Operating functions on multipliers for Jacobi and Laguerre expansions

Yuichi KANJIN*) and Enji SATO**)
(Received April 25, 1995)

1. Introduction

Let **T** be the unit circle, and $L^p(\mathbf{T})$ the L^p space on **T** for $1 . Let <math>1 \le p$, $q \le \infty$. Also let $m = \{m_n\}_{n=-\infty}^{\infty}$ be a bounded sequence. We define a multiplier operator T_m for Fourier series

$$T_{m}g \sim \sum_{-\infty}^{\infty} m_{n}\hat{g}(n) e^{int}$$
.

We call m a (p,q)-multiplier for Fourier series if $\|T_mg\|_q \le C \|g\|_p$ for all $g \in L^p(\mathbf{T})$. Let $M^t(p,q)$ be the set of all (p,q)-multipliers $m=\{m_n\}$. Also let A and B be the function spaces on the integer group \mathbf{Z} , and Φ a function on [-1,1]. We say that Φ operates from A to B (if A=B, we simply say that Φ operates on A) if $\Phi(f) \in B$ for $f \in A$ such that $f(\mathbf{Z}) \subset [-1,1]$. Igari-Sato[IS] studied the operating functions on $M^t(p,q)$ (we also call Φ an operating function on $M^t(p,q)$), and characterized the operating functions on $M^t(p,q)$ for $1 \le p < 2 \le q \le \infty$, that is:

Theorem 1([IS]).

- (I) Let $1 \le p < \infty$ and Φ_0 be a function in [-1, 1]. Assume that Φ_0 is bounded near the origin if p=1 or $q=\infty$ and uniformly bounded in [-1, 1] if p>1.
- (i) Suppose $1 \le p < q < 2$ or $2 \le p < q \le \infty$. Let $\beta_0 = (1/q 1/2)/(1/p 1/q)$ or (1/2 1/p)/(1/p 1/q) respectively and n_0 be the smallest integer such that $n_0 \ge \beta_0$. Then for any constants $\alpha_1, \alpha_2, \dots, \alpha_n$

$$\Phi(t) = \alpha_1 t + \alpha_2 t^2 + \dots + \alpha_n t^{n_0} + |t|^{\beta_0 + 1} \Phi_0(t)$$

^{*)} Department of Mathematics, College of Liberal Arts, Kanazawa University, Kanazawa, 920-11 IAPAN

^{**)} Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata, 990 JAPAN

operates on $M^{t}(p, q)$.

(ii) Suppose $1 \le p < 2 \le q \le \infty$. Let $\beta_1 = \min \{ (1/2 - 1/q)/(1/p - 1/2), (1/p - 1/2)/(1/2 - 1/q) \}$. Then for any constant α

$$\Phi(t) = \alpha t + |t|^{\beta_1 + 1} \Phi_0(t)$$

operates on $M^{t}(p, q)$.

(II) Let $1 \le p < 2 \le q \le \infty$ and Φ be a function in [-1, 1]. If Φ operates on $M^t(p, q)$, then Φ is of the form that $\Phi(t) = \alpha t + |t|^{\beta_t} \Phi_0(t)$, where α is a complex number and β_1 is the number given in (I), and Φ_0 is a function in [-1, 1] bounded near the origin if p = 1 or $q = \infty$ and uniformly bounded in [-1, 1] if p > 1.

Also Igari-Sato[IS] showed that (I) in the above theorem holds for general orthogonal polynomial expansions.

In this paper, we shall investigate operating functions on (p, q)-multipliers for Jacobi and Laguerre expansions. Is §2, we shall prove an analogue of Theorem 1 for (p, q)-multipliers for Jacobi expansions by the relation between Jacobi expansions and trigonometric expansions. In §3, we shall characterize the operating functions on (p. 2)-multipliers for Laguerre expansions by Kanjin-Sato[KS] and the estimates of Laguerre polynomials (cf. [T]).

2. Operating functions on multipliers for Jacobi expansions

Let $\alpha \ge \beta \ge -\frac{1}{2}$, and $1 , let <math>d\mu(x) = (1-x)^{\alpha} (1+x)^{\beta} dx$. Also let $P_n^{(\alpha,\beta)}(x)$ by the Jacobi polynomial of degree n, that is,

$$(1-x)^{\alpha}(1+x)^{\beta}P_{n}^{(\alpha,\beta)}(x) = \frac{(-1)^{n}}{2^{n}n!} \frac{d^{n}}{dx^{n}} [(1-x)^{n+\alpha}(1+x)^{n+\beta}].$$

These are orthogonal polynomials with respect to $d\mu$ on (-1, 1), and

$$\int_{-1}^{1} \left[P_{n}^{(\alpha, \beta)}(x) \right]^{2} d\mu(x)$$

$$=\frac{2^{\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{(2n+\alpha+\beta+1)\Gamma(n+1)\Gamma(n+\alpha+\beta+1)}(=[h_n]^2).$$

Putting $\phi_n^{(\alpha,\,\beta)}(\theta) = h_n P_n^{(\alpha,\,\beta)}(\cos\theta) \left(\sin\frac{\theta}{2}\right)^{\alpha+\frac{1}{2}} (\cos\frac{\theta}{2})^{\beta+\frac{1}{2}} 2^{\frac{\alpha+\beta+1}{2}}, \quad \{\phi_n^{(\alpha,\,\beta)}(\theta)\}_{n=1}^{\infty} \text{ is a complete orthonormal system with respect to the Lebesgue measure $d\theta$ on $(0,\,\pi)$. Moreover,$

$$\phi_n^{(-\frac{1}{2}, -\frac{1}{2})}(\theta) = \sqrt{\frac{2}{\pi}} \cos n\theta (n \ge 1), \ \phi_0^{(-\frac{1}{2}, -\frac{1}{2})}(\theta) = \sqrt{\frac{1}{\pi}}.$$

The system $\{\phi_n^{(\alpha,\beta)}\}_{n=0}^{\infty}$ leads to the formal expansion of a function $f(\theta)$ on $(0,\pi)$:

$$f(\theta) \sim \sum_{n=0}^{\infty} a_n \phi_n^{(\alpha, \beta)}(\theta),$$

where $a_n = \int_0^{\pi} f(\theta) \phi_n^{(\alpha, \beta)}(\theta) d\theta$.

Definition 1. Let $\Lambda = \{\lambda_n\}_{n=0}^{\infty}$ be a bounded sequence. We define a multiplier operator $T_{\Lambda} (=T_{\Lambda}^{(\alpha,\beta)})$ for the system $\{\phi_n^{(\alpha,\beta)}\}$ by

$$T_{\Lambda}f(\theta) \sim \sum_{n=0}^{\infty} \lambda_n a_n \phi_n^{(\alpha, \beta)}(\theta)$$

for $f(\theta) \sim \sum_{n=0}^{\infty} a_n \phi_n^{(\alpha,\beta)}(\theta)$. Let $1 . We call <math>\Lambda$ a (p, q)-multiplier for the system $\{\phi_n^{(\alpha,\beta)}\}_{n=0}^{\infty}$ if $\|T_{\Lambda}f\|_q \le C \|f\|_p$ for f in $L^p(0,\pi)$. We denote by $M^J(p,q)$ the set of all (p, q)-multipliers for the system $\{\phi_n^{(\alpha,\beta)}\}_{n=0}^{\infty}$. Then we obtain the following:

Theorem 2. Let 1 .

- (I) Let $1 and <math>\Phi_0$ be a function in [-1, 1]. Assume that Φ_0 is uniformly bounded in [-1, 1].
- (i) Suppose $1 or <math>2 \le p < q < \infty$. Let $\gamma_0 = (1/q 1/2)/(1/p 1/q)$ or (1/2 1/p)/(1/p 1/q) respectively and n_0 be the smallest integer such that $n_0 \ge \gamma_0$. Then for any constants $\alpha_1, \alpha_2, \cdots, \alpha_m$

$$\Phi(t) = \alpha_1 t + \alpha_2 t + \dots + \alpha_{n_0} t^{n_0} + |t|^{n_0+1} \Phi_0(t)$$

operates on $M^{J}(p, q)$.

Suppose $1 . Let <math>\gamma_1 = \min \{ (1/2 - 1/q)/(1/p - 1/2), (1/p - 1/2)/(1/2 - 1/q) \}$. Then for any constant α

$$\Phi(t) = \alpha t + |t|^{n+1} \Phi_0(t)$$

operates on $M^{J}(p, q)$.

(II) Let $1 and <math>\Phi$ be a function [-1, 1]. If Φ operates on $M^{J}(p, q)$, then Φ is of the form that $\Phi(t) = \alpha t + |t|^n \Phi_0(t)$, where α is a complex number and γ_1 is the number given in (I), and Φ_0 is uniformly bounded in [-1, 1].

It is sufficient for the prooof of Theorem 2 to show Theorem 2(II). For this proof, we prepare some lemmas.

Lamma 1([A]). Let $1 , <math>\alpha$, β , γ , $\delta \ge -\frac{1}{2}$. Let $T_{(\gamma, \delta)}^{(\alpha, \beta)}$ be the transplantation operator defined by

$$T_{(\gamma,\delta)}^{(\alpha,\beta)}f(\theta) \sim \sum_{n=0}^{\infty} a_n \phi_n^{(\gamma,\delta)}(\theta)$$

for $f(\theta) \sim \sum_{n=0}^{\infty} a_n \phi_n^{(\alpha,\beta)}(\theta)$. Then,

$$C_1 \| f \|_p \le \| T_{(\gamma,\delta)}^{(\alpha,\beta)} f \|_p \le C_2 \| f \|_p$$

for $f \in L^p(0, \pi)$.

By this lemma, it is sufficient to prove Theorem 2(II) for $\alpha = \beta = -\frac{1}{2}$.

Now let L^p_{cos} be the set of all $f \in L^p(\mathbf{T})$ such that f is even. Also let $M^c(p, q)$ be the set of all (p, q)-multipliers $\{\widehat{T}(n)\}_{n=0}^{\infty}$ associated with T which is bounded linear operator from L^p_{cos} to L^q_{cos} such that $(Tf)^{\Lambda}(n) = \widehat{T}(n)\widehat{f}(n)$ $(n=0, 1, 2, \cdots)$ for any $f \in L^p_{cos}$. Then by Theorem 1 it is sufficient to prove that whenever Φ is an operating function on $M^c(p, q)$, Φ is an operating function on $M^c(p, q)$.

Lemma 2. For $f \in L_{cos}^p$, let \tilde{f} be the conjugate function of f. Then

$$||f||_{p} \le ||f \pm i\tilde{f}||_{p} \le C ||f||_{p}$$

for some C>0, where C is independent of f.

Proof. Putting $F(\theta) = f(\theta) + i\tilde{f}(\theta)$, $F(-\theta) = f(\theta) - i\tilde{f}(\theta)$ since $f \in L^p_{cos}$. Then $\|f + i\tilde{f}\|_p = \|f - i\tilde{f}(\theta)\|_p$. Hence, we obtain by Riesz's Theorem ([K]) that

$$\begin{split} 2 & \| f \|_{p} = \| f + i \tilde{f} + f - i \tilde{f} \|_{p} \\ \leq 2 & \| f + i \tilde{f} \|_{p} \leq C \| f \|_{p} \end{split}$$

for some C > 0. Q. E. D.

Proposition 1. Let Φ be a function on [-1, 1]. If Φ operates on $M^c(p, q)$, then Φ operates on $M^t(p, q)$.

Proof. Let $\{\lambda_n\}_{n=-\infty}^{\infty} \in M^t(p,q)$ such that $\{\lambda_n\}_n \subset [-1,1]$. By Lemma 2 and Riesz's

Theorem,

$$\begin{split} \| \sum_{n=0}^{\infty} \lambda_n a_n \cos n\theta \|_q &\leq C \| \sum_{n=0}^{\infty} \lambda_n a_n \cos n\theta + i \sum_{n=0}^{\infty} \lambda_n a_n \sin n\theta \|_q \\ &= C \| \sum_{n=0}^{\infty} \lambda_n a_n \exp(in\theta) \|_q \leq C \| \sum_{n=0}^{\infty} a_n \exp(in\theta) \|_p \\ &\leq C \| \sum_{n=0}^{\infty} a_n \cos n\theta \|_p, \end{split}$$

where C>0 is independent of $\{a_n\}_n$. Hence $\{\lambda_n\}_{n=0}^{\infty} \in M^c(p, q)$. Also $\{\lambda_{-n}\}_{n=1}^{\infty} \in M^c(p, q)$. Thus $\{\Phi(\lambda_n)\}_{n=0}^{\infty} \in M^c(p, q)$ and $\{\Phi(\lambda_{-n}\}_{n=1}^{\infty} \in M^c(p, q)\}$. By Lemma 2,

$$\|\sum_{n=-\infty}^{\infty} \Phi(\lambda_n) a_n \exp(in\theta)\|_q$$

$$= \|\sum_{n=-\infty}^{-1} \Phi(\lambda_n) a_n \exp(in\theta) + \sum_{n=0}^{\infty} \Phi(\lambda_n) a_n \exp(in\theta)\|_q$$

$$= \|\sum_{n=-\infty}^{-1} \Phi(\lambda_n) a_n \cos n\theta + i \sum_{n=-\infty}^{-1} \Phi(\lambda_n) a_n \sin n\theta$$

$$+ \sum_{n=0}^{\infty} \Phi(\lambda_n) a_n \cos n\theta + i \sum_{n=0}^{\infty} \Phi(\lambda_n) a_n \sin n\theta\|_q$$

$$\leq \|\sum_{n=1}^{\infty} \Phi(\lambda_{-n}) a_{-n} \cos n\theta - i \sum_{n=1}^{\infty} \Phi(\lambda_{-n}) a_{-n} \sin n\theta\|_q$$

$$+ \|\sum_{n=0}^{\infty} \Phi(\lambda_n) a_n \cos n\theta + i \sum_{n=0}^{\infty} \Phi(\lambda_n) a_n \sin n\theta\|_q$$

$$\leq C (\|\sum_{n=1}^{\infty} a_{-n} \cos n\theta\|_p + \|\sum_{n=0}^{\infty} a_n \cos n\theta\|_p)$$

$$\leq C (\|\sum_{n=1}^{\infty} a_{-n} \exp(-in\theta)\|_p + \|\sum_{n=0}^{\infty} a_n \exp(in\theta)\|_p)$$

$$\leq C \|\sum_{n=-\infty}^{\infty} a_n \exp(in\theta)\|_p.$$

Therefore

$$\{\Phi(\lambda_n)\}_{n=-\infty}^{\infty} \in M^t(p,q).$$

Q. E. D.

3. Operating functions on multipliers for Laguerre expansions

Let $L_n^{\alpha}(x)$, $\alpha > -1$, be the Laguerre polynomial of degree n and of order α defined by

$$L_n^{\alpha}(x) = \frac{e^x x^{-\alpha}}{n!} \left(\frac{d}{dx}\right)^n \left(e^{-x} x^{n+\alpha}\right)$$

and let

$$\mathcal{L}_{n}^{\alpha}(x) = \sqrt{\frac{\Gamma(n+1)}{\Gamma(n+\alpha+1)}} L_{n}^{\alpha}(x) e^{-\frac{x}{2}x^{\frac{\alpha}{2}}}.$$

Then the Laguerre function system $\{\mathcal{L}_n^{\alpha}\}_{n=0}^{\infty}$ is a complete orthonormal system on the interval $(0,\infty)$ with respect to the ordinary Lebesgue measure dx. This orthogonal system leads us the formal expansion of a function f(x) on $(0,\infty)$:

$$f \sim \sum_{n=0}^{\infty} \hat{f}(n) \mathcal{L}_{n}^{\alpha}(x),$$

where $\hat{f}(n)$ is the n-th Laguerre coefficient of order α of f(x) defined by

$$\hat{f}(n) = \int_0^\infty f(x) \, \mathcal{L}_n^{\alpha}(x) \, dx.$$

For p>1 we denote by $L^p(0, \infty)$ the Lebesgue space of all measurable functions f(x) on $(0, \infty)$ such that

$$||f||_{p} = \{\int_{0}^{\infty} |f(x)|^{p} dx\}^{\frac{1}{p}} < \infty.$$

Let $a = \{a(n)\}_{n=0}^{\infty}$ be a bounded sequence. We define a multiplier operator T_a for the system $\{\mathcal{L}_n^{\alpha}\}$ by

$$T_a f(x) \sim \sum_{n=0}^{\infty} a(n) \hat{f}(n) \mathcal{L}_n^{\alpha}(x)$$

for a function f(x) on $(0,\infty)$. Let 1 < p, $q < \infty$. We call a (p,q)-multiplier for the system $\{\mathcal{L}_n^\alpha\}$ if $\|T_\alpha f\|_q \le C \|f\|_p$ for f in $L^p(0,\infty)$. We denote by $M_\alpha(p,q)$ the set of all (p,q)-multiplier for system $\{\mathcal{L}_n^\alpha\}$. We define $\|\alpha\|_{M_\alpha(p,q)} = \|T_\alpha\|_{p,q}$, where $\|T_\alpha\|_{p,q}$ is the (p,q)-multiplier operator norm of T_α .

Definition 2. Let 1 < p, q, r, $s < \infty$. A function Φ on [-1, 1] is said to operate from $M_{\alpha}(p, q)$ to $M_{\alpha}(r, s)$ (when p = r, q = s, we simply say that Φ operates on $M_{\alpha}(p, q)$), if $\{\Phi(\alpha(n))\} \in M_{\alpha}(r, s)$ for every $a = \{a(n)\} \in M_{\alpha}(p, q)$ such that $\{a(n)\} \subset [-1, 1]$.

Theorem 3. Let $\alpha \ge 0$. Also Let $\frac{4}{3} and <math>\Phi$ be a function on [-1, 1], where $\frac{1}{p} + \frac{1}{p'} = 1$. Then Φ operates from $M_{\alpha}(p, 2)$ to $M_{\alpha}(p, q)$, if and only if,

$$\Phi(t) = |t|^{\beta} \Phi_0(t),$$

where $\beta = (1/p - 1/q)/(1/p - 1/2)$ and Φ_0 is a bounded function.

Corollary. Let $\frac{4}{3} , and <math>\Phi$ a function on [-1, 1]. Then Φ operates on $M_{\alpha}(p, 2)$, if and only if,

$$|\Phi(t)| < C |t|$$

for all $t \in [-1, 1]$ with some C > 0.

Since Kanjin[Kj] shows $M_{\alpha}(p, q) = M_{0}(p, q)$, it is sufficient to prove Theorem 3 for the case $M_{0}(p, q)$.

The proof of Theorem 3. Let $\Phi(t) = |t|^{\beta} \Phi_0(t)$, where β , Φ_0 are in Theorem 3. Then by the same method to the proof of [IS; Theorem 1] we shall show that Φ operates from $M_{\alpha}(p,2)$ to $M_{\alpha}(p,q)$. We remark that if $\{a(n)\} \in M_{\alpha}(p,2)$, and $\{a(n)\} \subset [-1,1]$, then $\{a(n)\} \in M_{\alpha}(2,p')$ by duality. We note that a bounded sequence $a = \{a(n)\}$ is in $M_{\alpha}(2,2)$. Then by Parseval's equality,

(1)
$$||TS_a||_{p, 2} \le ||a(.)||_{l^*} ||T||_{p, 2},$$

where T is a multiplier operator for Laguerre expansion associated with a (p, 2)-multiplier $\{\hat{T}(n)\}$ and S_a a multiplier operator for Laguerre expansion associated with a (2, 2)-multiplier $a = \{a(n)\}$. Moreover, we obtain that

(2)
$$\|T^{2}S_{a}\|_{p, p'} \leq \|a(.)\|_{l^{\infty}} \|T\|_{p, 2}^{2}.$$

Next for $0 \le \text{Re}z \le 1$, we define R_z by

$$\mathbf{R}^{z}(n) = (\operatorname{sign}\widehat{T}(n)) \mid \widehat{T}(n) \mid^{z} \Phi_{0}(\widehat{T}(n)) \widehat{T}(n).$$

Then by (1),

(3)
$$\| \mathbf{R}^{iy} \|_{p, 2} \leq \| \Phi_0(.) \|_{l^*} \| T \|_{p, 2}.$$

Also by (2),

$$\| \mathbf{K}_{I+i\lambda} \|^{p, \, b, \, \zeta} \leq \| \Phi^{0}(\cdot) \|^{l_{-}} \| \mathbf{L} \|^{\frac{p}{p, c}}.$$

Thus by (3) and (4),

(5)
$$\|\mathbf{R}^{\theta}\|_{p,q} \le \|\Phi_0(.)\|_{p,q} \le \|\Phi_0(.)\|_{p,q} \|T\|_{p,q} \|T\|_{p,q}$$

where $\frac{1}{q} = \frac{1-\theta}{2} + \frac{\theta}{\varphi}$, that is, $1+\theta = \beta$. Also we obtain that

$$\mathbf{R}^{\theta}(n) = \operatorname{sign}(\hat{T}(n)) | \hat{T}(n) | ^{\theta}\Phi_{0}(\hat{T}(n)) \hat{T}(n)$$

$$= | \hat{T}(n) | ^{\theta+1}\Phi_{0}(\hat{T}(n)),$$

Next we show the converse of the above statement. First we use the following: Hence, Φ operates from $M_{\alpha}(p, 2)$ to $M_{\alpha}(p, q)$. that is, $\mathbf{R}^{\theta}(n) = \Phi(\hat{T}(n))$.

Proposition 2([KS]) Let $\Gamma = {}^{\infty}_{1} \gamma_{1} = {}^{\infty}_{1} \gamma_{2} = {}^{\infty}_{1} \gamma_{1} = {}^{\infty}_{1} \gamma_{2} =$

(1) Let $a \ge 0$. Suppose $1 . If <math>\Gamma$ is a (p, q)-multiplier for Fourier series,

then Γ^{\dagger} is a (p,q)-milliplier for Laguerre expansions of order a.

(3) Let $-1 < \alpha < 0$. If $(1 + \frac{\alpha}{2})^{-1} < \beta \le 2 \le q < -\frac{2}{\alpha}$, then the assertion of (1) remains true

denote $\Lambda^+ = \{\lambda_n\}_{n=0}^{\infty}$ the (p, q) multiplier for Laguerre expansions corresponding to Λ . In Proposition 2, when $\Lambda = \{\lambda_n\}_{n=-\infty}^{\infty}$ is a (p, q)-multiplier for Fourier series, we

exists $\Lambda_m \in \mathbb{M}^1(\mathfrak{p}, \mathfrak{D})$ such that $\|\Lambda_m\|_{M^1(\mathfrak{p}, \mathfrak{D})} < \frac{1}{n_1^{11}}$ and $\|\Phi(\Lambda_m^+)\|_{M_0(\mathfrak{p}, \mathfrak{q})} > m$. Then we may assume that the multiplier operator $T_m = T_{\Lambda_m}$ associated with Λ_m is a trigonometric **Proof.** We assume that the conclusion is negative. For any integer $m \ge 1$, there $\| \mathcal{N}_{b,(p,q)} \leq C$

Lemma 3. There exist C, $\eta > 0$, such that whenever $\| \Lambda \|_{M^{s}(p,2)} < \eta$, then $\| \Phi(\Lambda^+) \|$

by using D_N , we see that there exists an absolute constant C_p such that for any Npolynomial. In fact, let D_N be the Dirichlet kernel of order M for Fourier series. I hen

$$\|V_N^{u}\|_{W_{\tau}(b',S)} \leq \frac{u}{C^{\frac{b}{b}}}$$

sufficiently large N such that order α (cf. [AW]). By using D_N^0 and $\|\Phi(\Lambda_m^+)\|_{M_0(J_N,q)} > m$, we see that there exists where $\Lambda_m^N = \{\lambda_n\}_{n=-N}^N$. Also let D_N^α be the Dirichlet kernel for Laguerre expansions of

$$\| \{\Phi(\lambda_n)\}_{n=0}^N \|_{M_0(p,q)} > \frac{m}{2}$$

for $\frac{4}{3} (cf. [AS]). Hence, we may assume that the multiplier operator <math>T_m$ associated with Λ_m is a trigonometric polynomial.

Now we choose natural numbers $\{n_m\}$ such that for $\Gamma_m = \{\lambda_{n+n_m}\}$ are pairwise disjoint. Putting $\Lambda = \sum_{m=1}^{\infty} \Lambda_m$, $\Lambda \in M^t(p, 2)$. Here, by Proposition 2, we obtain $\Phi(\Lambda^+) \in M_0(p, q)$. Then there exist $\{N_m\}$ such that

$$\Phi(S_m^+) = \Phi(T^+) (D_{n_m+N_m}^0 - D_{n_m-1}^0),$$

where $\Phi(S_m^+)$ is a multiplier operator associated with $\Phi(\Gamma_m^+)$, and $\Phi(T^+)$ a multiplier operator associated with $\Phi(\Lambda^+)$. Thus we obtain that

This is a contradiction. Q. E. D.

We continue the proof of Theorem 3. Now by Proposition 2, Lemma 3, and $\|D_N\|_{M^1(p,2)} \le N^{\frac{1}{p}-\frac{1}{2}}$ (cf. [E]), we see that there exists C>0 such that

$$\| \{\Phi(1/CN^{(1/p-1/2)})\}\|_{n=0}^{N} \|_{M_0(p,q)} \le C.$$

Then

$$\|\Phi(1/(CN^{(1/p-1/2)})\|\|D_N^0\|_q \le C\|D_N^0\|_p$$

where $D_N^0 = \sum_{n=0}^N \mathcal{L}_n^0$. Here, by

$$\sum_{n=1}^{N} \mathcal{L}_{n}^{0}(x) = \sqrt{N+1} \, \mathcal{L}_{N}^{1}(x) \, x^{-\frac{1}{2}}$$

and [T; Lemma 1. 5. 4],

$$\|D_N^0\|_p \sim N^{\frac{1}{p'}}$$
 $(\frac{4}{3}$

Thus we obtain

$$|\Phi(t)| \le C |t|^{(1/p-1/q)/(1/p-1/2)}$$

for all $t\in[-1,1]$. Then it is sufficient to prove that Φ is bounded. In fact, we assume that Φ is unbounded. Then there exist t_0 and $\{t_n\}$ such that $|t_n-t_0|<4^{-n}$ and $|\Phi(t_n)|>n$ for all $n\geq 1$. Defining $E=\{2^k\}_{k=1}^\infty$, we have $\chi_E\in M_0(p,2)$ by Proposition 2. Let $\Lambda=t_0\chi_E+\Sigma_{n\in E}(t_n-t_0)\chi_{\{n\}}$. Since

(cf. [T]), we obtain $\Lambda \in M_0(p, 2)$. Hence, we have $\Phi(\Lambda) \in M_0(p, q)$. Here, by

$$\|\Phi(\lambda_n)\| \|\mathcal{L}_n^0\|_{p,q} = \|\{\Phi(\lambda_k)\}_{k=1}^n - \{\Phi(\lambda_k)\}_{k=1}^{n-1}\|_{M_0(p,q)},$$

where $\Lambda = \{\lambda_k\}$, we have

$$\|\Phi(\lambda_n)\| \|\mathcal{L}_n^0\|_{p,q} \le C \|\Phi(\Lambda)\|_{M_0(p,q)}$$

with some C > 0. Moreover,

$$\|\mathcal{L}_{n}^{0}\|_{p,q} \ge \|\mathcal{L}_{n}^{0}\|_{q} / \|\mathcal{L}_{n}^{0}\|_{p} \sim n^{(1/q-1/p)}$$

and $\lambda_n = t_n \ (n \in E)$. Then

$$C \| \Phi(\Lambda) \|_{M_p(p,q)} \ge n^{1-(1/p-1/q)} \ (n \in E).$$

By 1-(1/p-1/q)>0, this is a contradiction. Q. E. D.

References

- [A] R. Asky, A transplantation theorem for Jacobi series, Illinois J. Math. 13 (1969), 583-590.
- [AW] R. Asky and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer J. Math. 87 (1965), 695-708.
- [E] R. E. Edwards, Furier series, a Modern Introduction, Springer 1982.
- [IS] S. Igari and E. Sato, Operating functions on Fourier multipliers, Tôhoku Math. J. 46 (1994). 357-366.
- [K] Y. Katznelson, An introduction to Harmonic Analysis, Dover Publications, Inc. New York 1968.
- [Kj] Y. Kanjin, A transplantation theorem for Laguerre expansions, Tôhoku Math. J. 43 (1991), 537-

555.

- [KS] Y. Kanjin and E. Sato, The Hardy-Littlewood theorem on fractional integration for Laguerre series, Proc. Amer. Math. Soc. 123(1995), 2165-2171.
- [T] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, Princeton University Press, 1993.