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1. Introduction

Let T be the unit circle, and L*(T) the L? space on T for 1<p<co. Let 1<p, g<oo.
Also let m= {m,},___, be a bounded sequence. We define a multiplier operator T, for
Fourier series

int

mg~2 m,g(n)e™.

We call m a (p, q)-multiplier for Fourier series if | T, 2| <Clgl,forall geL?(T). Let
M'(p, q) be the set of all (p, q)-multipliers m= { m,} . Alsolet A and B be the function
spaces on the integer group Z, and @ a function on [—1, 1]. We say that ® operates from
Ato B (if A=B, we simply say that ® operates on A) if @ (f) € B for f € A such that f (Z)
c[—1,1]. Igari-Sato[IS] studied the operating functions on M*(p, q) (we also call ® an
operating function on M*(p, ¢)), and characterized the operating functions on M*(p, q) for
1<p<2<g<o, that is:

Theorem 1([IS]).
(1) Let 1<p <0 and @, be a function in [—1, 1). Assume that ®, is bounded near the
origin if p=1 or q=00 and uniformly bounded in (—1, 1] if p>1.

(i) Suppose 1<p<g<2or 2<p<q<oo. Let ,=(1/9—1/2)/(1/p~1/q) or (1/2—.
1/p)/(1/p—1/q) respectively ana’ ny be the smallest mteger such that ny>p,. Then for
any constants a,, a,, **, a,

B(t) =ayt+a,f++a, t™+ | t|**,(2)
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operates on M'(p, q).

(ii) Suppose 1<p<2<q<oo. Let fy=min {(1/2—1/q)/(1/p—1/2), (1/p—1/2)/(1/
2—=1/q)} . Then for any constant a

o(t)=at+ | ¢ |5+, (1)

operates on M'(p, q).

(II) Let 1<p<2<g<0 and & be a function in [—1,1). If ® operates on M (p, q), then
@ is of the form that ®(t)=at+ |t |P®,(t), where a is a complex number and B, is the
number given in (1), and @, is a function in [—1; 1] bounded near the origin if p=1 or
g=0 and uniformly bounded in [—1, 1] if p>1.

Also Igari-Sato[IS] showed that (1) in the above theorem holds for general orth-
ogonal polynomial expansions.

In this paper, we shall investigate 6perating functions on (p, q) -multipliers for Jacobi
and Laguerre expansions. Is §2, we shall prove an analogue of Theorem 1 for (p,
q)-multipliers for Jacobi expansions by the relation between Jacobi expansions and
trigonometric expansions. In §3, we shall characterize the operating functions on (p.
2)-multipliers for Laguerre expansions by Kanjin-Sato[KS] and the estimates of Laguerre
polynomials (ct. (T]).

2. Operating functions on multipliers for Jacobi expansions

Let >8> —— 5 and 1<p <o, let du (x) = (1—2)*(1+x)’dr. Also let P{*# (x) bo
the Jacobi polynomial of degree n, that is,

L {1-0" (140

(1-%)*(1+x)°P*" (x) =
These are orthogonal polynomials with respect to dg on (—1, 1), and

JLIPE 2 () VPl (x)

2P (n+ 2+ 1) T (n+ g +1) (=[h.1)
@Cunta+p+1)T(n+1)T(nt+a+p+1) = 77

1 1 atp¥l - . .
Putting ¢ # (6) = 1P\ (cosf) (sin—éo—)“‘“?(cos% 20, {7 (8)} o, is a com

plete orthonormal system with respect to the Lebesgue measure dé on (0, ). Moreover.
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s '_) (6) /—cosnﬁ(n>1) é! T "_’(6) /—

The system {¢*?} ®_ leads to the formal expansion of a function f(8) on (0, ) :
f(e) ~ goancbf,‘" M (g),
where a,=/,"f(6) \*# () d8.

Definition 1. Let A= {A,}7_, be a bounded sequence. We define a multiplier
operator T, (=T7,*?) for the system {¢\" "} by

T,f(6) ~ %A,,a,,f,sff"”(e) ‘

for £(6) ~ =5 4a,6”(6). Let 1<p<g<co. We call A a (p, @)-multiplier for the
system {¢*#} w0 if | Tof I, <CIfIl, forfin L?(0, ). We denote by M (p, q) the set
of all (p, @)-multipliers for the system {${*#} % =o- Then we obtain the following :

Theorem 2. Let 1<p<g<co.
(I) Let 1<p<c0 and ®, be a function in [—1, 1]. Assume that ®, is uniformly bounded
in [—1, 1]. '
(i) Suppése 1<p<g<2or2<p< g<co. Let y,=(1/q—1/2)/(1/p—1/q) or (1/2—
1/p)/(1/p—1/q) respectively and n, be the smallest integer such that ny>y, Then for
any constants a,, a,, -, a,,

O(t)=attayt ++a,t™+ | t]*"@,(¢)

operates on M’ (p, q).
Suppose 1<p<2<g<oco. Let y,=min {(1/2—1/q)/(1/p—1/2), 1/p—1/2)/(1/2—1/
q@)} . Then for any constant a

() =at+ |t '®,(2)

operates on M’ (p, q).

(II) Let 1<p<2<q< and ® be a function [—1, 1]. If @ operates on M’ (p, q), then
@ is of the form that ®(t)=at+ | t|"®y(¢), where a is a complex number and ¥, 1S the
number given in (1), and ®, is uniformly bounded in [—1, 1].
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It is sufficient for the prooof of Theorem 2 to show Theorem 2(II). . For this proof,
Wwe prepare some lemmas.

Lamma 1([A]). Let 1<p<, a, 8, y, 6> F%. Let T8 be the transplantation
operator defined by
T&81(6) ~ S a8 9 (0)
n=0
for f(8).~ Z70a,6=?(6). Then,

CUALLI TGS 1,271,
for fEL*(0, x).
By this lemma, it is sufficient to prove Theorem 2(II) for a=4= —%.
Now let L?, be the set of all f&L?(T) such that f is even. Also let M°(p, q) be the
set of all (p, q)-multipliers {7 ()} =0 associated with T which is bounded linear operator
from L7, to L%, such that (Tf)*(n) =T (n) 7 (n) (n=0, 1, 2,--) for any f€L’,. Then by

Theorem 1 it is sufficient to prove that whenever @ is an operating function on M ‘b, q,
& is an operating function on M‘(p, q).

Lemma 2. For fEL!,, let f be the conjugate function of f. Then

1A, 27 1,<Clrl,

Jor some C>0, where C is independent of f

Proof. Putting F(8)=5(6) +if(8), F(—6)=f(8)—if(6) since feL’,. Then |
f+ifl,=1f=#(6)l,. Hence, we obtain by Riesz’s Theorem ([K]) that

2l = f+F+7 =71,
<zlf+#1,<Clfl,

for some C>0. Q. E.D.

Proposition 1. Let & be a function on [—1, 1]. If ® operates on M (p, q), then @

_operates on M'(p, q).

Proof. Let {1}, _.EM'(p,q) suchthat {1,},C[—1,1]. By Lemma 2 and Riesz’s
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Theorem,
I rgol aaqcosnd |, <C| éol 23,Cosn0+ iéo/l a,sinnd |,
=C| éol 0,exp(ind) || < C [ éoanexp(inlﬁ) l,
<Cl 3 acommsll,

where C >0 is independent of {a,},. Hence {1,}r,EM°(p, q). Also {A_,},EM(p,
q). Thus {®@(1,)}; EM°(p, ¢) and {®(A_,} o ,EM (p, q). By Lemma 2,

I = ®(a,)a,exp(ind) |,

n=-

-1 oo
=| = ®(1,) a,exp(ind)+ goq:(a,,)a,,exp(z‘ne) I,

n=-

-1 -1
=] = ®,)a,conné+i T ®(1,)a,sinnd

n=-—oo n=-—oo

©o ©o

+”§=‘,°<I> (1,)a,cosnb+i ”E,ocb (1,)a,sinnd |,
<| E‘,ICI)(A_n)a_,,cosnﬂ—in%@(l_,,)a_,,sinnﬁ I,
+ éotb (1,)a,cosnf+ iéo@ (4,)a,sinnd|,
<c(] E}la_”cosnﬁ I,+ 1 éoancosnﬁ I,
| <c(| éla_"exp(—z’nﬁ) I,+1 n%::oa,,exp(inﬁ) I,
<C]| néwa”exp(in&) I,

Therefore

{@(1,))5-—EM (p,9).
Q. E.D.

3. Operating functions on multipliers for Laguerre expansions

Let L;(x), @> —1, be the Laguerre polyhomial of degree % and of order « defined by
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a —_ i_ ny —x _nte
Li(x dx) (e7*x™")

and let

ey [ L4l oy 2=
L,,(x).— ——_I‘(n+a:+1)L”(x)e %z,

Then the Laguerre function system {£2},-, is a complete orthonormal system on the
interval (0,00) with respect to the ordinary Lebesgue measure dx. This orthogonal system
leads us the formal expansion of a function f(x) on (0, ©) :

||M8

f~ f’( ) L5(x),

where f (n) is the n-th Laguerre coefficient of order a of f(x) defined by
F(n)=[7f (x) L3(x) .

For p>1 we denote by L?(0, ) the Lebesgue space of all measurable functions f (x) on
(0, %) such that

1F1,= (L1 () [Pdx) 7 <o,

Let a= {a(n)} ,-, be a bounded sequence. We define a multiplier operator T, for the
system {L;} by

T.f (x) ~ éoa(n)f‘(n)c:(x)
for a function f (x) on (0, ). Let1<p, g<o. Wecalla (p, q)-multiplier for the system
{c2y if |1 T, AN, <ClfN, for fin L? (0, ). We denote by M _(p, q) the set of all (p.
q) -multiplier for system {L;} . We define |lally_, o= I T.l,, . where I 7,1, ,is the (p,
q) -multiplier operator norm of 7.
Definition 2. Let 1<p, ¢, 7, s<oo. A function ® on [—1, 1] is said to operate from
M, (p, @) to M (7, s) (when p=v7, g=s, we simply say that @ operates on M (p, ), if
{®(a(n)} €EM,(r, s) for every a= {a(n)} €M, (p, q) such that {a(n)} cl-11).

Theorem 3. Let a>0. Also Let —<p<2<q<p and @ be a function on [—1, 1],

where —1-)—+p—-1 Then ® operates from M (p, 2) to M (p, q), if and only o,
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O (1) =| 1@, (t),
where = (1/p—1/q)/(1/p—1/2) and ®, is a bounded function.

Corollary. Let %< <2, and @ a function on [—1, 1). Then ® operates on M ,(p,
2), if and only if,

|®(t) | <C |t
for all t€([—1, 1] with some C>0.

Since Kanjin[Kj] shows M, (p, q) =M ,(p, q), it is sufficient to prove Theorem 3 for the
case My(p, q).

The proof of Theorem 3. Let ®(¢) = | ¢|°®,(¢), where 8, ®, are in Theorem 3. Then
by the same method to the proof of [IS ; Theorem 1] we shall show that ® operates from
M,(p2) to M,(p, g). We remark that if {a(n)} €M (p, 2), and {a(n)} c[-1, 1],
then {a(n)} €M (2, p’) by duality. We note that a bounded sequence z= {a(#n)} isin
M (2, 2). Then by Parseval’s equality,

m 178,1, ,< 12O 1A T,
where T is a multiplier operator for Laguerre expansion associated with a (p, 2) -multiplier

{(T'(n)} and S . a multiplier operator for Laguerre expansion associated with a (2,
2) -multiplier a= {a(%)} . Moreover, we obtain that
@ 1725, 1, < 12O I T 12,

Next for 0<Rez<1, we define R, by
R*(n)=(signT (n)) | T'(n) '@, (T (n)) T (n).

Then by (1),

(3) IR 1, < 1@ () Nl T,

Also by (2),
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[RCIEWIA S

for —< p<g<id (cf [AS]). Hence, we may assume that the multiplier operator 7,
assomated with A, is a trigonometric polynomial.

Now we choose natural numbers {#,,} such that for T',,= {,,, } are pairwise disjoint.
Putting A=S,,_ A, AEM*(p, 2). Here, by Proposition 2, we obtain ®(A*) EM oD ).
Then there exist {N,} such that

®(S,)=0(T*) (D, . —D) ),

where ®(S,) is a multiplier operator associated with ®(I'}), and ®(7*) a multiplier
operator associated with ®(A*). Thus we obtain that

oo>SII-VlD [ D(l)v I a4q I (I’(A+) "M,(p, )
> " Q(P;) “M,(p, ? >m.
This is a contradiction. Q. E. D.

We contmue the proof of Theorem 3. Now by Proposition 2, Lemma 3, and || D,
I e, < <NFF (cf, (E]), we see that there exists C >0 such that

" {@ l/CN(I/p 1/2) }N 0" "o q)<C
Then
|®(1/(CNY*~V2) | | DY, IIq<CIID I,
where D}, =3"_ % Here, by
N 1
S L) =VNF1Ly(x)x"z
n=1
and [T; Lemma 1. 5. 4],
0 1 4
||DN||,> ~ N7 (—?-)—<p<4).

Thus we obtain
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| @(t) l <C l tl /p=1/g)/(1/p=1/2)

for all t€[—1, 1]. Then it is sufficient to prove that ® is bounded. In fact, we assume
that ® is unbounded. Then there exist ¢, and {¢,} such that | ¢,—¢,| <47 " and | ®(¢,)
| ># for all n>1. Defining E= {2*} ;~,, we have x EM,(p, 2) by Proposition 2. Let
A=tyxp+2,ep(t,—t)x (- Since

Vta=tol D tim M= ta—tolsup {17 (m) |51/ 1,<1}
<C4T VPV <oy

(cf. [T]), we obtain AEMy(p, 2). Hence, we have ®(A)EM(p, q). Here, by

loa,) ! | ng“p, - I {@)} s {(D(lk)}:;: I,m(p. @

where A= {1,} , we have
fo,) | 1250, ,<CleA) lue o

with some C>0. Moreover,
LCol, > 0Ll /Lo, ~ ntem
and A,=¢, (n€E). Then
Cle) e, q)Z”I_(W—l/") (nE€E).
By 1— (1/p—1/g) >0, this is a contradiction. Q. E. D.
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