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ForestSo. ence, Vol. 39, No. 4, pp. 655-669 

Adaptive Cluster Sampling for 
Forest Inventories 

FV, A•C•S A. ROESC•, J•. 

ABSTRACT. Adaptive cluster sampling is shown to be a viable alternative for sampling forests when 
there are rare characteristics of the forest trees which are of interest and occur on 

clustered trees. The ideas of recent work in Thompson (1990) have been extended to the 
case in which the initial sample is selected with unequal probabilities. An example is given 
in which the initial sample of trees is selected with probability proportional to tree basal 
area. If a characteristic of interest is observed on a sample tree, additional trees within 
a fixed distance of the sample tree are also included in the sample. FOR. Scl. 39(4):655-669. 
ADDITIONAL KEY WORDS. Forest health, biodiversity, sequential sampling. 

OREST SURVEYS ARE OFTEN CONCERNED WITH the simultaneous evaluation of 
many characteristics of the forest. In addition, many of these characteris- 
tics occur only rarely, especially in extensive surveys such as those con- 

ducted by the USDA Forest Service's Forest Inventory and Analysis Units (FIA). 
Many forest surveys were designed with the idea that wood was the primary 
characteristic of interest in the forest. These surveys were therefore intended to 
sample wood efficiently. While wood is an important benefit of the forest, we want 
to sample other characteristics of the forest efficiently as well. The results in this 
paper are especially attractive because it is not always possible or desirable to 
establish individual sample designs for each characteristic of interest. We show 
how a general framework for adaptive cluster sampling could be used in a forest 
survey design to efficiently sample many items of interest simultaneously. 

Adaptive cluster sampling can be a highly efficient way to sample clustered rare 
events. First, a probability sample of units in a population is taken and then 
additional units are selected near (or in the neighborhoods of) those units that 
display any of the rare events of interest. Any additional observations of the same 
rare event will trigger further sampling in the neighborhoods of the new units 
possessing the rare event. This cycle is repeated until no new units display the 
rare event. 

Although adaptive sampling ideas have been around for quite some time [at 
least since Wald (1947)], this presentation is the first to combine the probability 
proportional to size sampling schemes common in forestry with an adaptive sam- 
pling scheme. The result is a system which could be applied immediately, at a 
relatively small cost, to many already in-place forest inventory systems. A thor- 
ough introduction to adaptive designs for the case in which the initial sample is 
selected with equal probability can be found in Thompson (1990), which provided 
some of the theoretical foundation for the development below. The interested 
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reader might also examine the related work in Birnbaum and Sirken (1965), Levy 
(1977), Thompson (1991a), and Thompson (1991b). The general topic of sampling 
rare populations is discussed in Kalton and Anderson (1986). 

We will examine the simple case of a single rare characteristic of interest. 
Suppose that the tree is the sampling unit and that there are N trees in the forest 
with labels 1, 2 .... , N. Assodated with the N trees are values of interest y = 
{Yx,Y2 ..... Yiv}. We are interested in estimating the population total of the 
y-values (T). 

For every tree i in the population, we define a neighborhood Ai consisting of a 
collection of trees which includes tree i. Assume these neighborhoods group trees 
which are physically close to each other. Also, the neighborhoods are syrmuetric: 
if tree i is in the neighborhood of tree j, then treej is also in tree i's neighborhood. 

Suppose this rare characteristic of interest is the presence of a certain type of 
pollution damage, which we will call pollution damage D, on the trees in our forest. 
If tree i exhibits pollution damage D, set Yi = 1, otherwise set Yi = O. 

We choose the initial sample of trees in the forest by first selecting sample trees 
from a randomly located point in the forest by some rule. Two common selection 
rules are those corresponding to fixed-area plot sampling and horizontal point 
sampling. Without loss of generality, we will assume that the initial selection of 
trees is by horizontal point sampling, which is a method of selecting sample trees 
with probability proportional to the cross-sectional area of the tree bole at 4.5 ft 
above the ground (basal area). Each tree is surrounded by a circular area of 
selection, the size of which depends on basal area, and from within which a 
randomly placed point will select it for the sample. Readers unfamiliar with this 
sampling technique are referred to Husch et al. (1982), Avery and Burkhart 
(1983), or Grosenbaugh (1958). If an initial sample tree j has pollution damage D 
(i.e., yj = 1), then we could use tree j's center as the center of a circle of radius 
r. We observe the value ofy for all of the other trees within this circle which have 
not already been selected for the sample from this point. If, for any of those trees, 
Yi = 1, we do the same thing we did for the first set ofy/s equal to 1. We stop 
when we find no new trees for which Yi equals 1. 

A duster j is the set of all trees included in the sample as a result of the initial 
selection of tree j. Within a cluster, a network is defined as the subset of trees 
such that selection of any tree within the network will lead to the inclusion of 
every other tree in the network. Any tree not possessing pollution damage D, but 
in the neighborhood of one that does is termed an edge tree. Figure 1 illustrates 
these definitions. In Figure 1, tree 6 is an edge tree with respect to both trees 3 
and 4, while tree 5 is an edge tree with respect to tree 4. Inclusion of an edge tree 
will not result in the inclusion of any other trees. If we consider all trees not 
possessing pollution damage D as networks of size 1, we have uniquely partitioned 
the tree population into M networks, conditioned on pollution damage D. We can 
do this for many kinds of rare events, in which case the tree population can be 
visualized as many separate overlays, each containing a population of networks of 
a different characteristic. 

Each tree in the initial sample, i.e., each tree selected by the randomly placed 
point, is sampled with known probability. In the estimators that follow, we will use 
only those trees that were in the initial sample and those additional trees for which 
Yi = 1. This allows us to calculate the probability of using a sample tree in the 
estimator of a given characteristic, even though we do not (and cannot) know its 
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Legend 

Positive tree (y,=l) 

Negotive tree (y,=O) 

Neighborhood (Posit[ve) 
Point sample 

Cluster Cluster Networks 

Members (+) (-) 

FlGURE 1. Adaptive sampling attributes for a group of six trees in a population. One randomly placed 
point can select the following sets of trees for the initial sample: { }, {1}, {3}, {2}, {4}, {5}, {1,2}, 
{3,4}, {3,4,6}, {4,5}, and {4,6}. For clarity, the neighborhoods for negative trees are not shown. 

probability of inclusion in the sample. To see this, consider the probability of tree 
i being selected for the sample from any individual random point: 

UlUal 
Pi = Pl - L (1) 

where 

az = union of the selection areas for the trees in network I to which tree i 
belongs, 

uz = union of the selection areas for all the trees in networks of which tree i 
is an edge unit, 

L = the total area of the forest. 

(Note that capitalized subscripts are used when the quantity pertains to the 
network and lowercase subscripts are used when the quantity pertains to the 
tree. In the sequel, when both a lowercase and uppercase version of the same 
subscript appear in an equation, it indicates a mapping of the tree population into 
the network population.) This sampling scheme does not provide knowledge of Pi 
for all trees since u• is not known when yi = 0, but it does allow knowledge of Pi 
for trees possing the characteristic of interest (for these trees u• = 0). We know 
the probability for each tree used in the estimator, because trees for which Yi = 
0 selected in the adaptive part of the sample are not used in the estimator. 

ESTIMATORS OF T 

The following estimators assume that we randomly locate m points on the surface 
of a forest and that we are sampling with replacement. The total of the observa- 
tions over network K is 
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YK = • Yi (2) 
j=l 

where vK is the number of trees in network K. The mean per unit area for 
network K is 

.v• - (3) 
a• 

Thompson (1990) presents a modified Hansen-Hurwitz (Hansen and Hurwitz 
1943) type unbiased estimator of the total character of interest, which we will 
modify again to allow a random number of networks (M h) sampled from each 
point h: 

rn M• 

h=l K=i 

(4) 

Note that t• counts each network once for each time it is selected by a randomly 
placed point, no matter how many of its component trees are selected at that 
point. The probability of using tree i in tss is proportional to the union of the 
selection areas of the trees in the network to which tree i belongs divided by the 
area of the forest. After a derivation similar to that found in Roesch (1990), the 
variance of t• can be shown to be equal to 

M M 

I=1 7=1 

where Osj is the area of overlap of the selection areas of networks I and J. An 
estimator of the variance is: 

h=l K=i 

(6) 

A modification of t•s would result in another unbiased estimator if we count a 
network once for each of its component trees selected by the initial point sample. 
That is, if three of a network's trees are selected at a point, then the network is 
counted three times and the probability of selecting the network becomes pro- 
portional to the sum of the component trees' probabilities rather than their union. 
For each tree k selected by the initial point sample, the sum of the y-values in the 
tree's network K divided by the sum of the areas of selection for each of these 
trees is: 

(7) 
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where 

aj = the selection area of tree j. 
This leads to the estimator: 

tnn•u = .• (8) 
h=l k=l 

where n h is the number of trees selected by random point h. 
The variance of tnn•t is: 

N N 

i=1 j=l 

where 

o 0 = the area of overlap of the selection areas of trees i and j. 
An estimator of the variance is: 

s2(tss•t) = m(m - 1) L )• - 
h=l 

(9) 

(lO) 

Thompson (1990) shows that an unbiased estimator can be formed by modifying 
the Horvitz-Thompson estimator (Horvitz and Thompson 1952) to use observa- 
tions not satisfying the condition only when they are part of the initial sample. The 
probability of tree k, in network K, being included in the sample from at least one 
of the m random points is: 

a•=a,r= 1- 1- (11) 

A modified Horvitz-Thompson type estimator is 

(12) 

where: 

0 if the kth tree does not satisfy the condition and is not included in Jk = the initial sample 
1 otherwise 

and n is the total number of distinct trees samples. For convenience, we will work 
with the networks in the variance formulas. The joint probability of inclusion of 
networks J and H at least once from the m random points is equal to: 

wu=l-{[1-•]m+[1-•]m-[1---•] m} (13) 
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where Uju is the union of the selection areas of networks J and H. The variance 
of tur is 

M M 

]:1 H=i 
(14) 

and an estimator of the variance is: 

(15) 

where K equals the number of distinct networks in the initial probability sample. 

METHODS 

DATA DESCRIPTION 

The data were a subset of those collected by the USDA Forest Service North- 
eastern Forest Experiment Station in Hancock County, Maine. Fifty-three circu- 
lar, concentric Vxo ac pulpwood plots and Vs ac sawlog plots were established in 
1968 and remeasured in 1981. All trees that were at least 5 in. in diameter at 

breast height (dbh) were measured on the inner Vxo ac, while only trees of sawlog 
size (at least 9 in. dbh for softwoods and at least 11 in. dbh for hardwoods) were 
measured on the outer V1o ac. The azimuth and distance from plot center for each 
tree were recorded to the nearest degree and Vxo foot respectively. The only tree 
information used here is species, dbh, and location for 1981. 

SIMULATION 

One issue that is particularly difficult to address in extensive forest surveys is that 
of biodiversity, simply because very imprecise estimates of a characteristic are 
often obtained for rare species. In the following example, the data described 
above are used in a computer simulation to test the effectiveness of the point 
sampling/adaptive cluster sampling scheme for estimating the number of trees of 
certain species displaying varying levels of rarity and aggregation. The simulation 
was written in GAUSS386 Version 2.2 and run on a DELL 486/50 MHZ personal 
computer. 

For the simulation, a highly diverse "forest" was created by cutting the largest 
square possible out of the inner Vxo ac plots, each side of the square facing one of 
the cardinal directions, and then using the first 49 of these squares (by plot 
number) in a 7 x 7 arrangement to simulate a square forest of approximately 3.11 
ac. Figure 2 displays the location of each tree in the forest and then the individual 
locations of the eight "rare" species, which are arranged roughly in order of 
increasing aggregation. The identities of the species have been retained to facil- 
itate the discussion rather than for any particular significance of the species 
themselves. What is important is the spatial relationship between the members of 
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FIGURE 2. The spatial locations on the 3.11 ac simulated forest of all trees (upper left) and of 
members of each of the species of interest. 

each of the species of interest, e.g., those relationships found in Figures 2 
through 4. 

For the original probability sample, ten random points were located in the 
forest, and a Basal Area Factor (BAF) of 10 ft•/ac was used. This sample design 
was then replicated 1000 times in the simulation. Figure 3 depicts the point 
sample area of selection for each member tree of the eight rare tree spedes. For 
the adaptive part of each sample, the inverse of the search area in acres was 
varied from 10 to 90 by 20; e.g., search areas of 1/10, 1/30, 1/50, 1/70, and 1/90 
of an acre were used. When a member of a species of interest was found by the 
point sample, the search area centered at that tree was checked for more trees 
of that species. As described above, any new trees found of that spedes became 
the centers of search circles until all the trees in the cluster were identified. The 

additional cost of including these extra trees in the sample consists of identifyLug 
the spedes, and if the tree is one of the rare species, measuring the dbh and 
recording the location of the tree. If this species is truly rare and found in clusters, 
then the additional cost should be small, because of the rareness of the spedes, 
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Search Area 

•/•0 •/30 •,/50 •/70 •,/90 (•c• 
Species 

Tamarack 

5 8 8 8 8 

•. - t • - :-- - :-- - :-- - Yellow 
• ... ..- Birch 

7 12 ' 14 14 ' 14 

• •. • :• :• .. :• , .. :• White 

ß ' ' ' ' Ash 

5 6 10 11 14 

White 

'• '• .".} 17 17 Spruce 
.3 4 6 10 10 

Jack 

Pine 
I,j Ij ' '- '- 

1 2 4 4 4 

Block 

• • •.• •'.• ¾.• S p r U C e 
6 ' 8 ' 9 12 ' 12 

2 2 2 5 6 Quaking 
Aspen 

• • • • •z Sugar 

Maple 

• 5 :• 5 ..,. 5 :• 9 :• 1 1 

F•GU• 3. The point-sample selection areas for the members of the eight rare spedes for a BAF of 
10. A tree is selected for the sample if a point lands within its selection area. 

and the estimate of the number of trees of that spedes may be improved, because 
of the clustering of the species. 

Changing the search area changes the size of the clusters found for each 
"positive" tree in the point sample. Figure 4 shows the positive networks for each 
of the "rare" species at each search area size. For each of the eight relatively rare 
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Tamarack 0 (• Yellow Birch 
T=8 • T=16 

White Ash •)•) % O White Spruce T=20 O e T=is 
o 

Jack Pine Black Spruce 

T=6 % • eO T=21 
Quaking Aspen • Sugar Maple 

T=8 (• , T=2S 
.) 

FIGURE 4. The positive networks formed for each species at each search area size. The numeral in 
each plot is the number of positive networks. 

species, at each search circle size, both the mean and the mean squared error 
(MSE) were calculated for four estimators of the number of trees. Three of the 
estimators are those utilizing the additional adaptive cluster sample, and defined 
above, (t•, t•u, and t•r) and the fourth is the normal point sample estimator: 

m 

t• m ai 
h=l i=1 

(16) 

which is included as a check. The extra work involved in the adaptive sampling 
scheme is not justified if the resulting estimate would not at least be better than 
the normal point sample estimate. In addition, the estimated variance was calcu- 
lated for each of the three adaptive sampling estimators. 

RESULTS 

Figure 5 shows the relative bias [(•[ti] - T)/T], where •[ti] is the simulation 
mean for estimator ti; i = G, HH, HHM, and HT] for the four estimators versus 
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Flc-uP.g 5. The relative bias of the four estimators by im, erse of the search drc]e size i• acres, from 

1000 simulations of 10 randomly piaced poi•ts, for each of the 8 rare species. 

the inverse of the search area, obtained from the 1000 sets of estimates, based 
on ten randomly placed points each. Overall, Figure 5 confirms the theoretical 
unbiasedness of the adaptive sampling estimators, as there is no evidence of 
additional bias due to the adaptive sampling technique. What little apparent bias 
there is occurs in all of the estimators, including to, which does not rely on the 
adaptive part of the sample. 

An additional statistic useful for comparison is MSE, which equals the variance 
for an unbiased estimator. Figure 6 displays the ratio of MSE for each of the three 
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FI0UP, g 6. The ratio of the mean squared error for each of the tt•ee adaptive sampling estimators to 
the mean squared error of the point sampling estimator, by the inverse of the search ckde size, in 
acres, from 1000 simulations of 10 randomly paced points, for each of the 8 rare species. 

adaptive sampling estimators to the MSE of to versus the inverse of the search 
area, again obtained from the 1000 sets of 10 randomly placed points. We can see 
the advantage of the adaptive strategy by examining the MSE ratios in this figure. 
Also evident is the apparent superiority of tur over tu. and t./• for use with this 
adaptive sampling strategy. The MSE of tin. is never greater than the MSE of t•. 
In general, the larger the search area, the smaller the MSE of the estimators 
using the adaptive design, once the thresholds defining the network sizes are 
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exceeded. For the less clustered species, there is some advantage to the adaptive 
strategy if the search area is large enough. For example, in the graphs for 
tamarack and yellow birch, a substantial reduction in MSE is apparent for t•i•i, 
t•i•iM, and t•/r when the search area is Yxo ac. For tamarack, Figure 6 shows no 
MSE advantage to the adaptive strategy in the smaller search areas if t•/•/and 
t•/•/M are used, while a slight lowering of MSE is shown for t•r. These results are 
consistent with the observation that the tamarack trees would not appear together 
in networks until the search circles are rather large. For example, referring to 
Figure 4, for the four smallest search circles, the networks of tamarack each 
contained one tree. The largest search circle of V•o ac resulted in five networks 
of tamaracks, four networks containing only one tree and one network containing 
four trees. This illustrates that the adaptive strategy will only be advantageous for 
traits found on clustered trees. From the upper lefthand plot in Figure 2, depicting 
the positions of all trees, the reader will note that quite a few trees of other 
species had to be examined each time a tamarack tree was found. For this 
species, this resulted in increased cost with a benefit of only slightly reduced MSE 
until the largest search circle was used. 

Examining the results for white ash and white spruce in Figure 6, we see 
roughly two groupings of the MSEs (t•/r with tun and to with t•/•/•), with an 
advantage to t•ir. For the species in which clustering is pronounced, white ash, 
white spruce, black spruce, quaking aspen, and sugar maple, Figure 6 shows t•r 
to be always best, followed by tun, t•i•i• and finally to. The jack pine results in 
Figure 6 show a distinct advantage to the adaptive strategy only at the two largest 
search circles. 

For each of the 1000 iterations of the simulation, s2(tHH), s2(tHA•M), and s2(tHT) 
were calculated for each search circle size. Figure 7 shows the ratio of the mean 
of these estimates to the respective MSEs for the estimators of the total. This 
ratio should be very close to 1 for an unbiased estimator of the variance of an 
unbiased estimator of the total. We see that this is indeed the case with ratios 

always falling in the interval (0.9,1.1) and usually falling in the fighter interval 
(0.95, 1.05). 

DISCUSSION 

In general, it appears from this simulation that when an adaptive strategy is called 
for, t•/r can be expected to perform well in terms of MSE. It performed best by 
that criterion here. This is the same result obtained by Thompson (1990) for the 
equal probability case. Occasionally, t•/•/is approximately equivalent to t•/r by the 
MSE criterion. Thompson (1990) points out that there should be populations for 
which the Hansen-Hurwitz type estimators are superior; however, the conditions 
leading to this superiority were not revealed in either that work or this work. This 
simulation did not uncover any advantage to using t•/•/•. When the MSE of t•/•/• 
is lower than that of to, it is still not as low as the MSE of the other two adaptive 
sampling estimators. Reductions in MSE of over 50% have been demonstrated for 
t•/r over to in some cases. This size of a reduction in MSE would often be critical 
when sampling rare, clustered events such as rare tree species, insect infesta- 
tions, and certain diseases. 

A major concern when choosing between sampling strategies is the relative 
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FIGURE 7. The ratio of the mean estimate of variance to the mean squared error for each of the 

adaptive sampling estimators, plotted against the inverse of the search circle size, in acres, from 
1000 simulations of 10 randomly placed points, for each of the 8 rare spedes. 

cost of the strategies. Cost is evaluated in this paper as the size of the search 
circle necessary for a given improvement in MSE. The additional monetary cost 
of the adaptive strategy for a particular application depends on relative cluster size 
and occurrence in the sample. These factors can be controlled by the invento• 
designer, given adequate prior knowledge of the population. 

Due to the additional cost, the adaptive strategy should be saved for charac- 
teristics that are considered ver• important, and known to be both rare and found 

NOVEMBER 1993/ 667 



in dusters. The requirement that the trait motivating the adaptive strategy be 
rare is one of particality, not one of necessity from a statistical point of view. Even 
when an extremely important characteristic is known to be both rare and clus- 
tered, it may be more appropriate to design an individual survey to estimate the 
characteristic, rather than to force the estimation into an existing inventory. 
Given the decision to make the estimate from an existing inventory, the estimate 
of the marginal cost of adapting for the characteristic must be weighed against the 
benefit of a better estimate. 

There are two major advantages of the adaptive sampling strategy. The first is 
that the derision to use an adaptive scheme can be made on a characteristic by 
characteristic basis so the decision to adapt for one characteristic does not affect 
the cost of estimating other characteristics. The second advantage is that only the 
presence of the characteristic triggers additional cost. Most other solutions to the 
rare event problem, such as increasing the size or number of plots, do not have 
these two properties. 

A problem which was not addressed in the simulation is the case-specific 
amount of risk involved in misidentifying the characteristic of interest. With a 
nonadaptive sample, one could hope that misidentifications would compensate for 
each other. With an adaptive sample, this hope would often be unrealistic. There- 
fore, in addition to the conditions given above, an adaptive sampling scheme 
should be applied only to those characteristics that can be identified with complete 
confidence. 

Although we have used a fixed radius from tree center to choose the additional 
sample, many other measures of closeness could be conceived. Whatever mea- 
sure is chosen, it should be scaled to define clusters which are as large as 
practicable. 

In this paper, I have extended the theory for adaptive cluster sampling to the 
case when the initial sample units are chosen with probability proportional to size, 
as is often the case in forest inventories. This will allow an easy integration of an 
adaptive scheme into many already existing forest inventories. This ability will 
become more important in the future as forest inventory spedalists are expected 
to answer a more diverse set of questions. 
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