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A BASIC STOCHASTIC MODEL OF A SINGLE-SPECIES
POPULATION DYNAMICS

T. Fujimagari, Kanazawa University

Abstract

A stochastic dynamics of a single-species sexual population with random environ-
ments is considered. The proposed mode consists of three stages : 1) Couples produce
their children independently one another ; b) Children grow up or die out independently one
another in a random environment ; ¢) Women and men meet and form couples according
to a mating system which is peculiar to the species. A limit theorem for the sex ratio is
given. Processes with an independent mating system are studied in some detail. Various

kinds of generalizations of branching processes are related to the present population model.
1. Introduction

We will consider a dynamics of a single-species population of insects, animals etc in
randomly varying environments. We take Z, couples for the Oth generation. Each couple
will produce daughters and sons during its life. The total of daughters and sons of their
Z, parents will be random variables (r. v.’s) X] and Y7, respectively. The environment
for the children of the first generation is assumed that it can be estimated by a single r. v.
V, (02V,=1). Each daughter is assumed that she will grow up into a woman with
probability ¢ V,;(0=<a=1), and each son is assumed that he will grow up into a man with
probability & V;(0=5=1). The totals of women and men of the first generation will be r.
v.’s X, and Y, respectively. Z couples will then be found among X, women and Y; men.
Like their parents, Z conples will produce X, daughters and Y, sons. Each of the
daughters will grow up into a woman with probabilility « V,, and each of the sons will grow

up into a man with probability 54V,. Among X, women and Y, men of the second

Keywords: Population dynamics; Random environments; Independent mating system ; Density-depen-
dence ; Sex ratio ; Fitness ; Sigmoidal curve



32 Tetsuo FUJIMAGARI

generation, Z, couples will be found. In this way, Z,_, couples of the (#n—1)st generation
will produce X, daughters and Y, sons. For the children of the #-th generation, the
environment is assumed that it can be estimated by a single r.v. V, (0= V,<1). Each of
X, daughters will grow up into a woman with probability ¢ V,, and each of Y, sons will
grow up into a man with probability 4 V,. The totals of the »-th generation women and
men are denoted by X, and Y,, respectively. Z, couples will be made among X, women

and Y, men.

Z(n-1)

couples couples

daughters Xn
women

The stochastic process {Z, ; #=0} will mainly be concerned. The exact statements
and assumptions for the processes mentioned above will be given in the section 2. Most
of all, Z, will either be eventually extinct or grow to infinity as » tends to infinity. A
sufficient condition to ensure this statement will be given in the section 3. A limit theorem
for the sex ratios X/ Y, of children and X,/Y, of adults will be given in the section 4.
Analysis of these stochastic population dynamics will heavily depend upon what the mating
system to make couples is. Sections 5, 6 and 7 will solely concern with an independent
mating system. The reason is not only the mathematical simplicity of analysing the
process but also that the mating system can be expected to have some reality for a
population of large size.

The stochastic process {Z,, ; #=0} with an independent mating system could be viewed
as a branching process or its generalization. a) If the » -th environment V, depends on
the sizes X and Y, of the n-th children or Z, ;| of the preceding couples, then {Z, ; n=
0} could be regarded as a density-dependent branching process. Such a process is a
generalization of a Galton-Watson (or simple) branching process. Density-dependent



A Basic Stochastic Model of a Single-species Population Dynamics 33

branching processes have been proposed and studied by some authors, for example, by
Sevast’yanov (1972) as a ¢-branching process or by the author (1972) as a controlled
Galton-Watson process. In the present paper, however, it will be put except sections 4 and
6 an independence assumption on {V, ; n=1}, so that such a density dependence will not
be concerned with except sections 4 and 6. One might say that even if V, for =1 are
assumed to be independent, a density dependence, though indirectly, could be dealt with for
the process {Z, ; n=0} if the distribution of V,, will vary suitably when # increases. b)
If the sequence of enviroments { V, ; #=1} is a stationary and ergodic sequence, then {Z,
; =0} could be regarded as a branching process with random environments (BPRE) and
{V,; n=1} as its environmental process. The BPRE was proposed and studied by Smith
and Wilkinson (1969) and was studied in detail by Athreya and Karlin (1971). Smith and
Wilkinson assumed that V, for »=1 are independent and have a common distribution.
Hence, their model was concerned with a density independent case. Some results obtained

; =20} will be given in the section 6.

n

by applying theorems on BPRE to our process {Z
¢) If each environment V, has always no fluctuation, then {Z, ; =0} could be regarded
as a branching process in varying environments(BPVE). The BPVE was proposed by
Jagers (1974) and formerly studied purely analytically by Church (1971). By applying

: #=0}, we have some results on the probability

n

theorems on BPVE to our process {Z
distribution of the time up to extinction (i.e. Z,=0), which will be given in the section 7.

For the case in which every environments are deterministic and unchanged, Daley
(1968) studied conditions of almost sure extinction for a promiscuous or polygamous
mating system, and Karlin and Kaplan (1973) and other authors have studied the same
problem for other kinds of deterministic mating systems. Kesten (1970), in particular,
studied in deterministic and unchanged environments the problem about the extinction or
the exponential growth for some population growth processes with randomized mating
systems. Although their discussions and results are all important to our process {Z, ; n=
0}, we will not concern with such processes in the present paper.

It should be mentioned here that the references listed above are not complete at all but
rather historical.

Finally, some remarks on the process {Z, ; #=0} and assumptions within it will be
mentioned in the section 8 from the ecological point of view.

The mathematical purpose of this paper is to try to propose a flexible stochastic model
of a population dynamics in the sense that it will postulate neither a deterministic depen-
dence on density or population size nor deterministic mating system in the probabilistic
context, and to put together various stochastic population models such as BPRE’s, BPVE’

s, controlled branching processes, bisexual population models and so on.
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2. Specification of models

We will specify the system of stochastic processes {Z,, X1, Yri1 Virr Xosr Yait
; n20}. V, takes values in the interval [0, 1], and all other processes except { V, ; n=
1} are nonnegative integer valued. Denote B={V,, V,, -, V,, -} and let §, be the ¢
-field generated by rv’s {Z,_,, X;, Y;, X,, Y, for 1=k=<n; B}

We will assume the following assumptions.
(A0) Random variables Z,, V|, V,, ---, V,, --- are independent.

n

(A1) For each n=1, 2, -** and 2=0, 1, 2, -,
E(*sY 2z, =2, §,.)={f(r )} as.

for |7|, |s|=1. We let 0°=1 throughout the paper.
(A2) For each «/, ¥'=0, 1, 2,-- and any 0= v<1,

E(™ s"|X,=x, Y;=y, V,=v, Z,_}, §,)

=(avr+1—av)* (bus+1—bv)? as.

for | 7|, |s| =1, where @ and b are constants satisfying 0=a, 6=<1.
(A3) For each x, y=0, 1, 2,--* and any |«| =1,

E(u™ X, =x, Y,=y, ¥,

is a function depending only on %, x and y, and is denoted by ¢ (« ; x, ¥). Furthermore,
é(u;0,00=1for |u|=1.

The assumptions (Al), (A2) and (A3) will always be assumed throughout the paper,
while the assumption (A0) will not be necessarily assumed.
Denote
u=E(X|Z. =1 =g—/:(1—, 1-) and
v=E(¥}|Z,_=1=-2L -, 1-),
os

where it will be assumed in the following that 4 and v are finite. Denote the following

expectations as
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m, ,—E(Z,_), u,=E(X,), v,=E(Y,) and v,=E(V,)
for n=1 and the following variances as
o' =Var(Z,.,) and &’ = Var(V,)

for n=1.

3. Preliminary results
Let us denote for each =1, x' =0, =0 and any 0=v=1
(3.1) vu; 2,5, v)=E{¢(u; X, Y)|X,=x, Y,=y, V,=0, Z,,, T}

for || =1, where the independence on # of the right-hand side follows from the assump-
tion (A2).

Lemma 3.1. For each x', ¥ =0 and any 0=0v<1,

(3.2) viu; 2, v, v)= é‘, yg

x=0 y=0

(xx> <J;> (av)*(bv)’ (1-av)* *(1—bvY ™ ¢ (u; %, ¥)
for |ul=1.

Proof. Since by (A2)

P(X,=x Y,=y|X,=x, Y=y, V,=0v, Z,;, T,-1)

= %) @rra-ar = (4) 0 a-b0)
for each x=0, 1,-*, x” and y=0, 1,*+, ¥’, the formula (3.2) can be immediately obtained.
Denote for each =1, 220 and any 0=v =<1
(3.3) n(u;z, 0)=E{yu; X Y, V)IZ, =2V,=0,8,.,},

for |#| =1, where the independence on # of the right-hand side follows from the assump-
tion (Al). Then, we have
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Proposition 3.1. For each n=1, 220 and any 0sv<1,
(3.4) E {(u"Z, =2, V,=v, §,_}=nlu;z 0), |u|£1 as.
Proof. The left-hand side of (3.4) is equal to
E{E {(u*Z,.,=2, V,=v, X,, Y,, &, |Z,. =2, V,=v, §,.},
which is by the assumption (A3) equal to

E{¢wu; X, Y)Z,.,=2, V,=v, F,.1}
:E{E{¢(u , Xn’ Yn)IZn—lzz’ Xr,n Y;’ Vn:v’ %n—lHZn—l:z’ Vn:v! %n—l}
=E{y(u; X, Y, V)IZ, =2 V,=v, §,_,}

=nlu;z v),
which concludes the proof.

Lemma 3.1 and Proposition 3.1 are clearly valid without assuming the assumption
(A0). However, in the rest of this section, the assumption (A0) should be assumed. V,

is ¥ ,_;-measurable, and since the assumptions (A0)-(A3) imply that V, is independent of
{Z, Z,, -+, Z,_,}, we have the following

Corollary. Assume (A0) in addition to (Al)-(A3). Then, for each n=1 and 220
(3.5) E{u”|Z, =2, Z, 4 - Z}=En(u;z, V), lu|<1 as.

By the assumptions (A0) — (A3), it follows from the corollary that the process {Z, ;
n=0} is a time inhomogeneous Markov chain and the conditional probability generating
function (p. g. f.) at the n-th generation is given by

(3.6) E {u*Z,_\=2}=FEn(u;z, V,), lu| <1

We see by the assumptions (Al) — (A3) that the state 0 is an absorbing state for the
Markov chain {Z, ; #=0}. We have the following assertion concerning to the asymptotic
; n=0},

n

behavior of the process {Z
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Proposition 3.2. Assume that {Z,; n20} is Markovian. If the inequality
(3.7 inf E n(0;2z2, V,)>0
n21

holds for each zZ=1, then P(,{% Z,=% or Z,=0 for some n)=1.

Proof. Since {Z,; n=0} is a Markov chain and 0 is its absorbing state, it suffices to
show that for each =0 and z=1

(3.8) P(Z,.,=z for infinitely many n|Z,=z)=0.

Let any z21 be fixed and let =inf E #(0; 2, V,) =inf P(Z,=0|Z,_,=2), in which it is
nz1 nz1
assumed ¢>0. We first show for any 7 =0 by induction with respect to £=1, 2, -+ that

(3.9) P(Z,.,=z for at least k times|Z,=z)<(1—¢)*
for all k21. Denote by 7 the first time when the k-th return to z will occur. Then, it is
rewritten as the left-hand side of (3.9) =P (z,<|Z =2z).
For k=1 and any m =0
P(r,<x|Z,=2)<1-P(Z,,,=0|Z,=2)<1-6.

If the inequality (3.9) holds for k=1, then

P(zy,,<®|Z,=2)=E{P(r,<|Z,,=2)| ., ; r,<®|Z,=z}
=(1-0)P(r,<0|Z,=2)

é (1__6\)k+1’

which implies the inequality (3.9) for 2+1. It is obvious that the relation (3.8) follows by
letting 2->co in the inequality (3.9).

4. The sex ratio

The ratios of daughters relative to sons or of women relative to men are investigated

by first getting the following proposition.
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Proposition 4.1. For each n=1, 220 and any 0=v=],

(4.1) E(r%s¥|Z

w1=2 V,=v)={flavr +1—av, bus+1—bv)}, |7],|s|=1 as.

Proof. The left-hand side of (4.1) is equal to

E{E {#*s"|Z,_=2, V,=v, X, Y} |Z,.,=2, V,=v}

n

=E{{arV,+1-aV)*(bsV,+1-bV )| Z, =2, V,=v}
by the assumption (A2) and proceeds as
={f(avr+1—av, bvs—vl— bv) }*
by the assumption (Al), and we have the required result.
By Proposition 4.1, we have
E(X,|Z,_,=2 V,)=auzV,, E(Y,|Z, =2 V,)=buzV,
Moreover, if we assume the assumption (A0), then
(4.2) E(X,)=aum, E(V,), E(Y,)=bwm, E(V,).
Therefore, it holds the relation
E(X,) : E(Y,)="(ax): (bv), nzl.
Obviously by the assumption (Al), we have
EX\|Z, ,=2)=pz, E(Y)|Z, ,=2)=vz
and hence
(4.3) E(X)=um,_,, E(Y))=vm,_,,

which imply the relation
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E(X) : E(Y)=u:v, n=l.
As for the ratios X, : Y, or X : Y, of any samples, we can state the following result.

Theorem 4.2. Assume that f,,(1—,1—), f,(1—,1—) <o and P(Z,—~)>0. Then,

on the set {Z ,—co},

X, wn—oo .
Y", _—)ﬁv— in probability,

and on the set {Z,—0, lirnn_’g;nf V,>0},

Xn n—>Cco a#
Y. by

n

in probability.

If, in addition to the above conditions, it holds

(40) S E(—; Z,—w) <co,
n=1 n

then the above convergences hold in the sense of a.s. convergence.

Proof. By the assumption (Al), we can take versions of X, and Y so that for each
nzl

= K
X,=2 &7 and Y,=3 #;7,
i=1 i=1
in which {g’,.‘”) ;i21, =1} and {7;’,.(”) :i21, =1} are families of mutually independent,
independent of Z,_; and nonnegative integer-valued r.v.’s whose probability generating
functions are given by
EZ,_)=f(r, 1), |r|<1and E(s""|Z, ) =f(L, s), |s| <1, respectively.
Since E (&) =y and E (5,”) =v, X, and Y}, are written as
ESpe
(4.5) Xi=pZ et 2 (" =)

and

=m
(4.6) Yi=vZ, +3 " —v),
=1
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and hence the ratio of X relative to Y, is

LS
X;,z o Zn~ll'=1 ' a
’ 1 Zn "
Y, V+Z 2(71',-()—1/)
n—1i=1

Since, moreover,

Var (é"'i(n)) :f,,(l—, 1-) +u —,u2 and
Var (7]’,-(")) =f A=, 1-)+v— v
Var (£7) and Var (5,"”) are bounded. Therefore, Lemma in Appendix can be applied by
setting N,=Z,_,, V,=1,and X =&~y (or ;" —v), yielding

X, n— . .
7 R —/l—j— in probability

on the set {Z,—>o0}. The as. convergence follows from the condition 3, E(Z,' ; Z,
—0o0) <co and the second part of Lemma in Appendix. i

Next, to deduce the convergence for the ratio X,/Y,, can be carried out in a similar
way as for the ratio X/Y,. By virtue of the assumptions (Al), (A2) and Proposition 4.
1, it is possible to take versions of X, and Y, so that for each n=1,

E =
X =3 &"and Y,=3, 5

i=1 i=1
in which {gﬁ’” :7=1} and {nf”) ; 121} are families of mutually conditionary independent
under the given V. independent of Z, ,, and nonnegative integer-valued r.v.’s whose
conditional probability generating functions are given by

E {(#"|V)=FflarV,+1-aV, 1), |7| =1 as.

and

E {s™|V)=rQ, bsV,+1-bV,), |s| =1 as.

respectively. Since
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E {”|V,)=auV, as. and E {{”|V,}=bV, as.,
we can rewrite X, and Y, as

Zns
(4.7 X,=auV,Z, ,+> (" —auV,)
i=1
and
(4.8) Y, =V, Z

Zo
n n—1+ §1<77i - byVn) ’
respectively, and obtain

S (v,
Xn — a Vn Zn—1i=1 ! o
Yn B 1 1 Zuy (n) ’
bv+ v Zn_lgl(m bvV,)
Since it holds that

Var (EM|\V,)=f, (10—, 1-)d®V}+auV,—a*u*V? and
Var (| V) =f, (01—, 1=)B*V+ boV,— b V),
the conditional variances Var (& V,) and Var (| V,) are bounded by £, (1—, 1—) +
# and £, (1—, 1—) +v, respectively. Therefore, by applying Lemma in Appendix in which

we set as N,=Z,_, and X, =&" —auV, (or =9 —bvV,), we can obtain the required
convergence results for the ratio X,/Y,.

It should be noticed that Proposition 4.1 and Theorem 4.2 do hold without the assump
tion (A0).

5. Population dynamics with an independent mating system

In the following sections, we will specify a mating system so that it holds
(5.1)

$(u;x y)=(aut+l—a) (Bu+1-p)", |u|=1

for each x=0 and y=0 with some constants @ and g (0=a, g=1).

According to this

41
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mating system, each woman (or man) will make a couple with probability &« (or 8)
independently of one another. Thus, the mating system will be called as an independent
mating system.

It follows immediately that

(5.2) E(Z,|X,=x, Y,=y)=ax+fy
and
(5.3) Var (Z,| X,=x, Y,=y)=a(l—a)x+p(1—8)y

for all x=0 and y=0. Since the inequality
(5.4) min(x, y)Sax+ (1—a)y<max(xy)

holds, the mating system with 8=1-—a might be related to a monogamous mating system
with high fidelity.

Since by Lemma 3.1

vu;x',y, v)=§ é <x’> <y'> (a)*(bv)’ A —av)* *(1—b0)” 7 (au+1—a)*(Bu+1—p)°
=0 y=0 X/ \Y

{(aut1—a)av+1—av}” {(Bu+1-—B)bv+1—bv}’,

we have by Proposition 3.1 and the assumption (Al)

E(uZ"IZ,,_l-':z, V.=v)=nlu; z v)

=E{{{aut+1—a)av+1—av}*{ (Bu+1—B) bv+1—bv}**

Zy=2 V,=v}

={f((au+1—a)av+1—av, (But+1—8)bv+1—bv)}*".
Thus, we have without assuming (A0)
Lemma 5.1. For each n=1, 220 and any 0= v=1,

(5.5) E(u*\Z, =2 V,=v)

n

={f{aut+l—a)av+l—av, (But+1—8)bv+1—0bv)}? |u|<1.
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As for the asymptotic behavior of Z, when # is very large, we have the following
statement in the case where {Z, ; n=0} is a Markov process.

Theorem 5.1. Assume that {Z,; n=0} is Markovian. If the inequality

n

(5.6) znngjlf E f(l—aaV, 1-86V,)>0
holds, then with probability 1, 71‘1_@0 Z,=0 or else Z,=0 for some n.
Proof. Since by Lemma 5.1
En(0; 2 V,)=E{f(1—adV, 1-bV,)}
and by using Jensen’s inequality
z2{Ef 1—aaV,, 1—-8bV,)}*
for each z=1, Proposition 3.2 can be applied to yield the theorem.

The condition (5.6) in Theorem 5.1 is clearly satisfied if £ (0, 0) >0, if it is not the case
a=b=a=g=1, or if sup E(V,)<1. Thus, in the rest of this section, it will be assumed
that ’{z_ﬁ Z,=0 or elsgzg(; with probability 1.

From Lemma 5.1, we have the conditional expectation of Z, as

(5.7) E {Z|Z,_,=2z V,=v}=(aau+tpBbv)vz

for n=1, z=0 and 0= v=1. Particularly, if (A0) is assumed, we have for each n=1

(5.8) m,=E(Z)= (aau+pbv)m,_ v,

and hence

(5.9) m,=my(aau+ pbov)" 11 v,
k=1

Also, by using (4.2), we have
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(5.10) u,=E (X)) =aum(aau+pbv)" " I u,
=1
(5.11) v,=E(Y,) = bvm(aau+pbv)" " I 4,
k=1
and by (4.3)
n—1
(5.12) w,=E(X")=um(aau+Bbv)""" kH Uy
=1
n—1
(5.13) v,=E(Y") =vm,(aaqu+pbv)""" ] v,
k=1

Since 0=4,=E (V,) <1 for all 221, the behavior of the preceding expectations will
depend primarily on the value of aau+Bbv (=4¢, say).

1) If ¢ <1, then m, will decrease to zero : mwzli_l}olo m,=0;

oo

2) If ¢=1, then m, will decrease to m, : 0Sm=m, Il y=m, ;

’

k=1
3) If $>1and 3, 4,>0, then m, will eventually increase to infinity : m =0 ;
k=1

4) If $>1and [I 4,=0, then there could be particular cases in which #, will grow in
k=1
the sigmoidal way.

We denote by U, the sub-¢ field generated by rv.’s {Z,, Z,, -, Z,}. Since {Z, ; nz
0} is a Markov chain on assuming (A0), we have

(5.14) - E{Z,|¥%, }=¢vz_,

by taking conditional expectations of both sides of (5.7). Therefore, if we set W,=Z,/m,
(W,=0 for the case m,=0) for n=0, {W,, A, ; n=0} is a nonnegative martingale with
E(W,)=1. Thus, the martingale convergence theorem applies to W,, yielding the follow-
ing theorem. Assume (A0) in the rest of this section.

Theorem 5.2. W, converges a.s. as n— to a nonnegative r.v. W with E(W) <1.

Corollary 1. If the sequence {m,; n=0} is bounded, then with probability 1, Z =0 for
some n.

This is an immediate consequence of Theorem 5.2 and the assumption that with
probability 1, im Z,=0 or oo.

By the corollary, Z, becomes almost surely extinct not only in the case ¢ =1 but also
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in the case where ¢ >1 and m, will grow to a finite value m,, like a logistic curve.
Using Theorem 5.2 as well as Lemma in Appendix for the relations (4.5) — (4.8), we
have the following

Corollary 2. Assume the conditions in Theorem 4.2. If the condition (4.4) holds,
then as n—

’ ’

2 ———uW as. and —— ——vW a.s.
mn—l mn—l

on the set {Z,—o}, and moreover,

X,

n

——auW as. and bW as.

m m

n—1"n n—1"n

on the set {Z,—, lim inf V ,>0}.

We have the following assertion concerning to whether W >0 should hold with positive
probability.

Theorem 5.3. Assume that f,,(1—, 1), f,(1—, 1) and f,,(1—, 1—) are finite. If
it holds that

2

1 <o agnd 3 iz<00,
0om, n=1 1,

Ms

(5.15)

il

n

then W, converges to W in the mean square sense and E(W)=1.
Proof. By Lemma 5.1 and the assumption (A0), we have

(5.16) E {(u*|Z,_ =2z}

=E{f((au+1—a)aV,+1—aV,, (Bu+1—p)bV,+1-bV,)}*

for each =1 and z=0. Hence, we have by twice differentiating both sides of (5.16) with
respect to # at =1

E{Z(Z,~1)|Z, =2}=¢"2(z~1)E(V})

+{a’d*f,,(1~, 1—) +2apabf,,(1—,1—) + B*0*f, (1—, 1—) }2E (V).
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Thus, we have

o'=Var(Z)=¢"E(VHE{Z_(Z,_,—1)}+m,—m]

+{a’d’f,,(1—,1-) +2apabf,,(1—,1-) + g°6°f(1~, 1-)}E(V))m,_,
and hence the recurrence relation for o} :
o'=a,5’ ,+8, for n=1
with a,= ¢°E (V?) and
B,={ Var (aaXpbY| Z=1) — (a’d’u+ B b*v) YE (VDY m,_,+ $’a’m] |+ m,

Such a recurrence relation can be easily solved, and we obtain that

a=34II a,+%H
k=1 j=k+1

where H =1. Thus, o’ is written as
j==n+1

on=a¢"UE V)

+myd™( Var (aaX{+BbY]| =1) ~ (a"d'u+ f5')) 2 47 fI YILE (VD)
k=1 j=1" j=k

n k-1 n n
T L0 O AR T O 7

j=k+1 =17 j=k+

Therefore, by putting G=1 and for n=1

"EVZ n 2
o fi ==,

J' 7

we have the expression

~

—1+c§

(X3

S
§N oqm

m, G,
1

+{ Var (aaX',+pbY | Z=1) — (a’*d’u + B*b*v) } C, 272——6'_
m 1%k—1

By putting



A Basic Stochastic Model of a Single-species Population Dynamics 47

2
C=lim C,= H{1+ Z}

n

we obtain under the condition (5.15) that 1= C <oo and that there exists a finite limit :

2 2
im0 - Lo
ne gy 0N "y
+—2—{E{(aaX’+ﬁbY) | Z=1}—(a’d’u+B°" S
(ﬁ n=0 mncn

Therefore, Var (W,) =¢’/m_ is bounded in #, and the martingale W, should converge in
the mean square sense to W. In particular, E (W) =lm E(W,)=1. The proof has been
completed.

It is easily shown that the condition (5.15) is satisfied if 3, @< 0 and if 4,>0 for all
n=1
n21 and either

(5.17) bm inf ¢u,>1
or
v 1
(5.18) ¢v,,:1+7+0( L) as m——00

for some y>1 and ¢>0. For the case where (5.17) holds, we have the relation : myx"<
m,<me", n=1 for some m{<m, and any x such that 1<x</lim inf ¢y, For another
case where (5.18) holds, we have the relation : Mn"<m, < M,n”, n=1 for some 0<M <

M,<co. Therefore, we have the following corollary of Theorem 5.2 and Theorem 5.3.

Corollary. Assume that f,,(1—, 1), f,(1~, 1) and f,,(1—, 1—) are finite and that
y,>0 for nz1 and Ea <oo, If it holds either (5 17) or (5.18) with y>1 and 6>0, then
Z,~Wm, a.s. as n-——>00 in which P(W >0)>0.

We could say under the assumptions of the Corollary that with positive probability, Z,
will grow to infinity as fast as an exponential function if (5.17) holds, or as »” if (5.18)
holds.
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6. Population dynamics with an independent mating system and stationary environ-
ments

Due to the assumptions (Al) — (A3) as well as the independent mating system (5.1),
we have had Lemma 5.1, and the process {Z, ; #=0} can be regarded as a BPRE with the
environmental process B={V, ; n=1} and the p.gf. g(u) of the conditional offspring
probability distribution under the given v (0=v=1) of V, which is given by

(6.1) &(u)=f(aut+l—a)av+1—av, (Bu+1-B)bo+1-bv), |u|=1.

If the environmental process {V, ; n=1} consists of independent and identically
distributed r.v.’s (this implies the assumption (A0)), the Smith-Wilkinson model (1969)
applies to the process {Z, ; n=0}. More generally, in what follows, we will assume that
the environmental process is a stationary and ergodic process. For such a case, the
Athreya-Karlin model (1971) applies to the process {Z, ; n=0}.

Set ¢ = aau + Fbv again and
N Z,
W, ==
4811V,
where W,,ZO if the denominator is zero. Denote by %,, the sub-o field generated by the
rv.’s {Z, V,.,; k=n}. Since we have by (5.7)

(6.2) E{Z|%_ =9V, Z_, as.,

{W,, §,; n=1} is a nonnegative martingale with E {W,|B}=1 as.. Therefore, W,
converges almost surely to a nonnegativer.v. W and E {W |B}<1. Let =P (Z,=0 for
some nlco%) and define a probability distribution {p,(;) ; 720} for any v(0<v=<1) by
&) =3 p,() #, |lu|<1. Since the expectation of the conditional offspring distribution
under tf;:o given value v of V,, is equal to g/,(1—) = ¢v, we can state the following results
immediately after applying the theorems obtained by Athreya and Karlin (1971 ; see also
Chapter VI in Athreya and Ney, 1972).

a) P(lim Z,=0or ©)=1;

b) P('(}:l):Oorl;

c) If log $=—E(log V), then P(§=1)=1;

d) If log $>—E(log V,) and aaf,(1—aa, a—Bb) + Bbf,(1—aa, 1—Bb) >0, then P(§=
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D=0;

e) If besides the conditions in d), E{% S v () log j}<o, then E {W|B}=1 as.
- i=2

and P(W=0|8)=4 as. o

In particular, under the conditions of the last statement e), we have P (lim Z,=) >
0 and Z,~ZW¢"II V, as. on the set {lim Z,=}.
k=1

7. Population dynamics with an independent mating system and non-random environ-

ments

Suppose that each r.v. V, is degenerate at , for all z=1. Then, the process {Z, ; n=
0} can be regarded as a BPVE, and by Lemma 5.1, the offspring p.g.f. in the #-th generation

is given by
(1.1) eg(w) =f((au+1—a)ay,,,+1—av,,,, (But+l1—pB) by, ,+1—by,,,), |u| =1

Let Z=1. It is shown by Lindvall (1974) that lz_.ri'to Z,= 7, exists a.s. where 0= Z < o0,
In particular, since the condition (A0) is clearly santisfied, P(Z,=0 or o0)=11if (0, 0) >
0, (1—aa) (1—pb) >0, or sup V,<1.

For the present process {Z, ; =0}, it is easily shown that the Conditions A and B in
the paper by the author (1980) can be satisfied if

(7.2) bim v,=v>0, apfab(l—aav)(1—p£bv)+0
and
(7.3) P(X/+Y{s1|Z=1) <L

Under these conditions, we can apply the Theorems 4.2 and 4.3 obtained for BPVE in the
above paper to yield some results for the extinction time 7" of the process {Z, ; n=0}.
The extinction time T is defined as T =min {n : Z,=0} if Z,=0 for some #, or otherwise
T =co. In the following statements, “a,><5,” means that K <a,/b,<K, holds for all
sufficiently large » with some 0< K = K, <00,

a) If gv<land 3|u,—v| <o, then P(T >n)~(g$v)" as n—>0 ;
b) If ¢y,=1+6,/n and Ay=d,=A, for all large » with some A;=A,<1, then
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5

=P(T>n) é"—TAl—, n=1
n
with some positive constants B, and B ;
¢) If, in particular, ¢ V,=1+1/# for all large #n, then P(T >n)=<1/log n as n— ;
d If qu,,Zl—H)‘n/n7 for all large » with y>1 and with a bounded sequence {d,}, then

P(T>n)=1/n as n—>0.

Thus, P (T <o) =1 for the cases a) —d), while E (T") <o in the case 1) or b) with A<
0, and E (T) =00 in the case b) with A;=0, ¢) or d). We next take a positive constant %
so that it satisfies the inequality

%gué{ Var (aaX[+BbY]| Z=1) — (a’d’u+Bb°v)}

if Var(aaX/+pbY||Z=1)>a’a’u+p°b"v, or that h=1 if otherwise. Then, we have a

lower bound for the survival probability :

1381

= > —S -yt
P(T 00)_{1+hn§:‘,lmn} ,
in which m,=m¢" 2, y. Therefore,
k=1
e) If ¢u, =y for all n=1 with y>1, then
h(y—1)
—oo) 2—Y T,
PAT =) 2 G-

8. Some ecological comments

a) In the present model, we are interested in a certain population of single-species co
-existing with populations of many other species. The interactions between an individual
of the species and any individual of other species, together with physical or chemical
conditions, are considered as factors of the environment for individuals of the species.
Moreover, though any direct interactions between individuals of the same species are not
taken into account, the individuals of the species could have some effects on the environ-
ment, which in turn are considered as factors of the environment. Thus, since there could
be many factors of the environment, the environment is, as a whole, considered as being
random.

b) In the assumption (A2), a difference between @ and & stands for a difference of

fitnesses to the environment of daughters and sons. In assumptions (Al)-(A3), the
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functions f (7, s) and ¢ (# ; x, y) as well as constants ¢ and & are considered as being
peculiar to the species and irrelevant to the generations and the environments.

¢) The assumption (A0) will imply assuming that the population will develop without any
density-dependence in itself. The assertions deduced without assuming (A0), e.g. Proposi-
tion 4.1 and Theorem 4.2, etc., are valid for some density-dependent populations. Also, it
should be noticed that we do not assume (A0) in the section 6 but instead the stationarity
and ergodicity of the environmental sequence.

d) In the section 5, ¢ = aau -+ Bbv could be regarded as expressing a fitness of the species.
In the case in which the decrease of the expectation v, is due to the increase of the
pupulation size, the sigmoidal curve (e.g. logistic curve) of the mean population sizes
should reflect, though indirectly, the density-dependence of the population. In addition,
the fact that the population will almost surely be extinct in such a case that the mean
population sizes will be bounded (Corollary 1 of Theorem 5.2) seems to explain the well
-known oscillatory behavior of the population size by thinking that a few individuals could
survive in a natural population even if no individuals could be observed for us.

e) Theorem 5.3 suggests that a population consisting of prolific individuals has a chance
of an eternal growth in the environments whose fluctuations will eventually be negligible.
f) In the statements c), d) and e) in the section 6, the value —E (log V) depends mainly
on the probability that V] takes values close to zero. Thus, the statements would imply
that it is necessary and nearly sufficient in order to be never extinct in stationary and
ergodic environments that the fitness of the species must be well enough against the worst

probable condition of the environment.

Appendix

Lemma. Let {N,; n=1} be a sequence of positive integer-valued v.v.’s such that N,

—00 a.5. as n—>0 and {V, ; n=1} be any sequence of r.v’s. Let (X ;iz1}, n=1,

be a family of mutually conditionary independent v.v.’s under the given N, and V,.
Assume that

(A.1) E {X"|N,V,}=0 as.
for each n=1 and i=1 and that therve exists a constant ¢ >0 such that

(A.2) Var (X |N,V,)<c as.
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for all n21 and i=1.
Then, a) it holds that

N, . —00
Alf S X050 in probability.
ni=1

b) If, besides the above conditions, it holds that

hed 1
(A3) S E () <o,
then it holds that
N, —
ZX,,(') Uik a.s.

n i=1

Since it is not sure for the author whether the assertions of Lemma are already well

known, a proof will be given here.

Proof. a) Define U, for n=1 by

U,=—L3x¥
n Nn = n

Since

1 L i )
E(U)=E{{rZ SEXX)IN,V,})
n i=1j=
N
= {3 SE(X)IN, V)
n i=1
ZcE( 1\17,, )

by (A.2), we have by Chebyshev’s inequality that

P<|U,,|>e>g—e"rE<A1, )

for all =1 and any ¢>0. By the assumptions that N,—>© a.s., we have that U,—0 in
.probability as n——co,
b) Since by the condition (A.3),

E(§1Uf)§c §E(
n= n=1
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it holds that SU’< a.s., and hence that U,—0 as.
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