma_m$ is invariant under H, it must be a scalar multiple of $d\mathring{h}$;

$$d\Sigma_m = \bar{\delta}(m)d\mathring{h},$$

where $d\mathring{h}$ is an H-invariant measure on each orbit $H \cdot m$. Then the function $\bar{\delta}$ is in $\Omega^0_{M,B}$. We set

$$(3.5) \qquad \delta := \Phi(\bar{\delta}).$$

Therefore we have

(3.6)
$$\int_{M} f \operatorname{dvol}_{M} = \int_{N} \left[\int_{H \cdot m} f(h \cdot m) d\mathring{h} \right] \delta(\pi(m)) \operatorname{dvol}_{N}(\pi(m)).$$

 Δ_N is defined by the Levi-Civita connection associated with the normal component ds_Q^2 . Then we see that

(3.7)
$$\Delta(\Box - H) = \Delta_N + \text{lower order terms.}$$

It follows from Fact 2.2 that the operator $\Box - H$ restricted to $\Omega^0_{B,o}$ is symmetric with respect to $dvol_M$, i.e.,

(3.8)
$$\int_{M} \left[(\square - H) f_1 \right] f_2 \operatorname{dvol}_{M} = \int_{M} f_1 (\square - H) f_2 \operatorname{dvol}_{M}$$

for $f_1, f_2 \in \Omega^0_{B,o}$.

For $f \in \Omega_{B,o}^0$ and $m \in M$, we have

(3.9)
$$\int_{H \cdot m} f \, d\mathring{h} = \underline{f}(\pi(m))c,$$

where
$$c:=\int_{H+m}fd\mathring{h}\neq 0$$
. Setting $\underline{f}_1:=\Phi(f_1), \underline{f}_2:=\Phi(f_2)$ for $f_1, f_2\in\Omega^0_{B,o}$, we have
$$\int_{M}(\Box-H)(f_1)f_2 \,\mathrm{d}\mathrm{vol}_{M}$$

$$=\int_{N}\Big[\int_{H+m}(\Box-H)(f_1)f_2d\mathring{h}\Big]\delta \,\mathrm{d}\mathrm{vol}_{N}$$

$$=\int_{N}\Big[\int_{H+m}(\Box-H)(f_1)d\mathring{h}\Big]c\delta \,\underline{f}_2 \,\mathrm{d}\mathrm{vol}_{N}$$

$$=c^2\int_{N}((\Box-H)(f_1)f_2)\delta \,\mathrm{d}\mathrm{vol}_{N}.$$

Then we have

(3.10)
$$\int_{N} ((\square - H)(f_{1})) f_{2} \delta \operatorname{dvol}_{N}$$
$$= \int_{N} f_{1} ((\square - H)(f_{2})) \delta \operatorname{dvol}_{N}$$

for $f_1, f_2 \in \Omega_{B,o}^0$, We have, by definition, $(\Box - H)(f) =$

$$\Delta((\Box - H))(\underline{f})$$
 for $f \in \Omega_B^0$, so that

$$\int_{N} \left[\Delta((\Box - H))(f_{1}) \right] f_{2} \delta \operatorname{dvol}_{N} = \int_{N} f_{1} \left[\Delta((\Box - H)(f_{2})) \right] \delta \operatorname{dvol}_{N}.$$

This equality implies that $\Delta((\Box - H))$ is symmetric with respect to δdvol_N and it clearly agrees with Δ_N up to lower order terms. The symmetric operators $\Delta((\Box - H))$ and $\delta^{-1/2}$ $\Delta_N \cdot \delta^{1/2}$ agree up to an operator of order ≤ 1 , so that this operator, being symmetric, must be a function. Applying the operators to the constant function 1, we have

$$\Delta((\Box - H)) (1) - \delta^{-1/2} \Delta_N \cdot \delta^{1/2} = - \delta^{-1/2} \Delta_N (\delta^{1/2}).$$

Therefore, we have

(3.11)
$$\Delta((\Box - H)) = \delta^{-1/2} \Delta_N \cdot \delta^{1/2} - \delta^{-1/2} \Delta_N (\delta^{1/2}).$$

4. Examples

(1) Let $M := B \times_f F$ be a warped product of dimension p+q. Then we have $\Box h = \Delta_B h + (q/f)(\operatorname{grad} f)h,$

so that $\Delta(\Box - (q/f)(\text{grad } f)) = \Delta_B$.

(2) Let 0(n) be the orthogonal group acting on (R^n, can) . In $R^n \setminus \{\text{the origin}\}$, we set f := r := the geodesic distance from x to the origin. Then we have

$$can = dr^2 + r^2 d\theta^2$$

Setting f := r in (1), we have

$$\Delta(\Box - H) = -\frac{\partial^2}{\partial r^2} - \frac{n-1}{r} \frac{\partial}{\partial r}.$$

5. The minimal foliations

Let (M, \mathcal{S}, g) be a (p+q)-dimensional riemannian manifold with a riemannian foliation \mathcal{S} with compact minimal leaves of codimension q. It follows from (2.14) and Fact 2.1 that, for a basic 1-form α ,

$$(5.1) \qquad (\Box - \eta) \ (\alpha) = \Box''_{0} \alpha = (\pi^* \Delta_N) \alpha.$$

Note that $*\gamma(\alpha)$ is orthogonal to Ω_B^* , then we have

Fact 5.1. Let $\alpha := \pi^* \alpha_N$ be a basic 1-form pulled back from a 1-form α_N on N. Then $(\Box \alpha - \pi^*(\Delta_N \alpha_N))(X) = 0$ if and only if $(L_H \alpha)(X) = 0$ for any basic vector field X.

Corollary 1 ([M]). Let (M, \mathcal{F}, g) be as above. Let $\alpha := \pi^* \alpha_N$ be a basic 1-form pulled back from a 1-form α_N , such that $\dot{\Delta}_N \alpha_N = \lambda \cdot \alpha_N$. Then $(\Box \alpha - (\lambda \cdot \pi)\alpha(X) = 0$ for any basic vector field X.

Corollary 2 ([P)]. Let $\pi: M \to N$ be a riemannian submersion with minimal fibres. Then the pull-back $\alpha: \pi^*\alpha_N$ of a harmonic 1-form α_N on N is a harmonic 1-form on M if M is compact.

In fact, it is sufficient to note that $\alpha \in \Omega^1_B$.

References

- [H] S. Helgason, A formula for the radial part of the Laplace-Beltrami operator, J. Differential Geometry, 6(1972), 411-419.
- [K] H. Kitahara, Differential Geometry of Riemannian Foliations, Kyungpook National University, 1986.
- [KY] H. Kitahara and S. Yorozu, A formula for the normal part of the Laplace-Beltrami operator on the foliated manifold, Pacific J. of Math. 69(1977), 425-432.
- [Mo] P. Molino, Riemannian Foliations, Progress in Math. 73 Birkhäuser Boston · Basel, 1988.
- [M] Y. Muto, Riemannian submersion and the Laplace-Beltrami operator, Kodai Math. J. 1(1978), 329 -338.
- [P] J. H. Park, The Laplace-Beltrami operator and Riemannian submersion with minimal and not totally geodesic fibres, to appear in Bull. of Korean Math. Soc.
- [T] Ph. Tondeur, Foliations on Riemannian Manifolds, Springer-Verlag, 1988.
- [TY] R. Takagi and S. Yorozu, Notes on the Laplace-Beltrami operator on a foliated Riemannian manifold with a bundle-like metric, to appear in Nihonkai J. of Math.
- [V] I. Vaisman. Cohomology and Differential Forms, Dekker, New York, 1973.

Tae Ho Kang University of Ulsan Ulsan, 680-749, Korea Haruo Kitahara Kanazawa University Kanazawa, 920, Japan (Current Address) Kanazawa University Kanazawa, 920, Japan Jin Suk Pak Kyungpook National University Taegu, 701-702, Korea