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Aim: 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are cholesterol-lowering 
drugs with a variety of pleiotropic effects including antithrombotic properties. Tissue factor pathway 
inhibitor (TFPI), which is produced predominantly in endothelial cells and platelets, inhibits the ini-
tiating phase of clot formation. We investigated the effect of fluvastatin on TFPI expression in cul-
tured endothelial cells.
Methods: Human umbilical vein endothelial cells (HUVECs) were treated with fluvastatin (0–10 μM). 
The expression of TFPI mRNA and antigen were detected by RT-PCR and western blotting, respec-
tively. The effects of mevalonate intermediates, small GTP-binding inhibitors, and signal transduc-
tion inhibitors were also evaluated to identify which pathway was involved. A luciferase reporter 
assay was performed to evaluate the effect of fluvastatin on TFPI transcription. The stability of TFPI 
mRNA was estimated by quantitating its levels after actinomycin D treatment.
Results: Fluvastatin increased TFPI mRNA expression and antigen in HUVECs. Fluvastatin-induced 
TFPI expression was reversed by co-treatment with mevalonate or geranylgeranylpyrophosphate 
(GGPP). NSC23766 and Y-27632 had no effect on TFPI expression. SB203580, GF109203, and 
LY294002 reduced fluvastatin-induced TFPI upregulation. Moreover, fluvastatin did not signifi-
cantly affect TFPI promoter activity. TFPI mRNA degradation in the presence of actinomycin D 
was delayed by fluvastatin treatment.
Conclusions: Fluvastatin increases endothelial TFPI expression through inhibition of mevalonate-, 
GGPP-, and Cdc42-dependent signaling pathways, and activation of the p38 MAPK, PI3K, and 
PKC pathways. This study revealed unknown mechanisms of the anticoagulant effect of statins and 
gave a new insight to its therapeutic potential for the prevention of thrombotic diseases.
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Introduction

Activation of the extrinsic coagulation pathway 
triggers arterial thrombotic events, such as acute coro-
nary syndrome, ischemic stroke, and critical limb isch-
emia. Thrombin formation is further accelerated at 
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the site of atherosclerotic plaques, where a chronic 
inflammatory response occurs and collagen and tissue 
factor (TF) are exposed to circulating blood after the 
rupture of an atherosclerotic plaque. Tissue factor 
pathway inhibitor (TFPI), as the major inhibitor of 
the extrinsic coagulation pathway, regulates arterial 
thrombosis by binding TF-factor VIIa (TF-FVIIa) and 
factor Xa (FXa). Recent studies have shown that TFPI 
attenuates the development of atherosclerosis by 
inhibiting endothelial activation and proliferation, 
and by diminishing monocyte recruitment1). Alterna-
tive splicing at the 3´ end of the TFPI gene results in 
the production of two major isoforms of TFPI, TFPIα 
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(vol/vol, 7/3). Y-27632 and NSC23766 were pur-
chased from Calbiochem (San Diego, CA, USA). 
SB203580, U0126, SP600125, LY294002, and 
GF109203 were purchased from Alexis Biochemicals, 
Inc. (San Diego, CA, USA) and dissolved in dimethyl 
sulfoxide (DMSO). Actinomycin D was purchased 
from Sigma Aldrich Co. and dissolved in DMSO. An 
anti-TFPI polyclonal antibody was purchased from 
Haematologic Technologies, Inc. (Essex Junction, VT, 
USA). Polyclonal antibodies against p38 mitogen-acti-
vated protein kinases (MAPK), phospho-p38 MAPK, 
and glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) were purchased from Santa Cruz Biotech-
nology, Inc. (Santa Cruz, CA, USA). 3-(4,5-Dimeth-
ylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 
(MTT) was purchased from Nacalai Tesque, Inc. 
(Kyoto, Japan).

Cell Culture
HUVECs (3–8 passages) were grown to conflu-

ence in EGM-2 at 37℃ in a humidified atmosphere 
of 5% CO2. A human umbilical cell line (EA.hy926) 
was grown in Dulbecco’s modified Eagle’s medium 
containing 10% FBS at 37℃ in a humidified atmo-
sphere of 5% CO2.

Quantification of mRNA
Total RNA was extracted from cultured cells by 

using a NucleoSpin kit (NIPPON Genetics, Inc., 
Tokyo, Japan). The cDNA was synthesized by reverse 
transcription with a PrimeScript RT-PCR Kit (Takara 
Bio, Inc., Otsu, Japan) according to the manufactur-
er’s instructions. The cDNA was subjected to the fol-
lowing PCR conditions to amplify TFPI mRNA: 30 
cycles of denaturation at 94℃ for 30 s, annealing at 
55℃ for 30 s, and extension at 72℃ for 30 s. The fol-
lowing primers were used: TFPI forward 5´-TGGAT-
GCCTGGGCAATATGA-3´ and reverse 5´-TATTC-
CAGCATTGAGCTGGGTTC-3´; and GAPDH for-
ward 5´-GCACCGTCAAGGCTGAGAAC-3´ and 
reverse 5´-ATGGTGGTGAAGACGCCAGT-3´. PCR 
products were subjected to electrophoresis in a 3% 
agarose gel and the intensity of the bands was mea-
sured using a Typhoon9200 imager (GE Healthcare, 
Buckinghamshire, UK). The band intensity of the 
TFPI PCR products was normalized to that of GAPDH 
in the same samples.

Western Blot
HUVECs were lysed in a buffer comprising 50 

mM Tris-HCl, pH 7.5, 1% bovine serum albumin, 2 
mM EDTA, 100 U/mL aprotinin, 1 μg/mL leupeptin, 
1 μg/mL pepstatin, and 200 mmol/L phenylmethane-

and TFPIβ, which have different domain structures 
and tissue distributions. TFPIα circulates in the plasma 
or bound to the endothelium via its interaction with 
endothelial glycosaminoglycan. Another pool of TFPIα 
is released from endothelial cells and platelets after 
stimulation (i.e., thrombin). Thus, TFPIα acts as a 
very early phase inhibitor at the locus of clot forma-
tion. TFPIβ binds directly to the endothelium surface 
and contributes to constant anticoagulation on the 
vascular endothelium2, 3).

3-Hydroxy-3-methylglutaryl coenzyme A reduc-
tase inhibitors (statins) have been suggested to reduce 
the risk of cardiovascular events and death. Besides 
their predominant effects on cholesterol reduction, 
statins have shown a number of beneficial effects 
including the improvement of endothelial function, 
suppression of inflammation, and plaque stabiliza-
tion4). These “pleiotropic” effects are independent of 
its effect on cholesterol reduction and mainly through 
inhibition of mevalonic acid synthesis, leading to the 
decreased synthesis of isoprenoids. Isoprenoids, farne-
sylpyrophosphate (FPP) and geranylgeranylpyrophos-
phate (GGPP), mediate the posttranslational modifi-
cation of small GTP-binding proteins of the Ras/Rho 
family4). Recent studies have shown the anticoagulant 
properties of statins5). The downregulation of TF and 
plasminogen activator inhibitor type 1 and the upreg-
ulation of thrombomodulin through inhibition of 
small GTP-binding proteins by statins were demon-
strated in vitro6-8). Meanwhile, it remains unclear if 
statins affect TFPI expression. Although some reports, 
including ours, described the association of statin 
administration and plasma TFPI concentration9-11), 
plasma TFPI does not reflect the amount of TFPI 
pooled in platelets and on the endothelium. Thus, we 
considered it beneficial to clarify if statins affect 
endogenous TFPI production in vitro.

In this report, we examined the effects of fluvas-
tatin, a lipid-soluble statin, on TFPI expression in 
human endothelial cells and investigated its underly-
ing mechanisms.

Methods

Materials
Human umbilical vein endothelial cells (HUVECs) 

and conditioned medium (EGM-2 Bullet Kit) were 
purchased from Lonza (Walkersville, MD, USA). 
EGM-2 was added with all of the attached supple-
ments and 2% fetal bovine serum (FBS). Fluvastatin, 
mevalonate, FPP, and GGPP were purchased from 
Sigma Aldrich Co. (St. Louis, MO, USA). FPP and 
GGPP were dissolved in methanol/10 mmol/L NH4OH 
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were considered as controls, and the viability of the 
control cells was set to 100%.

Statistical Analysis
Each experiment was performed in triplicate and 

the results are expressed as the mean±standard devia-
tion (SD). Student’s t test and one-way analysis of 
variance were used for statistical analyses. Microsoft 
Excel 2007 was applied for all analyses. A value of p＜
0.05 was considered statistically significant.

Results

Fluvastatin Upregulates TFPI Antigen and mRNA 
Expression in HUVECs

Treatment of HUVECs with fluvastatin (0.1–10 
μM) for 24 h significantly increased TFPI antigen lev-
els in a concentration-dependent manner (Fig.1A). 
The increase of TFPI antigen levels was accompanied 
by the increased expression of TFPI mRNA, which 

sulfonyl fluoride. HUVEC lysates were electropho-
resed in a 10% SDS/polyacrylamide gel and trans-
ferred to a nitrocellulose membrane (Hypond™-P; 
GE Healthcare). Immunoblotting was performed using 
primary antibodies against TFPI, followed by second-
ary antibodies conjugated with horseradish peroxidase. 
The protein bands were visualized with Immobilon 
Western HRP Detection Substrate (Merck Millipore, 
Darmstadt, Germany).

Plasmid Construction for the Luciferase Reporter 
Assay

According to the TFPI promoter sequence 
reported by Petit et al., a 1,524 bp (-1,246 and ＋278) 
DNA fragment of the 5´-flanking region of the TFPI 
gene was PCR-amplified using human genomic DNA 
as a template and the following specific primers con-
taining restriction sites12): 5´-GGCTGCTAGCTTT-
GATTGTG-3´ (containing an Nhe I restriction site) 
and 5´-GCCAGGTACTCACAAGTAAGATCT-3´ 
(containing a Bgl II restriction site). This fragment was 
digested at the restriction sites and cloned between the 
unique corresponding sites of the pGL3 basic vector 
(Promega, Madison, WI, USA).

DNA Transfection and Luciferase Assays
EA.hy926 cells (2.0×105 cells/well) were allowed 

to grow on 12-well plates until they were approxi-
mately 80% confluent. The cells were then transiently 
co-transfected with 0.5 μg TFPI promoter constructs 
and 0.1 μg internal control vector pRL-TK (Promega) 
by using the Lipofectin reagent (Invitrogen, Carlsbad, 
CA, USA). After incubation for 6 h, the medium was 
replaced by fresh medium and the cells were allowed 
to grow for another 20 h prior to fluvastatin treat-
ment. Luciferase activity in the cell lysates was deter-
mined using the dual-luciferase reporter assay system 
(Promega) and a luminometer (Atto, Tokyo, Japan) 
after treatment of the cells with fluvastatin (0–10 μM) 
for 24 or 48 h.

MTT Assay
The cells were seeded into the wells of 96-well 

microplates at a density of 5,000 cells/well. After incu-
bation in the designated condition, the medium was 
replaced with 100 μL fresh culture medium. Then, 10 
μL MTT stock solution (5 mg/mL in sterile phos-
phate-buffered saline) were added to each well. After 3 
h, the unreacted dye was removed, and the formazan 
crystals were dissolved in 150 μL DMSO. After gentle 
agitation for 5 min, absorbance was read at 570 nm 
using a Microplate Reader (Tecan, Kanagawa, Japan). 
Cells incubated in medium without supplementation 

Fig.1. Fluvastatin upregulates the TFPI antigen and mRNA 
expression in HUVECs.

HUVECs were incubated with various concentrations (0–10 μM) 
of fluvastatin for 24 h. mRNA and protein levels were determined 
by RT-PCR (B) and western blotting (A), respectively. The data 
represent the mean±SD of 3 separate experiments. ＊p＜0.05 vs. 
control; ＊＊p＜0.01 vs. control.

A

B
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TFPI antigen (Fig.2A) and mRNA (165±25 vs. 110± 
10%, p＜0.05 and 165±25 vs. 108±7%, p＜0.05, 
respectively, Fig.2B). In contrast, FPP did not signifi-
cantly alter the effect of fluvastatin on TFPI induction 
(165±25 vs. 145±15%, Fig.2B).

Rho and Rac Inhibition are not Involved in 
Fluvastatin-Induced TFPI Expression

Since isoprenylation of the small GTP-binding 
proteins Rho and Rac is mediated by GGPP, we tested 
whether inhibition of these small GTP-binding pro-
teins is involved in TFPI induction. Treatment of 
HUVECs with NSC23766 (25–100 μM) and Y-27632 
(1–100 μM), specific inhibitors of Rac- and Rho-
dependent kinases, respectively, showed no significant 

showed a 2-fold increase compared to untreated cells 
after treatment with 1 μM fluvastatin for 24 h (p＜
0.01, Fig.1B). Treatment of HUVECs with 10 μM 
fluvastatin for 24 h did not affect their viability (data 
not shown).

Fluvastatin Upregulates TFPI Expression Through 
Inhibition of the Mevalonate Pathway

To clarify further whether the induction of TFPI 
expression by fluvastatin was mediated by inhibition 
of the mevalonate pathway, we incubated HUVECs 
with mevalonate (200 μM), FPP (10 μM), or GGPP 
(10 μM) in the presence or absence of fluvastatin (1 μM) 
for 24 h. As shown in Fig.2, treatment of HUVECs 
with mevalonate and GGPP reversed the induction of 

Fig.2. Fluvastatin-induced upregulation is reversed by mevalonate and GGPP, 
but not FPP.

HUVECs were incubated with mevalonate (200 μM), FPP (10 μM), or GGPP (10 
μM) in the presence or absence of fluvastatin (1 μM) for 24 h. mRNA and protein 
levels were determined by RT-PCR (B) and western blotting (A), respectively. The 
data represent the mean±SD of 3 separate experiments. ＊p＜0.05 vs. control.

A

B
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Fluvastatin Upregulates TFPI Expression without 
Enhancing its Promoter Activity Through mRNA 
Stabilization

To confirm the effects of fluvastatin on TFPI 
gene transcription, we transfected EA.hy926 cells with 
the TFPI promoter construct. Luciferase assays did not 
show a significant increase of TFPI promoter activity 
after treatment of the cells with fluvastatin (0–10 μM) 
for 24 or 48 h (Fig.5A). We also confirmed that treat-
ment with fluvastatin for 48 h induced TFPI mRNA 
expression in EA.hy926 cells (1 μM: 1.5-fold, 10 μM: 
2.0-fold, data not shown).

We next investigated whether fluvastatin-induced 
TFPI expression was regulated via post-transcriptional 
mechanisms. The stability of TFPI mRNA was esti-
mated by quantitating TFPI mRNA at various time 
points after the administration of a transcriptional 
inhibitor, actinomycin D (AD; 1 μg/mL), in the pres-
ence or absence of fluvastatin (1 μM). The amount of 
TFPI mRNA decreased gradually from 4 h after AD 

effect on TFPI protein (Fig.3A) and mRNA (Fig.3B) 
expression.

p38 MAPK, PKC, and PI3K Pathways are Involved 
in Fluvastatin-Induced TFPI Expression

We then examined the involvement of signal 
transduction pathways in the upregulation of TFPI 
expression by fluvastatin. Treatment of HUVECs with 
SB203580 (p38 MAPK inhibitor, 20 μM), LY294002 
(PI3K inhibitor, 10 and 20 μM), and GF109203 
(PKC inhibitor, 0.1 and 1 μM) reduced fluvastatin-
induced TFPI expression (Fig.4A and B). In contrast, 
U0126 (ERK1/2 inhibitor, 20 μM) and SP600125 
(JNK inhibitor, 20 μM) did not have a significant 
effect (Fig.4A). In addition, increased phosphoryla-
tion of p38 MAPK was detected after fluvastatin treat-
ment of HUVECs (Fig.4C).

Fig.3. Y-27632 and NSC23766 have no effect on the fluvastatin-induced upregulation of the TFPI 
expression in HUVECs.

HUVECs were incubated with Y-27632 (1–100 μM) or NSC23766 (25–100 μM) for 24 h. After incubation, 
mRNA and protein levels were determined by RT-PCR (B) and western blotting (A), respectively. The data repre-
sent the mean±SD of 3 separate experiments.

A

B
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This is the first evidence to show the direct contribu-
tion of statins to TFPI expression. Together with the 
previously described anticoagulant effect of statins, 
their effect on TFPI induction seems to be a prospec-
tive therapeutic application for thrombotic diseases.

Our data showed that the fluvastatin-induced 
upregulation of TFPI was mediated by inhibition of 
the mevalonate and GGPP pathways. Nevertheless, it 
was shown that downstream small GTP-binding pro-
teins, Rho and Rac, were not involved in the regula-
tion of TFPI expression. Thus, inhibiting the remain-
ing small GTP-binding protein, Cdc42, may contrib-
ute to TFPI induction by statins. Furthermore, it was 
suggested that activation of p38 MAPK, but not ERK 
or JNK, was involved in the upregulation of TFPI by 
fluvastatin. The statin-induced phosphorylation of 
p38 MAPK was demonstrated in some reports15, 16). 
Conversely, other reports described that statins showed 
their pleiotropic effects by attenuating the increased 
phosphorylation of p38 MAPK17, 18). The effect of 

administration. In contrast, the amount of TFPI 
mRNA in the presence of fluvastatin remained steady 
(Fluvastatin＋AD: 93±9%, AD alone: 70±6%, p＜
0.05, Fig.5B).

Discussion

Fluvast atin is reported to penetrate into vascular 
walls more effectively than other statins13). Previous 
reports have described that among all statins currently 
available, only fluvastatin interferes with proliferation of 
arterial smooth muscle cells at therapeutic levels13, 14). 
Therefore, we selected fluvastatin for use in this study, 
in combination with cultured human endothelial cells. 
We adjusted the experimental concentration of fluvas-
tatin to 0.1–10 μM in consideration of the maximum 
blood concentration currently used (0.5–1 μM). It 
was demonstrated that fluvastatin upregulates TFPI 
expression in HUVECs. Moreover, some of underly-
ing mechanisms of TFPI induction were identified. 

Fig.4. Fluvastatin-induced TFPI expression is mediated via the activation of p38 MAPK, PKC, and PI3K in HUVECs.

A, HUVECs were incubated with fluvastatin (1 μM) in the presence or absence of SB203580 (p38 MAPK inhibitor, 20 
μM), U0126 (ERK1/2 inhibitor, 20 μM), or SP600125 (JNK inhibitor, 20 μM) for 24 h; and B, GF109203 (PKC inhibi-
tor, 0.1, 1 μM) or LY294002 (PI3K inhibitor, 10, 20 μM) for 24 h. After incubation, protein levels were determined by 
western blotting. C, HUVECs were incubated with fluvastatin (1 μM) for 12 or 24 h. Total or phosphorylated p38 MAPK 
was determined by western blotting.

A

B

C
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PI3K/Akt activation is independent of NO produc-
tion (data not shown).

The transcriptional activity of the TFPI pro-
moter cloned in front of the luciferase gene was not 
altered by fluvastatin treatment. As explained in the 
Materials and Methods, our construct consisted of 
exon 1 of the TFPI gene and its 5´-flanking region, 
which contains three GATA-2, one SP-1, and two 
c-Mic binding sites22). Our results showed that the 
upregulation of TFPI by fluvastatin is not mediated 
by those transcription factors. Instead, fluvastatin 
treatment of HUVECs delayed the degradation of 
TFPI mRNA in the presence of actinomycin D, indi-
cating that fluvastatin increased TFPI synthesis by 
improving its mRNA stability. Indeed, mRNA stabili-
zation by statins has been reported for various genes 
other than TFPI. Habara et al. reported that pitavas-
tatin increases iNOS gene expression through stabili-
zation of its mRNA in rat hepatocytes. The presence 
of its 3´-untranslated region (UTR) containing AU-

statins on p38 MAPK phosphorylation may differ 
according to cell type and pretreatment condition of 
the cells. In our experiments, treatment of HUVECs 
with fluvastatin increased p38 phosphorylation; in 
addition, inhibition of p38 MAPK by SB203580 
reversed the induction of TFPI by fluvastatin, suggest-
ing that p38 MAPK activation by fluvastatin was 
involved in TFPI upregulation. The induction of 
TFPI was also reversed by the presence of LY294002 
and GF109203, indicating that fluvastatin increased 
TFPI expression via the activation of PI3K and PKC. 
It is well documented that statins upregulate endothe-
lial nitric oxide (NO) production via the PI3K/Akt 
signaling pathway19). The PI3K/Akt signaling pathway 
has various roles including cell metabolism, apoptosis, 
and proliferation. Of those, some are mediated by the 
induction of NO production, while others are inde-
pendent of NO20, 21). We confirmed that fluvastatin-
mediated TFPI upregulation was not reversed by 
L-NAME, indicating that TFPI upregulation through 

Fig.5. Fluvastatin has no effect on the TFPI promoter activity in transiently transfected EA.hy926 cells and stabilizes TFPI mRNA 
in HUVECs.

A, EA.hy926 cells were transfected with a luciferase reporter gene construct containing the 5´-flanking region of the TFPI gene and were 
incubated with fluvastatin (0–10 μM) for 24 or 48 h. The data represent the mean±SD of 5 separate experiments. B, HUVECs were incu-
bated with fluvastatin (1 μM) for 24 h, and then actinomycin D (AD; 1 μg/mL) was added alone or with fluvastatin. The cells were harvested 
at the indicated time points and TFPI mRNA levels were determined by RT-PCR. The data represent the mean±SD of 5 separate experi-
ments. ＊p＜0.05 vs. control.

A B
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Cdc42-dependent signaling pathways and the activa-
tion of the p38 MAPK, PI3K, and PKC pathways. 
This study revealed unknown mechanisms underlying 
the anticoagulant effects of statins and gave a new 
insight to its therapeutic potential for the prevention 
of thrombotic diseases.
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